WO2017199304A1 - Motor drive device and air conditioner - Google Patents

Motor drive device and air conditioner Download PDF

Info

Publication number
WO2017199304A1
WO2017199304A1 PCT/JP2016/064513 JP2016064513W WO2017199304A1 WO 2017199304 A1 WO2017199304 A1 WO 2017199304A1 JP 2016064513 W JP2016064513 W JP 2016064513W WO 2017199304 A1 WO2017199304 A1 WO 2017199304A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
inverter
power
inverter modules
main surface
Prior art date
Application number
PCT/JP2016/064513
Other languages
French (fr)
Japanese (ja)
Inventor
崇 山川
成雄 梅原
篠本 洋介
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018517946A priority Critical patent/JP6892856B2/en
Priority to PCT/JP2016/064513 priority patent/WO2017199304A1/en
Publication of WO2017199304A1 publication Critical patent/WO2017199304A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring

Definitions

  • the present invention relates to a motor driving device and an air conditioner for driving a motor.
  • the inverter constituting the motor drive device has an inverter module, and a plurality of switching elements are arranged in the inverter module.
  • reducing the chip area improves the yield when removing from the wafer.
  • using a wide band gap (WBG) semiconductor with a high chip cost as a switching element and using a plurality of low-capacity inverter modules connected in parallel can reduce the cost of the inverter. There are cases where it is possible.
  • WBG wide band gap
  • Patent Document 1 discloses a technique of dividing an inverter unit and using a plurality of small capacity units to drive in parallel.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a motor drive device capable of suppressing the occurrence of malfunctions while reducing costs.
  • a motor drive device is a motor drive device that drives a motor, and includes an inverter module that outputs AC power to the motor.
  • the motor drive device includes a control unit that controls each of the plurality of inverter modules, a first substrate having the first main surface and the second main surface, the control unit being disposed, And a second substrate having a third main surface facing the second main surface and a fourth main surface on which the plurality of inverter modules are arranged.
  • the motor driving device has an effect that it is possible to suppress the occurrence of malfunction while reducing costs.
  • the figure which shows the structural example of the motor drive device which concerns on embodiment of this invention The figure which shows typically the internal structure of the inverter module which comprises a general inverter
  • substrate shown in FIG. 5 typically The figure which shows the 1st board
  • FIG. 7 typically The figure which shows the 1st modification of the pattern layout shown in FIG.
  • the figure which shows the 2nd modification of the pattern layout shown in FIG. The figure which shows the state which has arrange
  • substrate shown in FIG. The figure which shows the state which combined the 1st board
  • the figure which shows the example which changed the arrangement position of the snubber capacitor shown in FIG. FIG. 13 is a side view of the first substrate, the second substrate, and the three inverter modules shown in FIG.
  • FIG. 1 is a diagram showing a configuration example of a motor drive device according to an embodiment of the present invention.
  • the motor drive device 100 includes a rectifier circuit 3 that converts AC power output from the AC power source 1 into DC power, a reactor 2, and a smoothing capacitor 4 that smoothes the DC voltage output from the rectifier circuit 3.
  • the motor drive device 100 includes a voltage detection unit 8 that detects the voltage across the smoothing capacitor 4 and an inverter unit 5 that drives the motor 6 that is a three-phase motor by converting DC power into three-phase AC power.
  • the motor driving device 100 detects a motor current that is an alternating current flowing through the motor 6 and outputs detection information, a short-circuit unit 7 that short-circuits the AC power supply 1, and a control power supply to the control unit 11. Power supply circuit 10 and control unit 11.
  • the positive power supply line 12 is a DC power supply bus that is output from the rectifier circuit 3 and to which a positive voltage is applied.
  • the negative power supply line 13 is a DC power supply bus that is output from the rectifier circuit 3 and to which a negative voltage is applied.
  • the positive power line 12 and the negative power line 13 are wired between the rectifier circuit 3 and the inverter unit 5.
  • the smoothing capacitor 4 has one end connected to the positive power line 12 and the other end connected to the negative power line 13.
  • the control unit 11 generates a pulse width modulation (PWM) signal for controlling the inverter unit 5 on the basis of the detection information output from the current detection unit 9 and performs on / off operation of the short-circuit unit 7. Control.
  • PWM pulse width modulation
  • the motor drive device 100 is a device such as an air conditioner, a refrigerator, a washing dryer, a refrigerator, a dehumidifier, a heat pump water heater, a showcase, a vacuum cleaner, a fan motor, a ventilator, a hand dryer, and an induction heating electromagnetic cooker. Can be used as a device for driving a motor built in the device.
  • FIG. 2 is a diagram schematically showing an internal configuration of an inverter module constituting a general inverter.
  • the inverter unit 5A shown in FIG. 2 includes a single inverter module 5A1.
  • the positive terminal 14 of the inverter module 5A1 is connected to the positive power line 12.
  • the negative terminal 15 of the inverter module 5A1 is connected to the negative power line 13.
  • a shunt resistor 16 is connected between the negative terminal 15 and the negative power line 13 of the inverter module 5A1.
  • the position of the shunt resistor 16 is not limited to the illustrated example.
  • the inverter module 5A1 includes six switching elements 50a, 50b, 50c, 50d, 50e, and 50f.
  • the inverter module 5A1 includes switching elements 50a and 50b connected in series, switching elements 50c and 50d connected in series, and switching elements 50e and 50f connected in series.
  • Switching elements 50a and 50b correspond to the U phase
  • switching elements 50c and 50d correspond to the V phase
  • switching elements 50e and 50f correspond to the W phase.
  • the switching elements 50a, 50c, and 50e constitute an upper arm, and the switching elements 50b, 50d, and 50f constitute a lower arm.
  • connection point between the switching element 50a and the switching element 50b, the connection point between the switching element 50c and the switching element 50d, and the connection point between the switching element 50e and the switching element 50f are connected to the motor 6, respectively.
  • the DC power supplied from the positive power line 12 and the negative power line 13 is converted into AC power by the switching operation of the switching elements 50a, 50b, 50c, 50d, 50e, and 50f. It is supplied to the motor 6.
  • FIG. 3 is a diagram schematically showing a plurality of inverter modules constituting the inverter shown in FIG.
  • the inverter unit 5 includes an inverter module 51 corresponding to the U phase, an inverter module 52 corresponding to the V phase, and an inverter module 53 corresponding to the W phase.
  • the positive terminals 14 of the inverter modules 51, 52, and 53 are connected to the positive power line 12.
  • the negative terminals 15 of the inverter modules 51 to 53 are connected to the negative power line 13.
  • shunt resistors 16-1, 16-2 and 16-3 are connected between the negative terminal 15 and the negative power line 13 of each of the inverter modules 51 to 53.
  • the positions of the shunt resistors 16-1 to 16-3 are not limited to the illustrated example.
  • the inverter module 51 includes six switching elements 51a, 51b, 51c, 51d, 51e, and 51f.
  • the inverter module 51 includes switching elements 51a and 51b connected in series, switching elements 51c and 51d connected in series, and switching elements 51e and 51f connected in series.
  • the switching elements 51a, 51c, 51e constitute an upper arm, and the switching elements 51b, 51d, 51f constitute a lower arm.
  • connection point between the switching element 51a and the switching element 51b, the connection point between the switching element 51c and the switching element 51d, and the connection point between the switching element 51e and the switching element 51f are each connected to the motor 6 via the output terminal 17. Is done.
  • the inverter module 52 includes six switching elements 52a, 52b, 52c, 52d, 52e, and 52f.
  • the inverter module 53 includes six switching elements 53a, 53b, 53c, 53d, 53e, and 53f.
  • the connection configuration of the switching elements of the inverter modules 52 and 53 is the same as the connection configuration of the switching elements of the inverter module 51.
  • switching elements 52a to 52f and the switching elements 53a to 52f are configured in the same manner as the switching elements 51a to 51f.
  • silicon carbide (SiC) called a wide band gap semiconductor is used as an example.
  • the use of a wide bandgap semiconductor provides a high voltage resistance and a high allowable current density, thereby enabling a reduction in the size of the module. Since the wide band gap semiconductor has high heat resistance, it is possible to reduce the size of the radiating fin 47 described later.
  • Each of the inverter modules 51 to 53 having 6 switching elements constitutes one leg. Therefore, the inverter unit 5 is configured by a total of 18 switching elements.
  • the inverter unit 5A in FIG. 2 described above is composed of a total of six switching elements. Therefore, the value of the current flowing through each of the switching elements 51a to 51f shown in FIG. 3 is one third of the value of the current flowing through each of the switching elements 50a, 50b, 50c, 50d, 50e, and 50f shown in FIG. .
  • the current capacities of the switching elements 51a to 51f can be reduced, and the chip areas of the inverter modules 51 to 53 can be reduced. Therefore, the yield when taking out from the wafer is improved, and the manufacturing cost of the inverter modules 51 to 53 can be reduced.
  • FIG. 4 is a diagram schematically showing a substrate on which the inverter module shown in FIG. 2 is arranged.
  • FIG. 5 is a diagram schematically showing a substrate on which a plurality of inverter modules shown in FIG. 3 are arranged.
  • a power input unit 21 includes a noise filter 22, a converter circuit 23, a smoothing capacitor 24, an inverter module 25, a detection circuit 26, and a microcomputer peripheral unit 27.
  • the converter circuit 23 includes the rectifier circuit 3 and the short-circuit portion 7 of FIG.
  • the smoothing capacitor 24 corresponds to the smoothing capacitor 4 in FIG.
  • the inverter module 25 corresponds to the inverter module 5A1 in FIG.
  • the detection circuit 26 corresponds to the shunt resistor 16 in FIG.
  • the microcomputer peripheral section 27 corresponds to the control section 11 in FIG.
  • AC power input from the power input unit 21 is converted into DC power by the noise filter 22, the reactor 2, the converter circuit 23 and the smoothing capacitor 24, and this DC power is input to the inverter module 25.
  • the board 20-1 in FIG. 5 has three inverter modules 25-1, 25-2, 25-3 and three detection circuits 26-1, 26- instead of the inverter module 25 and the detection circuit 26 in FIG. 2, 26-3 are arranged. Since the other components are the same as those of the substrate 20, the description thereof is omitted.
  • the detection circuits 26-1 to 26-3 correspond to the shunt resistors 16-1 to 16-3 in FIG.
  • the inverter modules 25-1 to 25-3 correspond to the inverter modules 51 to 53 in FIG.
  • the inverter modules 25-1 to 25-3 are arranged linearly along the longitudinal direction of the substrate 20-1 in the order of the inverter module 25-1, the inverter module 25-2, and the inverter module 25-3.
  • FIG. 6 is a diagram schematically showing a pattern layout on the substrate shown in FIG.
  • the positive power pattern P1 corresponds to the positive power line 12 in FIG. 1, and is electrically connected to the converter circuit 23, the smoothing capacitor 24, and the inverter modules 25-1 to 25-3.
  • the power pattern N1 on the negative electrode side corresponds to the negative power supply line 13 in FIG. 1, and is electrically connected to the converter circuit 23, the smoothing capacitor 24, and the detection circuits 26-1 to 26-3.
  • the amount of heat generation increases as the value of the current flowing through the power patterns P1 and N1 increases. Therefore, it is necessary to increase the pattern width or the pattern thickness according to the current value.
  • the length of the pattern wiring including the lead wires becomes long, so that they are easily affected by noise. By using the lead wire, it is possible to design so as to suppress the influence of impedance while suppressing the increase in the substrate size.
  • the distance between the microcomputer peripheral portion 27 and the inverter modules 25-1 to 25-3 is increased.
  • the distance is longer than the distance from the inverter module 25-1 to the microcomputer peripheral portion 27.
  • the control wirings 71-1 to 71-3 wired between the microcomputer peripheral portion 27 and the inverter modules 25-1 to 25-3 are increased.
  • the length of the film becomes long, and it is likely to be affected by noise, and the detectability may be lowered.
  • the motor controllability is lowered, and there is a concern that the protection circuit malfunctions.
  • the malfunction of the protection circuit means that the protection works at a low value with respect to the overcurrent design value, for example.
  • noise is added to the gate drive signal, which is a PWM signal transmitted to the control wiring, and the ON / OFF timing of each switching element constituting the upper and lower arms is shifted, which may cause a short circuit between the upper and lower arms.
  • SiC switching elements are used in the inverter modules 25-1 to 25-3, dV / dt due to switching is large, and noise generated with respect to the same wiring impedance is large.
  • the threshold Vth of the gate drive voltage is as low as about 1V, there is a high risk of malfunction due to noise.
  • the motor drive device has a configuration for solving these problems.
  • this configuration example will be specifically described.
  • FIG. 7 is a diagram showing a first substrate and a second substrate constituting the motor drive device according to the embodiment of the present invention.
  • FIG. 8 schematically shows a pattern layout on the substrate shown in FIG.
  • the control terminal 28, the GND terminal 40, and the power terminal 41 are disposed on the first substrate 30.
  • the inverter modules 25-1 to 25-3 are arranged on the second substrate 31.
  • the detection circuits 26-1 to 26-3 are arranged on the second substrate 31.
  • a power input unit 21 for converting AC power supplied from the AC power source 1 into DC power, a noise filter, and a converter circuit 23 are arranged on the first substrate 30 .
  • a smoothing capacitor 24 for smoothing DC power and supplying it to the inverter modules 25-1 to 25-3 is disposed on the first substrate 30.
  • a microcomputer peripheral part 27 a control terminal 28, a GND terminal 40 and a power terminal 41 are arranged.
  • the control terminal 28 is connected to the microcomputer peripheral part 27.
  • the power terminal 41 is connected to the power pattern P1.
  • the GND terminal 40 is connected to the power pattern N1.
  • inverter modules 25-1 to 25-3 and detection circuits 26-1 to 26-3 are arranged on the second substrate 31 on the second substrate 31.
  • the inverter modules 25-1 to 25-3 are arranged linearly along the longitudinal direction of the second substrate 31 in the order of the inverter module 25-1, the inverter module 25-2, and the inverter module 25-3.
  • the positive-side power pattern P2 on the second substrate 31 corresponds to a part of the positive-side power line 12 in FIG. 1, and electrically connects the inverter modules 25-1 to 25-3.
  • the negative-side power pattern N2 on the second substrate 31 corresponds to a part of the negative-side power line 13 in FIG. 1, and is electrically connected to the detection circuits 26-1 to 26-3.
  • the power pattern N3 on the negative electrode side 31 is electrically connected to the inverter modules 25-1 to 25-3 and the detection circuits 26-1 to 26-3, respectively.
  • the detection circuits 26-1 to 26-3 have one end connected to the power pattern N2 and the other end connected to the power pattern N3.
  • the three inverter modules 25-1 to 25-3 are connected in parallel between the power pattern P2 and the power pattern N2.
  • the positive terminals 14 of the inverter modules 25-1 to 25-3 are connected to the power pattern P2.
  • the power pattern P2 is connected to a power terminal 41 on the first substrate 30 through a power wiring 42 that supplies DC power to the inverter modules 25-1 to 25-3.
  • the negative terminals 15 of the inverter modules 25-1 to 25-3 are connected to the power pattern N3.
  • the power pattern N3 is connected to the power pattern N2 via the detection circuits 26-1 to 26-3.
  • the power pattern N2 is connected to the GND terminal 40 and the power pattern N1 on the first substrate 30 through the power wiring 43.
  • the power pattern P2 and the power wiring 42 are configured by metal plate leads on the positive electrode side.
  • the power pattern N2, the power pattern N3, and the power wiring 43 are configured by metal plate leads on the negative electrode side. Details of the metal plate lead will be described later.
  • the inverter modules 25-1 to 25-3 are electrically connected to the microcomputer peripheral portion 27 via the control terminal 28 and the control terminal 44.
  • the control terminal 44 is provided in each of the inverter modules 25-1 to 25-3 and is arranged on one side of the pair of sides of the second substrate 31. In the illustrated example, each control terminal 44 is located outside the side portion of the second substrate 31.
  • the control terminal 44 is connected to the control wiring 45, and the control wiring 45 is connected to the control terminal 28 on the first substrate 30. By moving the control wiring 45 away from the power wiring 43, the influence of noise can be suppressed.
  • the inverter modules 25-1 to 25-3 have terminal arrangements as shown in FIG. 11, and the control terminal group 44 located outside the side of the second substrate 31 is a low voltage terminal for control.
  • the control terminal 28 is disposed on the first substrate 30.
  • a control terminal (not shown) is provided on the second substrate 31, and the control terminal is connected to the inverter module 25.
  • -1 to 25-3 are connected to a group of control terminals 44, one end of the control wiring 45 is connected to the control terminal, and the other end of the control wiring 45 is connected to the control terminal 28 on the first substrate 30.
  • the layout of the power patterns P1 and N1 around the converter circuit 23 and the smoothing capacitor 24 is the same between the first substrate 30 and the substrate 20-1.
  • the power pattern connected in parallel to each of the inverter modules 25-1 to 25-3 of FIG. 6 is omitted. Then, instead of omitting the power pattern from the first substrate 30, power patterns P2, N2, and N3 are provided on the second substrate 31.
  • the metal plate leads can be easily reduced in thickness and width unlike pattern wiring on the substrate. Can be adjusted. That is, when the pattern width is changed in the power patterns P2, N2, and N3, a process such as a mask change occurs, but the pattern width can be easily adjusted in the metal plate lead.
  • the thickness of the power patterns P2, N2, and N3 can be made larger than the thickness of the pattern on the first substrate 30.
  • the pattern thickness is typically 18 um, 35 um, or 70 um.
  • the widths of the power patterns P2 and N2 can be made narrower than the width of the pattern on the first substrate 30.
  • the inverter modules 25-1 to 25-3 are designed so that the difference in internal impedance between them is small. However, in general, when a plurality of modules are mounted on a board in parallel, the value of the wiring impedance of the power pattern connected to each module is different. For this reason, a difference in output of each module occurs.
  • the value of the wiring impedance can be adjusted by changing the thickness and width of the metal plate lead with respect to the wiring length.
  • the wiring impedance from the connection point to the detection circuit 26-1 is adjusted so that the wiring impedance from the connection point to the detection circuit 26-2 is equal to the wiring impedance from the connection point to the detection circuit 26-3. .
  • the power patterns P 1 and N 1 can be arranged on the outer peripheral side of the first substrate 30. Therefore, it becomes easy to route the pattern wiring for the control signal with respect to the power patterns P1, N1, P2, and N2, and the distance between the patterns can be increased.
  • the ground of the power pattern N2 and the grounds of the control signal patterns 72-1 to 72-3 are provided separately.
  • the ground of the power pattern N2 is grounded at a single point to the grounding portion of the first substrate 30.
  • the noise due to the current input to the inverter modules 25-1 to 25-3 and the noise due to the current output from the inverter modules 25-1 to 25-3 are controlled signal patterns 72-1 to 72-. 3 is difficult to propagate to the ground.
  • the grounds of the detection circuits 26-1 to 26-3 may be connected to the ground of the power pattern N2. However, grounding separately from the ground of the power pattern N2 can suppress the influence of noise. it can.
  • FIG. 9 is a diagram showing a first modification of the pattern layout shown in FIG. Differences from FIG. 8 are as follows.
  • One detection circuit 26 is arranged on the first substrate 30-1 instead of the plurality of detection circuits 26-1 to 26-3 shown in FIG.
  • a power pattern N3 for connecting the detection circuit 26 and the GND terminal 40 is provided on the first substrate 30-1.
  • the detection circuit 26 has one end connected to the power pattern N3 and the other end connected to the power pattern N1.
  • the power wiring 43 is connected to the detection circuit 26 on the first substrate 30-1.
  • the power pattern N2 on the second substrate 31-1 is directly connected to the negative terminal 15 of each of the inverter modules 25-1 to 25-3.
  • FIG. 10 is a diagram showing a second modification of the pattern layout shown in FIG. Differences from FIG. 8 are as follows. (1) One detection circuit 26 is arranged on the second substrate 31-2 instead of the plurality of detection circuits 26-1 to 26-3. (2) The power pattern N3 is provided on the second substrate 31-2, and the power pattern N3 connects the negative terminal 15 and the detection circuit 26 of each of the plurality of inverter modules 25-1 to 25-3. thing. (3) The detection circuit 26 has one end connected to the power pattern N3 and the other end connected to the power wiring 43.
  • FIG. 11 is a diagram showing a state in which the plurality of inverter modules shown in FIGS. 7 to 10 are arranged on the second substrate.
  • FIG. 12 is a diagram showing a pattern layout on the second substrate shown in FIG.
  • the positive terminal 14, the negative terminal 15 and the output terminal 17 of each of the inverter modules 25-1 to 25-3 are arranged in the center portion of the second substrate 31 in the short direction.
  • the control terminals 44 of the inverter modules 25-1 to 25-3 are arranged at positions that do not face the second substrate 31.
  • the power patterns P2 and N2 are arranged on the outer peripheral side of the second substrate 31.
  • a power pattern N3 is disposed between the power pattern N2 and the negative terminals 15 of the inverter modules 25-1 to 25-3.
  • the shunt resistors 16-1 to 16-3 are arranged between the power pattern N2 and the power pattern N3.
  • Each of the shunt resistors 16-1 to 16-3 has one end connected to the power pattern N2 and the other end connected to the power pattern N3.
  • snubber capacitors 46-1, 46-2, 46-3 are arranged between the power pattern N3 and the power pattern P2. Snubber capacitors 46-1 to 46-3 each have one end connected to power pattern N3 and the other end connected to power pattern P2.
  • FIG. 13 is a view showing a state in which the first substrate and the second substrate constituting the motor driving apparatus according to the embodiment of the present invention are combined.
  • the first substrate 30 has a first main surface 30a and a second main surface 30b opposite to the first main surface 30a.
  • the second substrate 31 has a third main surface 31a that faces the second main surface 30b, and a fourth main surface 31b opposite to the third main surface 31a.
  • a pedestal 60 is provided between the second substrate 31 and the first substrate 30.
  • the pedestal 60 is for adjusting the distance from the first substrate 30 to the second substrate 31.
  • FIG. 13 shows an example in which the second substrate 31 according to the embodiment of the present invention is configured as a lead frame mold substrate.
  • the lead frame mold substrate is a substrate in which metal plate leads 37 are integrally molded with an insulating resin 49.
  • one metal plate lead 37 is shown, but the metal plate lead 37 is provided with a positive electrode side and a negative electrode side, respectively.
  • the metal plate lead 37 generally plated copper or brass is used.
  • the metal plate lead 37 is provided by a method such as punching, bending, wire cutting, laser processing, or etching.
  • nylon, unsaturated polyester, or epoxy resin mixed with a filler is used for the purpose of insulation.
  • the microcomputer peripheral portion 27 is arranged on the first main surface 30a side, and the smoothing capacitor 24 is arranged on the second main surface 30b.
  • the arrangement positions of the microcomputer peripheral portion 27 and the smoothing capacitor 24 are not limited to the illustrated example.
  • the inverter modules 25-1 to 25-3, the shunt resistor 16, and the snubber capacitors 46-1 to 46-3 are arranged on the fourth main surface 31b side.
  • Radiator fins 47 are attached to the inverter modules 25-1 to 25-3.
  • the smoothing capacitor 24 is disposed at a location where the second substrate 31 is not installed in the second main surface 30b.
  • a pedestal 60, a second substrate 31, a second substrate 31, inverter modules 25-1 to 25-3, and heat radiation fins 46 are laminated.
  • the thickness constituted by the entire component is larger. Therefore, when the smoothing capacitor 24 is arranged on the second main surface 30b side as in the illustrated example, the first substrate 30 and the second substrate 30 are compared to the case where the smoothing capacitor 24 is arranged on the first main surface 30a side. Therefore, the size of the entire component composed of the substrate 31 can be reduced. As a result, an electrical component box (not shown) for housing the first substrate 30 and the second substrate 31 can be reduced in size.
  • the inverter plates 25-1 to 25-3, the shunt resistor 16, and the snubber capacitors 46-1 to 46-3 are connected to the metal plate lead 37.
  • One end portion of the metal plate lead 37 that is, a portion where the resin 49 is not applied is bent toward the first substrate 30, passes through a through hole on the first substrate 30, and is soldered to the first substrate 30. Connected.
  • the control wiring 45 connected to the inverter modules 25-1 to 25-3 extends to the first substrate 30 side, penetrates through holes on the first substrate 30, and is connected to the first substrate 30 by solder.
  • FIG. 14 is a diagram showing an example in which the arrangement position of the snubber capacitor shown in FIG. 13 is changed. Differences from FIG. 13 are as follows. (1) The height of the pedestal 60 is different, and the distance from the first substrate 30 to the second substrate 31 in FIG. 14 is wider than the distance from the first substrate 30 to the second substrate 31 in FIG. thing. (2) The snubber capacitors 46-1 to 46-3 are arranged on the third main surface 31a side.
  • the snubber capacitors 46-1 to 46-3 are arranged at the positions shown in FIG. 13, there are many parts arranged on the fourth main surface 31b of the second substrate 31, and the power pattern is avoided while avoiding these parts. Since it is necessary to route P2 and N2, the routing amount of the power patterns P2 and N2 becomes long, and the impedance of the power patterns P2 and N2 increases. As this impedance increases, the influence of noise upon occurrence of a surge increases.
  • FIG. 15 is a view of the first substrate, the second substrate, and the three inverter modules shown in FIG. 13 as viewed from the side, and is a view as viewed from the direction of arrow B in FIG. Note that the radiation fins attached to the inverter module are not shown.
  • the inverter module 25 located at the center of the inverter modules 25-1 and 25-3 on both sides. -2 is arranged at a position overlapping the area A corresponding to the projection surface of the microcomputer peripheral portion 27. That is, the three inverter modules 25-1 to 25-3 are arranged so that the distance between the three inverter modules 25-1 to 25-3 and the microcomputer peripheral portion 27 is the shortest.
  • the area A is an area formed by projecting the microcomputer peripheral portion 27 toward the first substrate 30 and the second substrate 31.
  • each inverter module is preferably arranged so that the position in the depth direction of the drawing also overlaps the region A.
  • the depth direction is a direction along a plane parallel to the fourth main surface 31b, and is a direction orthogonal to the arrangement direction of the inverter modules 25-1 to 25-3.
  • the inverter modules 25-1 to 25-3 are connected to the microcomputer peripheral section 27.
  • the lengths of the extending metal plate lead 37 and the control wiring 45 can be further shortened. Therefore, the impedance of each of the power pattern P2, the power pattern N2, and the control wiring 45 is reduced, and the influence of noise can be further reduced.
  • SiC is used for the switching elements 51a to 51f.
  • a gallium nitride material or diamond may be used instead of SiC.
  • the motor drive device includes an inverter unit that has a plurality of inverter modules and outputs AC power to the motor, a control unit that controls each of the plurality of inverter modules, A first substrate having a first main surface and a second main surface, a third main surface opposite to the second main surface, and the plurality of inverter modules. And a second substrate having a fourth main surface.
  • the low-capacity WBG semiconductor having a small chip size is used as the switching element, it is possible to suppress the difference in the output of each of the plurality of inverter modules. As a result, a decrease in motor controllability is suppressed, and local heat generation of the inverter module due to current imbalance can be suppressed.
  • the wiring impedance can be suppressed by adjusting the pattern area, pattern length, or pattern width of the power pattern. Even if the distance is given, the impedance can be suppressed, and the degree of freedom of pattern wiring can be increased.
  • the impedance difference for each power module is suppressed by adjusting the value of the wiring impedance by changing the thickness and width of the metal plate lead with respect to the wiring length. Therefore, the snubber capacitors have the same capacity, and the snubber capacitors can be shared. “Identical” does not indicate complete coincidence, and may include some deviation due to an error or the like.
  • the length of the metal plate leads and control wiring extending from each inverter module to the peripheral portion of the microcomputer can be further reduced by using the second substrate.
  • Wiring impedance can be suppressed, and depending on the current level, one snubber capacitor can be used for a plurality of power modules, the circuit configuration can be simplified, cost can be reduced, and reliability can be improved. .
  • the motor driving device suppresses the impedance as described above, and the ground of the power pattern is grounded at a single point to the grounding portion of the first substrate so that it is difficult to propagate to the ground. Therefore, it is suitable for driving a switching element using a WBG semiconductor having a high dV / dt and capable of high-speed switching, and can prevent malfunction of the switching element due to the influence of noise, thereby improving quality. Can do.
  • the inverter module of the motor drive device is configured by a switching element using a WBG semiconductor, switching loss is reduced and efficiency can be improved.
  • the plurality of inverter modules are arranged at positions overlapping the areas formed by projecting the microcomputer peripheral portion including the control unit toward the first substrate and the second substrate. . For this reason, the distance between the control signal of each inverter module and the peripheral portion of the microcomputer is reduced, so that it is possible to suppress deterioration in controllability and erroneous detection.
  • the motor drive device since a plurality of inverter modules are arranged on the second board, an increase in the board area of the first board can be suppressed, and the outer case accompanying the increase in the board size can be suppressed.
  • An increase in size can be suppressed, an increase in the manufacturing cost of the outer case can be suppressed, and an increase in size of the motor drive device can be suppressed.
  • FIG. 16 is a configuration diagram of an air conditioner equipped with a motor drive device according to an embodiment of the present invention.
  • the air conditioner 300 includes an indoor unit 304 and an outdoor unit 301 connected to the indoor unit 304.
  • the indoor unit 304 and the outdoor unit 301 are provided with a motor 6.
  • the motor 6 is used as a driving source for each of the blower fan 303 and the compressor 302.
  • the motor drive device 100 is used for the indoor unit 304 and the outdoor unit 301 in order to control the drive source.
  • the air conditioner 300 with good quality can be obtained at low cost.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Abstract

Provided is a motor drive device that comprises: an inverter unit which outputs AC power to a motor and which has a plurality of inverter modules 25-1 to 25-3, each of the plurality of inverter modules 25-1 to 25-3 having a plurality of switching elements, and each of the plurality of switching elements being a wide bandgap semiconductor element; a control unit for controlling each of the plurality of inverter modules 25-1 to 25-3; a first substrate 30 on which the control unit is disposed and which has a first main surface 30a and a second main surface 30b; and a second substrate 31 which has a third main surface 31a facing the second main surface 30b and a fourth main surface 31b on which the plurality of inverter modules 25-1 to 25-3 are disposed.

Description

モータ駆動装置および空気調和機Motor drive device and air conditioner
 本発明は、モータを駆動するモータ駆動装置および空気調和機に関する。 The present invention relates to a motor driving device and an air conditioner for driving a motor.
 モータ駆動装置を構成するインバータはインバータモジュールを有し、インバータモジュールには複数のスイッチング素子が配置される。複数のスイッチング素子をチップとして実装する際、チップ面積を小さくすることにより、ウェハから取り出すときの歩留まりが向上する。またチップコストが高いワイドバンドギャップ(Wide Band Gap:WBG)半導体をスイッチング素子に用いて、低容量のインバータモジュールを複数個並列に接続して使用することにより、インバータの低コスト化を図ることができる場合がある。 The inverter constituting the motor drive device has an inverter module, and a plurality of switching elements are arranged in the inverter module. When mounting a plurality of switching elements as chips, reducing the chip area improves the yield when removing from the wafer. In addition, using a wide band gap (WBG) semiconductor with a high chip cost as a switching element and using a plurality of low-capacity inverter modules connected in parallel can reduce the cost of the inverter. There are cases where it is possible.
 特許文献1にはインバータユニットを分割して小容量のユニットを複数使用して並列駆動する技術が開示されている。 Patent Document 1 discloses a technique of dividing an inverter unit and using a plurality of small capacity units to drive in parallel.
特開2010-161846号公報JP 2010-161846 A
 しかしながら、同一の基板上に低容量のインバータモジュールを複数個並列に配置する場合、インバータモジュールの配置面積が増加するだけでなく、基板上のパターンの引き回しが複雑化する。基板上のパターンの引き回しが複雑化することにより、相対的にパターン配線長が長くなり、パターン配線のインピーダンスが増加する。そしてパターン配線のインピーダンスの増加に起因したノイズの影響により、スイッチング素子が誤動作し、インバータの信頼性の低下を引き起こすおそれがある。またWBG半導体が用いられたスイッチング素子は、電圧変動率であるdV/dtが高く高速なスイッチができるため、さらにノイズが発生し易くなる。 However, when a plurality of low-capacity inverter modules are arranged in parallel on the same substrate, not only the arrangement area of the inverter modules is increased, but also the pattern routing on the substrate is complicated. As the pattern routing on the substrate becomes complicated, the pattern wiring length becomes relatively long, and the impedance of the pattern wiring increases. Further, the switching element malfunctions due to the influence of noise caused by the increase in the impedance of the pattern wiring, and there is a possibility that the reliability of the inverter is lowered. In addition, a switching element using a WBG semiconductor has a high voltage fluctuation rate dV / dt and can be switched at high speed, so that noise is more likely to occur.
 本発明は、上記に鑑みてなされたものであって、コスト低減を図りながら誤動作の発生を抑制できるモータ駆動装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a motor drive device capable of suppressing the occurrence of malfunctions while reducing costs.
 上述した課題を解決し、目的を達成するために、本発明に係るモータ駆動装置は、モータを駆動するモータ駆動装置であって、複数のインバータモジュールを有し、モータに交流電力を出力するインバータ部を備える。また本発明に係るモータ駆動装置は、複数のインバータモジュールのそれぞれを制御する制御部と、制御部が配置され、第1の主面と第2の主面とを有する第1の基板と、前記第2の主面に対向する第3の主面と、前記複数のインバータモジュールが配置される第4の主面とを有する第2の基板と、を備える。 In order to solve the above-described problems and achieve the object, a motor drive device according to the present invention is a motor drive device that drives a motor, and includes an inverter module that outputs AC power to the motor. A part. The motor drive device according to the present invention includes a control unit that controls each of the plurality of inverter modules, a first substrate having the first main surface and the second main surface, the control unit being disposed, And a second substrate having a third main surface facing the second main surface and a fourth main surface on which the plurality of inverter modules are arranged.
 本発明に係るモータ駆動装置は、コスト低減を図りながら誤動作の発生を抑制できる、という効果を奏する。 The motor driving device according to the present invention has an effect that it is possible to suppress the occurrence of malfunction while reducing costs.
本発明の実施の形態に係るモータ駆動装置の構成例を示す図The figure which shows the structural example of the motor drive device which concerns on embodiment of this invention. 一般的なインバータを構成するインバータモジュールの内部構成を模式的に示す図The figure which shows typically the internal structure of the inverter module which comprises a general inverter 図1に示すインバータを構成する複数のインバータモジュールを模式的に示す図The figure which shows typically the some inverter module which comprises the inverter shown in FIG. 図2に示すインバータモジュールを配置した基板を模式的に示す図The figure which shows typically the board | substrate which has arrange | positioned the inverter module shown in FIG. 図3に示す複数のインバータモジュールを配置した基板を模式的に示す図The figure which shows typically the board | substrate which has arrange | positioned the several inverter module shown in FIG. 図5に示す基板上のパターンレイアウトを模式的に示す図The figure which shows the pattern layout on the board | substrate shown in FIG. 5 typically 本発明の実施の形態に係るモータ駆動装置を構成する第1の基板および第2の基板を示す図The figure which shows the 1st board | substrate and 2nd board | substrate which comprise the motor drive device which concerns on embodiment of this invention. 図7に示す基板上のパターンレイアウトを模式的に示す図The figure which shows the pattern layout on the board | substrate shown in FIG. 7 typically 図8に示すパターンレイアウトの第1の変形例を示す図The figure which shows the 1st modification of the pattern layout shown in FIG. 図8に示すパターンレイアウトの第2の変形例を示す図The figure which shows the 2nd modification of the pattern layout shown in FIG. 図7から図10に示す複数のインバータモジュールを第2の基板へ配置した状態を示す図The figure which shows the state which has arrange | positioned the several inverter module shown in FIGS. 7-10 to the 2nd board | substrate. 図11に示す第2の基板上のパターンレイアウトを示す図The figure which shows the pattern layout on the 2nd board | substrate shown in FIG. 本発明の実施の形態に係るモータ駆動装置を構成する第1の基板および第2の基板を組み合わせた状態を示す図The figure which shows the state which combined the 1st board | substrate and 2nd board | substrate which comprise the motor drive device which concerns on embodiment of this invention. 図13に示すスナバコンデンサの配置位置を変更した例を示す図The figure which shows the example which changed the arrangement position of the snubber capacitor shown in FIG. 図13に示す第1の基板と第2の基板と3つのインバータモジュールとを側面から見た図FIG. 13 is a side view of the first substrate, the second substrate, and the three inverter modules shown in FIG. 本発明の実施の形態に係るモータ駆動装置を搭載した空気調和機の構成図The block diagram of the air conditioner carrying the motor drive device which concerns on embodiment of this invention
 以下に、本発明の実施の形態に係るモータ駆動装置および空気調和機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a motor drive device and an air conditioner according to an embodiment of the present invention will be described in detail based on the drawings. Note that the present invention is not limited to the embodiments.
実施の形態.
 図1は本発明の実施の形態に係るモータ駆動装置の構成例を示す図である。
Embodiment.
FIG. 1 is a diagram showing a configuration example of a motor drive device according to an embodiment of the present invention.
 モータ駆動装置100は、交流電源1から出力される交流電力を直流電力に変換する整流回路3と、リアクタ2と、整流回路3から出力される直流電圧を平滑化する平滑コンデンサ4とを備える。 The motor drive device 100 includes a rectifier circuit 3 that converts AC power output from the AC power source 1 into DC power, a reactor 2, and a smoothing capacitor 4 that smoothes the DC voltage output from the rectifier circuit 3.
 またモータ駆動装置100は、平滑コンデンサ4の両端電圧を検出する電圧検出部8と、直流電力を3相交流電力に変換して3相モータであるモータ6を駆動するインバータ部5とを備える。 Further, the motor drive device 100 includes a voltage detection unit 8 that detects the voltage across the smoothing capacitor 4 and an inverter unit 5 that drives the motor 6 that is a three-phase motor by converting DC power into three-phase AC power.
 またモータ駆動装置100は、モータ6に流れる交流電流であるモータ電流を検出して検出情報を出力する電流検出部9と、交流電源1を短絡する短絡部7と、制御部11に制御用電源を供給する電源回路10と、制御部11とを備える。 In addition, the motor driving device 100 detects a motor current that is an alternating current flowing through the motor 6 and outputs detection information, a short-circuit unit 7 that short-circuits the AC power supply 1, and a control power supply to the control unit 11. Power supply circuit 10 and control unit 11.
 正極側電源線12は、整流回路3から出力され正極側電圧が印加される直流給電母線である。 The positive power supply line 12 is a DC power supply bus that is output from the rectifier circuit 3 and to which a positive voltage is applied.
 負極側電源線13は、整流回路3から出力され負極側電圧が印加される直流給電母線である。 The negative power supply line 13 is a DC power supply bus that is output from the rectifier circuit 3 and to which a negative voltage is applied.
 正極側電源線12および負極側電源線13は整流回路3とインバータ部5との間に配線される。 The positive power line 12 and the negative power line 13 are wired between the rectifier circuit 3 and the inverter unit 5.
 平滑コンデンサ4は、一端が正極側電源線12に接続され、他端が負極側電源線13に接続される。 The smoothing capacitor 4 has one end connected to the positive power line 12 and the other end connected to the negative power line 13.
 制御部11は、電流検出部9から出力される検出情報に基づいて、インバータ部5を制御するためのパルス幅変調(Pulse Width Modulation:PWM)信号を生成すると共に、短絡部7のオンオフ動作を制御する。 The control unit 11 generates a pulse width modulation (PWM) signal for controlling the inverter unit 5 on the basis of the detection information output from the current detection unit 9 and performs on / off operation of the short-circuit unit 7. Control.
 モータ駆動装置100は、空気調和機、冷凍機、洗濯乾燥機、冷蔵庫、除湿器、ヒートポンプ式給湯機、ショーケース、掃除機、ファンモータ、換気扇、手乾燥機、および誘導加熱電磁調理器といった機器において、当該機器に内蔵されるモータを駆動する装置として用いることができる。 The motor drive device 100 is a device such as an air conditioner, a refrigerator, a washing dryer, a refrigerator, a dehumidifier, a heat pump water heater, a showcase, a vacuum cleaner, a fan motor, a ventilator, a hand dryer, and an induction heating electromagnetic cooker. Can be used as a device for driving a motor built in the device.
 図2は一般的なインバータを構成するインバータモジュールの内部構成を模式的に示す図である。 FIG. 2 is a diagram schematically showing an internal configuration of an inverter module constituting a general inverter.
 図2に示すインバータ部5Aは、単一のインバータモジュール5A1を備える。 The inverter unit 5A shown in FIG. 2 includes a single inverter module 5A1.
 インバータモジュール5A1の正極側端子14は正極側電源線12に接続される。インバータモジュール5A1の負極側端子15は負極側電源線13に接続される。 The positive terminal 14 of the inverter module 5A1 is connected to the positive power line 12. The negative terminal 15 of the inverter module 5A1 is connected to the negative power line 13.
 図2では、インバータモジュール5A1の負極側端子15と負極側電源線13との間にシャント抵抗16が接続される。但しシャント抵抗16の位置は図示例に限定されるものではない。 In FIG. 2, a shunt resistor 16 is connected between the negative terminal 15 and the negative power line 13 of the inverter module 5A1. However, the position of the shunt resistor 16 is not limited to the illustrated example.
 インバータモジュール5A1は、6つのスイッチング素子50a,50b,50c,50d,50e,50fを備える。 The inverter module 5A1 includes six switching elements 50a, 50b, 50c, 50d, 50e, and 50f.
 具体的には、インバータモジュール5A1は、直列接続されたスイッチング素子50a,50bと、直列接続されたスイッチング素子50c,50dと、直列接続されたスイッチング素子50e,50fとを備える。 Specifically, the inverter module 5A1 includes switching elements 50a and 50b connected in series, switching elements 50c and 50d connected in series, and switching elements 50e and 50f connected in series.
 スイッチング素子50a,50bはU相に対応し、スイッチング素子50c,50dはV相に対応し、スイッチング素子50e,50fはW相に対応する。 Switching elements 50a and 50b correspond to the U phase, switching elements 50c and 50d correspond to the V phase, and switching elements 50e and 50f correspond to the W phase.
 スイッチング素子50a,50c,50eは上アームを構成し、スイッチング素子50b,50d,50fは下アームを構成する。 The switching elements 50a, 50c, and 50e constitute an upper arm, and the switching elements 50b, 50d, and 50f constitute a lower arm.
 スイッチング素子50aとスイッチング素子50bとの接続点、スイッチング素子50cとスイッチング素子50dとの接続点、およびスイッチング素子50eとスイッチング素子50fとの接続点は、それぞれがモータ6に接続される。 The connection point between the switching element 50a and the switching element 50b, the connection point between the switching element 50c and the switching element 50d, and the connection point between the switching element 50e and the switching element 50f are connected to the motor 6, respectively.
 正極側電源線12および負極側電源線13から供給される直流電力は、スイッチング素子50a,50b,50c,50d,50e,50fがスイッチング動作することにより交流電力に変換され、変換された交流電力がモータ6に供給される。 The DC power supplied from the positive power line 12 and the negative power line 13 is converted into AC power by the switching operation of the switching elements 50a, 50b, 50c, 50d, 50e, and 50f. It is supplied to the motor 6.
 図3は図1に示すインバータを構成する複数のインバータモジュールを模式的に示す図である。 FIG. 3 is a diagram schematically showing a plurality of inverter modules constituting the inverter shown in FIG.
 インバータ部5は、U相に対応するインバータモジュール51と、V相に対応するインバータモジュール52と、W相に対応するインバータモジュール53とを備える。 The inverter unit 5 includes an inverter module 51 corresponding to the U phase, an inverter module 52 corresponding to the V phase, and an inverter module 53 corresponding to the W phase.
 インバータモジュール51,52,53のそれぞれの正極側端子14は、正極側電源線12に接続される。 The positive terminals 14 of the inverter modules 51, 52, and 53 are connected to the positive power line 12.
 インバータモジュール51~53のそれぞれの負極側端子15は、負極側電源線13に接続される。 The negative terminals 15 of the inverter modules 51 to 53 are connected to the negative power line 13.
 図3では、インバータモジュール51~53のそれぞれの負極側端子15と負極側電源線13との間にシャント抵抗16-1,16-2,16-3が接続される。但しシャント抵抗16-1~16-3の位置は図示例に限定されるものではない。 In FIG. 3, shunt resistors 16-1, 16-2 and 16-3 are connected between the negative terminal 15 and the negative power line 13 of each of the inverter modules 51 to 53. However, the positions of the shunt resistors 16-1 to 16-3 are not limited to the illustrated example.
 インバータモジュール51は6つのスイッチング素子51a,51b,51c,51d,51e,51fを備える。 The inverter module 51 includes six switching elements 51a, 51b, 51c, 51d, 51e, and 51f.
 具体的には、インバータモジュール51は、直列接続されたスイッチング素子51a,51bと、直列接続されたスイッチング素子51c,51dと、直列接続されたスイッチング素子51e,51fとを備える。 Specifically, the inverter module 51 includes switching elements 51a and 51b connected in series, switching elements 51c and 51d connected in series, and switching elements 51e and 51f connected in series.
 スイッチング素子51a,51c,51eは上アームを構成し、スイッチング素子51b,51d,51fは下アームを構成する。 The switching elements 51a, 51c, 51e constitute an upper arm, and the switching elements 51b, 51d, 51f constitute a lower arm.
 スイッチング素子51aとスイッチング素子51bとの接続点、スイッチング素子51cとスイッチング素子51dとの接続点、およびスイッチング素子51eとスイッチング素子51fとの接続点は、それぞれが出力端子17を介してモータ6に接続される。 The connection point between the switching element 51a and the switching element 51b, the connection point between the switching element 51c and the switching element 51d, and the connection point between the switching element 51e and the switching element 51f are each connected to the motor 6 via the output terminal 17. Is done.
 インバータモジュール52はインバータモジュール51と同様に6つのスイッチング素子52a,52b,52c,52d,52e,52fを備える。インバータモジュール53はインバータモジュール51と同様に6つのスイッチング素子53a,53b,53c,53d,53e,53fを備える。インバータモジュール52,53のそれぞれのスイッチング素子の接続構成はインバータモジュール51のスイッチング素子の接続構成と同様である。 Similarly to the inverter module 51, the inverter module 52 includes six switching elements 52a, 52b, 52c, 52d, 52e, and 52f. Similarly to the inverter module 51, the inverter module 53 includes six switching elements 53a, 53b, 53c, 53d, 53e, and 53f. The connection configuration of the switching elements of the inverter modules 52 and 53 is the same as the connection configuration of the switching elements of the inverter module 51.
 以下ではスイッチング素子52a~52fおよびスイッチング素子53a~52fの説明を省略するが、スイッチング素子52a~52fおよびスイッチング素子53a~52fは、スイッチング素子51a~51fと同様に構成されているものとする。 Hereinafter, although description of the switching elements 52a to 52f and the switching elements 53a to 52f is omitted, the switching elements 52a to 52f and the switching elements 53a to 52f are configured in the same manner as the switching elements 51a to 51f.
 スイッチング素子51a~51fには、ワイドバンドギャップ半導体と呼ばれる炭化ケイ素(Silicon Carbide:SiC)が一例として用いられる。 As the switching elements 51a to 51f, silicon carbide (SiC) called a wide band gap semiconductor is used as an example.
 ワイドバンドギャップ半導体を用いることで耐電圧性が高く、許容電流密度も高くなるため、モジュールの小型化が可能となる。ワイドバンドギャップ半導体は耐熱性も高いため、後述する放熱フィン47の小型化が可能になる。 The use of a wide bandgap semiconductor provides a high voltage resistance and a high allowable current density, thereby enabling a reduction in the size of the module. Since the wide band gap semiconductor has high heat resistance, it is possible to reduce the size of the radiating fin 47 described later.
 6個のスイッチング素子を備えたインバータモジュール51~53は、それぞれが一つのレグを構成する。そのため計18個のスイッチング素子でインバータ部5が構成される。 Each of the inverter modules 51 to 53 having 6 switching elements constitutes one leg. Therefore, the inverter unit 5 is configured by a total of 18 switching elements.
 これに対して前述した図2のインバータ部5Aは計6個のスイッチング素子で構成される。そのため図3に示すスイッチング素子51a~51fのそれぞれに流れる電流の値は、図2に示すスイッチング素子50a,50b,50c,50d,50e,50fのそれぞれに流れる電流の値の三分の一である。 On the other hand, the inverter unit 5A in FIG. 2 described above is composed of a total of six switching elements. Therefore, the value of the current flowing through each of the switching elements 51a to 51f shown in FIG. 3 is one third of the value of the current flowing through each of the switching elements 50a, 50b, 50c, 50d, 50e, and 50f shown in FIG. .
 その結果、スイッチング素子51a~51fのそれぞれの電流容量を低減することができ、インバータモジュール51~53のそれぞれのチップ面積を小さくすることができる。そのため、ウェハから取り出す際の歩留まりが向上し、インバータモジュール51~53の製造コストを低減できる。 As a result, the current capacities of the switching elements 51a to 51f can be reduced, and the chip areas of the inverter modules 51 to 53 can be reduced. Therefore, the yield when taking out from the wafer is improved, and the manufacturing cost of the inverter modules 51 to 53 can be reduced.
 図4は図2に示すインバータモジュールを配置した基板を模式的に示す図である。図5は図3に示す複数のインバータモジュールを配置した基板を模式的に示す図である。 FIG. 4 is a diagram schematically showing a substrate on which the inverter module shown in FIG. 2 is arranged. FIG. 5 is a diagram schematically showing a substrate on which a plurality of inverter modules shown in FIG. 3 are arranged.
 図4,5に示す基板20,20-1には、一般的なモータ駆動装置に用いられる機器が配置される。 4 and 5 are provided with devices used in a general motor drive device.
 図4の基板20は、電源入力部21、ノイズフィルタ22、コンバータ回路23、平滑コンデンサ24、インバータモジュール25、検出回路26、およびマイコン周辺部27を備える。 4 includes a power input unit 21, a noise filter 22, a converter circuit 23, a smoothing capacitor 24, an inverter module 25, a detection circuit 26, and a microcomputer peripheral unit 27.
 電源入力部21には図1の交流電源1が接続される。コンバータ回路23には図1の整流回路3および短絡部7が含まれる。 1 is connected to the power input unit 21. The converter circuit 23 includes the rectifier circuit 3 and the short-circuit portion 7 of FIG.
 平滑コンデンサ24は図1の平滑コンデンサ4に相当する。インバータモジュール25は図2のインバータモジュール5A1に相当する。 The smoothing capacitor 24 corresponds to the smoothing capacitor 4 in FIG. The inverter module 25 corresponds to the inverter module 5A1 in FIG.
 検出回路26は図2のシャント抵抗16に相当する。マイコン周辺部27は図1の制御部11に相当する。 The detection circuit 26 corresponds to the shunt resistor 16 in FIG. The microcomputer peripheral section 27 corresponds to the control section 11 in FIG.
 ノイズフィルタ22とコンバータ回路23との間には、図1のリアクタ2が接続される。但し図4ではリアクタ2の図示を省略している。 1 is connected between the noise filter 22 and the converter circuit 23. However, in FIG. 4, the illustration of the reactor 2 is omitted.
 電源入力部21から入力された交流電力はノイズフィルタ22、リアクタ2、コンバータ回路23および平滑コンデンサ24により、直流電力に変換され、この直流電力はインバータモジュール25に入力される。 AC power input from the power input unit 21 is converted into DC power by the noise filter 22, the reactor 2, the converter circuit 23 and the smoothing capacitor 24, and this DC power is input to the inverter module 25.
 図5の基板20-1には、図4のインバータモジュール25および検出回路26の代わりに、3つのインバータモジュール25-1,25-2,25-3および3つの検出回路26-1,26-2,26-3が配置される。これら以外の構成要素は基板20と同様であるため説明を省略する。 The board 20-1 in FIG. 5 has three inverter modules 25-1, 25-2, 25-3 and three detection circuits 26-1, 26- instead of the inverter module 25 and the detection circuit 26 in FIG. 2, 26-3 are arranged. Since the other components are the same as those of the substrate 20, the description thereof is omitted.
 検出回路26-1~26-3は図3のシャント抵抗16-1~16-3に相当する。 The detection circuits 26-1 to 26-3 correspond to the shunt resistors 16-1 to 16-3 in FIG.
 インバータモジュール25-1~25-3は図3のインバータモジュール51~53に相当する。インバータモジュール25-1~25-3は、インバータモジュール25-1、インバータモジュール25-2およびインバータモジュール25-3の順で、基板20-1の長手方向に沿って直線状に配列される。 The inverter modules 25-1 to 25-3 correspond to the inverter modules 51 to 53 in FIG. The inverter modules 25-1 to 25-3 are arranged linearly along the longitudinal direction of the substrate 20-1 in the order of the inverter module 25-1, the inverter module 25-2, and the inverter module 25-3.
 図6は図5に示す基板上のパターンレイアウトを模式的に示す図である。 FIG. 6 is a diagram schematically showing a pattern layout on the substrate shown in FIG.
 正極側のパワーパターンP1は、図1の正極側電源線12に相当し、コンバータ回路23、平滑コンデンサ24、およびインバータモジュール25-1~25-3と電気的に接続している。 The positive power pattern P1 corresponds to the positive power line 12 in FIG. 1, and is electrically connected to the converter circuit 23, the smoothing capacitor 24, and the inverter modules 25-1 to 25-3.
 負極側のパワーパターンN1は、図1の負極側電源線13に相当し、コンバータ回路23、平滑コンデンサ24、および検出回路26-1~26-3と電気的に接続している。 The power pattern N1 on the negative electrode side corresponds to the negative power supply line 13 in FIG. 1, and is electrically connected to the converter circuit 23, the smoothing capacitor 24, and the detection circuits 26-1 to 26-3.
 パワーパターンP1,N1は、パワーパターンP1,N1に流れる電流の値が大きくなるほど発熱量が大きくなるため、電流の値に応じてパターン幅またはパターン厚を大きくする必要がある。一方、パターン配線同士を接続するためにリード線を用いた場合、リード線を含むパターン配線長が長くなるため、ノイズの影響を受け易い。リード線を用いる事で、基板サイズの大型化を抑制しつつ、インピーダンスの影響も抑制するような設計が可能になる。 In the power patterns P1 and N1, the amount of heat generation increases as the value of the current flowing through the power patterns P1 and N1 increases. Therefore, it is necessary to increase the pattern width or the pattern thickness according to the current value. On the other hand, when lead wires are used to connect the pattern wirings, the length of the pattern wiring including the lead wires becomes long, so that they are easily affected by noise. By using the lead wire, it is possible to design so as to suppress the influence of impedance while suppressing the increase in the substrate size.
 図6に示す基板20-1では、3つのインバータモジュール25-1~25-3が配置されるため、インバータモジュール25-1~25-3を配置するための面積を確保する必要があると共に、インバータモジュール25-1~25-3のそれぞれに接続されるパワーパターンP1,N1を引き回すための面積も確保する必要がある。 In the substrate 20-1 shown in FIG. 6, since the three inverter modules 25-1 to 25-3 are arranged, it is necessary to secure an area for arranging the inverter modules 25-1 to 25-3. It is also necessary to secure an area for routing the power patterns P1, N1 connected to each of the inverter modules 25-1 to 25-3.
 また、基板20-1上に配置されるモジュール数の増加により、マイコン周辺部27とインバータモジュール25-1~25-3との距離が離れてしまう。特に図6のようにマイコン周辺部27の近くに、3つのインバータモジュール25-1~25-3がこの順で直線状に配列されている場合、インバータモジュール25-3からマイコン周辺部27までの距離は、インバータモジュール25-1からマイコン周辺部27までの距離よりも長くなる。 Also, as the number of modules arranged on the substrate 20-1 increases, the distance between the microcomputer peripheral portion 27 and the inverter modules 25-1 to 25-3 is increased. In particular, when three inverter modules 25-1 to 25-3 are arranged in a straight line in this order near the microcomputer peripheral portion 27 as shown in FIG. 6, from the inverter module 25-3 to the microcomputer peripheral portion 27. The distance is longer than the distance from the inverter module 25-1 to the microcomputer peripheral portion 27.
 このようにインバータモジュール25-3からマイコン周辺部27までの距離が長くなるほど、マイコン周辺部27とインバータモジュール25-1~25-3との間に配線される制御配線71-1~71-3の長さが長くなり、ノイズの影響を受け易くなり、検出性が低下するおそれがある。 Thus, as the distance from the inverter module 25-3 to the microcomputer peripheral portion 27 becomes longer, the control wirings 71-1 to 71-3 wired between the microcomputer peripheral portion 27 and the inverter modules 25-1 to 25-3 are increased. The length of the film becomes long, and it is likely to be affected by noise, and the detectability may be lowered.
 具体的には、制御配線に伝達されるモータ電流検出信号にノイズが乗ることにより、モータ制御性が低下し、さらに保護回路の誤動作が懸念される。保護回路の誤動作とは、例えば過電流設計値に対して低い値で保護が働くことをいう。 Specifically, when noise is added to the motor current detection signal transmitted to the control wiring, the motor controllability is lowered, and there is a concern that the protection circuit malfunctions. The malfunction of the protection circuit means that the protection works at a low value with respect to the overcurrent design value, for example.
 また、制御配線に伝達されるPWM信号であるゲート駆動信号にノイズが乗り、上下アームを構成する各スイッチング素子のオンオフタイミングがずれてしまい、上下アームの短絡が起こるおそれがある。 Also, noise is added to the gate drive signal, which is a PWM signal transmitted to the control wiring, and the ON / OFF timing of each switching element constituting the upper and lower arms is shifted, which may cause a short circuit between the upper and lower arms.
 また、インバータモジュール25-1~25-3にはSiCのスイッチング素子が用いられているため、スイッチングによるdV/dtが大きく、同一の配線インピーダンスに対する発生ノイズが大きくなる。 Further, since SiC switching elements are used in the inverter modules 25-1 to 25-3, dV / dt due to switching is large, and noise generated with respect to the same wiring impedance is large.
 また、ゲート駆動電圧のスレッシュホールドVthが1V程度と低いため、ノイズによる誤動作を起こすおそれが高い。 Also, since the threshold Vth of the gate drive voltage is as low as about 1V, there is a high risk of malfunction due to noise.
 本発明の実施の形態に係るモータ駆動装置はこれらの問題点を解消するための構成を有する。以下、この構成例を具体的に説明する。 The motor drive device according to the embodiment of the present invention has a configuration for solving these problems. Hereinafter, this configuration example will be specifically described.
 図7は本発明の実施の形態に係るモータ駆動装置を構成する第1の基板および第2の基板を示す図である。図8は図7に示す基板上のパターンレイアウトを模式的に示す図である。 FIG. 7 is a diagram showing a first substrate and a second substrate constituting the motor drive device according to the embodiment of the present invention. FIG. 8 schematically shows a pattern layout on the substrate shown in FIG.
 図6の基板20-1との違いは以下の通りである。
(1)第1の基板30には、制御端子28、GND端子40およびパワー端子41が配置されること。
(2)インバータモジュール25-1~25-3が第2の基板31に配置されること。
(3)検出回路26-1~26-3が第2の基板31に配置されること。
Differences from the substrate 20-1 in FIG. 6 are as follows.
(1) The control terminal 28, the GND terminal 40, and the power terminal 41 are disposed on the first substrate 30.
(2) The inverter modules 25-1 to 25-3 are arranged on the second substrate 31.
(3) The detection circuits 26-1 to 26-3 are arranged on the second substrate 31.
 第1の基板30には、交流電源1から供給される交流電力を直流電力に変換するための電源入力部21、ノイズフィルタ、およびコンバータ回路23が配置される。 On the first substrate 30, a power input unit 21 for converting AC power supplied from the AC power source 1 into DC power, a noise filter, and a converter circuit 23 are arranged.
 また第1の基板30には、直流電力を平滑化してインバータモジュール25-1~25-3へ供給するための平滑コンデンサ24が配置される。 Further, a smoothing capacitor 24 for smoothing DC power and supplying it to the inverter modules 25-1 to 25-3 is disposed on the first substrate 30.
 さらに第1の基板30には、マイコン周辺部27、制御端子28、GND端子40およびパワー端子41が配置される。 Further, on the first substrate 30, a microcomputer peripheral part 27, a control terminal 28, a GND terminal 40 and a power terminal 41 are arranged.
 制御端子28は、マイコン周辺部27に接続される。パワー端子41はパワーパターンP1に接続される。GND端子40はパワーパターンN1に接続される。 The control terminal 28 is connected to the microcomputer peripheral part 27. The power terminal 41 is connected to the power pattern P1. The GND terminal 40 is connected to the power pattern N1.
 第2の基板31には、インバータモジュール25-1~25-3および検出回路26-1~26-3が配置される。 On the second substrate 31, inverter modules 25-1 to 25-3 and detection circuits 26-1 to 26-3 are arranged.
 インバータモジュール25-1~25-3は、インバータモジュール25-1、インバータモジュール25-2およびインバータモジュール25-3の順で、第2の基板31の長手方向に沿って直線状に配列される。 The inverter modules 25-1 to 25-3 are arranged linearly along the longitudinal direction of the second substrate 31 in the order of the inverter module 25-1, the inverter module 25-2, and the inverter module 25-3.
 第2の基板31上における正極側のパワーパターンP2は、図1の正極側電源線12の一部に相当し、インバータモジュール25-1~25-3を電気的に接続している。 The positive-side power pattern P2 on the second substrate 31 corresponds to a part of the positive-side power line 12 in FIG. 1, and electrically connects the inverter modules 25-1 to 25-3.
 第2の基板31上における負極側のパワーパターンN2は、図1の負極側電源線13の一部に相当し、検出回路26-1~26-3と電気的に接続し、第2の基板31上における負極側のパワーパターンN3は、インバータモジュール25-1~25-3と検出回路26-1~26-3をそれぞれ電気的に接続している。 The negative-side power pattern N2 on the second substrate 31 corresponds to a part of the negative-side power line 13 in FIG. 1, and is electrically connected to the detection circuits 26-1 to 26-3. The power pattern N3 on the negative electrode side 31 is electrically connected to the inverter modules 25-1 to 25-3 and the detection circuits 26-1 to 26-3, respectively.
 検出回路26-1~26-3は、それぞれの一端がパワーパターンN2に接続され、それぞれの他端がパワーパターンN3に接続される。 The detection circuits 26-1 to 26-3 have one end connected to the power pattern N2 and the other end connected to the power pattern N3.
 3つのインバータモジュール25-1~25-3は、それぞれがパワーパターンP2とパワーパターンN2との間に並列に接続される。 The three inverter modules 25-1 to 25-3 are connected in parallel between the power pattern P2 and the power pattern N2.
 インバータモジュール25-1~25-3のそれぞれの正極側端子14は、パワーパターンP2に接続される。パワーパターンP2は、インバータモジュール25-1~25-3へ直流電力を供給するパワー配線42を介して、第1の基板30上のパワー端子41に接続される。 The positive terminals 14 of the inverter modules 25-1 to 25-3 are connected to the power pattern P2. The power pattern P2 is connected to a power terminal 41 on the first substrate 30 through a power wiring 42 that supplies DC power to the inverter modules 25-1 to 25-3.
 これによりインバータモジュール25-1~25-3のそれぞれの正極側端子14と、第1の基板30上のパワーパターンP1との間に電流が流れる。 Thereby, a current flows between the positive terminal 14 of each of the inverter modules 25-1 to 25-3 and the power pattern P1 on the first substrate 30.
 インバータモジュール25-1~25-3のそれぞれの負極側端子15は、パワーパターンN3に接続される。パワーパターンN3は検出回路26-1~26-3を介してパワーパターンN2に接続される。パワーパターンN2は、パワー配線43を介して、第1の基板30上のGND端子40およびパワーパターンN1に接続される。 The negative terminals 15 of the inverter modules 25-1 to 25-3 are connected to the power pattern N3. The power pattern N3 is connected to the power pattern N2 via the detection circuits 26-1 to 26-3. The power pattern N2 is connected to the GND terminal 40 and the power pattern N1 on the first substrate 30 through the power wiring 43.
 これによりインバータモジュール25-1~25-3のそれぞれの負極側端子15と、第1の基板30上のパワーパターンN1との間に電流が流れる。 Thereby, a current flows between the negative terminal 15 of each of the inverter modules 25-1 to 25-3 and the power pattern N1 on the first substrate 30.
 なおパワーパターンP2およびパワー配線42は、正極側の金属板リードで構成される。またパワーパターンN2、パワーパターンN3およびパワー配線43は負極側の金属板リードで構成される。金属板リードの詳細は後述する。 In addition, the power pattern P2 and the power wiring 42 are configured by metal plate leads on the positive electrode side. Further, the power pattern N2, the power pattern N3, and the power wiring 43 are configured by metal plate leads on the negative electrode side. Details of the metal plate lead will be described later.
 インバータモジュール25-1~25-3は、制御端子28および制御端子44を介して、マイコン周辺部27と電気的に接続されている。制御端子44は、インバータモジュール25-1~25-3のそれぞれに設けられ、第2の基板31の一対の辺部の一方側に配列される。図示例ではそれぞれの制御端子44が第2の基板31の辺部よりも外側に位置する。制御端子44は、制御配線45に接続され、制御配線45は、第1の基板30上の制御端子28に接続される。制御配線45をパワー配線43から遠ざけることにより、ノイズの影響を抑制することができる。このようにインバータモジュール25-1~25-3は図11に示すような端子配置となっており、第2の基板31の辺部よりも外側に位置する制御端子44群は制御用の低圧端子である。そして第2の基板31上において、パワー配線43と制御配線45とは出来る限り遠ざけた方が望ましいため、制御端子28は第1の基板30に配置されている。ただしインバータモジュール25-1~25-3の制御端子44の長さが不足する場合もあるため、その場合、図示しない制御端子を第2の基板31上に設けて、当該制御端子をインバータモジュール25-1~25-3の制御端子44群に接続し、当該制御端子には制御配線45の一端が接続され、制御配線45の他端は第1の基板30上の制御端子28に接続される。 The inverter modules 25-1 to 25-3 are electrically connected to the microcomputer peripheral portion 27 via the control terminal 28 and the control terminal 44. The control terminal 44 is provided in each of the inverter modules 25-1 to 25-3 and is arranged on one side of the pair of sides of the second substrate 31. In the illustrated example, each control terminal 44 is located outside the side portion of the second substrate 31. The control terminal 44 is connected to the control wiring 45, and the control wiring 45 is connected to the control terminal 28 on the first substrate 30. By moving the control wiring 45 away from the power wiring 43, the influence of noise can be suppressed. In this way, the inverter modules 25-1 to 25-3 have terminal arrangements as shown in FIG. 11, and the control terminal group 44 located outside the side of the second substrate 31 is a low voltage terminal for control. It is. On the second substrate 31, it is desirable that the power wiring 43 and the control wiring 45 be as far away as possible, so the control terminal 28 is disposed on the first substrate 30. However, since the length of the control terminal 44 of the inverter modules 25-1 to 25-3 may be insufficient, in that case, a control terminal (not shown) is provided on the second substrate 31, and the control terminal is connected to the inverter module 25. -1 to 25-3 are connected to a group of control terminals 44, one end of the control wiring 45 is connected to the control terminal, and the other end of the control wiring 45 is connected to the control terminal 28 on the first substrate 30. .
 これによりインバータモジュール25-1~25-3のそれぞれの負極側端子15と第1の基板30上のマイコン周辺部27との間に電流が流れる。 Thereby, a current flows between the negative terminal 15 of each of the inverter modules 25-1 to 25-3 and the microcomputer peripheral portion 27 on the first substrate 30.
 図8の第1の基板30と、図6の基板20-1とを比較すると、コンバータ回路23および平滑コンデンサ24の配置位置は互いに同一である。そのため第1の基板30と基板20-1とでは、コンバータ回路23と平滑コンデンサ24の周辺のパワーパターンP1,N1とのレイアウトが同じである。 8 is compared with the substrate 20-1 in FIG. 6, the arrangement positions of the converter circuit 23 and the smoothing capacitor 24 are the same. Therefore, the layout of the power patterns P1 and N1 around the converter circuit 23 and the smoothing capacitor 24 is the same between the first substrate 30 and the substrate 20-1.
 一方、図8の第1の基板30では、図6のインバータモジュール25-1~25-3のそれぞれに並列に接続されるパワーパターンが省かれる。そして当該パワーパターンが第1の基板30から省かれる代わりに、第2の基板31上にパワーパターンP2,N2,N3が設けられる。 On the other hand, in the first substrate 30 of FIG. 8, the power pattern connected in parallel to each of the inverter modules 25-1 to 25-3 of FIG. 6 is omitted. Then, instead of omitting the power pattern from the first substrate 30, power patterns P2, N2, and N3 are provided on the second substrate 31.
 前述したように第2の基板31上のパワーパターンP2,N2,N3は、金属板リードで構成されているため、金属板リードは基板上のパターン配線とは異なり、その厚みと幅を容易に調整することができる。すなわちパワーパターンP2,N2,N3はパターン幅を変更する際、マスク変更などの工程が発生するが、金属板リードでは容易にパターン幅を調整できる。 As described above, since the power patterns P2, N2, and N3 on the second substrate 31 are configured by metal plate leads, the metal plate leads can be easily reduced in thickness and width unlike pattern wiring on the substrate. Can be adjusted. That is, when the pattern width is changed in the power patterns P2, N2, and N3, a process such as a mask change occurs, but the pattern width can be easily adjusted in the metal plate lead.
 従って、パワーパターンP2,N2,N3の厚みは、第1の基板30上のパターンの厚みよりも大きくすることができる。パターンの厚みは、一般的に18um、35um、または70umである。またパワーパターンP2,N2の幅は、第1の基板30上のパターンの幅よりも狭くすることができる。 Therefore, the thickness of the power patterns P2, N2, and N3 can be made larger than the thickness of the pattern on the first substrate 30. The pattern thickness is typically 18 um, 35 um, or 70 um. Further, the widths of the power patterns P2 and N2 can be made narrower than the width of the pattern on the first substrate 30.
 なお、インバータモジュール25-1~25-3は、それぞれの内部インピーダンスの差異が小さくなるように設計されている。ところが、一般的に複数のモジュールを並列に基板実装する場合、各モジュールに接続されるパワーパターンの配線インピーダンスの値が異なる。そのため、各モジュールのそれぞれの出力の差異が生じる。 The inverter modules 25-1 to 25-3 are designed so that the difference in internal impedance between them is small. However, in general, when a plurality of modules are mounted on a board in parallel, the value of the wiring impedance of the power pattern connected to each module is different. For this reason, a difference in output of each module occurs.
 本発明の実施の形態の第2の基板31では、金属板リードの配線長に対する厚さおよび幅を変更することにより、配線インピーダンスの値を調整することができる。 In the second substrate 31 according to the embodiment of the present invention, the value of the wiring impedance can be adjusted by changing the thickness and width of the metal plate lead with respect to the wiring length.
 具体例で説明すると、パワー配線43とパワーパターンN2との接続点が、図8に示す検出回路26-3の近くであると仮定した場合、当該接続点から検出回路26-1までの配線インピーダンスと、当該接続点から検出回路26-2までの配線インピーダンスと、当該接続点から検出回路26-3までの配線インピーダンスとが等しくなるように、パワーパターンN2のパターン長またはパターン幅が調整される。 More specifically, assuming that the connection point between the power wiring 43 and the power pattern N2 is near the detection circuit 26-3 shown in FIG. 8, the wiring impedance from the connection point to the detection circuit 26-1 The pattern length or pattern width of the power pattern N2 is adjusted so that the wiring impedance from the connection point to the detection circuit 26-2 is equal to the wiring impedance from the connection point to the detection circuit 26-3. .
 これにより、インバータモジュール25-1~25-3のそれぞれの出力の差異を抑制することができる。その結果、モータ制御性の低下が抑制されると共に、電流のアンバランスによるインバータモジュール25-1~25-3の局所的な発熱を抑制できる。 Thereby, it is possible to suppress the difference between the outputs of the inverter modules 25-1 to 25-3. As a result, a decrease in motor controllability is suppressed, and local heat generation of the inverter modules 25-1 to 25-3 due to current imbalance can be suppressed.
 また、第1の基板30では、パワーパターンP1,N1を第1の基板30の外周側に配置できる。そのため、パワーパターンP1,N1,P2,N2に対して、制御信号用のパターン配線の取り回しが容易になり、パターン間の距離を広げることができる。 In the first substrate 30, the power patterns P 1 and N 1 can be arranged on the outer peripheral side of the first substrate 30. Therefore, it becomes easy to route the pattern wiring for the control signal with respect to the power patterns P1, N1, P2, and N2, and the distance between the patterns can be increased.
 なお第2の基板31では、パワーパターンN2のグランドと、制御信号用パターン72-1~72-3のグランドとが別々に設けられている。そしてパワーパターンN2のグランドは、第1の基板30に接地部に一点接地されている。 In the second substrate 31, the ground of the power pattern N2 and the grounds of the control signal patterns 72-1 to 72-3 are provided separately. The ground of the power pattern N2 is grounded at a single point to the grounding portion of the first substrate 30.
 これにより、インバータモジュール25-1~25-3へ入力される電流によるノイズと、インバータモジュール25-1~25-3から出力される電流によるノイズとが、制御信号用パターン72-1~72-3のグランドに伝搬し難くなる。 As a result, the noise due to the current input to the inverter modules 25-1 to 25-3 and the noise due to the current output from the inverter modules 25-1 to 25-3 are controlled signal patterns 72-1 to 72-. 3 is difficult to propagate to the ground.
 また検出回路26-1~26-3のそれぞれのグランドは、パワーパターンN2のグランドに接続してもよいが、パワーパターンN2のグランドとは別に接地することで、ノイズの影響を抑制することができる。 The grounds of the detection circuits 26-1 to 26-3 may be connected to the ground of the power pattern N2. However, grounding separately from the ground of the power pattern N2 can suppress the influence of noise. it can.
 図9は図8に示すパターンレイアウトの第1の変形例を示す図である。図8との違いは以下の通りである。
(1)第1の基板30-1には、図8に示す複数の検出回路26-1~26-3の代わりに1つの検出回路26が配置されること。
(2)第1の基板30-1には、検出回路26とGND端子40とを接続するパワーパターンN3が設けられること。
(3)検出回路26は、一端がパワーパターンN3に接続され、他端がパワーパターンN1に接続されること。
(4)パワー配線43は、第1の基板30-1上の検出回路26に接続されること。
(5)第2の基板31-1上のパワーパターンN2は、インバータモジュール25-1~25-3のそれぞれの負極側端子15に直接接続されていること。
FIG. 9 is a diagram showing a first modification of the pattern layout shown in FIG. Differences from FIG. 8 are as follows.
(1) One detection circuit 26 is arranged on the first substrate 30-1 instead of the plurality of detection circuits 26-1 to 26-3 shown in FIG.
(2) A power pattern N3 for connecting the detection circuit 26 and the GND terminal 40 is provided on the first substrate 30-1.
(3) The detection circuit 26 has one end connected to the power pattern N3 and the other end connected to the power pattern N1.
(4) The power wiring 43 is connected to the detection circuit 26 on the first substrate 30-1.
(5) The power pattern N2 on the second substrate 31-1 is directly connected to the negative terminal 15 of each of the inverter modules 25-1 to 25-3.
 図10は図8に示すパターンレイアウトの第2の変形例を示す図である。図8との違いは以下の通りである。
(1)第2の基板31-2には、複数の検出回路26-1~26-3の代わりに1つの検出回路26が配置されること。
(2)第2の基板31-2にはパワーパターンN3が設けられ、パワーパターンN3は、複数のインバータモジュール25-1~25-3のそれぞれの負極側端子15と検出回路26とを接続すること。
(3)検出回路26は、一端がパワーパターンN3に接続され、他端がパワー配線43に接続されること。
FIG. 10 is a diagram showing a second modification of the pattern layout shown in FIG. Differences from FIG. 8 are as follows.
(1) One detection circuit 26 is arranged on the second substrate 31-2 instead of the plurality of detection circuits 26-1 to 26-3.
(2) The power pattern N3 is provided on the second substrate 31-2, and the power pattern N3 connects the negative terminal 15 and the detection circuit 26 of each of the plurality of inverter modules 25-1 to 25-3. thing.
(3) The detection circuit 26 has one end connected to the power pattern N3 and the other end connected to the power wiring 43.
 図9,10のように構成した場合でも、インバータモジュール25-1~25-3のそれぞれの正極側端子14と第1の基板30上のパワーパターンP1との間に電流が流れる。また、インバータモジュール25-1~25-3のそれぞれの負極側端子15と第1の基板30上のパワーパターンN1との間に電流が流れる。これにより図8に示す構成と同様の効果を得ることができる。 9 and 10, current flows between the positive terminal 14 of each of the inverter modules 25-1 to 25-3 and the power pattern P1 on the first substrate 30. In addition, a current flows between the negative terminal 15 of each of the inverter modules 25-1 to 25-3 and the power pattern N1 on the first substrate 30. Thereby, the same effect as the structure shown in FIG. 8 can be acquired.
 図11は図7から図10に示す複数のインバータモジュールを第2の基板へ配置した状態を示す図である。図12は図11に示す第2の基板上のパターンレイアウトを示す図である。 FIG. 11 is a diagram showing a state in which the plurality of inverter modules shown in FIGS. 7 to 10 are arranged on the second substrate. FIG. 12 is a diagram showing a pattern layout on the second substrate shown in FIG.
 図11において、インバータモジュール25-1~25-3のそれぞれの正極側端子14、負極側端子15および出力端子17は、第2の基板31の短手方向の中央部に配置される。 In FIG. 11, the positive terminal 14, the negative terminal 15 and the output terminal 17 of each of the inverter modules 25-1 to 25-3 are arranged in the center portion of the second substrate 31 in the short direction.
 インバータモジュール25-1~25-3のそれぞれの制御端子44は、第2の基板31と対向しない位置に配列される。 The control terminals 44 of the inverter modules 25-1 to 25-3 are arranged at positions that do not face the second substrate 31.
 図12において、パワーパターンP2,N2は第2の基板31の外周側に配置される。パワーパターンN2とインバータモジュール25-1~25-3のそれぞれの負極側端子15との間には、パワーパターンN3が配置される。 In FIG. 12, the power patterns P2 and N2 are arranged on the outer peripheral side of the second substrate 31. A power pattern N3 is disposed between the power pattern N2 and the negative terminals 15 of the inverter modules 25-1 to 25-3.
 パワーパターンN2とパワーパターンN3との間には、シャント抵抗16-1~16-3が配置される。 The shunt resistors 16-1 to 16-3 are arranged between the power pattern N2 and the power pattern N3.
 シャント抵抗16-1~16-3は、それぞれの一端がパワーパターンN2に接続され、それぞれの他端がパワーパターンN3に接続される。 Each of the shunt resistors 16-1 to 16-3 has one end connected to the power pattern N2 and the other end connected to the power pattern N3.
 またパワーパターンN3とパワーパターンP2との間には、スナバコンデンサ46-1,46-2,46-3が配置される。スナバコンデンサ46-1~46-3は、それぞれの一端がパワーパターンN3に接続され、それぞれの他端がパワーパターンP2に接続される。 Further, snubber capacitors 46-1, 46-2, 46-3 are arranged between the power pattern N3 and the power pattern P2. Snubber capacitors 46-1 to 46-3 each have one end connected to power pattern N3 and the other end connected to power pattern P2.
 図13は本発明の実施の形態に係るモータ駆動装置を構成する第1の基板および第2の基板を組み合わせた状態を示す図である。 FIG. 13 is a view showing a state in which the first substrate and the second substrate constituting the motor driving apparatus according to the embodiment of the present invention are combined.
 第1の基板30は、第1の主面30aと、第1の主面30aの反対側の第2の主面30bとを有する。第2の基板31は、第2の主面30bに対向する第3の主面31aと、第3の主面31aの反対側の第4の主面31bとを有する。 The first substrate 30 has a first main surface 30a and a second main surface 30b opposite to the first main surface 30a. The second substrate 31 has a third main surface 31a that faces the second main surface 30b, and a fourth main surface 31b opposite to the third main surface 31a.
 第2の基板31と第1の基板30との間に台座60が設けられる。台座60は、第1の基板30から第2の基板31までの間隔を調整するためのものである。 A pedestal 60 is provided between the second substrate 31 and the first substrate 30. The pedestal 60 is for adjusting the distance from the first substrate 30 to the second substrate 31.
 図13には、本発明の実施の形態に係る第2の基板31をリードフレームモールド基板として構成した例を示す。リードフレームモールド基板は、金属板リード37を絶縁性の樹脂49で一体にモールドした基板である。金属板リード37に絶縁性の樹脂49を施すことにより金属板リード37の絶縁性を確保でき、より品質の高いモータ駆動装置100を提供することができる。 FIG. 13 shows an example in which the second substrate 31 according to the embodiment of the present invention is configured as a lead frame mold substrate. The lead frame mold substrate is a substrate in which metal plate leads 37 are integrally molded with an insulating resin 49. By applying the insulating resin 49 to the metal plate lead 37, the insulating property of the metal plate lead 37 can be ensured, and the motor drive device 100 with higher quality can be provided.
 図13では1つの金属板リード37が示されるが、金属板リード37は正極側と負極側のそれぞれが設けられているものとする。金属板リード37には、一般的にメッキを施した銅または黄銅が用いられる。金属板リード37は、打ち抜き、折り曲げ、ワイヤカット、レーザ加工、またはエッチングといった方法で設けられる。 In FIG. 13, one metal plate lead 37 is shown, but the metal plate lead 37 is provided with a positive electrode side and a negative electrode side, respectively. For the metal plate lead 37, generally plated copper or brass is used. The metal plate lead 37 is provided by a method such as punching, bending, wire cutting, laser processing, or etching.
 金属板リード37を内包する樹脂49には、絶縁を目的としてナイロン、不飽和ポリエステル、またはエポキシ樹脂にフィラーを混合したものが用いられる。 For the resin 49 enclosing the metal plate lead 37, nylon, unsaturated polyester, or epoxy resin mixed with a filler is used for the purpose of insulation.
 図13の例では、マイコン周辺部27が第1の主面30a側に配置され、平滑コンデンサ24が第2の主面30bに配置される。但しマイコン周辺部27および平滑コンデンサ24の配置位置は、図示例に限定されるものではない。 In the example of FIG. 13, the microcomputer peripheral portion 27 is arranged on the first main surface 30a side, and the smoothing capacitor 24 is arranged on the second main surface 30b. However, the arrangement positions of the microcomputer peripheral portion 27 and the smoothing capacitor 24 are not limited to the illustrated example.
 インバータモジュール25-1~25-3、シャント抵抗16、およびスナバコンデンサ46-1~46-3は、第4の主面31b側に配置される。 The inverter modules 25-1 to 25-3, the shunt resistor 16, and the snubber capacitors 46-1 to 46-3 are arranged on the fourth main surface 31b side.
 インバータモジュール25-1~25-3には放熱フィン47が取付られる。 Radiator fins 47 are attached to the inverter modules 25-1 to 25-3.
 平滑コンデンサ24は、第2の主面30bの内、第2の基板31が設置されていない箇所に配置される。 The smoothing capacitor 24 is disposed at a location where the second substrate 31 is not installed in the second main surface 30b.
 第1の基板30の第2の主面30b側には、台座60、第2の基板31、第2の基板31、インバータモジュール25-1~25-3、および放熱フィン46が積層されており、第1の基板30の第1の主面30a側に比べて、部品全体で構成される厚みが大きくなっている。そのため、図示例のように平滑コンデンサ24を第2の主面30b側に配置した場合、平滑コンデンサ24を第1の主面30a側に配置した場合に比べて、第1の基板30と第2の基板31で構成される部品全体の大きさを小さくすることができる。その結果、第1の基板30および第2の基板31を収納するための図示しない電気品箱を小型化することができる。 On the second main surface 30b side of the first substrate 30, a pedestal 60, a second substrate 31, a second substrate 31, inverter modules 25-1 to 25-3, and heat radiation fins 46 are laminated. Compared with the first main surface 30a side of the first substrate 30, the thickness constituted by the entire component is larger. Therefore, when the smoothing capacitor 24 is arranged on the second main surface 30b side as in the illustrated example, the first substrate 30 and the second substrate 30 are compared to the case where the smoothing capacitor 24 is arranged on the first main surface 30a side. Therefore, the size of the entire component composed of the substrate 31 can be reduced. As a result, an electrical component box (not shown) for housing the first substrate 30 and the second substrate 31 can be reduced in size.
 金属板リード37には、インバータモジュール25-1~25-3、シャント抵抗16およびスナバコンデンサ46-1~46-3が接続される。 The inverter plates 25-1 to 25-3, the shunt resistor 16, and the snubber capacitors 46-1 to 46-3 are connected to the metal plate lead 37.
 金属板リード37の一端部、すなわち樹脂49が施されていない部分は、第1の基板30側に折り曲げられ、第1の基板30上のスルーホールを貫通し、半田により第1の基板30に接続される。 One end portion of the metal plate lead 37, that is, a portion where the resin 49 is not applied is bent toward the first substrate 30, passes through a through hole on the first substrate 30, and is soldered to the first substrate 30. Connected.
 インバータモジュール25-1~25-3に接続された制御配線45は、第1の基板30側に伸び、第1の基板30上のスルーホールを貫通し、半田により第1の基板30に接続される。 The control wiring 45 connected to the inverter modules 25-1 to 25-3 extends to the first substrate 30 side, penetrates through holes on the first substrate 30, and is connected to the first substrate 30 by solder. The
 図14は図13に示すスナバコンデンサの配置位置を変更した例を示す図である。図13との違いは以下の通りである。
(1)台座60の高さが異なり、図14の第1の基板30から第2の基板31までの間隔は、図13の第1の基板30から第2の基板31までの間隔よりも広いこと。
(2)スナバコンデンサ46-1~46-3が第3の主面31a側に配置されていること。
FIG. 14 is a diagram showing an example in which the arrangement position of the snubber capacitor shown in FIG. 13 is changed. Differences from FIG. 13 are as follows.
(1) The height of the pedestal 60 is different, and the distance from the first substrate 30 to the second substrate 31 in FIG. 14 is wider than the distance from the first substrate 30 to the second substrate 31 in FIG. thing.
(2) The snubber capacitors 46-1 to 46-3 are arranged on the third main surface 31a side.
 図13に示す位置にスナバコンデンサ46-1~46-3を配置した場合、第2の基板31の第4の主面31bに配置されている部品が多く、それらの部品を回避しながらパワーパターンP2,N2を引き回す必要があるため、パワーパターンP2,N2の引き回し量が長くなり、パワーパターンP2,N2のインピーダンスが大きくなる。このインピーダンスが大きくなるほどサージ発生時のノイズによる影響が大きくなる。 When the snubber capacitors 46-1 to 46-3 are arranged at the positions shown in FIG. 13, there are many parts arranged on the fourth main surface 31b of the second substrate 31, and the power pattern is avoided while avoiding these parts. Since it is necessary to route P2 and N2, the routing amount of the power patterns P2 and N2 becomes long, and the impedance of the power patterns P2 and N2 increases. As this impedance increases, the influence of noise upon occurrence of a surge increases.
 図14の構成によれば、第2の基板31の端面の内、部品配置が少ない第3の主面31aを利用してスナバコンデンサ46-1~46-3を配置することにより、部品を回避する引き回しが少ないので、パワーパターンP2,N2の引き回し量が短くなり、サージの発生がより一層抑制される。 According to the configuration shown in FIG. 14, parts are avoided by arranging the snubber capacitors 46-1 to 46-3 using the third main surface 31a having a small part arrangement among the end faces of the second substrate 31. Therefore, the amount of power patterns P2 and N2 is reduced, and the occurrence of surge is further suppressed.
 図15は図13に示す第1の基板と第2の基板と3つのインバータモジュールとを側面から見た図であり、図13の矢印B方向から見た図である。なお、インバータモジュールに取り付けられている放熱フィンは図示を省略している。 FIG. 15 is a view of the first substrate, the second substrate, and the three inverter modules shown in FIG. 13 as viewed from the side, and is a view as viewed from the direction of arrow B in FIG. Note that the radiation fins attached to the inverter module are not shown.
 図15の例では、第2の基板31に直列に配列された3つのインバータモジュール25-1~25-3の内、両側のインバータモジュール25-1,25-3の中央に位置するインバータモジュール25-2がマイコン周辺部27の投影面にあたる領域Aと重なる位置に配置される。すなわち、3つのインバータモジュール25-1~25-3とマイコン周辺部27との間の距離が最も近くなるように3つのインバータモジュール25-1~25-3が配列される。領域Aは、マイコン周辺部27を第1の基板30および第2の基板31に向かって投影してなる領域である。 In the example of FIG. 15, among the three inverter modules 25-1 to 25-3 arranged in series on the second substrate 31, the inverter module 25 located at the center of the inverter modules 25-1 and 25-3 on both sides. -2 is arranged at a position overlapping the area A corresponding to the projection surface of the microcomputer peripheral portion 27. That is, the three inverter modules 25-1 to 25-3 are arranged so that the distance between the three inverter modules 25-1 to 25-3 and the microcomputer peripheral portion 27 is the shortest. The area A is an area formed by projecting the microcomputer peripheral portion 27 toward the first substrate 30 and the second substrate 31.
 なお各インバータモジュールは図面の奥行き方向の位置も領域Aと重なるように配置されていることが望ましい。奥行き方向とは、第4の主面31bと平行な面に沿う方向であって、各インバータモジュール25-1~25-3の配列方向と直交する方向である。 Note that each inverter module is preferably arranged so that the position in the depth direction of the drawing also overlaps the region A. The depth direction is a direction along a plane parallel to the fourth main surface 31b, and is a direction orthogonal to the arrangement direction of the inverter modules 25-1 to 25-3.
 図15の構成例によれば、各インバータモジュール25-1~25-3とマイコン周辺部27との間の距離が近くなるため、各インバータモジュール25-1~25-3からマイコン周辺部27に伸びる金属板リード37および制御配線45の長さをより一層短くすることができる。従ってパワーパターンP2、パワーパターンN2および制御配線45のそれぞれのインピーダンスが低減され、ノイズの影響をより一層軽減することができる。 According to the configuration example of FIG. 15, since the distance between each of the inverter modules 25-1 to 25-3 and the microcomputer peripheral section 27 is short, the inverter modules 25-1 to 25-3 are connected to the microcomputer peripheral section 27. The lengths of the extending metal plate lead 37 and the control wiring 45 can be further shortened. Therefore, the impedance of each of the power pattern P2, the power pattern N2, and the control wiring 45 is reduced, and the influence of noise can be further reduced.
 なお実施の形態では、SiCをスイッチング素子51a~51fに用いる構成としたが、SiCの代わりに窒化ガリウム系材料またはダイヤモンドを用いてもよい。 In the embodiment, SiC is used for the switching elements 51a to 51f. However, a gallium nitride material or diamond may be used instead of SiC.
 以上に説明したように本発明の実施の形態のモータ駆動装置は、複数のインバータモジュールを有しモータに交流電力を出力するインバータ部と、複数のインバータモジュールのそれぞれを制御する制御部と、制御部が配置され、第1の主面と第2の主面とを有する第1の基板と、前記第2の主面に対向する第3の主面と、前記複数のインバータモジュールが配置される第4の主面とを有する第2の基板とを備える。 As described above, the motor drive device according to the embodiment of the present invention includes an inverter unit that has a plurality of inverter modules and outputs AC power to the motor, a control unit that controls each of the plurality of inverter modules, A first substrate having a first main surface and a second main surface, a third main surface opposite to the second main surface, and the plurality of inverter modules. And a second substrate having a fourth main surface.
 本発明の実施の形態のモータ駆動装置によれば、チップサイズの小さい低容量のWBG半導体をスイッチング素子に用いたため、複数のインバータモジュールそれぞれの出力の差異を抑制することができる。その結果、モータ制御性の低下が抑制されると共に、電流のアンバランスによるインバータモジュールの局所的な発熱を抑制できる。 According to the motor drive device of the embodiment of the present invention, since the low-capacity WBG semiconductor having a small chip size is used as the switching element, it is possible to suppress the difference in the output of each of the plurality of inverter modules. As a result, a decrease in motor controllability is suppressed, and local heat generation of the inverter module due to current imbalance can be suppressed.
 また本発明の実施の形態のモータ駆動装置によれば、パワーパターンのパターン面積、パターン長またはパターン幅の調整により、配線インピーダンスを抑制することができるため、スナバコンデンサの挿入位置とパワーモジュール間の距離を持たせたとしてもインピーダンスを抑制することができ、パターン配線の自由度を高めることができる。 Further, according to the motor drive device of the embodiment of the present invention, the wiring impedance can be suppressed by adjusting the pattern area, pattern length, or pattern width of the power pattern. Even if the distance is given, the impedance can be suppressed, and the degree of freedom of pattern wiring can be increased.
 また本発明の実施の形態のモータ駆動装置によれば、金属板リードの配線長に対する厚さおよび幅を変更することにより配線インピーダンスの値を調整することにより、パワーモジュール毎のインピーダンスの差異を抑制するようにしているため、スナバコンデンサの容量が同一となり、スナバコンデンサの共通化ができる。同一とは、完全一致を示すものではなく、誤差等による多少のずれを含んでもよい。 Further, according to the motor drive device of the embodiment of the present invention, the impedance difference for each power module is suppressed by adjusting the value of the wiring impedance by changing the thickness and width of the metal plate lead with respect to the wiring length. Therefore, the snubber capacitors have the same capacity, and the snubber capacitors can be shared. “Identical” does not indicate complete coincidence, and may include some deviation due to an error or the like.
 また本発明の実施の形態のモータ駆動装置によれば、第2の基板を用いることで各インバータモジュールからマイコン周辺部に伸びる金属板リードおよび制御配線の長さをより一層短くすることができるため配線インピーダンスを抑制することができ、電流レベルによっては複数のパワーモジュールに対して一つのスナバコンデンサを用いることができ、回路構成を簡略化でき、コストの低減と信頼性の向上を図ることができる。 Further, according to the motor drive device of the embodiment of the present invention, the length of the metal plate leads and control wiring extending from each inverter module to the peripheral portion of the microcomputer can be further reduced by using the second substrate. Wiring impedance can be suppressed, and depending on the current level, one snubber capacitor can be used for a plurality of power modules, the circuit configuration can be simplified, cost can be reduced, and reliability can be improved. .
 また本発明の実施の形態のモータ駆動装置は、上記のようにインピ-ダンスを抑制するとともに、パワーパターンのグランドが第1の基板の接地部に一点接地しグランドに伝搬し難くすることでノイズを低減できるため、dV/dtが高く高速なスイッチが可能なWBG半導体が用いられたスイッチング素子の駆動に好適であり、ノイズの影響によるスイッチング素子の誤動作を防止できるため、品質の向上を図ることができる。 In addition, the motor driving device according to the embodiment of the present invention suppresses the impedance as described above, and the ground of the power pattern is grounded at a single point to the grounding portion of the first substrate so that it is difficult to propagate to the ground. Therefore, it is suitable for driving a switching element using a WBG semiconductor having a high dV / dt and capable of high-speed switching, and can prevent malfunction of the switching element due to the influence of noise, thereby improving quality. Can do.
 また本発明の実施の形態のモータ駆動装置のインバータモジュールは、WBG半導体が用いられたスイッチング素子で構成されるため、スイッチング損失が低減され、効率の向上を図ることができる。 In addition, since the inverter module of the motor drive device according to the embodiment of the present invention is configured by a switching element using a WBG semiconductor, switching loss is reduced and efficiency can be improved.
 また本発明の実施の形態のモータ駆動装置では、複数のインバータモジュールが制御部を含むマイコン周辺部を第1の基板および第2の基板に向かって投影してなる領域と重なる位置に配置される。そのため各インバータモジュールの制御信号とマイコン周辺部との間の距離が近くなり、制御性の低下および誤検出を抑制することができる。 Further, in the motor drive device according to the embodiment of the present invention, the plurality of inverter modules are arranged at positions overlapping the areas formed by projecting the microcomputer peripheral portion including the control unit toward the first substrate and the second substrate. . For this reason, the distance between the control signal of each inverter module and the peripheral portion of the microcomputer is reduced, so that it is possible to suppress deterioration in controllability and erroneous detection.
 また本発明の実施の形態のモータ駆動装置では、第2の基板に複数のインバータモジュールが配置されるため、第1の基板の基板面積の増加を抑制でき、基板のサイズアップに伴う外郭ケースの大型化を抑制でき、外郭ケースの製造コストの上昇を抑制することができ、またモータ駆動装置の大型化を抑制できる。 Further, in the motor drive device according to the embodiment of the present invention, since a plurality of inverter modules are arranged on the second board, an increase in the board area of the first board can be suppressed, and the outer case accompanying the increase in the board size can be suppressed. An increase in size can be suppressed, an increase in the manufacturing cost of the outer case can be suppressed, and an increase in size of the motor drive device can be suppressed.
 図16は本発明の実施の形態に係るモータ駆動装置を搭載した空気調和機の構成図である。空気調和機300は、室内機304と、室内機304に接続される室外機301とを備える。室内機304および室外機301にはモータ6が設けられている。例えば室外機301では送風ファン303および圧縮機302のそれぞれの駆動源としてモータ6が用いられる。 FIG. 16 is a configuration diagram of an air conditioner equipped with a motor drive device according to an embodiment of the present invention. The air conditioner 300 includes an indoor unit 304 and an outdoor unit 301 connected to the indoor unit 304. The indoor unit 304 and the outdoor unit 301 are provided with a motor 6. For example, in the outdoor unit 301, the motor 6 is used as a driving source for each of the blower fan 303 and the compressor 302.
 また室内機304および室外機301には、当該駆動源を制御するためモータ駆動装置100が用いられる。モータ駆動装置100を用いることで、低コストで品質の良い空気調和機300を得ることができる。 Further, the motor drive device 100 is used for the indoor unit 304 and the outdoor unit 301 in order to control the drive source. By using the motor drive device 100, the air conditioner 300 with good quality can be obtained at low cost.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 交流電源、2 リアクタ、3 整流回路、4,24 平滑コンデンサ、5,5A インバータ部、5A1,25,25-1,25-2,25-3,51,52,53 インバータモジュール、6 モータ、7 短絡部、8 電圧検出部、9 電流検出部、10 電源回路、11 制御部、12 正極側電源線、13 負極側電源線、14 正極側端子、15 負極側端子、16,16-1,16-2,16-3 シャント抵抗、17 出力端子、20,20-1 基板、21 電源入力部、22 ノイズフィルタ、23 コンバータ回路、26,26-1,26-2,26-3 検出回路、27 マイコン周辺部、28,44 制御端子、30,30-1 第1の基板、30a 第1の主面、30b 第2の主面、31,31-1,31-2 第2の基板、31a 第3の主面、31b 第4の主面、37 金属板リード、40 GND端子、41 パワー端子、42,43 パワー配線、45 制御配線、46-1,46-2,46-3 スナバコンデンサ、47 放熱フィン、50a,50b,50c,50d,50e,50f,51a,51b,51c,51d,51e,51f スイッチング素子、60 台座、71-1,71-2,71-3 制御配線、72-1,72-2,72-3 制御信号用パターン、100 モータ駆動装置、300 空気調和機、301 室外機、302 圧縮機、303 送風ファン、304 室内機。 1 AC power supply, 2 reactor, 3 rectifier circuit, 4,24 smoothing capacitor, 5,5A inverter section, 5A1,25,25-1,25-2,25-3,51,52,53 inverter module, 6 motor, 7 short circuit part, 8 voltage detection part, 9 current detection part, 10 power supply circuit, 11 control part, 12 positive power supply line, 13 negative power supply line, 14 positive terminal, 15 negative terminal, 16, 16-1, 16-2, 16-3 shunt resistor, 17 output terminal, 20, 20-1 board, 21 power input unit, 22 noise filter, 23 converter circuit, 26, 26-1, 26-2, 26-3 detection circuit, 27 Microcomputer peripheral part, 28, 44 control terminal, 30, 30-1 first substrate, 30a first main surface, 30b second main surface, 31, 31-1, 3 -2nd substrate, 31a 3rd main surface, 31b 4th main surface, 37 metal plate lead, 40 GND terminal, 41 power terminal, 42, 43 power wiring, 45 control wiring, 46-1, 46- 2,46-3 snubber capacitor, 47 heat radiation fin, 50a, 50b, 50c, 50d, 50e, 50f, 51a, 51b, 51c, 51d, 51e, 51f switching element, 60 pedestal, 71-1, 71-2, 71 -3 Control wiring, 72-1, 72-2, 72-3 Control signal pattern, 100 motor drive device, 300 air conditioner, 301 outdoor unit, 302 compressor, 303 blower fan, 304 indoor unit.

Claims (9)

  1.  モータを駆動するモータ駆動装置であって、
     複数のインバータモジュールを有し、前記モータに交流電力を出力するインバータ部と、
     前記複数のインバータモジュールのそれぞれを制御する制御部と、
     前記制御部が配置され、第1の主面と第2の主面とを有する第1の基板と、
     前記第2の主面に対向する第3の主面と、前記複数のインバータモジュールが配置される第4の主面とを有する第2の基板と、
     を備えたモータ駆動装置。
    A motor driving device for driving a motor,
    An inverter unit having a plurality of inverter modules and outputting AC power to the motor;
    A control unit for controlling each of the plurality of inverter modules;
    A first substrate on which the control unit is disposed and having a first main surface and a second main surface;
    A second substrate having a third main surface facing the second main surface and a fourth main surface on which the plurality of inverter modules are disposed;
    A motor drive device comprising:
  2.  前記第2の基板は、前記複数のインバータモジュールのそれぞれの正極側端子と負極側端子に接続される金属板リードを有する請求項1に記載のモータ駆動装置。 The motor drive device according to claim 1, wherein the second substrate has a metal plate lead connected to each of a positive terminal and a negative terminal of the plurality of inverter modules.
  3.  前記複数のインバータモジュールは、前記制御部を前記第1の基板および前記第2の基板に向かって投影してなる領域と重なる位置に配置される請求項1または請求項2に記載のモータ駆動装置。 3. The motor drive device according to claim 1, wherein the plurality of inverter modules are arranged at positions overlapping with regions formed by projecting the control unit toward the first substrate and the second substrate. .
  4.  前記複数のインバータモジュールのそれぞれに接続される前記金属板リードは、それぞれの配線インピーダンスの値が同一となる幅および厚みを有する請求項2または請求項3に記載のモータ駆動装置。 The motor driving device according to claim 2 or 3, wherein the metal plate lead connected to each of the plurality of inverter modules has a width and a thickness in which each wiring impedance value is the same.
  5.  前記複数のインバータモジュールは、それぞれが前記第1の基板に接続される複数の制御端子を備え、
     前記複数の制御端子は、前記第2の基板の一対の辺部の一方側に配列される請求項1から請求項4の何れか一項に記載のモータ駆動装置。
    Each of the plurality of inverter modules includes a plurality of control terminals connected to the first substrate,
    5. The motor drive device according to claim 1, wherein the plurality of control terminals are arranged on one side of a pair of sides of the second substrate.
  6.  前記複数のインバータモジュールはそれぞれが複数のスイッチング素子を有し、
     前記複数のスイッチング素子はそれぞれがワイドバンドギャップ半導体素子であり、
     前記ワイドバンドギャップ半導体素子は、炭化ケイ素、窒化ガリウム系材料、またはダイヤモンドにより形成される請求項1から請求項5の何れか一項に記載のモータ駆動装置。
    Each of the plurality of inverter modules has a plurality of switching elements,
    Each of the plurality of switching elements is a wide bandgap semiconductor element,
    The motor driving apparatus according to any one of claims 1 to 5, wherein the wide band gap semiconductor element is formed of silicon carbide, a gallium nitride-based material, or diamond.
  7.  前記第3の主面に配置されたスナバコンデンサを有する請求項1から請求項6の何れか一項に記載のモータ駆動装置。 The motor drive device according to any one of claims 1 to 6, further comprising a snubber capacitor disposed on the third main surface.
  8.  前記金属板リードは、絶縁性の樹脂でモールドされている請求項2または請求項3に記載のモータ駆動装置。 4. The motor driving device according to claim 2, wherein the metal plate lead is molded with an insulating resin.
  9. 請求項1から請求項8の何れか一項に記載のモータ駆動装置を搭載した空気調和機。 An air conditioner equipped with the motor drive device according to any one of claims 1 to 8.
PCT/JP2016/064513 2016-05-16 2016-05-16 Motor drive device and air conditioner WO2017199304A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018517946A JP6892856B2 (en) 2016-05-16 2016-05-16 Motor drive and air conditioner
PCT/JP2016/064513 WO2017199304A1 (en) 2016-05-16 2016-05-16 Motor drive device and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064513 WO2017199304A1 (en) 2016-05-16 2016-05-16 Motor drive device and air conditioner

Publications (1)

Publication Number Publication Date
WO2017199304A1 true WO2017199304A1 (en) 2017-11-23

Family

ID=60324992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064513 WO2017199304A1 (en) 2016-05-16 2016-05-16 Motor drive device and air conditioner

Country Status (2)

Country Link
JP (1) JP6892856B2 (en)
WO (1) WO2017199304A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176166A1 (en) * 2021-02-19 2022-08-25 株式会社ジェイテクト Motor control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078309A (en) * 2006-01-16 2011-04-14 Mitsubishi Electric Corp Motor drive circuit and outdoor unit for air conditioner
JP2016036244A (en) * 2014-07-31 2016-03-17 株式会社デンソー Driver, and electric power steering device using the same
WO2016071963A1 (en) * 2014-11-04 2016-05-12 三菱電機株式会社 Motor drive device and air conditioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185026A (en) * 2006-01-05 2007-07-19 Hitachi Ltd Power conversion device
JP4516060B2 (en) * 2006-12-26 2010-08-04 株式会社東芝 Vehicle control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078309A (en) * 2006-01-16 2011-04-14 Mitsubishi Electric Corp Motor drive circuit and outdoor unit for air conditioner
JP2016036244A (en) * 2014-07-31 2016-03-17 株式会社デンソー Driver, and electric power steering device using the same
WO2016071963A1 (en) * 2014-11-04 2016-05-12 三菱電機株式会社 Motor drive device and air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176166A1 (en) * 2021-02-19 2022-08-25 株式会社ジェイテクト Motor control device

Also Published As

Publication number Publication date
JPWO2017199304A1 (en) 2018-08-30
JP6892856B2 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
JP5545334B2 (en) Electronic circuit equipment
JP6580609B2 (en) inverter
US20180191220A1 (en) Electric compressor
JP2018125494A (en) Semiconductor device and power conversion device
JP6615326B2 (en) Motor drive device and air conditioner
US10438874B2 (en) Power conversion device
JP6745991B2 (en) Semiconductor power module
EP2808892B1 (en) Inverter unit
WO2019026339A1 (en) Power conversion device and vehicle equipped with power conversion device
JP2009278772A (en) Inverter module
WO2018073965A1 (en) Semiconductor module and power conversion device
JP3793700B2 (en) Power converter
JP5524986B2 (en) Semiconductor device
WO2017199304A1 (en) Motor drive device and air conditioner
JP2014042377A (en) Power supply bus bar and power converter using the same
JP2015053410A (en) Semiconductor module
US9866102B2 (en) Power conversion device
JP6360865B2 (en) Snubber circuit, power semiconductor module, and induction heating power supply device
JP6502576B1 (en) Semiconductor device and power converter
EP3850909B1 (en) Snubber circuit, power semiconductor module, and induction heating power supply device
JP6851242B2 (en) Power converter
JP5846929B2 (en) Power semiconductor module
WO2020071098A1 (en) Semiconductor module
WO2023140077A1 (en) Semiconductor device and inverter provided with semiconductor device
WO2022107439A1 (en) Power semiconductor module

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018517946

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902324

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902324

Country of ref document: EP

Kind code of ref document: A1