WO2019102839A1 - Power conversion device and method of connecting power conversion devices - Google Patents

Power conversion device and method of connecting power conversion devices Download PDF

Info

Publication number
WO2019102839A1
WO2019102839A1 PCT/JP2018/041106 JP2018041106W WO2019102839A1 WO 2019102839 A1 WO2019102839 A1 WO 2019102839A1 JP 2018041106 W JP2018041106 W JP 2018041106W WO 2019102839 A1 WO2019102839 A1 WO 2019102839A1
Authority
WO
WIPO (PCT)
Prior art keywords
power conversion
phase
primary side
converter
secondary side
Prior art date
Application number
PCT/JP2018/041106
Other languages
French (fr)
Japanese (ja)
Inventor
公久 古川
叶田 玲彦
瑞紀 中原
馬淵 雄一
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN201880059917.5A priority Critical patent/CN111108676B/en
Publication of WO2019102839A1 publication Critical patent/WO2019102839A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters

Definitions

  • the present invention relates to a power converter and a method of connecting the power converter.
  • Patent Document 1 a plurality of converter cells 20-1, 20-2,..., 20-N in the first aspect of the present invention as shown in
  • the power converter 1 having N is a natural number of 2 or more
  • the AC sides of the first AC / DC converters 11 of the plurality of converter cells 20-1, 20-2, ..., 20-N are connected in series
  • the AC sides of the fourth AC / DC converter 14 of each of the plurality of converter cells are connected in series with each other
  • the AC voltage is multileveled (multilevel) as the number of stages of converter cells connected in series increases. (See paragraph 0019 of the specification).
  • the converter cell described in Patent Document 1 converts an alternating voltage on one of the primary side or the secondary side to a direct voltage, and converts the direct voltage to the other alternating voltage.
  • a pulsating current component fluctuating at the primary side frequency or the secondary side frequency is superimposed on the DC voltage. If this pulsating flow component is large, there arises a problem that the voltage fluctuation on the primary side or the secondary side becomes large. Therefore, in order to suppress the pulsating current component, it is necessary to enlarge the parts such as the capacitor included in the converter cell, and as a result, there is a problem that the power converter and the converter cell become large and expensive.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a power converter and a method of connecting the power converter which can be compact and inexpensive.
  • the power converter of the present invention is connected between the primary side system and the secondary side system which is an AC system of N phases (N is a natural number of 3 or more).
  • N is a natural number of 3 or more.
  • first to third power conversion cells each having a pair of primary side terminals and a pair of secondary side terminals, and the primary side terminals of the first to third power conversion cells are connected in series.
  • the secondary side terminal of the first power conversion cell is connected to the portion related to the secondary side first phase
  • the secondary side terminal of the second power conversion cell is connected to the primary side system.
  • the side terminal is connected to a part related to the secondary side second phase
  • the secondary side terminal of the third power conversion cell is connected to the part related to the secondary side third phase.
  • the power converter can be configured compactly and inexpensively.
  • FIG. 1 is a connection diagram of a power conversion device according to a first embodiment of the present invention. It is a block diagram of a converter cell. It is a connection diagram of the power converter by a comparative example. It is a wiring diagram of the power converter by a 2nd embodiment of the present invention. It is a wiring diagram of the power converter by a 3rd embodiment of the present invention. It is a wiring diagram of the power converter by a 4th embodiment of the present invention. It is a block diagram of the modification of a converter cell. It is a circuit diagram of a high frequency transformer periphery applied to other modifications. It is a circuit diagram of a high frequency transformer periphery applied to another modification. It is a circuit diagram of a high frequency transformer periphery applied to another modification.
  • FIG. 1 is a connection diagram of the power conversion device 100.
  • power converter 100 has eighteen converter cells 20-1 to 20-18.
  • the converter cell 20-1 includes the primary side circuit 21, the secondary side circuit 22, and the high frequency transformer 15.
  • the configuration of converter cells 20-2 to 20-18 is also similar to that of converter cell 20-1.
  • converter cells 20-1 to 20-18 may be collectively referred to as "converter cell 20".
  • the power conversion device 100 performs bidirectional or unidirectional power conversion between the primary side system 60, which is a three-phase alternating current system, and the secondary side system 70.
  • the primary side system 60 has a neutral wire 60N, an R phase wire 60R, an S phase wire 60S, and a T phase wire 60T in which R phase, S phase, and T phase voltages appear.
  • the secondary side system 70 has a neutral wire 70N, a U-phase wire 70U in which U-phase, V-phase, and W-phase voltages appear, a V-phase wire 70V, and a W-phase wire 70W.
  • voltage amplitude, frequency and phase of the primary side system 60 and the secondary side system 70 are mutually independent.
  • the R-phase, S-phase, and T-phase voltages have a phase difference of 2 ⁇ / 3 at the primary side frequency, and the U-phase, V-phase, and W-phase voltages mutually change at the secondary side frequency. It has a phase difference of "2 ⁇ / 3".
  • various power generation facilities and power reception facilities such as a commercial power supply system, a solar power generation system, a motor, etc. can be adopted.
  • FIG. 2 is a block diagram of converter cell 20.
  • the primary side circuit 21 described above includes AC / DC converters 11 and 12 and a capacitor 17.
  • the secondary side circuit 22 includes AC / DC converters 13 and 14 and a capacitor 18.
  • the AC / DC converters 11 to 14 each have four switching elements connected in an H-bridge shape and FWD (Free Wheeling Diode) connected in anti-parallel to these switching elements (both without reference numeral) .
  • these switching elements are, for example, MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors).
  • the voltage appearing between both ends of the capacitor 17 is called a primary side DC link voltage Vdc1 (primary side DC voltage).
  • a voltage appearing between the primary side terminals 25 and 26 is referred to as a primary side AC terminal voltage V1.
  • the AC / DC converter 11 transmits power while converting the voltage V1 between the primary side AC terminals and the primary side DC link voltage Vdc1 in both directions or in one direction.
  • the high frequency transformer 15 has a primary winding 15a and a secondary winding 15b, and transmits power at a predetermined frequency between the primary winding 15a and the secondary winding 15b.
  • the current that the AC / DC converters 12 and 13 input to and output from the high frequency transformer 15 is a high frequency.
  • the high frequency is, for example, a frequency of 100 Hz or more, but it is preferable to adopt a frequency of 1 kHz or more, and it is more preferable to adopt a frequency of 10 kHz or more.
  • the AC / DC converter 12 transmits power while converting the primary side DC link voltage Vdc1 and the voltage appearing in the primary winding 15a in two directions or one direction.
  • a voltage appearing between both ends of the capacitor 18 is called a secondary side DC link voltage Vdc2 (secondary side DC voltage).
  • the AC / DC converter 13 transmits power while converting the secondary side DC link voltage Vdc2 and the voltage appearing in the secondary winding 15b in two directions or one direction.
  • a voltage appearing between the secondary side terminals 27 and 28 is referred to as a secondary side AC terminal voltage V2.
  • the AC / DC converter 14 transmits power while converting the voltage between the secondary side AC terminals V2 and the secondary side DC link voltage Vdc2 in two directions or one direction.
  • the primary side terminals 25 and 26 and the secondary side terminals 27 and 28 of the converter cell 20-1 are illustrated, but illustration is omitted for the other converter cells 20-2 to 20-18.
  • Primary terminals 25 and 26 of converter cells 20-1 to 20-6 are sequentially connected in series between R-phase wire 60R and neutral wire 60N.
  • primary terminals 25 and 26 of converter cells 20-7 to 20-12 are sequentially connected in series between T-phase wire 60T and neutral wire 60N.
  • primary terminals 25 and 26 of converter cells 20-13 to 20-18 are sequentially connected in series between S-phase wire 60S and neutral wire 60N.
  • converter cells 20-11 and 20-12 (sixth power conversion cells) and 20-15 and 20-16 (eighth power conversion cells are provided between V-phase line 70V and neutral line 70N).
  • 20-1 and 20-2 (first power conversion cells) are connected in series.
  • converter cells 20-5 and 20-6 third power conversion cells
  • 20-9 and 20-10 sixth power conversion cells
  • converter cells 20-13 and 20-14 seventh power conversion cells
  • the power conversion apparatus 100 connects the primary system 60 and the secondary system 70 by YY connection.
  • converter cell 20-1 When converter cell 20 shown in FIG. 2 is converter cell 20-1 in FIG. 1, voltage V1 on the primary side AC terminal is a voltage obtained by dividing the R phase voltage on the primary side, and secondary side AC
  • the inter-terminal voltage V2 is a voltage obtained by dividing the V-phase voltage on the secondary side.
  • the voltage V1 across the primary side AC terminals is rectified by the AC / DC converter 11 and smoothed by the capacitor 17. That is, the smoothed primary side DC link voltage Vdc1 appears at both ends of the capacitor 17.
  • the primary side DC link voltage Vdc1 is not a complete direct current, but has a pulsating current component of the primary side frequency, that is, a pulsating current component synchronized with the R-phase voltage.
  • the AC / DC converter 12 modulates the primary side DC link voltage Vdc1 at a high frequency, and the modulated wave is rectified by the AC / DC converter 13 via the high frequency transformer 15.
  • the capacitor 18 is charged by the rectified power, and the secondary side DC link voltage Vdc2 appears at its both ends.
  • the secondary side DC link voltage Vdc2 also has a pulsating current component of the primary side frequency, that is, a pulsating current component synchronized with the R-phase voltage.
  • the AC / DC converter 14 switches the secondary side DC link voltage Vdc2 including the pulsating current component, and outputs a secondary side AC terminal voltage V2 alternating at the secondary side frequency.
  • the voltage V2 between the secondary side AC terminals includes a fluctuation component that pulsates at the primary side frequency.
  • each converter cell relating to the V phase that is, each of the converter cells 20-1, 20-2, 20-11, 20-12, 20-15, 20-16 hatched in the secondary side circuit 22.
  • the secondary voltages appearing at the secondary terminals 27 and 28 both include fluctuating components that pulsate at the primary frequency.
  • fluctuation components appearing in the secondary side voltages of the converter cells 20-1 and 20-2 are synchronized with the primary side R phase voltage.
  • fluctuation components appearing in the secondary side voltages of the converter cells 20-11 and 20-12 are synchronized with the primary side T-phase voltage.
  • fluctuation components appearing in the secondary side voltages of the converter cells 20-15 and 20-16 are synchronized with the primary side S phase voltage.
  • the individual fluctuation components synchronized with the R-phase voltage, the S-phase voltage, and the T-phase voltage are waveforms having substantially the same shape, and have a phase difference of “2 ⁇ / 3”.
  • individual fluctuation components synchronized with the R phase voltage, the S phase voltage, and the T phase voltage in the V phase voltage are canceled out, and the level thereof is suppressed.
  • the voltage fluctuation rate of the V-phase voltage can be lowered compared to the voltage fluctuation rate of the secondary side voltage in each converter cell.
  • the V-phase voltage has been described above, the voltage variation rate can be made lower for the U-phase voltage and the W-phase voltage as well as for individual converter cells. Further, the voltage fluctuation rate can be lowered similarly for the R-phase voltage, the S-phase voltage and the T-phase voltage on the primary side.
  • the primary side potential and the secondary side potential of each converter cell 20 will be examined.
  • the potential of the neutral wire 60N is referred to as a primary reference potential
  • the potential of the neutral wire 70N is referred to as a secondary reference potential.
  • the primary side and secondary side reference potentials are, for example, the ground potential, but may not necessarily be the ground potential.
  • the primary side and secondary side electric potential of each converter cell 20 is examined, these are potentials on the basis of the primary side and secondary side reference electric potential of each.
  • the potential (absolute value) of the primary side circuit 21 with respect to the primary side reference potential (potential of the neutral wire 60N) of each converter cell 20 is referred to as "primary side potential”.
  • the potential (absolute value) of the secondary circuit 22 with respect to the secondary reference potential (potential of the neutral wire 70N) is referred to as “secondary potential”.
  • the primary side potential increases with distance from the neutral wire 60N (as approaching the R phase wire 60R, the S phase wire 60S, and the T phase wire 60T).
  • the potential on the secondary side increases with distance from the neutral wire 70N (as approaching the U-phase wire 70U, the V-phase wire 70V, and the W-phase wire 70W).
  • these primary side potentials are 20-12, 20-11, 20-16, 20-15, 20-2 , 20-1 in order.
  • these secondary side potentials increase in the order of 20-1, 20-2, 20-16, 20-15, 20-11, and 20-12.
  • the secondary side voltage tends to be lower as the converter cell 20 has a higher primary side potential.
  • the converter cells 20 related to the U-phase and the W-phase are 20-12, 20-11, 20-16, 20-15, 20-2 , 20-1 in order.
  • these secondary side potentials increase in the order of 20-1, 20-2, 20-16, 20-15, 20-11, and 20-12.
  • the secondary side voltage tends to be lower as the converter cell 20 has a higher primary side potential.
  • the converter cells 20 related to the U-phase and the W-phase are the converter cells 20 related to the U-phase and the W-phase.
  • the voltage between the primary winding 15a and the secondary winding 15b of the high frequency transformer 15 is referred to as a "transformer potential difference".
  • the transformer potential difference of each converter cell 20 can be equalized, and the maximum value of the transformer potential difference can be made relatively low.
  • the withstand voltage of the high frequency transformer 15 can be reduced, a small and inexpensive high frequency transformer can be applied, and the power conversion device 100 can be configured to be smaller and less expensive.
  • FIG. 3 is a connection diagram of the power conversion device in the comparative example.
  • the power conversion device 101 of the present comparative example has P converter cells 20-1 to 20-P.
  • the configuration of each converter cell 20 is the same as that of the first embodiment (see FIG. 2).
  • primary side terminals 25 and 26 (see FIG. 2) of converter cells 20-1 to 20-P are sequentially connected in series between primary side R-phase wire 60R and neutral wire 60N. It is done.
  • the secondary terminals 27, 28 are sequentially connected in series between the U-phase wire 70U and the neutral wire 70N on the secondary side.
  • illustration is omitted about primary side S phase, T phase and secondary side V phase, and W phase
  • power conversion device 101 is connected like primary side R phase.
  • all the converter cells 20-1 to 20-P related to the R phase on the primary side are converter cells related to the U phase on the secondary side.
  • Vdc1 in the primary side DC link voltage Vdc1 appearing at both ends of the capacitor 17 in the converter cell 20, a pulsating current component synchronized with the R phase voltage is generated. Therefore, the voltage fluctuation rate of the secondary side voltage in each converter cell and the voltage fluctuation rate of the U-phase voltage become equal values. The same applies to the V-phase voltage and the W-phase voltage. Therefore, in the present comparative example, in order to suppress the voltage fluctuation rate of the secondary side voltage, the capacity of the capacitors 17 and 18 (see FIG. 2) has to be increased, and compared to the first embodiment, the power conversion The apparatus 101 becomes large and expensive.
  • the transformer potential difference of the converter cell 20-1 is maximized. That is, the transformer potential difference of the converter cell 20-1 is substantially equal to the sum of the amplitude values of the primary side voltage E1 and the secondary side voltage E2, and is higher than that of the first embodiment. Conversely, the transformer potential difference of converter cell 20-P is approximately equal to "1 / P" of the sum of the amplitude values of primary side voltage E1 and secondary side voltage E2, and is lower than that in the first embodiment. be able to.
  • the specification must be determined in accordance with the highest transformer potential difference.
  • the converter cell 20 of the present comparative example is compelled to apply a high frequency transformer 15 having a high withstand voltage as compared with that of the first embodiment, whereby the high frequency transformer 15 and the power conversion device 101 are further enhanced. It becomes large and expensive.
  • the primary side system (60) and the secondary side system (70) which is an AC system of N phase (N is a natural number of 3 or more),
  • the first to third power conversion cells (20-1 to 20-6) each having a pair of primary terminals (25, 26) and a pair of secondary terminals (27, 28),
