WO2017159820A1 - Paste for forming electrode catalyst layer and method for manufacturing same, and methods for manufacturing membrane-electrode catalyst layer assembly, gas diffusion electrode, solid polymer fuel cell and solid polymer water electrolysis cell - Google Patents

Paste for forming electrode catalyst layer and method for manufacturing same, and methods for manufacturing membrane-electrode catalyst layer assembly, gas diffusion electrode, solid polymer fuel cell and solid polymer water electrolysis cell Download PDF

Info

Publication number
WO2017159820A1
WO2017159820A1 PCT/JP2017/010784 JP2017010784W WO2017159820A1 WO 2017159820 A1 WO2017159820 A1 WO 2017159820A1 JP 2017010784 W JP2017010784 W JP 2017010784W WO 2017159820 A1 WO2017159820 A1 WO 2017159820A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst layer
electrode catalyst
solid polymer
electrode
water
Prior art date
Application number
PCT/JP2017/010784
Other languages
French (fr)
Japanese (ja)
Inventor
博敏 古屋
伸 渡辺
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Publication of WO2017159820A1 publication Critical patent/WO2017159820A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode catalyst layer forming paste for an electrode catalyst layer of a polymer electrolyte fuel cell or a polymer electrolyte water electrolysis cell, a method for producing the same, a membrane-electrode catalyst layer assembly, a gas diffusion electrode, a solid polymer
  • the present invention relates to a method for manufacturing a fuel cell and a polymer electrolyte water electrolysis cell.
  • the solid polymer fuel cell is a fuel cell using a solid polymer such as an ion exchange resin as an electrolyte.
  • the basic structure of the polymer electrolyte fuel cell is shown in FIG. In the figure, (1) is a battery partition, (2) is a fuel gas flow hole, (3) is an oxidant gas flow hole, (4) is a fuel chamber side gas diffusion electrode layer, and (5) is an oxidant chamber side gas.
  • a diffusion electrode layer (6) represents a solid polymer electrolyte membrane. In a polymer electrolyte fuel cell using a cation exchange membrane as a solid polymer electrolyte membrane, protons (hydrogen ions) and electrons are generated from the supplied hydrogen gas in the fuel chamber (7), and these protons are solid.
  • the solid polymer type water electrolysis cell is a cell for electrolyzing water to obtain hydrogen and oxygen, using a solid polymer such as an ion exchange resin as an electrolyte.
  • a cell having the same configuration as that of the polymer electrolyte fuel cell shown in FIG. 1 is used.
  • a cation exchange membrane is used as the solid polymer electrolyte membrane, water is supplied to the oxidant chamber of FIG. A voltage is applied so that the side gas diffusion layer has a high potential.
  • the oxidizer chamber water is oxidized and protons and oxygen are generated. The protons move through the solid polymer electrolyte membrane (6), receive electrons at the fuel chamber side gas diffusion electrode layer, and become hydrogen. In this way, hydrogen and oxygen can be obtained from water.
  • a cation exchange membrane is generally used for the solid polymer electrolyte membrane.
  • proton conductive electrolyte membranes are often used.
  • a perfluorocarbon sulfonic acid resin membrane is mainly used because of its excellent chemical stability.
  • the hydroxide ions are conducted through the anion exchange membrane and move to the fuel chamber, and react with the fuel at the fuel chamber side gas diffusion electrode to generate water. At this time, the electrons generated by the fuel chamber side gas diffusion electrode move to the oxidant chamber side gas diffusion electrode through the external load circuit, thereby obtaining electric energy.
  • an anion exchange membrane as a solid polymer electrolyte membrane has also been studied in solid polymer water electrolysis cells because inexpensive precious metals can be used for the catalyst.
  • water is supplied to the fuel chamber, and a voltage is applied between the oxidant chamber side gas diffusion layer and the fuel chamber side gas diffusion layer so that the oxidant chamber side gas diffusion layer has a high potential.
  • water is reduced and hydrogen and hydroxide ions are generated. Hydroxide ions move through the solid polymer electrolyte membrane and are oxidized in the oxidant-side gas diffusion layer to generate oxygen and water.
  • the gas diffusion electrode layer is formed by laminating an electrode catalyst layer and a gas diffusion layer (Gas Diffusion Layer, GDL).
  • GDL Gas Diffusion Layer
  • MEA membrane-electrode assembly
  • MEA membrane-electrode assembly
  • Electrocatalyst layers are laminated on both sides of the solid polymer electrolyte to produce a membrane-electrode catalyst layer assembly (Catalyst Coated Membrane, CCM).
  • CCM Membralyst Coated Membrane
  • the electrode catalyst layer includes a catalyst-supported carbon powder such as carbon black on which metal particles such as platinum as a catalyst are supported, and a solid polymer electrolyte.
  • the electrode catalyst layer is generally formed by applying an electrode catalyst layer forming paste on the surface of the solid polymer electrolyte membrane.
  • the electrode catalyst layer forming paste is generally composed of a mixture containing a catalyst-supporting carbon powder and a solid polymer electrolyte.
  • the solid polymer electrolyte is generally used by being dissolved or dispersed in an organic solvent so as to be uniformly mixed with the catalyst-supporting carbon powder. In addition to the supported carbon powder and the solid polymer electrolyte, it contains a solvent.
  • the solid polymer electrolyte used in the electrode catalyst layer forming paste is composed of the adhesion between the catalyst-supported carbon powders in the formed electrode catalyst layer, the bonding between the electrode catalyst layer and the solid polymer electrolyte membrane, and the solid catalyst electrolyte from the electrode catalyst layer. Contained for ionic conduction to the molecular electrolyte membrane.
  • a polymer compound having a functional group having a sulfonic acid group or a tetraalkylammonium structure is used as the solid polymer electrolyte used for the electrode catalyst layer forming paste.
  • a method for obtaining a membrane-electrode catalyst layer assembly using these solid polymer electrolyte membranes and an electrode catalyst layer forming paste containing the solid polymer electrolyte is as follows.
  • the electrode catalyst layer forming paste is prepared, and is a screen printing method in which printing is directly performed on the solid polymer electrolyte membrane, and a method in which the paste is applied to the solid polymer electrolyte membrane using a sprayer.
  • Patent Document 1 As the electrode catalyst layer forming paste, pastes of various compositions have already been proposed (eg, Patent Document 1).
  • Patent Document 1 2.6 mg of a perfluorinated sulfonic acid NAFION® solution (NAFION® polymer 5% by weight, isopropyl alcohol 50%, methanol 25% and water 20%), 390 mg A paste consisting of 487.9 mg of catalyst with 20% platinum on 1-methoxy 2-propanol, 2 ml isopropanol, VULCAN® carbon support is described.
  • the organic solvent often causes an oxidation reaction on the catalyst surface when the catalyst is dispersed, resulting in heat generation and catalyst sintering. For this reason, workability and mass productivity of paste adjustment are lowered, and performance of the electrode catalyst is lowered.
  • the solid polymer electrolyte membrane and the solid polymer electrolyte in the electrode catalyst layer forming paste may have different swelling rates due to the solvent. For this reason, after printing the electrode catalyst layer forming paste on the solid polymer electrolyte membrane, there is a problem that large cracks and peeling occur in the formed electrode catalyst layer due to different drying shrinkage rates. As a result, it is difficult to form a uniform electrode catalyst layer.
  • Patent Document 2 At least (1) the film thickness of the electrode catalyst layer, (2) the kind of carbon carrying the noble metal catalyst, (3) the drying rate of the solvent of the paste, A method of controlling the crack occupying area of the electrode catalyst layer to 25% or less has been proposed. However, deterioration such as cracks cannot be completely suppressed.
  • Patent Document 3 the boiling point is higher than that of water, and an azeotropic solvent that is azeotropic at a predetermined temperature or lower when added to water is added together with water.
  • An electrode catalyst layer forming paste is proposed.
  • processes such as addition of an azeotropic solvent and viscosity adjustment are increasing, and workability is reduced.
  • an object of the present invention is to provide an electrode that is not cracked or peeled by a simple method without controlling the temperature and humidity during printing and drying, and without adding a plurality of solvents that complicate the composition. It is to obtain a catalyst layer.
  • the inventors of the present invention have intensively studied to solve the problem. As a result, it was found that by preparing and using an electrode catalyst layer forming paste in which the contents of water and hydrophilic organic solvent were controlled, an electrode catalyst layer free from cracks and peeling could be formed, and the present invention was completed. It came.
  • the first aspect of the present invention is an electrode catalyst layer forming paste comprising a catalyst-supported carbon powder supporting a catalyst, water, a hydrophilic organic solvent, and a solid polymer electrolyte used for forming an electrode catalyst layer,
  • An electrode catalyst layer forming paste characterized by comprising 8 to 20% by mass, hydrophilic organic solvent 60 to 82% by mass, and a total content of water and hydrophilic organic solvent of 78 to 90% by mass.
  • the solid polymer electrolyte is preferably hydrocarbon-based because it can be produced at low cost and there is no fear of adverse environmental effects due to elution of fluorine ions when decomposed. More preferably, it is an ion exchange resin.
  • the electrode catalyst layer forming paste of the first aspect of the present invention can be used for forming any electrode catalyst layer of a solid polymer fuel cell and a solid polymer water electrolysis cell.
  • the second invention is characterized in that a membrane-electrode catalyst layer assembly is formed by applying the electrode catalyst layer forming paste of the first invention on a solid polymer electrolyte membrane. It is a manufacturing method of an electrode catalyst layer assembly.
  • the solid polymer electrolyte membrane is preferably a hydrocarbon-based material, more preferably a hydrocarbon-based anion exchange resin, like the solid polymer electrolyte.
  • a membrane-electrode catalyst layer assembly is produced by the method for producing a membrane-electrode catalyst layer assembly of the second invention, and then a solid polymer is produced using the membrane-electrode catalyst layer assembly. It is a manufacturing method of a polymer electrolyte fuel cell which manufactures a type fuel cell.
  • a membrane-electrode catalyst layer assembly is produced by the method for producing a membrane-electrode catalyst layer assembly of the second invention, and then a solid polymer is produced using the membrane-electrode catalyst layer assembly. It is a manufacturing method of a solid polymer type water electrolysis cell which manufactures a type water electrolysis cell.
  • the fifth aspect of the present invention is a method for producing a gas diffusion electrode, wherein the gas diffusion electrode is formed by applying the electrode catalyst layer forming paste of the first aspect of the present invention onto the gas diffusion layer. .
  • a polymer electrolyte fuel wherein a gas diffusion electrode is manufactured by the gas diffusion electrode manufacturing method according to the fifth aspect of the invention, and then a polymer electrolyte fuel cell is manufactured using the gas diffusion electrode. It is a manufacturing method of a battery.
  • the seventh aspect of the present invention is a solid polymer type wherein a gas diffusion electrode is produced by the method for producing a gas diffusion electrode of the fifth aspect of the invention, and then a solid polymer type water electrolysis cell is produced using the gas diffusion electrode. It is a water electrolysis cell.
  • the eighth invention is a method for producing the electrode catalyst layer forming paste of the first invention, (I) Step of dispersing catalyst-supported carbon powder supporting catalyst in water (II) Step of dissolving solid polymer electrolyte in hydrophilic organic solvent (III) Water in which catalyst-supported carbon powder is dispersed and solid polymer electrolyte Step of mixing the dissolved hydrophilic organic solvent (IV)
  • the content of water and the hydrophilic organic solvent is 8-20% by mass of water, 60-82% by mass of the hydrophilic organic solvent, water and the hydrophilic organic solvent.
  • the electrode catalyst layer forming paste of the present invention By using the electrode catalyst layer forming paste of the present invention, a uniform and good electrode catalyst layer free from cracking and peeling can be formed without controlling temperature, humidity, drying speed, etc. in the atmosphere. For this reason, the performance variation of the polymer electrolyte fuel cell and the polymer electrolyte water electrolysis cell using the membrane-electrode catalyst layer assembly and the gas diffusion electrode manufactured using the electrode catalyst layer forming paste of the present invention is reduced. It can be made extremely small. Further, since the electrode catalyst layer is not easily deformed or dropped off by the fuel or water generated or supplied, it is possible to prevent the performance degradation of the polymer electrolyte fuel cell and the polymer electrolyte water electrolysis cell.
  • the composition of the solvent does not become complicated, it can be prepared by a simple process. Furthermore, by using the electrode catalyst layer forming paste of the present invention, workability is improved and the efficiency of the electrode catalyst layer forming step is improved. Therefore, when the electrode catalyst layer forming paste of the present invention is used, a membrane-electrode catalyst layer assembly, a gas diffusion electrode, a solid polymer fuel cell, and a solid polymer water electrolysis cell can be efficiently produced.
  • This figure is a conceptual diagram showing the basic structure of a polymer electrolyte fuel cell.
  • This drawing is a drawing-substituting photograph showing the state of the electrode catalyst layer produced in Example 1.
  • FIG. This figure is a drawing-substituting photograph showing the state of the electrode catalyst layer produced in Comparative Example 4.
  • the electrode catalyst layer forming paste of the present invention is used for forming an electrode catalyst layer used for a polymer electrolyte fuel cell or a polymer electrolyte water electrolysis cell.
  • the electrode catalyst layer means both an anode that reacts with a fuel gas such as hydrogen and a cathode that reacts with an oxidant gas such as oxygen and air, and its use is particularly limited to one electrode. is not.
  • the electrode catalyst layer forming paste of the present invention can be suitably used for the production of both the anode and cathode electrode catalyst layers.
  • the electrode catalyst layer forming paste of the present invention comprises catalyst-carrying carbon powder carrying a catalyst, water, a hydrophilic organic solvent, and a solid polymer electrolyte.
  • the catalyst-carrying carbon powder carrying the catalyst used in the present invention is obtained by carrying a catalyst on carbon for carrying a catalyst.
  • a catalyst described later is used as the catalyst, and a fuel cell fuel such as hydrogen or alcohol and hydroxide ions or oxygen and water react on the surface to generate electrons, water, hydroxide ions, and the like.
  • a catalyst is supported on a carbon powder having electron conductivity, and used as a catalyst-supported carbon powder supporting the catalyst.
  • catalyst those used in known fuel cells or water electrolysis cells can be used without any limitation, and promote the oxidation reaction of fuel such as hydrogen, the reduction reaction of oxygen, or the reaction related to the electrolysis of water. If it is a metal particle, it will not restrict
  • platinum, gold, silver, palladium, iridium, rhodium, ruthenium, tin, iron, cobalt, nickel, molybdenum, tungsten, vanadium, or an alloy thereof can be given. Of these catalysts, platinum is preferred because of its excellent catalytic activity against hydrogen and oxygen.
  • transition metals such as iron, cobalt, and nickel are not dissolved by the hydroxide ions generated by the oxygen reduction reaction or water reduction reaction, or very little. Therefore, it is preferable that the performance is not deteriorated.
  • the particle size of the metal particles used for the catalyst is usually 0.1 to 100 nm, more preferably 0.5 to 10 nm. In general, the smaller the particle size, the higher the catalyst performance. However, a particle size of 0.5 nm or more is preferable because of its ease of preparation, and a sufficiently large catalyst performance can be obtained by increasing the specific surface area. A diameter is preferred.
  • the catalyst content is usually 1 to 30% by mass, preferably 2 to 15% by mass, more preferably 3 to 10% by mass in the paste. By keeping the content in this range, a suitable amount of catalyst can be contained in the electrode catalyst layer after coating. Considering that a suitable amount of catalyst in the electrocatalyst layer can sufficiently promote a reaction involving fuel oxidation, oxygen reduction or water electrolysis, usually 0.01 to 10 mg / cm 2. More preferably, it is 0.1 to 6.0 mg / cm 2 . More preferably, 0.2 mg / cm 2 or more is preferable, and a catalyst content of 5.0 mg / cm 2 or less that does not saturate the fuel cell output performance is suitable.
  • the carbon powder for supporting the catalyst supports the catalyst and also serves as a conductive agent. Therefore, as long as it is an electron conductive carbon, those used in known fuel cells or water electrolysis cells can be used without any limitation, and are not particularly limited.
  • carbon black such as furnace black and acetylene black, activated carbon, graphite and the like are generally used alone or in combination.
  • the shape is irregular, but an average particle diameter (equivalent circle diameter) of 1 to 1000 nm, preferably 5 to 100 nm, more preferably 10 to 50 nm is used. By using carbon having a preferable particle size, good electron conductivity can be obtained while supporting a large number of catalyst particles.
  • the amount of the catalyst supported on the carbon powder is 10% by mass to 90% by mass, preferably 20% by mass to 80% by mass with respect to the total mass of the catalyst-supported carbon powder (total mass of the catalyst and carbon). Is preferred. If a more preferable range is shown, the amount is preferably 30% by mass or more at which the catalyst activity is sufficient, and 70% by mass or less is preferable because the catalyst is saved and the electroconductivity of the electrode catalyst layer is sufficiently performed.
  • the content of the catalyst-carrying carbon powder carrying the catalyst in the paste greatly affects the viscosity of the paste.
  • the preferred range is 2 to 35% by mass in the paste, more preferably 2 to 20% by mass, still more preferably 3 to 20% by mass, and particularly preferably 5 to 15% by mass.
  • water In the electrode catalyst layer forming paste of the present invention, water is added in a certain range together with the hydrophilic organic solvent in order to prevent cracking and peeling of the electrode catalyst layer when the membrane-electrode catalyst layer assembly is produced. Is done. There is also a secondary effect of preventing ignition when the catalyst is brought into contact with a hydrophilic organic solvent.
  • the water used in the present invention is not particularly limited as long as the ions that interfere with the ionic conduction of the solid polymer electrolyte are removed, and are not limited.
  • Ion exchange water (IEW), ultrapure water, distilled water, deionized water, and the like.
  • DIW ionic water
  • water such as well water having an electric conductivity of 0.1 S / m or more can be used.
  • water having an electric conductivity of less than 0.1 S / m is used.
  • the water contained in the paste is used in the range of 8 to 20% by mass in the paste, preferably 8 to 18% by mass, more preferably 11 to 18% by mass, particularly preferably. Is 12 to 18% by mass. The By keeping the amount of water in this range, cracking and peeling can be prevented.
  • the mechanism is not clear, but is estimated as follows. After the paste is applied to the solid polymer electrolyte membrane, the organic solvent is dried. However, since water remains in the solid polymer electrolyte in the paste, rapid shrinkage does not occur. Therefore, the solid polymer electrolyte membrane and the solid polymer electrolyte in the paste are dried over time while dispersing the stress. Therefore, there is no great difference between the shrinkage rates of the two, and cracking and peeling can be prevented.
  • the hydrophilic organic solvent used in the electrode catalyst layer forming paste of the present invention is an organic solvent that dissolves in water at an arbitrary ratio at the temperature at which the electrode catalyst layer is formed, and is a known fuel cell or solid polymer. What is used by the paste for electrode catalyst layer formation of a type
  • the hydrophilic organic solvent preferably has a boiling point lower than that of water because the drying speed is sufficiently high and there is no possibility of causing problems such as the paste after printing flowing out.
  • a preferred hydrophilic organic solvent for example, tetrahydrofuran, methanol, ethanol, 1-propanol, acetone and the like can be used alone or in combination. Of these, tetrahydrofuran and 1-propanol are preferably used because of their high solubility and rapid drying.
  • the content of the hydrophilic organic solvent in the paste has a suitable range for keeping the solid polymer electrolyte in a stable dissolved state, and is in the range of 60 to 82% by mass in the paste, preferably 62. Is 80 to 80% by mass, more preferably 65 to 75% by mass, and particularly preferably 68 to 73% by mass. If the content is small, the solid polymer electrolyte cannot be dissolved. Moreover, when there is much content, since the quantity of water becomes relatively small, a crack and peeling arise. Therefore, the amount of the hydrophilic organic solvent needs to be in a favorable range together with the water content.
  • the paste contains 8 to 20 mass% of water, 60 to 82 mass% of hydrophilic organic solvent, and the total of water and hydrophilic organic solvent. The amount is 78 to 90% by mass. If a preferable range is shown, 8 to 18% by mass of water, 62 to 80% by mass of the hydrophilic organic solvent, and 70 to 88% by mass of the total content of water and the hydrophilic organic solvent in the paste. More preferably, the paste contains 11 to 18% by mass of water, 65 to 75% by mass of the hydrophilic organic solvent, and 76 to 93% by mass of the total amount of water and the hydrophilic organic solvent. A particularly preferable range is 12 to 18% by mass of water, 68 to 73% by mass of the hydrophilic organic solvent, and 80 to 91% by mass of the total content of water and the hydrophilic organic solvent in the paste.
  • the solid polymer electrolyte of the present invention is a solid substance that conducts ions from the catalyst surface to the solid polymer electrolyte membrane in the electrode catalyst layers of the fuel chamber side gas diffusion electrode layer and the oxidant chamber side gas diffusion electrode layer. is there.
  • any known polymer can be used as long as it exhibits ionic conductivity of protons or hydroxide ions.
  • cation exchange resins and anion exchange resins give good performance. Therefore, it is preferably used.
  • the cation exchange resin is a resin having a cation exchange group and is not particularly limited as long as protons can be conducted in the resin.
  • the cation exchange group include a sulfonic acid group, a carboxylic acid group, and a phosphonic acid group. Of these, a sulfonic acid group that is a strongly acidic group excellent in proton conductivity is particularly desirable.
  • the content of the cation exchange group is such that the cation exchange capacity is 0.1 to 5.0 mmol / g, preferably 0.5 to 3.0 mmol, from the viewpoint of imparting good ion conductivity to the electrode catalyst layer. / G is preferred.
  • the proton conductive resin is non-crosslinkable, it is 0.5 to 1.5 mmol / g because it becomes soluble in water and may be deformed if the cation exchange capacity is high. Is preferred.
  • a known cation exchange resin can be used without limitation.
  • Typical examples include hydrocarbon cation exchange resins and fluorine cation exchange resins.
  • hydrocarbon-based cation exchange resin a cation-exchange group is introduced into the following hydrocarbon-based resin. That is, examples of hydrocarbon resins include styrene resins such as polystyrene and poly- ⁇ -methylstyrene, polyether ether ketone, polysulfone, polyether sulfone, polybenzimidazole, polyoxazole, polyphenylene oxide, and polysulfide engineering plastics. Examples include styrene resins.
  • fluorine-based cation exchange resins include perfluorinated cation exchange resins in which all hydrogen atoms in the polymer are replaced with fluorine atoms and partially fluorinated cations in which hydrogen atoms are partially replaced with fluorine atoms.
  • exchange resin examples include Nafion (manufactured by DuPont) whose cation exchange group is sulfonic acid, Flemion (manufactured by Asahi Glass Co., Ltd.), and Aciplex (manufactured by Asahi Kasei Chemicals).
  • hydrocarbon cation exchange resins having no fluorine atoms have been developed and used in place of fluorine cation exchange resins.
  • the hydrocarbon-based cation exchange resin can be produced at low cost because the raw materials are inexpensive, and it does not adversely affect the environment by generating fluorine ions during decomposition, which is a disadvantage of the fluorine-based cation exchange resin. Has merit.
  • the anion exchange resin is a resin having an anion exchange group and is not particularly limited as long as it conducts hydroxide ions.
  • An example that can be preferably used is disclosed in Japanese Patent Application Laid-Open No. 2002-367626.
  • hydrocarbon-based or fluorine-based anion exchange resins examples include hydrocarbon resins include styrene resins and acrylic resins, and examples of fluorine resins include perfluorocarbon resins.
  • anion exchange group examples include a primary to tertiary amino group, a quaternary ammonium group, a pyridyl group, an imidazole group, a phosphonium group, and a quaternary pyridinium group. Ammonium groups and quaternary pyridinium groups are preferred.
  • the range of the anion exchange capacity of the anion exchange resin is suitably used, it is 0.3 to 10 mmol / g, preferably 1.0 to 5.0 mmol / g, and 1.2 to 4. Particularly preferred is 0 mmol / g.
  • the counter ion of the anion exchange group of the anion exchange resin is any one of OH ⁇ , HCO 3 ⁇ , CO 3 2 ⁇ , or a mixed system thereof. Since it can raise, it is suitable. HCO 3 ⁇ and CO 3 2 ⁇ are most preferable as the counter ion from the viewpoint of enhancing the safety of the operation for converting the counter ion to the ionic form and the chemical stability of the obtained anion exchange resin.
  • anion exchange resin those having a moisture content of 1 to 90% at a temperature of 40 ° C. and a humidity of 90% RH are generally used from the viewpoint of exhibiting excellent durability and bonding properties.
  • anion exchange resin used for the electrode catalyst layer forming paste of the present invention those used in known fuel cells or water electrolysis cells can be used without any limitation.
  • hydrocarbon-based anion exchange resins are preferably used because of their availability and low manufacturing costs.
  • the content of the solid polymer electrolyte in the paste is generally used in the range of 1 to 20% by mass in order to prevent the reaction of the catalyst surface from being hindered by the coating and to keep the ionic conduction good.
  • the preferable range is 2 to 10% by mass, and the more preferable range is 3 to 5% by mass.
  • the electrode catalyst layer forming paste includes a non-hydrophilic organic solvent for increasing the solubility of the solid polymer electrolyte of the present invention and facilitating preparation of the paste.
  • a non-hydrophilic organic solvent for increasing the solubility of the solid polymer electrolyte of the present invention and facilitating preparation of the paste.
  • Carbon powder or the like on which a catalyst is not supported may be included in order to increase the electron conductivity when formed.
  • Non-hydrophilic organic solvents include chloroform, dichloromethane, toluene, benzene, ethyl acetate and the like. In general, a non-hydrophilic organic solvent alone often does not dissolve a solid polymer electrolyte, but its solubility may be increased by mixing with a hydrophilic organic solvent.
  • the non-hydrophilic organic solvent and the hydrophilic solvent can be mixed in advance, and then mixed and dissolved with the solid polymer electrolyte.
  • These other components may be contained in a proportion of less than 10% by mass with respect to the total amount of the electrode catalyst layer forming paste.
  • the manufacturing method of the electrode catalyst layer forming paste is not particularly limited, and a known method can be used. Examples are as follows.
  • the catalyst-supported carbon powder supporting the catalyst is mixed with a hydrophilic organic solvent in which a solid polymer electrolyte is dissolved in advance, and is dispersed using an ultrasonic irradiator or the like in order to sufficiently disperse the contents.
  • a hydrophilic organic solvent in which a solid polymer electrolyte is dissolved in advance, and is dispersed using an ultrasonic irradiator or the like in order to sufficiently disperse the contents.
  • the catalyst-carrying carbon powder carrying the catalyst is directly mixed with the hydrophilic organic solvent, an oxidation reaction of the hydrophilic organic solvent occurs suddenly and there is a risk of heat generation and ignition. Therefore, it is desirable that the catalyst-carrying carbon powder carrying the catalyst is first mixed with water.
  • the catalyst-supported carbon powder can be previously placed in an inert gas stream such as nitrogen to make the catalyst surface an inert gas atmosphere, and then directly mixed with the hydrophilic organic solvent in the inert gas.
  • the paste for forming an electrode catalyst layer of the present invention contains 8 to 20% by mass of water and 60 to 82% by mass of a hydrophilic organic solvent, and the total content of water and the hydrophilic organic solvent is 78 to 90% by mass. It is characterized by being.
  • the catalyst electrode layer can be formed without the solid polymer electrolyte contracting rapidly. Therefore, it is possible to form an electrode catalyst layer that does not crack or peel off.
  • the electrode catalyst layer forming paste has an appropriate viscosity. And unevenness can be prevented.
  • the electrode catalyst layer forming paste according to the present invention is prepared by adding a required amount of water as a paste to a catalyst-supporting carbon powder supporting a catalyst, kneading the mixture, and previously mixing the solid polymer in a required amount of a hydrophilic organic solvent as a paste. What is necessary is just to mix and manufacture with the hydrophilic organic solvent which melt
  • water is added to the catalyst-supporting carbon powder and kneaded, and this is mixed with a hydrophilic organic solvent in which the solid polymer electrolyte is dissolved in advance, and then the excess hydrophilic organic solvent is removed.
  • a hydrophilic organic solvent in which the solid polymer electrolyte is dissolved in advance, and then the excess hydrophilic organic solvent is removed.
  • water since water may also decrease with a hydrophilic organic solvent, it is necessary to adjust content of water and a hydrophilic organic solvent.
  • the paste When the water content is increased, the paste can be put in a mortar and kneaded while dropping water. In order to reduce the water content, the paste can be placed in a mortar or the like and heated while kneading. It is desirable that the heating temperature does not exceed the boiling point of the hydrophilic organic solvent, and is generally about 40 ° C. In addition, since the content of the hydrophilic organic solvent is reduced by this operation, it is desirable to drop the hydrophilic organic solvent appropriately.
  • hydrophilic organic solvent In the case of increasing the content of the hydrophilic organic solvent, it can be similarly carried out by kneading while dropping the hydrophilic organic solvent. Moreover, when reducing content of a hydrophilic organic solvent, it can knead
  • the content of water and hydrophilic organic solvent in the paste can be measured by a known method such as gas chromatography or 1H NMR measurement.
  • the electrode catalyst layer is formed by applying an electrode catalyst layer forming paste to the substrate.
  • an electrode catalyst layer forming paste is mentioned.
  • limit especially as a base material For example, the gas diffusion layer which consists of a solid polymer electrolyte membrane or porous carbon paper etc. is mentioned.
  • the solid polymer electrolyte membrane used as a base material in the present invention is formed in the electrode catalyst layer of the fuel chamber side gas diffusion electrode layer and the oxidant chamber side gas diffusion electrode layer of the solid polymer fuel cell or the solid polymer water electrolysis cell. It is used to conduct protons or hydroxide ions that are produced or consumed in the reaction. It also has the function of separating fuel, water and gas in both chambers.
  • a solid polymer electrolyte membrane those generally known can be used as long as they exhibit ionic conductivity of protons or hydroxide ions, but cation exchange resins and anion exchange resins are used. It is preferably used to give good performance.
  • the cation exchange resin and the anion exchange resin the solid polymer electrolyte of the present invention can be used, and those formed into a film shape are used.
  • a method of forming these ion exchange resins into a film known ones can be used without limitation, but examples include the following. Heat is applied to the solid polymer electrolyte to develop flexibility, and pressure is applied to flatten it to form a membrane.
  • Cation exchange resins and anion exchange resins are often classified into two types, those composed of hydrocarbon polymers and those composed of fluorine polymers.
  • cation exchange resin and anion exchange resin made of hydrocarbon polymer When the cost is important, cation exchange resin and anion exchange resin made of hydrocarbon polymer, and when durability is important, cation exchange resin made of fluorine polymer, An anion exchange resin is applied as a constituent material of the solid polymer electrolyte membrane. Moreover, since the adhesiveness of a solid polymer electrolyte membrane and an electrode catalyst layer becomes favorable, both are selected so that it may become the same material. That is, when the solid polymer electrolyte membrane is composed of a hydrocarbon polymer, a hydrocarbon polymer is used as the solid polymer electrolyte used in the electrode catalyst layer forming paste.
  • a membrane-electrode catalyst layer assembly is produced by applying an electrode catalyst layer forming paste to the solid polymer electrolyte membrane by screen printing, spraying or the like to form an electrode catalyst layer.
  • a membrane-electrode assembly can be produced by bonding a gas diffusion layer to the electrode catalyst layer of the membrane-electrode catalyst layer assembly.
  • a gas diffusion layer-electrode catalyst layer assembly (Gas Diffusion Electrode, GDE) in which an electrode catalyst layer is formed by applying screen printing, spray coating, or the like to a gas diffusion layer.
  • GDE Gas diffusion Electrode
  • porous carbon paper or porous carbon cloth is generally used as the gas diffusion layer.
  • a membrane-electrode assembly is produced by bonding the gas diffusion layer-electrode catalyst layer assembly to both surfaces of the ion exchange membrane.
  • the thickness of the electrode catalyst layer is not particularly limited, and may be appropriately determined according to the intended use. In general, the thickness is preferably 0.1 to 500 ⁇ m, and more preferably 0.5 to 100 ⁇ m.
  • the method for producing the membrane-electrode catalyst layer assembly and the gas diffusion layer-electrode catalyst layer assembly is not particularly limited, and a known method can be used.
  • An example of commonly used screen printing is as follows.
  • the electrode catalyst layer forming paste prepared by placing a mask with a hole with an arbitrary area and shape on a solid polymer electrolyte membrane (such as an ion exchange membrane) or a gas diffusion layer (such as porous carbon paper) Screen printing with a doctor blade.
  • a solid polymer electrolyte membrane such as an ion exchange membrane
  • a gas diffusion layer such as porous carbon paper
  • the temperature and humidity during printing are not particularly adjusted, and the general room temperature and humidity, that is, 5 ° C. to 30 ° C., 20% RH to 70% RH.
  • Screen printing, application by spraying, etc. can be performed under the environment. Drying is performed by standing in the atmosphere at room temperature, and air blowing, temperature adjustment, etc. are not performed.
  • the electrode catalyst layer forming paste of the present invention a uniform and good electrode catalyst layer free from cracking and peeling can be formed without controlling temperature, humidity, drying speed, etc. in the atmosphere. Can do.
  • Solid polymer fuel cell A solid polymer membrane-electrode assembly is produced using the membrane-electrode catalyst layer assembly or the gas diffusion layer-electrode catalyst layer assembly. If this is used, for example, a polymer electrolyte fuel cell can be assembled with the configuration shown in FIG.
  • the gas diffusion layer-electrode catalyst layer assembly when the gas diffusion layer-electrode catalyst layer assembly is formed, two of them are used to sandwich the ion exchange membrane with the surface on which the electrode catalyst layer is formed facing the ion exchange membrane. As a result, a state in which 4, 5, and 6 in FIG. 1 are combined can be realized.
  • a membrane-electrode catalyst layer assembly if a membrane-electrode catalyst layer assembly is formed, use it as it is or by stacking a gas diffusion layer (carbon paper, etc.) on top to improve gas diffusibility. Can do.
  • Electric power can be generated by supplying humidified hydrogen gas to the fuel chamber side and humidified oxygen gas or air to the oxidant chamber side. Since there is an optimum value for the flow rate of each gas, it is possible to measure the voltage value or the current value when a certain load is applied, and set them so that they become the largest.
  • the humidification of the gas is performed to prevent the ion exchange membrane and the electrode catalyst layer from being dried and the ionic conductivity from being lowered, and this can also be optimized in the same manner.
  • the higher the reaction temperature in the fuel cell the higher the output can be obtained, but the higher the temperature, the more the deterioration of the ion exchange membrane and the electrode catalyst layer is promoted.
  • the polymer electrolyte water electrolysis cell can also be produced with the same configuration as the polymer electrolyte fuel cell.
  • an anion exchange membrane is used as the solid polymer electrolyte membrane, water is supplied to the fuel chamber side, and the oxidant side gas diffusion is provided between the fuel chamber side gas diffusion electrode layer and the oxidant side gas diffusion electrode layer.
  • hydrogen can be obtained from the fuel chamber side gas diffusion electrode layer and oxygen can be obtained from the oxidant chamber side gas diffusion electrode layer.
  • Example 1 (Effect of electrode catalyst layer size and drying rate) The electrode catalyst layer forming paste was prepared and applied on both sides of the anion exchange membrane using a screen printing method. The produced membrane-electrode catalyst layer assembly was visually confirmed, and the presence or absence of cracks and peeling of the electrode catalyst layer was confirmed.
  • an anion exchange resin obtained by chloromethylating a styrene unit of a styrene-ethylenebutylene-styrene triblock copolymer and then quaternizing with trimethylamine was used.
  • the solvent of the solid polymer electrolyte solution is 1-propanol, which is the hydrophilic organic solvent of the present invention.
  • dispersion by ultrasonic irradiation was performed for 30 minutes, and further, stirring was performed for about 12 hours using a stirrer. After stirring, the paste was poured into an agate mortar to volatilize the hydrophilic organic solvent.
  • the paste was kneaded for several minutes to volatilize the hydrophilic organic solvent, thereby adjusting the content thereof to produce an electrode catalyst layer forming paste.
  • the content was adjusted while confirming by measuring the weight of the agate mortar containing the paste about every 1 minute and determining the content of the hydrophilic organic solvent from the change in weight.
  • Table 1 shows water and 1% by weight of 1-propanol which is a hydrophilic organic solvent in the paste.
  • the water content was 8% by mass
  • the hydrophilic organic solvent content was 82% by mass
  • the total content of water and the hydrophilic organic solvent was 90% by mass.
  • the contents of water and the hydrophilic organic solvent were measured by a gas chromatograph using a heat conduction detector (TCD) as a detector.
  • TCD heat conduction detector
  • the electrode catalyst layer forming paste was prepared by using a stainless steel mask having a hole (23 mm ⁇ 23 mm) with a size shown in Table 1 and a doctor blade, and an anion exchange membrane (A201 made by Tokuyama Corporation: hydrocarbon, anion Screen-printed on an exchange capacity of 1.8 mmol / g, a moisture content of 33% by mass at 25 ° C., and a dry film thickness of 28 ⁇ m. Then, it was made to dry on the conditions (25 degreeC, 0.5 hour) shown in Table 1. The drying speed is a value obtained by measuring a change in weight before and after drying. Further, after standing and drying at room temperature for about 12 hours, the back surface was similarly coated and dried to obtain a membrane-electrode catalyst layer assembly. The surface of the obtained membrane / electrode assembly was visually observed, and the results are shown in Table 1. The notation is as follows.
  • Examples 2 to 10 (Effect of electrode catalyst layer size and drying rate) An electrode catalyst layer was prepared in the same manner as in Example 1 except that the conditions shown in Table 1 were used, and a membrane-electrode catalyst layer assembly was obtained.
  • the electrode catalyst layer is cracked by using the electrode catalyst layer forming paste and the production method of the present invention. Neither peeling occurred.
  • Examples 11 to 15 (Influence of the kind of hydrophilic organic solvent) A membrane-electrode catalyst layer assembly was prepared by preparing an electrode catalyst layer in the same manner as in Example 1, except that the hydrophilic organic solvent shown in Table 2 was used and the conditions were changed as shown in Table 2. Got. The thickness of the mask was 100 ⁇ m.
  • Examples 16 to 19 (Influence of concentration of solid polymer electrolyte solution) The same operation as in Example 1 was performed except that the thickness of the mask was 100 ⁇ m and the concentration and conditions of the solid polymer electrolyte solution were changed to the values shown in Table 3.
  • Comparative Examples 1-7 The same operation as in Example 1 was performed using the conditions shown in Table 4. When the mass% of water, the mass% of 1-propanol, or the sum of the mass% of water and 1-propanol deviated from the range of the present invention, the generation of cracks and the occurrence of peeling were observed.
  • FIG. 3 shows an image showing the state of the electrode catalyst layer produced in Comparative Example 4.

Abstract

[Problem] The purpose of the present invention is to attain an electrode catalyst layer having no cracks or peeling in a solid polymer fuel cell or a solid polymer water electrolysis cell in a simple manner, without controlling the temperature or humidity during printing or drying and without adding a plurality of solvents that complicate the composition. [Solution] An electrode catalyst layer for a solid polymer fuel cell or a solid polymer water electrolysis cell is formed using a paste for forming an electrode catalyst layer, the paste comprising a catalyst-carrying carbon powder on which a catalyst is carried, water, a hydrophilic organic solvent, and a solid polymer electrolyte, wherein the water content is 8-20 mass%, the hydrophilic organic solvent content is 60-82 mass%, and the total content of the water and the hydrophilic organic solvent is 78-90 mass%.

Description

電極触媒層形成用ペースト及びその製造方法、並びに膜-電極触媒層接合体、ガス拡散電極、固体高分子型燃料電池及び固体高分子型水電解セルの製造方法Electrode catalyst layer forming paste and method for producing the same, and membrane-electrode catalyst layer assembly, gas diffusion electrode, polymer electrolyte fuel cell, and polymer electrolyte water electrolysis cell
 本発明は、固体高分子型燃料電池または固体高分子型水電解セルの電極触媒層の電極触媒層形成用ペースト及びその製造方法、並びに膜-電極触媒層接合体、ガス拡散電極、固体高分子型燃料電池及び固体高分子型水電解セルの製造方法に関する。 The present invention relates to an electrode catalyst layer forming paste for an electrode catalyst layer of a polymer electrolyte fuel cell or a polymer electrolyte water electrolysis cell, a method for producing the same, a membrane-electrode catalyst layer assembly, a gas diffusion electrode, a solid polymer The present invention relates to a method for manufacturing a fuel cell and a polymer electrolyte water electrolysis cell.
 固体高分子型燃料電池は、イオン交換樹脂等の固体高分子を電解質として用いた燃料電池である。該固体高分子型燃料電池の基本構造を図1に示す。図中、(1)は電池隔壁、(2)は燃料ガス流通孔、(3)は酸化剤ガス流通孔、(4)は燃料室側ガス拡散電極層、(5)は酸化剤室側ガス拡散電極層、(6)は固体高分子電解質膜を示す。固体高分子電解質膜として陽イオン交換膜を用いた固体高分子型燃料電池においては、燃料室(7)では、供給された水素ガスからプロトン(水素イオン)と電子が生成し、このプロトンは固体高分子電解質膜(6)内を伝導し、他方の酸化剤室(8)に移動し、空気又は酸素ガス中の酸素と反応して水を生成する。この時、燃料室側ガス拡散電極(4)で生成した電子は、外部負荷回路を通じて酸化剤室側ガス拡散電極(5)へと移動することにより電気エネルギーが得られる。 The solid polymer fuel cell is a fuel cell using a solid polymer such as an ion exchange resin as an electrolyte. The basic structure of the polymer electrolyte fuel cell is shown in FIG. In the figure, (1) is a battery partition, (2) is a fuel gas flow hole, (3) is an oxidant gas flow hole, (4) is a fuel chamber side gas diffusion electrode layer, and (5) is an oxidant chamber side gas. A diffusion electrode layer (6) represents a solid polymer electrolyte membrane. In a polymer electrolyte fuel cell using a cation exchange membrane as a solid polymer electrolyte membrane, protons (hydrogen ions) and electrons are generated from the supplied hydrogen gas in the fuel chamber (7), and these protons are solid. It conducts in the polymer electrolyte membrane (6), moves to the other oxidant chamber (8), and reacts with oxygen in air or oxygen gas to generate water. At this time, the electrons generated in the fuel chamber side gas diffusion electrode (4) move to the oxidant chamber side gas diffusion electrode (5) through the external load circuit to obtain electric energy.
 固体高分子型水電解セルは、イオン交換樹脂等の固体高分子を電解質として用いることを特徴とする、水を電気分解して水素、酸素を得るためのセルである。図1に示す固体高分子型燃料電池と同じ構成のセルが用いられる。固体高分子電解質膜として陽イオン交換膜を用いる場合には、図1の酸化剤室に水を供給し、燃料室側ガス拡散電極層と酸化剤室側ガス拡散層の間に、酸化剤室側ガス拡散層が高い電位となるように電圧を印加する。酸化剤室では水が酸化され、プロトンと酸素が生成する。プロトンは固体高分子電解質膜(6)を移動し、燃料室側ガス拡散電極層にて電子を受け取って水素となる。このようにして、水から水素、酸素を得ることができる。 The solid polymer type water electrolysis cell is a cell for electrolyzing water to obtain hydrogen and oxygen, using a solid polymer such as an ion exchange resin as an electrolyte. A cell having the same configuration as that of the polymer electrolyte fuel cell shown in FIG. 1 is used. When a cation exchange membrane is used as the solid polymer electrolyte membrane, water is supplied to the oxidant chamber of FIG. A voltage is applied so that the side gas diffusion layer has a high potential. In the oxidizer chamber, water is oxidized and protons and oxygen are generated. The protons move through the solid polymer electrolyte membrane (6), receive electrons at the fuel chamber side gas diffusion electrode layer, and become hydrogen. In this way, hydrogen and oxygen can be obtained from water.
 固体高分子電解質膜には一般的に陽イオン交換膜が用いられる。陽イオン交換膜の中でもプロトン伝導性電解質膜が多く用いられている。プロトン伝導性電解質膜としては、化学的な安定性に優れることから、パーフルオロカーボンスルホン酸樹脂膜が主に使用されている。 A cation exchange membrane is generally used for the solid polymer electrolyte membrane. Among cation exchange membranes, proton conductive electrolyte membranes are often used. As the proton conductive electrolyte membrane, a perfluorocarbon sulfonic acid resin membrane is mainly used because of its excellent chemical stability.
 固体高分子電解質膜としてプロトン伝導性電解質膜を用いた場合、反応場が酸性となり触媒として高価な貴金属を用いる必要がある。これに対して、反応場がアルカリ性となり触媒として貴金属以外の安価な金属が使用できるという点で、固体高分子電解質膜として陰イオン交換膜を用いることが検討されている。この場合、燃料室に水素あるいはアルコール等を供給し、酸化剤室に酸素および水を供給することにより、酸化剤室側ガス拡散電極層において該電極内に含まれる触媒と該酸素および水とが接触して水酸化物イオンが生成する。この水酸化物イオンは、陰イオン交換膜内を伝導して燃料室に移動し、燃料室側ガス拡散電極で燃料と反応して水を生成する。この時、燃料室側ガス拡散電極で生成した電子は、外部負荷回路を通じて酸化剤室側ガス拡散電極へと移動することにより電気エネルギーが得られる。 When a proton conductive electrolyte membrane is used as the solid polymer electrolyte membrane, the reaction field becomes acidic and it is necessary to use an expensive noble metal as a catalyst. On the other hand, the use of an anion exchange membrane as a solid polymer electrolyte membrane has been studied in that the reaction field becomes alkaline and an inexpensive metal other than a noble metal can be used as a catalyst. In this case, by supplying hydrogen or alcohol or the like to the fuel chamber and supplying oxygen and water to the oxidant chamber, the catalyst contained in the electrode and the oxygen and water in the oxidant chamber side gas diffusion electrode layer In contact, hydroxide ions are produced. The hydroxide ions are conducted through the anion exchange membrane and move to the fuel chamber, and react with the fuel at the fuel chamber side gas diffusion electrode to generate water. At this time, the electrons generated by the fuel chamber side gas diffusion electrode move to the oxidant chamber side gas diffusion electrode through the external load circuit, thereby obtaining electric energy.
 固体高分子型燃料電池の場合と同じく、触媒に安価な貴金属が使用できるという点から、固体高分子型水電解セルにおいても、固体高分子電解質膜として陰イオン交換膜を用いることが検討されている。この場合、燃料室に水を供給し、酸化剤室側ガス拡散層と燃料室側ガス拡散層の間に、酸化剤室側ガス拡散層が高い電位となるように電圧を印加する。燃料室側では水が還元され水素と水酸イオンが発生する。水酸イオンは固体高分子電解質膜を移動し、酸化剤質側ガス拡散層で酸化されて酸素と水を生成する。 As in the case of solid polymer fuel cells, the use of an anion exchange membrane as a solid polymer electrolyte membrane has also been studied in solid polymer water electrolysis cells because inexpensive precious metals can be used for the catalyst. Yes. In this case, water is supplied to the fuel chamber, and a voltage is applied between the oxidant chamber side gas diffusion layer and the fuel chamber side gas diffusion layer so that the oxidant chamber side gas diffusion layer has a high potential. On the fuel chamber side, water is reduced and hydrogen and hydroxide ions are generated. Hydroxide ions move through the solid polymer electrolyte membrane and are oxidized in the oxidant-side gas diffusion layer to generate oxygen and water.
 ガス拡散電極層は、電極触媒層とガス拡散層(Gas Diffusion Layer、GDL)が積層されて成る。固体高分子電解質膜の両面にガス拡散電極層を接合したものを膜-電極接合体(Membrane Electrode Assembly、MEA)と呼ぶ。 The gas diffusion electrode layer is formed by laminating an electrode catalyst layer and a gas diffusion layer (Gas Diffusion Layer, GDL). A membrane-electrode assembly (Membrane-Electrode Assembly, MEA) in which a gas diffusion electrode layer is bonded on both sides of a solid polymer electrolyte membrane is called a membrane-electrode assembly (MEA).
 膜-電極接合体の構成方法としては、さらに別の方法がある。それを示せば以下のとおりである。固体高分子電解質の両面に電極触媒層を積層し、膜-電極触媒層接合体(Catalyst Coated Membrane、CCM)を作製する。この膜-電極触媒層接合体の両面にガス拡散層を積層することにより、膜-電極接合体を得ることができる。 There is still another method for constructing the membrane-electrode assembly. This is as follows. Electrocatalyst layers are laminated on both sides of the solid polymer electrolyte to produce a membrane-electrode catalyst layer assembly (Catalyst Coated Membrane, CCM). By laminating gas diffusion layers on both surfaces of the membrane-electrode catalyst layer assembly, a membrane-electrode assembly can be obtained.
 電極触媒層は、触媒である白金等の金属粒子を担持させたカーボンブラック等の触媒担持カーボン粉末及び固体高分子電解質を含んでいる。電極触媒層は、一般に、固体高分子電解質膜の表面に電極触媒層形成用ペーストを適用することで形成される。電極触媒層形成用ペーストは一般的に、触媒担持カーボン粉末及び固体高分子電解質を含む混合物からなる。 The electrode catalyst layer includes a catalyst-supported carbon powder such as carbon black on which metal particles such as platinum as a catalyst are supported, and a solid polymer electrolyte. The electrode catalyst layer is generally formed by applying an electrode catalyst layer forming paste on the surface of the solid polymer electrolyte membrane. The electrode catalyst layer forming paste is generally composed of a mixture containing a catalyst-supporting carbon powder and a solid polymer electrolyte.
 電極触媒層形成用ペーストにおいて固体高分子電解質は、触媒担持カーボン粉末と均一に混合するために、有機溶剤に溶解あるいは分散させて用いられるのが一般的であり、電極触媒層形成用ペーストは触媒担持カーボン粉末及び固体高分子電解質に加えて、溶媒を含有する。電極触媒層形成用ペーストに用いる固体高分子電解質は、形成された電極触媒層中の触媒担持カーボン粉末同士の接着、電極触媒層と固体高分子電解質膜との接合、さらに電極触媒層から固体高分子電解質膜へのイオン伝導、のために含有されている。電極触媒層形成用ペーストに用いる固体高分子電解質としては、スルホン酸基、テトラアルキルアンモニウム構造を有する官能基を持つ高分子化合物等が用いられる。 In the electrode catalyst layer forming paste, the solid polymer electrolyte is generally used by being dissolved or dispersed in an organic solvent so as to be uniformly mixed with the catalyst-supporting carbon powder. In addition to the supported carbon powder and the solid polymer electrolyte, it contains a solvent. The solid polymer electrolyte used in the electrode catalyst layer forming paste is composed of the adhesion between the catalyst-supported carbon powders in the formed electrode catalyst layer, the bonding between the electrode catalyst layer and the solid polymer electrolyte membrane, and the solid catalyst electrolyte from the electrode catalyst layer. Contained for ionic conduction to the molecular electrolyte membrane. As the solid polymer electrolyte used for the electrode catalyst layer forming paste, a polymer compound having a functional group having a sulfonic acid group or a tetraalkylammonium structure is used.
 これら固体高分子電解質膜と、固体高分子電解質を含む電極触媒層形成用ペーストとを用いて膜-電極触媒層接合体を得る方法は、以下の通りである。電極触媒層形成用ペーストを調製して、固体高分子電解質膜に直接印刷するスクリーン印刷法、噴霧器を用いて固体高分子電解質膜に塗布する方法である。 A method for obtaining a membrane-electrode catalyst layer assembly using these solid polymer electrolyte membranes and an electrode catalyst layer forming paste containing the solid polymer electrolyte is as follows. The electrode catalyst layer forming paste is prepared, and is a screen printing method in which printing is directly performed on the solid polymer electrolyte membrane, and a method in which the paste is applied to the solid polymer electrolyte membrane using a sprayer.
 電極触媒層形成用ペーストとしては、種々の組成のものが既に提案されている(例:特許文献1)。特許文献1には、2.6mgのペルフルオリネーテッドスルホン酸NAFION(登録商標)溶液(重量%でNAFION(登録商標)ポリマ5%、イソプロピルアルコール50%、メタノール25%および水20%)、390mgの1-メトキシ2-プロパノール、2mlのイソプロパノール、VULCAN(登録商標)カーボン支持体の20%白金を有する487.9mgの触媒からなるペーストが記載されている。 As the electrode catalyst layer forming paste, pastes of various compositions have already been proposed (eg, Patent Document 1). In Patent Document 1, 2.6 mg of a perfluorinated sulfonic acid NAFION® solution (NAFION® polymer 5% by weight, isopropyl alcohol 50%, methanol 25% and water 20%), 390 mg A paste consisting of 487.9 mg of catalyst with 20% platinum on 1-methoxy 2-propanol, 2 ml isopropanol, VULCAN® carbon support is described.
 この電極触媒層形成用ペーストを使用した場合、触媒の分散時には有機溶媒が触媒表面で酸化反応を起こし発熱や、それによる触媒シンタリングを伴う場合が多い。そのため、ペースト調整の作業性や量産性の低下、電極触媒の性能低下が起こっている。 When this electrode catalyst layer forming paste is used, the organic solvent often causes an oxidation reaction on the catalyst surface when the catalyst is dispersed, resulting in heat generation and catalyst sintering. For this reason, workability and mass productivity of paste adjustment are lowered, and performance of the electrode catalyst is lowered.
 また、固体高分子電解質膜と電極触媒層形成用ペースト中の固体高分子電解質とは、溶媒による膨潤率が異なることがある。このため固体高分子電解質膜への電極触媒層形成用ペーストの印刷後に、乾燥収縮率が異なることを原因として、形成した電極触媒層に大きなひび割れおよび剥離が生じるという不具合がある。その結果、均一な電極触媒層を形成することが困難である。 Further, the solid polymer electrolyte membrane and the solid polymer electrolyte in the electrode catalyst layer forming paste may have different swelling rates due to the solvent. For this reason, after printing the electrode catalyst layer forming paste on the solid polymer electrolyte membrane, there is a problem that large cracks and peeling occur in the formed electrode catalyst layer due to different drying shrinkage rates. As a result, it is difficult to form a uniform electrode catalyst layer.
 以上の様な問題点を解決するため、特許文献2においては、少なくとも(1)電極触媒層の膜厚、(2)貴金属触媒を担持した炭素の種類、(3)ペーストの溶媒の乾燥速度、に着目することで電極触媒層のひび割れ占有面積を25%以下に制御する方法を提案している。しかしながら、完全にひび割れ等の劣化を抑えることは出来ていない。 In order to solve the above problems, in Patent Document 2, at least (1) the film thickness of the electrode catalyst layer, (2) the kind of carbon carrying the noble metal catalyst, (3) the drying rate of the solvent of the paste, A method of controlling the crack occupying area of the electrode catalyst layer to 25% or less has been proposed. However, deterioration such as cracks cannot be completely suppressed.
 特許文献3においては、水より沸点が高く、水溶液としたときに所定の温度以下で共沸する共沸溶剤を水と共に添加した、電極触媒層のひび割れ、剥離が無く、良好な乾燥性となる電極触媒層形成用ペーストを提案している。しかしながら、共沸溶剤の添加や粘度調整などの工程が増えており、作業性が低下している。 In Patent Document 3, the boiling point is higher than that of water, and an azeotropic solvent that is azeotropic at a predetermined temperature or lower when added to water is added together with water. An electrode catalyst layer forming paste is proposed. However, processes such as addition of an azeotropic solvent and viscosity adjustment are increasing, and workability is reduced.
特表平9-501535号公報Japanese National Patent Publication No. 9-501535 国際公開第2003/077336号パンフレットInternational Publication No. 2003/077336 Pamphlet 特開2001-266901号公報JP 2001-266901 A
 特許文献1、特許文献2及び特許文献3に記載された方法では、ひび割れ、剥離の発生や作業性に関する問題が完全に解決されなかった。よって、本発明の目的は、印刷時や乾燥時の温度や湿度を制御することなく簡便な方法で、かつ、組成を複雑にする複数の溶剤等を添加することなく、ひび割れ、剥離のない電極触媒層を得ることである。 The methods described in Patent Document 1, Patent Document 2 and Patent Document 3 did not completely solve problems related to cracking, peeling, and workability. Therefore, an object of the present invention is to provide an electrode that is not cracked or peeled by a simple method without controlling the temperature and humidity during printing and drying, and without adding a plurality of solvents that complicate the composition. It is to obtain a catalyst layer.
 本発明者等は、課題を解決するため、鋭意検討を行った。その結果、水と親水性有機溶媒の含有量を制御した電極触媒層形成用ペーストを調製し、使用することで、ひび割れ、剥離のない電極触媒層が形成できることを見出し、本発明を完成するに至った。 The inventors of the present invention have intensively studied to solve the problem. As a result, it was found that by preparing and using an electrode catalyst layer forming paste in which the contents of water and hydrophilic organic solvent were controlled, an electrode catalyst layer free from cracks and peeling could be formed, and the present invention was completed. It came.
 すなわち、第一の本発明は、電極触媒層の形成に用いる、触媒を担持した触媒担持カーボン粉末、水、親水性有機溶媒、固体高分子電解質を含む電極触媒層形成用ペーストであって、水8~20質量%、親水性有機溶媒60~82質量%、水と親水性有機溶媒との合計の含有量が78~90質量%であることを特徴とする電極触媒層形成用ペーストである。 That is, the first aspect of the present invention is an electrode catalyst layer forming paste comprising a catalyst-supported carbon powder supporting a catalyst, water, a hydrophilic organic solvent, and a solid polymer electrolyte used for forming an electrode catalyst layer, An electrode catalyst layer forming paste characterized by comprising 8 to 20% by mass, hydrophilic organic solvent 60 to 82% by mass, and a total content of water and hydrophilic organic solvent of 78 to 90% by mass.
 前記固体高分子電解質は、低コストで製造することができ、また分解した際のフッ素イオンの溶出による環境への悪影響の恐れが無いことから、炭化水素系であることが好ましく、炭化水素系陰イオン交換樹脂であることがより好ましい。 The solid polymer electrolyte is preferably hydrocarbon-based because it can be produced at low cost and there is no fear of adverse environmental effects due to elution of fluorine ions when decomposed. More preferably, it is an ion exchange resin.
 また、第一の本発明の電極触媒層形成用ペーストは、固体高分子型燃料電池と固体高分子型水電解セルの何れの電極触媒層の形成にも用いることができる。 Also, the electrode catalyst layer forming paste of the first aspect of the present invention can be used for forming any electrode catalyst layer of a solid polymer fuel cell and a solid polymer water electrolysis cell.
 第二の本発明は、第一の本発明の電極触媒層形成用ペーストを、固体高分子電解質膜上に塗布することにより膜-電極触媒層接合体を形成することを特徴とする、膜-電極触媒層接合体の製造方法である。 The second invention is characterized in that a membrane-electrode catalyst layer assembly is formed by applying the electrode catalyst layer forming paste of the first invention on a solid polymer electrolyte membrane. It is a manufacturing method of an electrode catalyst layer assembly.
 固体高分子電解質膜は、前記固体高分子電解質同様、炭化水素系であることが好ましく、炭化水素系陰イオン交換樹脂であることがより好ましい。 The solid polymer electrolyte membrane is preferably a hydrocarbon-based material, more preferably a hydrocarbon-based anion exchange resin, like the solid polymer electrolyte.
 第三の本発明は、第二の本発明の膜-電極触媒層接合体の製造方法により膜-電極触媒層接合体を製造した後、該膜-電極触媒層接合体を用いて固体高分子型燃料電池を製造する、固体高分子型燃料電池の製造方法である。 According to a third aspect of the present invention, a membrane-electrode catalyst layer assembly is produced by the method for producing a membrane-electrode catalyst layer assembly of the second invention, and then a solid polymer is produced using the membrane-electrode catalyst layer assembly. It is a manufacturing method of a polymer electrolyte fuel cell which manufactures a type fuel cell.
 第四の本発明は、第二の本発明の膜-電極触媒層接合体の製造方法により膜-電極触媒層接合体を製造した後、該膜-電極触媒層接合体を用いて固体高分子型水電解セルを製造する、固体高分子型水電解セルの製造方法である。 According to a fourth aspect of the present invention, a membrane-electrode catalyst layer assembly is produced by the method for producing a membrane-electrode catalyst layer assembly of the second invention, and then a solid polymer is produced using the membrane-electrode catalyst layer assembly. It is a manufacturing method of a solid polymer type water electrolysis cell which manufactures a type water electrolysis cell.
 第五の本発明は、第一の本発明の電極触媒層形成用ペーストを、ガス拡散層上に塗布することによりガス拡散電極を形成することを特徴とする、ガス拡散電極の製造方法である。 The fifth aspect of the present invention is a method for producing a gas diffusion electrode, wherein the gas diffusion electrode is formed by applying the electrode catalyst layer forming paste of the first aspect of the present invention onto the gas diffusion layer. .
 第六の本発明は、第五の本発明のガス拡散電極の製造方法によりガス拡散電極を製造した後、該ガス拡散電極を用いて固体高分子型燃料電池を製造する、固体高分子型燃料電池の製造方法である。 According to a sixth aspect of the present invention, there is provided a polymer electrolyte fuel, wherein a gas diffusion electrode is manufactured by the gas diffusion electrode manufacturing method according to the fifth aspect of the invention, and then a polymer electrolyte fuel cell is manufactured using the gas diffusion electrode. It is a manufacturing method of a battery.
 第七の本発明は、第五の本発明のガス拡散電極の製造方法によりガス拡散電極を製造した後、該ガス拡散電極を用いて固体高分子型水電解セルを製造する、固体高分子型水電解セルである。 The seventh aspect of the present invention is a solid polymer type wherein a gas diffusion electrode is produced by the method for producing a gas diffusion electrode of the fifth aspect of the invention, and then a solid polymer type water electrolysis cell is produced using the gas diffusion electrode. It is a water electrolysis cell.
 第八の本発明は、第一の本発明の電極触媒層形成用ペーストの製造方法であって、
(I)触媒を担持した触媒担持カーボン粉末を水に分散させる工程
(II)固体高分子電解質を親水性有機溶媒に溶解させる工程
(III)触媒担持カーボン粉末が分散した水と、固体高分子電解質溶解した親水性有機溶媒とを混合する工程
(IV)水と親水性有機溶媒の含有量を、水8~20質量%、親水性有機溶媒60~82質量%、水と親水性有機溶媒との合計の含有量が78~90質量%に調整する工程、
を含むことを特徴とする、電極触媒層形成用ペーストの製造方法である。
The eighth invention is a method for producing the electrode catalyst layer forming paste of the first invention,
(I) Step of dispersing catalyst-supported carbon powder supporting catalyst in water (II) Step of dissolving solid polymer electrolyte in hydrophilic organic solvent (III) Water in which catalyst-supported carbon powder is dispersed and solid polymer electrolyte Step of mixing the dissolved hydrophilic organic solvent (IV) The content of water and the hydrophilic organic solvent is 8-20% by mass of water, 60-82% by mass of the hydrophilic organic solvent, water and the hydrophilic organic solvent. A step of adjusting the total content to 78 to 90% by mass;
It is a manufacturing method of the paste for electrode catalyst layer formation characterized by including.
 本発明の電極触媒層形成用ペーストを用いることにより、大気中において温度、湿度、乾燥速度等を制御することなく、ひび割れ、剥離がない均一で良好な電極触媒層を形成することができる。そのため、本発明の電極触媒層形成用ペーストを用いて製造される膜-電極触媒層接合体やガス拡散電極を用いた固体高分子型燃料電池及び固体高分子型水電解セルの性能のばらつきを極めて小さくすることができる。更に、生成あるいは供給される燃料や水による電極触媒層の変形や脱落を生じにくいため、固体高分子型燃料電池及び固体高分子化型水電解セルの性能低下を防止することができる。 By using the electrode catalyst layer forming paste of the present invention, a uniform and good electrode catalyst layer free from cracking and peeling can be formed without controlling temperature, humidity, drying speed, etc. in the atmosphere. For this reason, the performance variation of the polymer electrolyte fuel cell and the polymer electrolyte water electrolysis cell using the membrane-electrode catalyst layer assembly and the gas diffusion electrode manufactured using the electrode catalyst layer forming paste of the present invention is reduced. It can be made extremely small. Further, since the electrode catalyst layer is not easily deformed or dropped off by the fuel or water generated or supplied, it is possible to prevent the performance degradation of the polymer electrolyte fuel cell and the polymer electrolyte water electrolysis cell.
 また、溶媒の組成が複雑になることもないため単純な工程で調製できる。更に、本発明の電極触媒層形成用ペーストを用いることにより作業性が改善され電極触媒層の形成工程の効率が良くなる。よって、本発明の電極触媒層形成用ペーストを用いると、膜-電極触媒層接合体、ガス拡散電極、固体高分子型燃料電池及び固体高分子型水電解セルを効率よく製造することができる。 Also, since the composition of the solvent does not become complicated, it can be prepared by a simple process. Furthermore, by using the electrode catalyst layer forming paste of the present invention, workability is improved and the efficiency of the electrode catalyst layer forming step is improved. Therefore, when the electrode catalyst layer forming paste of the present invention is used, a membrane-electrode catalyst layer assembly, a gas diffusion electrode, a solid polymer fuel cell, and a solid polymer water electrolysis cell can be efficiently produced.
本図は、固体高分子型燃料電池の基本構造を示す概念図である。This figure is a conceptual diagram showing the basic structure of a polymer electrolyte fuel cell. 本図は、実施例1により作製された電極触媒層の状態を示す図面代用写真である。This drawing is a drawing-substituting photograph showing the state of the electrode catalyst layer produced in Example 1. FIG. 本図は、比較例4により作製された電極触媒層の状態を示す図面代用写真である。This figure is a drawing-substituting photograph showing the state of the electrode catalyst layer produced in Comparative Example 4.
 (電極触媒層形成用ペースト)
 本発明の電極触媒層形成用ペーストは、固体高分子型燃料電池または固体高分子型水電解セルに用いる電極触媒層の形成に用いられる。ここで、電極触媒層とは、水素などの燃料ガスが反応するアノードおよび、酸素や空気などの酸化剤ガスが反応するカソードの両方を意味し、その使用が特に一方の電極に限定されるものではない。本発明の電極触媒層形成用ペーストは、アノードおよびカソードの両方の電極触媒層の製造に好適に使用することができる。
(Electrode catalyst layer forming paste)
The electrode catalyst layer forming paste of the present invention is used for forming an electrode catalyst layer used for a polymer electrolyte fuel cell or a polymer electrolyte water electrolysis cell. Here, the electrode catalyst layer means both an anode that reacts with a fuel gas such as hydrogen and a cathode that reacts with an oxidant gas such as oxygen and air, and its use is particularly limited to one electrode. is not. The electrode catalyst layer forming paste of the present invention can be suitably used for the production of both the anode and cathode electrode catalyst layers.
 本発明の電極触媒層形成用ペーストは、触媒を担持した触媒担持カーボン粉末、水、親水性有機溶媒、固体高分子電解質を含んでなる。 The electrode catalyst layer forming paste of the present invention comprises catalyst-carrying carbon powder carrying a catalyst, water, a hydrophilic organic solvent, and a solid polymer electrolyte.
 (触媒を担持した触媒担持カーボン粉末)
 本発明で使用する触媒を担持した触媒担持カーボン粉末は、触媒担持用のカーボンに触媒を担持したものである。触媒には後述する触媒が用いられ、その表面で水素、アルコールなどの燃料電池用燃料と水酸イオンが、あるいは酸素と水が反応し、電子と水、水酸イオン等を生成する。生成した電子を電流として取り出すために、電子伝導性のあるカーボン粉末に触媒を担持し、触媒を担持した触媒担持カーボン粉末として用いられる。
(Catalyst-supported carbon powder supporting catalyst)
The catalyst-carrying carbon powder carrying the catalyst used in the present invention is obtained by carrying a catalyst on carbon for carrying a catalyst. A catalyst described later is used as the catalyst, and a fuel cell fuel such as hydrogen or alcohol and hydroxide ions or oxygen and water react on the surface to generate electrons, water, hydroxide ions, and the like. In order to take out the generated electrons as an electric current, a catalyst is supported on a carbon powder having electron conductivity, and used as a catalyst-supported carbon powder supporting the catalyst.
 (触媒)
 触媒としては、公知の燃料電池または水電解セルで使用されるものが、何ら制限なく使用可能であり、水素などの燃料の酸化反応、酸素の還元反応または水の電気分解にかかわる反応を促進する金属粒子であれば特に制限されるものではない。例えば、白金、金、銀、パラジウム、イリジウム、ロジウム、ルテニウム、スズ、鉄、コバルト、ニッケル、モリブデン、タングステン、バナジウム、あるいはそれらの合金が挙げられる。これらの触媒の中では、水素、酸素に対する触媒活性が優れている点で白金が好適である。また、固体高分子電解質として陰イオン交換樹脂を用いる場合には、鉄、コバルト、ニッケルなどの遷移金属も酸素の還元反応または水の還元反応により生じる水酸イオンによる溶解が無い、または非常に少ないため、性能の劣化が少なく好適である。
(catalyst)
As the catalyst, those used in known fuel cells or water electrolysis cells can be used without any limitation, and promote the oxidation reaction of fuel such as hydrogen, the reduction reaction of oxygen, or the reaction related to the electrolysis of water. If it is a metal particle, it will not restrict | limit in particular. For example, platinum, gold, silver, palladium, iridium, rhodium, ruthenium, tin, iron, cobalt, nickel, molybdenum, tungsten, vanadium, or an alloy thereof can be given. Of these catalysts, platinum is preferred because of its excellent catalytic activity against hydrogen and oxygen. In addition, when an anion exchange resin is used as the solid polymer electrolyte, transition metals such as iron, cobalt, and nickel are not dissolved by the hydroxide ions generated by the oxygen reduction reaction or water reduction reaction, or very little. Therefore, it is preferable that the performance is not deteriorated.
 触媒に用いる金属粒子の粒径は、通常、0.1~100nm、より好ましくは0.5~10nmである。一般に粒径が小さいほど触媒性能が高くなるが、その作製の容易さから、0.5nm以上の粒径が好ましく、また比表面積を大きくし十分に大きな触媒性能が得られることから100nm以下の粒径が好適である。 The particle size of the metal particles used for the catalyst is usually 0.1 to 100 nm, more preferably 0.5 to 10 nm. In general, the smaller the particle size, the higher the catalyst performance. However, a particle size of 0.5 nm or more is preferable because of its ease of preparation, and a sufficiently large catalyst performance can be obtained by increasing the specific surface area. A diameter is preferred.
 触媒の含有量は、ペースト中において通常は1~30質量%、好ましくは2~15質量%、より好ましくは3~10質量%で用いられる。含有量をこの範囲に保つことにより、塗布後の電極触媒層内に好適な量の触媒を含有させることができる。電極触媒層において好適な触媒の量を示せば、燃料の酸化反応、酸素の還元反応または水の電気分解にかかわる反応が十分に促進されることを勘案し、通常0.01~10mg/cm、より好ましくは、0.1~6.0mg/cmである。さらに好ましくは、0.2mg/cm以上が好ましく、燃料電池出力性能が飽和しない5.0mg/cm以下の触媒の含有量が好適である。 The catalyst content is usually 1 to 30% by mass, preferably 2 to 15% by mass, more preferably 3 to 10% by mass in the paste. By keeping the content in this range, a suitable amount of catalyst can be contained in the electrode catalyst layer after coating. Considering that a suitable amount of catalyst in the electrocatalyst layer can sufficiently promote a reaction involving fuel oxidation, oxygen reduction or water electrolysis, usually 0.01 to 10 mg / cm 2. More preferably, it is 0.1 to 6.0 mg / cm 2 . More preferably, 0.2 mg / cm 2 or more is preferable, and a catalyst content of 5.0 mg / cm 2 or less that does not saturate the fuel cell output performance is suitable.
 (触媒担持用のカーボン粉末)
 触媒担持用のカーボン粉末は、触媒を担持し、導電剤の役割をも果たす。したがって、電子伝導性カーボンであれば、公知の燃料電池または水電解セルで使用されるものが、何ら制限なく使用可能であり、特に限定されるものではない。例えば、ファーネスブラック、アセチレンブラック等のカーボンブラック、活性炭、黒鉛等を単独または混合して使用するのが一般的である。その形状は不定形であるが、平均粒径(円相当径)として1~1000nm、好ましくは5~100nm、より好ましくは10~50nmのものが用いられる。好ましい粒径のカーボンを用いることにより、多くの触媒粒子を担持しつつ良好な電子伝導性を得ることができる。
(Carbon powder for catalyst support)
The carbon powder for supporting the catalyst supports the catalyst and also serves as a conductive agent. Therefore, as long as it is an electron conductive carbon, those used in known fuel cells or water electrolysis cells can be used without any limitation, and are not particularly limited. For example, carbon black such as furnace black and acetylene black, activated carbon, graphite and the like are generally used alone or in combination. The shape is irregular, but an average particle diameter (equivalent circle diameter) of 1 to 1000 nm, preferably 5 to 100 nm, more preferably 10 to 50 nm is used. By using carbon having a preferable particle size, good electron conductivity can be obtained while supporting a large number of catalyst particles.
 触媒のカーボン粉末への担持量は、触媒担持カーボン粉末の全質量(触媒およびカーボンの合計質量)に対して、10質量%~90質量%、好適には20質量%~80質量%であるのが好ましい。さらに好適な範囲を示せば、触媒活性が十分になる30質量%以上が好ましく、触媒の節約という観点と電極触媒層の電子導電が十分に行われる70質量%以下が好適である。 The amount of the catalyst supported on the carbon powder is 10% by mass to 90% by mass, preferably 20% by mass to 80% by mass with respect to the total mass of the catalyst-supported carbon powder (total mass of the catalyst and carbon). Is preferred. If a more preferable range is shown, the amount is preferably 30% by mass or more at which the catalyst activity is sufficient, and 70% by mass or less is preferable because the catalyst is saved and the electroconductivity of the electrode catalyst layer is sufficiently performed.
 ペースト中の触媒を担持した触媒担持カーボン粉末の含有量は、ペーストの粘度に大きく影響する。ペーストの粘度を適切な範囲に保つことにより、不均一な塗布や、塗布後の滲みがなく好適な電極触媒層を得ることができる。その好ましい範囲を示せば、ペースト中に2~35質量%、より好ましい範囲としては2~20質量%、さらに好ましい範囲としては3~20質量%、特に好ましいとしては5~15質量%である。 The content of the catalyst-carrying carbon powder carrying the catalyst in the paste greatly affects the viscosity of the paste. By keeping the viscosity of the paste in an appropriate range, a suitable electrode catalyst layer can be obtained without uneven coating or bleeding after coating. The preferred range is 2 to 35% by mass in the paste, more preferably 2 to 20% by mass, still more preferably 3 to 20% by mass, and particularly preferably 5 to 15% by mass.
 (水)
 本発明の電極触媒層形成用ペーストでは、膜-電極触媒層接合体を作製したときの電極触媒層のひび割れ、剥離を防ぐために、水が親水性有機溶媒と共に、ある範囲の含有量にて添加される。また、触媒を親水性有機溶媒と接触させたときの発火を防ぐという副次的な効果もある。
(water)
In the electrode catalyst layer forming paste of the present invention, water is added in a certain range together with the hydrophilic organic solvent in order to prevent cracking and peeling of the electrode catalyst layer when the membrane-electrode catalyst layer assembly is produced. Is done. There is also a secondary effect of preventing ignition when the catalyst is brought into contact with a hydrophilic organic solvent.
 本発明で使用する水には、固体高分子電解質のイオン伝導を妨げるイオンが除去された水であれば特に制限されるものではなく、イオン交換水(IEW)、超純水、蒸留水、脱イオン水(DIW)、などの単独溶液または混合溶液が使用できる。不純物としてイオンが含まれていた場合、燃料電池特性または水電解セル特性に影響を与える可能性があるため、電気伝導率が0.1S/m以上の水(井戸水など)は、使用することができない。したがって、本発明では、電気伝導率が0.1S/m未満の水が用いられる。 The water used in the present invention is not particularly limited as long as the ions that interfere with the ionic conduction of the solid polymer electrolyte are removed, and are not limited. Ion exchange water (IEW), ultrapure water, distilled water, deionized water, and the like. A single solution or a mixed solution such as ionic water (DIW) can be used. When ions are included as impurities, there is a possibility of affecting fuel cell characteristics or water electrolysis cell characteristics. Therefore, water (such as well water) having an electric conductivity of 0.1 S / m or more can be used. Can not. Therefore, in the present invention, water having an electric conductivity of less than 0.1 S / m is used.
 ペースト中に含有される水は、そのペースト中の含有量が8~20質量%の範囲で用いられ、好ましくは8~18質量%であり、さらに好ましくは11~18質量%であり、特に好ましくは12~18質量%である。る。水の量をこの範囲に保つことにより、ひび割れ、剥離を防止することができる。 The water contained in the paste is used in the range of 8 to 20% by mass in the paste, preferably 8 to 18% by mass, more preferably 11 to 18% by mass, particularly preferably. Is 12 to 18% by mass. The By keeping the amount of water in this range, cracking and peeling can be prevented.
 その機構は明らかではないが、以下のように推定される。ペーストを固体高分子電解質膜に塗布後に、有機溶媒が乾燥するが、水はペースト中の固体高分子電解質内に残存するため、急激な収縮が起きない。そのため、固体高分子電解質膜、ペースト中の固体高分子電解質は応力を分散させつつ、やや時間をかけて乾燥する。よって両者の収縮率に大きな差が生じることが無く、ひび割れ、剥離を防止することができる。 The mechanism is not clear, but is estimated as follows. After the paste is applied to the solid polymer electrolyte membrane, the organic solvent is dried. However, since water remains in the solid polymer electrolyte in the paste, rapid shrinkage does not occur. Therefore, the solid polymer electrolyte membrane and the solid polymer electrolyte in the paste are dried over time while dispersing the stress. Therefore, there is no great difference between the shrinkage rates of the two, and cracking and peeling can be prevented.
 水が多い場合には、有機溶媒の乾燥と共に固体高分子電解質の析出が始まるため、均一な電極触媒層を形成することができない。また、水が少ない場合には、上記の防止効果が発現しないため好ましくない。 When there is a lot of water, since the solid polymer electrolyte starts to be deposited with the drying of the organic solvent, a uniform electrode catalyst layer cannot be formed. Moreover, when there is little water, since said prevention effect is not expressed, it is unpreferable.
 (親水性有機溶媒)
 本発明の電極触媒層形成用ペーストに用いる親水性有機溶媒とは、電極触媒層を形成させるときの温度にて水に任意の割合で溶解する有機溶媒であり、公知の燃料電池または固体高分子型水電解セルの電極触媒層形成用ペーストで使用されるものが、何ら制限なく使用可能である。親水性有機溶媒であることから、電極触媒層形成後に、その表面が親水性となり、燃料電池または固体高分子型水電解セルの運転時に生成あるいは供給する水が円滑に移動することができる。また、乾燥速度が十分に早く、印刷後のペーストが流れ出す等の不具合が起きる恐れが無いことから、親水性有機溶媒は水よりも沸点が低いことが好ましい。好ましい親水性有機溶媒として例えば、テトラヒドロフラン、メタノール、エタノール、1-プロパノール、アセトンなどを単独でまたは混合して使用できる。なかでも、その溶解性の高さと乾燥の速さから、テトラヒドロフラン、1-プロパノールが好適に用いられる。
(Hydrophilic organic solvent)
The hydrophilic organic solvent used in the electrode catalyst layer forming paste of the present invention is an organic solvent that dissolves in water at an arbitrary ratio at the temperature at which the electrode catalyst layer is formed, and is a known fuel cell or solid polymer. What is used by the paste for electrode catalyst layer formation of a type | mold water electrolysis cell can be used without a restriction | limiting. Since it is a hydrophilic organic solvent, the surface of the electrode catalyst layer becomes hydrophilic after the electrode catalyst layer is formed, and the water generated or supplied during the operation of the fuel cell or the polymer electrolyte water electrolysis cell can move smoothly. In addition, the hydrophilic organic solvent preferably has a boiling point lower than that of water because the drying speed is sufficiently high and there is no possibility of causing problems such as the paste after printing flowing out. As a preferred hydrophilic organic solvent, for example, tetrahydrofuran, methanol, ethanol, 1-propanol, acetone and the like can be used alone or in combination. Of these, tetrahydrofuran and 1-propanol are preferably used because of their high solubility and rapid drying.
 ペースト中の親水性有機溶媒の含有量には、固体高分子電解質を安定に溶解状態に保つための、好適な範囲が存在し、ペースト中に60~82質量%の範囲であり、好ましくは62~80質量%であり、さらに好ましくは65~75質量%であり、特に好ましくは68~73質量%である。その含有量が少ないと、固体高分子電解質を溶解させることができない。また、含有量が多い場合には、相対的に水の量が少なくなるため、ひび割れや剥離が生じる。そのため、親水性有機溶媒の量は、水の含有量とともに好的な範囲とする必要がある。 The content of the hydrophilic organic solvent in the paste has a suitable range for keeping the solid polymer electrolyte in a stable dissolved state, and is in the range of 60 to 82% by mass in the paste, preferably 62. Is 80 to 80% by mass, more preferably 65 to 75% by mass, and particularly preferably 68 to 73% by mass. If the content is small, the solid polymer electrolyte cannot be dissolved. Moreover, when there is much content, since the quantity of water becomes relatively small, a crack and peeling arise. Therefore, the amount of the hydrophilic organic solvent needs to be in a favorable range together with the water content.
 その好適な範囲を水と親水性有機溶媒の質量%にて示せば、ペースト中に水8~20質量%、親水性有機溶媒60~82質量%、水と親水性有機溶媒との合計の含有量が78~90質量%である。好ましい範囲を示せば、ペースト中に水8~18質量%、親水性有機溶媒62~80質量%、水と親水性有機溶媒との合計の含有量が70~88質量%である。さらに好ましい範囲を示せば、ペースト中に水11~18質量%、親水性有機溶媒65~75質量%、水と親水性有機溶媒との合計の含有量が76~93質量%である。特に好ましい範囲を示せば、ペースト中に水12~18質量%、親水性有機溶媒68~73質量%、水と親水性有機溶媒との合計の含有量が80~91質量%である。 If the preferred range is indicated by mass% of water and hydrophilic organic solvent, the paste contains 8 to 20 mass% of water, 60 to 82 mass% of hydrophilic organic solvent, and the total of water and hydrophilic organic solvent. The amount is 78 to 90% by mass. If a preferable range is shown, 8 to 18% by mass of water, 62 to 80% by mass of the hydrophilic organic solvent, and 70 to 88% by mass of the total content of water and the hydrophilic organic solvent in the paste. More preferably, the paste contains 11 to 18% by mass of water, 65 to 75% by mass of the hydrophilic organic solvent, and 76 to 93% by mass of the total amount of water and the hydrophilic organic solvent. A particularly preferable range is 12 to 18% by mass of water, 68 to 73% by mass of the hydrophilic organic solvent, and 80 to 91% by mass of the total content of water and the hydrophilic organic solvent in the paste.
 (固体高分子電解質)
 本発明の固体高分子電解質は、燃料室側ガス拡散電極層と酸化剤室側ガス拡散電極層の電極触媒層内にて触媒表面から固体高分子電解質膜までイオンを伝導させる固体状の物質である。
(Solid polymer electrolyte)
The solid polymer electrolyte of the present invention is a solid substance that conducts ions from the catalyst surface to the solid polymer electrolyte membrane in the electrode catalyst layers of the fuel chamber side gas diffusion electrode layer and the oxidant chamber side gas diffusion electrode layer. is there.
 固体高分子電解質として、プロトンあるいは水酸イオンのイオン伝導性を示すものであれば一般に知られているものを用いることができるが、陽イオン交換樹脂、陰イオン交換樹脂が、良好な性能を与えるために好適に用いられる。 As the solid polymer electrolyte, any known polymer can be used as long as it exhibits ionic conductivity of protons or hydroxide ions. However, cation exchange resins and anion exchange resins give good performance. Therefore, it is preferably used.
 (陽イオン交換樹脂)
 陽イオン交換樹脂とは、陽イオン交換基を有する樹脂であり、樹脂内をプロトンが伝導できるのであれば、特に限定されるものではない。陽イオン交換基としては、スルホン酸基、カルボン酸基、ホスホン酸基などが挙げられ、このうちプロトン伝導性に優れる強酸性基であるスルホン酸基が特に望ましい。
(Cation exchange resin)
The cation exchange resin is a resin having a cation exchange group and is not particularly limited as long as protons can be conducted in the resin. Examples of the cation exchange group include a sulfonic acid group, a carboxylic acid group, and a phosphonic acid group. Of these, a sulfonic acid group that is a strongly acidic group excellent in proton conductivity is particularly desirable.
 陽イオン交換基の含有量は、電極触媒層に良好なイオン伝導性を付与する観点から、陽イオン交換容量が0.1~5.0mmol/g、好適には、0.5~3.0mmol/gであるのが好ましい。尚、プロトン伝導性樹脂が、非架橋性のものである場合には、陽イオン交換容量が高いと水に可溶となり、変形することがあるため、0.5~1.5mmol/gであるのが好ましい。 The content of the cation exchange group is such that the cation exchange capacity is 0.1 to 5.0 mmol / g, preferably 0.5 to 3.0 mmol, from the viewpoint of imparting good ion conductivity to the electrode catalyst layer. / G is preferred. In the case where the proton conductive resin is non-crosslinkable, it is 0.5 to 1.5 mmol / g because it becomes soluble in water and may be deformed if the cation exchange capacity is high. Is preferred.
 陽イオン交換樹脂としては、公知の陽イオン交換樹脂を制限なく用いることができる。代表的なものとしては、炭化水素系陽イオン交換樹脂、フッ素系陽イオン交換樹脂がある。炭化水素系陽イオン交換樹脂の例を挙げれば、以下の炭化水素系樹脂に陽イオン交換基を導入したものである。すなわち、炭化水素系樹脂としては、ポリスチレン、ポリ-α-メチルスチレンなどのスチレン系樹脂、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリベンズイミダゾール、ポリオキサゾール、ポリフェニレンオキサイド、ポリスルフィドなどのエンジニアリングプラスチック、スチレン系樹脂などが例示される。 As the cation exchange resin, a known cation exchange resin can be used without limitation. Typical examples include hydrocarbon cation exchange resins and fluorine cation exchange resins. As an example of the hydrocarbon-based cation exchange resin, a cation-exchange group is introduced into the following hydrocarbon-based resin. That is, examples of hydrocarbon resins include styrene resins such as polystyrene and poly-α-methylstyrene, polyether ether ketone, polysulfone, polyether sulfone, polybenzimidazole, polyoxazole, polyphenylene oxide, and polysulfide engineering plastics. Examples include styrene resins.
 また、フッ素系陽イオン交換樹脂には、高分子中の水素原子が全てフッ素原子に置換された全フッ素系陽イオン交換樹脂と部分的に水素原子がフッ素原子に置換された部分フッ素系陽イオン交換樹脂がある。市販されているフッ素系陽イオン交換樹脂には陽イオン交換基がスルホン酸であるNafion(デュポン社製)、Flemion(旭硝子社製)、Aciplex(旭化成ケミカルズ社製)などが例示される。 In addition, fluorine-based cation exchange resins include perfluorinated cation exchange resins in which all hydrogen atoms in the polymer are replaced with fluorine atoms and partially fluorinated cations in which hydrogen atoms are partially replaced with fluorine atoms. There is an exchange resin. Examples of commercially available fluorine-based cation exchange resins include Nafion (manufactured by DuPont) whose cation exchange group is sulfonic acid, Flemion (manufactured by Asahi Glass Co., Ltd.), and Aciplex (manufactured by Asahi Kasei Chemicals).
 近年ではフッ素系陽イオン交換樹脂に替わり、フッ素原子を有しない炭化水素系陽イオン交換樹脂が開発され用いられることがある。炭化水素系陽イオン交換樹脂は、原料が安価であるため低いコストで製造できるだけでなく、フッ素系陽イオン交換樹脂の欠点である、分解時にフッ素イオンを生成し環境に悪影響を及ぼすことが無いというメリットを有する。 In recent years, hydrocarbon cation exchange resins having no fluorine atoms have been developed and used in place of fluorine cation exchange resins. The hydrocarbon-based cation exchange resin can be produced at low cost because the raw materials are inexpensive, and it does not adversely affect the environment by generating fluorine ions during decomposition, which is a disadvantage of the fluorine-based cation exchange resin. Has merit.
 (陰イオン交換樹脂)
 陰イオン交換樹脂は、陰イオン交換基を有する樹脂であり、水酸イオンを伝導するものであれば特に限定されるものではない。その好適に用いられる例を示せば、特開2002-367626号公報に挙げられるものがある。例えば、炭化水素系または、フッ素系陰イオン交換樹脂がある。炭化水素系の樹脂としては、スチレン系樹脂、アクリル系樹脂などが、フッ素系の樹脂としては、パーフルオロカーボン系樹脂などが挙げられる。
(Anion exchange resin)
The anion exchange resin is a resin having an anion exchange group and is not particularly limited as long as it conducts hydroxide ions. An example that can be preferably used is disclosed in Japanese Patent Application Laid-Open No. 2002-367626. For example, there are hydrocarbon-based or fluorine-based anion exchange resins. Examples of hydrocarbon resins include styrene resins and acrylic resins, and examples of fluorine resins include perfluorocarbon resins.
 また、陰イオン交換基としては、1~3級アミノ基、4級アンモニウム基、ピリジル基、イミダゾール基、ホスホニウム基、4級ピリジニウム基などが挙げられ、一般的に、強塩基性である4級アンモニウム基や4級ピリジニウム基が好適である。 Examples of the anion exchange group include a primary to tertiary amino group, a quaternary ammonium group, a pyridyl group, an imidazole group, a phosphonium group, and a quaternary pyridinium group. Ammonium groups and quaternary pyridinium groups are preferred.
 陰イオン交換樹脂の陰イオン交換容量の好適に用いられる範囲を示せば、0.3~10mmol/gであり、1.0~5.0mmol/gであることが好ましく、1.2~4.0mmol/gであることが特に好ましい。 If the range of the anion exchange capacity of the anion exchange resin is suitably used, it is 0.3 to 10 mmol / g, preferably 1.0 to 5.0 mmol / g, and 1.2 to 4. Particularly preferred is 0 mmol / g.
 また、陰イオン交換樹脂の陰イオン交換基の対イオンは、OH、HCO 、CO 2-のいずれか、あるいはこれらの混合系であることが、陰イオン交換樹脂のイオン伝導性を高めることができることから好適である。対イオンを前記イオン形にするための操作の安全性や得られる陰イオン交換樹脂の化学的安定性を高められる点で、HCO 、CO 2-が対イオンとして最も好ましい。 The counter ion of the anion exchange group of the anion exchange resin is any one of OH , HCO 3 , CO 3 2− , or a mixed system thereof. Since it can raise, it is suitable. HCO 3 and CO 3 2− are most preferable as the counter ion from the viewpoint of enhancing the safety of the operation for converting the counter ion to the ionic form and the chemical stability of the obtained anion exchange resin.
 陰イオン交換樹脂は、優れた耐久性、接合性を発揮するといった観点から、一般に温度40℃、湿度90%RHにおける含水率が1~90%であるものが用いられる。 As the anion exchange resin, those having a moisture content of 1 to 90% at a temperature of 40 ° C. and a humidity of 90% RH are generally used from the viewpoint of exhibiting excellent durability and bonding properties.
 本発明の電極触媒層形成用ペーストに用いる陰イオン交換樹脂は、公知の燃料電池または水電解セルで使用されるものが、何ら制限なく使用可能である。一般には、入手の容易さや、その製造コストの低さから、炭化水素系陰イオン交換樹脂が好適に用いられる。 As the anion exchange resin used for the electrode catalyst layer forming paste of the present invention, those used in known fuel cells or water electrolysis cells can be used without any limitation. In general, hydrocarbon-based anion exchange resins are preferably used because of their availability and low manufacturing costs.
 ペースト中の固体高分子電解質の含有量は、被覆による触媒表面の反応の妨害が少なく、かつイオン伝導を良好に保つために、一般に1~20質量%の範囲で使用される。その好適な範囲を示せば2~10質量%であり、さらに好適な範囲を示せば3~5質量%である。 The content of the solid polymer electrolyte in the paste is generally used in the range of 1 to 20% by mass in order to prevent the reaction of the catalyst surface from being hindered by the coating and to keep the ionic conduction good. The preferable range is 2 to 10% by mass, and the more preferable range is 3 to 5% by mass.
 (その他の成分)
 電極触媒層形成用ペーストには、その他の成分として上記成分の他に、本発明の固体高分子電解質の溶解度を増しペーストの作成を容易にするために非親水性有機溶媒が、電極触媒層を形成した際の電子伝導性を高めるために触媒が担持されていないカーボン粉末等が含まれていても良い。非親水性有機溶媒としてはクロロホルム、ジクロロメタン、トルエン、ベンゼン、酢酸エチルなどを挙げることができる。非親水性有機溶媒は一般に単独では固体高分子電解質を溶解しないことが多いが、親水性有機溶媒と混合することにより、その溶解度を増すことがある。非親水性有機溶媒を用いる場合は、非親水性有機溶媒と親水性溶媒とをあらかじめ混合し、そののちに固体高分子電解質と混合し溶解させることができる。これら他の成分は、電極触媒層形成用ペーストの全量に対し、10質量%未満の割合で含まれていてもよい。
(Other ingredients)
In addition to the above-described components, the electrode catalyst layer forming paste includes a non-hydrophilic organic solvent for increasing the solubility of the solid polymer electrolyte of the present invention and facilitating preparation of the paste. Carbon powder or the like on which a catalyst is not supported may be included in order to increase the electron conductivity when formed. Non-hydrophilic organic solvents include chloroform, dichloromethane, toluene, benzene, ethyl acetate and the like. In general, a non-hydrophilic organic solvent alone often does not dissolve a solid polymer electrolyte, but its solubility may be increased by mixing with a hydrophilic organic solvent. When a non-hydrophilic organic solvent is used, the non-hydrophilic organic solvent and the hydrophilic solvent can be mixed in advance, and then mixed and dissolved with the solid polymer electrolyte. These other components may be contained in a proportion of less than 10% by mass with respect to the total amount of the electrode catalyst layer forming paste.
 (電極触媒層形成用ペーストの製造方法)
 電極触媒層形成用ペーストの製造方法は、特に限定されることなく、公知の方法を用いることができる。その例を挙げれば以下の通りである。
(Method for producing electrode catalyst layer forming paste)
The manufacturing method of the electrode catalyst layer forming paste is not particularly limited, and a known method can be used. Examples are as follows.
 触媒を担持した触媒担持カーボン粉末に水を加えて混錬する。これを、あらかじめ固体高分子電解質を溶解した親水性有機溶媒と混合し、内容物を十分に分散させるために、超音波照射器などを用いて分散させる。触媒を担持した触媒担持カーボン粉末を親水性有機溶媒と直接混合すると、急激に親水性有機溶媒の酸化反応が起きて、発熱、発火の危険性がある。そのため、触媒を担持した触媒担持カーボン粉末は、まず水と混合することが望ましい。あるいは、触媒担持カーボン粉末をあらかじめ窒素などの不活性ガス気流下に置き触媒表面を不活性ガス雰囲気にしてから、不活性ガス内にて親水性有機溶媒と直接混合することもできる。 Add water to the catalyst-supported carbon powder supporting the catalyst and knead. This is mixed with a hydrophilic organic solvent in which a solid polymer electrolyte is dissolved in advance, and is dispersed using an ultrasonic irradiator or the like in order to sufficiently disperse the contents. When the catalyst-carrying carbon powder carrying the catalyst is directly mixed with the hydrophilic organic solvent, an oxidation reaction of the hydrophilic organic solvent occurs suddenly and there is a risk of heat generation and ignition. Therefore, it is desirable that the catalyst-carrying carbon powder carrying the catalyst is first mixed with water. Alternatively, the catalyst-supported carbon powder can be previously placed in an inert gas stream such as nitrogen to make the catalyst surface an inert gas atmosphere, and then directly mixed with the hydrophilic organic solvent in the inert gas.
 本発明の電極触媒層形成用ペーストは、水8~20質量%、親水性有機溶媒60~82質量%を含んでおり、水と親水性有機溶媒との合計の含有量が78~90質量であることを特徴とする。水と親水性有機溶媒がこれらの含有量にあることにより、固体高分子電解質が急激な収縮をすることなく触媒電極層を形成することができる。そのため、ひび割れや剥離の無い電極触媒層を形成することができる。また、水と親水性有機溶媒の合計の含有量がこの範囲にあることにより、電極触媒層形成用ペーストは適切な粘度となるため、印刷時にペーストの流出や、あるいは高粘度を原因とする掠れや不均一を防ぐことができる。 The paste for forming an electrode catalyst layer of the present invention contains 8 to 20% by mass of water and 60 to 82% by mass of a hydrophilic organic solvent, and the total content of water and the hydrophilic organic solvent is 78 to 90% by mass. It is characterized by being. By having water and a hydrophilic organic solvent in these contents, the catalyst electrode layer can be formed without the solid polymer electrolyte contracting rapidly. Therefore, it is possible to form an electrode catalyst layer that does not crack or peel off. In addition, since the total content of water and the hydrophilic organic solvent is within this range, the electrode catalyst layer forming paste has an appropriate viscosity. And unevenness can be prevented.
 本発明の電極触媒層形成用ペーストは、触媒を担持した触媒担持カーボン粉末にペーストとしての必要量の水を加えて混錬し、これをあらかじめペーストとして必要量の親水性有機溶媒に固体高分子電解質を溶解した親水性有機溶媒と混合して製造すればよい。しかし、通常、固体高分子電解質は溶解度がそれほど高くなく、必要量以上の親水性有機溶媒に溶解させることが多い。そのため、触媒担持カーボン粉末に水を加えて混錬し、これをあらかじめ固体高分子電解質を溶解した親水性有機溶媒と混合した後、余分な親水性有機溶媒を除去する。その際、親水性有機溶媒と共に水も減少してしまうことがあるため、水及び親水性有機溶媒の含有量を調整する必要がある。 The electrode catalyst layer forming paste according to the present invention is prepared by adding a required amount of water as a paste to a catalyst-supporting carbon powder supporting a catalyst, kneading the mixture, and previously mixing the solid polymer in a required amount of a hydrophilic organic solvent as a paste. What is necessary is just to mix and manufacture with the hydrophilic organic solvent which melt | dissolved electrolyte. However, normally, solid polymer electrolytes are not so high in solubility and are often dissolved in more than the required amount of hydrophilic organic solvent. Therefore, water is added to the catalyst-supporting carbon powder and kneaded, and this is mixed with a hydrophilic organic solvent in which the solid polymer electrolyte is dissolved in advance, and then the excess hydrophilic organic solvent is removed. In that case, since water may also decrease with a hydrophilic organic solvent, it is necessary to adjust content of water and a hydrophilic organic solvent.
 ペースト中の水および親水性有機溶媒の含有量を調整する方法としては、特に制限なく公知の方法を用いることができる。その好適に用いられる例を示せば以下の通りである。 As a method for adjusting the content of water and the hydrophilic organic solvent in the paste, a known method can be used without any particular limitation. An example of its preferred use is as follows.
 水の含有量を増やす場合には、ペーストを乳鉢等に入れ、水を滴下しながら混練することにより行うことができる。水の含有量を減らす場合には、ペーストを乳鉢等に入れ、混練しながら加温することにより行うことができる。加温する場合の温度は親水性有機溶媒の沸点を越えないことが望ましく、一般には40℃程度で行われる。また、この操作により親水性有機溶媒の含有量も減少するため、親水性有機溶媒を適宜滴下することが望ましい。 When the water content is increased, the paste can be put in a mortar and kneaded while dropping water. In order to reduce the water content, the paste can be placed in a mortar or the like and heated while kneading. It is desirable that the heating temperature does not exceed the boiling point of the hydrophilic organic solvent, and is generally about 40 ° C. In addition, since the content of the hydrophilic organic solvent is reduced by this operation, it is desirable to drop the hydrophilic organic solvent appropriately.
 親水性有機溶媒の含有量を増やす場合には、同様に親水性有機溶媒を滴下しながら混練することにより行うことができる。また、親水性有機溶媒の含有量を減らす場合には、室温中で乳鉢等の中にて混練する、もしくは減圧処理により行うことができる。 In the case of increasing the content of the hydrophilic organic solvent, it can be similarly carried out by kneading while dropping the hydrophilic organic solvent. Moreover, when reducing content of a hydrophilic organic solvent, it can knead | mix in a mortar etc. at room temperature, or it can carry out by the pressure reduction process.
 ペースト中の水、親水性有機溶媒の含有量は、ガスクロマトグラフィー、1H NMR測定等の公知の方法により測定することができる。 The content of water and hydrophilic organic solvent in the paste can be measured by a known method such as gas chromatography or 1H NMR measurement.
 (電極触媒層、膜-電極接合体の形成方法)
 本発明において、電極触媒層は、基材となるものに電極触媒層形成用ペーストを適用することで形成される。基材としては、特に制限されるものではないが、例えば、固体高分子電解質膜、又は多孔性カーボンペーパーなどからなるガス拡散層が挙げられる。
(Method for forming electrode catalyst layer and membrane-electrode assembly)
In the present invention, the electrode catalyst layer is formed by applying an electrode catalyst layer forming paste to the substrate. Although it does not restrict | limit especially as a base material, For example, the gas diffusion layer which consists of a solid polymer electrolyte membrane or porous carbon paper etc. is mentioned.
 本発明において基材として用いる固体高分子電解質膜は、固体高分子型燃料電池や固体高分子型水電解セルの燃料室側ガス拡散電極層及び酸化剤室側ガス拡散電極層の電極触媒層内にて生成あるいは反応により消費される、プロトン、あるいは水酸イオンを伝導させるために用いられる。また、両室の燃料、水、ガスを隔てる機能も併せ持つ。 The solid polymer electrolyte membrane used as a base material in the present invention is formed in the electrode catalyst layer of the fuel chamber side gas diffusion electrode layer and the oxidant chamber side gas diffusion electrode layer of the solid polymer fuel cell or the solid polymer water electrolysis cell. It is used to conduct protons or hydroxide ions that are produced or consumed in the reaction. It also has the function of separating fuel, water and gas in both chambers.
 このような固体高分子電解質膜としては、プロトンあるいは水酸イオンのイオン伝導性を示すものであれば一般に知られているものを用いることができるが、陽イオン交換樹脂、陰イオン交換樹脂が、良好な性能を与えるために好適に用いられる。陽イオン交換樹脂、陰イオン交換樹脂については本発明の固体高分子電解質を用いることができ、これらを膜状に成形したものが用いられる。これらのイオン交換樹脂を膜状に成形させる方法としては公知のものを制限なく用いることができるが、例を示せば以下のものがある。固体高分子電解質に熱を加え柔軟性を発現させたうえで、圧力を加えて平坦化し膜状物とする方法、固体高分子電解質を溶液化した後に平面上に流延し、溶媒を揮発させて膜状物とする方法、固体高分子電解質の原料である単量体(モノマー)を多孔質の膜状基材に含浸させたのちに、これを加熱等により重合し、膜状物を得る方法、などである。陽イオン交換樹脂、陰イオン交換樹脂共に、炭化水素系高分子から成るもの、フッ素系高分子から成るものの2つに分類されることが多い。そのコストが重視される場合には、炭化水素系高分子から成る陽イオン交換樹脂、陰イオン交換樹脂が、また、耐久性が重視される場合にはフッ素系高分子から成る陽イオン交換樹脂、陰イオン交換樹脂が、固体高分子電解質膜の構成材料として適用される。また、固体高分子電解質膜と電極触媒層の密着性が良好となることから、両者は同じ材質となるよう選択される。すなわち固体高分子電解質膜が炭化水素系高分子から成る場合には、電極触媒層形成用ペーストに用いられる固体高分子電解質は炭化水素系が用いられる。 As such a solid polymer electrolyte membrane, those generally known can be used as long as they exhibit ionic conductivity of protons or hydroxide ions, but cation exchange resins and anion exchange resins are used. It is preferably used to give good performance. As the cation exchange resin and the anion exchange resin, the solid polymer electrolyte of the present invention can be used, and those formed into a film shape are used. As a method of forming these ion exchange resins into a film, known ones can be used without limitation, but examples include the following. Heat is applied to the solid polymer electrolyte to develop flexibility, and pressure is applied to flatten it to form a membrane. After the solid polymer electrolyte is made into a solution, it is cast on a flat surface to volatilize the solvent. A film-like material, impregnating a porous membrane-like substrate with a monomer that is a raw material of a solid polymer electrolyte, and then polymerizing it by heating or the like to obtain a membrane-like material Method, etc. Cation exchange resins and anion exchange resins are often classified into two types, those composed of hydrocarbon polymers and those composed of fluorine polymers. When the cost is important, cation exchange resin and anion exchange resin made of hydrocarbon polymer, and when durability is important, cation exchange resin made of fluorine polymer, An anion exchange resin is applied as a constituent material of the solid polymer electrolyte membrane. Moreover, since the adhesiveness of a solid polymer electrolyte membrane and an electrode catalyst layer becomes favorable, both are selected so that it may become the same material. That is, when the solid polymer electrolyte membrane is composed of a hydrocarbon polymer, a hydrocarbon polymer is used as the solid polymer electrolyte used in the electrode catalyst layer forming paste.
 固体高分子電解質膜にスクリーン印刷、スプレーによる塗布などにより電極触媒層形成用ペーストを適用して電極触媒層を形成させることにより、膜-電極触媒層接合体を作製する。膜-電極触媒層接合体の電極触媒層にガス拡散層を接合することにより、膜-電極接合体を作製できる。 A membrane-electrode catalyst layer assembly is produced by applying an electrode catalyst layer forming paste to the solid polymer electrolyte membrane by screen printing, spraying or the like to form an electrode catalyst layer. A membrane-electrode assembly can be produced by bonding a gas diffusion layer to the electrode catalyst layer of the membrane-electrode catalyst layer assembly.
 ガス拡散層にスクリーン印刷、スプレーによる塗布などを適用して電極触媒層を形成させたものは、ガス拡散層-電極触媒層接合体(Gas Diffusion Electrode、GDE)と呼ばれる。ガス拡散層としては、多孔性カーボンペーパーあるいは多孔性カーボンクロスなどが一般に用いられる。イオン交換膜の両面にガス拡散層-電極触媒層接合体を接合することにより膜-電極接合体が作製される。 A gas diffusion layer-electrode catalyst layer assembly (Gas Diffusion Electrode, GDE) in which an electrode catalyst layer is formed by applying screen printing, spray coating, or the like to a gas diffusion layer. As the gas diffusion layer, porous carbon paper or porous carbon cloth is generally used. A membrane-electrode assembly is produced by bonding the gas diffusion layer-electrode catalyst layer assembly to both surfaces of the ion exchange membrane.
 電極触媒層の厚みは、特に制限されるものではなく、使用する用途に応じて適宜決定すればよい。一般的には、0.1~500μmであることが好ましく、さらに、0.5~100μmであることが好ましい。 The thickness of the electrode catalyst layer is not particularly limited, and may be appropriately determined according to the intended use. In general, the thickness is preferably 0.1 to 500 μm, and more preferably 0.5 to 100 μm.
 上記の接合方法としては、単に両者を重ね合わせ数MPa以下の圧力を数分間加える方法、さらに50℃~200℃程度の温度下にて数MPa以下の圧力を数分間加える方法などの、公知の方法を用いることができる。 As the above-mentioned joining method, there are known methods such as a method of simply superimposing both and applying a pressure of several MPa or less for several minutes, and a method of applying a pressure of several MPa or less for several minutes at a temperature of about 50 to 200 ° C. The method can be used.
 膜-電極触媒層接合体、ガス拡散層-電極触媒層接合体の製造方法は、特に限定されることなく、公知の方法を用いることができる。一般的に用いられるスクリーン印刷を例に挙げれば以下の通りである。 The method for producing the membrane-electrode catalyst layer assembly and the gas diffusion layer-electrode catalyst layer assembly is not particularly limited, and a known method can be used. An example of commonly used screen printing is as follows.
 任意の面積、形状の穴が開いたマスクを固体高分子電解質膜(イオン交換膜など)、あるいはガス拡散層(多孔性カーボンペーパーなど)上に設置し、調製した電極触媒層形成用ペーストを、ドクターブレードにてスクリーン印刷をする。 The electrode catalyst layer forming paste prepared by placing a mask with a hole with an arbitrary area and shape on a solid polymer electrolyte membrane (such as an ion exchange membrane) or a gas diffusion layer (such as porous carbon paper) Screen printing with a doctor blade.
 本発明の電極触媒層形成用ペーストを用いることにより、印刷時の温度、湿度等を特に調整することなく、一般的な室温、湿度、すなわち5℃~30℃、20%RH~70%RHの環境下でスクリーン印刷、スプレーによる塗布等を行うことができる。乾燥は、室温下にて大気中に静置することにより行い、送風、温度調整等は行わない。 By using the electrode catalyst layer forming paste of the present invention, the temperature and humidity during printing are not particularly adjusted, and the general room temperature and humidity, that is, 5 ° C. to 30 ° C., 20% RH to 70% RH. Screen printing, application by spraying, etc. can be performed under the environment. Drying is performed by standing in the atmosphere at room temperature, and air blowing, temperature adjustment, etc. are not performed.
 このように、本発明の電極触媒層形成用ペーストを用いることにより、大気中において温度、湿度、乾燥速度等を制御することなく、ひび割れ、剥離がない均一で良好な電極触媒層を形成することができる。 Thus, by using the electrode catalyst layer forming paste of the present invention, a uniform and good electrode catalyst layer free from cracking and peeling can be formed without controlling temperature, humidity, drying speed, etc. in the atmosphere. Can do.
 (固体高分子型燃料電池)
 膜-電極触媒層接合体、またはガス拡散層-電極触媒層接合体を用いて固体高分子膜-電極接合体を製造する。これを用いれば、例えば、図1に示す構成にて固体高分子型燃料電池を組み立てることができる。
(Solid polymer fuel cell)
A solid polymer membrane-electrode assembly is produced using the membrane-electrode catalyst layer assembly or the gas diffusion layer-electrode catalyst layer assembly. If this is used, for example, a polymer electrolyte fuel cell can be assembled with the configuration shown in FIG.
 すなわち、ガス拡散層-電極触媒層接合体を形成させた場合には、これを2枚用いて、電極触媒層が形成された面をイオン交換膜側にしてイオン交換膜を挟む。これにより図1の4、5、6が組み合わされた状態を実現できる。あるいは、膜-電極触媒層接合体を形成させた場合には、それをそのまま、あるいはガスの拡散性を良好にするためにガス拡散層(カーボンペーパーなど)を上に重ねることにより、使用することができる。 That is, when the gas diffusion layer-electrode catalyst layer assembly is formed, two of them are used to sandwich the ion exchange membrane with the surface on which the electrode catalyst layer is formed facing the ion exchange membrane. As a result, a state in which 4, 5, and 6 in FIG. 1 are combined can be realized. Alternatively, if a membrane-electrode catalyst layer assembly is formed, use it as it is or by stacking a gas diffusion layer (carbon paper, etc.) on top to improve gas diffusibility. Can do.
 以下は、図1の構成を例とし、水素燃料の場合を例として述べる。燃料室側に加湿した水素ガスを、酸化剤室側に加湿した酸素ガスまたは空気を供給することにより、発電することが出来る。それぞれのガスの流量には最適値が存在するため、一定の負荷をかけたときの電圧値あるいは電流値を測定し、それらがもっとも大きくなるよう設定することができる。ガスの加湿は、イオン交換膜及び電極触媒層が乾燥しイオン伝導度が低下するのを防ぐために行うが、これもまた同様にして最適化することができる。燃料電池内の反応温度を高くするほど、高出力が得られるが、温度が高ければイオン交換膜、電極触媒層の劣化も促進されるため、通常室温~100℃以下の温度で用いられる。 In the following, the configuration of FIG. 1 is taken as an example, and the case of hydrogen fuel is taken as an example. Electric power can be generated by supplying humidified hydrogen gas to the fuel chamber side and humidified oxygen gas or air to the oxidant chamber side. Since there is an optimum value for the flow rate of each gas, it is possible to measure the voltage value or the current value when a certain load is applied, and set them so that they become the largest. The humidification of the gas is performed to prevent the ion exchange membrane and the electrode catalyst layer from being dried and the ionic conductivity from being lowered, and this can also be optimized in the same manner. The higher the reaction temperature in the fuel cell, the higher the output can be obtained, but the higher the temperature, the more the deterioration of the ion exchange membrane and the electrode catalyst layer is promoted.
 (固体高分子型水電解セル)
 固体高分子型水電解セルも上記の固体高分子型燃料電池と全く同じ構成で製造することができる。固体高分子電解質膜として陰イオン交換膜を用いる場合には、燃料室側に水を供給し、燃料室側ガス拡散電極層と酸化剤質側ガス拡散電極層の間に、酸化剤側ガス拡散電極層が高い電位となるように電圧を印加することにより、燃料室側ガス拡散電極層より水素を、酸化剤室側ガス拡散電極層から酸素を得ることができる。
(Solid polymer water electrolysis cell)
The polymer electrolyte water electrolysis cell can also be produced with the same configuration as the polymer electrolyte fuel cell. When an anion exchange membrane is used as the solid polymer electrolyte membrane, water is supplied to the fuel chamber side, and the oxidant side gas diffusion is provided between the fuel chamber side gas diffusion electrode layer and the oxidant side gas diffusion electrode layer. By applying a voltage so that the electrode layer has a high potential, hydrogen can be obtained from the fuel chamber side gas diffusion electrode layer and oxygen can be obtained from the oxidant chamber side gas diffusion electrode layer.
 以下に実施例を用いて本発明を詳細に説明するが、本発明は、これら実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail using examples, but the present invention is not limited to these examples.
 実施例1(電極触媒層の大きさと乾燥速度の影響)
 電極触媒層形成用ペーストを調整し、陰イオン交換膜の両面にスクリーン印刷法を用いて塗布を行った。作製した膜-電極触媒層接合体を目視で確認し、電極触媒層のひび割れ、および、剥離の発生の有無を確認した。
Example 1 (Effect of electrode catalyst layer size and drying rate)
The electrode catalyst layer forming paste was prepared and applied on both sides of the anion exchange membrane using a screen printing method. The produced membrane-electrode catalyst layer assembly was visually confirmed, and the presence or absence of cracks and peeling of the electrode catalyst layer was confirmed.
 白金を担持した触媒担持カーボン粉末(一次粒径30~50nmの高比表面積カーボン粒子に、粒径2~10nmの白金粒子が50質量%担持されたもの)0.5gをメノウ乳鉢に秤量後、表1に示した量のイオン交換水を滴下し、混錬した。3質量%の固体高分子電解質溶液をサンプル瓶に8.2g秤量し、混錬した試料をサンプル瓶に加えた。固体高分子電解質としては、スチレン-エチレンブチレン-スチレントリブロック共重合体のスチレンユニットを、クロロメチル化し、さらにトリメチルアミンで4級化して得たアニオン交換樹脂を用いた。固体高分子電解質溶液の溶媒は1-プロパノールであり、これが本発明の親水性有機溶媒である。その後、超音波照射による分散を30分間行い、さらに引き続きスターラーを用いて約12時間撹拌を行った。撹拌した後、親水性有機溶媒を揮発させるために、メノウ乳鉢にペーストを流しいれた。ペーストを数分間混練することによって親水性有機溶媒を揮発させることにより、その含有量を調整し、電極触媒層形成用ペーストを製造した。含有量は、約1分おきにペーストの入ったメノウ乳鉢の重量を測定し、その重量変化から親水性有機溶媒の含有量を求めることにより確認しながら調整した。このときのペースト中の水および親水性有機溶媒である1-プロパノールの重量%を表1に示した。水の含有量が8質量%、親水性有機溶媒の含有量が82質量%であり、水と親水性有機溶媒との合計の含有量が90質量%であった。水および親水性有機溶媒の含有量は、熱伝導型検出器(TCD)を検出器とするガスクロマトグラフにより測定した。 After weighing 0.5 g of platinum-supported catalyst-supported carbon powder (with high specific surface area carbon particles having a primary particle size of 30 to 50 nm and 50% by mass of platinum particles having a particle size of 2 to 10 nm) in an agate mortar, The amount of ion exchange water shown in Table 1 was dropped and kneaded. 8.2 g of a 3% by mass solid polymer electrolyte solution was weighed into a sample bottle, and the kneaded sample was added to the sample bottle. As the solid polymer electrolyte, an anion exchange resin obtained by chloromethylating a styrene unit of a styrene-ethylenebutylene-styrene triblock copolymer and then quaternizing with trimethylamine was used. The solvent of the solid polymer electrolyte solution is 1-propanol, which is the hydrophilic organic solvent of the present invention. Thereafter, dispersion by ultrasonic irradiation was performed for 30 minutes, and further, stirring was performed for about 12 hours using a stirrer. After stirring, the paste was poured into an agate mortar to volatilize the hydrophilic organic solvent. The paste was kneaded for several minutes to volatilize the hydrophilic organic solvent, thereby adjusting the content thereof to produce an electrode catalyst layer forming paste. The content was adjusted while confirming by measuring the weight of the agate mortar containing the paste about every 1 minute and determining the content of the hydrophilic organic solvent from the change in weight. Table 1 shows water and 1% by weight of 1-propanol which is a hydrophilic organic solvent in the paste. The water content was 8% by mass, the hydrophilic organic solvent content was 82% by mass, and the total content of water and the hydrophilic organic solvent was 90% by mass. The contents of water and the hydrophilic organic solvent were measured by a gas chromatograph using a heat conduction detector (TCD) as a detector.
 電極触媒層形成用ペーストを、表1に示した大きさの穴(23mm×23mm)を有するステンレス製のマスクとドクターブレードにより、陰イオン交換膜(株式会社トクヤマ製 A201:炭化水素系、陰イオン交換容量1.8mmol/g、25℃における含水率33質量%、乾燥膜厚28μm)の上にスクリーン印刷した。その後、表1に示す条件(25℃、0.5時間)にて乾燥させた。乾燥速度は、乾燥前後の重量変化を測定することにより求めた値である。さらに約12時間室温にて静置乾燥後、裏面も同様に塗布し、乾燥させ、膜-電極触媒層接合体を得た。得られた膜電極接合体の表面を目視観察し、その結果を表1に記載した。表記は以下の通りである。 The electrode catalyst layer forming paste was prepared by using a stainless steel mask having a hole (23 mm × 23 mm) with a size shown in Table 1 and a doctor blade, and an anion exchange membrane (A201 made by Tokuyama Corporation: hydrocarbon, anion Screen-printed on an exchange capacity of 1.8 mmol / g, a moisture content of 33% by mass at 25 ° C., and a dry film thickness of 28 μm. Then, it was made to dry on the conditions (25 degreeC, 0.5 hour) shown in Table 1. The drying speed is a value obtained by measuring a change in weight before and after drying. Further, after standing and drying at room temperature for about 12 hours, the back surface was similarly coated and dried to obtain a membrane-electrode catalyst layer assembly. The surface of the obtained membrane / electrode assembly was visually observed, and the results are shown in Table 1. The notation is as follows.
  S:ひび割れ・剥離とも無く、極めて表面平滑性の高い膜電極接合体が得られた。
  A:ひび割れ・剥離とも見られないが、わずかに表面に凹凸が見られた。
  B:ひび割れ・剥離のいずれかが認められた。
  C:ひび割れ・剥離とも認められた。
S: A membrane / electrode assembly having extremely high surface smoothness without cracking and peeling was obtained.
A: Although neither crack nor peeling was seen, the surface was slightly uneven.
B: Either cracking or peeling was observed.
C: Both cracking and peeling were recognized.
 実施例1により得られた触媒電極層の状態を示す画像を図2に示した。 An image showing the state of the catalyst electrode layer obtained in Example 1 is shown in FIG.
 実施例2~10(電極触媒層の大きさと乾燥速度の影響)
 表1に示す条件とした以外は実施例1と同様の操作にて電極触媒層を調製し、膜-電極触媒層接合体を得た。
Examples 2 to 10 (Effect of electrode catalyst layer size and drying rate)
An electrode catalyst layer was prepared in the same manner as in Example 1 except that the conditions shown in Table 1 were used, and a membrane-electrode catalyst layer assembly was obtained.
 いずれの印刷面積、乾燥条件、水と親水性有機溶媒(1-プロパノール)の含有量においても、本発明の電極触媒層形成用ペーストと製造方法を用いることにより、電極触媒層には、ひび割れ、剥離ともに発生しなかった。 In any printing area, drying condition, and content of water and hydrophilic organic solvent (1-propanol), the electrode catalyst layer is cracked by using the electrode catalyst layer forming paste and the production method of the present invention. Neither peeling occurred.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例11~15(親水性有機溶媒の種類の影響)
 親水性有機溶媒として、表2に示すものを使用し、条件を表2にように変更する以外は、実施例1と同様の操作にて電極触媒層を調製し、膜-電極触媒層接合体を得た。なおマスクの厚みは100μmとした。
Examples 11 to 15 (Influence of the kind of hydrophilic organic solvent)
A membrane-electrode catalyst layer assembly was prepared by preparing an electrode catalyst layer in the same manner as in Example 1, except that the hydrophilic organic solvent shown in Table 2 was used and the conditions were changed as shown in Table 2. Got. The thickness of the mask was 100 μm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例16~19(固体高分子電解質溶液濃度の影響)
 マスクの厚みを100μmとし、固体高分子電解質溶液の濃度および条件を表3に示す値にした以外は、実施例1と同様の操作を行った。
Examples 16 to 19 (Influence of concentration of solid polymer electrolyte solution)
The same operation as in Example 1 was performed except that the thickness of the mask was 100 μm and the concentration and conditions of the solid polymer electrolyte solution were changed to the values shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~19の結果より、固体高分子電解質の濃度にかかわらず、本発明の電極触媒層形成用ペースを用いることにより、剥離、ひび割れの無い電極触媒層を製造できることが示された。 From the results of Examples 1 to 19, it was shown that an electrode catalyst layer free from peeling or cracking can be produced by using the electrode catalyst layer forming pace of the present invention regardless of the concentration of the solid polymer electrolyte.
 比較例1~7
 表4に示した条件を用い、実施例1と同様の操作を行った。水の質量%、1-プロパノールの質量%、または、水と1-プロパノールの質量%の和が本発明の範囲より外れると、ひび割れの発生、剥離の発生が認められた。
Comparative Examples 1-7
The same operation as in Example 1 was performed using the conditions shown in Table 4. When the mass% of water, the mass% of 1-propanol, or the sum of the mass% of water and 1-propanol deviated from the range of the present invention, the generation of cracks and the occurrence of peeling were observed.
 比較例4により製造された電極触媒層の状態を示す画像を図3に示した。 FIG. 3 shows an image showing the state of the electrode catalyst layer produced in Comparative Example 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1~19および比較例1~7の結果より、本発明の電極触媒層形成用ペーストおよび製造方法はひび割れ、剥離を生じることなく、良好な触媒電極層を製造できることが示された。 From the results of Examples 1 to 19 and Comparative Examples 1 to 7, it was shown that the electrode catalyst layer forming paste and the production method of the present invention can produce a good catalyst electrode layer without cracking and peeling.
 1:電池隔壁
 2:燃料ガス流通孔
 3:酸化剤ガス流通孔
 4:燃料室側ガス拡散電極層
 5:酸化剤室側ガス拡散電極層
 6:固体高分子電解質膜(陰イオン交換膜)
 7:燃料室
 8:酸化剤室
1: Battery partition wall 2: Fuel gas flow hole 3: Oxidant gas flow hole 4: Fuel chamber side gas diffusion electrode layer 5: Oxidant chamber side gas diffusion electrode layer 6: Solid polymer electrolyte membrane (anion exchange membrane)
7: Fuel chamber 8: Oxidant chamber

Claims (14)

  1.  触媒を担持した触媒担持カーボン粉末、水、親水性有機溶媒、固体高分子電解質を含む電極触媒層形成用ペーストであって、水8~20質量%、親水性有機溶媒60~82質量%、水と親水性有機溶媒との合計の含有量が78~90質量%である、電極触媒層形成用ペースト。 An electrode catalyst layer forming paste comprising a catalyst-carrying carbon powder carrying a catalyst, water, a hydrophilic organic solvent, and a solid polymer electrolyte, comprising 8 to 20% by mass of water, 60 to 82% by mass of a hydrophilic organic solvent, water An electrode catalyst layer forming paste, the total content of which is 78 to 90% by mass of the organic solvent and the hydrophilic organic solvent.
  2.  前記固体高分子電解質が、炭化水素系である、請求項1に記載の電極触媒層形成用ペースト。 The electrode catalyst layer forming paste according to claim 1, wherein the solid polymer electrolyte is a hydrocarbon-based material.
  3.  前記固体高分子電解質が炭化水素系陰イオン交換樹脂である、請求項2に記載の電極触媒層形成用ペースト。 The electrode catalyst layer forming paste according to claim 2, wherein the solid polymer electrolyte is a hydrocarbon-based anion exchange resin.
  4.  固体高分子型燃料電池の電極触媒層用である請求項1~3のいずれかに記載の電極触媒層形成用ペースト。 4. The electrode catalyst layer forming paste according to claim 1, which is used for an electrode catalyst layer of a polymer electrolyte fuel cell.
  5.  固体高分子型水電解セルの電極触媒層用である請求項1~3のいずれかに記載の電極触媒層形成用ペースト。 4. The electrode catalyst layer forming paste according to claim 1, which is used for an electrode catalyst layer of a solid polymer type water electrolysis cell.
  6.  請求項1~3のいずれかに記載の電極触媒層形成用ペーストを、固体高分子電解質膜上に塗布することにより膜-電極触媒層接合体を形成する、膜-電極触媒層接合体の製造方法。 Production of a membrane-electrode catalyst layer assembly, wherein the electrode-catalyst layer formation paste according to any one of claims 1 to 3 is applied onto a solid polymer electrolyte membrane to form a membrane-electrode catalyst layer assembly. Method.
  7.  固体高分子電解質膜が炭化水素系である、請求項6に記載の膜-電極触媒層接合体の製造方法。 The method for producing a membrane-electrode catalyst layer assembly according to claim 6, wherein the solid polymer electrolyte membrane is hydrocarbon-based.
  8.  固体高分子電解質膜が炭化水素系陰イオン交換樹脂である、請求項7に記載の膜-電極触媒層接合体の製造方法。 The method for producing a membrane-electrode catalyst layer assembly according to claim 7, wherein the solid polymer electrolyte membrane is a hydrocarbon-based anion exchange resin.
  9.  請求項6~8のいずれかに記載の膜-電極触媒層接合体の製造方法により膜-電極触媒層接合体を製造した後、該膜-電極触媒層接合体を用いて固体高分子型燃料電池を製造する、固体高分子型燃料電池の製造方法。 A membrane-electrode catalyst layer assembly is produced by the method for producing a membrane-electrode catalyst layer assembly according to any one of claims 6 to 8, and then a polymer electrolyte fuel is produced using the membrane-electrode catalyst layer assembly. A method for producing a polymer electrolyte fuel cell for producing a battery.
  10.  請求項6~8のいずれかに記載の膜-電極触媒層接合体の製造方法により膜-電極触媒層接合体を製造した後、該膜-電極触媒層接合体を用いて固体高分子型水電解セルを製造する、固体高分子型水電解セルの製造方法。 A membrane-electrode catalyst layer assembly is produced by the method for producing a membrane-electrode catalyst layer assembly according to any one of claims 6 to 8, and then a solid polymer type water is produced using the membrane-electrode catalyst layer assembly. A method for producing a polymer electrolyte water electrolysis cell, which produces an electrolysis cell.
  11.  請求項1~3のいずれかに記載の電極触媒層形成用ペーストを、ガス拡散層上に塗布することによりガス拡散電極を形成する、ガス拡散電極の製造方法。 A method for producing a gas diffusion electrode, wherein the gas diffusion electrode is formed by applying the electrode catalyst layer forming paste according to any one of claims 1 to 3 on the gas diffusion layer.
  12.  請求項11に記載のガス拡散電極の製造方法によりガス拡散電極を製造した後、該ガス拡散電極を用いて固体高分子型燃料電池を製造する、固体高分子型燃料電池の製造方法。 A method for producing a solid polymer fuel cell, comprising producing a gas diffusion electrode by the gas diffusion electrode production method according to claim 11 and then producing a solid polymer fuel cell using the gas diffusion electrode.
  13.  請求項11に記載のガス拡散電極の製造方法によりガス拡散電極を製造した後、該ガス拡散電極を用いて固体高分子型水電解セルを製造する、固体高分子型水電解セルの製造方法。 A method for producing a solid polymer type water electrolysis cell, comprising producing a gas diffusion electrode by the method for producing a gas diffusion electrode according to claim 11 and then producing a solid polymer type water electrolysis cell using the gas diffusion electrode.
  14.  請求項1~3のいずれかに記載の電極触媒層形成用ペーストの製造方法であって、
    (I)触媒を担持した触媒担持カーボン粉末を水に分散させる工程
    (II)固体高分子電解質を親水性有機溶媒に溶解させる工程
    (III)触媒担持カーボン粉末が分散した水と、固体高分子電解質を溶解した親水性有機溶媒とを混合する工程
    (IV)水と親水性有機溶媒の含有量を、水8~20質量%、親水性有機溶媒60~82質量%、水と親水性有機溶媒との合計の含有量が78~90質量%に調整する工程
    を含む、電極触媒層形成用ペーストの製造方法。
    A method for producing an electrode catalyst layer forming paste according to any one of claims 1 to 3,
    (I) Step of dispersing catalyst-supported carbon powder supporting catalyst in water (II) Step of dissolving solid polymer electrolyte in hydrophilic organic solvent (III) Water in which catalyst-supported carbon powder is dispersed and solid polymer electrolyte Step (IV) of mixing water and hydrophilic organic solvent in which water is dissolved The content of water and hydrophilic organic solvent is 8 to 20% by mass of water, 60 to 82% by mass of hydrophilic organic solvent, water and hydrophilic organic solvent A process for producing an electrode catalyst layer forming paste, comprising a step of adjusting the total content of to 78 to 90% by mass.
PCT/JP2017/010784 2016-03-17 2017-03-16 Paste for forming electrode catalyst layer and method for manufacturing same, and methods for manufacturing membrane-electrode catalyst layer assembly, gas diffusion electrode, solid polymer fuel cell and solid polymer water electrolysis cell WO2017159820A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016053396A JP2019083085A (en) 2016-03-17 2016-03-17 Paste for forming electrode catalyst layer, manufacturing method, film-electrode catalyst layer conjugant, gas diffusion electrode, solid polymer fuel cell, and manufacturing method of solid polymer water electrolysis cell
JP2016-053396 2016-03-17

Publications (1)

Publication Number Publication Date
WO2017159820A1 true WO2017159820A1 (en) 2017-09-21

Family

ID=59851680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010784 WO2017159820A1 (en) 2016-03-17 2017-03-16 Paste for forming electrode catalyst layer and method for manufacturing same, and methods for manufacturing membrane-electrode catalyst layer assembly, gas diffusion electrode, solid polymer fuel cell and solid polymer water electrolysis cell

Country Status (2)

Country Link
JP (1) JP2019083085A (en)
WO (1) WO2017159820A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021251341A1 (en) * 2020-06-11 2021-12-16 国立大学法人山梨大学 Electrode catalyst, and anion exchange membrane electrochemical cell

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4019463A1 (en) * 2019-08-21 2022-06-29 Panasonic Intellectual Property Management Co., Ltd. Compressor
KR102415739B1 (en) * 2020-04-28 2022-07-05 한국과학기술연구원 Asymmetric electrolyte membrane, membrane electrode assembly comprising the same, water electrolysis apparatus comprising the same and method for manufacturing the same
JP7345527B2 (en) 2021-09-13 2023-09-15 株式会社Screenホールディングス Membrane electrode assembly, hydrogen production device, catalyst ink manufacturing method, and membrane electrode assembly manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004068018A (en) * 2002-07-31 2004-03-04 Omg Ag & Co Kg Water-based catalyst ink, and use of the same for manufacturing board coated with catalyst
JP2005166310A (en) * 2003-11-28 2005-06-23 Tdk Corp Gas diffusion electrode and its manufacturing method and fuel cell
JP2009218006A (en) * 2008-03-07 2009-09-24 Nissan Motor Co Ltd Method of manufacturing electrolyte membrane-electrode assembly
JP2010140699A (en) * 2008-12-10 2010-06-24 Aisin Chem Co Ltd Paste for catalyst layer
JP2013089407A (en) * 2011-10-17 2013-05-13 Toyota Motor Corp Manufacturing method of membrane electrode assembly
JP2014060097A (en) * 2012-09-19 2014-04-03 Toyota Motor Corp Catalyst ink for forming electrode of fuel cell, production method therefor and manufacturing method of fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004068018A (en) * 2002-07-31 2004-03-04 Omg Ag & Co Kg Water-based catalyst ink, and use of the same for manufacturing board coated with catalyst
JP2005166310A (en) * 2003-11-28 2005-06-23 Tdk Corp Gas diffusion electrode and its manufacturing method and fuel cell
JP2009218006A (en) * 2008-03-07 2009-09-24 Nissan Motor Co Ltd Method of manufacturing electrolyte membrane-electrode assembly
JP2010140699A (en) * 2008-12-10 2010-06-24 Aisin Chem Co Ltd Paste for catalyst layer
JP2013089407A (en) * 2011-10-17 2013-05-13 Toyota Motor Corp Manufacturing method of membrane electrode assembly
JP2014060097A (en) * 2012-09-19 2014-04-03 Toyota Motor Corp Catalyst ink for forming electrode of fuel cell, production method therefor and manufacturing method of fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021251341A1 (en) * 2020-06-11 2021-12-16 国立大学法人山梨大学 Electrode catalyst, and anion exchange membrane electrochemical cell

Also Published As

Publication number Publication date
JP2019083085A (en) 2019-05-30

Similar Documents

Publication Publication Date Title
US8202669B2 (en) Electro-catalyst compositions for fuel cells
US8318385B2 (en) Process for producing fuel cell electrode
CA2171386C (en) Improved materials for use in electrode manufacture
US7785498B2 (en) Method of producing conducting polymer-transition metal electro-catalyst composition and electrodes for fuel cells
US9318762B2 (en) Conducting polymer-transition metal electro-catalyst compositions for fuel cells
US7722981B2 (en) Electro-catalyst composition, fuel cell electrode, and membrane-electrode assembly
JP2006147563A (en) Metal catalyst, its manufacturing method, method for manufacturing electrode and fuel cell
US20080182153A1 (en) Fuel cell electro-catalyst composite composition, electrode, catalyst-coated membrane, and membrane-electrode assembly
WO2017159820A1 (en) Paste for forming electrode catalyst layer and method for manufacturing same, and methods for manufacturing membrane-electrode catalyst layer assembly, gas diffusion electrode, solid polymer fuel cell and solid polymer water electrolysis cell
US20030134739A1 (en) Catalyst agglomerates for membrane electrode assemblies
EP2656419B1 (en) Cathode catalyst layer, membrane electrode assembly and polymer electrolyte fuel cell and manufacturing method thereof
US9425462B2 (en) Preparation of hollow Pt and Pt-alloy catalysts
KR20220057565A (en) membrane electrode assembly
JP4987857B2 (en) Polymer dispersion and electrocatalyst ink
Berber et al. A potential polymer formulation of a durable carbon-black catalyst with a significant fuel cell performance over a wide operating temperature range
US7960073B2 (en) Membrane electrode assembly for fuel cell and fuel cell system including the same
JP2006253042A (en) Manufacturing method of catalyst for polymer electrolyte fuel cell
CN101978536B (en) Membrane electrode assembly and fuel cell
JP5535773B2 (en) Membrane-electrode structure for polymer electrolyte fuel cell
KR20210085300A (en) Fuel Cell Electrode Having High Durability, Method for Manufacturing The Same, and Membrane-Electrode Assembly Comprising The Same
WO2015042299A1 (en) Hydrophobic-cage structured materials in electrodes for mitigation of water flooding in fuel/electrochemical cells
WO2011108252A1 (en) Method for manufacturing fuel cell cathode electrode and fuel cell cathode electrode
JP2006066309A (en) Method of manufacturing catalyst for solid polymer type fuel cell
Welsch et al. Catalyst support material and electrode fabrication
JP2016035868A (en) Cathode catalyst layer for fuel battery

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766815

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP