WO2017179179A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2017179179A1
WO2017179179A1 PCT/JP2016/062051 JP2016062051W WO2017179179A1 WO 2017179179 A1 WO2017179179 A1 WO 2017179179A1 JP 2016062051 W JP2016062051 W JP 2016062051W WO 2017179179 A1 WO2017179179 A1 WO 2017179179A1
Authority
WO
WIPO (PCT)
Prior art keywords
power converter
bypass
power
voltage
cell
Prior art date
Application number
PCT/JP2016/062051
Other languages
French (fr)
Japanese (ja)
Inventor
充弘 門田
泰明 乗松
尊衛 嶋田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2016/062051 priority Critical patent/WO2017179179A1/en
Publication of WO2017179179A1 publication Critical patent/WO2017179179A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power conversion device.
  • a power conversion device in which a plurality of power converter cells (hereinafter abbreviated as cells) are connected in series or in parallel is used.
  • PCS Power Conditioning System
  • Patent Document 1 discloses that “power converters 3a to 3d are provided for each of the solar battery panels 2a to 2d. These power converters 3a to 3d are connected to the solar battery panels 2a to 2d. The output power of 2d is subjected to voltage-current conversion by tracking the maximum power point, and the reactors 6 and 7 and the capacitor C between the output terminals O1 and O2 can be reduced in size.
  • a power conversion device including a switching circuit such as an inverter is often used together with a reactor (also called a coil or an inductor) in order to reduce harmonic current flowing through a load.
  • a reactor also called a coil or an inductor
  • Large-capacity power converters require large reactors to cope with high voltages and currents, and their weight and cost are also issues.
  • the reactor is often installed separately from the power converter, and wiring between the power converter and the reactor is also necessary. Therefore, the number of installation steps as a whole apparatus and the installation cost have increased.
  • the inductance of the reactor should be set to a minimum value for reducing the harmonic current to a desired value.
  • the minimum inductance required to reduce the harmonic current also varies.
  • Patent Document 1 describes that a reactor is provided for each of a plurality of power conversion units. However, Patent Document 1 only describes that the inductance value is constant regardless of the operating conditions.
  • an object of the present invention is to provide a highly efficient power converter that can set an appropriate inductance value according to operating conditions.
  • the above-described problem includes, for example, a plurality of power converter cells and a control device that controls the plurality of power converter cells, and output terminals of the plurality of power converter cells are connected in series, respectively,
  • One or more reactors are inserted in series in the path through which the output current of the reactor cell flows, and the first bypass unit is connected in parallel to at least one reactor, and the control device controls the first bypass unit. It solves by the power converter device characterized by this.
  • FIG. It is a structure of the power converter device in Example 1.
  • FIG. It is a modification regarding the structure of the power converter device in Example 1.
  • FIG. This is a configuration example of a reactor, in which two reactors 302 and 305 are connected in series to the output terminal of the cell 102.
  • This is a configuration example of a reactor, in which a fuse 307 is connected in series with a reactor 302.
  • This is a configuration example of a reactor, in which a capacitor 308 is connected between reactors 302 and 306.
  • FIG. 2 is a block diagram of a control device in Embodiment 1.
  • FIG. 2 It is a flowchart by which the control apparatus 200 controls a 1st bypass part based on DC link voltage. It is an example of the mounting form of the cell with which a power converter device is provided, a reactor, and the 1st bypass part, and is a top view at the time of seeing this from the upper part.
  • FIG. 5A shows a waveform of the combined output voltage Vos when one cell is stopped.
  • FIG. 5A described in the first embodiment is a Vos waveform during normal operation, and the comparison is shown.
  • FIG. 5B is a waveform of the combined output voltage Vos when one cell is stopped, and FIG.
  • 5B described in the first embodiment is a Vos waveform during normal operation, and a comparison with this is shown.
  • the processing and calculation contents of the control device 202 in Embodiment 2 are represented as a block diagram. 7 is a part of a configuration of a power conversion device according to a third embodiment. 10 is another example of the configuration in the third embodiment. It is an example of the mounting form of a cell, a reactor, an auxiliary
  • FIG. 1 shows the configuration of the power conversion apparatus according to Embodiment 1 of the present invention.
  • the power conversion device 1000 converts the power input from the external power source 400 and outputs it to the external load 500.
  • the power conversion apparatus 1000 includes a plurality of cells 101 to 104 and a control apparatus 200 that controls these cells, and the output terminals of each cell are connected in series.
  • the power conversion apparatus 1000 includes reactors 301 to 304, and the reactors are inserted in series at the connection points between the cells as shown in FIG. Although FIG. 1 shows an example in which four cells are used, the number of cells is arbitrary.
  • the cells 101 to 104 convert the input voltage from the outside to generate output voltages Vo1 to Vo4, respectively. Since the output terminals of the cells are connected in series, Vo1 to Vo4 are synthesized, and the power converter 1000 can output a high voltage.
  • the control device 200 controls the output voltage or output current of the power conversion device 1000 to a predetermined value by controlling Vo1 to Vo4 and thus Vos.
  • the control device 200 outputs a control signal to each cell in order to control Vo1 to Vo4.
  • Each cell outputs a detection signal indicating a physical quantity such as voltage, current, and temperature of each cell and a state such as presence or absence of abnormality to the control device 200.
  • FIG. 1 only signals that are input and output between the control device 200 and the cell 101 are shown in order to prevent the drawing from becoming complicated. In practice, signals are input and output in the same manner between the control device 200 and the cells 102 to 104. Further, the signal expressed as one arrow in FIG. 1 may include a plurality of pieces of information. All elements of the control device 200 need not be mounted on a single substrate. Although details will be described in a later embodiment, some elements of the control device 200 may be mounted on a substrate on which the components of each cell are mounted.
  • the cell output voltages Vo1 to Vo4 and the combined output voltage Vos include harmonic components.
  • Reactors 301 to 304 reduce harmonic components included in the output current of power conversion device 1000.
  • the impedance of the load 500 changes abruptly, it plays a role of preventing the occurrence of overcurrent.
  • the effect of reducing harmonic current depends on the inductance of the reactor.
  • the total value of inductance increases as the number of reactors increases. (Hereinafter, defined as the combined inductance Ls) increases, and the harmonic current reduction effect increases.
  • the more reactors the greater the loss generated in the reactor, especially the copper loss.
  • Bypass units 311 to 314 are connected in parallel to the reactors 301 to 304, respectively.
  • the bypass part connected in parallel with a reactor in this way is called a 1st bypass part.
  • the first bypass units 311 to 314 are illustrated as switches in FIG. 1, relays, switching elements (semiconductors), and the like can be applied as these switches.
  • the 1st bypass part does not need to be connected with respect to all the reactors, and may be connected only with respect to some reactors.
  • FIG. 1 outputs a bypass signal for ON / OFF control of each first bypass unit.
  • FIG. 1 only the bypass signal for the first bypass unit 311 is shown to prevent the drawing from becoming complicated.
  • a bypass signal is similarly output to the first bypass units 312 to 314.
  • the element that outputs the control signal to the cells 101 to 104 and the element that outputs the bypass signal to the first bypass units 311 to 314 are different from each other even if they are mounted on the same substrate. It may be mounted on a substrate.
  • the inductance necessary for reducing the harmonic component to a predetermined value, and hence the number of reactors for realizing this vary depending on the operating conditions of the cells 101 to 104 or the load 500 conditions. Specifically, the required inductance varies depending on the DC link voltage of each cell, which will be described later, and the current output to the load 500.
  • the loss of the reactor can be minimized while the harmonic current is reduced to a predetermined value.
  • the combined inductance Ls can be finely adjusted.
  • the power source 400 may be either a DC power source or an AC power source.
  • the power source 400 when the power conversion apparatus 1000 is applied to a PCS for photovoltaic power generation, the power source 400 is a solar battery.
  • FIG. 1 shows a configuration in which each cell is connected in parallel to the power source 400.
  • the input terminal of each cell may be connected in series to the power supply 400.
  • the power supply 400 when the power conversion apparatus 1000 is applied to drive a high voltage motor, the power supply 400 is generally a high voltage AC power supply, and the high voltage can be handled by connecting the input terminals of each cell in series. Let In this case, in order to balance the voltage input to each cell, a resistor or a capacitor may be connected between the input terminals of each cell.
  • Examples of the load 500 include a high voltage motor and other electric power equipment.
  • the load 500 may be a power system as in the case where the power conversion apparatus 1000 is applied to a PCS for photovoltaic power generation.
  • the power conversion apparatus 1000 may include elements such as a protective component (relay, fuse, etc.) and a noise filter in addition to the configuration described above. Further, as will be described in a later embodiment, a three-phase output power converter can be configured by using three power converters 1000.
  • FIG. 2 is a modification of the configuration of the power conversion device.
  • the power conversion device 2000 in FIG. 2 has a configuration in which the reactors 301 and 303 are deleted (short-circuited) from the power conversion device 1000 in FIG. 1 and the first bypass units 311 and 313 connected in parallel with these are deleted. .
  • the structure by which a reactor is inserted in series in at least 1 place among the connection places of cells may be sufficient.
  • the installation position of the cell in which a reactor is provided it is arbitrary.
  • FIG. 3 is a diagram showing the configuration of the reactor in the power conversion device.
  • FIG. 3 the cell 102 and the reactor 302 connected thereto are extracted from the power conversion apparatus 1000 of FIG. 1, and an additional configuration is shown. Similar other examples may be applied to reactors connected to other cells (101, 103, 104). Although illustration of the 1st bypass part connected in parallel with a reactor is abbreviate
  • FIG. 3A shows an example in which two reactors 302 and 305 are connected in series to the output terminal of the cell 102. As described above, a plurality of reactors may be inserted at one place where the cells are connected to each other. Although illustration is abbreviate
  • the reactor 302 is connected to one of the output terminals of the cell 102, and the reactor 306 is connected to the other.
  • Reactors 302 and 306 may share a core (iron core).
  • the combined inductance Ls is adjusted by changing the number of reactors inserted in series with respect to the output current path of the power converter. Since a plurality of reactors are used as shown in FIG. 1, a small-sized and low-cost general-purpose product can be used for each reactor, and the number of reactors can be easily changed.
  • FIG. 3C is a configuration diagram in which a fuse 307 is connected in series with the reactor 302.
  • Other protective parts such as resistors and thermistors are not limited to fuses. With this configuration, the cell 102 and the load can be protected from overcurrent.
  • 3D is a configuration diagram in which a capacitor 308 is connected between the reactors 302 and 306 in addition to connecting the reactors 302 and 306 as in FIG. 3B.
  • FIG. 4 is a configuration example of the power converter cell.
  • the power source 400 is a DC power source and the power converter outputs AC power to the load 500.
  • the other cells 102 to 104 have the same configuration.
  • Converter 11 converts the voltage input to cell 101 to generate DC link voltage Vdc1.
  • the cells 102 to 104 include converters, and generate DC link voltages Vdc2 to Vdc4, respectively.
  • the DC link voltages Vdc1 to Vdc4 of the respective cells may all be equal values or may be different values. However, in the following, for convenience of explanation, it is assumed that the DC link voltages Vdc1 to Vdc4 are all controlled to the same value, and the value is “Vdc” unless otherwise specified.
  • FIG. 4 shows a resonant converter, which is a kind of isolated DC-DC converter, as a specific circuit system of the converter 11.
  • Resonant converters are isolated DC-DC converters suitable for miniaturization and high efficiency, and are used in a wide range of fields from industry to consumer. Since the resonant converter itself is a publicly known technique, although details are omitted, the DC link voltage Vdc1 can be controlled to a predetermined value by the on / off operation of four switching elements (MOSFETs in FIG. 4). Note that the specific circuit system of the converter is not limited as long as the DC link voltage can be generated.
  • the inverter 21 converts the DC link voltage Vdc1 to generate the output voltage Vo1 of the cell 101.
  • the cells 102 to 104 include inverters, and convert DC link voltages Vdc2 to Vdc4 to generate output voltages Vo2 to Vo4 of the respective cells.
  • an H-bridge single-phase inverter is shown as a specific circuit system of the inverter 21. Since the H-bridge type single-phase inverter itself is a well-known technique, the details thereof will be omitted, but the inverter 21 has an Vo1 (instantaneous value) by ON / OFF operation of four switching elements (MOSFETs in FIG. 4). Can be controlled to any of + Vdc, 0, and ⁇ Vdc. In other words, the inverter 21 outputs the DC link voltage as it is, or makes the output voltage substantially zero, or outputs it by inverting the polarity of the DC link voltage. In addition, the specific circuit system of an inverter is not ask
  • PWM pulse width modulation
  • the inverter 21 can output any voltage satisfying ⁇ Vdc ⁇ Vo1 ⁇ + Vdc as the average voltage in the PWM cycle. That is, within the above range, Vo1 can be controlled according to the target value. Details of the PWM will be described with reference to FIG.
  • a voltage detector 10 for detecting the DC link voltage Vdc1 is shown in the converter 11 of FIG.
  • the value of the DC link voltage Vdc1 detected by the voltage detector 10 is output to the control device 200.
  • the detection value of the DC link voltage Vdc1 corresponds to the detection signal described in the description of FIG.
  • Control device 200 uses the detected value of DC link voltage Vdc1 for feedback control of DC link voltage Vdc1.
  • a voltage dividing circuit using a resistor can be considered.
  • the converter 11 may include a current and temperature detector in addition to the voltage detector 10.
  • the inverter 21 may include a voltage, current, and temperature detector.
  • the configuration of the converter 11 when the power source 400 is an AC power source
  • a configuration in which a rectifier circuit (AC-DC converter) is added to the previous stage of the resonant converter in FIG. 4 can also be applied to later embodiments.
  • FIG. 5A is an example of a combined output voltage (Vos) waveform of the power converter.
  • FIG. 5B is a waveform of Vos when PWM is used.
  • a sine wave indicated by a broken line in FIGS. 5A and 5B is a fundamental wave component included in Vos. This fundamental wave component may be considered as the target value of Vos, that is, the target value of the output voltage of the power converter.
  • the inverter of each cell can output either + Vdc, 0, or ⁇ Vdc as an instantaneous value. Therefore, the instantaneous value of Vos is any of -4Vdc, -3Vdc, ..., 0, ..., + 3Vdc, + 4Vdc.
  • a stepped Vos is generated using these voltage values.
  • the voltage of one step of the staircase becomes the DC link voltage Vdc.
  • the Vos waveform in FIG. 5A is generated by changing the number of cells that output + Vdc in accordance with the phase of the AC voltage if the AC voltage is a positive half cycle. That is, as the AC voltage phase advances and the instantaneous value of the fundamental wave component increases, the number of cells that output + Vdc is increased. The same applies to the negative half cycle, and the number of cells that output ⁇ Vdc may be changed according to the phase of the AC voltage.
  • FIG. 5B shows a Vos waveform when PWM is used.
  • FIG. 5B also shows a waveform in which the time axis is expanded for a period in which the instantaneous value of Vos alternately repeats +3 Vdc and +4 Vdc.
  • the time Ts shown in this enlarged waveform is a PWM cycle, and is set as a sufficiently short time compared to the Vos cycle.
  • the average value of Vos in the PWM period is controlled to an arbitrary value within the range of ⁇ 4 Vdc ⁇ Vos ⁇ + 4 Vdc.
  • the combined output voltage Vos is a stepped pseudo sine wave voltage, and therefore includes a harmonic component in addition to the fundamental wave component indicated by the broken line. Therefore, the reactors 301 to 304 are used to reduce the harmonic component of the output current.
  • FIG. 6 is a configuration example of the first bypass unit 311.
  • FIG. 6 also shows the cell 101, the control device 200, and the reactor 301.
  • the 1st bypass part 311 is comprised by a switching element.
  • a bidirectional switch is configured by two IGBTs and a diode, and is used as the first bypass unit 311.
  • the control device 201 outputs two IGBT drive signals as bypass signals.
  • the other first bypass units 312 to 314 can be similarly configured.
  • the first bypass unit 311 may be mounted on a substrate on which the cell 101 is mounted. The same applies to other cells.
  • the cell 101 includes a converter 11 and an inverter 21, and the other cells have the same configuration.
  • the control device 200 controls the DC link voltage Vdc to a target value by outputting a control signal to the converter of each cell.
  • the voltage of the power supply 400 that is, the voltage of the solar battery may fluctuate every moment.
  • a resonant converter is used as shown in FIG. 4, it is known that the conversion efficiency of the resonant converter can be improved by controlling Vdc higher as the voltage of the power supply 400 is higher, and suppressing fluctuations in the boost ratio of the resonant converter. It has been.
  • the amplitude of the combined output voltage Vos to be output varies depending on the rotational speed of the motor. It is conceivable that the DC link voltage Vdc is also controlled to be high under the condition of increasing the amplitude of Vos. As described above, a method of varying the voltage Vdc according to the operating conditions of the power conversion apparatus 1000 can be considered.
  • the waveform of the composite output voltage Vos has a stepped shape in which the voltage of one step is the DC link voltage Vdc. Since the voltage for one step of the Vos waveform increases as Vdc increases, the harmonic component included in Vos also increases. Therefore, the inductance necessary for reducing the harmonic current to a predetermined value is also increased.
  • control device 200 outputs a bypass signal to the first bypass units 311 to 314 so that the combined inductance (Ls) increases as the DC link voltage Vdc increases. That is, the higher the DC link voltage Vdc, the smaller the number (N) of first bypass sections to be turned on among the first bypass sections 311 to 314.
  • FIG. 7 shows the relationship between the DC link voltage Vdc and the combined inductance Ls realized by this control. 7 is stored in a storage unit (not shown) in the control device 200.
  • the horizontal axis is the DC link voltage Vdc, and Vdc is controlled in the range of the minimum value V1 to the maximum value V5.
  • the vertical axis represents the combined inductance Ls, and all the inductances of the reactors 301 to 304 are L1, and Ls is controlled in the range of the minimum value L1 to the maximum value 4L1.
  • N is the number of first bypass units to be turned on.
  • the required inductance is L1
  • the number N of first bypass parts to be turned on is 3. That is, the number of reactors to be bypassed is determined for each range of Vdc, and the number of reactors to be bypassed is determined according to the detected value of DC link voltage Vdc.
  • the number N of first bypass sections to be turned on may be determined so as to satisfy Ls suitable for DC link voltage Vdc. Note that since the output voltage (Vo1 to Vo4) of each cell includes information on the DC link voltage Vdc, the number N of first bypass units to be turned on by indirectly detecting Vdc from the output voltage of each cell is determined. You may decide.
  • the harmonic current component becomes relatively larger as the load current of the power converter is smaller. Control may be performed to decrease the number N.
  • FIG. 8 shows a configuration example of the control device 200 that realizes the above-described control, and shows processing / calculation contents as a block diagram.
  • the cell 101, the reactor 301, and the first bypass unit 311 are also shown.
  • the control device 200 outputs signals to other cells, reactors, and first bypass units.
  • the control device 200 includes a target value setting unit 210, a converter control unit 211, an inverter control unit 212, and a first bypass control unit 213.
  • the target value setting unit 210 determines the target values of the DC link voltages (Vdc1 to Vdc4) of each cell and the output voltages (Vo1 to Vo4) of each cell based on the target value related to the output voltage or output current of the power converter 1000.
  • the target values of Vdc1 to Vdc4 are output to the converter control unit 211, and the target values of Vo1 to Vo4 are output to the inverter control unit 212, respectively.
  • the target value related to the output voltage or output current of the power conversion apparatus 1000 is input from the outside or is generated inside the control apparatus 200.
  • the target value setting unit 210 sets the number of first bypass units to be turned on based on the calculated target values of the DC link voltages Vdc1 to Vdc4 and the relationship between the DC link voltage Vdc and Ls shown in FIG. N) is determined and output to the first bypass control unit 213. If all of Vdc1 to Vdc4 are controlled to be equal, these can be considered as Vdc in FIG. 7 and the relationship in FIG. 7 can be used as it is. In the case of controlling Vdc1 to Vdc4 to different values, a method in which the average value or the median value thereof is set to Vdc in FIG. 8 can be considered. Note that the detection values of Vdc1 to Vdc4 may be used instead of the target values of Vdc1 to Vdc4.
  • converter control unit 211 Based on the target values of DC link voltages Vdc1 to Vdc4 input from target value setting unit 210 and the detected values of Vdc1 to Vdc4 input from the converters of each cell, converter control unit 211 sets Vdc1 to Vdc4 as target values. A control signal is output to the converter of each cell so as to be a value. Specific calculation contents of the converter control unit 211 are feedback control calculation and PWM control in the resonance type converter. Since these are publicly known techniques, details are omitted.
  • the inverter control unit 212 Based on the target value of the output voltage (Vo1 to Vo4) of each cell input from the target value setting unit 210, the inverter control unit 212 sends a control signal to the inverter of each cell so that Vo1 to Vo4 become the target value. Output. Since the specific calculation contents of the inverter control unit 212 are described when FIG. 5 is described, they are omitted here.
  • FIG. 9 is a flowchart in which the control device 200 controls the first bypass unit based on the DC link voltage Vdc.
  • the control device 200 refers to the detected value of the DC link voltage Vdc or the target value of Vdc (step 901).
  • the number (N) of reactors to be bypassed is obtained using the relationship between Vdc and the combined inductance Ls (step 902).
  • a first bypass unit to be turned on among the first bypass units 311 to 314 is obtained, and a bypass signal is output from the first bypass control unit 213 to the target first bypass unit (step 903), and the control ends. To do.
  • FIG. 10 is an example of a mounting form of all the cells, reactors, and first bypass units included in the power conversion device, and is a plan view when viewed from above.
  • a reactor and a first bypass unit are mounted on the substrates 701 to 704 in the same manner as the substrate 701 in FIG.
  • the cells 101 to 104 and the substrates 701 to 704 are arranged, and these are wired by a conductor bar (bus bar) or the like, thereby connecting the outputs of the cells 101 to 104 and the reactor in series.
  • a lead wire may be used instead of the conductor rod.
  • the symbol 710 is added to one of the plurality of conductor rods, and the symbols are omitted for the other conductor rods. Also, the wiring connecting the cells 101 to 104 and the power supply 400 is not shown.
  • the cells 101 to 104 and the substrates 701 to 704 that is, all the components of the power conversion device can be housed in the same housing, and there is no need to provide a separate housing for the reactor or the bypass unit. As a result, the power conversion device as a whole can be reduced in size and cost.
  • FIG. 11 is an example of a mounting form of the reactor 301 and the first bypass unit 311 and is a plan view when viewed from above.
  • the reactor 301 and the first bypass unit 311 are mounted on the substrate 701. Note that the wiring pattern of the substrate 701 is not shown.
  • Examples of the reactor that can be easily mounted on the substrate 701 include a reactor using a toroidal core often used in a switching power supply device, or a reactor using an E-type core. Since a plurality of reactors are used, that is, the reactor is divided into a plurality of reactors, a small and lightweight reactor that can be mounted on a substrate can be applied to each reactor.
  • FIG. 11 shows an example in which the first bypass unit 311 is configured by two switching elements (71 and 72). Each switching element incorporates one IGBT and one diode shown in FIG.
  • the substrate 701 is connected to the cell 101 using a conductor rod 711 for wiring.
  • Two conductor rods 711 and 712 are connected to the cell 101, and these are connected to two output terminals provided in the cell 101, respectively.
  • illustration was abbreviate
  • the substrate 701 that is, the reactor 301 and the first bypass unit 311 can be arranged near the cell 101, and all of them can be housed in the same casing.
  • the first bypass control unit 213 of the control device 200 can be mounted on the substrate 701 as shown in FIG.
  • Components included in the first bypass control unit 213 include a drive device for the first bypass unit 311, a control device such as a microcomputer and an IC, and peripheral components of the control device, all of which can be mounted on the substrate 701. .
  • the first bypass control unit 213 is mounted near the first bypass unit 311 according to such a mounting form. Further, the first bypass control unit 213 can control the first bypass unit 311 using the wiring pattern of the substrate 701. In this configuration, the first bypass control unit 213 is disposed away from the first bypass unit 311, and electromagnetic noise is generated in the bypass signal compared to the case where the first bypass unit 311 is controlled using a long-distance wiring. This is advantageous in preventing mixing.
  • FIG. 12 is another example of the mounting form of the reactor and the first bypass unit.
  • the reactor is connected to the two output terminals included in the cell 101.
  • the case where the 1st bypass part was connected to each reactor was assumed.
  • the first bypass unit 315 includes two switching elements (73 and 74).
  • the substrate 705 is connected to the cell 101 by conductor bars 714 and 715.
  • the two conductor rods 714 and 715 are connected to two output terminals provided in the cell 101, respectively.
  • Three more substrates having the same configuration as the substrate 705 can be prepared and connected to the cells 102 to 104, respectively.
  • FIG. 13 is another example of the mounting form of the reactor and the first bypass unit.
  • the components of the cell 101 are mounted on the substrate 706.
  • the inverter 21 shown in FIG. 4 the four switching elements included in the inverter 21 are 75 to 78
  • the inverter control unit 212 of the control device 200 are shown. 706 may be mounted.
  • the 13 can be said to be a form in which the cell, the reactor, and the first bypass unit are integrated. With such a mounting form, it is possible to further reduce the size and cost of the power conversion apparatus as a whole.
  • the harmonic current is reduced to a predetermined value while the reactor current is reduced. Loss can be minimized.
  • the reactor is divided into a plurality of reactors, a small-sized and low-cost general-purpose product can be used for each reactor.
  • the combined inductance can be finely adjusted. Since the reactor, the first bypass unit, and the control device can be arranged close to each other, the wiring connecting them can be shortened, and the switching of the combined inductance can be realized at low cost and in a small space. If the cell, reactor, first bypass unit, and control device can be mounted on the same board, or if they can be placed close together in the same housing, the number of components and the number of installation processes as a whole device will be reduced, and compact, low-cost power conversion The device can be realized and the conversion efficiency of the power conversion device can be improved. At least one reactor is sufficient, and even in one case, power conversion efficiency can be expected to be improved by turning on and off the first bypass unit according to the DC link voltage.
  • FIG. 14 shows the configuration of the power conversion device according to the second embodiment of the present invention.
  • the second bypass units 321 to 324 are connected between the output terminals of the cells 101 to 104, respectively.
  • the second bypass units 321 to 324 are illustrated as switches in FIG. 14, relays, switching elements (semiconductors), and the like can be applied as these switches.
  • FIG. 14 outputs a bypass signal for ON / OFF control of the second bypass units 321 to 324.
  • a bypass signal is also output to the second bypass units 322 to 324.
  • the configuration shown in FIG. 4 of the first embodiment is applied as the configuration of the cell 101 in the second embodiment. That is, the cell 101 includes the converter 11 and the inverter 21. The other cells have the same configuration.
  • the configuration described in the first embodiment can be applied to the reactors 301 to 304 and the first bypass units 311 to 314.
  • FIG. 15 is a configuration example of the second bypass unit 321.
  • FIG. 15 also shows the cell 101, the control device 201, the reactor 301, and the first bypass unit 311.
  • the second bypass unit 321 is configured by a switching element. Specifically, a bidirectional switch is configured by two IGBTs and a diode, and is used as the second bypass unit 321.
  • the control device 201 outputs two IGBT drive signals as bypass signals.
  • the control device 201 turns off all the second bypass units 321 to 324 during normal operation (when operating by operating all the cells).
  • the second bypass unit connected to the same cell is turned on, and the DC link voltage is applied to at least one of the other cells. Increase.
  • the second bypass unit 321 is turned on and the DC link voltage of the cells 102 to 104 is increased.
  • the power conversion device 3000 can continue operation without damaging the output voltage range by the cells 102 to 104 even after the cell 101 is stopped.
  • FIGS. 16A and 16B are waveforms of the combined output voltage Vos when one cell is stopped.
  • FIGS. 5A and 5B described in the first embodiment are shown in FIGS. Comparison with these is shown as a Vos waveform during normal operation.
  • the number of steps of the Vos waveform decreases by (3/4) times compared to FIG. 5, but the voltage value per step increases by (4/3) times. Amplitude can be maintained.
  • the control device 201 outputs a bypass signal to the first bypass units 311 to 314 so that the combined inductance Ls becomes large. That is, as the number of cells to be stopped increases and the DC link voltage is increased, the number (N) of first bypass sections to be turned on among the first bypass sections 311 to 314 is decreased. As the relationship between the DC link voltage and Ls at this time, the relationship shown in FIG.
  • FIG. 17 is a configuration example of the control device 201 that realizes the above control, and shows processing and calculation contents as a block diagram.
  • FIG. 17 also shows the cell 101, the reactor 301, the first bypass unit 311, and the second bypass unit 321.
  • the control device 201 also outputs signals to other cells, the first bypass unit, and the second bypass unit.
  • the control device 201 includes a second bypass control unit 214 in addition to the target value setting unit 210, the converter control unit 211, the inverter control unit 212, and the first bypass control unit 213 described in the first embodiment.
  • Each cell outputs a physical quantity such as voltage, current, temperature, or a state such as abnormality to the target value setting unit 210 as a detection signal.
  • FIG. 17 shows a case where the converter 11 and the inverter 21 of the cell 101 output detection signals to the target value setting unit 210, respectively. Although illustration is omitted, when the user intentionally stops the cell for reasons such as maintenance, a signal may be input to the target value setting unit 210 from the outside.
  • the target value setting unit 210 determines whether or not to stop each cell in addition to the operation described in the first embodiment, and outputs a signal indicating this to the second bypass control unit 214.
  • the second bypass control unit 214 outputs a bypass signal to the second bypass units 321 to 324 in accordance with the input from the target value setting unit 210.
  • the converter control unit 211, the inverter control unit 212, and the first bypass control unit 213 operate in the same manner as in the first embodiment.
  • Example 2 even when some of the cells are stopped, the operation can be continued without damaging the output voltage range with the remaining cells. As a result, there is an advantage that the reliability as the power conversion device is improved and the maintenance of the cell can be realized even during operation. Further, even if the DC link voltage is increased in the process of realizing this, the loss of the reactor can be minimized while reducing the harmonic current to a predetermined value.
  • an auxiliary winding is provided in the reactor, and a voltage generated in the auxiliary winding is converted to obtain a power supply voltage of the control device.
  • This configuration can be applied to all the power conversion devices described in the first and second embodiments.
  • FIG. 18 is a part of the configuration of the power conversion device according to the third embodiment, and illustrates additions and changes in the third embodiment based on the configuration illustrated in FIG. 17 of the second embodiment.
  • the reactor 301 includes an auxiliary winding 331.
  • the control power generation unit 220 converts the AC voltage generated in the auxiliary winding 331 and outputs the power supply voltage of the control device 202.
  • the power supply voltage of the control device 202 corresponds to an operating voltage of a microcomputer or IC, an operating voltage of a driving device for a switching element, or the like.
  • the control device 202 includes a target value setting unit 210, a converter control unit 211, an inverter control unit 212, a first bypass control unit 213, and a second bypass control unit 214 as components other than the control power generation unit 220.
  • plus (+) and minus ( ⁇ ) symbols are given to the two output terminals provided in the control power generation unit 220. These mean the voltage output from the control power supply generation unit 220, that is, the positive electrode and the negative electrode of the power supply voltage of the control device 202, respectively. Similarly, plus (+) and minus ( ⁇ ) symbols are assigned to the components of the control device 202.
  • the positive terminal of the power supply voltage output from the control power generation unit 220 is input to the input terminal described as plus (+).
  • the negative side of the power supply voltage output from the control power supply generation unit 220 is input to the input terminal described as minus ( ⁇ ).
  • the output terminal of the control power generation unit 220 is connected to each component of the control device 202 and supplies power for operating them.
  • the control power generation unit 220 may be configured to supply power to some components included in the control device 202.
  • the control power generation unit 220 is a type of DC power supply device, and can be configured using a rectifier circuit, a DC-DC converter, a smoothing capacitor, and the like. As long as the DC voltage can be generated, the specific circuit system of the control power generation unit 220 is not limited.
  • the control power generation unit 220 is illustrated as a component of the control device 202, but it is not necessary to be mounted on the same board as the control device 202.
  • control device 202 may be provided for each cell.
  • the reactors 302 to 304 can be provided with auxiliary windings to supply power to the control devices of the cells 102 to 104, respectively. Not all of the reactors 301 to 304 need to have auxiliary windings.
  • FIG. 19 is another example of the configuration in the third embodiment, and is a configuration obtained by removing the first bypass unit 311 and the first bypass control unit 213 from FIG.
  • the second bypass control unit 214 is operated using the voltage generated in the auxiliary winding 331 and the second bypass unit 321 is operated. Can be kept on.
  • FIG. 20 is an example of a mounting form of the cell, the reactor and the auxiliary winding, the second bypass unit, and the control device, and is a plan view when viewed from above.
  • FIG. 20 illustrates a configuration in which the auxiliary winding 331 is wound around the reactor 301 using the toroidal core.
  • the second bypass unit 321 includes two switching elements (79 and 80).
  • the substrate 707 is connected to the cell 101 by conductor bars 720 and 721.
  • the two conductor rods 720 and 721 are connected to the two output terminals provided in the cell 101, respectively.
  • Three more substrates having the same configuration as the substrate 707 can be prepared and used by being connected to the cells 102 to 104, respectively.
  • the substrate 707 that is, the reactor, the auxiliary winding, the second bypass unit, and the control device can be arranged near the cell 101, and all of them can be stored in the same casing.
  • the second bypass control unit 214 is mounted near the second bypass unit 321.
  • the second bypass control unit 214 can control the second bypass unit 321 using the wiring pattern of the substrate 707.
  • the second bypass control unit 214 is disposed at a location away from the second bypass unit 321, and electromagnetic noise is generated in the bypass signal as compared with the case where the second bypass unit 321 is controlled using a long-distance wiring. This is advantageous in preventing mixing.
  • a three-phase AC output power converter is configured using three power converters described above.
  • FIG. 21 shows the configuration of the power conversion device 4000 in the fourth embodiment.
  • the power conversion device 4000 includes three power conversion devices 1000 described in the first embodiment.
  • one of the output terminals included in the three power conversion apparatuses 1000 constitutes a three-phase output terminal and is connected to the three-phase load 501.
  • the other of the output terminals included in the three power converters 1000 is connected to each other to form a neutral point in a Y-connected three-phase AC circuit.
  • the power conversion device 1000 includes the control device 200. Therefore, the power conversion device 4000 of FIG. 21 includes three control devices 200, but the three control devices may be combined into one. In FIG. 21, three sets of power converters 1000 are used, but power converters 2000 to 3000 described above can also be used.
  • the effect of the present invention can be obtained even in a power converter that outputs three-phase alternating current, and can be applied to an inverter that drives a three-phase high-voltage motor and a PCS for a three-phase alternating current power system.
  • FIG. 22 is a timing chart for sequentially turning on / off the plurality of first bypass units 311 to 314 in the fifth embodiment.
  • FIG. 22 it is assumed that only one of the first bypass units 311 to 314 is turned on.
  • the first bypass unit to be turned on is replaced with time, and the time during which each first bypass unit is in the on state is equalized. As a result, the life of the first bypass portion can be extended. This control can be applied to all the power conversion devices described in the first to fourth embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

A power conversion device of the present invention is characterized in that: the power conversion device is provided with a plurality of power converter cells, and a control device for controlling the power converter cells; output terminals of the power converter cells are connected in series; one or more reactors are inserted in series into a path, in which an output current of each of the power converter cells flows; a first bypass section is connected in parallel to at least one reactor; and the control device controls the first bypass section.

Description

電力変換装置Power converter
 本発明は、電力変換装置に関するものである。 The present invention relates to a power conversion device.
 高電圧または大容量の電力変換においては、複数の電力変換器セル(以下、セルと略す)を直列または並列に接続した電力変換装置が用いられる。 In high-voltage or large-capacity power conversion, a power conversion device in which a plurality of power converter cells (hereinafter abbreviated as cells) are connected in series or in parallel is used.
 また、太陽光発電や風力発電といった自然エネルギー発電の導入が世界的に拡大している。自然エネルギーから得られる電力を変換して電力系統に出力するための電力変換装置として、PCS(パワーコンディショニングシステム)がある。このPCSにおいても、高電圧化や大容量化に対応する際には、上記のように複数のセルを用いる構成が有効と考えられる。 Also, the introduction of natural energy power generation such as solar power generation and wind power generation is expanding worldwide. There is a PCS (Power Conditioning System) as a power conversion device for converting electric power obtained from natural energy and outputting it to an electric power system. In this PCS as well, a configuration using a plurality of cells as described above is considered effective when dealing with higher voltages and larger capacities.
 このような電力変換装置として、特許文献1には、「太陽電池パネル2a~2d毎に電力変換器3a~3dが設けられている。これらの電力変換器3a~3dは当該太陽電池パネル2a~2dの出力電力を最大電力点追尾して電圧電流変換する。出力端子O1-O2間のリアクトル6、7、コンデンサCを小型化できる。」ことが記載されている。 As such a power conversion device, Patent Document 1 discloses that “power converters 3a to 3d are provided for each of the solar battery panels 2a to 2d. These power converters 3a to 3d are connected to the solar battery panels 2a to 2d. The output power of 2d is subjected to voltage-current conversion by tracking the maximum power point, and the reactors 6 and 7 and the capacitor C between the output terminals O1 and O2 can be reduced in size.
特開2013-192382号公報JP 2013-192382 A
 インバータなどのスイッチング回路を備える電力変換装置は、負荷に流れる高調波電流を低減するために、リアクトル(コイル、インダクタとも呼ばれる)と共に利用されることが多い。大容量の電力変換装置には、高電圧・大電流に対応するために大型のリアクトルが必要となり、その重量、コストも課題になる。また、リアクトルは電力変換装置とは別に設置されることが多く、電力変換装置とリアクトルの間の配線も必要であった。そのため、装置全体としての設置工程数、及び、設置コストが増大していた。 A power conversion device including a switching circuit such as an inverter is often used together with a reactor (also called a coil or an inductor) in order to reduce harmonic current flowing through a load. Large-capacity power converters require large reactors to cope with high voltages and currents, and their weight and cost are also issues. Moreover, the reactor is often installed separately from the power converter, and wiring between the power converter and the reactor is also necessary. Therefore, the number of installation steps as a whole apparatus and the installation cost have increased.
 ところで、リアクトルに電流が流れると、リアクトルにおいて銅損と呼ばれる電力損失が生じる。また、リアクトルのインダクタンスを大きく設定するほど、高調波電流の低減効果は高くなるが、一方で銅損が大きくなる傾向があり、電力変換装置の変換効率が低下する。したがって、リアクトルのインダクタンスは、高調波電流を所望の値まで低減するための最小限の値に設定されるべきである。特に、電力変換装置に発生する電圧や電流が動作中に変動する場合、高調波電流を低減するために必要な最小限のインダクタンスも変動する。このとき、全ての動作条件を考慮して高調波電流を低減するために必要なインダクタンスを設定すると、ある動作条件においてはインダクタンスが過剰となり、銅損が大きくなって効率が低下する。 By the way, when a current flows through the reactor, a power loss called copper loss occurs in the reactor. Moreover, the higher the inductance of the reactor, the higher the harmonic current reduction effect, but the copper loss tends to increase, and the conversion efficiency of the power converter decreases. Therefore, the inductance of the reactor should be set to a minimum value for reducing the harmonic current to a desired value. In particular, when the voltage or current generated in the power converter varies during operation, the minimum inductance required to reduce the harmonic current also varies. At this time, if the inductance necessary for reducing the harmonic current is set in consideration of all the operating conditions, the inductance becomes excessive under certain operating conditions, the copper loss increases, and the efficiency decreases.
 特許文献1では、複数の電力変換部毎にリアクトルを設けることが記載されている。しかし、特許文献1では、動作条件によらずインダクタンス値は一定であることの記載に留まる。 Patent Document 1 describes that a reactor is provided for each of a plurality of power conversion units. However, Patent Document 1 only describes that the inductance value is constant regardless of the operating conditions.
 そこで、本発明は、動作条件に応じて適切なインダクタンス値を設定できる高効率の電力変換装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a highly efficient power converter that can set an appropriate inductance value according to operating conditions.
 上記課題は、例えば、複数の電力変換器セルと、複数の電力変換器セルを制御する制御装置と、を備え、複数の電力変換器セルの出力端子はそれぞれ直列に接続されており、電力変換器セルの出力電流が流れる経路に1以上のリアクトルが直列に挿入されており、少なくとも1個のリアクトルに対して第1バイパス部が並列に接続され、制御装置は、第1バイパス部を制御することを特徴とする電力変換装置によって解決される。 The above-described problem includes, for example, a plurality of power converter cells and a control device that controls the plurality of power converter cells, and output terminals of the plurality of power converter cells are connected in series, respectively, One or more reactors are inserted in series in the path through which the output current of the reactor cell flows, and the first bypass unit is connected in parallel to at least one reactor, and the control device controls the first bypass unit. It solves by the power converter device characterized by this.
 本発明によって、動作条件に応じて適切なインダクタンス値を設定できる高効率の電力変換装置を提供することが可能となる。 According to the present invention, it is possible to provide a high-efficiency power converter that can set an appropriate inductance value according to operating conditions.
実施例1における電力変換装置の構成である。It is a structure of the power converter device in Example 1. FIG. 実施例1における電力変換装置の構成に関する変形例である。It is a modification regarding the structure of the power converter device in Example 1. FIG. リアクトルの構成例であり、セル102の出力端子に2個のリアクトル302と305を直列に接続した例である。This is a configuration example of a reactor, in which two reactors 302 and 305 are connected in series to the output terminal of the cell 102. リアクトルの構成例であり、セル102の出力端子の一方にリアクトル302を、他方にリアクトル306をそれぞれ接続した例である。This is a configuration example of a reactor, in which a reactor 302 is connected to one of output terminals of the cell 102 and a reactor 306 is connected to the other. リアクトルの構成例であり、リアクトル302と直列にヒューズ307を接続した例である。This is a configuration example of a reactor, in which a fuse 307 is connected in series with a reactor 302. リアクトルの構成例であり、リアクトル302と306の間にコンデンサ308を接続した例である。This is a configuration example of a reactor, in which a capacitor 308 is connected between reactors 302 and 306. 電力変換器セルの構成例である。It is a structural example of a power converter cell. 電力変換装置の合成出力電圧波形の例である。It is an example of the synthetic | combination output voltage waveform of a power converter device. PWMを利用する場合の合成出力電圧波形の例である。It is an example of the synthetic | combination output voltage waveform in the case of utilizing PWM. 第1バイパス部の構成例である。It is a structural example of a 1st bypass part. 実施例1の制御における直流リンク電圧と合成インダクタンスの関係である。It is the relationship between the DC link voltage and the combined inductance in the control of the first embodiment. 実施例1における制御装置のブロック図である。2 is a block diagram of a control device in Embodiment 1. FIG. 制御装置200が直流リンク電圧をもとに第1バイパス部を制御するフローチャートである。It is a flowchart by which the control apparatus 200 controls a 1st bypass part based on DC link voltage. 電力変換装置が備えるセル、リアクトル、第1バイパス部の実装形態の一例であり、これを上方から見た場合の平面図である。It is an example of the mounting form of the cell with which a power converter device is provided, a reactor, and the 1st bypass part, and is a top view at the time of seeing this from the upper part. リアクトル、第1バイパス部の実装形態の一例であり、これを上方から見た場合の平面図である。It is an example of the mounting form of a reactor and a 1st bypass part, and is a top view at the time of seeing this from upper direction. リアクトルと第1バイパス部の実装形態の別例である。It is another example of the mounting form of a reactor and a 1st bypass part. リアクトルと第1バイパス部の実装形態の別例である。It is another example of the mounting form of a reactor and a 1st bypass part. 実施例2における電力変換装置の構成である。It is a structure of the power converter device in Example 2. FIG. 第2バイパス部の構成例である。It is a structural example of a 2nd bypass part. 1台のセルを停止させた場合における合成出力電圧Vosの波形であり、実施例1で説明した図5(A)を通常運転時のVos波形として、これとの比較を表している。FIG. 5A shows a waveform of the combined output voltage Vos when one cell is stopped. FIG. 5A described in the first embodiment is a Vos waveform during normal operation, and the comparison is shown. 1台のセルを停止させた場合における合成出力電圧Vosの波形であり、実施例1で説明した図5(B)を通常運転時のVos波形として、これとの比較を表している。FIG. 5B is a waveform of the combined output voltage Vos when one cell is stopped, and FIG. 5B described in the first embodiment is a Vos waveform during normal operation, and a comparison with this is shown. 実施例2における制御装置202の処理・演算内容をブロック図として表したものである。The processing and calculation contents of the control device 202 in Embodiment 2 are represented as a block diagram. 実施例3における電力変換装置の構成の一部である。7 is a part of a configuration of a power conversion device according to a third embodiment. 実施例3における構成の別例である。10 is another example of the configuration in the third embodiment. セル、リアクトルと補助巻線、第2バイパス部、制御装置の実装形態の一例であり、これを上方から見た場合の平面図である。It is an example of the mounting form of a cell, a reactor, an auxiliary | assistant winding, a 2nd bypass part, and a control apparatus, and is a top view at the time of seeing this from upper direction. 実施例4における電力変換装置4000の構成である。It is a structure of the power converter device 4000 in Example 4. FIG. 実施例5において、複数の第1バイパス部を順番にオン・オフ制御するタイミングチャートである。In Example 5, it is a timing chart which carries out on / off control of the some 1st bypass part in order.
 以下、本発明の実施例について、図面を用いながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の実施例1における電力変換装置の構成である。 FIG. 1 shows the configuration of the power conversion apparatus according to Embodiment 1 of the present invention.
 電力変換装置1000は、外部の電源400から入力される電力を変換し、外部の負荷500に出力する。電力変換装置1000は、複数のセル101~104とこれらを制御する制御装置200を備え、各セルの出力端子はそれぞれ直列に接続される。また、電力変換装置1000はリアクトル301~304を備え、図1のようにセル同士の接続箇所にリアクトルが直列に挿入される。図1では、セルを4台利用する例を示したが、台数については任意である。 The power conversion device 1000 converts the power input from the external power source 400 and outputs it to the external load 500. The power conversion apparatus 1000 includes a plurality of cells 101 to 104 and a control apparatus 200 that controls these cells, and the output terminals of each cell are connected in series. The power conversion apparatus 1000 includes reactors 301 to 304, and the reactors are inserted in series at the connection points between the cells as shown in FIG. Although FIG. 1 shows an example in which four cells are used, the number of cells is arbitrary.
 セル101~104は、外部からの入力電圧を変換して出力電圧Vo1~Vo4をそれぞれ生成する。各セルの出力端子が直列に接続される構成から、Vo1~Vo4が合成され、電力変換装置1000として高電圧を出力できる。以下では、セル101~104の出力電圧を合成した電圧を合成出力電圧Vos(=Vo1+Vo2+Vo3+Vo4)と定義する。なお、リアクトルでの電圧降下を十分小さいものとして無視すれば、Vosは電力変換装置1000の出力電圧としても考えられる。 The cells 101 to 104 convert the input voltage from the outside to generate output voltages Vo1 to Vo4, respectively. Since the output terminals of the cells are connected in series, Vo1 to Vo4 are synthesized, and the power converter 1000 can output a high voltage. Hereinafter, a voltage obtained by combining the output voltages of the cells 101 to 104 is defined as a combined output voltage Vos (= Vo1 + Vo2 + Vo3 + Vo4). If the voltage drop at the reactor is ignored as being sufficiently small, Vos can be considered as the output voltage of the power converter 1000.
 制御装置200は、Vo1~Vo4を、ひいては、Vosを制御することによって、電力変換装置1000の出力電圧または出力電流を所定の値に制御する。制御装置200は、Vo1~Vo4を制御するために、各セルに対して制御信号を出力する。また、各セルから制御装置200に対して、各セルの電圧、電流、温度といった物理量、及び、異常有無などの状態を表す検出信号が出力される。図1では、図面の煩雑化を防ぐため、制御装置200とセル101の間で入出力される信号のみを示した。実際には、制御装置200とセル102~104の間でも同様に信号の入出力がなされる。また、図1において1本の矢印として表現した信号は、複数の情報を含んでいてもよい。制御装置200の全ての要素が、1枚の基板上に実装される必要はない。詳細は後の実施例にて説明するが、各セルの構成要素が実装される基板上に、制御装置200の一部要素が実装されてもよい。 The control device 200 controls the output voltage or output current of the power conversion device 1000 to a predetermined value by controlling Vo1 to Vo4 and thus Vos. The control device 200 outputs a control signal to each cell in order to control Vo1 to Vo4. Each cell outputs a detection signal indicating a physical quantity such as voltage, current, and temperature of each cell and a state such as presence or absence of abnormality to the control device 200. In FIG. 1, only signals that are input and output between the control device 200 and the cell 101 are shown in order to prevent the drawing from becoming complicated. In practice, signals are input and output in the same manner between the control device 200 and the cells 102 to 104. Further, the signal expressed as one arrow in FIG. 1 may include a plurality of pieces of information. All elements of the control device 200 need not be mounted on a single substrate. Although details will be described in a later embodiment, some elements of the control device 200 may be mounted on a substrate on which the components of each cell are mounted.
 詳細については後に説明するが、セルの出力電圧Vo1~Vo4、及び、合成出力電圧Vosには高調波成分が含まれる。リアクトル301~304は、電力変換装置1000の出力電流に含まれる高調波成分を低減する。また、負荷500のインピーダンスが急激に変化した場合などに、過電流の発生を防ぐ役割も担う。 Although details will be described later, the cell output voltages Vo1 to Vo4 and the combined output voltage Vos include harmonic components. Reactors 301 to 304 reduce harmonic components included in the output current of power conversion device 1000. In addition, when the impedance of the load 500 changes abruptly, it plays a role of preventing the occurrence of overcurrent.
 高調波電流の低減効果は、リアクトルのインダクタンスに依存する。図1のように、電力変換装置から負荷500に給電する電流経路、すなわち、電力変換装置の出力電流経路に対して複数のリアクトルを直列に挿入する場合、リアクトルの数が多いほどインダクタンスの合計値(以下、合成インダクタンスLsと定義する)が大きくなり、高調波電流の低減効果は大きくなる。一方、リアクトルが多いほど、リアクトルで発生する損失、特に銅損が大きくなる。電力変換装置の出力電流経路に対して直列に挿入されるリアクトルの数、ひいては、Lsを調節することで、高調波電流を所定の大きさまで低減しつつ、リアクトルの損失を最小限に抑えることが望ましい。 The effect of reducing harmonic current depends on the inductance of the reactor. As shown in FIG. 1, when a plurality of reactors are inserted in series with respect to a current path that feeds power from the power converter to the load 500, that is, an output current path of the power converter, the total value of inductance increases as the number of reactors increases. (Hereinafter, defined as the combined inductance Ls) increases, and the harmonic current reduction effect increases. On the other hand, the more reactors, the greater the loss generated in the reactor, especially the copper loss. By adjusting the number of reactors inserted in series with respect to the output current path of the power converter, and thus Ls, it is possible to reduce the loss of the reactor while minimizing the harmonic current to a predetermined magnitude. desirable.