  • the primary side terminals of the first to third power conversion cells (20-1 to 20-6) are connected in series and connected to the primary side system (60), and the first power conversion cell (20-) is connected.
  • the secondary side terminal of 1, 20-2) is connected to the place related to the secondary side first phase (secondary side V phase), and the secondary side of the second power conversion cell (20-3, 20-4)
  • the side terminal is connected to the part related to the secondary side second phase (secondary side U phase), and the secondary side terminal of the third power conversion cell (20-5, 20-6) is the secondary side third phase (Secondary W phase) It is connected to a portion of.
  • the power converter (100) can be miniaturized. And it can be configured inexpensively.
  • the first to third power conversion cells (20-1 to 20-6) respectively have a primary winding (15a) and a secondary winding isolated from the primary winding (15a) And a transformer (15) having the following. Thereby, the primary side and the secondary side can be properly insulated.
  • the primary side system (60) is an AC system of M phase (M is a natural number of 3 or more), and the power conversion device (100) has a pair of primary side terminals. It further comprises fourth to ninth power conversion cells (20-7 to 20-18) having (25, 26) and a pair of secondary terminals (27, 28), and the first to third powers
  • the primary side terminals of the conversion cells (20-1 to 20-6) are connected in series and connected to a portion related to the primary side first phase (primary side R phase), and the fourth to sixth electric powers
  • the primary side terminals of the conversion cells (20-7 to 20-12) are connected in series and connected to a portion related to the primary side second phase (primary side T phase), and the seventh to ninth electric powers
  • the primary side terminals of the conversion cells (20-13 to 20-18) are connected in series and connected to a portion related to the primary side third phase (primary side S phase), Power conversion cell (20-1, 20-2), sixth power conversion cell (20-11, 20-12), and secondary side terminal of eighth power conversion cell (20-15, 20
  • the power converter (100) can be small and inexpensive.
  • the transformer (15) transmits power at a frequency of 100 Hz or more between the primary winding (15a) and the secondary winding (15b), and the first to third power conversion cells (20 -1 to 20-6) includes a primary side circuit (21) for transmitting power between the primary side terminals (25, 26) and the primary winding (15a), and a secondary side terminal And 28, a secondary side circuit (22) transmitting power between the secondary winding (15b).
  • a primary side circuit (21) for transmitting power between the primary side terminals (25, 26) and the primary winding (15a)
  • a secondary side terminal And 28 a secondary side circuit (22) transmitting power between the secondary winding (15b).
  • the primary side circuit (21) is a first AC / DC converter (11) that transmits power between the pair of primary side terminals (25, 26) and the primary side DC voltage (Vdc1); A second AC / DC converter (12) for transmitting power between the primary side DC voltage (Vdc1) and the primary winding (15a), and the secondary side circuit (22) Third AC-DC converter (13) for transmitting power between the DC voltage (Vdc2) on the side and the secondary winding (15b), a pair of secondary terminals (27, 28) and a DC voltage on the secondary side And (d) a fourth AC / DC converter (14) for transmitting power between the power supply and the (Vdc2).
  • power can be stably converted via the DC voltage.
  • the power conversion in which the absolute value of the ground potential at the primary side terminals (25, 26) is the highest is different from the power conversion cell (20-6) in which the absolute value of the ground potential at the secondary terminal (27, 28) is the highest.
  • the power conversion cell (20-7) in which the absolute value of the ground potential at the primary terminal (25, 26) is the highest is different, and the secondary terminal (27, 28)
  • the power conversion cell (20-12) in which the absolute value of the ground potential is the highest is different, and the primary side terminal (25,) of the seventh to ninth power conversion cells (20-13 to 20-18) is different.
  • Power conversion cell (20-13) in which the absolute value of ground potential in 26) is the highest Each secondary side terminal to the secondary side system (70) so that the power conversion cell (20-18) where the absolute value of the ground potential at the secondary side terminal (27, 28) becomes the highest is different. Connected Thereby, the variation in the transformer potential difference of the power conversion cell can be reduced, and the transformer (15) having a low withstand voltage can be applied. As a result, the power converter (100) can be made smaller and less expensive.
  • FIG. 4 is a connection diagram of the power conversion device 120.
  • the power conversion device 120 has eighteen converter cells 20-1 to 20-18 as in the first embodiment (see FIG. 1).
  • the configuration of each converter cell 20 is the same as that of the first embodiment (see FIG. 2).
  • the power conversion device 120 performs bidirectional or unidirectional power conversion between the primary side system 62, which is a three-phase AC system, and the secondary side system 70.
  • the primary side system 62 has an R phase line 62R, an S phase line 62S, and a T phase line 62T in which R phase, S phase, and T phase voltages appear.
  • the configuration of the secondary system 70 is the same as that of the first embodiment.
  • the primary side terminals 25 and 26 (see FIG. 2) of the converter cells 20-1 to 20-6 are sequentially connected in series between the R phase line 62R and the T phase line 62T.
  • the primary side terminals 25 and 26 of the converter cells 20-7 to 20-12 are sequentially connected in series between the T phase line 62T and the S phase line 62S.
  • primary side terminals 25 and 26 of converter cells 20-13 to 20-18 are sequentially connected in series between S phase line 62S and R phase line 62R.
  • connection relationship between the secondary side terminals 27 and 28 of each converter cell 20 and the secondary side system 70 is the same as that of the first embodiment.
  • the power conversion device 120 connects the primary side system 62 and the secondary side system 70 by ⁇ -Y connection.
  • the same effects as those of the first embodiment can be obtained, and the application range can be expanded in that the present embodiment can be applied to a three-phase three-wire primary side system 62 without a neutral wire.
  • the primary side is Y-connected and the secondary side is ⁇ -connected, but the primary side may be ⁇ -connected and the secondary side may be Y-connected.
  • FIG. 5 is a connection diagram of the power conversion device 130.
  • the power converter 130 has eighteen converter cells 20-1 to 20-18, as in the second embodiment (see FIG. 4).
  • the configuration of each converter cell 20 is the same as that of the first embodiment (see FIG. 2).
  • the power conversion device 130 performs bidirectional or unidirectional power conversion between the primary side system 62, which is a three-phase alternating current system, and the secondary side system 72.
  • the configuration of the primary side system 62 is the same as that of the second embodiment (see FIG. 4). Further, the connection relationship between the primary side terminals 25 and 26 of the converter cells 20-1 to 20-18 and the primary side system 62 is also similar to that of the second embodiment.
  • the secondary side system 72 has a U-phase line 72U, a V-phase line 72V and a W-phase line 72W in which U-phase, V-phase and W-phase voltages appear.
  • the power conversion device 130 connects the primary side system 62 and the secondary side system 72 by ⁇ - ⁇ connection. According to the present embodiment, the same effects as those of the first embodiment can be obtained, and even if the primary side system 62 and the secondary side system 72 are both three-phase three-wire systems without neutral wires.
  • the scope of application can be further expanded in terms of
  • FIG. 6 is a connection diagram of the power conversion device 140.
  • Power converter 140 has three converter cells 20-101 to 20-103 (first to third power conversion cells). The configuration of each converter cell 20 is the same as that of the first embodiment (see FIG. 2).
  • the power conversion device 140 performs bidirectional or unidirectional power conversion between the primary side system 64 which is a single phase alternating current system and the secondary side system 74 which is a three phase alternating current system.
  • the primary side system 64 has a pair of lines 64P and 64N.
  • the secondary side system 74 has a neutral wire 74N, a U-phase wire 74U in which U-phase, V-phase, and W-phase voltages appear, a V-phase wire 74V, and a W-phase wire 74W.
  • Primary terminals 25 and 26 of converter cells 20-101 to 20-103 are sequentially connected in series between lines 64P and 64N.
  • secondary terminals 27, 28 of converter cell 20-101 are connected to V-phase wire 74V and neutral wire 74N, respectively.
  • secondary terminals 27, 28 of converter cell 20-102 are connected to U-phase wire 74U and neutral wire 74N, respectively.
  • secondary terminals 27, 28 of converter cells 20-103 are connected to W-phase wire 74W and neutral wire 74N, respectively.
  • the terminal voltage of capacitors 17 and 18 (see FIG. 2) included in converter cell 20-101 is V phase voltage. It has a pulsating flow component synchronized. Thereby, the fluctuation component appearing in the primary side voltage of converter cell 20-101 is synchronized with the secondary side V phase voltage. Similarly, the fluctuation component appearing in the primary side voltage of converter cell 20-102 is synchronized with the secondary side U-phase voltage. Similarly, fluctuation components appearing in the primary side voltage of converter cells 20-103 are synchronized with the secondary side W-phase voltage.
  • the individual fluctuation components synchronized with these V-phase voltage, U-phase voltage and W-phase voltage are waveforms of substantially the same shape, and have a phase difference of "2 ⁇ / 3".
  • individual fluctuation components synchronized with the V phase voltage, U phase voltage and W phase voltage in the primary side voltage cancel each other out. And their level is suppressed.
  • this embodiment is connected between the primary side system (64) and the secondary side system (74) of the N phase (N is a natural number of 3 or more), each of which is a pair of primary side First to third power conversion cells (20-101 to 20-103) each having a terminal (25, 26) and a pair of secondary terminals (27, 28);
  • the primary side terminals of the conversion cells (20-101 to 20-103) are connected in series and connected to the primary side system (64), and the secondary side terminals of the first power conversion cell (20-101) Is connected to a point related to the secondary side first phase (secondary side V phase), and the secondary side terminal of the second power conversion cell (20-102) is a secondary side second phase (secondary side U phase) Connected to the point related to the second power conversion cell (20-103) connected to the point related to the second side third phase (secondary W phase) That the point is the same as the first to third embodiments.
  • the voltage fluctuation rate can be suppressed even when the capacitances of the capacitors 17 and 18 (see FIG. 2) are small.
  • a small-capacity one can be applied as 18 and a small and inexpensive power converter 140 can be realized.
  • a MOSFET is applied as a switching element.
  • an IGBT Insulated Gate Bipolar Transistor
  • a bipolar transistor As a switching element, an IGBT (Insulated Gate Bipolar Transistor), a bipolar transistor, a thyristor, a GTO (Gate Turn-Off Thyristor), an IEGT
  • a vacuum tube type element such as (Injection Enhanced Gate Transistor) or a thyratron may be applied.
  • the material can apply arbitrary things, such as Si, SiC, and GaN.
  • FIG. 7 is a block diagram of a modification of converter cell 20.
  • the AC-DC converters 11 to 14 shown in FIG. 2 use the H-bridge using switching elements so as to convert power in two directions. However, if it is sufficient to convert power in one direction, the AC-DC converters 11 to In part of 14, an H bridge using a rectifying element may be applied.
  • the configuration shown in FIG. 7 is obtained by replacing the AC / DC converter 13 in FIG. 2 with an AC / DC converter 13a to which four rectifying elements (without reference numerals) are applied.
  • the transformer potential difference of the high frequency transformer 15 is the same as that in each of the above embodiments, the power conversion device can be configured in a small size and at low cost.
  • the four rectifying elements in the AC / DC converter 13a may be semiconductor diodes or vacuum tube mercury rectifiers.
  • the material can apply arbitrary things, such as Si, SiC, and GaN.
  • the converter cells 20-1 to 20-18 are connected such that the secondary side voltage tends to be lower as the converter cell 20 with the higher primary side potential. More specifically, converter cell 20 in which the absolute value of ground potential at primary side terminals 25 and 26 is the highest, and converter cell 20 cells in which the absolute value of ground potential at secondary side terminals 27 and 28 is the highest; Converter cells 20-1 to 20-18 are connected in such a manner as to be different.
  • the high frequency transformer 15 can cope with a high transformer potential difference, it is not necessary to necessarily adopt such a connection method. That is, converter cell 20 in which the absolute value of ground potential at primary side terminals 25 and 26 is the highest, and converter cell 20 at which the absolute value of ground potential at secondary terminals 27 and 28 is the highest are the same. It may be.
  • the converter cells 20-1 to 20-61 are listed in descending order of the potential on the secondary side: converter cells 20-1 and 20-2 (V phase), converter cells 20-3 and 20-4 (U phase) , Converter cells 20-5, 20-6 (W phase), and so on.
  • V phase V phase
  • U phase U phase
  • W phase 20-6
  • the high frequency transformer 15 can handle this order, (U, V, W), (U, W, V), (V, U, W), (V, W, U), (W , U, V) and (W, V, U) may be in any of the six orders.
  • a capacitor may be inserted between the AC / DC converters 12 and 13 shown in FIG. 2 and the high frequency transformer 15.
  • FIG. 8A shows an example in which the capacitor 51 is inserted between the AC / DC converter 12 and the primary winding 15a, and the capacitor 52 is inserted between the AC / DC converter 13 and the secondary winding 15b.
  • FIG. 8B shows an example in which the capacitor 51 is inserted between the AC / DC converter 12 and the primary winding 15a
  • FIG. 8C shows the AC / DC converter 13 and the secondary winding 15b.
  • the capacitor 52 is inserted between them.
  • the high frequency transformer 15 applied to each of the above embodiments may be designed to intentionally generate a leakage inductance.
  • the primary side system 64 is a single-phase alternating current system
  • the secondary side system 74 is a three-phase alternating current system, but the primary side is a three-phase alternating current system;
  • the next side may be a single phase AC system.
  • the side of the three-phase alternating current system may be ⁇ -connected.
  • the primary side system 64 may be a DC system.
  • the AC / DC converter 11 in the converter cell 20 may be eliminated and both ends of the capacitor 17 may be connected to the primary side terminals 25 and 26.
  • the primary side circuit (21) transmits power between the pair of primary side terminals (25, 26) and the primary winding (15a).
  • a third AC / DC converter (13) having a power supply (12), the secondary side circuit (22) transmitting power between the secondary side DC voltage (Vdc2) and the secondary winding (15b)
  • a fourth AC / DC converter (14) for transmitting power between the pair of secondary terminals (27, 28) and the secondary DC voltage (Vdc2).
  • the structure of the converter cell 20 can apply various structures other than what was shown to FIG. 2 and FIG. That is, a fluctuation component corresponding to the primary side AC terminal voltage V1 appears in the secondary side AC terminal voltage V2, or a fluctuation component corresponding to the secondary side AC terminal voltage V2 is the primary side AC terminal voltage If it is a converter cell which appears in V1, the same effect as each above-mentioned embodiment can be produced regardless of the composition.
  • the number of phases M in the primary side system and the number N of phases in the secondary side system are both “3”. May be “4” or more, and the number of phases M may be a value different from the number of phases N.
  • the number of converter cells 20 is “18”, but the number of converter cells 20 is arbitrary. However, in order to make the specifications of each converter cell 20 identical, the number of converter cells 20 is preferably a natural number multiple of “N ⁇ M”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Ac-Ac Conversion (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Provided is a power conversion device which is small and can be configured inexpensively. The power conversion device (100) is provided with first to third power conversion cells (20-1 to 20-6) connected between a primary-side system (60) and a secondary-side system (70) which is an N-phase (N is a natural number of 3 or more) alternating-current system, each of the cells having a pair of primary-side terminals (25, 26) and a pair of secondary-side terminals (27, 28). The primary-side terminals of the first to third power conversion cells (20-1 to 20-6) are connected in series and connected to the primary-side system (60). The secondary-side terminals of the first power conversion cells (20-1, 20-2) are connected to portions relating to the secondary-side first phase (secondary-side V phase). The secondary-side terminals of the second power conversion cells (20-3, 20-4) are connected to portions relating to the secondary-side second phase (secondary-side U phase). The secondary-side terminals of the third power conversion cells (20-5, 20-6) are connected to portions relating to the secondary-side third phase (secondary-side W phase).

