WO2018221747A1 - Travel control device, vehicle, travel control method, and travel control program - Google Patents

Travel control device, vehicle, travel control method, and travel control program Download PDF

Info

Publication number
WO2018221747A1
WO2018221747A1 PCT/JP2018/021294 JP2018021294W WO2018221747A1 WO 2018221747 A1 WO2018221747 A1 WO 2018221747A1 JP 2018021294 W JP2018021294 W JP 2018021294W WO 2018221747 A1 WO2018221747 A1 WO 2018221747A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
output
shift
gear
gear stage
Prior art date
Application number
PCT/JP2018/021294
Other languages
French (fr)
Japanese (ja)
Inventor
恒 高柳
芳克 井川
享大 ▲徳▼山
村田 直史
圭介 山本
伊智郎 粟屋
貴規 佐々木
翼 竹尾
昇 小島
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Publication of WO2018221747A1 publication Critical patent/WO2018221747A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/02Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including electrically actuated servomechanism including an electric control system or a servomechanism in which the vehicle velocity affecting element is actuated electrically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/42Input shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/21Providing engine brake control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor

Definitions

  • the present invention relates to a travel control device, a vehicle, a travel control method, and a travel control program.
  • Patent Document 1 performs AT shift control by adjusting the driver requested driving force and the constant speed traveling requested driving force, and shifts when the constant speed traveling requested driving force falls below the driving force based on the maximum engine braking force of the vehicle. Disclose down.
  • the AT in the control for keeping the vehicle speed constant, the AT is shifted down so that the actual vehicle speed does not exceed the target vehicle speed when traveling on a downhill road or during deceleration operation without performing complicated calculations. Control is performed.
  • the travel control device that performs the constant speed travel control for traveling the vehicle at the target vehicle speed and the shift control for performing an appropriate shift according to the travel state calculates the target vehicle speed.
  • a target vehicle speed calculation unit a target drive force calculation unit that calculates a target drive force for traveling at the target vehicle speed, a target output calculation unit that calculates a target output based on the target vehicle speed and the target drive force,
  • a constant-speed traveling gear output unit that outputs, as a constant-speed traveling target gear step, a gear stage that causes the vehicle to travel at the target vehicle speed based on the target output, and is installed in parallel with the constant-speed traveling gear output unit, and the target output
  • a mediation unit that mediates between the constant speed travel target gear and the gear shift target gear and outputs the target gear to the automatic transmission.
  • the shift gear output unit is a downshift that is an engine brake output when the current gear of the automatic transmission is shifted down by one stage, calculated based on the target output, engine brake torque, and engine speed.
  • a downshift determining unit that determines whether or not downshift is necessary based on the threshold value. If the target output falls below the shift-down threshold value and it is determined that a shift-down is necessary, a shift-down control is performed to set the shift target gear to a value shifted down by one step from the current gear.
  • the downshift control can be performed without performing a complicated calculation by using the target output.
  • the engine braking force can be increased and the vehicle speed can be prevented from exceeding when the vehicle is traveling on a downhill road or decelerating in constant speed traveling control.
  • the engine brake output after the downshift control is set as the downshift threshold for determination, excessive downshifting can be prevented.
  • the target output calculation unit may multiply the calculated target output by a predetermined coefficient so as to reduce the target output.
  • the coefficient (gain) is multiplied by the target output used for the determination of the downshift control so as to reduce the sensitivity. For this reason, excessive shift down can be suppressed, and deterioration of passenger comfort and shift hunting (gear level fluctuation and instability) can be prevented.
  • the transmission gear output unit has a shift-up determination unit.
  • the shift-up determination unit is a deviation between the engine output generated by the fuel, the engine brake output at the current gear stage of the automatic transmission, and the engine brake output when the current gear stage is shifted up by one stage. It is determined whether or not the upshift is necessary based on the upshift threshold. When it is determined that the engine output generated by the fuel exceeds the shift-up threshold value and needs to be shifted up, the shift-up target gear stage is set to a value shifted up by one stage from the current gear stage. Is done.
  • the engine output generated by the fuel may be multiplied by a predetermined coefficient so as to increase the engine output generated by the fuel.
  • the engine speed after the upshift is lower than the lower limit value of the engine speed, the engine is not shifted up, and therefore engine stall due to a low engine speed can be prevented.
  • the downshift determination unit is configured such that the engine speed after the shift target gear stage is shifted down by one stage from the current gear stage exceeds an upper limit value of the engine speed. It may be determined that no downshift is necessary.
  • the engine speed after the downshift exceeds the upper limit value of the engine speed, the engine is not downshifted, so that it is possible to prevent the passenger comfort from being deteriorated due to the high engine speed. .
  • the transmission gear output unit may include a timer that outputs an input value with a predetermined time delay.
  • the timer may use outputs of the downshift determination unit and the upshift determination unit as input values.
  • the arbitration unit may compare the constant speed travel target gear and the shift target gear, and output the smaller one as the target gear.
  • the appropriate target gear stage can be selected and output by the arbitration unit, and the shift target gear stage can be selected only when necessary.
  • a vehicle according to the third aspect of the present invention includes any one of the travel control devices described above.
  • the travel control method for performing the constant speed travel control for traveling the vehicle at the target vehicle speed and the shift control for performing an appropriate shift according to the travel state calculates the target vehicle speed.
  • a constant speed traveling target gear output step for outputting a gear stage for driving the vehicle as a constant speed traveling target gear step and the constant speed traveling target gear output step are performed in parallel, and a shift target gear step is output based on the target output.
  • the shift gear output step is a downshift that is an engine brake output when the current gear stage of the automatic transmission calculated by the target output, engine brake torque, and engine speed is shifted down by one stage. And determining whether a downshift is necessary based on the threshold value.
  • the shift gear output step sets the shift target gear to a value shifted down by one step from the current gear when the target output exceeds the shift-down threshold and it is determined that a shift-down is necessary. Shift down control is performed.
  • the travel control program for performing the constant speed travel control for traveling the vehicle at the target vehicle speed and the shift control for performing an appropriate shift according to the travel state calculates the target vehicle speed.
  • a constant speed travel target gear output step for outputting a gear stage for driving the vehicle as a constant speed travel target gear stage, and the constant speed travel target gear output step are performed in parallel, and a shift target gear stage is output based on the target output.
  • the shift gear output step is a downshift that is an engine brake output when the current gear of the automatic transmission is shifted down by one step, calculated based on the target output, engine brake torque, and engine speed. And determining whether a downshift is necessary based on the threshold value. When it is determined that the target output exceeds the shift-down threshold and a shift-down is necessary, a shift-down control is performed to set the shift target gear to a value shifted down by one step from the current gear.
  • the downshift determination is performed based on the downshift threshold value and the target output, so that the downshift control is performed without performing complicated calculations. be able to.
  • FIG. 1 is a block diagram showing constant speed traveling control according to the first embodiment.
  • FIG. 2 is a block diagram showing the shift control according to the first embodiment.
  • FIGS. 3A and 3B are graphs showing the relationship between the engine output and engine brake output and the engine speed according to the first embodiment.
  • FIG. 4 is a flowchart showing the downshift control according to the first embodiment.
  • FIG. 5A and FIG. 5B are graphs showing changes in engine brake output at the time of upshifting according to the second embodiment.
  • FIG. 6A and FIG. 6B are time charts showing the vehicle speed and the gear stage after the deceleration operation on the downhill road according to the second embodiment.
  • FIG. 7 is a flowchart showing the upshift control according to the second embodiment.
  • FIG. 1 is a block diagram showing constant speed traveling control according to the first embodiment.
  • FIG. 2 is a block diagram showing the shift control according to the first embodiment.
  • FIGS. 3A and 3B are graphs showing the relationship between the engine output and engine brake
  • FIG. 8 is a block diagram showing shift control using a timer according to the third embodiment.
  • FIG. 9A and FIG. 9B are time charts showing road surface gradient, output, and gear stage when the timer according to the third embodiment is used.
  • FIG. 10 is a block diagram illustrating control of the arbitration unit according to the fourth embodiment.
  • FIG. 1 shows a schematic configuration of a travel control device, a vehicle, a travel control method, and a travel control program according to the present embodiment.
  • the travel control device 1 includes a target vehicle speed calculation unit 10, a target driving force calculation unit (FF) 20, a target driving force calculation unit (FB) 30, and a target engine torque calculation unit 40.
  • the gear output unit 50 is provided as a main configuration.
  • the travel control device 1 is mounted on a vehicle 90.
  • the vehicle 90 includes a transmission (automatic transmission) 91 and an engine 92 as main components.
  • constant speed traveling control is performed, so that constant speed traveling is performed at the target vehicle speed.
  • the constant speed running control in this embodiment will be described below.
  • the target acceleration is calculated by the target acceleration calculator 11 of the target vehicle speed calculator 10
  • the target vehicle speed is calculated by the target vehicle speed calculator 12.
  • the target acceleration is input to the acceleration resistance calculation unit 21 of the target driving force calculation unit (FF) 20
  • the target vehicle speed is input to the running resistance calculation unit 22, and the calculated resistance is added to the vehicle 90.
  • Resistance that is, a target driving force (FF) corresponding to the resistance.
  • the target driving force (FF) calculated in the target driving force calculation unit (FF) 20 is calculated by feedforward control.
  • the target vehicle speed is input to the target driving force calculation unit (FB) 30, and the deviation between the target vehicle speed and the actual vehicle speed input from the vehicle 90 is input to the PI controller 31 to calculate the target driving force (FB). Is done.
  • the target driving force (FB) calculated by the target driving force calculation unit (FB) 30 is calculated by feedback control.
  • the target driving force (FF) and the target driving force (FB) are added by an adder to obtain a target driving force, which is input to the target output calculation unit 51 of the gear output unit 50 together with the target vehicle speed.
  • the target driving force is a target value of driving force for performing constant speed traveling at the target vehicle speed.
  • the target output calculation unit 51 calculates the target output by multiplying the target driving force and the target vehicle speed.
  • the calculated target output is input to the shift determination unit 52, where it is determined whether a shift-up or a shift-up is necessary to obtain a gear according to the target output, and the target gear is transmitted to the transmission 91 of the vehicle 90.
  • a stage is output.
  • the target engine torque calculation unit 40 receives the target driving force, the tire radius, and the actual gear ratio from the vehicle 90, and calculates the target engine torque.
  • the calculated target engine torque is output to the engine 92 of the vehicle 90.
  • the traveling control device 1 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and a computer-readable storage medium.
  • a series of processes for realizing various functions is stored in a storage medium or the like in the form of a program as an example, and the CPU reads the program into a RAM or the like to execute information processing / arithmetic processing.
  • the program is preinstalled in a ROM or other storage medium, provided in a state stored in a computer-readable storage medium, or distributed via wired or wireless communication means. Etc. may be applied.
  • the computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • the gear output unit 50 determines the shift change in the downhill traveling or the deceleration operation in parallel with the determination of the shift change in the constant speed traveling.
  • FIG. 2 is a block diagram showing the shift control according to this embodiment.
  • the gear output unit 50 includes a constant speed traveling gear output unit 55, a transmission gear output unit 56, and an arbitration unit 59 as main components.
  • the constant speed traveling gear output unit 55 includes a target output calculation unit 551 and a shift determination unit 552.
  • the constant speed traveling gear output unit 55 outputs, as a constant speed traveling target gear stage, a gear stage that causes the vehicle 90 to travel at the target vehicle speed based on the target output.
  • the transmission gear output unit 56 is installed in parallel with the constant speed traveling gear output unit 55.
  • the transmission gear output unit 56 includes a target output calculation unit 561 and a shift determination unit 562.
  • the transmission gear output unit 56 outputs a transmission target gear stage based on the target output.
  • the arbitration unit 59 arbitrates between the constant speed traveling target gear stage output from the constant speed traveling gear output unit 55 and the shift target gear stage output from the transmission gear output unit 56, and the smaller one is set as the target gear stage. Output to
  • a target vehicle speed and a target driving force are input to the gear output unit 50.
  • the target vehicle speed and the target driving force are input to both the constant speed traveling gear output unit 55 and the transmission gear output unit 56, respectively.
  • the target vehicle speed and the target driving force input to the constant speed traveling gear output unit 55 are input to the target output calculation unit 551 to calculate the target output (constant speed).
  • the target output (constant speed) is input to the downshift determination unit 553 and the upshift determination unit 554 of the shift determination unit 552 and needs to be upshifted or upshifted to achieve a gear stage corresponding to the target output (constant speed). Is determined, and the target gear stage (constant speed) is output.
  • the target vehicle speed and the target driving force input to the transmission gear output unit 56 are input to the target output calculation unit 561 to calculate a target output (shift).
  • the target output (shift) is input to the shift-down determination unit 563 and the shift-up determination unit 564 of the shift determination unit 562, and it is necessary to shift up or shift up to obtain a gear stage corresponding to the target output (shift). Is determined, and the target gear stage (shift) is output.
  • the determination of the shift determination unit 562 in the transmission gear output unit 56 will be specifically described below.
  • traveling at a constant speed for example, when traveling on a downhill road, the actual vehicle speed exceeds the target vehicle speed, so the engine brake is used to decelerate.
  • the engine brake output is calculated by multiplying the engine brake torque and the engine speed.
  • the engine brake torque may be set in advance with a map or constant defined for each engine speed, or the engine brake torque calculated by the engine ECU may be used. Good.
  • 3A and 3B are graphs showing the relationship between the engine output and engine brake output and the engine speed according to the present embodiment.
  • the vertical axis represents output
  • the horizontal axis represents engine speed
  • the vertical arrow direction is a positive direction.
  • a one-dot chain line indicates the maximum output of the engine 92 of the vehicle 90
  • a solid line indicates the engine brake output when the engine 92 is shifted down by one stage from the current gear stage.
  • the vertical axis indicates the output
  • the horizontal axis indicates the engine speed
  • the vertical axis arrow direction is negative, that is, a graph in which the output of the graph of FIG. It has become.
  • the solid line indicates the engine brake output when the engine 92 is shifted down by one stage from the current gear stage.
  • the engine brake output is a negative output, and as the engine speed increases, the engine brake output decreases in the negative direction, that is, the absolute value increases. Since only the output in the negative direction is used in downhill traveling and deceleration operation, only the negative range of the graph in FIG. 3A is represented in FIG.
  • the target output (shift) calculated by the target output calculation unit 561 of the transmission gear output unit 56 in FIG. 2 is the output A (A ⁇ 0) in the case of the engine speed ⁇ 1 in FIG. To do.
  • the shift determination unit 562 determines to perform a one-stage downshift.
  • the engine speed increases in the direction of the thick arrow, and the target output (shift) and the engine brake output coincide with each other at the engine speed ⁇ 2 (see the points on the graph), and the engine that matches the target output (shift) Brake output can be obtained. Therefore, the engine brake output when the gear is shifted down by one gear from the current gear is used as the shift-down threshold in the determination of the downshift.
  • the target output (shift) calculated by the target output calculation unit 561 of the transmission gear output unit 56 of FIG. 2 may be multiplied by a coefficient (gain).
  • gain a predetermined value is set so as to reduce the target output (shift).
  • FIG. 4 is a flowchart showing the downshift control according to this embodiment.
  • the target output calculation unit 561 calculates a target output (shift), and the process proceeds to step S402.
  • the downshift determination unit 563 calculates the engine brake output when the current gear stage is shifted down by one stage (S402), and proceeds to step S403.
  • the downshift determination unit 563 determines whether or not the target output (shift) is below the engine brake output when the target gear (shift) is shifted down by one step from the current gear (S403). If it is determined that the value is below, the process proceeds to step S404. If it is determined not to fall below, the process proceeds to step S405.
  • the downshift determination unit 563 determines that a downshift is necessary, and outputs a flag: 1.
  • the downshift determination unit 563 determines that no downshift is necessary, and outputs a flag: 0.
  • the upper limit value of the engine speed that is the threshold when the engine speed is shifted down from the current gear by one step. You may provide the conditions of permitting a shift down when it is below (for example, 3000 rpm).
  • the engine braking force can be increased and the vehicle speed can be prevented from exceeding when the vehicle is traveling on a downhill road or decelerating in constant speed traveling control. Further, since the engine brake output after the downshift is set as the downshift threshold and the determination is performed, an excessive downshift can be prevented.
  • the target output used for the determination of the downshift control is multiplied by a coefficient (gain) so as to reduce the sensitivity, so that an excessive downshift is suppressed and the passenger comfort is deteriorated and shifted. Hunting can be prevented.
  • the engine speed after the downshift exceeds the upper limit value of the engine speed, the engine is not downshifted, thereby preventing deterioration of passenger comfort due to the high engine speed. Can do.
  • FIGS. 5A and 5B are graphs showing the transition of the engine brake output at the time of upshifting according to the present embodiment. 5A and 5B, the vertical axis indicates the output, P FUEL is the engine output generated by the fuel, P L is the engine brake output at the current gear stage, and P H is the current gear. The engine brake output when shifting up one stage from the stage is shown.
  • FIG. 5A shows each output before the upshift.
  • the engine output generated by the fuel in the current gear position is P FUEL and engine brake output shown in FIG. 5 (a) is a P L shown in FIG. 5 (a)
  • the engine brake output and the current gear position in the case of one stage upshift from the current gear P FUEL is smaller than the deviation P H -P L from the engine brake output. Therefore, if the upshift is performed in this case, the engine brake output is insufficient, and the actual vehicle speed exceeds the target vehicle speed. This is because the output cannot be adjusted by the AT alone, and as a result, shift hunting occurs in which the gear stage fluctuates and becomes unstable.
  • the output is adjusted according to the engine torque request. Specifically, the deviation P H ⁇ between the engine brake output when the engine output P FUEL generated by fuel at the current gear stage is shifted up by one stage from the current gear stage and the engine brake output at the current gear stage. If P L is exceeded, it is determined that a shift up is necessary. Therefore, the difference P H -P L between the engine brake output when the current gear stage is shifted up by one stage and the engine brake output at the current gear stage is determined as the shift-up threshold value in the determination of the shift-up.
  • FIG. 5B shows each output immediately before the upshift.
  • the engine output P FUEL generated by the fuel at the current gear stage is a value obtained by multiplying the target vehicle speed by the target driving force, that is, the target output (> 0). Since this P FUEL exceeds the deviation P H ⁇ P L , a shift up is performed. At this time, the engine brake force is sufficient by the engine brake output after the upshift, and the target vehicle speed can be maintained. Therefore, shift hunting can be prevented.
  • the difference P H ⁇ between the engine brake output when the engine output P FUEL generated by fuel at the current gear stage is shifted up by one stage from the current gear stage and the engine brake output at the current gear stage.
  • the upshift may be performed when the following expression (1) is satisfied.
  • the engine output P FUEL generated by the fuel may be multiplied by a coefficient (gain).
  • the gain is set to a predetermined value so as to increase the engine output P FUEL generated by the fuel.
  • FIG. 6A is a time chart of the vehicle speed and gear stage when the travel control apparatus as a reference example is used
  • FIG. 6B is a chart of the vehicle speed and gear stage when the travel control apparatus 1 of this embodiment is used. It is a time chart. In both FIG.
  • the deceleration operation is performed between time 0 and time 20.
  • the traveling control device as a reference example is used as shown in FIG. 6A
  • the control (downhill road control) by the transmission gear output unit 56 is stopped and the upshift is performed. Is done.
  • the gear stage changes from 3 to 7, and then 8. That is, a jump shift occurs in which a shift change of two or more stages is performed.
  • downhill road control is resumed from time 30 and a downshift is performed.
  • a shift busy that shifts up once occurs when an acceleration operation is performed from a downhill road.
  • FIG. 7 is a flowchart showing the upshift control according to this embodiment.
  • the shift-up determination section 564 calculates an engine brake output P L in the current gear position, the process proceeds to step S702.
  • the upshift determination unit 564 calculates the engine output P FUEL generated by the fuel at the current gear stage (S702), and proceeds to step S703.
  • the shift-up determination section 564 calculates an engine brake output P H in the case of one stage upshift from the current gear position (S703), it shifts to step S704.
  • the upshift determining unit 564 determines whether or not the engine output P FUEL exceeds the deviation P H ⁇ P L (S704).
  • step S705 the upshift determination unit 564 determines that the upshift is necessary, and outputs a flag: 1.
  • step S706 the upshift determination unit 564 determines that the upshift is not necessary, and outputs a flag: 0.
  • the engine speed when the current gear stage is shifted up by one stage is the lower limit value of the engine speed that is a threshold value.
  • a condition of permitting upshifting when the speed is (for example, 1000 rpm) or more may be provided.
  • this embodiment by using a target output that is uniquely determined without changing depending on the vehicle speed, it is possible to perform upshift control without performing complicated calculations. Thereby, shift hunting can be prevented while maintaining the vehicle speed. Further, when the road surface slope becomes gentle during traveling on a downhill road, several steps of shift-up are not generated at a time, so that it is possible to prevent passenger comfort from deteriorating. Further, when an acceleration operation is performed from a downhill road, it is possible to suppress the occurrence of several stages of shift up at a time.
  • the engine speed after the upshift is below the lower limit value of the engine speed, the engine is not shifted up, and therefore engine stall due to a low engine speed can be prevented.
  • the engine output generated by the fuel used for the determination of the upshift control is multiplied by a coefficient (gain), so that excessive shift up is suppressed and deterioration of passenger comfort is prevented. Can do.
  • FIG. 8 is a block diagram showing shift control using the timer according to the present embodiment.
  • the timer 58 is provided between the transmission gear output unit 56 and the arbitration unit 59.
  • the timer 58 delays the output of the transmission gear output unit 56 by a predetermined time and outputs it to the arbitration unit 59.
  • FIG. 9A and FIG. 9B show the road surface gradient, output, and gear stage when using the timer according to this embodiment in the time chart.
  • the upper vertical axis represents the road surface gradient
  • the middle vertical axis represents the target output
  • the lower vertical axis represents the gear stage
  • the horizontal axis represents time.
  • the alternate long and short dash line indicates the downshift threshold
  • the alternate long and two short dashes line indicates the upshift threshold.
  • FIG. 9A is a time chart of road gradient, output, and gear stage when a travel control device as a reference example is used.
  • FIG. 9B is a time chart of road gradient, output, and gear stage when the travel control device 1 provided with the timer 58 of the present embodiment is used. Both FIG. 9A and FIG. 9B show a case where the road surface gradient becomes gentle at time t1 when traveling downhill on the road at a constant speed.
  • FIG. 9A when the traveling control apparatus as a reference example is used, when traveling at a gear stage of 5, the gradient becomes gentle at time t1 and the target output increases. Since the target output exceeds the upshift threshold at time t2, the upshift is performed. At this time, since the target output is a value obtained by multiplying the target vehicle speed and the target driving force, the gear stage does not decrease immediately even if the gear is shifted up.
  • the gear is shifted up to 8 and the gear is shifted up to 8. Thereafter, the target output continues to decrease, and the gear stage is shifted down from 8 to 7 because it falls below the downshift threshold at time t3. Since the gear stage has been shifted down, the value of the shift down threshold value is also changed to the engine brake output in the case where the current gear stage has been shifted down by one stage to 6.
  • the output of the shift target gear stage is delayed by the timer 58, frequent shift changes and deterioration of passenger comfort can be prevented. Further, it is possible to prevent a jump shift in which several stages of shift up occur at a time during constant speed traveling on a downhill road.
  • the arbitration unit outputs the smaller one of the constant speed travel target gear stage and the shift target gear stage as the target gear stage.
  • the same components are denoted by the same reference numerals and the description thereof is omitted.
  • FIG. 10 is a block diagram showing the control of the arbitration unit according to the third embodiment.
  • the constant speed travel target gear stage is input from the constant speed travel gear output unit 55 to the arbitration unit 59. Further, the gear shift target gear stage is input from the transmission gear output unit 56 to the arbitration unit 59.
  • the arbitration unit 59 selects a smaller one of the constant speed travel target gear stage and the shift target gear stage by the selector 591.
  • a logical product is obtained by the logic gate 592.
  • the logic gate 592 outputs 1 to the ON timer 595 when all the following conditions are satisfied.
  • a shift target gear is selected by the selector 591.
  • the target driving force is less than 0 (a negative value).
  • the excess of the vehicle speed exceeds a predetermined speed (in this embodiment, 2 km / h).
  • COAST operation In the case of a deceleration operation (COAST operation), the actual acceleration exceeds the lower limit value of the target acceleration.
  • the downhill road control is not performed in a deceleration operation (COAST operation) on an uphill slope (uphill slope).
  • COAST operation a deceleration operation
  • uphill slope uphill slope
  • simply adjusting the target acceleration starts downhill road control at low vehicle speeds, and fuel is not cut at high vehicle speeds. Therefore, acceleration is determined in condition (4) so that downhill road control is not started by a deceleration operation on an ascending slope. If any or all of the above conditions are not satisfied, 1 is output to the OFF timer 594 via the logic gate 593.
  • the ON timer 595 outputs the input value to the descending slope control flag selector 596 as an ON signal.
  • the OFF timer 594 outputs the input value to the descending slope control flag selector 596 as an OFF signal.
  • the descending slope control flag selector 596 resets the descending slope control flag when the OFF signal changes from 0 to 1, and outputs the constant speed travel target gear as the target gear. Further, when the ON signal changes from 0 to 1, the descending slope control flag selector 596 holds the descending slope control flag and outputs the shift target gear as the target gear.
  • an appropriate target gear stage can be selected and output by the arbitration unit 59, and downhill road control is performed only when a downhill road that satisfies a condition is necessary, and a shift target gear stage is selected. be able to.
  • Target driving force calculator FB 50 gear output units 51, 551, 561 target output calculation units 52, 552, 562 shift determination unit 55 constant speed traveling gear output unit 56 transmission gear output unit 58 timer 59 arbitration unit 90 vehicle 91 transmission (automatic transmission) 553, 563 Downshift determination unit 554, 564 Upshift determination unit