 リアクトル301~304に対して、バイパス部311~314がそれぞれ並列に接続される。以下では、このようにリアクトルと並列に接続されるバイパス部を第1バイパス部と称する。図1では第1バイパス部311~314をスイッチとして図示したが、これらのスイッチとしてリレー、スイッチング素子(半導体)などを適用できる。なお、第1バイパス部は、全てのリアクトルに対して接続される必要はなく、一部のリアクトルに対してのみ接続されていてもよい。 Bypass units 311 to 314 are connected in parallel to the reactors 301 to 304, respectively. Below, the bypass part connected in parallel with a reactor in this way is called a 1st bypass part. Although the first bypass units 311 to 314 are illustrated as switches in FIG. 1, relays, switching elements (semiconductors), and the like can be applied as these switches. In addition, the 1st bypass part does not need to be connected with respect to all the reactors, and may be connected only with respect to some reactors.
 図1の制御装置200は、各第1バイパス部をオン・オフ制御するためのバイパス信号を出力する。図1では、図面の煩雑化を防ぐため、第1バイパス部311に対するバイパス信号のみを示した。実際には、第1バイパス部312~314に対しても同様にバイパス信号を出力する。なお、制御装置200のうち、セル101~104に制御信号を出力する要素と、第1バイパス部311~314にバイパス信号を出力する要素は、同一の基板に実装されていても、それぞれ別の基板に実装されていてもよい。 1 outputs a bypass signal for ON / OFF control of each first bypass unit. In FIG. 1, only the bypass signal for the first bypass unit 311 is shown to prevent the drawing from becoming complicated. Actually, a bypass signal is similarly output to the first bypass units 312 to 314. In the control device 200, the element that outputs the control signal to the cells 101 to 104 and the element that outputs the bypass signal to the first bypass units 311 to 314 are different from each other even if they are mounted on the same substrate. It may be mounted on a substrate.
 第1バイパス部311~314が全てオフのとき、電力変換装置1000から負荷500に給電する電流経路、すなわち、電力変換装置1000の出力電流経路に対して、直列に挿入されるリアクトルは4個である。ここで、第1バイパス部311をオンにすると、リアクトル301には電流が流れなくなり、上記の出力電流経路に対して直列に挿入されるリアクトルは3個に減少する。これによって、合成インダクタンスLsも減少し、出力電流の高調波成分を低減する効果は小さくなるものの、リアクトル301の損失が発生しない分だけ電力変換装置1000の変換効率が改善する。 When all of the first bypass units 311 to 314 are off, there are four reactors inserted in series with respect to the current path that feeds power from the power converter 1000 to the load 500, that is, the output current path of the power converter 1000. is there. Here, when the first bypass unit 311 is turned on, no current flows through the reactor 301, and the number of reactors inserted in series with respect to the output current path is reduced to three. As a result, the combined inductance Ls is also reduced and the effect of reducing the harmonic component of the output current is reduced, but the conversion efficiency of the power converter 1000 is improved by the amount that the reactor 301 is not lost.
 高調波成分を所定の値まで低減するために必要なインダクタンス、ひいては、これを実現するためのリアクトルの数は、セル101~104の動作条件、または、負荷500の条件によって異なると考えられる。具体的には、後に説明する各セルの直流リンク電圧や、負荷500に出力する電流によって、必要なインダクタンスは変動する。動作条件に応じて出力電流経路中のリアクトルの数、ひいては合成インダクタンスを調節することで、高調波電流を所定の値まで低減しつつ、リアクトルの損失を最小限に抑えることができる。また、図1のように、電力変換装置の出力電流経路に対して複数のリアクトルを直列に挿入されるため、合成インダクタンスLsを細かく調整できる。 It is considered that the inductance necessary for reducing the harmonic component to a predetermined value, and hence the number of reactors for realizing this, vary depending on the operating conditions of the cells 101 to 104 or the load 500 conditions. Specifically, the required inductance varies depending on the DC link voltage of each cell, which will be described later, and the current output to the load 500. By adjusting the number of reactors in the output current path, and thus the combined inductance, according to the operating conditions, the loss of the reactor can be minimized while the harmonic current is reduced to a predetermined value. Further, as shown in FIG. 1, since a plurality of reactors are inserted in series with respect to the output current path of the power converter, the combined inductance Ls can be finely adjusted.
 電源400は、直流電源または交流電源のいずれでもよい。例として、電力変換装置1000を太陽光発電のPCSに応用する場合、電源400は太陽電池となる。図1では、電源400に対して各セルが並列に接続される構成を示した。ただし、電力変換装置1000の出力部と同様に、電源400に対して各セルの入力端子が直列に接続される構成であってもよい。例として、電力変換装置1000を高電圧モータの駆動に応用する場合、電源400は高電圧の交流電源になることが一般的であり、各セルの入力端子を直列接続することで高電圧に対応させる。この場合、各セルに入力される電圧のバランスを取るために、各セルの入力端子間に抵抗やコンデンサを接続してもよい。 The power source 400 may be either a DC power source or an AC power source. As an example, when the power conversion apparatus 1000 is applied to a PCS for photovoltaic power generation, the power source 400 is a solar battery. FIG. 1 shows a configuration in which each cell is connected in parallel to the power source 400. However, similar to the output unit of the power conversion apparatus 1000, the input terminal of each cell may be connected in series to the power supply 400. As an example, when the power conversion apparatus 1000 is applied to drive a high voltage motor, the power supply 400 is generally a high voltage AC power supply, and the high voltage can be handled by connecting the input terminals of each cell in series. Let In this case, in order to balance the voltage input to each cell, a resistor or a capacitor may be connected between the input terminals of each cell.
 負荷500の例として、高電圧モータや他の電力機器がある。また、電力変換装置1000を太陽光発電のPCSに応用する場合のように、負荷500は電力系統であってもよい。電力変換装置1000は、以上に示した構成の他に、保護用部品(リレー、ヒューズなど)やノイズフィルタなどの要素を備えてもよい。また、後の実施例にて説明するように、電力変換装置1000を3台利用して、三相出力の電力変換装置を構成できる。 Examples of the load 500 include a high voltage motor and other electric power equipment. Moreover, the load 500 may be a power system as in the case where the power conversion apparatus 1000 is applied to a PCS for photovoltaic power generation. The power conversion apparatus 1000 may include elements such as a protective component (relay, fuse, etc.) and a noise filter in addition to the configuration described above. Further, as will be described in a later embodiment, a three-phase output power converter can be configured by using three power converters 1000.
 図2は、電力変換装置の構成に関する変形例である。 FIG. 2 is a modification of the configuration of the power conversion device.
 図2の電力変換装置2000は、図1の電力変換装置1000からリアクトル301と303を削除(短絡)し、さらに、これらと並列に接続される第1バイパス部311と313を削除した構成である。このように、セル同士の接続箇所のうち少なくとも1箇所にリアクトルが直列に挿入される構成であってもよい。なお、リアクトルが設けられるセルの設置位置については、任意である。 The power conversion device 2000 in FIG. 2 has a configuration in which the reactors 301 and 303 are deleted (short-circuited) from the power conversion device 1000 in FIG. 1 and the first bypass units 311 and 313 connected in parallel with these are deleted. . Thus, the structure by which a reactor is inserted in series in at least 1 place among the connection places of cells may be sufficient. In addition, about the installation position of the cell in which a reactor is provided, it is arbitrary.
 図3は、電力変換装置のうちリアクトルの構成を示した図である。 FIG. 3 is a diagram showing the configuration of the reactor in the power conversion device.
 図3では、図1の電力変換装置1000のうち、セル102とこれに接続されるリアクトル302を抜き出し、追加構成を示した。他のセル(101、103、104)と接続されるリアクトルについても、同様の別例を適用してよい。図3ではリアクトルと並列に接続される第1バイパス部の図示を省略したが、実際には図3における全てまたは一部のリアクトルと並列に第1バイパス部を接続する。 In FIG. 3, the cell 102 and the reactor 302 connected thereto are extracted from the power conversion apparatus 1000 of FIG. 1, and an additional configuration is shown. Similar other examples may be applied to reactors connected to other cells (101, 103, 104). Although illustration of the 1st bypass part connected in parallel with a reactor is abbreviate | omitted in FIG. 3, in fact, a 1st bypass part is connected in parallel with all or one part reactor in FIG.
 図3(A)は、セル102の出力端子に2個のリアクトル302と305を直列に接続した例である。このように、セル同士の接続箇所に挿入されるリアクトルは、1箇所につき複数であってもよい。図示は省略するが、複数のリアクトルを並列に接続したリアクトル群を、セル同士の接続箇所に挿入する構成であってもよい。 FIG. 3A shows an example in which two reactors 302 and 305 are connected in series to the output terminal of the cell 102. As described above, a plurality of reactors may be inserted at one place where the cells are connected to each other. Although illustration is abbreviate | omitted, the structure which inserts the reactor group which connected the several reactor in parallel in the connection location of cells may be sufficient.
 図3(B)では、セル102の出力端子の一方にリアクトル302を、他方にリアクトル306をそれぞれ接続する。リアクトル302と306でコア(鉄心)を共用してもよい。図3(A)及び図3(B)の構成では、電力変換装置の出力電流経路に対して直列に挿入されるリアクトルの数を変更することで、合成インダクタンスLsが調節される。図1に示したように複数のリアクトルを利用するため、各リアクトルには小型・低コストの汎用品を利用可能であり、リアクトルの数の変更は容易である。 3B, the reactor 302 is connected to one of the output terminals of the cell 102, and the reactor 306 is connected to the other. Reactors 302 and 306 may share a core (iron core). In the configuration of FIGS. 3A and 3B, the combined inductance Ls is adjusted by changing the number of reactors inserted in series with respect to the output current path of the power converter. Since a plurality of reactors are used as shown in FIG. 1, a small-sized and low-cost general-purpose product can be used for each reactor, and the number of reactors can be easily changed.
 図3(C)では、リアクトル302と直列にヒューズ307を接続した構成図である。ヒューズに限らず、抵抗やサーミスタなど他の保護用部品であってもよい。本構成によって、セル102や負荷を過電流などから保護できる。 FIG. 3C is a configuration diagram in which a fuse 307 is connected in series with the reactor 302. Other protective parts such as resistors and thermistors are not limited to fuses. With this configuration, the cell 102 and the load can be protected from overcurrent.
 図3(D)では、図3(B)と同様にリアクトル302と306を接続することに加えて、リアクトル302と306の間にコンデンサ308を接続した構成図である。コンデンサ308を設けることにより高調波電流の低減効果を高めることが出来る。 3D is a configuration diagram in which a capacitor 308 is connected between the reactors 302 and 306 in addition to connecting the reactors 302 and 306 as in FIG. 3B. By providing the capacitor 308, the effect of reducing the harmonic current can be enhanced.
 図4は、電力変換器セルの構成例である。図4の構成では、電源400が直流電源であり、電力変換装置は負荷500に交流電力を出力する場合を想定した。他のセル102~104についても、同様の構成とする。 FIG. 4 is a configuration example of the power converter cell. In the configuration of FIG. 4, it is assumed that the power source 400 is a DC power source and the power converter outputs AC power to the load 500. The other cells 102 to 104 have the same configuration.
 図4のセル101は、コンバータ11とインバータ21から構成される。コンバータ11は、セル101に入力される電圧を変換して直流リンク電圧Vdc1を生成する。セル102~104も同様にコンバータを備え、直流リンク電圧Vdc2~Vdc4をそれぞれ生成する。ここで、各セルの直流リンク電圧Vdc1~Vdc4は全て等しい値であってもよいし、それぞれ異なる値であってもよい。ただし、以下では説明の都合上、直流リンク電圧Vdc1~Vdc4は全て等しい値に制御されるとして、特に断りが無ければその値を「Vdc」とする。 4 is composed of a converter 11 and an inverter 21. Converter 11 converts the voltage input to cell 101 to generate DC link voltage Vdc1. Similarly, the cells 102 to 104 include converters, and generate DC link voltages Vdc2 to Vdc4, respectively. Here, the DC link voltages Vdc1 to Vdc4 of the respective cells may all be equal values or may be different values. However, in the following, for convenience of explanation, it is assumed that the DC link voltages Vdc1 to Vdc4 are all controlled to the same value, and the value is “Vdc” unless otherwise specified.
 図4では、コンバータ11の具体的な回路方式として、絶縁型DC-DCコンバータの一種である共振型コンバータを示した。共振型コンバータは、小型・高効率化に適した絶縁型DC-DCコンバータであり、産業から民生まで幅広い分野で利用されている。共振型コンバータ自体は公知技術であるため、詳細については省略するが、4個のスイッチング素子(図4ではMOSFET)のオン・オフ動作によって、直流リンク電圧Vdc1を所定の値に制御できる。なお、直流リンク電圧を生成できるのであれば、コンバータの具体的な回路方式については問わない。 FIG. 4 shows a resonant converter, which is a kind of isolated DC-DC converter, as a specific circuit system of the converter 11. Resonant converters are isolated DC-DC converters suitable for miniaturization and high efficiency, and are used in a wide range of fields from industry to consumer. Since the resonant converter itself is a publicly known technique, although details are omitted, the DC link voltage Vdc1 can be controlled to a predetermined value by the on / off operation of four switching elements (MOSFETs in FIG. 4). Note that the specific circuit system of the converter is not limited as long as the DC link voltage can be generated.
 インバータ21は、直流リンク電圧Vdc1を変換してセル101の出力電圧Vo1を生成する。セル102~104も同様にインバータを備え、直流リンク電圧Vdc2~Vdc4を変換して各セルの出力電圧Vo2~Vo4をそれぞれ生成する。図4では、インバータ21の具体的な回路方式として、Hブリッジ方式の単相インバータを示した。Hブリッジ方式の単相インバータ自体は公知技術であるため、詳細については省略するが、インバータ21は、4個のスイッチング素子(図4ではMOSFET)のオン・オフ動作によって、Vo1(の瞬時値)を+Vdc、0、-Vdcのいずれかに制御できる。すなわち、インバータ21は、直流リンク電圧をそのまま出力するか、または、出力電圧を略ゼロにするか、または、直流リンク電圧の極性を反転させて出力する。なお、インバータの具体的な回路方式については問わない。 The inverter 21 converts the DC link voltage Vdc1 to generate the output voltage Vo1 of the cell 101. Similarly, the cells 102 to 104 include inverters, and convert DC link voltages Vdc2 to Vdc4 to generate output voltages Vo2 to Vo4 of the respective cells. In FIG. 4, an H-bridge single-phase inverter is shown as a specific circuit system of the inverter 21. Since the H-bridge type single-phase inverter itself is a well-known technique, the details thereof will be omitted, but the inverter 21 has an Vo1 (instantaneous value) by ON / OFF operation of four switching elements (MOSFETs in FIG. 4). Can be controlled to any of + Vdc, 0, and −Vdc. In other words, the inverter 21 outputs the DC link voltage as it is, or makes the output voltage substantially zero, or outputs it by inverting the polarity of the DC link voltage. In addition, the specific circuit system of an inverter is not ask | required.
 インバータ21の制御には、PWM(パルス幅変調)を適用できる。この場合、インバータ21は、PWM周期における平均電圧として、-Vdc≦Vo1≦+Vdcを満たす任意の電圧を出力できる。すなわち、上記の範囲内であれば、Vo1を目標値通りに制御できる。PWMの詳細については図5(B)で説明する。 PWM (pulse width modulation) can be applied to control the inverter 21. In this case, the inverter 21 can output any voltage satisfying −Vdc ≦ Vo1 ≦ + Vdc as the average voltage in the PWM cycle. That is, within the above range, Vo1 can be controlled according to the target value. Details of the PWM will be described with reference to FIG.
 図4のコンバータ11の中に、直流リンク電圧Vdc1を検出するための電圧検出器10を示した。電圧検出器10によって検出された直流リンク電圧Vdc1の値は、制御装置200に出力される。直流リンク電圧Vdc1の検出値は、図1の説明において述べた検出信号に相当する。制御装置200は、直流リンク電圧Vdc1の検出値を直流リンク電圧Vdc1のフィードバック制御に利用する。電圧検出器10の例として、抵抗による分圧回路などが考えられる。コンバータ11は、電圧検出器10の他に、電流や温度の検出器を備えていてもよい。インバータ21についても同様に、電圧、電流、温度の検出器を備えていてもよい。 A voltage detector 10 for detecting the DC link voltage Vdc1 is shown in the converter 11 of FIG. The value of the DC link voltage Vdc1 detected by the voltage detector 10 is output to the control device 200. The detection value of the DC link voltage Vdc1 corresponds to the detection signal described in the description of FIG. Control device 200 uses the detected value of DC link voltage Vdc1 for feedback control of DC link voltage Vdc1. As an example of the voltage detector 10, a voltage dividing circuit using a resistor can be considered. The converter 11 may include a current and temperature detector in addition to the voltage detector 10. Similarly, the inverter 21 may include a voltage, current, and temperature detector.
 電源400が交流電源である場合のコンバータ11の構成としては、図4の共振型コンバータの前段に整流回路(AC-DCコンバータ)を追加した構成が考えられる。図4の構成は、後の実施例にも適用できる。 As the configuration of the converter 11 when the power source 400 is an AC power source, a configuration in which a rectifier circuit (AC-DC converter) is added to the previous stage of the resonant converter in FIG. The configuration of FIG. 4 can also be applied to later embodiments.