Description

電力変換装置および電力変換装置の接続方法Power converter and connection method of power converter
 本発明は、電力変換装置および電力変換装置の接続方法に関する。 The present invention relates to a power converter and a method of connecting the power converter.
 本技術分野の背景技術として、下記特許文献1には、「図示のように、本発明の第1の態様において、複数のコンバータセル20-1、20-2、…、20-N(ただし、Nは2以上の自然数)を備える電力変換装置1は、複数のコンバータセル20-1、20-2、…、20-Nの各第1の交直変換器11の交流側どうしが直列接続され、かつ、この複数のコンバータセルの各第4の交直変換器14の交流側どうしが直列接続される。直列接続するコンバータセルの段数が増加するほど、交流電圧は多レベル(マルチレベル)化される。」と記載されている(明細書の段落0019参照)。 As background art of the present technical field, as described in “Patent Document 1 below,“ a plurality of converter cells 20-1, 20-2,..., 20-N in the first aspect of the present invention as shown in In the power converter 1 having N is a natural number of 2 or more, the AC sides of the first AC / DC converters 11 of the plurality of converter cells 20-1, 20-2, ..., 20-N are connected in series, And, the AC sides of the fourth AC / DC converter 14 of each of the plurality of converter cells are connected in series with each other The AC voltage is multileveled (multilevel) as the number of stages of converter cells connected in series increases. (See paragraph 0019 of the specification).
特開2005-73362号公報JP 2005-73362 A
 特許文献1に記載されたコンバータセルは、例えば、1次側または2次側のうち一方の交流電圧を直流電圧に変換し、この直流電圧を他方の交流電圧に変換するものである。ここで、直流電圧には1次側または2次側周波数で変動する脈流成分が重畳する。この脈流成分が大きければ、1次側または2次側の電圧変動が大きくなるという問題が生じる。そこで、脈流成分を抑制しようとすると、コンバータセルに含まれるコンデンサ等の部品を大型化せざるを得ず、その結果、電力変換装置やコンバータセルが大型化し高価になるという問題があった。
 この発明は上述した事情に鑑みてなされたものであり、小型で安価に構成できる電力変換装置および電力変換装置の接続方法を提供することを目的とする。
The converter cell described in Patent Document 1, for example, converts an alternating voltage on one of the primary side or the secondary side to a direct voltage, and converts the direct voltage to the other alternating voltage. Here, a pulsating current component fluctuating at the primary side frequency or the secondary side frequency is superimposed on the DC voltage. If this pulsating flow component is large, there arises a problem that the voltage fluctuation on the primary side or the secondary side becomes large. Therefore, in order to suppress the pulsating current component, it is necessary to enlarge the parts such as the capacitor included in the converter cell, and as a result, there is a problem that the power converter and the converter cell become large and expensive.
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a power converter and a method of connecting the power converter which can be compact and inexpensive.
 上記課題を解決するため本発明の電力変換装置にあっては、1次側系統と、N相(Nは3以上の自然数)の交流系統である2次側系統との間に接続され、各々が一対の1次側端子と、一対の2次側端子とを有する第1~第3の電力変換セルを備え、前記第1~第3の電力変換セルの前記1次側端子は直列接続されるとともに、前記1次側系統に接続され、前記第1の電力変換セルの前記2次側端子は2次側第1相に係る箇所に接続され、前記第2の電力変換セルの前記2次側端子は2次側第2相に係る箇所に接続され、前記第3の電力変換セルの前記2次側端子は2次側第3相に係る箇所に接続されていることを特徴とする。 In order to solve the above problems, in the power converter of the present invention, it is connected between the primary side system and the secondary side system which is an AC system of N phases (N is a natural number of 3 or more). Includes first to third power conversion cells each having a pair of primary side terminals and a pair of secondary side terminals, and the primary side terminals of the first to third power conversion cells are connected in series. And the secondary side terminal of the first power conversion cell is connected to the portion related to the secondary side first phase, and the secondary side terminal of the second power conversion cell is connected to the primary side system. The side terminal is connected to a part related to the secondary side second phase, and the secondary side terminal of the third power conversion cell is connected to the part related to the secondary side third phase.
 本発明によれば、電力変換装置を小型で安価に構成できる。 According to the present invention, the power converter can be configured compactly and inexpensively.
本発明の第1実施形態による電力変換装置の結線図である。1 is a connection diagram of a power conversion device according to a first embodiment of the present invention. コンバータセルのブロック図である。It is a block diagram of a converter cell. 比較例による電力変換装置の結線図である。It is a connection diagram of the power converter by a comparative example. 本発明の第2実施形態による電力変換装置の結線図である。It is a wiring diagram of the power converter by a 2nd embodiment of the present invention. 本発明の第3実施形態による電力変換装置の結線図である。It is a wiring diagram of the power converter by a 3rd embodiment of the present invention. 本発明の第4実施形態による電力変換装置の結線図である。It is a wiring diagram of the power converter by a 4th embodiment of the present invention. コンバータセルの変形例のブロック図である。It is a block diagram of the modification of a converter cell. 他の変形例に適用される高周波トランス周辺の回路図である。It is a circuit diagram of a high frequency transformer periphery applied to other modifications. さらに他の変形例に適用される高周波トランス周辺の回路図である。It is a circuit diagram of a high frequency transformer periphery applied to another modification. さらに他の変形例に適用される高周波トランス周辺の回路図である。It is a circuit diagram of a high frequency transformer periphery applied to another modification.
[第1実施形態]
〈第1実施形態の構成〉
 まず、本発明の第1実施形態による電力変換装置100の構成を説明する。
 図1は、電力変換装置100の結線図である。図示のように、電力変換装置100は、18台のコンバータセル20-1~20-18を有している。そして、コンバータセル20-1は、1次側回路21と、2次側回路22と、高周波トランス15と、を有している。コンバータセル20-2~20-18の構成も、コンバータセル20-1のものと同様である。以下、コンバータセル20-1~20-18を総称して「コンバータセル20」と表記することがある。
First Embodiment
<Configuration of First Embodiment>
First, the configuration of the power conversion device 100 according to the first embodiment of the present invention will be described.
FIG. 1 is a connection diagram of the power conversion device 100. As illustrated, power converter 100 has eighteen converter cells 20-1 to 20-18. The converter cell 20-1 includes the primary side circuit 21, the secondary side circuit 22, and the high frequency transformer 15. The configuration of converter cells 20-2 to 20-18 is also similar to that of converter cell 20-1. Hereinafter, converter cells 20-1 to 20-18 may be collectively referred to as "converter cell 20".
 電力変換装置100は、何れも3相交流系統である1次側系統60と、2次側系統70との間で、双方向または一方向の電力変換を行うものである。ここで、1次側系統60は、中性線60Nと、R相、S相、T相電圧が現れるR相線60R、S相線60S、T相線60Tと、を有している。また、2次側系統70は、中性線70Nと、U相、V相、W相電圧が現れるU相線70U、V相線70V、W相線70Wと、を有している。 The power conversion device 100 performs bidirectional or unidirectional power conversion between the primary side system 60, which is a three-phase alternating current system, and the secondary side system 70. Here, the primary side system 60 has a neutral wire 60N, an R phase wire 60R, an S phase wire 60S, and a T phase wire 60T in which R phase, S phase, and T phase voltages appear. In addition, the secondary side system 70 has a neutral wire 70N, a U-phase wire 70U in which U-phase, V-phase, and W-phase voltages appear, a V-phase wire 70V, and a W-phase wire 70W.
 また、1次側系統60と2次側系統70とは、電圧振幅、周波数および位相が相互に独立している。そして、R相、S相、T相電圧は、1次側周波数において相互に「2π/3」の位相差を有し、U相、V相、W相電圧は、2次側周波数において相互に「2π/3」の位相差を有する。1次側,2次側系統60,70としては、例えば商用電源系統、太陽光発電システム、モータ等、様々な発電設備や受電設備を採用することができる。 Further, voltage amplitude, frequency and phase of the primary side system 60 and the secondary side system 70 are mutually independent. The R-phase, S-phase, and T-phase voltages have a phase difference of 2π / 3 at the primary side frequency, and the U-phase, V-phase, and W-phase voltages mutually change at the secondary side frequency. It has a phase difference of "2π / 3". As the primary side and secondary side systems 60 and 70, various power generation facilities and power reception facilities such as a commercial power supply system, a solar power generation system, a motor, etc. can be adopted.
 図2は、コンバータセル20のブロック図である。
 上述した1次側回路21は、交直変換器11,12と、コンデンサ17とを有している。また、2次側回路22は、交直変換器13,14と、コンデンサ18とを有している。交直変換器11~14は、各々Hブリッジ状に接続された4個のスイッチング素子と、これらスイッチング素子に逆並列に接続されたFWD(Free Wheeling Diode)とを有している(共に符号なし)。なお、本実施形態において、これらスイッチング素子は、例えばMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である。コンデンサ17の両端の間に現れる電圧を1次側DCリンク電圧Vdc1(1次側直流電圧)と呼ぶ。また、1次側端子25,26の間に現れる電圧を1次側AC端子間電圧V1と呼ぶ。そして、交直変換器11は、1次側AC端子間電圧V1と、1次側DCリンク電圧Vdc1とを双方向または一方向に変換しつつ電力を伝送する。
FIG. 2 is a block diagram of converter cell 20.
The primary side circuit 21 described above includes AC / DC converters 11 and 12 and a capacitor 17. Further, the secondary side circuit 22 includes AC / DC converters 13 and 14 and a capacitor 18. The AC / DC converters 11 to 14 each have four switching elements connected in an H-bridge shape and FWD (Free Wheeling Diode) connected in anti-parallel to these switching elements (both without reference numeral) . In the present embodiment, these switching elements are, for example, MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors). The voltage appearing between both ends of the capacitor 17 is called a primary side DC link voltage Vdc1 (primary side DC voltage). Further, a voltage appearing between the primary side terminals 25 and 26 is referred to as a primary side AC terminal voltage V1. Then, the AC / DC converter 11 transmits power while converting the voltage V1 between the primary side AC terminals and the primary side DC link voltage Vdc1 in both directions or in one direction.
 高周波トランス15は、1次巻線15aと、2次巻線15bとを有し、1次巻線15aと2次巻線15bとの間で、所定の周波数で電力を伝送する。交直変換器12および13が高周波トランス15との間で入出力する電流は、高周波である。ここで、高周波とは、例えば100Hz以上の周波数であるが、1kHz以上の周波数を採用することが好ましく、10kHz以上の周波数を採用することがより好ましい。交直変換器12は、1次側DCリンク電圧Vdc1と、1次巻線15aに現れる電圧とを双方向または一方向に変換しつつ電力を伝送する。 The high frequency transformer 15 has a primary winding 15a and a secondary winding 15b, and transmits power at a predetermined frequency between the primary winding 15a and the secondary winding 15b. The current that the AC / DC converters 12 and 13 input to and output from the high frequency transformer 15 is a high frequency. Here, the high frequency is, for example, a frequency of 100 Hz or more, but it is preferable to adopt a frequency of 1 kHz or more, and it is more preferable to adopt a frequency of 10 kHz or more. The AC / DC converter 12 transmits power while converting the primary side DC link voltage Vdc1 and the voltage appearing in the primary winding 15a in two directions or one direction.
 また、コンデンサ18の両端の間に現れる電圧を2次側DCリンク電圧Vdc2(2次側直流電圧)と呼ぶ。交直変換器13は、2次側DCリンク電圧Vdc2と、2次巻線15bに現れる電圧とを双方向または一方向に変換しつつ電力を伝送する。また、2次側端子27,28の間に現れる電圧を2次側AC端子間電圧V2と呼ぶ。そして、交直変換器14は、2次側AC端子間電圧V2と、2次側DCリンク電圧Vdc2とを双方向または一方向に変換しつつ電力を伝送する。 Further, a voltage appearing between both ends of the capacitor 18 is called a secondary side DC link voltage Vdc2 (secondary side DC voltage). The AC / DC converter 13 transmits power while converting the secondary side DC link voltage Vdc2 and the voltage appearing in the secondary winding 15b in two directions or one direction. Further, a voltage appearing between the secondary side terminals 27 and 28 is referred to as a secondary side AC terminal voltage V2. Then, the AC / DC converter 14 transmits power while converting the voltage between the secondary side AC terminals V2 and the secondary side DC link voltage Vdc2 in two directions or one direction.
 図1に戻り、コンバータセル20-1の1次側端子25,26および2次側端子27,28は図示するが、他のコンバータセル20-2~20-18のものについては、図示を省略する。コンバータセル20-1~20-6の1次側端子25,26は、R相線60Rと中性線60Nとの間に、順次直列に接続されている。同様に、コンバータセル20-7~20-12の1次側端子25,26は、T相線60Tと中性線60Nとの間に、順次直列に接続されている。同様に、コンバータセル20-13~20-18の1次側端子25,26は、S相線60Sと中性線60Nとの間に、順次直列に接続されている。 Returning to FIG. 1, the primary side terminals 25 and 26 and the secondary side terminals 27 and 28 of the converter cell 20-1 are illustrated, but illustration is omitted for the other converter cells 20-2 to 20-18. Do. Primary terminals 25 and 26 of converter cells 20-1 to 20-6 are sequentially connected in series between R-phase wire 60R and neutral wire 60N. Similarly, primary terminals 25 and 26 of converter cells 20-7 to 20-12 are sequentially connected in series between T-phase wire 60T and neutral wire 60N. Similarly, primary terminals 25 and 26 of converter cells 20-13 to 20-18 are sequentially connected in series between S-phase wire 60S and neutral wire 60N.
 図1において、2次側回路22のうち、U相線70Uと中性線70Nとの間に接続されているものにはドット網掛けを付している。すなわち、U相線70Uと中性線70Nとの間には、コンバータセル20-17,20-18(第9の電力変換セル)と、20-3,20-4(第2の電力変換セル)と、20-7,20-8(第4の電力変換セル)と、が直列に接続されている。 In FIG. 1, among the secondary side circuits 22, those connected between the U-phase line 70U and the neutral line 70N are dotted. That is, between U-phase line 70U and neutral line 70N, converter cells 20-17 and 20-18 (ninth power conversion cell) and 20-3 and 20-4 (second power conversion cell) And 20-7, 20-8 (fourth power conversion cells) are connected in series.
 また、2次側回路22のうち、V相線70Vと中性線70Nとの間に接続されているものにはハッチングを付している。すなわち、V相線70Vと中性線70Nとの間には、コンバータセル20-11,20-12(第6の電力変換セル)と、20-15,20-16(第8の電力変換セル)と、20-1,20-2(第1の電力変換セル)と、が直列に接続されている。 Further, among the secondary side circuits 22, those connected between the V-phase wire 70V and the neutral wire 70N are hatched. That is, converter cells 20-11 and 20-12 (sixth power conversion cells) and 20-15 and 20-16 (eighth power conversion cells are provided between V-phase line 70V and neutral line 70N). And 20-1 and 20-2 (first power conversion cells) are connected in series.
 また、2次側回路22のうち、W相線70Wと中性線70Nとの間に接続されているものは白ヌキになっている。すなわち、W相線70Wと中性線70Nとの間には、コンバータセル20-5,20-6(第3の電力変換セル)と、20-9,20-10(第5の電力変換セル)と、コンバータセル20-13,20-14(第7の電力変換セル)と、が直列に接続されている。このように、電力変換装置100は、1次側系統60と2次側系統70とをY-Y結線にて接続するものである。 Further, among the secondary side circuits 22, those connected between the W-phase wire 70W and the neutral wire 70N are white circles. That is, converter cells 20-5 and 20-6 (third power conversion cells) and 20-9 and 20-10 (fifth power conversion cells) are disposed between W-phase line 70W and neutral line 70N. And converter cells 20-13 and 20-14 (seventh power conversion cells) are connected in series. As described above, the power conversion apparatus 100 connects the primary system 60 and the secondary system 70 by YY connection.
〈第1実施形態の動作〉
 次に、再び図2を参照し、コンバータセル20-1の動作を説明する。
 図2に示すコンバータセル20が図1におけるコンバータセル20-1であった場合、1次側AC端子間電圧V1は、1次側のR相電圧を分圧した電圧になり、2次側AC端子間電圧V2は、2次側のV相電圧を分圧した電圧になる。電力潮流が1次側から2次側に向かって流れているとすると、1次側AC端子間電圧V1は、交直変換器11によって整流され、コンデンサ17によって平滑化される。すなわち、コンデンサ17の両端には、平滑化された1次側DCリンク電圧Vdc1が現れる。
<Operation of First Embodiment>
Next, the operation of converter cell 20-1 will be described with reference to FIG. 2 again.
When converter cell 20 shown in FIG. 2 is converter cell 20-1 in FIG. 1, voltage V1 on the primary side AC terminal is a voltage obtained by dividing the R phase voltage on the primary side, and secondary side AC The inter-terminal voltage V2 is a voltage obtained by dividing the V-phase voltage on the secondary side. Assuming that the power flow is flowing from the primary side to the secondary side, the voltage V1 across the primary side AC terminals is rectified by the AC / DC converter 11 and smoothed by the capacitor 17. That is, the smoothed primary side DC link voltage Vdc1 appears at both ends of the capacitor 17.
 しかし、1次側DCリンク電圧Vdc1は完全な直流ではなく、1次側周波数の脈流成分、すなわちR相電圧に同期する脈流成分を有している。交直変換器12は、1次側DCリンク電圧Vdc1を高周波で変調し、変調波は高周波トランス15を介して交直変換器13にて整流される。コンデンサ18は、整流された電力によって充電され、その両端には2次側DCリンク電圧Vdc2が現れる。この2次側DCリンク電圧Vdc2も、1次側周波数の脈流成分、すなわちR相電圧に同期する脈流成分を有している。交直変換器14は、脈流成分を含む2次側DCリンク電圧Vdc2をスイッチングし、2次側周波数で交番する2次側AC端子間電圧V2を出力する。 However, the primary side DC link voltage Vdc1 is not a complete direct current, but has a pulsating current component of the primary side frequency, that is, a pulsating current component synchronized with the R-phase voltage. The AC / DC converter 12 modulates the primary side DC link voltage Vdc1 at a high frequency, and the modulated wave is rectified by the AC / DC converter 13 via the high frequency transformer 15. The capacitor 18 is charged by the rectified power, and the secondary side DC link voltage Vdc2 appears at its both ends. The secondary side DC link voltage Vdc2 also has a pulsating current component of the primary side frequency, that is, a pulsating current component synchronized with the R-phase voltage. The AC / DC converter 14 switches the secondary side DC link voltage Vdc2 including the pulsating current component, and outputs a secondary side AC terminal voltage V2 alternating at the secondary side frequency.
 これにより、2次側AC端子間電圧V2は、1次側周波数で脈動する変動成分を含むことになる。そして、コンデンサ17,18の容量が小さいほど、この変動成分が大きくなる。コンデンサ17,18の容量を大きくすると、この変動成分を抑制できるが、これによってコンバータセル20が大型化し、高価になるという問題が生じる。 As a result, the voltage V2 between the secondary side AC terminals includes a fluctuation component that pulsates at the primary side frequency. The smaller the capacitances of the capacitors 17 and 18, the larger the fluctuation component. If the capacitances of the capacitors 17 and 18 are increased, this fluctuation component can be suppressed, but this causes a problem that the converter cell 20 becomes large and expensive.
 図1に戻り、V相に係るコンバータセル、すなわち2次側回路22にハッチングを付したコンバータセル20-1,20-2,20-11,20-12,20-15,20-16の各2次側端子27,28に現れる2次側電圧は、何れも1次側周波数で脈動する変動成分を含んでいる。ここで、コンバータセル20-1,20-2の2次側電圧に現れる変動成分は、1次側R相電圧に同期する。また、コンバータセル20-11,20-12の2次側電圧に現れる変動成分は、1次側T相電圧に同期する。また、コンバータセル20-15,20-16の2次側電圧に現れる変動成分は、1次側S相電圧に同期する。 Returning to FIG. 1, each converter cell relating to the V phase, that is, each of the converter cells 20-1, 20-2, 20-11, 20-12, 20-15, 20-16 hatched in the secondary side circuit 22. The secondary voltages appearing at the secondary terminals 27 and 28 both include fluctuating components that pulsate at the primary frequency. Here, fluctuation components appearing in the secondary side voltages of the converter cells 20-1 and 20-2 are synchronized with the primary side R phase voltage. Further, fluctuation components appearing in the secondary side voltages of the converter cells 20-11 and 20-12 are synchronized with the primary side T-phase voltage. Further, fluctuation components appearing in the secondary side voltages of the converter cells 20-15 and 20-16 are synchronized with the primary side S phase voltage.
 これらR相電圧、S相電圧、T相電圧に同期する個々の変動成分は、略同一形状の波形であり、相互に「2π/3」の位相差を有する。これらV相に係る6台のコンバータセルが直列接続されると、V相電圧においてR相電圧、S相電圧、T相電圧に同期する個々の変動成分は相殺され、そのレベルは抑制される。これにより、個々のコンバータセルにおける2次側電圧の電圧変動率と比較して、V相電圧の電圧変動率を低くすることができる。以上V相電圧について説明したが、U相電圧およびW相電圧についても同様に、個々のコンバータセルよりも電圧変動率を低くすることができる。また、1次側のR相電圧、S相電圧およびT相電圧についても同様に、電圧変動率を低くすることができる。 The individual fluctuation components synchronized with the R-phase voltage, the S-phase voltage, and the T-phase voltage are waveforms having substantially the same shape, and have a phase difference of “2π / 3”. When six converter cells relating to these V phases are connected in series, individual fluctuation components synchronized with the R phase voltage, the S phase voltage, and the T phase voltage in the V phase voltage are canceled out, and the level thereof is suppressed. Thereby, the voltage fluctuation rate of the V-phase voltage can be lowered compared to the voltage fluctuation rate of the secondary side voltage in each converter cell. Although the V-phase voltage has been described above, the voltage variation rate can be made lower for the U-phase voltage and the W-phase voltage as well as for individual converter cells. Further, the voltage fluctuation rate can be lowered similarly for the R-phase voltage, the S-phase voltage and the T-phase voltage on the primary side.
 このように、本実施形態によれば、コンデンサ17,18の容量が小さい場合であっても、1次側電圧および2次側電圧の電圧変動率を抑制できるため、コンデンサ17,18として容量の小さなものを適用することができ、小型かつ安価な電力変換装置100を実現できる。 As described above, according to the present embodiment, even when the capacitances of the capacitors 17 and 18 are small, it is possible to suppress the voltage fluctuation rate of the primary side voltage and the secondary side voltage. A small one can be applied, and a small and inexpensive power converter 100 can be realized.
 ここで、各コンバータセル20の1次側および2次側電位について検討する。まず、中性線60Nの電位を1次側基準電位と呼び、中性線70Nの電位を2次側基準電位と呼ぶ。1次側および2次側基準電位は、例えば接地電位であるが、必ずしも接地電位でなくてもよい。以下、各コンバータセル20の1次側および2次側電位について検討するが、これらは、何れも1次側および2次側基準電位を基準とした電位である。 Here, the primary side potential and the secondary side potential of each converter cell 20 will be examined. First, the potential of the neutral wire 60N is referred to as a primary reference potential, and the potential of the neutral wire 70N is referred to as a secondary reference potential. The primary side and secondary side reference potentials are, for example, the ground potential, but may not necessarily be the ground potential. Hereinafter, although the primary side and secondary side electric potential of each converter cell 20 is examined, these are potentials on the basis of the primary side and secondary side reference electric potential of each.
 図1において、各コンバータセル20の、1次側基準電位(中性線60Nの電位)に対する1次側回路21の電位(絶対値)を「1次側電位」と呼ぶ。また、2次側基準電位(中性線70Nの電位)に対する2次側回路22の電位(絶対値)を「2次側電位」と呼ぶ。1次側電位は、中性線60Nから離れるほど(R相線60R、S相線60S、T相線60Tに近づくほど)高くなる。同様に、2次側電位は、中性線70Nから離れるほど(U相線70U、V相線70V、W相線70Wに近づくほど)高くなる。 In FIG. 1, the potential (absolute value) of the primary side circuit 21 with respect to the primary side reference potential (potential of the neutral wire 60N) of each converter cell 20 is referred to as "primary side potential". The potential (absolute value) of the secondary circuit 22 with respect to the secondary reference potential (potential of the neutral wire 70N) is referred to as “secondary potential”. The primary side potential increases with distance from the neutral wire 60N (as approaching the R phase wire 60R, the S phase wire 60S, and the T phase wire 60T). Similarly, the potential on the secondary side increases with distance from the neutral wire 70N (as approaching the U-phase wire 70U, the V-phase wire 70V, and the W-phase wire 70W).
 例えば、2次側回路22にハッチングを付したV相に係るコンバータセルについて、検討すると、これらの1次側電位は、20-12,20-11,20-16,20-15,20-2,20-1の順に高くなる。また、これらの2次側電位は、20-1,20-2,20-16,20-15,20-11,20-12の順に高くなる。このように、1次側電位の高いコンバータセル20ほど2次側電圧は低くなる傾向を有している。これは、U相およびW相に係るコンバータセル20についても同様である。 For example, considering converter cells related to the V phase in which the secondary side circuit 22 is hatched, these primary side potentials are 20-12, 20-11, 20-16, 20-15, 20-2 , 20-1 in order. Also, these secondary side potentials increase in the order of 20-1, 20-2, 20-16, 20-15, 20-11, and 20-12. Thus, the secondary side voltage tends to be lower as the converter cell 20 has a higher primary side potential. The same applies to the converter cells 20 related to the U-phase and the W-phase.
 高周波トランス15(図2参照)の1次巻線15aと2次巻線15bとの間の電圧を「トランス電位差」と呼ぶ。本実施形態によれば、各コンバータセル20のトランス電位差を均等化でき、トランス電位差の最大値を比較的低くすることができる。これにより、高周波トランス15の耐圧を下げることができ、高周波トランス15として、小型かつ安価なものを適用することができ、電力変換装置100を一層小型かつ安価に構成することができる。 The voltage between the primary winding 15a and the secondary winding 15b of the high frequency transformer 15 (see FIG. 2) is referred to as a "transformer potential difference". According to this embodiment, the transformer potential difference of each converter cell 20 can be equalized, and the maximum value of the transformer potential difference can be made relatively low. As a result, the withstand voltage of the high frequency transformer 15 can be reduced, a small and inexpensive high frequency transformer can be applied, and the power conversion device 100 can be configured to be smaller and less expensive.
〈比較例〉
 次に、本実施形態の効果を明らかにするため、比較例の構成を説明する。
 図3は、比較例における電力変換装置の結線図である。本比較例の電力変換装置101は、P台のコンバータセル20-1~20-Pを有している。各コンバータセル20の構成は第1実施形態のもの(図2参照)と同様である。本比較例において、コンバータセル20-1~20-Pの1次側端子25,26(図2参照)は、1次側のR相線60Rと中性線60Nとの間に順次直列に接続されている。また、2次側端子27,28(図2参照)は、2次側のU相線70Uと中性線70Nとの間に順次直列に接続されている。1次側S相、T相および2次側V相、W相については図示を省略するが、1次側R相と同様に電力変換装置101が接続されている。
Comparative Example
Next, in order to clarify the effect of the present embodiment, the configuration of the comparative example will be described.
FIG. 3 is a connection diagram of the power conversion device in the comparative example. The power conversion device 101 of the present comparative example has P converter cells 20-1 to 20-P. The configuration of each converter cell 20 is the same as that of the first embodiment (see FIG. 2). In this comparative example, primary side terminals 25 and 26 (see FIG. 2) of converter cells 20-1 to 20-P are sequentially connected in series between primary side R-phase wire 60R and neutral wire 60N. It is done. The secondary terminals 27, 28 (see FIG. 2) are sequentially connected in series between the U-phase wire 70U and the neutral wire 70N on the secondary side. Although illustration is omitted about primary side S phase, T phase and secondary side V phase, and W phase, power conversion device 101 is connected like primary side R phase.
 本比較例においては、1次側のR相に係るコンバータセル20-1~20-Pは、全てが2次側のU相に係るコンバータセルになる。第1実施形態と同様に、コンバータセル20内のコンデンサ17の両端に現れる1次側DCリンク電圧Vdc1には、R相電圧に同期する脈流成分が発生する。従って、個々のコンバータセルにおける2次側電圧の電圧変動率と、U相電圧の電圧変動率とは同等の値になる。V相電圧およびW相電圧についても同様である。従って、本比較例は、2次側電圧の電圧変動率を抑制するために、コンデンサ17,18(図2参照)の容量を大きくせざるを得ず、第1実施形態と比較すると、電力変換装置101が大型化し、高価になる。 In this comparative example, all the converter cells 20-1 to 20-P related to the R phase on the primary side are converter cells related to the U phase on the secondary side. As in the first embodiment, in the primary side DC link voltage Vdc1 appearing at both ends of the capacitor 17 in the converter cell 20, a pulsating current component synchronized with the R phase voltage is generated. Therefore, the voltage fluctuation rate of the secondary side voltage in each converter cell and the voltage fluctuation rate of the U-phase voltage become equal values. The same applies to the V-phase voltage and the W-phase voltage. Therefore, in the present comparative example, in order to suppress the voltage fluctuation rate of the secondary side voltage, the capacity of the capacitors 17 and 18 (see FIG. 2) has to be increased, and compared to the first embodiment, the power conversion The apparatus 101 becomes large and expensive.
 また、本比較例において、1次側電圧E1が正のピーク値になり、2次側電圧E2が負のピーク値になった場合、または、1次側電圧E1が負のピーク値になり、2次側電圧E2が正のピーク値になった場合に、コンバータセル20-1のトランス電位差が最大になる。すなわち、コンバータセル20-1のトランス電位差は、1次側電圧E1および2次側電圧E2の振幅値の合計にほぼ等しくなり、第1実施形態のものよりも高くなる。逆に、コンバータセル20-Pのトランス電位差は、1次側電圧E1および2次側電圧E2の振幅値の合計の「1/P」にほぼ等しくなり、第1実施形態のものよりも低くすることができる。 Further, in the present comparative example, when the primary voltage E1 has a positive peak value and the secondary voltage E2 has a negative peak value, or the primary voltage E1 has a negative peak value, When the secondary voltage E2 has a positive peak value, the transformer potential difference of the converter cell 20-1 is maximized. That is, the transformer potential difference of the converter cell 20-1 is substantially equal to the sum of the amplitude values of the primary side voltage E1 and the secondary side voltage E2, and is higher than that of the first embodiment. Conversely, the transformer potential difference of converter cell 20-P is approximately equal to "1 / P" of the sum of the amplitude values of primary side voltage E1 and secondary side voltage E2, and is lower than that in the first embodiment. be able to.
 しかし、コンバータセル20-1~20-Pとして同一仕様のものを適用しようとすると、トランス電位差が最も高いものに合わせて仕様を決定しなければならない。これにより、本比較例のコンバータセル20は、第1実施形態のものと比較すると、高周波トランス15として耐圧の高いものを適用せざるを得ず、これによって高周波トランス15および電力変換装置101が一層大型化し、高価になる。 However, in order to apply the same specification as converter cells 20-1 to 20-P, the specification must be determined in accordance with the highest transformer potential difference. As a result, the converter cell 20 of the present comparative example is compelled to apply a high frequency transformer 15 having a high withstand voltage as compared with that of the first embodiment, whereby the high frequency transformer 15 and the power conversion device 101 are further enhanced. It becomes large and expensive.
〈第1実施形態の効果〉
 以上のように、本実施形態によれば、1次側系統(60)と、N相(Nは3以上の自然数)の交流系統である2次側系統(70)との間に接続され、各々が一対の1次側端子(25,26)と、一対の2次側端子(27,28)とを有する第1~第3の電力変換セル(20-1~20-6)を備え、第1~第3の電力変換セル(20-1~20-6)の1次側端子は直列接続されるとともに、1次側系統(60)に接続され、第1の電力変換セル(20-1,20-2)の2次側端子は2次側第1相(2次側V相)に係る箇所に接続され、第2の電力変換セル(20-3,20-4)の2次側端子は2次側第2相(2次側U相)に係る箇所に接続され、第3の電力変換セル(20-5,20-6)の2次側端子は2次側第3相(2次側W相)に係る箇所に接続されている。これにより、1次側電圧に基づく2次側電圧の変動成分、または2次側電圧に基づく1次側電圧の変動成分を小型の部品で抑制することができ、電力変換装置(100)を小型かつ安価に構成できる。
<Effect of First Embodiment>
As described above, according to the present embodiment, it is connected between the primary side system (60) and the secondary side system (70) which is an AC system of N phase (N is a natural number of 3 or more), The first to third power conversion cells (20-1 to 20-6) each having a pair of primary terminals (25, 26) and a pair of secondary terminals (27, 28), The primary side terminals of the first to third power conversion cells (20-1 to 20-6) are connected in series and connected to the primary side system (60), and the first power conversion cell (20-) is connected. The secondary side terminal of 1, 20-2) is connected to the place related to the secondary side first phase (secondary side V phase), and the secondary side of the second power conversion cell (20-3, 20-4) The side terminal is connected to the part related to the secondary side second phase (secondary side U phase), and the secondary side terminal of the third power conversion cell (20-5, 20-6) is the secondary side third phase (Secondary W phase) It is connected to a portion of. As a result, it is possible to suppress the fluctuation component of the secondary voltage based on the primary voltage or the fluctuation component of the primary voltage based on the secondary voltage with small parts, and the power converter (100) can be miniaturized. And it can be configured inexpensively.
 また、第1~第3の電力変換セル(20-1~20-6)は、それぞれ、1次巻線(15a)と、1次巻線(15a)に対して絶縁された2次巻線(15b)とを有するトランス(15)を備える。これにより、1次側と2次側とを適切に絶縁できる。 Also, the first to third power conversion cells (20-1 to 20-6) respectively have a primary winding (15a) and a secondary winding isolated from the primary winding (15a) And a transformer (15) having the following. Thereby, the primary side and the secondary side can be properly insulated.
 また、本実施形態によれば、1次側系統(60)は、M相(Mは3以上の自然数)の交流系統であり、電力変換装置(100)は、各々が一対の1次側端子(25,26)と、一対の2次側端子(27,28)とを有する第4~第9の電力変換セル(20-7~20-18)をさらに備え、第1~第3の電力変換セル(20-1~20-6)の1次側端子は直列接続されるとともに、1次側第1相(1次側R相)に係る箇所に接続され、第4~第6の電力変換セル(20-7~20-12)の1次側端子は直列接続されるとともに、1次側第2相(1次側T相)に係る箇所に接続され、第7~第9の電力変換セル(20-13~20-18)の1次側端子は直列接続されるとともに、1次側第3相(1次側S相)に係る箇所に接続され、第1の電力変換セル(20-1,20-2)、第6の電力変換セル(20-11,20-12)、および第8の電力変換セル(20-15,20-16)の2次側端子は直列接続されるとともに、2次側第1相(2次側V相)に係る箇所に接続され、第2の電力変換セル(20-3,20-4)、第4の電力変換セル(20-7,20-8)、および第9の電力変換セル(20-17,20-18)の2次側端子は直列接続されるとともに、2次側第2相(2次側U相)に係る箇所に接続され、第3の電力変換セル(20-5,20-6)、第5の電力変換セル(20-9,20-10)、および第7の電力変換セル(20-13,20-14)の2次側端子は直列接続されるとともに、2次側第3相(2次側W相)に係る箇所に接続されている。
 これにより、多相交流同士を変換する場合においても、1次側電圧に基づく2次側電圧の変動成分、または2次側電圧に基づく1次側電圧の変動成分を小型の部品で抑制することができ、電力変換装置(100)を小型で安価に構成できる。
Further, according to the present embodiment, the primary side system (60) is an AC system of M phase (M is a natural number of 3 or more), and the power conversion device (100) has a pair of primary side terminals. It further comprises fourth to ninth power conversion cells (20-7 to 20-18) having (25, 26) and a pair of secondary terminals (27, 28), and the first to third powers The primary side terminals of the conversion cells (20-1 to 20-6) are connected in series and connected to a portion related to the primary side first phase (primary side R phase), and the fourth to sixth electric powers The primary side terminals of the conversion cells (20-7 to 20-12) are connected in series and connected to a portion related to the primary side second phase (primary side T phase), and the seventh to ninth electric powers The primary side terminals of the conversion cells (20-13 to 20-18) are connected in series and connected to a portion related to the primary side third phase (primary side S phase), Power conversion cell (20-1, 20-2), sixth power conversion cell (20-11, 20-12), and secondary side terminal of eighth power conversion cell (20-15, 20-16) Are connected in series and connected to a point related to the secondary side first phase (secondary side V phase), the second power conversion cell (20-3, 20-4), the fourth power conversion cell The secondary side terminals of 20-7, 20-8) and the ninth power conversion cell (20-17, 20-18) are connected in series, and the secondary side second phase (secondary side U phase) Connected to the third power conversion cell (20-5, 20-6), the fifth power conversion cell (20-9, 20-10), and the seventh power conversion cell (20-13). , 20-14) are connected in series and connected to a point related to the secondary side third phase (secondary W phase)
Thereby, even when converting multi-phase alternating current, it is possible to suppress the fluctuation component of the secondary voltage based on the primary voltage or the fluctuation component of the primary voltage based on the secondary voltage with a small component. The power converter (100) can be small and inexpensive.
 また、トランス(15)は1次巻線(15a)と2次巻線(15b)との間で100Hz以上の周波数で電力を伝送するものであり、第1~第3の電力変換セル(20-1~20-6)は、それぞれ、1次側端子(25,26)と1次巻線(15a)との間で電力を伝送する1次側回路(21)と、2次側端子(27,28)と2次巻線(15b)との間で電力を伝送する2次側回路(22)と、をさらに備える。これにより、1次側回路(21)および2次側回路(22)において、電力を適切に変換できる。 The transformer (15) transmits power at a frequency of 100 Hz or more between the primary winding (15a) and the secondary winding (15b), and the first to third power conversion cells (20 -1 to 20-6) includes a primary side circuit (21) for transmitting power between the primary side terminals (25, 26) and the primary winding (15a), and a secondary side terminal And 28, a secondary side circuit (22) transmitting power between the secondary winding (15b). Thus, power can be properly converted in the primary side circuit (21) and the secondary side circuit (22).
 また、1次側回路(21)は、一対の1次側端子(25,26)と1次側直流電圧(Vdc1)との間で電力を伝送する第1の交直変換器(11)と、1次側直流電圧(Vdc1)と1次巻線(15a)との間で電力を伝送する第2の交直変換器(12)と、を有し、2次側回路(22)は、2次側直流電圧(Vdc2)と2次巻線(15b)との間で電力を伝送する第3の交直変換器(13)と、一対の2次側端子(27,28)と2次側直流電圧(Vdc2)との間で電力を伝送する第4の交直変換器(14)と、を有する。これにより、直流電圧を介して、安定的に電力を変換できる。 In addition, the primary side circuit (21) is a first AC / DC converter (11) that transmits power between the pair of primary side terminals (25, 26) and the primary side DC voltage (Vdc1); A second AC / DC converter (12) for transmitting power between the primary side DC voltage (Vdc1) and the primary winding (15a), and the secondary side circuit (22) Third AC-DC converter (13) for transmitting power between the DC voltage (Vdc2) on the side and the secondary winding (15b), a pair of secondary terminals (27, 28) and a DC voltage on the secondary side And (d) a fourth AC / DC converter (14) for transmitting power between the power supply and the (Vdc2). Thereby, power can be stably converted via the DC voltage.
 また、本実施形態においては、第1~第3の電力変換セル(20-1~20-6)のうち、1次側端子(25,26)における対地電位の絶対値が最も高くなる電力変換セル(20-1)と、2次側端子(27,28)における対地電位の絶対値が最も高くなる電力変換セル(20-6)と、が異なり、第4~第6の電力変換セル(20-7~20-12)のうち、1次側端子(25,26)における対地電位の絶対値が最も高くなる電力変換セル(20-7)と、2次側端子(27,28)における対地電位の絶対値が最も高くなる電力変換セル(20-12)と、が異なり、第7~第9の電力変換セル(20-13~20-18)のうち、1次側端子(25,26)における対地電位の絶対値が最も高くなる電力変換セル(20-13)と、2次側端子(27,28)における対地電位の絶対値が最も高くなる電力変換セル(20-18)と、が異なるように、各々の2次側端子を2次側系統(70)に接続している。
 これにより、電力変換セルのトランス電位差のばらつきを小さくすることができ、耐圧の低いトランス(15)を適用することができる。これにより、電力変換装置(100)を一層小型かつ安価に構成できる。
Further, in the present embodiment, among the first to third power conversion cells (20-1 to 20-6), the power conversion in which the absolute value of the ground potential at the primary side terminals (25, 26) is the highest. The fourth to sixth power conversion cells (20-1) are different from the power conversion cell (20-6) in which the absolute value of the ground potential at the secondary terminal (27, 28) is the highest. In 20-7 to 20-12), the power conversion cell (20-7) in which the absolute value of the ground potential at the primary terminal (25, 26) is the highest, and the secondary terminal (27, 28) The power conversion cell (20-12) in which the absolute value of the ground potential is the highest is different, and the primary side terminal (25,) of the seventh to ninth power conversion cells (20-13 to 20-18) is different. Power conversion cell (20-13) in which the absolute value of ground potential in 26) is the highest , Each secondary side terminal to the secondary side system (70) so that the power conversion cell (20-18) where the absolute value of the ground potential at the secondary side terminal (27, 28) becomes the highest is different. Connected
Thereby, the variation in the transformer potential difference of the power conversion cell can be reduced, and the transformer (15) having a low withstand voltage can be applied. As a result, the power converter (100) can be made smaller and less expensive.
[第2実施形態]
 次に、本発明の第2実施形態による電力変換装置120の構成を説明する。なお、以下の説明において、図1~図3の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
 図4は、電力変換装置120の結線図である。電力変換装置120は、第1実施形態のもの(図1参照)と同様に、18台のコンバータセル20-1~20-18を有している。各コンバータセル20の構成は第1実施形態のもの(図2参照)と同様である。電力変換装置120は、何れも3相交流系統である1次側系統62と、2次側系統70との間で、双方向または一方向の電力変換を行うものである。
Second Embodiment
Next, a configuration of a power conversion device 120 according to a second embodiment of the present invention will be described. In the following description, parts corresponding to those in FIGS. 1 to 3 may be denoted by the same reference numerals, and the description thereof may be omitted.
FIG. 4 is a connection diagram of the power conversion device 120. The power conversion device 120 has eighteen converter cells 20-1 to 20-18 as in the first embodiment (see FIG. 1). The configuration of each converter cell 20 is the same as that of the first embodiment (see FIG. 2). The power conversion device 120 performs bidirectional or unidirectional power conversion between the primary side system 62, which is a three-phase AC system, and the secondary side system 70.
 ここで、1次側系統62は、R相、S相、T相電圧が現れるR相線62R、S相線62S、およびT相線62Tを有している。また、2次側系統70の構成は、第1実施形態のものと同様である。コンバータセル20-1~20-6の1次側端子25,26(図2参照)は、R相線62RとT相線62Tとの間に、順次直列に接続されている。同様に、コンバータセル20-7~20-12の1次側端子25,26は、T相線62TとS相線62Sとの間に、順次直列に接続されている。同様に、コンバータセル20-13~20-18の1次側端子25,26は、S相線62SとR相線62Rとの間に、順次直列に接続されている。 Here, the primary side system 62 has an R phase line 62R, an S phase line 62S, and a T phase line 62T in which R phase, S phase, and T phase voltages appear. The configuration of the secondary system 70 is the same as that of the first embodiment. The primary side terminals 25 and 26 (see FIG. 2) of the converter cells 20-1 to 20-6 are sequentially connected in series between the R phase line 62R and the T phase line 62T. Similarly, the primary side terminals 25 and 26 of the converter cells 20-7 to 20-12 are sequentially connected in series between the T phase line 62T and the S phase line 62S. Similarly, primary side terminals 25 and 26 of converter cells 20-13 to 20-18 are sequentially connected in series between S phase line 62S and R phase line 62R.
 また、各コンバータセル20の2次側端子27,28と、2次側系統70との接続関係は、第1実施形態のものと同様である。このように、電力変換装置120は、1次側系統62と2次側系統70とをΔ-Y結線にて接続するものである。本実施形態によれば、第1実施形態と同様の効果を奏するとともに、中性線の無い、3相3線式の1次側系統62にも適用できる点で適用範囲を広げることができる。
 なお、上述した例では、1次側をY結線とし、2次側をΔ結線にしたが、1次側をΔ結線とし、2次側をY結線にしてもよい。
Further, the connection relationship between the secondary side terminals 27 and 28 of each converter cell 20 and the secondary side system 70 is the same as that of the first embodiment. Thus, the power conversion device 120 connects the primary side system 62 and the secondary side system 70 by Δ-Y connection. According to the present embodiment, the same effects as those of the first embodiment can be obtained, and the application range can be expanded in that the present embodiment can be applied to a three-phase three-wire primary side system 62 without a neutral wire.
In the example described above, the primary side is Y-connected and the secondary side is Δ-connected, but the primary side may be Δ-connected and the secondary side may be Y-connected.
[第3実施形態]
 次に、本発明の第3実施形態による電力変換装置130の構成を説明する。なお、以下の説明において、図1~図4の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
 図5は、電力変換装置130の結線図である。電力変換装置130は、第2実施形態のもの(図4参照)と同様に、18台のコンバータセル20-1~20-18を有している。各コンバータセル20の構成は第1実施形態のもの(図2参照)と同様である。電力変換装置130は、何れも3相交流系統である1次側系統62と、2次側系統72との間で、双方向または一方向の電力変換を行うものである。
Third Embodiment
Next, a configuration of a power conversion device 130 according to a third embodiment of the present invention will be described. In the following description, parts corresponding to those in FIGS. 1 to 4 may be denoted by the same reference numerals, and the description thereof may be omitted.
FIG. 5 is a connection diagram of the power conversion device 130. The power converter 130 has eighteen converter cells 20-1 to 20-18, as in the second embodiment (see FIG. 4). The configuration of each converter cell 20 is the same as that of the first embodiment (see FIG. 2). The power conversion device 130 performs bidirectional or unidirectional power conversion between the primary side system 62, which is a three-phase alternating current system, and the secondary side system 72.
 ここで、1次側系統62の構成は第2実施形態(図4参照)のものと同様である。また、コンバータセル20-1~20-18の1次側端子25,26と、1次側系統62との接続関係も、第2実施形態のものと同様である。一方、2次側系統72は、U相、V相、W相電圧が現れるU相線72U、V相線72VおよびW相線72Wを有している。 Here, the configuration of the primary side system 62 is the same as that of the second embodiment (see FIG. 4). Further, the connection relationship between the primary side terminals 25 and 26 of the converter cells 20-1 to 20-18 and the primary side system 62 is also similar to that of the second embodiment. On the other hand, the secondary side system 72 has a U-phase line 72U, a V-phase line 72V and a W-phase line 72W in which U-phase, V-phase and W-phase voltages appear.
 ここで、2次側回路22にハッチングを付したコンバータセル20-1,20-2,20-16,20-15,20-11,20-12の各2次側端子27,28は、U相線72UとV相線72Vとの間に順次直列に接続されている。また、2次側回路22が白ヌキであるコンバータセル20-13,20-14,20-10,20-9,20-5,20-6の各2次側端子27,28は、V相線72VとW相線72Wとの間に順次直列に接続されている。また、2次側回路22にドット網掛けを付したコンバータセル20-7,20-8,20-4,20-3,20-17,20-18の各2次側端子27,28は、W相線72WとU相線72Uとの間に順次直列に接続されている。 Here, each secondary side terminal 27 and 28 of converter cells 20-1, 20-2, 20-16, 20-15, 20-11, and 20-12 whose hatched secondary side circuit 22 is U It is sequentially connected in series between the phase line 72U and the V-phase line 72V. Further, each secondary side terminal 27, 28 of converter cells 20-13, 20-14, 20-10, 20-9, 20-5, 20-6 in which secondary side circuit 22 is white is a V phase The line 72V and the W-phase line 72W are sequentially connected in series. Further, each of the secondary terminals 27 and 28 of the converter cells 20-7, 20-8, 20-4, 20-3, 20-17, and 20-18 in which the secondary circuit 22 is dot-dotted, The W-phase wire 72W and the U-phase wire 72U are sequentially connected in series.
 このように、電力変換装置130は、1次側系統62と2次側系統72をΔ-Δ結線にて接続するものである。本実施形態によれば、第1実施形態と同様の効果を奏するとともに、1次側系統62および2次側系統72が共に中性線の無い、3相3線式の系統であっても適用できる点で、適用範囲をさらに広げることができる。 As described above, the power conversion device 130 connects the primary side system 62 and the secondary side system 72 by Δ-Δ connection. According to the present embodiment, the same effects as those of the first embodiment can be obtained, and even if the primary side system 62 and the secondary side system 72 are both three-phase three-wire systems without neutral wires. The scope of application can be further expanded in terms of
[第4実施形態]
 次に、本発明の第4実施形態による電力変換装置140の構成を説明する。なお、以下の説明において、図1~図5の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
 図6は、電力変換装置140の結線図である。電力変換装置140は、3台のコンバータセル20-101~20-103(第1~第3の電力変換セル)を有している。各コンバータセル20の構成は第1実施形態のもの(図2参照)と同様である。電力変換装置140は、単相交流系統である1次側系統64と、3相交流系統である2次側系統74との間で、双方向または一方向の電力変換を行うものである。
Fourth Embodiment
Next, a configuration of a power conversion device 140 according to a fourth embodiment of the present invention will be described. In the following description, parts corresponding to those in FIGS. 1 to 5 may be denoted by the same reference numerals, and the description thereof may be omitted.
FIG. 6 is a connection diagram of the power conversion device 140. Power converter 140 has three converter cells 20-101 to 20-103 (first to third power conversion cells). The configuration of each converter cell 20 is the same as that of the first embodiment (see FIG. 2). The power conversion device 140 performs bidirectional or unidirectional power conversion between the primary side system 64 which is a single phase alternating current system and the secondary side system 74 which is a three phase alternating current system.
 ここで、1次側系統64は、一対の線路64P,64Nを有している。また、2次側系統74は、中性線74Nと、U相、V相、W相電圧が現れるU相線74U、V相線74V、W相線74Wと、を有している。コンバータセル20-101~20-103の1次側端子25,26は、線路64P,64Nの間に順次直列に接続されている。 Here, the primary side system 64 has a pair of lines 64P and 64N. Further, the secondary side system 74 has a neutral wire 74N, a U-phase wire 74U in which U-phase, V-phase, and W-phase voltages appear, a V-phase wire 74V, and a W-phase wire 74W. Primary terminals 25 and 26 of converter cells 20-101 to 20-103 are sequentially connected in series between lines 64P and 64N.
 また、コンバータセル20-101の2次側端子27,28は、それぞれV相線74Vおよび中性線74Nに接続されている。同様に、コンバータセル20-102の2次側端子27,28は、それぞれU相線74Uおよび中性線74Nに接続されている。同様に、コンバータセル20-103の2次側端子27,28は、それぞれW相線74Wおよび中性線74Nに接続されている。 Further, secondary terminals 27, 28 of converter cell 20-101 are connected to V-phase wire 74V and neutral wire 74N, respectively. Similarly, secondary terminals 27, 28 of converter cell 20-102 are connected to U-phase wire 74U and neutral wire 74N, respectively. Similarly, secondary terminals 27, 28 of converter cells 20-103 are connected to W-phase wire 74W and neutral wire 74N, respectively.
 図6において、電力潮流が2次側から1次側に向かって流れているとすると、コンバータセル20-101に含まれるコンデンサ17,18(図2参照)の端子電圧には、V相電圧に同期する脈流成分を有している。これにより、コンバータセル20-101の1次側電圧に現れる変動成分は、2次側V相電圧に同期する。同様に、コンバータセル20-102の1次側電圧に現れる変動成分は、2次側U相電圧に同期する。同様に、コンバータセル20-103の1次側電圧に現れる変動成分は、2次側W相電圧に同期する。 In FIG. 6, assuming that power flow is flowing from the secondary side to the primary side, the terminal voltage of capacitors 17 and 18 (see FIG. 2) included in converter cell 20-101 is V phase voltage. It has a pulsating flow component synchronized. Thereby, the fluctuation component appearing in the primary side voltage of converter cell 20-101 is synchronized with the secondary side V phase voltage. Similarly, the fluctuation component appearing in the primary side voltage of converter cell 20-102 is synchronized with the secondary side U-phase voltage. Similarly, fluctuation components appearing in the primary side voltage of converter cells 20-103 are synchronized with the secondary side W-phase voltage.
 これらV相電圧、U相電圧、W相電圧に同期する個々の変動成分は、略同一形状の波形であり、相互に「2π/3」の位相差を有する。これらコンバータセル20-101~20-103の1次側端子25,26が直列接続されると、1次側電圧においてV相電圧、U相電圧、W相電圧に同期する個々の変動成分は相殺され、そのレベルは抑制される。 The individual fluctuation components synchronized with these V-phase voltage, U-phase voltage and W-phase voltage are waveforms of substantially the same shape, and have a phase difference of "2π / 3". When the primary side terminals 25 and 26 of these converter cells 20-101 to 20-103 are connected in series, individual fluctuation components synchronized with the V phase voltage, U phase voltage and W phase voltage in the primary side voltage cancel each other out. And their level is suppressed.
 このように、本実施形態は、1次側系統(64)と、N相(Nは3以上の自然数)の2次側系統(74)との間に接続され、各々が一対の1次側端子(25,26)と、一対の2次側端子(27,28)とを有する第1~第3の電力変換セル(20-101~20-103)を備え、第1~第3の電力変換セル(20-101~20-103)の1次側端子は直列接続されるとともに、1次側系統(64)に接続され、第1の電力変換セル(20-101)の2次側端子は2次側第1相(2次側V相)に係る箇所に接続され、第2の電力変換セル(20-102)の2次側端子は2次側第2相(2次側U相)に係る箇所に接続され、第3の電力変換セル(20-103)の2次側端子は2次側第3相(2次側W相)に係る箇所に接続されている点で、第1~第3実施形態と同様である。 Thus, this embodiment is connected between the primary side system (64) and the secondary side system (74) of the N phase (N is a natural number of 3 or more), each of which is a pair of primary side First to third power conversion cells (20-101 to 20-103) each having a terminal (25, 26) and a pair of secondary terminals (27, 28); The primary side terminals of the conversion cells (20-101 to 20-103) are connected in series and connected to the primary side system (64), and the secondary side terminals of the first power conversion cell (20-101) Is connected to a point related to the secondary side first phase (secondary side V phase), and the secondary side terminal of the second power conversion cell (20-102) is a secondary side second phase (secondary side U phase) Connected to the point related to the second power conversion cell (20-103) connected to the point related to the second side third phase (secondary W phase) That the point is the same as the first to third embodiments.
 従って、本実施形態は、第1~第3実施形態のものと同様に、コンデンサ17,18(図2参照)の容量が小さい場合であっても、電圧変動率を抑制できるため、コンデンサ17,18として容量の小さなものを適用することができ、小型かつ安価な電力変換装置140を実現できるという効果を奏する。 Therefore, in the present embodiment, as in the first to third embodiments, the voltage fluctuation rate can be suppressed even when the capacitances of the capacitors 17 and 18 (see FIG. 2) are small. A small-capacity one can be applied as 18 and a small and inexpensive power converter 140 can be realized.
[変形例]
 本発明は上述した実施形態に限定されるものではなく、種々の変形が可能である。上述した実施形態は本発明を理解しやすく説明するために例示したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について削除し、もしくは他の構成の追加・置換をすることが可能である。また、図中に示した制御線や情報線は説明上必要と考えられるものを示しており、製品上で必要な全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。上記実施形態に対して可能な変形は、例えば以下のようなものである。
[Modification]
The present invention is not limited to the embodiments described above, and various modifications are possible. The embodiments described above are illustrated to facilitate understanding of the present invention, and are not necessarily limited to those having all the described configurations. Also, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. In addition, it is possible to delete part of the configuration of each embodiment or to add / replace other configuration. Further, control lines and information lines shown in the drawing indicate those which are considered to be necessary for explanation, and not all the control lines and information lines necessary on the product are shown. In practice, almost all configurations may be considered to be mutually connected. Possible modifications to the above embodiment are, for example, as follows.
(1)上記各実施形態においては、スイッチング素子としてMOSFETを適用した例を説明したが、スイッチング素子として、IGBT(Insulated Gate Bipolar Transistor)、バイポーラトランジスタ、サイリスタ、GTO(Gate Turn-Off Thyristor)、IEGT(Injection Enhanced Gate Transistor)、あるいはサイラトロン等の真空管式の素子を適用してもよい。また、半導体を適用する場合に、その材質はSi、SiC、GaN等、任意のものを適用できる。 (1) In each of the above embodiments, an example in which a MOSFET is applied as a switching element has been described. However, as a switching element, an IGBT (Insulated Gate Bipolar Transistor), a bipolar transistor, a thyristor, a GTO (Gate Turn-Off Thyristor), an IEGT A vacuum tube type element such as (Injection Enhanced Gate Transistor) or a thyratron may be applied. Moreover, when applying a semiconductor, the material can apply arbitrary things, such as Si, SiC, and GaN.
(2)図7は、コンバータセル20の変形例のブロック図である。図2に示した交直変換器11~14は、双方向に電力を変換できるようにスイッチング素子を用いたHブリッジを適用したが、一方向に電力を変換できればよい場合は、交直変換器11~14の一部において、整流素子を用いたHブリッジを適用してもよい。図7に示す構成は、その一例として、図2における交直変換器13を、4個の整流素子(符号なし)を適用した交直変換器13aに置換したものである。本変形例においても、高周波トランス15のトランス電位差は、上記各実施形態と同様になるため、電力変換装置を小型かつ安価に構成することができる。交直変換器13aにおける4個の整流素子は、半導体ダイオードであってもよく、真空管式の水銀整流器等であってもよい。また、半導体を適用する場合に、その材質はSi、SiC、GaN等、任意のものを適用できる。 (2) FIG. 7 is a block diagram of a modification of converter cell 20. Referring to FIG. The AC-DC converters 11 to 14 shown in FIG. 2 use the H-bridge using switching elements so as to convert power in two directions. However, if it is sufficient to convert power in one direction, the AC-DC converters 11 to In part of 14, an H bridge using a rectifying element may be applied. As an example, the configuration shown in FIG. 7 is obtained by replacing the AC / DC converter 13 in FIG. 2 with an AC / DC converter 13a to which four rectifying elements (without reference numerals) are applied. Also in this modification, since the transformer potential difference of the high frequency transformer 15 is the same as that in each of the above embodiments, the power conversion device can be configured in a small size and at low cost. The four rectifying elements in the AC / DC converter 13a may be semiconductor diodes or vacuum tube mercury rectifiers. Moreover, when applying a semiconductor, the material can apply arbitrary things, such as Si, SiC, and GaN.
(3)上述した第1実施形態においては、1次側電位の高いコンバータセル20ほど2次側電圧は低くなる傾向を有するように、各コンバータセル20-1~20-18を接続した。より詳細には、1次側端子25,26における対地電位の絶対値が最も高くなるコンバータセル20と、2次側端子27,28における対地電位の絶対値が最も高くなるコンバータセル20セルと、が異なるように、各コンバータセル20-1~20-18を接続した。
 しかし、高周波トランス15が、高いトランス電位差に対応できる場合は、必ずしもこのような接続方法を採らなくてもよい。すなわち、1次側端子25,26における対地電位の絶対値が最も高くなるコンバータセル20と、2次側端子27,28における対地電位の絶対値が最も高くなるコンバータセル20とが同一のものであってもよい。
(3) In the first embodiment described above, the converter cells 20-1 to 20-18 are connected such that the secondary side voltage tends to be lower as the converter cell 20 with the higher primary side potential. More specifically, converter cell 20 in which the absolute value of ground potential at primary side terminals 25 and 26 is the highest, and converter cell 20 cells in which the absolute value of ground potential at secondary side terminals 27 and 28 is the highest; Converter cells 20-1 to 20-18 are connected in such a manner as to be different.
However, when the high frequency transformer 15 can cope with a high transformer potential difference, it is not necessary to necessarily adopt such a connection method. That is, converter cell 20 in which the absolute value of ground potential at primary side terminals 25 and 26 is the highest, and converter cell 20 at which the absolute value of ground potential at secondary terminals 27 and 28 is the highest are the same. It may be.
 また、図1において、コンバータセル20-1~20-61次側電位の高い順に列挙すると、コンバータセル20-1,20-2(V相)、コンバータセル20-3,20-4(U相)、コンバータセル20-5,20-6(W相)、の順になっている。しかし、この順序は、高周波トランス15が対応可能であれば、(U,V,W)、(U,W,V)、(V,U,W)、(V,W,U)、(W,U,V)、(W,V,U)の6通りの順序のうち何れであってもよい。 Further, in FIG. 1, the converter cells 20-1 to 20-61 are listed in descending order of the potential on the secondary side: converter cells 20-1 and 20-2 (V phase), converter cells 20-3 and 20-4 (U phase) , Converter cells 20-5, 20-6 (W phase), and so on. However, if the high frequency transformer 15 can handle this order, (U, V, W), (U, W, V), (V, U, W), (V, W, U), (W , U, V) and (W, V, U) may be in any of the six orders.
(4)また、上記各実施形態において、図2に示す交直変換器12,13と、高周波トランス15との間にコンデンサを挿入してもよい。図8(a)は、交直変換器12と1次巻線15aとの間にコンデンサ51を挿入するとともに、交直変換器13と2次巻線15bとの間にコンデンサ52を挿入した例を示す。また、図8(b)は、交直変換器12と1次巻線15aとの間にコンデンサ51を挿入した例であり、図8(c)は、交直変換器13と2次巻線15bとの間にコンデンサ52を挿入した例である。また、上記各実施形態に適用される高周波トランス15は、意図的に漏れインダクタンスを発生させるように設計したものを用いてもよい。 (4) Further, in each of the above embodiments, a capacitor may be inserted between the AC / DC converters 12 and 13 shown in FIG. 2 and the high frequency transformer 15. FIG. 8A shows an example in which the capacitor 51 is inserted between the AC / DC converter 12 and the primary winding 15a, and the capacitor 52 is inserted between the AC / DC converter 13 and the secondary winding 15b. . 8B shows an example in which the capacitor 51 is inserted between the AC / DC converter 12 and the primary winding 15a, and FIG. 8C shows the AC / DC converter 13 and the secondary winding 15b. The capacitor 52 is inserted between them. In addition, the high frequency transformer 15 applied to each of the above embodiments may be designed to intentionally generate a leakage inductance.
(5)上記第4実施形態においては、1次側系統64は単相交流系統であり、2次側系統74は3相交流系統であったが、1次側を3相交流系統とし、2次側を単相交流系統にしてもよい。また、3相交流系統の側は、Δ結線にしてもよい。 (5) In the fourth embodiment, the primary side system 64 is a single-phase alternating current system, and the secondary side system 74 is a three-phase alternating current system, but the primary side is a three-phase alternating current system; The next side may be a single phase AC system. In addition, the side of the three-phase alternating current system may be Δ-connected.
 さらに、1次側系統64は、直流系統であってもよい。この場合、コンバータセル20における交直変換器11(図2参照)を削除し、コンデンサ17の両端を1次側端子25,26に接続するとよい。換言すれば、本変形例は、1次側回路(21)は、一対の1次側端子(25,26)と1次巻線(15a)との間で電力を伝送する第2の交直変換器(12)を有し、2次側回路(22)は、2次側直流電圧(Vdc2)と2次巻線(15b)との間で電力を伝送する第3の交直変換器(13)と、一対の2次側端子(27,28)と2次側直流電圧(Vdc2)との間で電力を伝送する第4の交直変換器(14)と、を有するものになる。 Furthermore, the primary side system 64 may be a DC system. In this case, the AC / DC converter 11 (see FIG. 2) in the converter cell 20 may be eliminated and both ends of the capacitor 17 may be connected to the primary side terminals 25 and 26. In other words, in this modification, the primary side circuit (21) transmits power between the pair of primary side terminals (25, 26) and the primary winding (15a). A third AC / DC converter (13) having a power supply (12), the secondary side circuit (22) transmitting power between the secondary side DC voltage (Vdc2) and the secondary winding (15b) And a fourth AC / DC converter (14) for transmitting power between the pair of secondary terminals (27, 28) and the secondary DC voltage (Vdc2).
(6)また、上記各実施形態において、コンバータセル20の構成は、図2および図7に示したもの以外の、様々な構成を適用できる。すなわち、1次側AC端子間電圧V1に対応する変動成分が2次側AC端子間電圧V2に現れ、あるいは、2次側AC端子間電圧V2に対応する変動成分が1次側AC端子間電圧V1に現れるコンバータセルであれば、その構成にかかわらず、上記各実施形態と同様の効果を奏することができる。 (6) Moreover, in each said embodiment, the structure of the converter cell 20 can apply various structures other than what was shown to FIG. 2 and FIG. That is, a fluctuation component corresponding to the primary side AC terminal voltage V1 appears in the secondary side AC terminal voltage V2, or a fluctuation component corresponding to the secondary side AC terminal voltage V2 is the primary side AC terminal voltage If it is a converter cell which appears in V1, the same effect as each above-mentioned embodiment can be produced regardless of the composition.
(7)上記第1~第3実施形態は、1次側系統の相数Mと、2次側系統の相数Nとが共に「3」である例について説明したが、相数M,Nは「4」以上であってもよく、相数Mは相数Nとは異なる値であってもよい。また、上記各実施形態において、コンバータセル20の数は「18」個であったが、コンバータセル20の数は任意である。但し、各コンバータセル20の仕様を同一にするためには、コンバータセル20の数は、「N×M」の自然数倍にすることが好ましい。 (7) In the first to third embodiments described above, the number of phases M in the primary side system and the number N of phases in the secondary side system are both “3”. May be “4” or more, and the number of phases M may be a value different from the number of phases N. In each of the above embodiments, the number of converter cells 20 is “18”, but the number of converter cells 20 is arbitrary. However, in order to make the specifications of each converter cell 20 identical, the number of converter cells 20 is preferably a natural number multiple of “N × M”.
11 交直変換器(第1の交直変換器)
12 交直変換器(第2の交直変換器)
13 交直変換器(第3の交直変換器)
14 交直変換器(第4の交直変換器)
15 高周波トランス(トランス)
15a 1次巻線
15b 2次巻線
20 コンバータセル(電力変換セル)
20-1,20-2 コンバータセル(第1の電力変換セル)
20-3,20-4 コンバータセル(第2の電力変換セル)
20-5,20-6 コンバータセル(第3の電力変換セル)
20-7,20-8 コンバータセル(第4の電力変換セル)
20-9,20-10 コンバータセル(第5の電力変換セル)
20-11,20-12 コンバータセル(第6の電力変換セル)
20-13,20-14 コンバータセル(第7の電力変換セル)
20-15,20-16 コンバータセル(第8の電力変換セル)
20-17,20-18 コンバータセル(第9の電力変換セル)
20-101 コンバータセル(第1の電力変換セル)
20-102 コンバータセル(第2の電力変換セル)
20-103 コンバータセル(第3の電力変換セル)
21 1次側回路
22 2次側回路
25,26 1次側端子
27,28 2次側端子
60,62,64 1次側系統
70,72,74 2次側系統
100,120,130,140 電力変換装置
Vdc1 (1次側直流電圧)
Vdc2 (2次側直流電圧)
11 AC / DC converter (1st AC / DC converter)
12 AC / DC converter (2nd AC / DC converter)
13 AC / DC converter (3rd AC / DC converter)
14 AC / DC converter (the fourth AC / DC converter)
15 High frequency transformer (transformer)
15a Primary winding 15b Secondary winding 20 Converter cell (power conversion cell)
20-1, 20-2 converter cell (first power conversion cell)
20-3, 20-4 converter cell (second power conversion cell)
20-5, 20-6 converter cell (third power conversion cell)
20-7, 20-8 converter cell (fourth power conversion cell)
20-9, 20-10 converter cell (fifth power conversion cell)
20-11, 20-12 converter cell (sixth power conversion cell)
20-13, 20-14 converter cell (seventh power conversion cell)
20-15, 20-16 converter cell (eighth power conversion cell)
20-17, 20-18 converter cell (9th power conversion cell)
20-101 converter cell (first power conversion cell)
20-102 converter cell (second power conversion cell)
20-103 Converter Cell (Third Power Conversion Cell)
21 primary side circuit 22 secondary side circuit 25, 26 primary side terminal 27, 28 secondary side terminal 60, 62, 64 primary side system 70, 72, 74 secondary side system 100, 120, 130, 140 electric power Converter Vdc1 (Primary side DC voltage)
Vdc2 (Secondary DC voltage)

Claims (8)

  1.  1次側系統と、N相(Nは3以上の自然数)の交流系統である2次側系統との間に接続され、各々が一対の1次側端子と、一対の2次側端子とを有する第1~第3の電力変換セルを備え、
     前記第1~第3の電力変換セルの前記1次側端子は直列接続されるとともに、前記1次側系統に接続され、
     前記第1の電力変換セルの前記2次側端子は2次側第1相に係る箇所に接続され、
     前記第2の電力変換セルの前記2次側端子は2次側第2相に係る箇所に接続され、
     前記第3の電力変換セルの前記2次側端子は2次側第3相に係る箇所に接続されている
     ことを特徴とする電力変換装置。
    It is connected between the primary side system and the secondary side system which is an AC system of N phase (N is a natural number of 3 or more), each of which comprises a pair of primary side terminals and a pair of secondary side terminals Comprising first to third power conversion cells,
    The primary side terminals of the first to third power conversion cells are connected in series and connected to the primary side system,
    The secondary side terminal of the first power conversion cell is connected to a point related to the secondary side first phase,
    The secondary side terminal of the second power conversion cell is connected to a location related to the secondary side second phase,
    The power conversion device, wherein the secondary side terminal of the third power conversion cell is connected to a portion related to a secondary side third phase.
  2.  前記第1~第3の電力変換セルは、それぞれ、
     1次巻線と、前記1次巻線に対して絶縁された2次巻線とを有するトランスを備える
     ことを特徴とする請求項1に記載の電力変換装置。
    Each of the first to third power conversion cells is
    The power converter according to claim 1, further comprising a transformer having a primary winding and a secondary winding isolated with respect to the primary winding.
  3.  前記1次側系統は、M相(Mは3以上の自然数)の交流系統であり、
     各々が一対の前記1次側端子と、一対の前記2次側端子とを有する第4~第9の電力変換セルをさらに備え、
     前記第1~第3の電力変換セルの前記1次側端子は直列接続されるとともに、1次側第1相に係る箇所に接続され、
     前記第4~第6の電力変換セルの前記1次側端子は直列接続されるとともに、1次側第2相に係る箇所に接続され、
     前記第7~第9の電力変換セルの前記1次側端子は直列接続されるとともに、1次側第3相に係る箇所に接続され、
     前記第1の電力変換セル、前記第6の電力変換セル、および前記第8の電力変換セルの前記2次側端子は直列接続されるとともに、前記2次側第1相に係る箇所に接続され、
     前記第2の電力変換セル、前記第4の電力変換セル、および前記第9の電力変換セルの前記2次側端子は直列接続されるとともに、前記2次側第2相に係る箇所に接続され、
     前記第3の電力変換セル、前記第5の電力変換セル、および前記第7の電力変換セルの前記2次側端子は直列接続されるとともに、前記2次側第3相に係る箇所に接続されている
     ことを特徴とする請求項1に記載の電力変換装置。
    The primary side system is an AC system of M phase (M is a natural number of 3 or more),
    The power conversion cell further includes fourth to ninth power conversion cells each having a pair of the primary side terminals and a pair of the secondary side terminals.
    The primary side terminals of the first to third power conversion cells are connected in series, and are connected to a point related to the primary side first phase,
    The primary side terminals of the fourth to sixth power conversion cells are connected in series and connected to a point related to the primary side second phase,
    The primary side terminals of the seventh to ninth power conversion cells are connected in series and connected to a point related to the primary side third phase,
    The secondary side terminals of the first power conversion cell, the sixth power conversion cell, and the eighth power conversion cell are connected in series, and are connected to a point related to the secondary side first phase ,
    The second power conversion cell, the fourth power conversion cell, and the secondary side terminal of the ninth power conversion cell are connected in series, and are connected to a location related to the secondary side second phase ,
    The second power conversion cell, the fifth power conversion cell, and the secondary side terminal of the seventh power conversion cell are connected in series and connected to a portion related to the second phase of the secondary side. The power converter according to claim 1, characterized in that:
  4.  前記トランスは前記1次巻線と前記2次巻線との間で100Hz以上の周波数で電力を伝送するものであり、
     前記第1~第3の電力変換セルは、それぞれ、
     前記1次側端子と前記1次巻線との間で電力を伝送する1次側回路と、
     前記2次側端子と前記2次巻線との間で電力を伝送する2次側回路と、をさらに備える
     ことを特徴とする請求項2に記載の電力変換装置。
    The transformer transmits power at a frequency of 100 Hz or more between the primary winding and the secondary winding,
    Each of the first to third power conversion cells is
    A primary side circuit for transferring power between the primary side terminal and the primary winding;
    The power converter according to claim 2, further comprising: a secondary side circuit that transmits power between the secondary side terminal and the secondary winding.
  5.  前記1次側回路は、一対の前記1次側端子と1次側直流電圧との間で電力を伝送する第1の交直変換器と、前記1次側直流電圧と前記1次巻線との間で電力を伝送する第2の交直変換器と、を有し、
     前記2次側回路は、2次側直流電圧と前記2次巻線との間で電力を伝送する第3の交直変換器と、一対の前記2次側端子と前記2次側直流電圧との間で電力を伝送する第4の交直変換器と、を有する
     ことを特徴とする請求項4に記載の電力変換装置。
    The primary side circuit includes: a first AC / DC converter for transmitting power between a pair of the primary side terminals and a primary side DC voltage; a primary side DC voltage; and the primary winding And a second AC / DC converter for transferring power between the
    The secondary circuit includes a third AC / DC converter for transmitting power between a secondary DC voltage and the secondary winding, and a pair of the secondary terminals and the secondary DC voltage. The 4th AC / DC converter which transmits electric power between, The power converter device of Claim 4 characterized by the above-mentioned.
  6.  前記1次側回路は、一対の前記1次側端子と前記1次巻線との間で電力を伝送する第2の交直変換器を有し、
     前記2次側回路は、2次側直流電圧と前記2次巻線との間で電力を伝送する第3の交直変換器と、一対の前記2次側端子と前記2次側直流電圧との間で電力を伝送する第4の交直変換器と、を有する
     ことを特徴とする請求項4に記載の電力変換装置。
    The primary side circuit has a second AC / DC converter for transmitting power between a pair of the primary side terminals and the primary winding,
    The secondary circuit includes a third AC / DC converter for transmitting power between a secondary DC voltage and the secondary winding, and a pair of the secondary terminals and the secondary DC voltage. The 4th AC / DC converter which transmits electric power between, The power converter device of Claim 4 characterized by the above-mentioned.
  7.  前記第1~第3の電力変換セルのうち、前記1次側端子における対地電位の絶対値が最も高くなる電力変換セルと、前記2次側端子における対地電位の絶対値が最も高くなる電力変換セルとは、異なる電力変換セルである
     ことを特徴とする請求項3に記載の電力変換装置。
    Among the first to third power conversion cells, the power conversion cell in which the absolute value of the ground potential at the primary side terminal is the highest, and the power conversion in which the absolute value of the ground potential at the secondary side terminal is the highest The power conversion device according to claim 3, wherein the cell is a different power conversion cell.
  8.  各々が一対の1次側端子と、一対の2次側端子とを有する第1~第9の電力変換セルを備える電力変換装置を、M相(Mは3以上の自然数)の1次側系統と、N相(Nは3以上の自然数)の2次側系統との間に接続する電力変換装置の接続方法であって、
     前記第1~第3の電力変換セルの前記1次側端子を直列接続するとともに、1次側第1相に係る箇所に接続し、
     前記第4~第6の電力変換セルの前記1次側端子を直列接続するとともに、1次側第2相に係る箇所に接続し、
     前記第7~第9の電力変換セルの前記1次側端子を直列接続するとともに、1次側第3相に係る箇所に接続し、
     前記第1の電力変換セル、前記第6の電力変換セル、および前記第8の電力変換セルの前記2次側端子を直列接続するとともに、2次側第1相に係る箇所に接続し、
     前記第2の電力変換セル、前記第4の電力変換セル、および前記第9の電力変換セルの前記2次側端子を直列接続するとともに、2次側第2相に係る箇所に接続し、
     前記第3の電力変換セル、前記第5の電力変換セル、および前記第7の電力変換セルの前記2次側端子を直列接続するとともに、2次側第3相に係る箇所に接続し、かつ、
     前記第1~第3の電力変換セルのうち、前記1次側端子における対地電位の絶対値が最も高くなる電力変換セルと、前記2次側端子における対地電位の絶対値が最も高くなる電力変換セルと、が異なり、前記第4~第6の電力変換セルのうち、前記1次側端子における対地電位の絶対値が最も高くなる電力変換セルと、前記2次側端子における対地電位の絶対値が最も高くなる電力変換セルと、が異なり、前記第7~第9の電力変換セルのうち、前記1次側端子における対地電位の絶対値が最も高くなる電力変換セルと、前記2次側端子における対地電位の絶対値が最も高くなる電力変換セルと、が異なるように、各々の前記2次側端子を前記2次側系統に接続する
     ことを特徴とする電力変換装置の接続方法。
    A power conversion device comprising first to ninth power conversion cells each having a pair of primary side terminals and a pair of secondary side terminals, an M phase (M is a natural number of 3 or more) primary side system And a method of connecting a power conversion apparatus connected between an N-phase (N is a natural number of 3 or more) secondary side system,
    The primary side terminals of the first to third power conversion cells are connected in series, and connected to a point related to the primary side first phase,
    The primary side terminals of the fourth to sixth power conversion cells are connected in series, and connected to a point related to the primary side second phase,
    The primary side terminals of the seventh to ninth power conversion cells are connected in series, and connected to a location related to the primary side third phase,
    The secondary terminals of the first power conversion cell, the sixth power conversion cell, and the eighth power conversion cell are connected in series, and connected to a location related to the secondary first phase,
    The second power conversion cell, the fourth power conversion cell, and the secondary side terminal of the ninth power conversion cell are connected in series, and connected to a location related to the secondary side second phase,
    The second power conversion cell, the fifth power conversion cell, and the secondary side terminal of the seventh power conversion cell are connected in series, and connected to a portion related to the second phase of the secondary side, and ,
    Among the first to third power conversion cells, the power conversion cell in which the absolute value of the ground potential at the primary side terminal is the highest, and the power conversion in which the absolute value of the ground potential at the secondary side terminal is the highest Among the fourth to sixth power conversion cells, the power conversion cell having the highest absolute value of the ground potential at the primary side terminal, and the absolute value of the ground potential at the secondary side terminal, are different from the cells. Power conversion cell having the highest value of the power conversion cell, and among the seventh to ninth power conversion cells, the power conversion cell having the highest absolute value of ground potential at the primary side terminal, and the secondary side terminal The method of connecting a power conversion device, wherein each of the secondary side terminals is connected to the secondary side system so that the power conversion cell in which the absolute value of the ground potential is the highest is different.
PCT/JP2018/041106 2017-11-24 2018-11-06 Power conversion device and method of connecting power conversion devices WO2019102839A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880059917.5A CN111108676B (en) 2017-11-24 2018-11-06 Power conversion device and method for connecting power conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017225416A JP6931595B2 (en) 2017-11-24 2017-11-24 Power converter and connection method of power converter
JP2017-225416 2017-11-24

Publications (1)

Publication Number Publication Date
WO2019102839A1 true WO2019102839A1 (en) 2019-05-31

Family

ID=66631750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041106 WO2019102839A1 (en) 2017-11-24 2018-11-06 Power conversion device and method of connecting power conversion devices

Country Status (3)

Country Link
JP (1) JP6931595B2 (en)
CN (1) CN111108676B (en)
WO (1) WO2019102839A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133533A (en) * 1998-10-28 2000-05-12 Toshiba Corp Transformer for cyclo-converter
JP2000253675A (en) * 1999-03-04 2000-09-14 Mitsubishi Electric Corp 3-phase self-exciting power converter and 3-phase self- exciting dc interlocking apparatus
JP2005073362A (en) * 2003-08-22 2005-03-17 Rikogaku Shinkokai Power converter, motor drive arrangement, btb system, and grid-connected inverter system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147777A (en) * 1993-11-24 1995-06-06 Fuji Electric Co Ltd Electronic insulating transformer
CN101572495B (en) * 2009-03-10 2010-12-29 东南大学 Multifunctional power electric transformer
CN101621254B (en) * 2009-08-06 2012-05-23 东南大学 Power electronic transformer applied to distribution network
CN103248210B (en) * 2013-04-23 2015-08-05 西安交通大学 A kind of power synchronous control method for reducing the fluctuation of DC voltage secondary
CN104135164A (en) * 2014-07-30 2014-11-05 中国东方电气集团有限公司 Interleaved parallel multi-level electronic power transformer
CN106452099A (en) * 2016-10-10 2017-02-22 中国矿业大学(北京) Novel connection method of three-phase cascade convertor and working mode during power supply or load fault

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133533A (en) * 1998-10-28 2000-05-12 Toshiba Corp Transformer for cyclo-converter
JP2000253675A (en) * 1999-03-04 2000-09-14 Mitsubishi Electric Corp 3-phase self-exciting power converter and 3-phase self- exciting dc interlocking apparatus
JP2005073362A (en) * 2003-08-22 2005-03-17 Rikogaku Shinkokai Power converter, motor drive arrangement, btb system, and grid-connected inverter system

Also Published As

Publication number Publication date
JP2019097322A (en) 2019-06-20
CN111108676A (en) 2020-05-05
JP6931595B2 (en) 2021-09-08
CN111108676B (en) 2023-05-12

Similar Documents

Publication Publication Date Title
US9712070B2 (en) Power conversion device
JP4512117B2 (en) Multiple power conversion device and multiple transformer
US9419541B2 (en) Multilevel inverter
US20140369088A1 (en) Multi-level inverter
US20090067206A1 (en) Rectifier Circuit and Three-Phase Rectifier Device
US9692315B2 (en) High efficiency AC-AC converter with bidirectional switch
US8923024B2 (en) Series connected multi-level power conversion device
CN106026685A (en) Topological structure of three-phase power electronic transformer employing low-fluctuation DC bus capacitors
JP2000228883A (en) Power converter
US20140204614A1 (en) Rectified high frequency power supply with low total harmonic distortion (thd)
WO2019102839A1 (en) Power conversion device and method of connecting power conversion devices
JP3129971B2 (en) Transformerless three-phase converter
JP6878333B2 (en) Power converter
JP5924353B2 (en) Serial multiple matrix converter and motor drive device
JP3171551B2 (en) High voltage output power converter
JP2003324990A (en) Variable-speed driving device
JP2019097323A (en) Power conversion device, power conversion control device, and control method for power conversion circuits
JP2017022827A (en) Auxiliary power unit
WO2019019976A1 (en) Three-phase electrical rectification circuit device and three-phase electrical rectification method
JP6705948B2 (en) POWER CONVERSION DEVICE AND POWER CONVERSION DEVICE CONNECTION METHOD
WO2019159467A1 (en) Power conversion apparatus, power conversion system, and method for controlling power conversion apparatus
KR102261330B1 (en) Inverter system
JP2023072652A (en) Power converter and control method thereof
JP6341075B2 (en) Three-phase 9-level power converter
JP2020080583A (en) Power conversion device and polyphase ac power conversion device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881623

Country of ref document: EP

Kind code of ref document: A1