Abstract

[Solution] A travel control device that executes constant-speed travel control and changing-speed control is provided with a target vehicle speed calculator, a target driving force calculator, a target output calculator, a constant-speed travel gear output unit, a changing-speed gear output unit, and a mediating unit. The changing-speed gear output unit has a downshift determination unit that determines whether or not a downshift is needed on the basis of a downshift threshold value and the target output. When the target output falls below the downshift threshold value and a downshift is determined to be needed, downshift control is performed, in which a changing-speed target gear is set to a value that is one gear downshifted from the current gear.

Description

走行制御装置、車両、走行制御方法、及び走行制御プログラムTravel control device, vehicle, travel control method, and travel control program
 本発明は、走行制御装置、車両、走行制御方法、及び走行制御プログラムに関するものである。 The present invention relates to a travel control device, a vehicle, a travel control method, and a travel control program.
 車両が降坂路を走行する場合、車速が増加するため、車両操作者(ドライバー)は、ブレーキペダルを踏むなど、ブレーキを操作する必要がある。また、減速操作においては、AT(Automatic Transmission:自動変速機)が最大ギヤ段となり減速力が不足して減速に時間がかかる。これは、ATのシフトダウンがされないため、ATが最大ギヤ段、すなわち最小の変速比となり、エンジンブレーキが効かないためである。
 このような場合において、一般的に「クルーズコントロール」と呼ばれるような車速を一定に制御する装置では、目標車速に対して実車速が超過する降坂路運転時や減速操作時に、ATのシフトダウンが実行される。
 例えば、道路の勾配推定を行い、降坂路である又は減速操作であると判定すると、フィードフォワード制御により、シフトダウンが実行される。
 しかしながら、道路の勾配を推定するためには、複雑な計算が必要を行う必要がある。
When the vehicle travels on a downhill road, the vehicle speed increases, so the vehicle operator (driver) needs to operate the brake, such as stepping on a brake pedal. Further, in the deceleration operation, AT (Automatic Transmission) is the maximum gear stage and the deceleration force is insufficient, and it takes time to decelerate. This is because AT is not downshifted, so AT has the maximum gear, that is, the minimum gear ratio, and the engine brake does not work.
In such a case, in a device that controls the vehicle speed, which is generally called “cruise control”, the AT shifts down during downhill driving or deceleration operation where the actual vehicle speed exceeds the target vehicle speed. Executed.
For example, when a road gradient is estimated and it is determined that the road is a downhill road or a deceleration operation, a downshift is executed by feedforward control.
However, in order to estimate the road gradient, a complicated calculation needs to be performed.
 また、特許文献1は、ドライバ要求駆動力と定速走行要求駆動力とを調停してATシフト制御を行い、定速走行要求駆動力が車両の最大エンジンブレーキ力に基づく駆動力を下回るとシフトダウンすることを開示する。 Further, Patent Document 1 performs AT shift control by adjusting the driver requested driving force and the constant speed traveling requested driving force, and shifts when the constant speed traveling requested driving force falls below the driving force based on the maximum engine braking force of the vehicle. Disclose down.
 また特許文献1に開示された装置では、駆動力に基づいて判定が行なわれるため、シフトアップの閾値の設定が車速により異なり、処理が煩雑である。 Further, in the apparatus disclosed in Patent Document 1, since the determination is performed based on the driving force, the setting of the shift-up threshold differs depending on the vehicle speed, and the process is complicated.
日本国 特開2007-038933号公報Japan, JP 2007-038933 A
 本発明の或る観点によれば、車速を一定にする制御において、複雑な計算を行うこと無く、降坂路走行時や減速操作時に目標車速に対して実車速が超過しないようにATをシフトダウンさせる制御が、行われる。 According to a certain aspect of the present invention, in the control for keeping the vehicle speed constant, the AT is shifted down so that the actual vehicle speed does not exceed the target vehicle speed when traveling on a downhill road or during deceleration operation without performing complicated calculations. Control is performed.
 本発明の第一態様によれば、目標車速にて車両を走行させる定速走行制御と、走行状態に応じた適切な変速を行う変速制御とを実施する走行制御装置は、前記目標車速を算出する目標車速演算部と、前記目標車速にて走行するための目標駆動力を算出する目標駆動力演算部と、前記目標車速及び前記目標駆動力に基づき目標出力を算出する目標出力演算部と、前記目標出力に基づき前記目標車速にて車両を走行させるギヤ段を定速走行目標ギヤ段として出力する定速走行ギヤ出力部と、前記定速走行ギヤ出力部と並列に設置され、前記目標出力に基づき変速目標ギヤ段を出力する変速ギヤ出力部と、前記定速走行目標ギヤ段と前記変速目標ギヤ段との調停を行い自動変速機へ目標ギヤ段を出力する調停部と、を備える。前記変速ギヤ出力部は、前記目標出力と、エンジンブレーキトルクとエンジン回転数に基づいて算出された前記自動変速機の現在のギヤ段を1段シフトダウンさせた場合のエンジンブレーキ出力であるシフトダウン閾値と、に基づきシフトダウンが必要か否かを判定するシフトダウン判定部を有する。前記目標出力が前記シフトダウン閾値を下回りシフトダウンが必要であると判定された場合、前記変速目標ギヤ段を現在の前記ギヤ段から1段シフトダウンした値に設定するシフトダウン制御が行われる。 According to the first aspect of the present invention, the travel control device that performs the constant speed travel control for traveling the vehicle at the target vehicle speed and the shift control for performing an appropriate shift according to the travel state calculates the target vehicle speed. A target vehicle speed calculation unit, a target drive force calculation unit that calculates a target drive force for traveling at the target vehicle speed, a target output calculation unit that calculates a target output based on the target vehicle speed and the target drive force, A constant-speed traveling gear output unit that outputs, as a constant-speed traveling target gear step, a gear stage that causes the vehicle to travel at the target vehicle speed based on the target output, and is installed in parallel with the constant-speed traveling gear output unit, and the target output And a mediation unit that mediates between the constant speed travel target gear and the gear shift target gear and outputs the target gear to the automatic transmission. The shift gear output unit is a downshift that is an engine brake output when the current gear of the automatic transmission is shifted down by one stage, calculated based on the target output, engine brake torque, and engine speed. A downshift determining unit that determines whether or not downshift is necessary based on the threshold value. If the target output falls below the shift-down threshold value and it is determined that a shift-down is necessary, a shift-down control is performed to set the shift target gear to a value shifted down by one step from the current gear.
 本態様によれば、目標出力を用いることで複雑な計算を行うことなくシフトダウン制御を行うことができる。これにより、定速走行制御における降坂路走行時や減速操作時においてエンジンブレーキ力を高めて車速超過を抑制することができる。また、シフトダウン制御後のエンジンブレーキ出力をシフトダウン閾値として設定し判定を行うため、過剰なシフトダウンを防止することができる。 According to this aspect, the downshift control can be performed without performing a complicated calculation by using the target output. As a result, the engine braking force can be increased and the vehicle speed can be prevented from exceeding when the vehicle is traveling on a downhill road or decelerating in constant speed traveling control. In addition, since the engine brake output after the downshift control is set as the downshift threshold for determination, excessive downshifting can be prevented.
 上記第一態様では、前記目標出力演算部は、目標出力を小さくするように、算出した前記目標出力に所定の係数を乗じてもよい。 In the first aspect, the target output calculation unit may multiply the calculated target output by a predetermined coefficient so as to reduce the target output.
 本態様によれば、シフトダウン制御の判定に用いる目標出力に対し、感度を小さくするように係数(ゲイン)を乗じる。このため、過剰なシフトダウンを抑制するとともに、乗員の快適性の悪化およびシフトハンチング(ギヤ段が変動し不安定になること)を防止することができる。 According to this aspect, the coefficient (gain) is multiplied by the target output used for the determination of the downshift control so as to reduce the sensitivity. For this reason, excessive shift down can be suppressed, and deterioration of passenger comfort and shift hunting (gear level fluctuation and instability) can be prevented.
 本発明の第二態様によれば、前記変速ギヤ出力部は、シフトアップ判定部を有する。シフトアップ判定部は、燃料により発生するエンジン出力と、前記自動変速機の現在の前記ギヤ段における前記エンジンブレーキ出力と現在の前記ギヤ段から1段シフトアップした場合の前記エンジンブレーキ出力との偏差であるシフトアップ閾値と、に基づきシフトアップが必要か否かを判定する。前記燃料により発生するエンジン出力が前記シフトアップ閾値を上回りシフトアップが必要であると判定された場合、前記変速目標ギヤ段を現在の前記ギヤ段から1段シフトアップした値に設定するシフトアップ制御が行われる。 According to the second aspect of the present invention, the transmission gear output unit has a shift-up determination unit. The shift-up determination unit is a deviation between the engine output generated by the fuel, the engine brake output at the current gear stage of the automatic transmission, and the engine brake output when the current gear stage is shifted up by one stage. It is determined whether or not the upshift is necessary based on the upshift threshold. When it is determined that the engine output generated by the fuel exceeds the shift-up threshold value and needs to be shifted up, the shift-up target gear stage is set to a value shifted up by one stage from the current gear stage. Is done.
 本態様によれば、ギヤ段によらず一意に決定される目標出力を用いることで複雑な計算を行うこと無くシフトアップ制御を行うことができる。これにより、車速を維持しながらシフトハンチングを防止することができる。
 また、降坂路の走行中において路面勾配が緩やかになった場合に、一度に数段のシフトアップが発生することがない。このため、乗員の快適性の悪化を防止することができる。
 また、降坂路から加速操作した場合に、一度に数段のシフトアップを発生させることを抑制することができる。
According to this aspect, it is possible to perform the upshift control without performing a complicated calculation by using the target output that is uniquely determined regardless of the gear stage. Thereby, shift hunting can be prevented while maintaining the vehicle speed.
Further, when the road surface slope becomes gentle during traveling on a downhill road, several steps of upshifting will not occur at a time. For this reason, a passenger | crew's comfort deterioration can be prevented.
Further, when an acceleration operation is performed from a downhill road, it is possible to suppress the occurrence of several stages of shift up at a time.
 上記第二態様では、燃料による発生するエンジン出力を大きくするように、燃料により発生するエンジン出力に所定の係数を乗じてもよい。 In the second aspect, the engine output generated by the fuel may be multiplied by a predetermined coefficient so as to increase the engine output generated by the fuel.
 本態様によれば、シフトアップ制御の判定に用いる燃料により発生するエンジン出力に、係数(ゲイン)を乗じるため、過剰なシフトアップを抑制するとともに、乗員の快適性の悪化を防止することができる。 According to this aspect, since the engine output generated by the fuel used for the determination of the upshift control is multiplied by the coefficient (gain), excessive shift up can be suppressed and deterioration of passenger comfort can be prevented. .
 上記第二態様では、前記シフトアップ判定部は、前記変速目標ギヤ段を現在の前記ギヤ段から1段シフトアップさせた後の前記エンジン回転数が前記エンジン回転数の下限値を下回る場合、シフトアップが必要ないと判定してもよい。 In the second aspect, when the engine speed after the shift target gear stage is shifted up by one stage from the current gear stage is below the lower limit value of the engine speed, It may be determined that no up is necessary.
 本態様によれば、シフトアップさせた後のエンジン回転数がエンジン回転数の下限値を下回る場合はシフトアップさせないため、エンジン回転数が低いことによるエンストを防止することができる。 According to this aspect, when the engine speed after the upshift is lower than the lower limit value of the engine speed, the engine is not shifted up, and therefore engine stall due to a low engine speed can be prevented.
 上記第一または二態様では、前記シフトダウン判定部は、前記変速目標ギヤ段を現在の前記ギヤ段から1段シフトダウンさせた後の前記エンジン回転数が前記エンジン回転数の上限値を上回る場合、シフトダウンが必要ないと判定してもよい。 In the first or second aspect, the downshift determination unit is configured such that the engine speed after the shift target gear stage is shifted down by one stage from the current gear stage exceeds an upper limit value of the engine speed. It may be determined that no downshift is necessary.
 本態様によれば、シフトダウンさせた後のエンジン回転数がエンジン回転数の上限値を上回る場合はシフトダウンさせないため、エンジン回転数が高いことによる乗員の快適性の悪化を防止することができる。 According to this aspect, when the engine speed after the downshift exceeds the upper limit value of the engine speed, the engine is not downshifted, so that it is possible to prevent the passenger comfort from being deteriorated due to the high engine speed. .
 上記第一または二態様では、前記変速ギヤ出力部は、入力値を所定時間遅らせて出力するタイマを備えてもよい。前記タイマは、前記シフトダウン判定部及び前記シフトアップ判定部の出力を入力値としてもよい。 In the first or second aspect, the transmission gear output unit may include a timer that outputs an input value with a predetermined time delay. The timer may use outputs of the downshift determination unit and the upshift determination unit as input values.
 本態様によれば、タイマにより変速目標ギヤ段の出力を遅らせるため、頻繁なシフトの変化、及び乗員の快適性の悪化を防ぐことができる。また、降坂路における定速走行時において、一度に数段のシフトアップが発生する飛びシフトを防ぐことができる。 According to this aspect, since the output of the shift target gear stage is delayed by the timer, frequent shift changes and deterioration of passenger comfort can be prevented. Further, it is possible to prevent a jump shift in which several stages of shift up occur at a time during constant speed traveling on a downhill road.
 上記第一または二態様では、前記調停部は、前記定速走行目標ギヤ段と前記変速目標ギヤ段とを比較し、いずれか小さい方を前記目標ギヤ段として出力してもよい。 In the first or second aspect, the arbitration unit may compare the constant speed travel target gear and the shift target gear, and output the smaller one as the target gear.
 本態様によれば、調停部により適切な目標ギヤ段を選択し出力することができ、必要な場合のみ変速目標ギヤ段を選択することができる。 According to this aspect, the appropriate target gear stage can be selected and output by the arbitration unit, and the shift target gear stage can be selected only when necessary.
 本発明の第三態様に係る車両は、前述のいずれかに記載の走行制御装置を備える。 A vehicle according to the third aspect of the present invention includes any one of the travel control devices described above.
 本発明の第四態様によれば、目標車速にて車両を走行させる定速走行制御と、走行状態に応じた適切な変速を行う変速制御とを実施する走行制御方法は、前記目標車速を算出する工程と、前記目標車速にて走行するための目標駆動力を算出する工程と、前記目標車速及び前記目標駆動力に基づき目標出力を算出する工程と、前記目標出力に基づき前記目標車速にて車両を走行させるギヤ段を定速走行目標ギヤ段として出力する定速走行目標ギヤ出力工程と、前記定速走行目標ギヤ出力工程と並列に実施され、前記目標出力に基づき変速目標ギヤ段を出力する変速ギヤ出力工程と、前記定速走行目標ギヤ段と前記変速目標ギヤ段との調停を行い自動変速機へ目標ギヤ段を出力する工程と、を備える。前記変速ギヤ出力工程は、前記目標出力と、エンジンブレーキトルクとエンジン回転数に基づいて算出された前記自動変速機の現在のギヤ段を1段シフトダウンさせた場合のエンジンブレーキ出力であるシフトダウン閾値と、に基づきシフトダウンが必要か否かを判定する工程を有する。前記変速ギヤ出力工程は、前記目標出力が前記シフトダウン閾値を上回りシフトダウンが必要であると判定された場合、前記変速目標ギヤ段を現在の前記ギヤ段から1段シフトダウンした値に設定するシフトダウン制御を行う。 According to the fourth aspect of the present invention, the travel control method for performing the constant speed travel control for traveling the vehicle at the target vehicle speed and the shift control for performing an appropriate shift according to the travel state calculates the target vehicle speed. A step of calculating a target driving force for traveling at the target vehicle speed, a step of calculating a target output based on the target vehicle speed and the target driving force, and a target vehicle speed based on the target output. A constant speed traveling target gear output step for outputting a gear stage for driving the vehicle as a constant speed traveling target gear step and the constant speed traveling target gear output step are performed in parallel, and a shift target gear step is output based on the target output. And a step of arbitrating between the constant speed travel target gear and the shift target gear and outputting the target gear to the automatic transmission. The shift gear output step is a downshift that is an engine brake output when the current gear stage of the automatic transmission calculated by the target output, engine brake torque, and engine speed is shifted down by one stage. And determining whether a downshift is necessary based on the threshold value. The shift gear output step sets the shift target gear to a value shifted down by one step from the current gear when the target output exceeds the shift-down threshold and it is determined that a shift-down is necessary. Shift down control is performed.
 本発明の第五態様によれば、目標車速にて車両を走行させる定速走行制御と、走行状態に応じた適切な変速を行う変速制御とを実施する走行制御プログラムは、前記目標車速を算出するステップと、前記目標車速にて走行するための目標駆動力を算出するステップと、前記目標車速及び前記目標駆動力に基づき目標出力を算出するステップと、前記目標出力に基づき前記目標車速にて車両を走行させるギヤ段を定速走行目標ギヤ段として出力する定速走行目標ギヤ出力ステップと、前記定速走行目標ギヤ出力ステップと並列に実施され、前記目標出力に基づき変速目標ギヤ段を出力する変速ギヤ出力ステップと、前記定速走行目標ギヤ段と前記変速目標ギヤ段との調停を行い自動変速機へ目標ギヤ段を出力するステップと、を備える。前記変速ギヤ出力ステップは、前記目標出力と、エンジンブレーキトルクとエンジン回転数に基づいて算出された前記自動変速機の現在のギヤ段を1段シフトダウンさせた場合のエンジンブレーキ出力であるシフトダウン閾値と、に基づきシフトダウンが必要か否かを判定するステップを有する。前記目標出力が前記シフトダウン閾値を上回りシフトダウンが必要であると判定された場合、前記変速目標ギヤ段を現在の前記ギヤ段から1段シフトダウンした値に設定するシフトダウン制御が行われる。 According to the fifth aspect of the present invention, the travel control program for performing the constant speed travel control for traveling the vehicle at the target vehicle speed and the shift control for performing an appropriate shift according to the travel state calculates the target vehicle speed. A step of calculating a target driving force for traveling at the target vehicle speed, a step of calculating a target output based on the target vehicle speed and the target driving force, and a target vehicle speed based on the target output. A constant speed travel target gear output step for outputting a gear stage for driving the vehicle as a constant speed travel target gear stage, and the constant speed travel target gear output step are performed in parallel, and a shift target gear stage is output based on the target output. And a step of arbitrating between the constant speed travel target gear and the shift target gear and outputting the target gear to the automatic transmission. The shift gear output step is a downshift that is an engine brake output when the current gear of the automatic transmission is shifted down by one step, calculated based on the target output, engine brake torque, and engine speed. And determining whether a downshift is necessary based on the threshold value. When it is determined that the target output exceeds the shift-down threshold and a shift-down is necessary, a shift-down control is performed to set the shift target gear to a value shifted down by one step from the current gear.
 実施形態の走行制御装置、車両、走行制御方法、及び走行制御プログラムによれば、シフトダウン閾値と目標出力とに基づきシフトダウンの判定を行うので、複雑な計算を行うことなくシフトダウン制御を行うことができる。 According to the travel control device, the vehicle, the travel control method, and the travel control program of the embodiment, the downshift determination is performed based on the downshift threshold value and the target output, so that the downshift control is performed without performing complicated calculations. be able to.
図1は、第1実施形態に係る定速走行制御を示したブロック図である。FIG. 1 is a block diagram showing constant speed traveling control according to the first embodiment. 図2は、第1実施形態に係るシフト制御を示したブロック図である。FIG. 2 is a block diagram showing the shift control according to the first embodiment. 図3(a)および図3(b)は、第1実施形態に係るエンジンの出力及びエンジンブレーキ出力とエンジン回転数との関係を示したグラフである。FIGS. 3A and 3B are graphs showing the relationship between the engine output and engine brake output and the engine speed according to the first embodiment. 図4は、第1実施形態に係るシフトダウン制御を示したフローチャートである。FIG. 4 is a flowchart showing the downshift control according to the first embodiment. 図5(a)および図5(b)は、第2実施形態に係るシフトアップ時のエンジンブレーキ出力の推移を示したグラフである。FIG. 5A and FIG. 5B are graphs showing changes in engine brake output at the time of upshifting according to the second embodiment. 図6(a)および図6(b)は、第2実施形態に係る降坂路における減速操作後の車速とギヤ段を示したタイムチャートである。FIG. 6A and FIG. 6B are time charts showing the vehicle speed and the gear stage after the deceleration operation on the downhill road according to the second embodiment. 図7は、第2実施形態に係るシフトアップ制御を示したフローチャートである。FIG. 7 is a flowchart showing the upshift control according to the second embodiment. 図8は、第3実施形態に係るタイマを用いたシフト制御を示したブロック図である。FIG. 8 is a block diagram showing shift control using a timer according to the third embodiment. 図9(a)および図9(b)は、第3実施形態に係るタイマを用いた場合の路面勾配、出力及びギヤ段を示したタイムチャートである。FIG. 9A and FIG. 9B are time charts showing road surface gradient, output, and gear stage when the timer according to the third embodiment is used. 図10は、第4実施形態に係る調停部の制御を示したブロック図である。FIG. 10 is a block diagram illustrating control of the arbitration unit according to the fourth embodiment.
 以下に、実施形態に係る走行制御装置、車両、走行制御方法、及び走行制御プログラムについて、図面を参照して説明する。 Hereinafter, a travel control device, a vehicle, a travel control method, and a travel control program according to an embodiment will be described with reference to the drawings.
〔第1実施形態〕
 以下、第1実施形態について、図1乃至4を用いて説明する。
 図1は、本実施形態に係る走行制御装置、車両、走行制御方法、及び走行制御プログラムの概略構成を示す。
 図1に示されるように、走行制御装置1は、目標車速演算部10と、目標駆動力演算部(FF)20と、目標駆動力演算部(FB)30と、目標エンジントルク演算部40と、ギヤ出力部50と、を主な構成として備える。走行制御装置1は、車両90に搭載される。
 車両90は、トランスミッション(自動変速機)91及びエンジン92を主な構成として備える。
[First Embodiment]
Hereinafter, a first embodiment will be described with reference to FIGS.
FIG. 1 shows a schematic configuration of a travel control device, a vehicle, a travel control method, and a travel control program according to the present embodiment.
As shown in FIG. 1, the travel control device 1 includes a target vehicle speed calculation unit 10, a target driving force calculation unit (FF) 20, a target driving force calculation unit (FB) 30, and a target engine torque calculation unit 40. The gear output unit 50 is provided as a main configuration. The travel control device 1 is mounted on a vehicle 90.
The vehicle 90 includes a transmission (automatic transmission) 91 and an engine 92 as main components.
 車両90では、定速走行制御が行われることにより、目標車速にて定速走行が行われる。
 本実施形態における定速走行制御について、以下に説明する。
 目標車速演算部10の目標加速度算出部11によって目標加速度が算出され、目標車速算出部12によって目標車速が算出される。
In the vehicle 90, constant speed traveling control is performed, so that constant speed traveling is performed at the target vehicle speed.
The constant speed running control in this embodiment will be described below.
The target acceleration is calculated by the target acceleration calculator 11 of the target vehicle speed calculator 10, and the target vehicle speed is calculated by the target vehicle speed calculator 12.
 次に、目標駆動力演算部(FF)20の加速抵抗演算部21に目標加速度が入力され、走行抵抗演算部22に目標車速が入力され、算出された抵抗をそれぞれ加算することにより、車両90の抵抗、すなわちこれに対応する目標駆動力(FF)が算出される。目標駆動力演算部(FF)20において算出される目標駆動力(FF)は、フィードフォワード制御によって算出される。 Next, the target acceleration is input to the acceleration resistance calculation unit 21 of the target driving force calculation unit (FF) 20, the target vehicle speed is input to the running resistance calculation unit 22, and the calculated resistance is added to the vehicle 90. Resistance, that is, a target driving force (FF) corresponding to the resistance. The target driving force (FF) calculated in the target driving force calculation unit (FF) 20 is calculated by feedforward control.
 一方、目標駆動力演算部(FB)30に目標車速が入力され、この目標車速と車両90から入力される実車速との偏差をPI制御器31に入力し、目標駆動力(FB)が算出される。目標駆動力演算部(FB)30において算出される目標駆動力(FB)は、フィードバック制御によって算出される。 On the other hand, the target vehicle speed is input to the target driving force calculation unit (FB) 30, and the deviation between the target vehicle speed and the actual vehicle speed input from the vehicle 90 is input to the PI controller 31 to calculate the target driving force (FB). Is done. The target driving force (FB) calculated by the target driving force calculation unit (FB) 30 is calculated by feedback control.
 次に、目標駆動力(FF)と目標駆動力(FB)とが加算器で加算されて目標駆動力とされ、目標車速とともにギヤ出力部50の目標出力演算部51に入力される。目標駆動力は、目標車速で定速走行を行うための駆動力の目標値である。
 目標出力演算部51では、目標駆動力と目標車速を乗算することで、目標出力を算出する。算出された目標出力は、シフト判定部52に入力され、目標出力に応じたギヤ段とするためにシフトアップまたはシフトアップが必要か否かの判定が行われ、車両90のトランスミッション91へ目標ギヤ段が出力される。
Next, the target driving force (FF) and the target driving force (FB) are added by an adder to obtain a target driving force, which is input to the target output calculation unit 51 of the gear output unit 50 together with the target vehicle speed. The target driving force is a target value of driving force for performing constant speed traveling at the target vehicle speed.
The target output calculation unit 51 calculates the target output by multiplying the target driving force and the target vehicle speed. The calculated target output is input to the shift determination unit 52, where it is determined whether a shift-up or a shift-up is necessary to obtain a gear according to the target output, and the target gear is transmitted to the transmission 91 of the vehicle 90. A stage is output.
 また、目標エンジントルク演算部40に、目標駆動力、タイヤ半径、及び車両90から実変速比が入力され、目標エンジントルクが算出される。算出された目標エンジントルクは、車両90のエンジン92へ出力される。 Further, the target engine torque calculation unit 40 receives the target driving force, the tire radius, and the actual gear ratio from the vehicle 90, and calculates the target engine torque. The calculated target engine torque is output to the engine 92 of the vehicle 90.
 ここで走行制御装置1は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。 Here, the traveling control device 1 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and a computer-readable storage medium. A series of processes for realizing various functions is stored in a storage medium or the like in the form of a program as an example, and the CPU reads the program into a RAM or the like to execute information processing / arithmetic processing. As a result, various functions are realized. The program is preinstalled in a ROM or other storage medium, provided in a state stored in a computer-readable storage medium, or distributed via wired or wireless communication means. Etc. may be applied. The computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
 ここで、定速走行制御を行う車両90が降坂路走行や減速操作を行う場合において、目標車速に対して実車速が超過するため、ATをシフトダウンさせる必要がある。本実施形態では、ギヤ出力部50にて定速走行のシフトチェンジの判定と並行して降坂路走行や減速操作におけるシフトチェンジの判定を行う。 Here, when the vehicle 90 that performs constant speed traveling control performs downhill road traveling or deceleration operation, the actual vehicle speed exceeds the target vehicle speed, so it is necessary to shift down the AT. In the present embodiment, the gear output unit 50 determines the shift change in the downhill traveling or the deceleration operation in parallel with the determination of the shift change in the constant speed traveling.
 図2には、本実施形態に係るシフト制御がブロック図に示されている。
 ギヤ出力部50は、定速走行ギヤ出力部55と、変速ギヤ出力部56と、調停部59とを主な構成として備えている。
 定速走行ギヤ出力部55は、目標出力演算部551と、シフト判定部552とを備える。定速走行ギヤ出力部55は、目標出力に基づき、目標車速にて車両90を走行させるギヤ段を定速走行目標ギヤ段として出力する。
 変速ギヤ出力部56は、定速走行ギヤ出力部55と並列に設置される。変速ギヤ出力部56は、目標出力演算部561と、シフト判定部562とを備える。変速ギヤ出力部56は、目標出力に基づき変速目標ギヤ段を出力する。
 調停部59は、定速走行ギヤ出力部55が出力する定速走行目標ギヤ段及び変速ギヤ出力部56が出力する変速目標ギヤ段を調停し、いずれか小さい方を目標ギヤ段として車両90のトランスミッション91に出力する。
FIG. 2 is a block diagram showing the shift control according to this embodiment.
The gear output unit 50 includes a constant speed traveling gear output unit 55, a transmission gear output unit 56, and an arbitration unit 59 as main components.
The constant speed traveling gear output unit 55 includes a target output calculation unit 551 and a shift determination unit 552. The constant speed traveling gear output unit 55 outputs, as a constant speed traveling target gear stage, a gear stage that causes the vehicle 90 to travel at the target vehicle speed based on the target output.
The transmission gear output unit 56 is installed in parallel with the constant speed traveling gear output unit 55. The transmission gear output unit 56 includes a target output calculation unit 561 and a shift determination unit 562. The transmission gear output unit 56 outputs a transmission target gear stage based on the target output.
The arbitration unit 59 arbitrates between the constant speed traveling target gear stage output from the constant speed traveling gear output unit 55 and the shift target gear stage output from the transmission gear output unit 56, and the smaller one is set as the target gear stage. Output to transmission 91.
 ギヤ出力部50には、目標車速及び目標駆動力が入力される。目標車速及び目標駆動力は、それぞれ定速走行ギヤ出力部55及び変速ギヤ出力部56の双方に入力される。
 定速走行ギヤ出力部55に入力された目標車速及び目標駆動力は、目標出力演算部551に入力され目標出力(定速)が算出される。目標出力(定速)は、シフト判定部552のシフトダウン判定部553及びシフトアップ判定部554に入力され、目標出力(定速)に応じたギヤ段とするためにシフトアップまたはシフトアップが必要か否かの判定が行われ、目標ギヤ段(定速)が出力される。
A target vehicle speed and a target driving force are input to the gear output unit 50. The target vehicle speed and the target driving force are input to both the constant speed traveling gear output unit 55 and the transmission gear output unit 56, respectively.
The target vehicle speed and the target driving force input to the constant speed traveling gear output unit 55 are input to the target output calculation unit 551 to calculate the target output (constant speed). The target output (constant speed) is input to the downshift determination unit 553 and the upshift determination unit 554 of the shift determination unit 552 and needs to be upshifted or upshifted to achieve a gear stage corresponding to the target output (constant speed). Is determined, and the target gear stage (constant speed) is output.
 一方、変速ギヤ出力部56に入力された目標車速及び目標駆動力は、目標出力演算部561に入力され目標出力(変速)が算出される。目標出力(変速)は、シフト判定部562のシフトダウン判定部563及びシフトアップ判定部564に入力され、目標出力(変速)に応じたギヤ段とするためにシフトアップまたはシフトアップが必要か否かの判定が行われ、目標ギヤ段(変速)が出力される。 On the other hand, the target vehicle speed and the target driving force input to the transmission gear output unit 56 are input to the target output calculation unit 561 to calculate a target output (shift). The target output (shift) is input to the shift-down determination unit 563 and the shift-up determination unit 564 of the shift determination unit 562, and it is necessary to shift up or shift up to obtain a gear stage corresponding to the target output (shift). Is determined, and the target gear stage (shift) is output.
 ここで、変速ギヤ出力部56におけるシフト判定部562の判定について以下に具体的に述べる。
 定速走行において、例えば降坂路を走行する場合、目標車速に対して実車速が超過するため、エンジンブレーキを利用し減速させる。この場合、1段シフトダウンさせることでより大きなエンジンブレーキ出力を得られることから、車両90の目標出力と現在のギヤ段から1段シフトダウンした場合のエンジンブレーキ出力とを用いた判定を行うものとする。
 エンジンブレーキ出力は、エンジンブレーキトルクとエンジン回転数とを乗算することで算出される。ここでエンジンブレーキトルクは、エンジン回転数毎に定義されるマップや定数にて予め設定する、エンジンECUにて演算されるエンジンブレーキトルクを用いる、等が考えられるが、いずれの方法を採ってもよい。また、車両90のエアコンやオルタネーター等の補機の負荷トルクにて補正してもよい。
Here, the determination of the shift determination unit 562 in the transmission gear output unit 56 will be specifically described below.
In traveling at a constant speed, for example, when traveling on a downhill road, the actual vehicle speed exceeds the target vehicle speed, so the engine brake is used to decelerate. In this case, since a larger engine brake output can be obtained by shifting down by one stage, a determination is made using the target output of the vehicle 90 and the engine brake output when shifting down by one stage from the current gear stage. And
The engine brake output is calculated by multiplying the engine brake torque and the engine speed. Here, the engine brake torque may be set in advance with a map or constant defined for each engine speed, or the engine brake torque calculated by the engine ECU may be used. Good. Moreover, you may correct | amend with the load torque of auxiliary machines, such as an air conditioner of a vehicle 90, and an alternator.
 図3(a)および図3(b)には、本実施形態に係るエンジンの出力及びエンジンブレーキ出力とエンジン回転数との関係がグラフに示されている。
 図3(a)のグラフにおいて、縦軸は出力、横軸はエンジン回転数を示し、縦軸矢印方向が正の向きである。一点鎖線は車両90のエンジン92の最大出力、実線はエンジン92の現在のギヤ段から1段シフトダウンした場合のエンジンブレーキ出力を示す。
 また図3(b)のグラフにおいて、縦軸は出力、横軸はエンジン回転数を示し、縦軸矢印方向が負の向き、つまり図3(a)のグラフの出力を正負逆にしたグラフとなっている。実線はエンジン92の現在のギヤ段から1段シフトダウンした場合のエンジンブレーキ出力を示す。
 図3(a)に示されるように、エンジンブレーキ出力は負の出力であり、エンジン回転数が上がるほど負の方向に小さく、つまり絶対値は大きくなっている。降坂路走行や減速操作では負の方向の出力のみを用いることから、便宜上図3(a)のグラフの負の範囲のみを正負逆にして図3(b)に表す。
3A and 3B are graphs showing the relationship between the engine output and engine brake output and the engine speed according to the present embodiment.
In the graph of FIG. 3A, the vertical axis represents output, the horizontal axis represents engine speed, and the vertical arrow direction is a positive direction. A one-dot chain line indicates the maximum output of the engine 92 of the vehicle 90, and a solid line indicates the engine brake output when the engine 92 is shifted down by one stage from the current gear stage.
In the graph of FIG. 3B, the vertical axis indicates the output, the horizontal axis indicates the engine speed, and the vertical axis arrow direction is negative, that is, a graph in which the output of the graph of FIG. It has become. The solid line indicates the engine brake output when the engine 92 is shifted down by one stage from the current gear stage.
As shown in FIG. 3 (a), the engine brake output is a negative output, and as the engine speed increases, the engine brake output decreases in the negative direction, that is, the absolute value increases. Since only the output in the negative direction is used in downhill traveling and deceleration operation, only the negative range of the graph in FIG. 3A is represented in FIG.
 図2の変速ギヤ出力部56の目標出力演算部561にて算出された目標出力(変速)が、図3(b)においてエンジン回転数ω1の場合の出力A(A<0)であるとする。この場合、目標出力(変速)は実線のエンジンブレーキ出力を負の方向に上回っていることから、シフト判定部562は、1段シフトダウンを行う、と判定する。1段シフトダウンを行うと、太線矢印方向にエンジン回転数が上がりエンジン回転数ω2において目標出力(変速)とエンジンブレーキ出力が一致し(グラフの点参照)、目標出力(変速)に見合うエンジンブレーキ出力を得ることができる。
 よって、現在のギヤ段から1段シフトダウンした場合のエンジンブレーキ出力をシフトダウンの判定におけるシフトダウン閾値とする。
The target output (shift) calculated by the target output calculation unit 561 of the transmission gear output unit 56 in FIG. 2 is the output A (A <0) in the case of the engine speed ω 1 in FIG. To do. In this case, since the target output (shift) exceeds the solid engine brake output in the negative direction, the shift determination unit 562 determines to perform a one-stage downshift. When downshifting by one stage, the engine speed increases in the direction of the thick arrow, and the target output (shift) and the engine brake output coincide with each other at the engine speed ω 2 (see the points on the graph), and the engine that matches the target output (shift) Brake output can be obtained.
Therefore, the engine brake output when the gear is shifted down by one gear from the current gear is used as the shift-down threshold in the determination of the downshift.
 ここで、シフトダウン閾値として、現在のギヤ段におけるエンジンブレーキ出力を用いることも可能であるが、現在のギヤ段から1段シフトダウンした場合のエンジンブレーキ出力を用いることにより、過剰なシフトダウンや、頻繁なシフトダウンを防ぐ。 Here, it is possible to use the engine brake output at the current gear stage as the shift down threshold, but by using the engine brake output when the current gear stage is shifted down by one stage, excessive shift down or Prevent frequent downshifts.
 また、図2の変速ギヤ出力部56の目標出力演算部561にて算出された目標出力(変速)に係数(ゲイン)を乗じてもよい。ゲインとして、目標出力(変速)を小さくするように所定の値が設定される。 Further, the target output (shift) calculated by the target output calculation unit 561 of the transmission gear output unit 56 of FIG. 2 may be multiplied by a coefficient (gain). As the gain, a predetermined value is set so as to reduce the target output (shift).
 図4には、本実施形態に係るシフトダウン制御がフローチャートに示されている。
 ステップS401において、目標出力演算部561は、目標出力(変速)を算出し、ステップS402へ遷移する。
 次に、シフトダウン判定部563は、現在のギヤ段から1段シフトダウンした場合のエンジンブレーキ出力を算出し(S402)、ステップS403へ遷移する。
 次に、シフトダウン判定部563は、目標出力(変速)が現在のギヤ段から1段シフトダウンした場合のエンジンブレーキ出力を下回るか否かを判定する(S403)。下回ると判定した場合は、ステップS404へ遷移する。下回らないと判定した場合は、ステップS405へ遷移する。
 ステップS404において、シフトダウン判定部563は、シフトダウンが必要であると判定し、フラグ:1を出力する。
 またステップS405において、シフトダウン判定部563は、シフトダウンは必要でないと判定し、フラグ:0を出力する。
FIG. 4 is a flowchart showing the downshift control according to this embodiment.
In step S401, the target output calculation unit 561 calculates a target output (shift), and the process proceeds to step S402.
Next, the downshift determination unit 563 calculates the engine brake output when the current gear stage is shifted down by one stage (S402), and proceeds to step S403.
Next, the downshift determination unit 563 determines whether or not the target output (shift) is below the engine brake output when the target gear (shift) is shifted down by one step from the current gear (S403). If it is determined that the value is below, the process proceeds to step S404. If it is determined not to fall below, the process proceeds to step S405.
In step S404, the downshift determination unit 563 determines that a downshift is necessary, and outputs a flag: 1.
In step S405, the downshift determination unit 563 determines that no downshift is necessary, and outputs a flag: 0.
 また、本実施形態では、シフトダウンの判定において、上述のシフトダウン閾値を用いた判定に加え、現在のギヤ段から1段シフトダウンした場合のエンジン回転数が閾値であるエンジン回転数の上限値(例えば3000rpm)以下である場合にシフトダウンを許可するという条件を設けてもよい。 In the present embodiment, in addition to the determination using the above-described shift-down threshold in the determination of the shift-down, the upper limit value of the engine speed that is the threshold when the engine speed is shifted down from the current gear by one step. You may provide the conditions of permitting a shift down when it is below (for example, 3000 rpm).
 本実施形態によれば、目標出力を用いることで、複雑な計算を行うことなく、シフトダウン制御を行うことができる。これにより、定速走行制御における降坂路走行時や減速操作時においてエンジンブレーキ力を高めて車速超過を抑制することができる。また、シフトダウン後のエンジンブレーキ出力をシフトダウン閾値として設定し判定を行うため、過剰なシフトダウンを防止することができる。 According to the present embodiment, by using the target output, it is possible to perform the downshift control without performing a complicated calculation. As a result, the engine braking force can be increased and the vehicle speed can be prevented from exceeding when the vehicle is traveling on a downhill road or decelerating in constant speed traveling control. Further, since the engine brake output after the downshift is set as the downshift threshold and the determination is performed, an excessive downshift can be prevented.
 また本実施形態によれば、シフトダウン制御の判定に用いる目標出力に、感度を小さくするように係数(ゲイン)を乗じるため、過剰なシフトダウンを抑制するとともに、乗員の快適性の悪化およびシフトハンチングを防止することができる。 Further, according to the present embodiment, the target output used for the determination of the downshift control is multiplied by a coefficient (gain) so as to reduce the sensitivity, so that an excessive downshift is suppressed and the passenger comfort is deteriorated and shifted. Hunting can be prevented.
 また本実施形態によれば、シフトダウンさせた後のエンジン回転数がエンジン回転数の上限値を上回る場合はシフトダウンさせないため、エンジン回転数が高いことによる乗員の快適性の悪化を防止することができる。 Further, according to the present embodiment, when the engine speed after the downshift exceeds the upper limit value of the engine speed, the engine is not downshifted, thereby preventing deterioration of passenger comfort due to the high engine speed. Can do.
〔第2実施形態〕
 以下、第2実施形態について、図5(a)乃至7を用いて説明する。
 上記した第1実施形態では、シフトダウンの判定が行われるが、第2実施形態では、シフトアップの判定が行われる。その他の点については第1実施形態と同様であるので、同様の構成については同一符号を付しその説明は省略する。
[Second Embodiment]
Hereinafter, the second embodiment will be described with reference to FIGS.
In the first embodiment described above, the determination of downshifting is performed. In the second embodiment, the determination of upshifting is performed. Since the other points are the same as in the first embodiment, the same components are denoted by the same reference numerals and the description thereof is omitted.
 図5(a)および図5(b)には、本実施形態に係るシフトアップ時のエンジンブレーキ出力の推移がグラフに示されている。
 図5(a)及び図5(b)のグラフにおいて、縦軸は出力を示し、PFUELは燃料により発生するエンジン出力、PLは現在のギヤ段におけるエンジンブレーキ出力、PHは現在のギヤ段から1段シフトアップした場合のエンジンブレーキ出力を示す。
FIGS. 5A and 5B are graphs showing the transition of the engine brake output at the time of upshifting according to the present embodiment.
5A and 5B, the vertical axis indicates the output, P FUEL is the engine output generated by the fuel, P L is the engine brake output at the current gear stage, and P H is the current gear. The engine brake output when shifting up one stage from the stage is shown.
 図5(a)には、シフトアップ前の各出力が示されている。
 例えば降坂路を走行中で勾配が緩くなる場合に、現在のギヤ段における燃料により発生するエンジン出力が図5(a)のPFUEL及びエンジンブレーキ出力が図5(a)のPLであり、現在のギヤ段から1段シフトアップした場合のエンジンブレーキ出力が図5(a)のPHであるとすると、現在のギヤ段から1段シフトアップした場合のエンジンブレーキ出力と現在のギヤ段におけるエンジンブレーキ出力との偏差PH-PLよりもPFUELは小さい。よって、この場合シフトアップを行うと、エンジンブレーキ出力が足りず、目標車速に対して実車速が超過してしまう。これは、ATだけでは出力を調整できないためであり、結果としてギヤ段が変動し不安定になるシフトハンチングが発生することとなる。
FIG. 5A shows each output before the upshift.
When the gradient becomes loose e.g. descending a slope in the running, the engine output generated by the fuel in the current gear position is P FUEL and engine brake output shown in FIG. 5 (a) is a P L shown in FIG. 5 (a), when the engine brake output when one stage upshift from the current gear position is assumed to be P H of FIG. 5 (a), the engine brake output and the current gear position in the case of one stage upshift from the current gear P FUEL is smaller than the deviation P H -P L from the engine brake output. Therefore, if the upshift is performed in this case, the engine brake output is insufficient, and the actual vehicle speed exceeds the target vehicle speed. This is because the output cannot be adjusted by the AT alone, and as a result, shift hunting occurs in which the gear stage fluctuates and becomes unstable.
 そこで本実施形態では、エンジントルク要求により出力の調整を行う。具体的には、現在のギヤ段における燃料により発生するエンジン出力PFUELが、現在のギヤ段から1段シフトアップした場合のエンジンブレーキ出力と現在のギヤ段におけるエンジンブレーキ出力との偏差PH-PLを上回る場合、シフトアップが必要であると判定する。
 よって、現在のギヤ段から1段シフトアップした場合のエンジンブレーキ出力と現在のギヤ段におけるエンジンブレーキ出力との偏差PH-PLをシフトアップの判定におけるシフトアップ閾値として判定を行う。
Therefore, in this embodiment, the output is adjusted according to the engine torque request. Specifically, the deviation P H − between the engine brake output when the engine output P FUEL generated by fuel at the current gear stage is shifted up by one stage from the current gear stage and the engine brake output at the current gear stage. If P L is exceeded, it is determined that a shift up is necessary.
Therefore, the difference P H -P L between the engine brake output when the current gear stage is shifted up by one stage and the engine brake output at the current gear stage is determined as the shift-up threshold value in the determination of the shift-up.
 図5(b)には、シフトアップ直前の各出力が示されている。
 現在のギヤ段における燃料により発生するエンジン出力PFUELは、目標車速と目標駆動力を乗算した値であり、これはすなわち目標出力(>0)である。このPFUELが、偏差PH-PLを上回っているため、シフトアップを行う。この時、シフトアップ後のエンジンブレーキ出力によりエンジンブレーキ力が足りており、目標車速を保つことができる。よって、シフトハンチングを防止することができる。
 上記の例では、現在のギヤ段における燃料により発生するエンジン出力PFUELが、現在のギヤ段から1段シフトアップした場合のエンジンブレーキ出力と現在のギヤ段におけるエンジンブレーキ出力との偏差PH-PLを上回る場合にシフトアップが必要であると判定しているが、さらに以下の式(1)を満たす場合にシフトアップしてもよい。
FIG. 5B shows each output immediately before the upshift.
The engine output P FUEL generated by the fuel at the current gear stage is a value obtained by multiplying the target vehicle speed by the target driving force, that is, the target output (> 0). Since this P FUEL exceeds the deviation P H −P L , a shift up is performed. At this time, the engine brake force is sufficient by the engine brake output after the upshift, and the target vehicle speed can be maintained. Therefore, shift hunting can be prevented.
In the above example, the difference P H − between the engine brake output when the engine output P FUEL generated by fuel at the current gear stage is shifted up by one stage from the current gear stage and the engine brake output at the current gear stage. Although it is determined that the upshift is necessary when exceeding P L , the upshift may be performed when the following expression (1) is satisfied.
 PFUEL>(PH-PL)×α+β  (1) P FUEL > (P H −P L ) × α + β (1)
 (1)式において、例えばα=1.5、β=0とするとよいが、これに限らず制御に応じて適当な値を設定することができる。 In the formula (1), for example, α = 1.5 and β = 0 are preferable, but not limited to this, an appropriate value can be set according to control.
 また、燃料により発生するエンジン出力PFUELに係数(ゲイン)を乗じてもよい。ゲインは、燃料により発生するエンジン出力PFUELを大きくするように所定の値に設定される。 Further, the engine output P FUEL generated by the fuel may be multiplied by a coefficient (gain). The gain is set to a predetermined value so as to increase the engine output P FUEL generated by the fuel.
 また、本実施形態ではエンジントルク要求後にシフトアップを行うため、上記の判定を行わない場合と比較してシフトアップしにくい。
 図6(a)および図6(b)には、降坂路における減速操作(COAST操作)後の車速とギヤ段が、タイムチャートに示されている。図6(a)及び図6(b)において、上段の縦軸は車速(km/h)、下段の縦軸はギヤ段を示し、横軸は時間(秒)を示す。図6(a)は参考例としての走行制御装置を用いた場合の車速とギヤ段のタイムチャート、図6(b)は本実施形態の走行制御装置1を用いた場合の車速とギヤ段のタイムチャートである。
 図6(a)及び図6(b)のいずれも、時間0から20までの間に減速操作が行われている。
 図6(a)に示すように参考例としての走行制御装置を用いた場合は、時間20にて減速操作が終了すると、変速ギヤ出力部56による制御(降坂路制御)を中止してシフトアップが行われる。この時、ギヤ段は、3から7、そして8へと変化する。つまり、2段以上のシフトチェンジが行われる飛びシフトが発生している。その後、時間30から降坂路制御が再開し、シフトダウンが行われている。このように、降坂路から加速操作した場合に一度シフトアップするシフトビジーが発生する。
 これに対し、本実施形態を用いる場合、図6(b)に示されるように、時間20にて減速操作が終了しても、シフトチェンジは行われない。これは、上述したようにエンジントルク要求後にシフトアップを行うため、上記の判定を行わない場合と比較してシフトアップしにくいことによる。
In this embodiment, since the upshift is performed after the engine torque is requested, the upshift is difficult compared to the case where the above determination is not made.
6 (a) and 6 (b), the vehicle speed and gear stage after the deceleration operation (COAST operation) on the downhill road are shown in the time chart. 6 (a) and 6 (b), the upper vertical axis indicates vehicle speed (km / h), the lower vertical axis indicates gear stage, and the horizontal axis indicates time (seconds). FIG. 6A is a time chart of the vehicle speed and gear stage when the travel control apparatus as a reference example is used, and FIG. 6B is a chart of the vehicle speed and gear stage when the travel control apparatus 1 of this embodiment is used. It is a time chart.
In both FIG. 6A and FIG. 6B, the deceleration operation is performed between time 0 and time 20.
When the traveling control device as a reference example is used as shown in FIG. 6A, when the deceleration operation is completed at time 20, the control (downhill road control) by the transmission gear output unit 56 is stopped and the upshift is performed. Is done. At this time, the gear stage changes from 3 to 7, and then 8. That is, a jump shift occurs in which a shift change of two or more stages is performed. Thereafter, downhill road control is resumed from time 30 and a downshift is performed. Thus, a shift busy that shifts up once occurs when an acceleration operation is performed from a downhill road.
On the other hand, when this embodiment is used, even if the deceleration operation is completed at time 20, as shown in FIG. This is because the shift up is performed after the engine torque is requested as described above, and therefore it is difficult to shift up compared to the case where the above determination is not performed.
 図7には、本実施形態に係るシフトアップ制御がフローチャートに示されている。
 ステップS701において、シフトアップ判定部564は、現在のギヤ段におけるエンジンブレーキ出力PLを算出し、ステップS702へ遷移する。
 次に、シフトアップ判定部564は、現在のギヤ段における燃料により発生するエンジン出力PFUELを算出し(S702)、ステップS703へ遷移する。
 次に、シフトアップ判定部564は、現在のギヤ段から1段シフトアップした場合のエンジンブレーキ出力PHを算出し(S703)、ステップS704へ遷移する。
 次に、シフトアップ判定部564は、エンジン出力PFUELが偏差PH-PLを上回るか否かを判定し(S704)、上回ると判定した場合はステップS705へ遷移する。上回らないと判定した場合は、ステップS706へ遷移する。
 ステップS705において、シフトアップ判定部564は、シフトアップが必要であると判定し、フラグ:1を出力する。
 またステップS706において、シフトアップ判定部564は、シフトアップは必要でないと判定し、フラグ:0を出力する。
FIG. 7 is a flowchart showing the upshift control according to this embodiment.
In step S701, the shift-up determination section 564 calculates an engine brake output P L in the current gear position, the process proceeds to step S702.
Next, the upshift determination unit 564 calculates the engine output P FUEL generated by the fuel at the current gear stage (S702), and proceeds to step S703.
Next, the shift-up determination section 564 calculates an engine brake output P H in the case of one stage upshift from the current gear position (S703), it shifts to step S704.
Next, the upshift determining unit 564 determines whether or not the engine output P FUEL exceeds the deviation P H −P L (S704). If it is determined that the engine output P FUEL exceeds the deviation P FUEL , the process proceeds to step S705. When it determines with not exceeding, it changes to step S706.
In step S705, the upshift determination unit 564 determines that the upshift is necessary, and outputs a flag: 1.
In step S706, the upshift determination unit 564 determines that the upshift is not necessary, and outputs a flag: 0.
 また、本実施形態では、シフトアップの判定において、上述のエンジン出力を用いた判定に加え、現在のギヤ段から1段シフトアップした場合のエンジン回転数が、閾値であるエンジン回転数の下限値(例えば1000rpm)以上である場合にシフトアップを許可するという条件を設けるとしてもよい。 In the present embodiment, in addition to the determination using the above-described engine output in the determination of the upshift, the engine speed when the current gear stage is shifted up by one stage is the lower limit value of the engine speed that is a threshold value. A condition of permitting upshifting when the speed is (for example, 1000 rpm) or more may be provided.
 本実施形態によれば、車速により変動せず一意に決定される目標出力を用いることで、複雑な計算を行うこと無く、シフトアップ制御を行うことができる。これにより、車速を維持しながらシフトハンチングを防止することができる。
 また、降坂路の走行中において路面勾配が緩やかになった場合に、一度に数段のシフトアップを発生させることがないため、乗員の快適性の悪化を防止することができる。
 また、降坂路から加速操作した場合に、一度に数段のシフトアップを発生させることを抑制することができる。
According to this embodiment, by using a target output that is uniquely determined without changing depending on the vehicle speed, it is possible to perform upshift control without performing complicated calculations. Thereby, shift hunting can be prevented while maintaining the vehicle speed.
Further, when the road surface slope becomes gentle during traveling on a downhill road, several steps of shift-up are not generated at a time, so that it is possible to prevent passenger comfort from deteriorating.
Further, when an acceleration operation is performed from a downhill road, it is possible to suppress the occurrence of several stages of shift up at a time.
 また本実施形態によれば、シフトアップさせた後のエンジン回転数がエンジン回転数の下限値を下回る場合はシフトアップさせないため、エンジン回転数が低いことによるエンストを防止することができる。 Further, according to the present embodiment, when the engine speed after the upshift is below the lower limit value of the engine speed, the engine is not shifted up, and therefore engine stall due to a low engine speed can be prevented.
 また本実施形態によれば、シフトアップ制御の判定に用いる燃料により発生するエンジン出力に、係数(ゲイン)を乗じるため、過剰なシフトアップを抑制するとともに、乗員の快適性の悪化を防止することができる。 Further, according to the present embodiment, the engine output generated by the fuel used for the determination of the upshift control is multiplied by a coefficient (gain), so that excessive shift up is suppressed and deterioration of passenger comfort is prevented. Can do.
〔第3実施形態〕
 以下、第3実施形態について、図8乃至図9(b)を用いて説明する。
 上記した第1実施形態ではシフトダウンの判定を、第2実施形態ではシフトアップの判定を行うが、第3実施形態では、シフトダウン及びシフトアップの判定にタイマを設ける。その他の点については第1及び第2実施形態と同様であるので、同様の構成については同一符号を付しその説明は省略する。
[Third Embodiment]
Hereinafter, the third embodiment will be described with reference to FIGS. 8 to 9B.
In the first embodiment described above, a shift-down determination is performed. In the second embodiment, a shift-up determination is performed. In the third embodiment, a timer is provided for a shift-down and a shift-up determination. Since the other points are the same as those of the first and second embodiments, the same reference numerals are given to the same components, and the description thereof is omitted.
 図8には、本実施形態に係るタイマを用いたシフト制御がブロック図に示されている。
 図8に示されるように、タイマ58を変速ギヤ出力部56と調停部59との間に設ける。タイマ58は、変速ギヤ出力部56の出力を所定時間遅らせて調停部59に出力する。
FIG. 8 is a block diagram showing shift control using the timer according to the present embodiment.
As shown in FIG. 8, the timer 58 is provided between the transmission gear output unit 56 and the arbitration unit 59. The timer 58 delays the output of the transmission gear output unit 56 by a predetermined time and outputs it to the arbitration unit 59.
 図9(a)および図9(b)には、本実施形態に係るタイマを用いた場合の路面勾配、出力及びギヤ段がタイムチャートに示されている。
 図9(a)及び図9(b)において、上段の縦軸は路面勾配、中段の縦軸は目標出力、下段の縦軸はギヤ段を示し、横軸は時間を示している。また、中段の出力のタイムチャートにおいて、一点鎖線はシフトダウン閾値、二点鎖線はシフトアップ閾値を示している。図9(a)は参考例としての走行制御装置を用いた場合の路面勾配、出力及びギヤ段のタイムチャートである。図9(b)は本実施形態のタイマ58を設けた走行制御装置1を用いた場合の路面勾配、出力及びギヤ段のタイムチャートである。
 図9(a)及び図9(b)のいずれも、降坂路を定速走行している場合に、時間t1において路面勾配が緩やかになった場合を示している。
 図9(a)に示すように参考例としての走行制御装置を用いた場合は、ギヤ段:5で走行してる場合に、時間t1において勾配が緩やかになり目標出力が上がる。そして時間t2にて目標出力がシフトアップ閾値を上回るため、シフトアップする。この時、目標出力は目標車速と目標駆動力とを乗じた値であるため、シフトアップしてもすぐには下がらない、瞬時の値でシフトアップ判定することから、ギヤ段は制御周期毎に1段ずつシフトアップし、ギヤ段は8までシフトアップしてしまう。その後、目標出力は下がり続け、時間t3においてシフトダウン閾値を下回るためギヤ段は8から7にシフトダウンされる。ギヤ段がシフトダウンされたことから、シフトダウン閾値も現在のギヤ段である7から1段シフトダウンした6の場合のエンジンブレーキ出力へと値が変更される。
FIG. 9A and FIG. 9B show the road surface gradient, output, and gear stage when using the timer according to this embodiment in the time chart.
9 (a) and 9 (b), the upper vertical axis represents the road surface gradient, the middle vertical axis represents the target output, the lower vertical axis represents the gear stage, and the horizontal axis represents time. In the output time chart of the middle stage, the alternate long and short dash line indicates the downshift threshold, and the alternate long and two short dashes line indicates the upshift threshold. FIG. 9A is a time chart of road gradient, output, and gear stage when a travel control device as a reference example is used. FIG. 9B is a time chart of road gradient, output, and gear stage when the travel control device 1 provided with the timer 58 of the present embodiment is used.
Both FIG. 9A and FIG. 9B show a case where the road surface gradient becomes gentle at time t1 when traveling downhill on the road at a constant speed.
As shown in FIG. 9A, when the traveling control apparatus as a reference example is used, when traveling at a gear stage of 5, the gradient becomes gentle at time t1 and the target output increases. Since the target output exceeds the upshift threshold at time t2, the upshift is performed. At this time, since the target output is a value obtained by multiplying the target vehicle speed and the target driving force, the gear stage does not decrease immediately even if the gear is shifted up. The gear is shifted up to 8 and the gear is shifted up to 8. Thereafter, the target output continues to decrease, and the gear stage is shifted down from 8 to 7 because it falls below the downshift threshold at time t3. Since the gear stage has been shifted down, the value of the shift down threshold value is also changed to the engine brake output in the case where the current gear stage has been shifted down by one stage to 6.
 これに対して、本実施形態を用いる場合、図9(b)に示されるように、ギヤ段:5で走行している場合に、時間t1において勾配が緩やかになり目標出力が上がる。そして時間t5にて目標出力がシフトアップ閾値を上回るが、タイマ58により時間t6にシフトアップが確定する。そのため、時間t5からt6の間に目標出力が下がり、ギヤ段は5から6にシフトアップする。その後、再度目標出力が上がり、時間t7にて目標出力がシフトアップ閾値を上回り、タイマ58により時間t8にギヤ段:7へのシフトアップが確定する。 On the other hand, when this embodiment is used, as shown in FIG. 9B, when traveling at a gear stage of 5, the gradient becomes gentle at time t1 and the target output increases. The target output exceeds the upshift threshold at time t5, but the upshift is confirmed at time t6 by the timer 58. Therefore, the target output decreases during the time t5 to t6, and the gear stage shifts up from 5 to 6. Thereafter, the target output rises again, the target output exceeds the upshift threshold at time t7, and the upshift to the gear stage: 7 is determined by the timer 58 at time t8.
 本実施形態によれば、タイマ58により変速目標ギヤ段の出力を遅らせるため、頻繁なシフトの変化、及び乗員の快適性の悪化を防ぐことができる。また、降坂路における定速走行時において、一度に数段のシフトアップが発生する飛びシフトを防ぐことができる。 According to the present embodiment, since the output of the shift target gear stage is delayed by the timer 58, frequent shift changes and deterioration of passenger comfort can be prevented. Further, it is possible to prevent a jump shift in which several stages of shift up occur at a time during constant speed traveling on a downhill road.
〔第4実施形態〕
 以下、第4実施形態について、図10を用いて説明する。
 第1実施形態、第2実施形態、および、第3実施形態では、調停部は、定速走行目標ギヤ段及び変速目標ギヤ段のいずれか小さい方を目標ギヤ段として出力する。本実施形態では、さらなる条件を設ける。その他の点については第1実施形態、第2実施形態、および、第3実施形態と同様であるので、同様の構成については同一符号を付しその説明は省略する。
[Fourth Embodiment]
Hereinafter, the fourth embodiment will be described with reference to FIG.
In the first embodiment, the second embodiment, and the third embodiment, the arbitration unit outputs the smaller one of the constant speed travel target gear stage and the shift target gear stage as the target gear stage. In this embodiment, further conditions are provided. Since the other points are the same as those of the first embodiment, the second embodiment, and the third embodiment, the same components are denoted by the same reference numerals and the description thereof is omitted.
 図10には、第3実施形態に係る調停部の制御がブロック図に示されている。
 調停部59に、定速走行ギヤ出力部55から、定速走行目標ギヤ段が、入力される。また、調停部59に、変速ギヤ出力部56から、変速目標ギヤ段が、入力される。調停部59は、選択器591にて定速走行目標ギヤ段及び変速目標ギヤ段のいずれか小さい方を選択する。
FIG. 10 is a block diagram showing the control of the arbitration unit according to the third embodiment.
The constant speed travel target gear stage is input from the constant speed travel gear output unit 55 to the arbitration unit 59. Further, the gear shift target gear stage is input from the transmission gear output unit 56 to the arbitration unit 59. The arbitration unit 59 selects a smaller one of the constant speed travel target gear stage and the shift target gear stage by the selector 591.
 次に、論理ゲート592にて論理積を求める。論理ゲート592は、次の全ての条件を満たす場合に1をONタイマ595へ出力する。
(1)選択器591にて変速目標ギヤ段が選択される。
(2)目標駆動力が0を下回る(負の値である。)。
(3)車速の超過が所定速度(本実施形態の場合、2km/h)を上回る。
(4)減速操作(COAST操作)中の場合、実加速度が目標加速度の下限値を上回る。
 条件(2)にて、パラメータである所定速度を設定することにより、降坂路制御を開始する車速の超過量の調整が可能である。また、降坂路制御は、登坂の勾配(登り勾配)での減速操作(COAST操作)では、実施されない。しかし、目標加速度を調整するだけでは、低車速の場合は降坂路制御が開始されてしまい、また高車速の場合は燃料がカットされない。そこで、条件(4)にて加速度の判定を設け、登り勾配での減速操作では降坂路制御が開始されないようにする。
 上記の条件のいずれか、または全ての条件を満たさない場合は、論理ゲート593を経由して1をOFFタイマ594へ出力する。
Next, a logical product is obtained by the logic gate 592. The logic gate 592 outputs 1 to the ON timer 595 when all the following conditions are satisfied.
(1) A shift target gear is selected by the selector 591.
(2) The target driving force is less than 0 (a negative value).
(3) The excess of the vehicle speed exceeds a predetermined speed (in this embodiment, 2 km / h).
(4) In the case of a deceleration operation (COAST operation), the actual acceleration exceeds the lower limit value of the target acceleration.
By setting a predetermined speed as a parameter in the condition (2), it is possible to adjust the excess amount of the vehicle speed at which the downhill road control is started. Further, the downhill road control is not performed in a deceleration operation (COAST operation) on an uphill slope (uphill slope). However, simply adjusting the target acceleration starts downhill road control at low vehicle speeds, and fuel is not cut at high vehicle speeds. Therefore, acceleration is determined in condition (4) so that downhill road control is not started by a deceleration operation on an ascending slope.
If any or all of the above conditions are not satisfied, 1 is output to the OFF timer 594 via the logic gate 593.
 ONタイマ595は、入力された値をON信号として、降坂路制御フラグ選択器596へ出力する。OFFタイマ594は、入力された値をOFF信号として、降坂路制御フラグ選択器596へ出力する。降坂路制御フラグ選択器596は、OFF信号が0から1となった場合は降坂路制御フラグをリセットし、定速走行目標ギヤ段を目標ギヤ段として出力する。また、降坂路制御フラグ選択器596は、ON信号が0から1となった場合は降坂路制御フラグを保持し、変速目標ギヤ段を目標ギヤ段として出力する。 The ON timer 595 outputs the input value to the descending slope control flag selector 596 as an ON signal. The OFF timer 594 outputs the input value to the descending slope control flag selector 596 as an OFF signal. The descending slope control flag selector 596 resets the descending slope control flag when the OFF signal changes from 0 to 1, and outputs the constant speed travel target gear as the target gear. Further, when the ON signal changes from 0 to 1, the descending slope control flag selector 596 holds the descending slope control flag and outputs the shift target gear as the target gear.
 本実施形態によれば、調停部59により適切な目標ギヤ段を選択し出力することができ、条件を満たす降坂路などの必要な場合にのみ降坂路制御を行い、変速目標ギヤ段を選択することができる。 According to the present embodiment, an appropriate target gear stage can be selected and output by the arbitration unit 59, and downhill road control is performed only when a downhill road that satisfies a condition is necessary, and a shift target gear stage is selected. be able to.
 本出願は、2017年6月1日出願の日本特許出願(特願2017-109116)に基づくものであり、その内容はここに参照として取り込まれる。
This application is based on a Japanese patent application filed on June 1, 2017 (Japanese Patent Application No. 2017-109116), the contents of which are incorporated herein by reference.
1 走行制御装置
10 目標車速演算部
20 目標駆動力演算部(FF)
30 目標駆動力演算部(FB)
50 ギヤ出力部
51、551、561 目標出力演算部
52、552、562 シフト判定部
55 定速走行ギヤ出力部
56 変速ギヤ出力部
58 タイマ
59 調停部
90 車両
91 トランスミッション(自動変速機)
553、563 シフトダウン判定部
554、564 シフトアップ判定部
DESCRIPTION OF SYMBOLS 1 Traveling control apparatus 10 Target vehicle speed calculating part 20 Target driving force calculating part (FF)
30 Target driving force calculator (FB)
50 gear output units 51, 551, 561 target output calculation units 52, 552, 562 shift determination unit 55 constant speed traveling gear output unit 56 transmission gear output unit 58 timer 59 arbitration unit 90 vehicle 91 transmission (automatic transmission)
553, 563 Downshift determination unit 554, 564 Upshift determination unit

Claims (11)

  1.  目標車速にて車両を走行させる定速走行制御と、走行状態に応じた適切な変速を行う変速制御とを実施する走行制御装置であって、
     前記目標車速を算出する目標車速演算部と、
     前記目標車速にて走行するための目標駆動力を算出する目標駆動力演算部と、
     前記目標車速及び前記目標駆動力に基づき目標出力を算出する目標出力演算部と、
     前記目標出力に基づき前記目標車速にて車両を走行させるギヤ段を定速走行目標ギヤ段として出力する定速走行ギヤ出力部と、
     前記定速走行ギヤ出力部と並列に設置され、前記目標出力に基づき変速目標ギヤ段を出力する変速ギヤ出力部と、
     前記定速走行目標ギヤ段と前記変速目標ギヤ段との調停を行い自動変速機へ目標ギヤ段を出力する調停部と、
     を備え、
     前記変速ギヤ出力部は、前記目標出力と、エンジンブレーキトルクとエンジン回転数に基づいて算出された前記自動変速機の現在のギヤ段を1段シフトダウンさせた場合のエンジンブレーキ出力であるシフトダウン閾値と、に基づきシフトダウンが必要か否かを判定するシフトダウン判定部を有し、
     前記目標出力が前記シフトダウン閾値を下回りシフトダウンが必要であると判定された場合、前記変速目標ギヤ段を現在の前記ギヤ段から1段シフトダウンした値に設定するシフトダウン制御が行われる、
     走行制御装置。
    A travel control device that performs constant speed travel control for traveling a vehicle at a target vehicle speed and shift control for performing an appropriate shift according to a travel state,
    A target vehicle speed calculation unit for calculating the target vehicle speed;
    A target driving force calculator for calculating a target driving force for traveling at the target vehicle speed;
    A target output calculator for calculating a target output based on the target vehicle speed and the target driving force;
    A constant speed traveling gear output unit that outputs a gear stage that causes the vehicle to travel at the target vehicle speed based on the target output as a constant speed traveling target gear stage;
    A transmission gear output unit that is installed in parallel with the constant speed traveling gear output unit and outputs a shift target gear stage based on the target output;
    An arbitration unit that arbitrates between the constant speed travel target gear stage and the shift target gear stage and outputs the target gear stage to the automatic transmission;
    With
    The shift gear output unit is a downshift that is an engine brake output when the current gear of the automatic transmission is shifted down by one stage, calculated based on the target output, engine brake torque, and engine speed. A shift down determination unit that determines whether or not a shift down is necessary based on a threshold value;
    When the target output falls below the shift-down threshold value and it is determined that a shift-down is necessary, a shift-down control is performed to set the shift target gear to a value shifted down by one step from the current gear.
    Travel control device.
  2.  前記目標出力演算部は、算出した前記目標出力に対し該目標出力を小さくするように所定の係数を乗じる、請求項1に記載の走行制御装置。 The travel control device according to claim 1, wherein the target output calculation unit multiplies the calculated target output by a predetermined coefficient so as to reduce the target output.
  3.  前記変速ギヤ出力部は、燃料により発生するエンジン出力と、前記自動変速機の現在の前記ギヤ段における前記エンジンブレーキ出力と現在の前記ギヤ段から1段シフトアップした場合の前記エンジンブレーキ出力との偏差であるシフトアップ閾値と、に基づきシフトアップが必要か否かを判定するシフトアップ判定部を有し、
     前記燃料により発生するエンジン出力が前記シフトアップ閾値を上回りシフトアップが必要であると判定された場合、前記変速目標ギヤ段を現在の前記ギヤ段から1段シフトアップした値に設定するシフトアップ制御が行われる、請求項1または請求項2に記載の走行制御装置。
    The transmission gear output unit includes an engine output generated by fuel, the engine brake output at the current gear stage of the automatic transmission, and the engine brake output when the current gear stage is shifted up by one stage. A shift-up determination unit that determines whether or not a shift-up is necessary based on a shift-up threshold that is a deviation;
    When it is determined that the engine output generated by the fuel exceeds the shift-up threshold value and needs to be shifted up, the shift-up target gear stage is set to a value shifted up by one stage from the current gear stage. The travel control device according to claim 1 or 2, wherein:
  4.  前記燃料により発生するエンジン出力に対し該燃料により発生するエンジン出力を大きくするように所定の係数を乗じる、請求項3に記載の走行制御装置。 The travel control device according to claim 3, wherein the engine output generated by the fuel is multiplied by a predetermined coefficient so as to increase the engine output generated by the fuel.
  5.  前記シフトアップ判定部は、前記変速目標ギヤ段を現在の前記ギヤ段から1段シフトアップさせた後の前記エンジン回転数が前記エンジン回転数の下限値を下回る場合、シフトアップが必要でないと判定する請求項3または請求項4に記載の走行制御装置。 The upshift determination unit determines that no upshift is required when the engine speed after shifting the shift target gear stage by one stage from the current gear stage is below a lower limit value of the engine speed. The travel control device according to claim 3 or 4, wherein:
  6.  前記シフトダウン判定部は、前記変速目標ギヤ段を現在の前記ギヤ段から1段シフトダウンさせた後の前記エンジン回転数が前記エンジン回転数の上限値を上回る場合、シフトダウンが必要でないと判定する請求項1から請求項5のいずれかに記載の走行制御装置。 The downshift determination unit determines that a downshift is not required when the engine speed after the shift target gear stage is shifted down by one stage from the current gear stage exceeds an upper limit value of the engine speed. The travel control device according to any one of claims 1 to 5.
  7.  前記変速ギヤ出力部は、入力値を所定時間遅らせて出力するタイマを備え、前記タイマは、前記シフトダウン判定部及び前記シフトアップ判定部の出力を入力値とする請求項1から請求項6のいずれかに記載の走行制御装置。 The shift gear output unit includes a timer that outputs an input value with a predetermined time delay, and the timer uses the outputs of the downshift determination unit and the upshift determination unit as input values. The travel control device according to any one of the above.
  8.  前記調停部は、前記定速走行目標ギヤ段と前記変速目標ギヤ段とを比較し、いずれか小さい方を前記目標ギヤ段として出力する請求項1から請求項7のいずれかに記載の走行制御装置。 The travel control according to any one of claims 1 to 7, wherein the arbitration unit compares the constant speed travel target gear stage with the shift target gear stage, and outputs the smaller one as the target gear stage. apparatus.
  9.  請求項1から請求項8のいずれかに記載の走行制御装置を備えた車両。 A vehicle comprising the travel control device according to any one of claims 1 to 8.
  10.  目標車速にて車両を走行させる定速走行制御と、走行状態に応じた適切な変速を行う変速制御とを実施する走行制御方法であって、
     前記目標車速を算出する工程と、
     前記目標車速にて走行するための目標駆動力を算出する工程と、
     前記目標車速及び前記目標駆動力に基づき目標出力を算出する工程と、
     前記目標出力に基づき前記目標車速にて車両を走行させるギヤ段を定速走行目標ギヤ段として出力する定速走行目標ギヤ出力工程と、
     前記定速走行目標ギヤ出力工程と並列に実施され、前記目標出力に基づき変速目標ギヤ段を出力する変速ギヤ出力工程と、
     前記定速走行目標ギヤ段と前記変速目標ギヤ段との調停を行い自動変速機へ目標ギヤ段を出力する工程とを備え、
     前記変速ギヤ出力工程は、前記目標出力と、エンジンブレーキトルクとエンジン回転数に基づいて算出された前記自動変速機の現在のギヤ段を1段シフトダウンさせた場合のエンジンブレーキ出力であるシフトダウン閾値と、に基づきシフトダウンが必要か否かを判定する工程を有し、
     前記目標出力が前記シフトダウン閾値を上回りシフトダウンが必要であると判定された場合、前記変速目標ギヤ段を現在の前記ギヤ段から1段シフトダウンした値に設定するシフトダウン制御を行う走行制御方法。
    A traveling control method for performing constant speed traveling control for traveling a vehicle at a target vehicle speed and shift control for performing an appropriate shift according to a traveling state,
    Calculating the target vehicle speed;
    Calculating a target driving force for traveling at the target vehicle speed;
    Calculating a target output based on the target vehicle speed and the target driving force;
    A constant speed travel target gear output step for outputting a gear stage for driving the vehicle at the target vehicle speed based on the target output as a constant speed travel target gear stage;
    A transmission gear output step that is performed in parallel with the constant speed traveling target gear output step, and that outputs a shift target gear stage based on the target output;
    A step of arbitrating between the constant speed travel target gear stage and the shift target gear stage and outputting the target gear stage to an automatic transmission,
    The shift gear output step is a downshift that is an engine brake output when the current gear stage of the automatic transmission calculated by the target output, engine brake torque, and engine speed is shifted down by one stage. And determining whether a downshift is necessary based on a threshold value,
    When the target output exceeds the shift-down threshold value and it is determined that a shift-down is necessary, a travel control that performs shift-down control that sets the shift target gear to a value shifted down by one step from the current gear Method.
  11.  目標車速にて車両を走行させる定速走行制御と、走行状態に応じた適切な変速を行う変速制御とを実施する走行制御プログラムであって、
     前記目標車速を算出するステップと、
     前記目標車速にて走行するための目標駆動力を算出するステップと、
     前記目標車速及び前記目標駆動力に基づき目標出力を算出するステップと、
     前記目標出力に基づき前記目標車速にて車両を走行させるギヤ段を定速走行目標ギヤ段として出力する定速走行目標ギヤ出力ステップと、
     前記定速走行目標ギヤ出力ステップと並列に実施され、前記目標出力に基づき変速目標ギヤ段を出力する変速ギヤ出力ステップと、
     前記定速走行目標ギヤ段と前記変速目標ギヤ段との調停を行い自動変速機へ目標ギヤ段を出力するステップとを備え、
     前記変速ギヤ出力ステップは、前記目標出力と、エンジンブレーキトルクとエンジン回転数に基づいて算出された前記自動変速機の現在のギヤ段を1段シフトダウンさせた場合のエンジンブレーキ出力であるシフトダウン閾値と、に基づきシフトダウンが必要か否かを判定するステップを有し、
     前記目標出力が前記シフトダウン閾値を上回りシフトダウンが必要であると判定された場合、前記変速目標ギヤ段を現在の前記ギヤ段から1段シフトダウンした値に設定するシフトダウン制御を行う走行制御プログラム。
     
    A traveling control program for performing constant speed traveling control for traveling a vehicle at a target vehicle speed and shift control for performing an appropriate shift according to a traveling state,
    Calculating the target vehicle speed;
    Calculating a target driving force for traveling at the target vehicle speed;
    Calculating a target output based on the target vehicle speed and the target driving force;
    A constant speed travel target gear output step for outputting a gear stage for driving the vehicle at the target vehicle speed based on the target output as a constant speed travel target gear stage;
    A transmission gear output step that is performed in parallel with the constant speed travel target gear output step, and that outputs a shift target gear stage based on the target output;
    And mediating between the constant speed travel target gear stage and the shift target gear stage and outputting the target gear stage to the automatic transmission,
    The shift gear output step is a downshift that is an engine brake output when the current gear of the automatic transmission is shifted down by one step, calculated based on the target output, engine brake torque, and engine speed. And determining whether a downshift is necessary based on a threshold value,
    When the target output exceeds the shift-down threshold value and it is determined that a shift-down is necessary, a travel control that performs shift-down control that sets the shift target gear to a value shifted down by one step from the current gear program.
PCT/JP2018/021294 2017-06-01 2018-06-01 Travel control device, vehicle, travel control method, and travel control program WO2018221747A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017109116A JP2018202957A (en) 2017-06-01 2017-06-01 Travel control device, vehicle, travel control method and travel control program
JP2017-109116 2017-06-01

Publications (1)

Publication Number Publication Date
WO2018221747A1 true WO2018221747A1 (en) 2018-12-06

Family

ID=64456240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021294 WO2018221747A1 (en) 2017-06-01 2018-06-01 Travel control device, vehicle, travel control method, and travel control program

Country Status (2)

Country Link
JP (1) JP2018202957A (en)
WO (1) WO2018221747A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113879310A (en) * 2021-11-15 2022-01-04 潍柴动力股份有限公司 Downshift skip control method
CN114222876A (en) * 2019-09-05 2022-03-22 日产自动车株式会社 Method for controlling constant speed travel of vehicle and device for controlling constant speed travel of vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112141112A (en) * 2020-09-04 2020-12-29 珠海格力电器股份有限公司 Vehicle gear shifting control method and device, storage medium and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62292539A (en) * 1986-06-12 1987-12-19 Honda Motor Co Ltd Automatic transmission for automobile
JPH02117441A (en) * 1988-10-26 1990-05-01 Mazda Motor Corp Controller for automatic transmission
JPH082294A (en) * 1994-06-22 1996-01-09 Mazda Motor Corp Traction control device for vehicle
JPH08238952A (en) * 1995-03-07 1996-09-17 Nissan Motor Co Ltd Automatic vehicle speed control device for vehicle
JP2007269095A (en) * 2006-03-30 2007-10-18 Toyota Motor Corp Braking force controller for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62292539A (en) * 1986-06-12 1987-12-19 Honda Motor Co Ltd Automatic transmission for automobile
JPH02117441A (en) * 1988-10-26 1990-05-01 Mazda Motor Corp Controller for automatic transmission
JPH082294A (en) * 1994-06-22 1996-01-09 Mazda Motor Corp Traction control device for vehicle
JPH08238952A (en) * 1995-03-07 1996-09-17 Nissan Motor Co Ltd Automatic vehicle speed control device for vehicle
JP2007269095A (en) * 2006-03-30 2007-10-18 Toyota Motor Corp Braking force controller for vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114222876A (en) * 2019-09-05 2022-03-22 日产自动车株式会社 Method for controlling constant speed travel of vehicle and device for controlling constant speed travel of vehicle
CN113879310A (en) * 2021-11-15 2022-01-04 潍柴动力股份有限公司 Downshift skip control method
CN113879310B (en) * 2021-11-15 2023-07-18 潍柴动力股份有限公司 Downshifting and skip controlling method

Also Published As

Publication number Publication date
JP2018202957A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
KR100911636B1 (en) Vehicle cruise control apparatus
WO2018221747A1 (en) Travel control device, vehicle, travel control method, and travel control program
JP6011467B2 (en) Constant speed travel device
JP7334830B2 (en) Braking force controller
KR101199154B1 (en) Change speed control system of hybrid vehicle with automatic transmission and control method thereof
JP7435656B2 (en) Control device, manager, system, control method and vehicle
JPWO2018168459A1 (en) Transmission control device for vehicle
JP6229701B2 (en) Driving force control device
JP2018031467A (en) Travel control device for vehicle
JP2020011582A5 (en)
JP7040344B2 (en) Vehicle control unit
JP2023001144A (en) Controller, method, and program
JP7172837B2 (en) Braking force controller
US8798884B2 (en) Method for clutch control
JP2017150650A (en) Drive force control device
JP2021049988A (en) Control device, management device, system, control method, and vehicle
JP7255523B2 (en) control unit and vehicle
JP2009114890A (en) Control device for vehicular engine
JPH0674321A (en) Speed change control device for automatic transmission
US20220299106A1 (en) Control method for constant speed running of vehicle and control device for constant speed running of vehicle
JP2022072200A (en) Vehicle control device
JP2016211660A (en) Drive force control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18810521

Country of ref document: EP

Kind code of ref document: A1