 図5(A)は、電力変換装置の合成出力電圧(Vos)波形の例である。図5(B)は、PWMを利用する場合のVosの波形である。図5(A)及び図5(B)に破線で示した正弦波は、Vosに含まれる基本波成分である。この基本波成分が、Vosの目標値、すなわち、電力変換装置の出力電圧の目標値と考えてもよい。各セルのインバータは、瞬時値として+Vdc、0、-Vdcのいずれかを出力できる。そのため、Vosの瞬時値は-4Vdc、-3Vdc、・・・、0、・・・、+3Vdc、+4Vdcのいずれかとなる。そして、図5(A)及び図5(B)のように、これらの電圧値を利用して階段状のVosを生成する。階段の1ステップの電圧は、直流リンク電圧Vdcになる。 FIG. 5A is an example of a combined output voltage (Vos) waveform of the power converter. FIG. 5B is a waveform of Vos when PWM is used. A sine wave indicated by a broken line in FIGS. 5A and 5B is a fundamental wave component included in Vos. This fundamental wave component may be considered as the target value of Vos, that is, the target value of the output voltage of the power converter. The inverter of each cell can output either + Vdc, 0, or −Vdc as an instantaneous value. Therefore, the instantaneous value of Vos is any of -4Vdc, -3Vdc, ..., 0, ..., + 3Vdc, + 4Vdc. Then, as shown in FIGS. 5A and 5B, a stepped Vos is generated using these voltage values. The voltage of one step of the staircase becomes the DC link voltage Vdc.
 図5(A)のVos波形は、交流電圧の正の半周期であれば、+Vdcを出力させるセルの台数を交流電圧の位相に応じて変化させることによって生成される。すなわち、交流電圧の位相が進み、基本波成分の瞬時値が増大するにつれて、+Vdcを出力させるセルの台数を増大させる。負の半周期でも同様であり、-Vdcを出力させるセルの台数を交流電圧の位相に応じて変化させればよい。 The Vos waveform in FIG. 5A is generated by changing the number of cells that output + Vdc in accordance with the phase of the AC voltage if the AC voltage is a positive half cycle. That is, as the AC voltage phase advances and the instantaneous value of the fundamental wave component increases, the number of cells that output + Vdc is increased. The same applies to the negative half cycle, and the number of cells that output −Vdc may be changed according to the phase of the AC voltage.
 図5(B)は、PWMを利用する場合のVos波形である。図5(B)には、Vosの瞬時値が+3Vdcと+4Vdcを交互に繰り返す期間について、時間軸を拡大した波形も合わせて示した。この拡大波形に示した時間TsはPWM周期であり、Vosの周期と比べて十分短い時間として設定される。PWM周期におけるVosの平均値は、-4Vdc≦Vos≦+4Vdcの範囲であれば任意の値に制御される。PWM周期Tsを制御周期としてVos(の平均値)を正弦波状に変化させることで、図5(B)に示した擬似正弦波状の電圧を生成できる。 FIG. 5B shows a Vos waveform when PWM is used. FIG. 5B also shows a waveform in which the time axis is expanded for a period in which the instantaneous value of Vos alternately repeats +3 Vdc and +4 Vdc. The time Ts shown in this enlarged waveform is a PWM cycle, and is set as a sufficiently short time compared to the Vos cycle. The average value of Vos in the PWM period is controlled to an arbitrary value within the range of −4 Vdc ≦ Vos ≦ + 4 Vdc. By changing Vos (average value thereof) into a sine wave with the PWM cycle Ts as the control cycle, the pseudo sine wave voltage shown in FIG. 5B can be generated.
 図5(A)と図5(B)のいずれの場合でも、合成出力電圧Vosは階段状の疑似正弦波電圧であるため、破線で示した基本波成分の他に高調波成分を含む。そのため、リアクトル301~304を利用して出力電流の高調波成分を低減する。 5A and 5B, the combined output voltage Vos is a stepped pseudo sine wave voltage, and therefore includes a harmonic component in addition to the fundamental wave component indicated by the broken line. Therefore, the reactors 301 to 304 are used to reduce the harmonic component of the output current.
 図6は、第1バイパス部311の構成例である。図6には、セル101、制御装置200、リアクトル301も合わせて示した。図6では、第1バイパス部311をスイッチング素子によって構成する。具体的には、2個のIGBTとダイオードによって双方向スイッチを構成し、第1バイパス部311として利用する。制御装置201は、バイパス信号として2個のIGBTの駆動信号を出力する。他の第1バイパス部312~314についても、同様に構成できる。 FIG. 6 is a configuration example of the first bypass unit 311. FIG. 6 also shows the cell 101, the control device 200, and the reactor 301. In FIG. 6, the 1st bypass part 311 is comprised by a switching element. Specifically, a bidirectional switch is configured by two IGBTs and a diode, and is used as the first bypass unit 311. The control device 201 outputs two IGBT drive signals as bypass signals. The other first bypass units 312 to 314 can be similarly configured.
 図6の第1バイパス部311は、ディスクリート部品のIGBTを用いることによって基板上に実装できる。第1バイパス部311は、セル101が実装される基板上に実装されてもよい。他のセルについても同様である。 6 can be mounted on a substrate by using discrete component IGBTs. The first bypass unit 311 may be mounted on a substrate on which the cell 101 is mounted. The same applies to other cells.
 第1バイパス部の具体的な制御方法について、セルの制御方法も含めて一例を説明する。この例では、図4に示したように、セル101はコンバータ11とインバータ21から構成され、他のセルについても同様の構成であるとする。 An example of the specific control method of the first bypass unit, including the cell control method, will be described. In this example, as shown in FIG. 4, it is assumed that the cell 101 includes a converter 11 and an inverter 21, and the other cells have the same configuration.
 制御装置200は、各セルのコンバータに制御信号を出力することで、直流リンク電圧Vdcを目標値に制御する。ここで、電力変換装置1000を太陽光発電のPCSに応用する場合、電源400の電圧、すなわち太陽電池の電圧は、時々刻々と変動し得る。図4のように共振型コンバータを利用する場合、電源400の電圧が高いほどVdcを高く制御し、共振型コンバータの昇圧比の変動を抑えることで、共振型コンバータの変換効率を改善できることが知られている。 The control device 200 controls the DC link voltage Vdc to a target value by outputting a control signal to the converter of each cell. Here, when the power conversion apparatus 1000 is applied to a PCS for photovoltaic power generation, the voltage of the power supply 400, that is, the voltage of the solar battery may fluctuate every moment. When a resonant converter is used as shown in FIG. 4, it is known that the conversion efficiency of the resonant converter can be improved by controlling Vdc higher as the voltage of the power supply 400 is higher, and suppressing fluctuations in the boost ratio of the resonant converter. It has been.
 また、電力変換装置1000を高電圧モータの駆動に応用する場合、モータの回転速度などによって出力すべき合成出力電圧Vosの振幅は変動する。Vosの振幅を高くする条件において、直流リンク電圧Vdcも高く制御することが考えられる。以上のように、電力変換装置1000の動作条件に応じて電圧Vdcを可変する方式が考えられる。 Further, when the power conversion apparatus 1000 is applied to driving a high voltage motor, the amplitude of the combined output voltage Vos to be output varies depending on the rotational speed of the motor. It is conceivable that the DC link voltage Vdc is also controlled to be high under the condition of increasing the amplitude of Vos. As described above, a method of varying the voltage Vdc according to the operating conditions of the power conversion apparatus 1000 can be considered.
 図5に示したように、合成出力電圧Vosの波形は、1ステップの電圧が直流リンク電圧Vdcの階段状となる。Vdcが高いほどVos波形の1ステップ分の電圧も高くなるため、Vosに含まれる高調波成分も大きくなる。そのため、高調波電流を所定の値まで低減するために必要なインダクタンスも大きくなる。 As shown in FIG. 5, the waveform of the composite output voltage Vos has a stepped shape in which the voltage of one step is the DC link voltage Vdc. Since the voltage for one step of the Vos waveform increases as Vdc increases, the harmonic component included in Vos also increases. Therefore, the inductance necessary for reducing the harmonic current to a predetermined value is also increased.
 そこで、制御装置200は、直流リンク電圧Vdcが高いほど合成インダクタンス(Ls)が大きくなるように、第1バイパス部311~314にバイパス信号を出力する。すなわち、直流リンク電圧Vdcが高いほど、第1バイパス部311~314のうちオンにする第1バイパス部の数(N)を減少させる。 Therefore, the control device 200 outputs a bypass signal to the first bypass units 311 to 314 so that the combined inductance (Ls) increases as the DC link voltage Vdc increases. That is, the higher the DC link voltage Vdc, the smaller the number (N) of first bypass sections to be turned on among the first bypass sections 311 to 314.
 図7は、この制御によって実現する直流リンク電圧Vdcと合成インダクタンスLsの関係である。図7の関係は、制御装置200のうち不図示の記憶部に格納されている。図7において、横軸は直流リンク電圧Vdcであり、Vdcは最小値V1~最大値V5の範囲で制御される。図7において、縦軸は合成インダクタンスLsであり、リアクトル301~304の各インダクタンスは全てL1であって、Lsは最小値L1~最大値4L1の範囲で制御される。図7において、Nはオンにする第1バイパス部の数である。例えば、VdcがV1より大きく、かつV2以下である場合、必要なインダクタンスはL1であり、オンにする第1バイパス部の数Nは3となる。すなわち、Vdcの範囲ごとにバイパスするリアクトルの数が定められており、検出した直流リンク電圧Vdcの値に応じてバイパスするリアクトルの数を決定する。 FIG. 7 shows the relationship between the DC link voltage Vdc and the combined inductance Ls realized by this control. 7 is stored in a storage unit (not shown) in the control device 200. In FIG. 7, the horizontal axis is the DC link voltage Vdc, and Vdc is controlled in the range of the minimum value V1 to the maximum value V5. In FIG. 7, the vertical axis represents the combined inductance Ls, and all the inductances of the reactors 301 to 304 are L1, and Ls is controlled in the range of the minimum value L1 to the maximum value 4L1. In FIG. 7, N is the number of first bypass units to be turned on. For example, when Vdc is greater than V1 and less than or equal to V2, the required inductance is L1, and the number N of first bypass parts to be turned on is 3. That is, the number of reactors to be bypassed is determined for each range of Vdc, and the number of reactors to be bypassed is determined according to the detected value of DC link voltage Vdc.
 なお、リアクトル301~304のうち、どのリアクトルをバイパスするかについては任意である。なお、リアクトル301~304のインダクタンスの値がそれぞれ異なる場合であっても、直流リンク電圧Vdcに対して好適なLsを満たすように、オンにする第1バイパス部の数Nを決定すればよい。なお、各セルの出力電圧(Vo1~Vo4)には直流リンク電圧Vdcの情報が含まれるため、各セルの出力電圧からVdcを間接的に検出し、オンにする第1バイパス部の数Nを決定してもよい。 Of the reactors 301 to 304, which reactor is bypassed is arbitrary. Even if the inductance values of reactors 301 to 304 are different from each other, the number N of first bypass sections to be turned on may be determined so as to satisfy Ls suitable for DC link voltage Vdc. Note that since the output voltage (Vo1 to Vo4) of each cell includes information on the DC link voltage Vdc, the number N of first bypass units to be turned on by indirectly detecting Vdc from the output voltage of each cell is determined. You may decide.
 第1バイパス部の具体的な制御方法の変形例として、電力変換装置の負荷電流が小さいほど高調波電流成分が相対的に大きくなるため、第1バイパス部のうちオンにする第1バイパス部の数Nを減少させるように制御してもよい。 As a modification of the specific control method of the first bypass unit, the harmonic current component becomes relatively larger as the load current of the power converter is smaller. Control may be performed to decrease the number N.
 図8は、上記の制御を実現する制御装置200の構成例であり、処理・演算内容をブロック図として表したものである。図8には、セル101、リアクトル301、第1バイパス部311も合わせて示した。実際には、制御装置200は他のセル、リアクトル、第1バイパス部に対しても信号を出力する。 FIG. 8 shows a configuration example of the control device 200 that realizes the above-described control, and shows processing / calculation contents as a block diagram. In FIG. 8, the cell 101, the reactor 301, and the first bypass unit 311 are also shown. Actually, the control device 200 outputs signals to other cells, reactors, and first bypass units.
 制御装置200は、目標値設定部210、コンバータ制御部211、インバータ制御部212、第1バイパス制御部213を備える。 The control device 200 includes a target value setting unit 210, a converter control unit 211, an inverter control unit 212, and a first bypass control unit 213.
 目標値設定部210は、電力変換装置1000の出力電圧または出力電流に関する目標値に基づいて、各セルの直流リンク電圧(Vdc1~Vdc4)と各セルの出力電圧(Vo1~Vo4)の目標値を演算し、コンバータ制御部211にVdc1~Vdc4の目標値を、インバータ制御部212にVo1~Vo4の目標値をそれぞれ出力する。ここで、電力変換装置1000の出力電圧または出力電流に関する目標値は、外部から入力されるか、または、制御装置200の内部で生成される。 The target value setting unit 210 determines the target values of the DC link voltages (Vdc1 to Vdc4) of each cell and the output voltages (Vo1 to Vo4) of each cell based on the target value related to the output voltage or output current of the power converter 1000. The target values of Vdc1 to Vdc4 are output to the converter control unit 211, and the target values of Vo1 to Vo4 are output to the inverter control unit 212, respectively. Here, the target value related to the output voltage or output current of the power conversion apparatus 1000 is input from the outside or is generated inside the control apparatus 200.
 また、目標値設定部210は、演算した直流リンク電圧Vdc1~Vdc4の目標値、及び、図7に示した直流リンク電圧VdcとLsの関係に基づいて、オンにする第1バイパス部の数(N)を決定し、これを第1バイパス制御部213に出力する。Vdc1~Vdc4を全て等しい値に制御するのであれば、これらを図7のVdcと考えて図7の関係をそのまま利用できる。Vdc1~Vdc4を異なる値に制御する場合、これらの平均値や中央値を図8のVdcとする方法が考えられる。なお、Vdc1~Vdc4の目標値の代わりに、Vdc1~Vdc4の検出値を用いてもよい。 Further, the target value setting unit 210 sets the number of first bypass units to be turned on based on the calculated target values of the DC link voltages Vdc1 to Vdc4 and the relationship between the DC link voltage Vdc and Ls shown in FIG. N) is determined and output to the first bypass control unit 213. If all of Vdc1 to Vdc4 are controlled to be equal, these can be considered as Vdc in FIG. 7 and the relationship in FIG. 7 can be used as it is. In the case of controlling Vdc1 to Vdc4 to different values, a method in which the average value or the median value thereof is set to Vdc in FIG. 8 can be considered. Note that the detection values of Vdc1 to Vdc4 may be used instead of the target values of Vdc1 to Vdc4.
 コンバータ制御部211は、目標値設定部210から入力される直流リンク電圧Vdc1~Vdc4の目標値と、各セルのコンバータから入力されるVdc1~Vdc4の検出値に基づいて、Vdc1~Vdc4がそれぞれ目標値となるように各セルのコンバータに制御信号を出力する。コンバータ制御部211の具体的な演算内容は、フィードバック制御演算と共振型コンバータにおけるPWM制御である。これらは公知技術であるため、詳細については省略する。 Based on the target values of DC link voltages Vdc1 to Vdc4 input from target value setting unit 210 and the detected values of Vdc1 to Vdc4 input from the converters of each cell, converter control unit 211 sets Vdc1 to Vdc4 as target values. A control signal is output to the converter of each cell so as to be a value. Specific calculation contents of the converter control unit 211 are feedback control calculation and PWM control in the resonance type converter. Since these are publicly known techniques, details are omitted.
 インバータ制御部212は、目標値設定部210から入力される各セルの出力電圧(Vo1~Vo4)の目標値に基づいて、Vo1~Vo4が目標値となるように各セルのインバータに制御信号を出力する。インバータ制御部212の具体的な演算内容については、図5を説明する際に述べているため、ここでは省略する。 Based on the target value of the output voltage (Vo1 to Vo4) of each cell input from the target value setting unit 210, the inverter control unit 212 sends a control signal to the inverter of each cell so that Vo1 to Vo4 become the target value. Output. Since the specific calculation contents of the inverter control unit 212 are described when FIG. 5 is described, they are omitted here.
 第1バイパス制御部213は、目標値設定部210からの入力にしたがって、第1バイパス部311~314にバイパス信号を出力する。なお、例えばリアクトル301~304のうち1個をバイパスする、すなわち、N=1とする場合、どのリアクトルをバイパスするかを決定する具体的なアルゴリズムについては任意である。 The first bypass control unit 213 outputs a bypass signal to the first bypass units 311 to 314 in accordance with the input from the target value setting unit 210. For example, when one of the reactors 301 to 304 is bypassed, that is, when N = 1, a specific algorithm for determining which reactor is bypassed is arbitrary.
 図9は、制御装置200が直流リンク電圧Vdcをもとに第1バイパス部を制御するフローチャートである。まず、制御装置200は、直流リンク電圧Vdcの検出値、またはVdcの目標値を参照する(ステップ901)。その後、Vdcと合成インダクタンスLsの関係を用いて、バイパスするリアクトルの数(N)を求める(ステップ902)。さらに、第1バイパス部311~314のうちオンにする第1バイパス部を求め、第1バイパス制御部213から対象の第1バイパス部に対してバイパス信号を出力し(ステップ903)、制御が終了する。 FIG. 9 is a flowchart in which the control device 200 controls the first bypass unit based on the DC link voltage Vdc. First, the control device 200 refers to the detected value of the DC link voltage Vdc or the target value of Vdc (step 901). Thereafter, the number (N) of reactors to be bypassed is obtained using the relationship between Vdc and the combined inductance Ls (step 902). Further, a first bypass unit to be turned on among the first bypass units 311 to 314 is obtained, and a bypass signal is output from the first bypass control unit 213 to the target first bypass unit (step 903), and the control ends. To do.
 図10は、電力変換装置が備える全てのセル、リアクトル、第1バイパス部の実装形態の一例であり、これを上方から見た場合の平面図である。基板701~704には、後述する図11の基板701と同様に、リアクトルと第1バイパス部が実装される。図10のようにセル101~104と基板701~704を並べ、これらを導体棒(バスバー)などによって配線することで、セル101~104の出力とリアクトルを直列に接続する。導体棒の代わりにリード線を利用してもよい。なお、図10では、複数ある導体棒のうち1個について記号710を付加し、その他の導体棒については記号を省略した。また、セル101~104と電源400を接続する配線については図示を省略した。 FIG. 10 is an example of a mounting form of all the cells, reactors, and first bypass units included in the power conversion device, and is a plan view when viewed from above. A reactor and a first bypass unit are mounted on the substrates 701 to 704 in the same manner as the substrate 701 in FIG. As shown in FIG. 10, the cells 101 to 104 and the substrates 701 to 704 are arranged, and these are wired by a conductor bar (bus bar) or the like, thereby connecting the outputs of the cells 101 to 104 and the reactor in series. A lead wire may be used instead of the conductor rod. In FIG. 10, the symbol 710 is added to one of the plurality of conductor rods, and the symbols are omitted for the other conductor rods. Also, the wiring connecting the cells 101 to 104 and the power supply 400 is not shown.
 セル101~104と基板701~704、すなわち、電力変換装置の全ての構成要素は、同一の筐体に収納でき、リアクトルやバイパス部のために別途筐体を設ける必要はない。これによって、電力変換装置全体としての小型、低コスト化が可能となる。 The cells 101 to 104 and the substrates 701 to 704, that is, all the components of the power conversion device can be housed in the same housing, and there is no need to provide a separate housing for the reactor or the bypass unit. As a result, the power conversion device as a whole can be reduced in size and cost.
 図11は、リアクトル301と第1バイパス部311の実装形態の一例であり、これを上方から見た場合の平面図である。 FIG. 11 is an example of a mounting form of the reactor 301 and the first bypass unit 311 and is a plan view when viewed from above.
 リアクトル301と第1バイパス部311は、基板701に実装される。なお、基板701の配線パターンについては図示を省略した。基板701に容易に実装可能なリアクトルの例として、スイッチング電源装置によく用いられるトロイダルコアを利用したリアクトル、または、E型コアを利用したリアクトルがある。複数のリアクトルを利用する、すなわち、リアクトルが複数に分割されているため、各々のリアクトルについては基板に実装可能な小型・軽量のリアクトルを適用できる。 The reactor 301 and the first bypass unit 311 are mounted on the substrate 701. Note that the wiring pattern of the substrate 701 is not shown. Examples of the reactor that can be easily mounted on the substrate 701 include a reactor using a toroidal core often used in a switching power supply device, or a reactor using an E-type core. Since a plurality of reactors are used, that is, the reactor is divided into a plurality of reactors, a small and lightweight reactor that can be mounted on a substrate can be applied to each reactor.
 図11では、2個のスイッチング素子(71と72)によって第1バイパス部311を構成する例を示した。それぞれのスイッチング素子に、図6に示したIGBTとダイオードが1個ずつ内蔵される。 FIG. 11 shows an example in which the first bypass unit 311 is configured by two switching elements (71 and 72). Each switching element incorporates one IGBT and one diode shown in FIG.
 基板701は、配線用の導体棒711を用いてセル101に接続される。セル101には2つの導体棒711、712が接続されているが、これらはセル101が備える2つの出力端子にそれぞれ接続される。なお、セル101の内部構造、すなわち、セル101が備える部材の詳細については図示を省略した。 The substrate 701 is connected to the cell 101 using a conductor rod 711 for wiring. Two conductor rods 711 and 712 are connected to the cell 101, and these are connected to two output terminals provided in the cell 101, respectively. In addition, illustration was abbreviate | omitted about the internal structure of the cell 101, ie, the detail of the member with which the cell 101 is provided.
 このような実装形態によって、基板701、すなわち、リアクトル301と第1バイパス部311をセル101の近くに配置でき、また、これら全てを同一の筐体に収納することも可能となる。 With such a mounting form, the substrate 701, that is, the reactor 301 and the first bypass unit 311 can be arranged near the cell 101, and all of them can be housed in the same casing.
 リアクトル301、第1バイパス部311の他に、制御装置200の第1バイパス制御部213についても、図11のように基板701に実装できる。第1バイパス制御部213が備える構成要素として、第1バイパス部311の駆動装置、マイクロコンピュータやICなどの制御装置、及び、制御装置の周辺部品があり、これらは全て基板701に実装可能である。なお、第1バイパス制御部213の詳細、及び、制御装置200が備える他の要素との接続(配線)については図示を省略した。 In addition to the reactor 301 and the first bypass unit 311, the first bypass control unit 213 of the control device 200 can be mounted on the substrate 701 as shown in FIG. Components included in the first bypass control unit 213 include a drive device for the first bypass unit 311, a control device such as a microcomputer and an IC, and peripheral components of the control device, all of which can be mounted on the substrate 701. . In addition, illustration was abbreviate | omitted about the detail of the 1st bypass control part 213, and connection (wiring) with the other element with which the control apparatus 200 is provided.
 このような実装形態によって、第1バイパス制御部213は第1バイパス部311の近くに実装される。また、第1バイパス制御部213は、基板701の配線パターンを利用して第1バイパス部311を制御できる。この構成は、第1バイパス制御部213が第1バイパス部311と離れた場所に配置され、長距離の配線を用いて第1バイパス部311を制御する場合と比べて、バイパス信号に電磁ノイズが混入することを防止する点で有利である。 The first bypass control unit 213 is mounted near the first bypass unit 311 according to such a mounting form. Further, the first bypass control unit 213 can control the first bypass unit 311 using the wiring pattern of the substrate 701. In this configuration, the first bypass control unit 213 is disposed away from the first bypass unit 311, and electromagnetic noise is generated in the bypass signal compared to the case where the first bypass unit 311 is controlled using a long-distance wiring. This is advantageous in preventing mixing.
 図12は、リアクトルと第1バイパス部の実装形態の別例である。図12では、図3(B)や(D)に示したように、セル101が備える2つの出力端子にリアクトルがそれぞれ接続される場合を想定した。また、各々のリアクトルに、第1バイパス部が接続される場合を想定した。 FIG. 12 is another example of the mounting form of the reactor and the first bypass unit. In FIG. 12, as illustrated in FIGS. 3B and 3D, it is assumed that the reactor is connected to the two output terminals included in the cell 101. Moreover, the case where the 1st bypass part was connected to each reactor was assumed.
 基板705には、2個のリアクトル301、305、及び、2個の第1バイパス部311、315が実装される。第1バイパス部315は、2個のスイッチング素子(73と74)によって構成される。 On the substrate 705, two reactors 301 and 305 and two first bypass parts 311 and 315 are mounted. The first bypass unit 315 includes two switching elements (73 and 74).
 基板705は、導体棒714、715によってセル101と接続される。2つの導体棒714、715は、セル101が備える2つの出力端子にそれぞれ接続される。基板705と同じ構成の基板をさらに3枚用意し、セル102~104とそれぞれ接続して利用できる。 The substrate 705 is connected to the cell 101 by conductor bars 714 and 715. The two conductor rods 714 and 715 are connected to two output terminals provided in the cell 101, respectively. Three more substrates having the same configuration as the substrate 705 can be prepared and connected to the cells 102 to 104, respectively.
 図13は、リアクトルと第1バイパス部の実装形態の別例である。基板706には、リアクトルと第1バイパス部に加え、セル101の部品が搭載される。セル101の部品として、図4に示したインバータ21(インバータ21が備える4個のスイッチング素子を75~78とした)と制御装置200のインバータ制御部212のみを示したが、他の部品が基板706に搭載されていてもよい。 FIG. 13 is another example of the mounting form of the reactor and the first bypass unit. In addition to the reactor and the first bypass unit, the components of the cell 101 are mounted on the substrate 706. As the components of the cell 101, only the inverter 21 shown in FIG. 4 (the four switching elements included in the inverter 21 are 75 to 78) and the inverter control unit 212 of the control device 200 are shown. 706 may be mounted.
 図13の実装形態は、セル、リアクトル、第1バイパス部を一体化する形態と言える。このような実装形態によって、電力変換装置全体としてのさらなる小型、低コスト化が可能となる。 13 can be said to be a form in which the cell, the reactor, and the first bypass unit are integrated. With such a mounting form, it is possible to further reduce the size and cost of the power conversion apparatus as a whole.
 本実施例では、電力変換装置の動作条件が運転中に変動する場合であっても、リアクトルのバイパスによって合成インダクタンスの切り替えを行うことにより、高調波電流を所定の値まで低減しつつ、リアクトルの損失を最小限に抑えることができる。 In this embodiment, even if the operating conditions of the power conversion device fluctuate during operation, by switching the composite inductance by bypassing the reactor, the harmonic current is reduced to a predetermined value while the reactor current is reduced. Loss can be minimized.
 本発明の電力変換装置では、リアクトルを複数に分割するため、各リアクトルには小型・低コストの汎用品を利用できる。また、合成インダクタンスを細かく調節できる。リアクトル、第1バイパス部、制御装置を近くに配置できるため、これらを接続する配線も短くなり、合成インダクタンスの切り替えを低コストかつ省スペースで実現できる。セル、リアクトル、第1バイパス部、制御装置を同じ基板に実装できれば、または、同じ筺体内で近くに配置できれば、装置全体としての構成要素や設置工程数が減少し、小型・低コストの電力変換装置を実現できるとともに、電力変換装置の変換効率を改善できる。リアクトルは少なくとも1以上であればよく、1つの場合であっても直流リンク電圧に応じて第1バイパス部のオン・オフすることにより電力変換効率の改善が期待できる。 In the power conversion device of the present invention, since the reactor is divided into a plurality of reactors, a small-sized and low-cost general-purpose product can be used for each reactor. In addition, the combined inductance can be finely adjusted. Since the reactor, the first bypass unit, and the control device can be arranged close to each other, the wiring connecting them can be shortened, and the switching of the combined inductance can be realized at low cost and in a small space. If the cell, reactor, first bypass unit, and control device can be mounted on the same board, or if they can be placed close together in the same housing, the number of components and the number of installation processes as a whole device will be reduced, and compact, low-cost power conversion The device can be realized and the conversion efficiency of the power conversion device can be improved. At least one reactor is sufficient, and even in one case, power conversion efficiency can be expected to be improved by turning on and off the first bypass unit according to the DC link voltage.
 図14は、本発明の実施例2における電力変換装置の構成である。 FIG. 14 shows the configuration of the power conversion device according to the second embodiment of the present invention.
 電力変換装置3000では、セル101~104の出力端子間に第2バイパス部321~324がそれぞれ接続される。図14では第2バイパス部321~324をスイッチとして図示したが、これらのスイッチとしてリレー、スイッチング素子(半導体)などを適用できる。 In the power conversion device 3000, the second bypass units 321 to 324 are connected between the output terminals of the cells 101 to 104, respectively. Although the second bypass units 321 to 324 are illustrated as switches in FIG. 14, relays, switching elements (semiconductors), and the like can be applied as these switches.
 図14の制御装置201は、第2バイパス部321~324をオン・オフ制御するためのバイパス信号を出力する。図14では、図面の煩雑化を防ぐため、第2バイパス部321に対するバイパス信号のみを示した。実際には、第2バイパス部322~324に対してもバイパス信号を出力する。 14 outputs a bypass signal for ON / OFF control of the second bypass units 321 to 324. In FIG. 14, only the bypass signal for the second bypass unit 321 is shown in order to prevent the drawing from becoming complicated. Actually, a bypass signal is also output to the second bypass units 322 to 324.
 実施例2におけるセル101の構成として、実施例1の図4に示した構成を適用する。すなわち、セル101はコンバータ11とインバータ21から構成される。他のセルについても同様の構成とする。リアクトル301~304、第1バイパス部311~314については、実施例1で説明した構成を適用できる。 The configuration shown in FIG. 4 of the first embodiment is applied as the configuration of the cell 101 in the second embodiment. That is, the cell 101 includes the converter 11 and the inverter 21. The other cells have the same configuration. The configuration described in the first embodiment can be applied to the reactors 301 to 304 and the first bypass units 311 to 314.
 図15は、第2バイパス部321の構成例である。図15には、セル101、制御装置201、リアクトル301、第1バイパス部311も合わせて示した。第2バイパス部321はスイッチング素子によって構成される。具体的には、2個のIGBTとダイオードによって双方向スイッチを構成し、第2バイパス部321として利用する。制御装置201は、バイパス信号として2個のIGBTの駆動信号を出力する。 FIG. 15 is a configuration example of the second bypass unit 321. FIG. 15 also shows the cell 101, the control device 201, the reactor 301, and the first bypass unit 311. The second bypass unit 321 is configured by a switching element. Specifically, a bidirectional switch is configured by two IGBTs and a diode, and is used as the second bypass unit 321. The control device 201 outputs two IGBT drive signals as bypass signals.
 制御装置201は、通常運転時(全セルを動作させて運転する場合)において、第2バイパス部321~324を全てオフにする。一方、故障や保守などの理由によって一部のセルを停止させる場合、同セルに接続される第2バイパス部をオンにして、それ以外のセルのうち少なくとも1台以上のセルにおいて直流リンク電圧を増大させる。例えば、セル101を停止させる場合、第2バイパス部321をオンにすると共に、セル102~104の直流リンク電圧を増大させる。これによって、電力変換装置3000はセル101を停止させた後も、セル102~104によって出力電圧範囲を損なうことなく運転継続できる。 The control device 201 turns off all the second bypass units 321 to 324 during normal operation (when operating by operating all the cells). On the other hand, when stopping some cells due to a failure or maintenance, the second bypass unit connected to the same cell is turned on, and the DC link voltage is applied to at least one of the other cells. Increase. For example, when the cell 101 is stopped, the second bypass unit 321 is turned on and the DC link voltage of the cells 102 to 104 is increased. As a result, the power conversion device 3000 can continue operation without damaging the output voltage range by the cells 102 to 104 even after the cell 101 is stopped.
 図16(A)及び図16(B)は、1台のセルを停止させた場合における合成出力電圧Vosの波形であり、実施例1で説明した図5(A)及び図5(B)を通常運転時のVos波形として、これらとの比較を示している。図16では、動作を継続させる3台のセルについて、直流リンク電圧を図5のVdcからVdc’=(4/3)×Vdcへと増大させる場合を示した。図16のVos波形では、図5と比べてVos波形のステップ数が(3/4)倍に減少するものの、1ステップあたりの電圧値が(4/3)倍に増大されるため、Vosの振幅を維持できる。 FIGS. 16A and 16B are waveforms of the combined output voltage Vos when one cell is stopped. FIGS. 5A and 5B described in the first embodiment are shown in FIGS. Comparison with these is shown as a Vos waveform during normal operation. FIG. 16 shows a case where the DC link voltage is increased from Vdc in FIG. 5 to Vdc ′ = (4/3) × Vdc for three cells that continue to operate. In the Vos waveform of FIG. 16, the number of steps of the Vos waveform decreases by (3/4) times compared to FIG. 5, but the voltage value per step increases by (4/3) times. Amplitude can be maintained.
 実施例1でも説明したように、Vos波形の1ステップ分の電圧が高くなると、Vosに含まれる高調波電圧も大きくなる。そのため、高調波電流を所定の値まで低減するために必要なリアクトルのインダクタンスも大きくなる。そこで、制御装置201は、合成インダクタンスLsが大きくなるように、第1バイパス部311~314に対してバイパス信号を出力する。すなわち、停止させるセルの台数が多くなり、直流リンク電圧を高くするほど、第1バイパス部311~314のうちオンにする第1バイパス部の数(N)を減少させる。このときの直流リンク電圧とLsの関係として、実施例1の図7に示した関係を利用できる。 As described in the first embodiment, when the voltage for one step of the Vos waveform increases, the harmonic voltage included in Vos also increases. Therefore, the reactor inductance required to reduce the harmonic current to a predetermined value also increases. Therefore, the control device 201 outputs a bypass signal to the first bypass units 311 to 314 so that the combined inductance Ls becomes large. That is, as the number of cells to be stopped increases and the DC link voltage is increased, the number (N) of first bypass sections to be turned on among the first bypass sections 311 to 314 is decreased. As the relationship between the DC link voltage and Ls at this time, the relationship shown in FIG.
 図17は、以上の制御を実現する制御装置201の構成例であり、処理・演算内容をブロック図として表したものである。図17には、セル101、リアクトル301、第1バイパス部311、第2バイパス部321も示した。実際には、制御装置201は他のセル、第1バイパス部、第2バイパス部に対しても信号を出力する。 FIG. 17 is a configuration example of the control device 201 that realizes the above control, and shows processing and calculation contents as a block diagram. FIG. 17 also shows the cell 101, the reactor 301, the first bypass unit 311, and the second bypass unit 321. Actually, the control device 201 also outputs signals to other cells, the first bypass unit, and the second bypass unit.
 制御装置201は、実施例1で説明した目標値設定部210、コンバータ制御部211、インバータ制御部212、第1バイパス制御部213の他に、第2バイパス制御部214を備える。 The control device 201 includes a second bypass control unit 214 in addition to the target value setting unit 210, the converter control unit 211, the inverter control unit 212, and the first bypass control unit 213 described in the first embodiment.
 各セルは、電圧、電流、温度などの物理量、または、異常有無などの状態を検出信号として目標値設定部210に出力する。図17では、セル101のコンバータ11とインバータ21が、目標値設定部210に対してそれぞれ検出信号を出力する場合を示した。また、図示を省略するが、保守などの理由によって使用者が意図的にセルを停止させる場合、外部から目標値設定部210に信号を入力してもよい。 Each cell outputs a physical quantity such as voltage, current, temperature, or a state such as abnormality to the target value setting unit 210 as a detection signal. FIG. 17 shows a case where the converter 11 and the inverter 21 of the cell 101 output detection signals to the target value setting unit 210, respectively. Although illustration is omitted, when the user intentionally stops the cell for reasons such as maintenance, a signal may be input to the target value setting unit 210 from the outside.
 目標値設定部210は、実施例1で説明した動作に加えて、各セルを停止させるか否かを決定し、これを表す信号を第2バイパス制御部214に出力する。 The target value setting unit 210 determines whether or not to stop each cell in addition to the operation described in the first embodiment, and outputs a signal indicating this to the second bypass control unit 214.
 第2バイパス制御部214は、目標値設定部210からの入力にしたがって、第2バイパス部321~324にバイパス信号を出力する。なお、コンバータ制御部211、インバータ制御部212、第1バイパス制御部213は、実施例1と同様に動作する。 The second bypass control unit 214 outputs a bypass signal to the second bypass units 321 to 324 in accordance with the input from the target value setting unit 210. The converter control unit 211, the inverter control unit 212, and the first bypass control unit 213 operate in the same manner as in the first embodiment.
 以上の実施例2では、一部のセルを停止させた場合でも、残りのセルによって出力電圧範囲を損なうことなく運転継続できる。これによって、電力変換装置としての信頼性向上、及び、運転中でもセルの保守を実現できるといった利点がある。また、これを実現する過程において直流リンク電圧を増大させたとしても、高調波電流を所定の値まで低減しつつ、リアクトルの損失を最小限に抑えることができる。 In Example 2 described above, even when some of the cells are stopped, the operation can be continued without damaging the output voltage range with the remaining cells. As a result, there is an advantage that the reliability as the power conversion device is improved and the maintenance of the cell can be realized even during operation. Further, even if the DC link voltage is increased in the process of realizing this, the loss of the reactor can be minimized while reducing the harmonic current to a predetermined value.
 本発明の実施例3では、リアクトルに補助巻線を設け、補助巻線に発生する電圧を変換して制御装置の電源電圧を得る。この構成は、実施例1~2で説明した全ての電力変換装置に適用できる。 In the third embodiment of the present invention, an auxiliary winding is provided in the reactor, and a voltage generated in the auxiliary winding is converted to obtain a power supply voltage of the control device. This configuration can be applied to all the power conversion devices described in the first and second embodiments.
 図18は、実施例3における電力変換装置の構成の一部であり、実施例2の図17に示した構成をもとに実施例3での追加点、及び、変更点を示すものである。図18にて、リアクトル301は、補助巻線331を備える。制御電源生成部220は、補助巻線331に発生する交流電圧を変換し、制御装置202の電源電圧を出力する。制御装置202の電源電圧とは、マイクロコンピュータやICの動作電圧や、スイッチング素子の駆動装置の動作電圧などに相当する。制御装置202は、制御電源生成部220以外の構成要素として、目標値設定部210、コンバータ制御部211、インバータ制御部212、第1バイパス制御部213、第2バイパス制御部214を備える。 FIG. 18 is a part of the configuration of the power conversion device according to the third embodiment, and illustrates additions and changes in the third embodiment based on the configuration illustrated in FIG. 17 of the second embodiment. . In FIG. 18, the reactor 301 includes an auxiliary winding 331. The control power generation unit 220 converts the AC voltage generated in the auxiliary winding 331 and outputs the power supply voltage of the control device 202. The power supply voltage of the control device 202 corresponds to an operating voltage of a microcomputer or IC, an operating voltage of a driving device for a switching element, or the like. The control device 202 includes a target value setting unit 210, a converter control unit 211, an inverter control unit 212, a first bypass control unit 213, and a second bypass control unit 214 as components other than the control power generation unit 220.
 図18では、制御電源生成部220が備える2つの出力端子に、プラス(+)、マイナス(-)の記号を付与した。これらは、制御電源生成部220が出力する電圧、すなわち、制御装置202の電源電圧の正極、負極をそれぞれ意味する。また、制御装置202の各構成要素にも、同様にプラス(+)、マイナス(-)の記号を付与した。プラス(+)と記載された入力端子には、制御電源生成部220が出力する電源電圧の正極側が入力される。同様に、マイナス(-)と記載された入力端子には、制御電源生成部220が出力する電源電圧の負極側が入力される。 In FIG. 18, plus (+) and minus (−) symbols are given to the two output terminals provided in the control power generation unit 220. These mean the voltage output from the control power supply generation unit 220, that is, the positive electrode and the negative electrode of the power supply voltage of the control device 202, respectively. Similarly, plus (+) and minus (−) symbols are assigned to the components of the control device 202. The positive terminal of the power supply voltage output from the control power generation unit 220 is input to the input terminal described as plus (+). Similarly, the negative side of the power supply voltage output from the control power supply generation unit 220 is input to the input terminal described as minus (−).
 制御電源生成部220の出力端子は、制御装置202の各構成要素に接続され、これらが動作するための電力を供給する。ただし、制御電源生成部220は、制御装置202が備える一部の構成要素に電力を供給する構成であってもよい。制御電源生成部220は直流電源装置の一種であり、整流回路、DC-DCコンバータ、平滑コンデンサなどを用いて構成できる。直流電圧を生成できれば、制御電源生成部220の具体的な回路方式については問わない。図18において、制御電源生成部220は制御装置202の構成要素として図示されているが、制御装置202と同じ基板に実装される必要はない。 The output terminal of the control power generation unit 220 is connected to each component of the control device 202 and supplies power for operating them. However, the control power generation unit 220 may be configured to supply power to some components included in the control device 202. The control power generation unit 220 is a type of DC power supply device, and can be configured using a rectifier circuit, a DC-DC converter, a smoothing capacitor, and the like. As long as the DC voltage can be generated, the specific circuit system of the control power generation unit 220 is not limited. In FIG. 18, the control power generation unit 220 is illustrated as a component of the control device 202, but it is not necessary to be mounted on the same board as the control device 202.
 実施例1で説明したように、制御装置202はセルごとに設けられていてもよい。リアクトル302~304にも同様に補助巻線を設け、セル102~104の制御装置にそれぞれ給電することができる。リアクトル301~304の全てが補助巻線を備える必要はない。 As described in the first embodiment, the control device 202 may be provided for each cell. Similarly, the reactors 302 to 304 can be provided with auxiliary windings to supply power to the control devices of the cells 102 to 104, respectively. Not all of the reactors 301 to 304 need to have auxiliary windings.
 実施例2で説明したように、故障や保守などの理由によってセル101を停止させ、セル102~104のみで運転を継続する場合を考える。セル101が停止していても、第2バイパス部321がオンであり、残りのセル102~104が動作すれば、リアクトル301には電流が流れるため、補助巻線331に電圧が発生する。この電圧を利用して、第2バイパス制御部214を動作させ、第2バイパス部321のオンを維持することができる。 Consider the case where the cell 101 is stopped for reasons such as failure or maintenance and the operation is continued only with the cells 102 to 104 as described in the second embodiment. Even if the cell 101 is stopped, if the second bypass unit 321 is on and the remaining cells 102 to 104 operate, a current flows through the reactor 301, so that a voltage is generated in the auxiliary winding 331. Using this voltage, the second bypass control unit 214 can be operated, and the second bypass unit 321 can be kept on.
 リアクトルに補助巻線を設け、補助巻線に発生する電圧を変換して制御装置の電源電圧を得る構成は、第1バイパス部、第1バイパス制御部がない場合にも適用できる。図19は、実施例3における構成の別例であり、図18から第1バイパス部311と第1バイパス制御部213を除いた構成である。 The configuration in which the auxiliary winding is provided in the reactor and the power supply voltage of the control device is obtained by converting the voltage generated in the auxiliary winding can be applied even when the first bypass unit and the first bypass control unit are not provided. FIG. 19 is another example of the configuration in the third embodiment, and is a configuration obtained by removing the first bypass unit 311 and the first bypass control unit 213 from FIG.
 図19の構成においても、故障や保守などの理由によってセル101を停止させる場合に、補助巻線331に発生する電圧を利用して、第2バイパス制御部214を動作させ、第2バイパス部321のオンを維持することができる。 Also in the configuration of FIG. 19, when the cell 101 is stopped due to a failure or maintenance, the second bypass control unit 214 is operated using the voltage generated in the auxiliary winding 331 and the second bypass unit 321 is operated. Can be kept on.
 図20は、セル、リアクトルと補助巻線、第2バイパス部、制御装置の実装形態の一例であり、これを上方から見た場合の平面図である。 FIG. 20 is an example of a mounting form of the cell, the reactor and the auxiliary winding, the second bypass unit, and the control device, and is a plan view when viewed from above.
 図20では、図3(B)や(D)に示したように、セル101が備える2個の出力端子にリアクトルがそれぞれ接続される場合を想定した。2個のリアクトル301、306のうち、リアクトル301には補助巻線331が設けられている。図20では、トロイダルコアを利用したリアクトル301に、補助巻線331を巻き付ける構成を図示した。 In FIG. 20, as shown in FIGS. 3B and 3D, it is assumed that a reactor is connected to each of the two output terminals included in the cell 101. Of the two reactors 301 and 306, the reactor 301 is provided with an auxiliary winding 331. FIG. 20 illustrates a configuration in which the auxiliary winding 331 is wound around the reactor 301 using the toroidal core.
 基板707には、リアクトルと補助巻線の他に、第2バイパス部321、制御装置202が備える第2バイパス制御部214と制御電源生成部220が実装される。第2バイパス部321は、2個のスイッチング素子(79と80)によって構成される。基板707は、導体棒720、721によってセル101と接続される。2つの導体棒720、721は、セル101が備える2つの出力端子にそれぞれ接続される。基板707と同じ構成の基板をさらに3枚用意し、セル102~104とそれぞれ接続して利用できる。 In addition to the reactor and the auxiliary winding, the second bypass unit 321, the second bypass control unit 214 included in the control device 202, and the control power generation unit 220 are mounted on the substrate 707. The second bypass unit 321 includes two switching elements (79 and 80). The substrate 707 is connected to the cell 101 by conductor bars 720 and 721. The two conductor rods 720 and 721 are connected to the two output terminals provided in the cell 101, respectively. Three more substrates having the same configuration as the substrate 707 can be prepared and used by being connected to the cells 102 to 104, respectively.
 リこのような実装形態によって、基板707、すなわち、リアクトルと補助巻線、第2バイパス部、制御装置をセル101の近くに配置でき、これら全てを同一の筐体に収納できる。第2バイパス制御部214は第2バイパス部321の近くに実装される。また、第2バイパス制御部214は、基板707の配線パターンを利用して第2バイパス部321を制御できる。この構成は、第2バイパス制御部214が第2バイパス部321と離れた場所に配置され、長距離の配線を用いて第2バイパス部321を制御する場合と比べて、バイパス信号に電磁ノイズが混入することを防止する点で有利である。 According to such a mounting form, the substrate 707, that is, the reactor, the auxiliary winding, the second bypass unit, and the control device can be arranged near the cell 101, and all of them can be stored in the same casing. The second bypass control unit 214 is mounted near the second bypass unit 321. In addition, the second bypass control unit 214 can control the second bypass unit 321 using the wiring pattern of the substrate 707. In this configuration, the second bypass control unit 214 is disposed at a location away from the second bypass unit 321, and electromagnetic noise is generated in the bypass signal as compared with the case where the second bypass unit 321 is controlled using a long-distance wiring. This is advantageous in preventing mixing.
 本発明の実施例4では、以上で説明した電力変換装置を3台利用して、三相交流出力の電力変換装置を構成する。 In the fourth embodiment of the present invention, a three-phase AC output power converter is configured using three power converters described above.
 図21は、実施例4における電力変換装置4000の構成である。電力変換装置4000は、実施例1で説明した電力変換装置1000を3台備える。図21に示したように、3台の電力変換装置1000が備える出力端子のうち一方が、三相の出力端子を構成し、三相負荷501と接続される。3台の電力変換装置1000が備える出力端子のうちもう一方は、互いに接続されてY結線の三相交流回路における中性点を成す。 FIG. 21 shows the configuration of the power conversion device 4000 in the fourth embodiment. The power conversion device 4000 includes three power conversion devices 1000 described in the first embodiment. As shown in FIG. 21, one of the output terminals included in the three power conversion apparatuses 1000 constitutes a three-phase output terminal and is connected to the three-phase load 501. The other of the output terminals included in the three power converters 1000 is connected to each other to form a neutral point in a Y-connected three-phase AC circuit.
 実施例1で説明したように、電力変換装置1000は制御装置200を備える。そのため、図21の電力変換装置4000は制御装置200を3台備えているが、3台の制御装置を1台に纏めてもよい。また、図21では電力変換装置1000を3組利用するが、既に説明した電力変換装置2000~3000を利用することもできる。 As described in the first embodiment, the power conversion device 1000 includes the control device 200. Therefore, the power conversion device 4000 of FIG. 21 includes three control devices 200, but the three control devices may be combined into one. In FIG. 21, three sets of power converters 1000 are used, but power converters 2000 to 3000 described above can also be used.
 以上の構成によって、三相交流を出力する電力変換装置においても本発明の効果を得ることができ、三相高電圧モータを駆動するインバータや三相交流の電力系統用PCSに適用できる。 With the above configuration, the effect of the present invention can be obtained even in a power converter that outputs three-phase alternating current, and can be applied to an inverter that drives a three-phase high-voltage motor and a PCS for a three-phase alternating current power system.
 図22は、実施例5において、複数の第1バイパス部311~314を順番にオン・オフ制御するタイミングチャートである。図22では、第1バイパス部311~314のうち1個の第1バイパス部のみをオンにする場合を想定した。図22のように、オンにする第1バイパス部を時間とともに入れ替え、各第1バイパス部がオン状態である時間を均等化する。これによって、第1バイパス部の長寿命化を図ることができる。なお、この制御は、実施例1~4で説明した全ての電力変換装置に適用できる。 FIG. 22 is a timing chart for sequentially turning on / off the plurality of first bypass units 311 to 314 in the fifth embodiment. In FIG. 22, it is assumed that only one of the first bypass units 311 to 314 is turned on. As shown in FIG. 22, the first bypass unit to be turned on is replaced with time, and the time during which each first bypass unit is in the on state is equalized. As a result, the life of the first bypass portion can be extended. This control can be applied to all the power conversion devices described in the first to fourth embodiments.
101~104 電力変換器セル
200~203 制御装置
210 目標値設定部
211 コンバータ制御部
212 インバータ制御部
213 第1バイパス制御部
214 第2バイパス制御部
220 制御電源生成部
301~306 リアクトル
307 ヒューズ
308 コンデンサ
311~314 第1バイパス部
321~324 第2バイパス部
331 補助巻線
400 電源
500 負荷
501 三相負荷
701~707 基板
710~723 導体棒(バスバー)
10 電圧検出器
11 コンバータ
12 インバータ
71~80 スイッチング素子
1000、2000、3000、4000 電力変換装置
101 to 104 Power converter cells 200 to 203 Control device 210 Target value setting unit 211 Converter control unit 212 Inverter control unit 213 First bypass control unit 214 Second bypass control unit 220 Control power generation unit 301 to 306 Reactor 307 Fuse 308 Capacitor 311 to 314 First bypass part 321 to 324 Second bypass part 331 Auxiliary winding 400 Power source 500 Load 501 Three-phase load 701 to 707 Substrate 710 to 723 Conductor bar (bus bar)
DESCRIPTION OF SYMBOLS 10 Voltage detector 11 Converter 12 Inverter 71-80 Switching element 1000, 2000, 3000, 4000 Power converter

Claims (9)

  1.  複数の電力変換器セルと、
     前記複数の電力変換器セルを制御する制御装置と、を備え、
     前記複数の電力変換器セルの出力端子はそれぞれ直列に接続されており、
     前記電力変換器セルの出力電流が流れる経路に1以上のリアクトルが直列に挿入されており、前記リアクトルのうち少なくとも1個のリアクトルに対して第1バイパス部が並列に接続され、前記制御装置は、前記第1バイパス部を制御することを特徴とする電力変換装置。
    A plurality of power converter cells;
    A control device for controlling the plurality of power converter cells,
    The output terminals of the plurality of power converter cells are respectively connected in series,
    One or more reactors are inserted in series in a path through which the output current of the power converter cell flows, and a first bypass unit is connected in parallel to at least one of the reactors, The power converter is configured to control the first bypass unit.
  2.  請求項1に記載の電力変換装置において、
     前記リアクトルは、前記各電力変換器セル同士の接続箇所のうち少なくとも1箇所に直列に挿入されることを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    The said reactor is inserted in series in at least 1 place among the connection places of said each power converter cell, The power converter device characterized by the above-mentioned.
  3.  請求項1または2に記載の電力変換装置において、
     前記電力変換器セルの各々は、前記電源からの入力電圧を変換して直流リンク電圧を生成するコンバータと、前記直流リンク電圧を交流電圧に変換して出力するインバータとを備え、前記制御装置は、前記直流リンク電圧が高いほど、前記第1バイパス部のうちオンにする第1バイパス部の数を減少させることを特徴とする電力変換装置。
    In the power converter device according to claim 1 or 2,
    Each of the power converter cells includes a converter that converts an input voltage from the power source to generate a DC link voltage, and an inverter that converts the DC link voltage to an AC voltage and outputs the AC link voltage. The power converter is characterized in that, as the DC link voltage is higher, the number of first bypass units to be turned on among the first bypass units is reduced.
  4.  請求項1ないし3のいずれかに記載の電力変換装置において、
     前記電力変換器セルは、出力端子間に第2バイパス部を備え、前記制御装置は、前記第2バイパス部をオン・オフ制御するためのバイパス信号を出力し、前記電力変換器セルのうち一部を停止させる場合、停止させる電力変換器セルが備える第2バイパス部をオンにして、停止させない電力変換器セルのうち少なくとも1台以上の電力変換器セルにおいて前記直流リンク電圧を増大させることを特徴とする電力変換装置。
    In the power converter device in any one of Claims 1 thru | or 3,
    The power converter cell includes a second bypass unit between output terminals, and the control device outputs a bypass signal for ON / OFF control of the second bypass unit, and one of the power converter cells. When stopping the unit, the second bypass unit included in the power converter cell to be stopped is turned on, and the DC link voltage is increased in at least one power converter cell among the power converter cells not to be stopped. A power conversion device.
  5.  請求項1ないし4のいずれかに記載の電力変換装置において、
     前記電力変換装置の負荷電流が小さいほど、前記第1バイパス部のうちオンにする第1バイパス部の数を減少させることを特徴とする電力変換装置。
    In the power converter device in any one of Claims 1 thru | or 4,
    The number of the 1st bypass parts to turn on among the 1st bypass parts is decreased, so that the load current of the power converters is small.
  6.  請求項1ないし5のいずれかに記載の電力変換装置において、
     前記リアクトルのうち少なくとも1個のリアクトルは補助巻線を備え、前記補助巻線に発生する電圧から前記制御装置の電源電圧を生成することを特徴とする電力変換装置。
    In the power converter device in any one of Claims 1 thru | or 5,
    At least one of the reactors includes an auxiliary winding, and generates a power supply voltage of the control device from a voltage generated in the auxiliary winding.
  7.  請求項2ないし5のいずれかに記載の電力変換装置において、
     前記コンバータは共振型コンバータであり、前記インバータは4個のスイッチング素子によるHブリッジ方式の単相インバータ回路であることを特徴とする電力変換装置。
    In the power converter device in any one of Claims 2 thru | or 5,
    The power converter according to claim 1, wherein the converter is a resonant converter, and the inverter is an H-bridge type single-phase inverter circuit including four switching elements.
  8.  請求項1ないし7のいずれかに記載の電力変換装置において、
     前記複数の電力変換器セルの入力端子は、前記電源に対して全て並列に接続されることを特徴とする電力変換装置。
    In the power converter device in any one of Claims 1 thru | or 7,
    All of the input terminals of the plurality of power converter cells are connected in parallel to the power supply.
  9.  請求項1ないし8のいずれかに記載の電力変換装置において、
     前記各電力変換器セルと前記各電力変換器セルの出力側に設けられた前記第1バイパス部は、一つの筺体内に収納されることを特徴とする電力変換装置。
    In the power converter device in any one of Claims 1 thru | or 8,
    Each power converter cell and the first bypass unit provided on the output side of each power converter cell are housed in a single casing.
PCT/JP2016/062051 2016-04-15 2016-04-15 Power conversion device WO2017179179A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/062051 WO2017179179A1 (en) 2016-04-15 2016-04-15 Power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/062051 WO2017179179A1 (en) 2016-04-15 2016-04-15 Power conversion device

Publications (1)

Publication Number Publication Date
WO2017179179A1 true WO2017179179A1 (en) 2017-10-19

Family

ID=60042441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062051 WO2017179179A1 (en) 2016-04-15 2016-04-15 Power conversion device

Country Status (1)

Country Link
WO (1) WO2017179179A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10998830B2 (en) * 2017-06-06 2021-05-04 Hitachi, Ltd. Power conversion device and three-phase power conversion device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220768A (en) * 1987-03-09 1988-09-14 Fuji Electric Co Ltd Method for controlling inverter output voltage
JPH1014229A (en) * 1996-06-20 1998-01-16 Toshiba Corp Power supply and method for supplying power
JP2013192382A (en) * 2012-03-14 2013-09-26 Denso Corp Solar power conditioner
JP2015527032A (en) * 2012-06-25 2015-09-10 ゼネラル・エレクトリック・カンパニイ Expandable voltage-current link power electronics system for polyphase AC or DC loads

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220768A (en) * 1987-03-09 1988-09-14 Fuji Electric Co Ltd Method for controlling inverter output voltage
JPH1014229A (en) * 1996-06-20 1998-01-16 Toshiba Corp Power supply and method for supplying power
JP2013192382A (en) * 2012-03-14 2013-09-26 Denso Corp Solar power conditioner
JP2015527032A (en) * 2012-06-25 2015-09-10 ゼネラル・エレクトリック・カンパニイ Expandable voltage-current link power electronics system for polyphase AC or DC loads

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10998830B2 (en) * 2017-06-06 2021-05-04 Hitachi, Ltd. Power conversion device and three-phase power conversion device

Similar Documents

Publication Publication Date Title
JP6725758B2 (en) Power converter and three-phase power converter
US8476859B2 (en) DC power for SGCT devices using a high frequency current loop with multiple current transformers
JP6476318B2 (en) Power converter
EP2784925B1 (en) Power conversion device
JP6099951B2 (en) Power converter
JP2004297999A (en) Power conversion apparatus and power supply device
EP2830210B1 (en) Generator excitation apparatus and power conversion system
US10141858B2 (en) Power converter for electric locomotive
CA2565707A1 (en) Low harmonics, polyphase converter circuit
CN109565248B (en) Two-stage control of converter system with floating unit
US20160380551A1 (en) Converter arrangement having multi-step converters connected in parallel and method for controlling these
JP5807156B2 (en) Motor drive inverter control circuit and vacuum cleaner
JP5362657B2 (en) Power converter
WO2017179179A1 (en) Power conversion device
JP2012239309A (en) Electric power conversion apparatus
JP6065375B2 (en) Power converter and grid interconnection system using the same
JP2008104253A (en) Power conversion device
WO2015145713A1 (en) Rectifier circuit
JP2009207251A (en) Load driving system
JP2009165272A (en) Controller, power conversion apparatus and control method
US11283364B2 (en) Power supply and power system having a step-down circuit and an inverse-conversion circuit
EP4147338B1 (en) Electrical power converter with pre-charge mode of operation
JP5348484B2 (en) Load drive system
JP2016082715A (en) Series resonant power transfer apparatus
KR20230076879A (en) Method and Device for Controlling Solid State Transformer

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898639

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP