WO2016208846A1 - Method for producing silicon carbide fiber, silicon carbide fiber and silicon carbide fiber heating element produced thereby, and heating device using same - Google Patents

Method for producing silicon carbide fiber, silicon carbide fiber and silicon carbide fiber heating element produced thereby, and heating device using same Download PDF

Info

Publication number
WO2016208846A1
WO2016208846A1 PCT/KR2016/002609 KR2016002609W WO2016208846A1 WO 2016208846 A1 WO2016208846 A1 WO 2016208846A1 KR 2016002609 W KR2016002609 W KR 2016002609W WO 2016208846 A1 WO2016208846 A1 WO 2016208846A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
heating element
carbide fiber
fiber
fibers
Prior art date
Application number
PCT/KR2016/002609
Other languages
French (fr)
Korean (ko)
Inventor
이형석
Original Assignee
(주)옴니세라
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150090437A external-priority patent/KR101684600B1/en
Priority claimed from KR1020150150501A external-priority patent/KR101732573B1/en
Priority claimed from KR1020160006913A external-priority patent/KR101734472B1/en
Application filed by (주)옴니세라 filed Critical (주)옴니세라
Publication of WO2016208846A1 publication Critical patent/WO2016208846A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • C01B32/97Preparation from SiO or SiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • C01B32/984Preparation from elemental silicon
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs

Definitions

  • the present invention relates to a method for producing silicon carbide fibers (SiCf) and the application of the silicon carbide fibers,
  • carbon fibers may be formed by sublimation of a sublimation raw material selected from, for example, silicon or silicon dioxide, or a mixture thereof at a high temperature, by a sublimation gas infiltration reaction.
  • a sublimation raw material selected from, for example, silicon or silicon dioxide, or a mixture thereof at a high temperature
  • a sublimation gas infiltration reaction Provides a method for producing silicon carbide fibers (SiCf), silicon carbide fibers and silicon carbide fiber heating elements, and other applications,
  • Further sublimation further comprises a doping source to provide nano-doped silicon carbide fibers and heating elements using the same,
  • the present invention relates to a rapid heating highly efficient silicon carbide fiber heating element capable of minimizing the loss of thermal heat energy and a heating device using the same.
  • Silicon carbide (SiC) fiber is a representative non-oxide-based ceramic material and has excellent physicochemical stability at high temperatures, and is being used in composite materials fields such as aerospace, energy, and defense.
  • the existing SiC fiber manufacturing process is made by three methods, powder extrusion (Carborundum), CVD (Chemical Vapor Deposition), precursor method.
  • SiC Powders submicron SiC powder
  • a sintering aid were mixed together with a suitable polymer to make a compound capable of melt spinning, and then extruded to a desired diameter and sintered at 2,000 oC to prepare SiC fibers.
  • creep resistance is the most excellent fiber.
  • the CVD method transfers core wire (tungsten wire or carbon fiber) through the Mercury Contact at a constant speed into the quartz reaction tube, and flows current through the injected core wire and heats it by 1,000 ⁇ 1,300 oC by self-heating, and is a raw material of methyldichlorosilane It is prepared by depositing SiC by adding silane gas such as (Methyl Dichlorosilane) and Ar, H2 gas, which are atmospheric gases.
  • silane gas such as (Methyl Dichlorosilane) and Ar, H2 gas, which are atmospheric gases.
  • This manufacturing method is a method of coating the SiC on the surface of the core wire is superior in thermal stability than other fibers, but the manufacturing process is difficult and the manufacturing cost is high.
  • coarse fibers are manufactured with a diameter of 150 um or more, which is not suitable for the application of fiber reinforced composite materials.
  • SCS SiC Fibers Process, Properties and Production Technical Data from the Website fo Specialty Materials, www. specmaterials. com]
  • the precursor method is a process for producing SiC fibers having a diameter of 10 to 100 um through melt spinning and pyrolysis of a polycarbosilane (PCS) precursor which is an organosilicon polymer.
  • PCS polycarbosilane
  • the general PCS manufacturing method is mainly a high temperature pressurization reaction using autoclave using dimethyldichlorosilane (DMDS) as a starting material.
  • DMDS dimethyldichlorosilane
  • the Silane-based gas since the Silane-based gas has a property of igniting at a low temperature, when these gases leak during the reaction, there is a problem in safety such as the risk of ignition.
  • the oxygen content in the silicon carbide fiber is mixed by about 10% to form an oxycarbide amorphous in the form of SiCOx, which is thermally decomposed at a high temperature to cause a significant degradation of the physical properties of the fiber.
  • Nippon Carbon manufactures SiC fiber with oxygen content of 1% or less by stabilizing by using electron beam irradiation instead of thermal oxidation method to improve the heat resistance of SiC fiber, so that the tensile strength does not decrease even at high temperature of 1,500 oC.
  • the super heat-resistant silicon carbide fiber was developed.
  • the CVD method is very difficult to fabricate and manufacture a fiber having a diameter of 150 um or more, which is difficult to weave the fiber, and the precursor method has a high oxygen content in silicon carbide fibers, a low production yield, and an oxycarbide amorphous to form a high temperature. This causes a great decrease in the physical properties of the fiber.
  • This patent relates to a ceramic heater for heating a sensor employing a composite electrode type heater electrode formed on a sensor heating heater substrate, which uses a high purity alumina powder and MgO additive of 99.999% or more to form a heater substrate.
  • a ceramic heater for heating a sensor employing a composite electrode type heater electrode formed on a sensor heating heater substrate, which uses a high purity alumina powder and MgO additive of 99.999% or more to form a heater substrate.
  • This patent discloses electrical resistance to a level suitable for heating element use by reacting and sintering a molding sprayed with silicon powder, and then volatilizing the remaining silicon, reacting with silicon which is not volatilized by doping with nitrogen, and completely removing silicon from the heating element. Since the silicon carbide heating element is doped with nitrogen in the silicon carbide lattice, there is a flow charge carrier, so it has a rapid temperature increase characteristic at low temperature, and the resistance increases as the temperature increases, thereby overheating itself. It suggests a technology that has the advantage of suppressing it.
  • This patent relates to a ceramic heating element composition, a dielectric heating device and a dielectric heating method using the same, in particular, a ceramic heating element that can reduce the occurrence of hot spots (hot spots) and increase the temperature increase rate and heat storage time
  • a ceramic heating element that can reduce the occurrence of hot spots (hot spots) and increase the temperature increase rate and heat storage time
  • high-efficiency heaters can be widely used throughout the industry, such as individual heating, industrial and agricultural dryers, industrial annealing furnaces, cooking cooking ovens.
  • the heating device adopts an eco-friendly or high-efficiency method that utilizes solar, wind, and midnight electricity.
  • This patent relates to a ceramic heater for heating a sensor employing a composite electrode type heater electrode formed on a sensor heating heater substrate, which uses a high purity alumina powder and MgO additive of 99.999% or more to form a heater substrate.
  • a ceramic heater for heating a sensor employing a composite electrode type heater electrode formed on a sensor heating heater substrate, which uses a high purity alumina powder and MgO additive of 99.999% or more to form a heater substrate.
  • This patent discloses electrical resistance to a level suitable for heating element use by reacting and sintering a molding sprayed with silicon powder, and then volatilizing the remaining silicon, reacting with silicon which is not volatilized by doping with nitrogen, and completely removing silicon from the heating element. Since the silicon carbide heating element is doped with nitrogen in the silicon carbide lattice, there is a flow charge carrier, so it has a rapid temperature increase characteristic at low temperature, and the resistance increases as the temperature increases, thereby overheating itself. It suggests a technology that has the advantage of suppressing it.
  • the present patent relates to a ceramic heating element composition, a dielectric heating apparatus and a dielectric heating method using the same, in particular, the ceramic heating element composition, dielectric that can reduce the occurrence of hot spots and increase the temperature increase rate and heat storage time A heating heater and a dielectric heating method using the same.
  • This patent discloses a method of manufacturing a porous silicon carbide heating element that is excellent in infrared radiation efficiency, high temperature stability and durability, and can be applied economically and easily to a radiator heater.
  • porous silicon carbide having excellent thermal efficiency is used by using a porous polymer foam that is easy to process and cut without directly processing a silicon carbide material having high hardness, which is difficult to process such as cutting or polishing.
  • the heating element can be manufactured easily and economically in an optimized form.
  • the porous silicon carbide heating element manufactured according to the present invention has a pore structure, which enables instant heating by flame when burning fuel gas, induces complete combustion of fuel gas, and prevents backfire of flame in pores. Combustion takes place, resulting in very good thermal efficiency.
  • metal heating elements As a heating element of the heating method using electricity, metal heating elements have been mainly used, and inexpensive nichrome wire, iron chromium wire, and cantal wire (Fe-Cr-Al) are used as the metal heating material, but power consumption is high. Due to its high and brittleness due to heat, its structural stability is weak at high temperatures.
  • a thick ceramic heating element that is relatively stable at high temperature is widely used.
  • Ceramic heating elements made of molybdenum disilicide (MoSi2) or silicon carbide (SiC) are used as industrial heating elements.
  • MoSi2 molybdenum disilicide
  • SiC silicon carbide
  • the inrush current is very high under the household line voltage (110V or 220V).
  • line voltage 110V or 220V.
  • conventional ceramic heating elements have been required to use expensive transformers that drop voltage from line voltage.
  • the conventional thick ceramic heating element is to directly use the commercial power (110V or 220V) as a home heating device, it is necessary to increase the length or reduce the cross-sectional area based on the basic resistance formula below.
  • R ⁇ * L / A, ( ⁇ : resistivity, L: length, A: cross-sectional area)
  • the present invention in a simpler method, the ceramic heating element is stripped from various ceramic powder molding methods such as sintering, and the silicon carbide fibers and the metal doped carbonization by a gas infiltration reaction. It is an object of the present invention to provide a method for directly producing silicon fibers, and to provide applications such as silicon carbide fibers and fibrous ceramic heating elements using the same, and further, heating devices.
  • the present invention relates to a method of manufacturing a fibrous ceramic heating element by a gas infiltration reaction sublimated at a high temperature, in particular, a method of manufacturing a fibrous ceramic heating element through a process of directly manufacturing silicon carbide fibers from carbon fibers and thereby It is an object to provide an application such as a heating element.
  • an object of the present invention is to provide a method for producing a low-oxygen, dense crystalline silicon carbide fibers in order to improve the high temperature thermal stability of the silicon carbide fibers to provide a method for producing a fibrous ceramic heating element and thereby a heating element.
  • the present invention is to produce a nano-doped silicon carbide fiber including a doping source in the gas permeation reaction in order to improve the oxidation resistance, heat resistance and the like of the silicon carbide fiber, and a method for producing a fibrous ceramic heating element using the same It is an object to provide an application such as a heating element.
  • an object of the present invention is to provide a silicon carbide fiber having a diameter of 5 to 100 um from the gas permeation reaction, a method of manufacturing a fibrous ceramic heating element using the same, and a heating element thereby.
  • an object of the present invention is to provide a method for producing silicon carbide fibers including a batch or continuous process, a method for producing a fibrous ceramic heating element using the same, and a heating element by the process of directly converting the silicon carbide fibers.
  • the present invention is a fibrous ceramic heating element produced by the gas infiltration reaction (Gas Infiltration Reaction), in addition to silicon carbide fibers (SiCf), glass, alumina, silica, Si3N4, silicate, boron, SiCO, Si-CNO It is an object to provide a silicon carbide fiber, a manufacturing method, a method for producing a fibrous ceramic heating element thereof, and a heating element thereby, which may be a fiber and manufacture these nano-doped fibers.
  • the present invention provides a structure in which a carbon fiber having a predetermined diameter (hereinafter referred to as a 'core carbon fiber') remains in the center (core) portion, and the silicon carbide fiber described above wraps the core carbon fiber in a predetermined thickness on an outer circumferential surface thereof. It aims to do it.
  • a carbon fiber having a predetermined diameter hereinafter referred to as a 'core carbon fiber'
  • the silicon carbide fiber described above wraps the core carbon fiber in a predetermined thickness on an outer circumferential surface thereof. It aims to do it.
  • the present invention is a high efficiency that can generate heat through the resonance within the fiber is absorbed by silicon carbide fibers generated from the magnetron or heat generated by the electrical resistance method, particularly rapid heat generation and can minimize the loss of thermal energy
  • An object of the present invention is to provide a silicon carbide fiber heating element and a heating device using the same.
  • the present invention is to solve the problems as described above, and to directly produce the silicon carbide fibers and nano-doped silicon carbide fibers by the gas infiltration reaction (Gas Infiltration Reaction) by removing from the heating device or the heating element heating device.
  • a heater, heating device or the like having an average diameter of 50 um or less, preferably 50 um or less, more preferably 10 um or less, in which the silicon carbide fiber heating element and the electric resistance or the wavelength of the microwave generated in the magnetron generate heat. It is an object to provide a heat generating device.
  • an object of the present invention is to provide a heat generating apparatus including a heat conductor which is in contact with a silicon carbide fiber heating element and may be a conduit through which a fluid such as heating water flows, and has a power source for stimulating silicon carbide fiber heating element to generate heat. .
  • Sublimation raw material and carbon fiber selected from silicon or silicon dioxide, or mixtures thereof are placed in a vacuum or inert gas atmosphere and at a high temperature so that sublimation of the sublimation raw material is carried out from the carbon carbide from the carbon carbide by gas infiltration reaction. By making fibers.
  • Sublimation raw materials and fibrous materials are placed in a vacuum or inert gas atmosphere and at a high temperature, and then the glass, alumina, silica, Si3N4, silicate, boron, It is made of SiCO, Si-CNO fiber and used as heating element.
  • the nano-doped silicon carbide fibers are prepared by placing the doping source together with the carbon fibers at a higher temperature.
  • the metal is selected from the group consisting of titanium, aluminum, zirconium, molybdenum, boron, halogen, or combinations thereof,
  • Gas permeation reaction temperature is made by heating to 1,000 ⁇ 2,000 oC at a temperature increase rate of 5 ⁇ 20 oC / min,
  • Si / C element content of the prepared silicon carbide fiber is 0.01 ⁇ 2.0
  • Oxygen content of the manufactured silicon carbide fiber is less than 2.0%
  • Carbon fiber refers to carbon fiber made of a precursor of a fiber such as polyacrylonitrile, pitch or rayon,
  • the monofilament diameter of this carbon silicon fiber is 5-100um.
  • the silicon carbide fiber heating element according to the present invention in order to achieve the above object
  • Any sublimation raw material and carbon fiber selected from silicon or silicon dioxide, or mixtures thereof are placed in a vacuum or inert gas atmosphere and a high temperature state,
  • Heat is generated by applying a microwave, or heat generated by the electrical resistance method.
  • the heat conductor is a pipeline through which a fluid flows
  • the power supply unit preferably includes a magnetron for generating microwaves for resonance and heat generation of the silicon carbide fiber heating element.
  • the carbon fiber is directly converted into silicon carbide fiber by sublimation gas permeation reaction at high temperature (other glass, alumina, silica, Si3N4, silicate, boron, SiCO, Si-CNO fibers are also available).
  • the heating element can be continuously produced, it is possible to produce crystalline silicon carbide fibers with excellent physical properties by controlling the reaction conditions, in particular, to produce doped source doped silicon carbide fibers with improved oxidation resistance, heat resistance, etc. It has excellent heat resistance, corrosion resistance and electrical characteristics, so it can be used in high-tech electrical, electronic, chemical, physics and other industrial fields,
  • heating element that can be utilized in a furnace, a power plant, an industrial / agricultural drying furnace, a household heating device or a cooking heating device (hot plate, electric range, etc.) and various heating devices using the same.
  • the silicon carbide fiber heating element and the heating device using the same according to the present invention the wavelength of the microwave generated from the magnetron is absorbed by the silicon carbide fiber and can be rapidly generated within a short time through the resonance in the fiber or through the electrical resistance method In addition, the loss of thermal energy can be minimized to provide high efficiency characteristics.
  • the heating device uses a rapid heating highly efficient silicon carbide fiber heating element, thereby providing a rapid heating characteristic that can be minimized with loss of thermal energy.
  • High-efficiency silicon carbide fiber heating element that can be applied to various heating elements regardless of the shape of various heaters or heaters, and can be heated while minimizing the loss of thermal energy by allowing heat to be rapidly generated and heated in a short time. It is possible to provide a heating device using.
  • FIG. 1 is a schematic diagram showing a process of forming a silicon carbide layer from the surface of the carbon fiber by the gas permeation reaction by the method for producing a silicon carbide fiber heating element according to the present invention.
  • FIG. 2 is an enlarged photograph of a silicon carbide fiber heating element generated by microwaves.
  • FIG. 3 is a conceptual diagram of a heating device having a magnetron according to the present invention.
  • Figure 4 is a schematic diagram of a heating device using a silicon carbide fiber heating element according to the present invention.
  • heating device 110 casing
  • first and / or second may be used to describe various components, but the components are not limited to the terms. The terms are only for the purpose of distinguishing one component from other components, for example, without departing from the scope of the rights according to the inventive concept, the first component may be called a second component, and For example, the second component may also be referred to as a first component.
  • Sublimation of any sublimation raw material selected from silicon or silicon dioxide, or a mixture thereof is made from carbon fibers disposed together by a sublimated gas infiltration reaction. .
  • This gas permeation reaction is preferably carried out in a vacuum or inert gas atmosphere.
  • the silicon carbide fiber, the heating element and the heating device using the same according to the present invention to further arrange a doping source to produce a silicon carbide fiber doped with the doping source to the physical properties such as oxidation resistance and heat resistance It is desirable to produce improved silicon carbide fibers and heating elements thereof.
  • the doping source is preferably selected from the group consisting of titanium, aluminum, zirconium, molybdenum, boron, halogen or combinations thereof.
  • These doped source particles may be disposed on the SiC surface or may be disposed in the SiC particles.
  • the method for producing the silicon carbide fiber and the heating element according to the present invention is a step of converting the silicon carbide fiber directly into a batch or continuous process.
  • the silicon carbide fiber and its heating element are manufactured from carbon fibers (Silicon Carbide Fibers, SiCf) in addition to glass, alumina, silica, Si3N4, silicate, boron (Boron Nitride , BNf), etc.), SiCO, Si-CNO fibers, and also a doping source is further arranged to provide these ceramic fibers doped with doping source particles (elements, etc.).
  • the gas permeation reaction temperature is preferably made by heating to 1,000 ⁇ 2,000 oC at a temperature increase rate of 5 ⁇ 20 oC / min.
  • the carbon fiber as the base material means a carbon fiber made of a precursor of a fiber such as polyacrylonitrile, pitch or rayon, and the diameter of the carbon fiber is preferably 5 to 100 um.
  • Silicon carbide fibers and the heating element according to the production method according to the invention is preferably Si / C element content of 0.01 ⁇ 2.0, the oxygen content of silicon carbide fibers is preferably 2.0% or less.
  • the silicon carbide fiber and the heating element of the present invention is preferably used as a heating element, silicon carbide fiber consisting of components such as Si-C, Si-OC, Si-CNO and silicon carbide fibers having a monofilament diameter of 5 to 100 um. Do.
  • silicon carbide fiber heating element of the present invention may be utilized by processing into various shapes such as mesh, plate, rod and the like through secondary processing such as weaving or lamination to apply to various heating devices such as industrial, agricultural, and household.
  • Sublimation raw material and carbon fiber selected from silicon or silicon dioxide, or mixtures thereof are placed in a batch electric furnace equipped with alumina tube, and then carbonized by heating to 1,000 to 2,000 oC at a temperature of 10 oC / min at a temperature of 10 oC / min under nitrogen or argon gas atmosphere.
  • a silicon carbide fiber heating element that can be used as a silicon fiber heating element was prepared.
  • the carbon fibers After placing a sublimation raw material selected from silicon or silicon dioxide or a mixture thereof in a continuous electric furnace equipped with alumina tubes, the carbon fibers are placed in an alumina tube.
  • the winding speed of the fiber winding machine is set to the desired level according to the desired production speed, thereby producing silicon carbide fibers which can be used as a silicon carbide fiber heating element continuously.
  • the diffusion reaction time was varied by 30 minutes (Example 1), 60 minutes (Example 2), 120 minutes (Example 3).
  • 0.1 wt% titanium (Example 4), aluminum 0.1 wt% (Example 5), zirconium 0.1 wt% (Example 6), molybdenum 0.1 wt% (Example 7), 0.1 wt% of boron in the sublimation raw material from Preparation Example 1 % (Example 8) was further mixed with each other to sublimate for 120 minutes at a sublimation temperature of 1750 oC to perform the diffusion reaction of the sublimation gas and carbon fiber, which can be used as a silicon carbide fiber heating element, doped silicon carbide fibers doped with a doping source And the heating element was manufactured.
  • the silicon carbide fiber which can be used as a silicon carbide fiber heating element was continuously manufactured at a sublimation temperature of 1,750 ° C. under a nitrogen or argon gas atmosphere at a speed of 3 cm / min.
  • FIG. 1 is a schematic diagram showing a silicon carbide layer formed from a carbon fiber surface by a sublimation gas infiltration reaction and a SEM analysis photograph of silicon carbide fibers at a specific time period. have),
  • the diameter of the carbon fiber (core shell) is preferably 1 to 3 ⁇ m.
  • a silicon carbide fiber doped with a doping source (Ti) according to Example 4 was prepared and used as a silicon carbide fiber heating element, and an exothermic experiment was performed with a heating element in a heating device equipped with a magnetron.
  • the reticulated silicon carbide fiber heating element (L 150mm ⁇ W 150mm ⁇ H 5mm) generates heat even at low power of 300W or less, and in particular, generates heat at a high temperature of 1,000 ° C. or more within 4 seconds. It was confirmed that.
  • the heating device preferably comprises a silicon carbide fiber heating element manufactured through the sublimation gas penetration reaction, and a magnetron for generating microwaves for resonance and heat generation of the heating element.
  • the heating device using the silicon carbide fiber heating element according to the present invention may be composed of an electric resistance type heating device including a power supply unit for stimulating the silicon carbide fiber heating element to generate heat (silicon carbide fiber heating element of a unit volume).
  • an electric resistance type heating device including a power supply unit for stimulating the silicon carbide fiber heating element to generate heat (silicon carbide fiber heating element of a unit volume).
  • heating by electric resistance method by adding power consumption of 17w, 35V, 0.49A, rapid heating to 1,000 ° C or more within 2 seconds, showing faster cooling behavior than the conventional heating element).
  • the silicon carbide fiber heating element rapidly generates heat within a short time of 2 to 5 seconds through wavelength absorption and resonance of the microwave generated from the magnetron, and due to the characteristics of the fiber, it is possible to minimize the loss of thermal energy, thereby achieving high efficiency characteristics. It can be secured.
  • the heating device which forms the core of the present invention is a silicon carbide fiber heating element
  • a heat conductor in contact with the silicon carbide fiber heating element A heat conductor in contact with the silicon carbide fiber heating element
  • It comprises a power supply for stimulating the silicon carbide fiber heating element to generate heat.
  • the heat conductor may be a metal panel, and the heating device may be a cooking utensil, a heating device, a dryer, or the like.
  • the power supply unit may include a magnetron for generating a microwave for the resonance and heat generation of the silicon carbide fiber heating element, the silicon carbide fiber heating element may take the form of electric resistance heating if necessary.
  • the power supply unit may include a magnetron for generating microwaves for resonance and heat generation of the silicon carbide fiber heating element.
  • the silicon carbide fiber heating element is preferably a silicon carbide fiber heating element manufactured through the sublimation gas penetration reaction described above.
  • FIG. 4 there is shown a conceptual diagram of a kind of hot air blower or boiler 100 showing a form in which the heat conductor is a conduit 111 through which a fluid flows.
  • the heat generating device 100 is provided with a silicon carbide fiber heating element 114 and a conduit 111 which is a heat conductor in contact with the casing 110.
  • Fluid flows through the conduit 111, and when the fluid is air supplied by a blower (not shown), the heat generating device is configured as a hot air blower, and the fluid is supplied by the circulation pump (not shown).
  • the heating device constitutes a boiler 100 that is a heating device.
  • the pipe 111 is preferably surrounded by a heat insulating material 112 to prevent heat loss, it is preferable to use a material having excellent thermal conductivity, such as copper.
  • the heat insulating material 112 is preferably a non-combustible material that can be used even at a high temperature (1300 °C or more) heating temperature.
  • the power supply unit for stimulating and heating the silicon carbide fiber heating element 114 generates a microwave, and a waveguide for guiding the microwaves generated from the magnetron 120 to the silicon carbide fiber heating element 114. 130).
  • a relay body 113 is further provided between the heat insulator 112 and the heating element 114 to be used as an additional waveguide member, and the microwave generated from the magnetron 120 is a waveguide 130 and a relay body ( It is guided to the silicon carbide fiber heating element 114 through 113, the relay body may utilize a ceramic material.
  • the casing 120 preferably employs a material (eg, SUS) for preventing microwaves from being released to the outside and protecting internal components from external shocks.
  • a material eg, SUS
  • the microwave generated from the magnetron is transferred to the silicon carbide fiber heating element through the heat insulating material and the relay (ceramic) inside the casing via the waveguide, and the silicon carbide fiber is finally delivered to the wavelength of the microwave.
  • the silicon carbide fibers generated by resonance and heat generation can heat the heating water passing through the adjacent pipe line by the heat rapidly increasing between 1 to 5 seconds.
  • FIG. 4 describes that the silicon carbide fiber heating element is disposed only in the lower part of the conduit, the silicon carbide fiber heating element may be configured to surround the conduit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Resistance Heating (AREA)

Abstract

The present invention relates to a method for directly producing silicon carbide fiber and metal doped silicon carbide fiber by converting carbide fiber into the silicon carbide fiber and the metal doped silicon carbide fiber through a gas infiltration reaction at high temperature simpler than a conventional production process. More particularly, the present invention relates to a method for producing silicon carbide fiber and metal doped silicon carbide fiber through a sublimation step at high temperature and a step of disposing additional metal elements, silicon carbide fiber produced thereby, and an application of a silicon carbide fiber heating element and a heating device using the same, etc. According to the present invention, the production process is simple, and it is possible to continuously produce crystalline silicon carbide fiber which has low oxygen content and excellent physical properties. In particular, it is possible to produce metal doped silicon carbide fiber with improved oxidation resistance, thermal resistance, etc.

Description

탄화규소 섬유의 제조방법, 이에 의한 탄화규소 섬유, 탄화규소 섬유 발열체, 그리고 이를 이용한 발열장치Method for manufacturing silicon carbide fiber, thereby silicon carbide fiber, silicon carbide fiber heating element, and heating device using the same
본 발명은 탄화규소 섬유(Silicon Carbide Fibers, SiCf)의 제조방법 및 이 탄화규소 섬유의 응용에 관한 것으로,The present invention relates to a method for producing silicon carbide fibers (SiCf) and the application of the silicon carbide fibers,
보다 상세하게는 예를 들어 규소 또는 이산화규소, 또는 이들의 혼합물로부터 선택된 어느 한 승화 원료를 고온에서 승화(Sublimation)시키는 단계를 거쳐 승화된 기체 침투반응(Gas Infiltration Reaction)에 의해 탄소섬유(Carbon Fibers)로부터 제조한 탄화규소 섬유(Silicon Carbide Fibers, SiCf)의 제조방법, 이에 의한 탄화규소 섬유, 그리고 탄화규소 섬유 발열체, 기타 응용을 제공하며,More specifically, carbon fibers may be formed by sublimation of a sublimation raw material selected from, for example, silicon or silicon dioxide, or a mixture thereof at a high temperature, by a sublimation gas infiltration reaction. Provides a method for producing silicon carbide fibers (SiCf), silicon carbide fibers and silicon carbide fiber heating elements, and other applications,
추가로 승화시 도핑원을 더 배치하여 나노도핑된 탄화규소 섬유 및 이를 이용한 발열체를 제공하고,Further sublimation further comprises a doping source to provide nano-doped silicon carbide fibers and heating elements using the same,
열 열에너지에 대한 손실의 최소화와 병행 가능한 급속 가열성 고효율 탄화규소 섬유 발열체 및 이를 이용한 발열장치에 관한 것이다.The present invention relates to a rapid heating highly efficient silicon carbide fiber heating element capable of minimizing the loss of thermal heat energy and a heating device using the same.
탄화규소(SiC) 섬유는 대표적인 비산화물계 세라믹 소재로 고온에서의 물리화학적 안정성이 우수하여 우주항공산업, 에너지산업, 방위산업 등의 복합재료 분야에 활용되고 있다. Silicon carbide (SiC) fiber is a representative non-oxide-based ceramic material and has excellent physicochemical stability at high temperatures, and is being used in composite materials fields such as aerospace, energy, and defense.
특히 공기 중 1,000 oC 이상에서 사용 가능한 유일한 섬유로써 고온 공정이 요구되는 장섬유 세라믹강화 복합재료(CFCC or CMC; Continuous Fiber Reinforced Ceramic Matrix Composites)에 사용되어 세라믹스의 단점인 취성파괴 거동, 강도편차, 결함민감성, 이물질충돌저항 등이 개선됨과 동시에 주변 부품과의 결합성이 향상되어 대형 부품도 단일체로 제조할 수 있는 획기적인 재료로, 고신뢰성 내열재료로서의 응용이 기대되고 있다.In particular, it is the only fiber that can be used above 1,000 oC in air and is used in CFCC or CMC (Continuous Fiber Reinforced Ceramic Matrix Composites) that require high temperature process. Sensitivity, foreign matter collision resistance, etc. are improved, as well as the bonding with peripheral parts is improved, a breakthrough material that can produce large parts as a single body, it is expected to be applied as a high reliability heat-resistant material.
기존 SiC 섬유의 제조 공정은 분말압출법(Carborundum), CVD법(Chemical Vapor Deposition), 전구체법의 세 가지 방법으로 제조되었다. The existing SiC fiber manufacturing process is made by three methods, powder extrusion (Carborundum), CVD (Chemical Vapor Deposition), precursor method.
분말압출법은 서브마이크론 SiC 분말(SiC Powders)과 소결조제를 적절한 Polymer와 함께 혼합하여 용융방사가 가능한 컴파운드를 만들고 이를 압출하여 원하는 직경으로 연신하고 2,000 oC에서 소결하여 SiC 섬유를 제조하였다. 현재까지 개발된 섬유 중에서 크립 저항성은 가장 뛰어난 섬유이다. In the powder extrusion method, a submicron SiC powder (SiC Powders) and a sintering aid were mixed together with a suitable polymer to make a compound capable of melt spinning, and then extruded to a desired diameter and sintered at 2,000 oC to prepare SiC fibers. Among the fibers developed to date, creep resistance is the most excellent fiber.
그러나 섬유 내의 SiC 입자의 크기가 크고, 기공이 존재하기 때문에 강도가 낮고 쉽게 부서지며 다루기 어려운 특성을 갖고 있으므로 현재 생산이 중단되었다.However, due to the large size of SiC particles in the fibers and the presence of pores, their production is discontinued due to their low strength, easily broken and unwieldy properties.
CVD법은 석영 반응관 내로 일정한 속도로 Mercury Contact를 통하여 심선(텅스텐 와이어 또는 탄소 섬유)을 이송하고 투입된 심선에 전류를 흘려 자기발열에 의해 1,000 ~ 1,300 oC 정도로 가열한 상태에서 원료인 메틸다이클로로실란(Methyl Dichlorosilane) 등의 실란 가스와 분위기 가스인 Ar, H2 가스를 투입하여 SiC를 증착시켜서 제조한다. The CVD method transfers core wire (tungsten wire or carbon fiber) through the Mercury Contact at a constant speed into the quartz reaction tube, and flows current through the injected core wire and heats it by 1,000 ~ 1,300 oC by self-heating, and is a raw material of methyldichlorosilane It is prepared by depositing SiC by adding silane gas such as (Methyl Dichlorosilane) and Ar, H2 gas, which are atmospheric gases.
이 제조 방법은 심선 표면에 SiC가 코팅되는 방법으로 다른 섬유 보다 열안정성이 우수하나, 제조 공정이 까다롭고 제조 단가가 높다. This manufacturing method is a method of coating the SiC on the surface of the core wire is superior in thermal stability than other fibers, but the manufacturing process is difficult and the manufacturing cost is high.
특히 직경이 150 um 이상으로 굵은 섬유가 제조되어 섬유 직조가 불가능하여 섬유강화 복합재료의 적용에는 적합하지 않다. [SCS SiC Fibers: Process, Properties and Production Technical Data from the Website fo Specialty Materials, www. specmaterials. com]In particular, coarse fibers are manufactured with a diameter of 150 um or more, which is not suitable for the application of fiber reinforced composite materials. SCS SiC Fibers: Process, Properties and Production Technical Data from the Website fo Specialty Materials, www. specmaterials. com]
전구체법은 유기규소 폴리머인 폴리카보실란(Polycarbosilane, PCS) 전구체를 용융방사(Melt Spinning) 및 열분해를 거쳐서 직경 10 ~ 100 um의 SiC 섬유를 제조하는 공정이다. The precursor method is a process for producing SiC fibers having a diameter of 10 to 100 um through melt spinning and pyrolysis of a polycarbosilane (PCS) precursor which is an organosilicon polymer.
일반적인 PCS 제조 방법은 다이메틸다이클로로실란(Dimethyldichlorosilane, DMDS)을 출발물질로 하여 Autoclave를 사용한 고온 가압반응이 주로 이용된다. The general PCS manufacturing method is mainly a high temperature pressurization reaction using autoclave using dimethyldichlorosilane (DMDS) as a starting material.
그러나 PCS 제조 과정에서 CH4, H2, MeSiH3, Me2SiH, Me3SiH 등과 같은 열분해 부산물을 생성되어 반응 중 Autoclave 내부 압력이 100기압 이상 올라가며 [미국특허 US4,052,430], However, in the PCS manufacturing process, pyrolysis by-products such as CH4, H2, MeSiH3, Me2SiH, Me3SiH, etc. are generated, and the internal pressure of the autoclave increases over 100 atm during the reaction [US Pat. No. 4,052,430],
특히 Silane계열 기체는 저온에서 발화되는 성질이 있기 때문에, 반응 도중에 이들 기체가 누출되는 경우에는 발화 위험성 등의 안전에 문제가 있다. In particular, since the Silane-based gas has a property of igniting at a low temperature, when these gases leak during the reaction, there is a problem in safety such as the risk of ignition.
또한 생산 수율(Yield)이 낮고, 방사 가능한 생성물의 분자량 조절에 어려움이 있다. In addition, the production yield (Yield) is low, there is a difficulty in controlling the molecular weight of the spinnable product.
한편, 이들 PCS를 이용하여 200 oC에서 용융방사 공정으로 PCS Green Fiber를 제조 후 열분해하여 SiC 섬유를 제조하게 되면 On the other hand, if the PCS Green Fibers are manufactured by melt spinning at 200 oC using these PCSs and then thermally decomposed to produce SiC fibers,
PCS Green Fiber를 안정화하는 동안에 포함되는 과도한 산소가 고온, 특히 1,800 oC 이상으로의 승온 과정에서 분해되어 내부에 형성된 조대한 기공으로 인해 높은 밀도의 결정화 SiC 섬유를 얻는 것이 불가능하였다. [특허등록 제10-0684649호]Excess oxygen contained during stabilization of the PCS Green Fiber was decomposed at elevated temperatures, especially at elevated temperatures above 1,800 oC, making it impossible to obtain high density crystallized SiC fibers due to the coarse pores formed therein. [Patent Registration No. 10-0684649]
또한, 제조된 탄화규소 섬유 내 산소 함량이 10% 정도 혼입되어 SiCOx 형태의 옥시카바이드 비정질을 형성하고 이는 고온에서 열분해되어 섬유의 물성을 크게 저하시키는 원인이 된다. In addition, the oxygen content in the silicon carbide fiber is mixed by about 10% to form an oxycarbide amorphous in the form of SiCOx, which is thermally decomposed at a high temperature to cause a significant degradation of the physical properties of the fiber.
한편, Nippon Carbon사에서는 SiC 섬유의 내열성을 개선하기 위하여 열산화법 대신 전자선 조사를 이용한 방법으로 안정화하여 산소 함량이 1% 이하의 SiC 섬유를 제조하여 1,500 oC의 고온에서도 인장강도가 저하되지 않는 우수한 특성을 보이는 초내열 탄화규소 섬유를 개발하였다. On the other hand, Nippon Carbon manufactures SiC fiber with oxygen content of 1% or less by stabilizing by using electron beam irradiation instead of thermal oxidation method to improve the heat resistance of SiC fiber, so that the tensile strength does not decrease even at high temperature of 1,500 oC. The super heat-resistant silicon carbide fiber was developed.
따라서 상기 CVD법은 섬유 직조가 어려운 직경 150 um 이상의 섬유 제조 및 제조 공정이 매우 까다로우며, 상기 전구체법은 탄화규소 섬유 내 산소 함량이 높고, 생산 수율이 낮으며, 옥시카바이드 비정질을 형성하여 고온에서 섬유의 물성을 크게 저하시키는 원인이 된다. Therefore, the CVD method is very difficult to fabricate and manufacture a fiber having a diameter of 150 um or more, which is difficult to weave the fiber, and the precursor method has a high oxygen content in silicon carbide fibers, a low production yield, and an oxycarbide amorphous to form a high temperature. This causes a great decrease in the physical properties of the fiber.
반면 탄화규소 섬유의 산소 함량을 낮추고, 고온 열안정성을 향상시키기 위해서는 정밀한 전자선 조사의 안정화 공정이 추가적으로 요구된다. On the other hand, in order to lower the oxygen content of silicon carbide fibers and improve the high temperature thermal stability, an additional electron beam stabilization process is required.
이들 기술들은 탄화규소 섬유 제조 방법 관련 기술을 제시하고 있으나, 본 발명은 이와는 다른 탄화규소 섬유 제법에 관한 것이다. While these techniques suggest techniques related to the production of silicon carbide fibers, the present invention relates to other methods of manufacturing silicon carbide fibers.
한편, 종래 세라믹 히터 또는 발열체와 관련된 기술로는 특허등록 제10-0413783호(등록일자 2003년12월19일) [센서 가열용 세라믹 히터]가 있는데,On the other hand, as a technology related to a conventional ceramic heater or a heating element there is a patent registration No. 10-0413783 (registration date December 19, 2003) [ceramic heater for heating the sensor],
이 등록특허는 센서 가열용 히터 기판 상에 형성시킨 복합 재료 타입의 히터 전극을 채용한 센서 가열용 세라믹 히터에 관한 것이며, 이 세라믹 히터는 99.999%이상의 고순도 알루미나 분말과 MgO 첨가제를 사용하여 히터 기판을 제작함으로써, 고온, 고전압에서의 내구성이 우수하고, 원자이동(migration) 현상에 의한 발열물질의 단락 없이 장시간 히터를 사용할 수 있다.This patent relates to a ceramic heater for heating a sensor employing a composite electrode type heater electrode formed on a sensor heating heater substrate, which uses a high purity alumina powder and MgO additive of 99.999% or more to form a heater substrate. By manufacturing, it is excellent in durability at high temperature and high voltage, and a heater can be used for a long time without the short circuit of the heat generating material by the atomization phenomenon.
또 특허등록 제10-1406420호(등록일자 2014년06월03일) [탄화 규소 발열체 및 그의 제조 방법]이 있는데,In addition, there is a patent registration No. 10-1406420 (registration date June 03, 2014) [silicon carbide heating element and its manufacturing method],
이 등록특허는 실리콘 분말이 뿌려진 성형물을 반응 소결한 후, 잔류하는 실리콘을 휘발시키고, 질소를 도핑하여 휘발되지 못한 실리콘과 반응시켜, 발열체에서 실리콘을 완전히 제거함으로써, 발열체 용도에 적합한 수준으로 전기 저항을 낮출 수 있는 장점을 얻도록 하며, 탄화 규소 발열체는 탄화규소 격자 내에 질소가 도핑되어 있으므로 유동 전하 운반자가 존재하여 낮은 온도에서 빠른 온도 증가 특성을 갖고, 고온으로 갈수록 저항이 증가되어 자체적으로 과열되는 것을 억제할 수 있는 장점이 있는 기술을 제시하고 있다.This patent discloses electrical resistance to a level suitable for heating element use by reacting and sintering a molding sprayed with silicon powder, and then volatilizing the remaining silicon, reacting with silicon which is not volatilized by doping with nitrogen, and completely removing silicon from the heating element. Since the silicon carbide heating element is doped with nitrogen in the silicon carbide lattice, there is a flow charge carrier, so it has a rapid temperature increase characteristic at low temperature, and the resistance increases as the temperature increases, thereby overheating itself. It suggests a technology that has the advantage of suppressing it.
아울러 특허공개 제10-2014-0007667호(공개일자 2014년01월20일) [세라믹 발열체 조성물, 유전가열식 가열장치 및 이를 이용한 유전가열식 가열방법]이 있는데,In addition, there is a Patent Publication No. 10-2014-0007667 (published January 20, 2014) [ceramic heating element composition, dielectric heating device and dielectric heating method using the same],
이 공개특허는 세라믹 발열체 조성물, 유전가열식 가열장치 및 이를 이용한 유전가열식 [0001] 가열방법에 관한 것으로서, 특히 핫스팟(hot spot)의 발생을 감소시키며 승온속도 및 열저장시간을 증가시킬 수 있는 세라믹 발열체 조성물, 유전가열식 가열장치 및 이를 이용한 유전가열식 가열방법에 관한 것이다.This patent relates to a ceramic heating element composition, a dielectric heating device and a dielectric heating method using the same, in particular, a ceramic heating element that can reduce the occurrence of hot spots (hot spots) and increase the temperature increase rate and heat storage time A composition, a dielectric heating apparatus, and a dielectric heating method using the same.
그러나 이들 종래기술들은 기본적으로 다양한 세라믹 재료를 혼합하여 소결 등의 방식으로 성형하는 기술에 대한 것이어서 기체 침투반응(Gas Infiltration Reaction)에 의해 섬유상 세라믹 발열체를 제조하는 본 발명과는 근본적인 차이를 갖는다.However, these conventional technologies are basically related to a technique of mixing various ceramic materials and molding them by sintering, etc., and thus have a fundamental difference from the present invention of manufacturing a fibrous ceramic heating element by a gas infiltration reaction.
아울러 최근 친환경 및 고효율 에너지에 대한 관심이 높아지면서 전기를 이용한 고효율 히터 개발이 요구되고 있다. In addition, as interest in eco-friendly and high-efficiency energy increases, development of high-efficiency heaters using electricity is required.
특히 고효율 히터는 개별 난방, 산업·농업용 건조기, 산업용 고온열처리 로(Annealing Furnace), 조리용 쿠킹 오븐 등 산업 전반에 널리 활용될 수 있다.In particular, high-efficiency heaters can be widely used throughout the industry, such as individual heating, industrial and agricultural dryers, industrial annealing furnaces, cooking cooking ovens.
또한 전열장치의 전원으로는 태양열, 풍력, 심야전기 등을 활용하는 친환경 내지 고효율 방식을 채용하고 있는바, In addition, as a power source for the heating device, it adopts an eco-friendly or high-efficiency method that utilizes solar, wind, and midnight electricity.
이와 관련된 문헌으로는 등록특허 제10-0751485호, 공개특허공보 제10-1998-032294호 및 공개특허공보 제10-2003-0017179호 등이 개시되어 있다.Related documents are disclosed in Korean Patent Nos. 10-0751485, 10-1998-032294 and 10-2003-0017179.
한편, 종래 탄화규소를 포함하는 세라믹 발열체와 관련된 문헌으로는 특허등록 제10-0413783호(등록일자 2003년12월19일) [센서 가열용 세라믹 히터]가 있는데,On the other hand, the literature related to a ceramic heating element containing silicon carbide is conventional patent registration No. 10-0413783 (registration date December 19, 2003) [Sensor heating ceramic heater],
이 등록특허는 센서 가열용 히터 기판 상에 형성시킨 복합 재료 타입의 히터 전극을 채용한 센서 가열용 세라믹 히터에 관한 것이며, 이 세라믹 히터는 99.999%이상의 고순도 알루미나 분말과 MgO 첨가제를 사용하여 히터 기판을 제작함으로써, 고온, 고전압에서의 내구성이 우수하고, 원자이동(migration) 현상에 의한 발열물질의 단락 없이 장시간 히터를 사용할 수 있다.This patent relates to a ceramic heater for heating a sensor employing a composite electrode type heater electrode formed on a sensor heating heater substrate, which uses a high purity alumina powder and MgO additive of 99.999% or more to form a heater substrate. By manufacturing, it is excellent in durability at high temperature and high voltage, and a heater can be used for a long time without the short circuit of the heat generating material by the atomization phenomenon.
또 특허등록 제10-1406420호(등록일자 2014년06월03일) [탄화 규소 발열체 및 그의 제조 방법]이 있는데,In addition, there is a patent registration No. 10-1406420 (registration date June 03, 2014) [silicon carbide heating element and its manufacturing method],
이 등록특허는 실리콘 분말이 뿌려진 성형물을 반응 소결한 후, 잔류하는 실리콘을 휘발시키고, 질소를 도핑하여 휘발되지 못한 실리콘과 반응시켜, 발열체에서 실리콘을 완전히 제거함으로써, 발열체 용도에 적합한 수준으로 전기 저항을 낮출 수 있는 장점을 얻도록 하며, 탄화 규소 발열체는 탄화규소 격자 내에 질소가 도핑되어 있으므로 유동 전하 운반자가 존재하여 낮은 온도에서 빠른 온도 증가 특성을 갖고, 고온으로 갈수록 저항이 증가되어 자체적으로 과열되는 것을 억제할 수 있는 장점이 있는 기술을 제시하고 있다.This patent discloses electrical resistance to a level suitable for heating element use by reacting and sintering a molding sprayed with silicon powder, and then volatilizing the remaining silicon, reacting with silicon which is not volatilized by doping with nitrogen, and completely removing silicon from the heating element. Since the silicon carbide heating element is doped with nitrogen in the silicon carbide lattice, there is a flow charge carrier, so it has a rapid temperature increase characteristic at low temperature, and the resistance increases as the temperature increases, thereby overheating itself. It suggests a technology that has the advantage of suppressing it.
아울러 특허공개 제10-2014-0007667호(공개일자 2014년01월20일) [세라믹 발열체 조성물, 유전가열식 가열장치 및 이를 이용한 유전가열식 가열방법]이 있는데,In addition, there is a Patent Publication No. 10-2014-0007667 (published January 20, 2014) [ceramic heating element composition, dielectric heating device and dielectric heating method using the same],
이 공개특허는 세라믹 발열체 조성물, 유전가열식 가열장치 및 이를 이용한 유전가열식 가열방법에 관한 것으로서, 특히 핫스팟(hot spot)의 발생을 감소시키며 승온속도 및 열저장시간을 증가시킬 수 있는 세라믹 발열체 조성물, 유전가열식 가열장치 및 이를 이용한 유전가열식 가열방법에 관한 것이다.The present patent relates to a ceramic heating element composition, a dielectric heating apparatus and a dielectric heating method using the same, in particular, the ceramic heating element composition, dielectric that can reduce the occurrence of hot spots and increase the temperature increase rate and heat storage time A heating heater and a dielectric heating method using the same.
나아가 특허등록 제10-1288342호(등록일자 2013년07월16일) [다공성 탄화규소 발열체의 제조방법]이 있는데,Furthermore, there is a patent registration No. 10-1288342 (registration date July 16, 2013) [the manufacturing method of porous silicon carbide heating element],
이 등록특허는 적외선 복사 효율, 고온 안정성 및 내구성이 우수하고, 경제적이고 용이하게 라디에이션 히터 등에 적용될 수 있는 다공성 탄화규소 발열체의 제조방법을 제시하고 있는바,This patent discloses a method of manufacturing a porous silicon carbide heating element that is excellent in infrared radiation efficiency, high temperature stability and durability, and can be applied economically and easily to a radiator heater.
라디에이션 히터 등의 발열체 형성에 있어서, 경도가 높아 절삭이나 연마 등의 가공이 어려운 탄화규소 소재를 직접 가공하지 않고 가공 및 재단 등이 용이한 다공성 고분자 폼을 이용함으로써, 열효율성이 우수한 다공성 탄화규소 발열체를 최적화된 형태로 용이하고 경제적으로 제조할 수 있다. 본 발명에 따라 제조된 다공성 탄화규소 발열체는 기공구조를 가져 연료가스 연소시 불꽃에 의한 가열이 순간적으로 이루어지고, 연료가스의 완전연소를 유도할 수 있으며, 불꽃의 역화 현상을 방지하여 기공 내에서 연소가 이루어지게 됨으로써 매우 우수한 열효율성을 갖는다.In the formation of heating elements such as a radiator heater, porous silicon carbide having excellent thermal efficiency is used by using a porous polymer foam that is easy to process and cut without directly processing a silicon carbide material having high hardness, which is difficult to process such as cutting or polishing. The heating element can be manufactured easily and economically in an optimized form. The porous silicon carbide heating element manufactured according to the present invention has a pore structure, which enables instant heating by flame when burning fuel gas, induces complete combustion of fuel gas, and prevents backfire of flame in pores. Combustion takes place, resulting in very good thermal efficiency.
그러나 이들 종래기술들은 기본적으로 다양한 세라믹 재료를 혼합하여 소결 등의 방식으로 벌크형태로 성형하는 기술 및 전기저항에 의해 발열되는 방식으로 이러한 종류의 전기 히터들은 과다한 전력이 소비되며, 가열되는 열에 비해 가열 시간이 오래 걸려 그 효율성이 낮은 단점이 있었다. However, these conventional technologies are basically a technique of mixing a variety of ceramic materials to form a bulk form in the form of sintering, etc. and the heat generated by the electrical resistance, this type of electric heater consumes excessive power, heating compared to the heat to be heated It took a long time and had the disadvantage of low efficiency.
또 무엇보다도 이들 종래기술은 다양한 세라믹 재료를 혼합하여 소결 등의 방식으로 성형하는 기술에 대한 것이어서 역시 기체 침투반응(Gas Infiltration Reaction)에 의해 섬유상 세라믹 발열체를 제조하는 본 발명과는 근본적인 차이를 갖는다.Above all, these prior arts are related to a technique of mixing various ceramic materials and molding them by sintering or the like, which is also fundamentally different from the present invention in which a fibrous ceramic heating element is manufactured by gas infiltration reaction.
한편, 최근에는 전기저항 방식 또는 마이크로 웨이브 방식 등 전기를 이용해 가열하는 방식들이 많이 개발되어 있으며, 전기 공급 방식으로는 태양열, 풍력, 심야전기 등을 이용하여 가열하는 방식들이 대부분으로 이러한 기술로 등록특허 제10-0751485호, 공개특허공보 제10-1998-032294호 및 공개특허공보 제10-2003-0017179호 등이 개시되어 있다. On the other hand, recently, many methods of heating using electricity such as electric resistance method or microwave method have been developed, and heating methods using solar heat, wind power, midnight electricity, etc. as electric supply methods are mostly registered with these technologies. 10-0751485, 10-1998-032294 and 10-2003-0017179, and the like are disclosed.
상기 전기를 이용해 가열하는 방식의 발열체로는 주로 금속발열체가 사용되어 왔으며, 금속발열체 재료로 저렴한 가격의 니크롬선, 철크롬선, 칸탈선(Fe-Cr-Al) 등이 사용되고 있으나, 소비 전력이 높고 열에 의한 취성 특성으로 고온에서 구조적인 안정성이 취약한 단점을 가지고 있다. As a heating element of the heating method using electricity, metal heating elements have been mainly used, and inexpensive nichrome wire, iron chromium wire, and cantal wire (Fe-Cr-Al) are used as the metal heating material, but power consumption is high. Due to its high and brittleness due to heat, its structural stability is weak at high temperatures.
한편, 공업용 로의 가열에 사용되는 발열체로써 고온에서 상대적으로 안정적인 두꺼운 세라믹 발열체가 널리 사용되고 있다. 대표적인 발열 세라믹 재료로써 몰리브덴 디실리사이드(MoSi2) 또는 탄화규소(SiC)로 이루어진 세라믹 발열체가 공업용 발열체에 사용되어지나, 가정용 난방기기로 사용될 경우, 가정용 선로 전압(110V 또는 220V) 하에서 돌입 전류가 매우 높다는 단점이 있다. 돌입 전류가 큰 발열체는 가정용 기기에 적합하지 않으므로 종래의 세라믹 발열체는 선로 전압으로부터 전압을 강하시키는 고가의 변압기를 사용하는 것이 요구되었다. Meanwhile, as a heating element used for heating an industrial furnace, a thick ceramic heating element that is relatively stable at high temperature is widely used. Ceramic heating elements made of molybdenum disilicide (MoSi2) or silicon carbide (SiC) are used as industrial heating elements. However, when used as household heating devices, the inrush current is very high under the household line voltage (110V or 220V). There are disadvantages. Since a heating element having a large inrush current is not suitable for home appliances, conventional ceramic heating elements have been required to use expensive transformers that drop voltage from line voltage.
만일, 기존의 두꺼운 세라믹 발열체가 가정용 난방기기로 상용전원(110V 또는 220V)을 바로 사용하기 위해서는 아래의 기본적인 저항공식을 기초로, 길이를 증가시키거나, 단면적을 감소시켜야 한다. If the conventional thick ceramic heating element is to directly use the commercial power (110V or 220V) as a home heating device, it is necessary to increase the length or reduce the cross-sectional area based on the basic resistance formula below.
R = ρ*L/A, (ρ: 비저항, L: 길이, A: 단면적)R = ρ * L / A, (ρ: resistivity, L: length, A: cross-sectional area)
그러나 이와 같은 방법은 늘어난 길이와 줄어든 단면적으로 인해 그 응용에 있어 기계적 강도 저하라는 치명적인 문제를 발생시키게 된다. 또한 이러한 종류의 발열체들은 가열되는 열에 비해 가열 시간이 오래 걸려 그 효율성이 낮은 단점이 있었다.However, this method creates a fatal problem of reduced mechanical strength in its application due to its increased length and reduced cross-sectional area. In addition, these types of heating elements have a disadvantage of low efficiency due to a long heating time compared to heat to be heated.
상기한 종래 기술의 문제점을 해결하기 위해 본 발명은, 보다 간단한 방법으로 세라믹 발열체를 소결 등의 각종 세라믹 분말 성형방법에서 탈피하여 기체 침투반응(Gas Infiltration Reaction)에 의하여 탄화규소 섬유 및 금속 도핑된 탄화규소 섬유를 직접 제조하는 방법을 제공하고, 또 이에 의한 탄화규소 섬유 및 이를 이용한 섬유상 세라믹 발열체, 나아가 발열장치 등의 응용을 제공하는 것을 목적으로 한다.In order to solve the above problems of the prior art, the present invention, in a simpler method, the ceramic heating element is stripped from various ceramic powder molding methods such as sintering, and the silicon carbide fibers and the metal doped carbonization by a gas infiltration reaction. It is an object of the present invention to provide a method for directly producing silicon fibers, and to provide applications such as silicon carbide fibers and fibrous ceramic heating elements using the same, and further, heating devices.
구체적으로 본 발명은 고온에서 승화된 기체 침투반응(Gas Infiltration Reaction)에 의해 섬유상 세라믹 발열체를 제조하는 방법, 특히 탄소섬유로부터 탄화규소 섬유를 직접 제조하는 공정을 통해 섬유상 세라믹 발열체의 제조방법 및 이에 의한 발열체 등 응용을 제공하는 것을 목적으로 한다. Specifically, the present invention relates to a method of manufacturing a fibrous ceramic heating element by a gas infiltration reaction sublimated at a high temperature, in particular, a method of manufacturing a fibrous ceramic heating element through a process of directly manufacturing silicon carbide fibers from carbon fibers and thereby It is an object to provide an application such as a heating element.
또한 본 발명은 탄화규소 섬유의 고온 열안정성을 향상시키기 위해 산소 함량이 낮고, 치밀한 결정형 탄화규소 섬유의 제조 방법을 제공하여 섬유상 세라믹 발열체의 제조방법 및 이에 의한 발열체를 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide a method for producing a low-oxygen, dense crystalline silicon carbide fibers in order to improve the high temperature thermal stability of the silicon carbide fibers to provide a method for producing a fibrous ceramic heating element and thereby a heating element.
아울러 본 발명은 탄화규소 섬유의 내산화성, 내열성 등을 향상시키기 위해상기 기체 침투반응에서 도핑 도핑원을 추가로 포함하여 나노도핑된 탄화규소 섬유를 제조하고, 이를 이용한 섬유상 세라믹 발열체의 제조방법 및 이에 의한 발열체 등의 응용을 제공하는 것을 목적으로 한다. In addition, the present invention is to produce a nano-doped silicon carbide fiber including a doping source in the gas permeation reaction in order to improve the oxidation resistance, heat resistance and the like of the silicon carbide fiber, and a method for producing a fibrous ceramic heating element using the same It is an object to provide an application such as a heating element.
나아가 본 발명은 상기 기체 침투반응으로부터 직경이 5 ~ 100 um인 탄화규소 섬유의 제공과, 이를 이용한 섬유상 세라믹 발열체의 제조방법 및 이에 의한 발열체를 제공하는 것을 목적으로 한다. Furthermore, an object of the present invention is to provide a silicon carbide fiber having a diameter of 5 to 100 um from the gas permeation reaction, a method of manufacturing a fibrous ceramic heating element using the same, and a heating element thereby.
더 나아가 본 발명은 상기 탄화규소 섬유로 직접 전환되는 공정으로서 회분식 또는 연속식 공정을 포함하는 탄화규소 섬유의 제조방법, 이를 이용한 섬유상 세라믹 발열체의 제조방법 및 이에 의한 발열체를 제공하는 것을 목적으로 한다. Furthermore, an object of the present invention is to provide a method for producing silicon carbide fibers including a batch or continuous process, a method for producing a fibrous ceramic heating element using the same, and a heating element by the process of directly converting the silicon carbide fibers.
한편, 본 발명은 기체 침투반응(Gas Infiltration Reaction)에 의하여 제조되는 섬유상 세라믹 발열체는 탄화규소 섬유(Silicon Carbide Fibers, SiCf) 외에 유리, 알루미나, 실리카, Si3N4, 실리테이트, 보론, SiCO, Si-C-N-O 섬유일 수 있으며, 또 이들의 나노 도핑된 섬유를 제조하는, 탄화규소 섬유, 제법, 이의 섬유상 세라믹 발열체의 제조방법 및 이에 의한 발열체를 제공하는 것을 목적으로 한다.On the other hand, the present invention is a fibrous ceramic heating element produced by the gas infiltration reaction (Gas Infiltration Reaction), in addition to silicon carbide fibers (SiCf), glass, alumina, silica, Si3N4, silicate, boron, SiCO, Si-CNO It is an object to provide a silicon carbide fiber, a manufacturing method, a method for producing a fibrous ceramic heating element thereof, and a heating element thereby, which may be a fiber and manufacture these nano-doped fibers.
특히 본 발명은 중심(코어; core) 부분에는 소정 직경의 탄소섬유(이하, '코어 탄소섬유'라 한다)가 잔존하고, 외주면에는 상술한 탄화규소 섬유가 코어 탄소섬유를 일정 두께 감싸는 구조를 제공하는 것을 목적으로 한다.In particular, the present invention provides a structure in which a carbon fiber having a predetermined diameter (hereinafter referred to as a 'core carbon fiber') remains in the center (core) portion, and the silicon carbide fiber described above wraps the core carbon fiber in a predetermined thickness on an outer circumferential surface thereof. It aims to do it.
나아가 본 발명은 마그네트론에서 발생되는 마이크로웨이브의 파장이 탄화규소 섬유에 흡수되어 섬유 내 공진을 통해 발열이 이루어지거나 전기저항 방식으로 발열, 특히 급속 발열이 가능하고 열에너지에 대한 손실을 최소화할 수 있는 고효율 탄화규소 섬유 발열체 및 이를 이용한 발열장치를 제공하는 것을 목적으로 한다.In addition, the present invention is a high efficiency that can generate heat through the resonance within the fiber is absorbed by silicon carbide fibers generated from the magnetron or heat generated by the electrical resistance method, particularly rapid heat generation and can minimize the loss of thermal energy An object of the present invention is to provide a silicon carbide fiber heating element and a heating device using the same.
한편, 본 발명은 전술한 바와 같은 문제점을 해결하기 위한 것으로, 통상의 발열장치 또는 난방기기 발열체에서 탈피하여 기체 침투반응(Gas Infiltration Reaction)에 의하여 탄화규소 섬유 및 나노도핑된 탄화규소 섬유를 직접 제조하고, 평균 직경이 50 um 이하, 바람직하기로는 50 um 이하, 보다 바람직하기로는 10 um 이하의 이 탄화규소 섬유 발열체 및 전기저항 또는 마그네트론에서 발생되는 마이크로웨이브의 파장에 의해 발열되는 히터, 난방기기 또는 발열장치를 제공하는 것을 목적으로 한다.On the other hand, the present invention is to solve the problems as described above, and to directly produce the silicon carbide fibers and nano-doped silicon carbide fibers by the gas infiltration reaction (Gas Infiltration Reaction) by removing from the heating device or the heating element heating device. And a heater, heating device or the like, having an average diameter of 50 um or less, preferably 50 um or less, more preferably 10 um or less, in which the silicon carbide fiber heating element and the electric resistance or the wavelength of the microwave generated in the magnetron generate heat. It is an object to provide a heat generating device.
구체적으로 본 발명은 탄화규소 섬유 발열체와 접하고 난방수와 같은 유체가 흐를 관로일 수 있는 열전도체를 포함하고, 탄화규소 섬유 발열체를 자극하여 발열시키는 전원부를 구비한 발열장치를 제공하는 것을 목적으로 한다.Specifically, an object of the present invention is to provide a heat generating apparatus including a heat conductor which is in contact with a silicon carbide fiber heating element and may be a conduit through which a fluid such as heating water flows, and has a power source for stimulating silicon carbide fiber heating element to generate heat. .
또 본 발명은 상기 전원부가 탄화규소 섬유 발열체의 공진·발열을 위한 마이크로웨이브를 생성하는 마그네트론을 포함하는 구성을 갖는 발열장치를 제공하는 것을 목적으로 한다.It is another object of the present invention to provide a heat generating device having a configuration in which the power supply unit includes a magnetron for generating microwaves for resonance and heat generation of a silicon carbide fiber heating element.
상기와 같은 목적을 달성하기 위하여 본 발명에 따른 탄화규소 섬유의 제조방법 및 이에 의한 탄화규소 섬유는In order to achieve the above object, the method for producing silicon carbide fibers and the silicon carbide fibers thereby
규소 또는 이산화규소, 또는 이들의 혼합물로부터 선택된 어느 한 승화 원료와 탄소섬유를 진공 또는 불활성 가스 분위기 및 고온 상태에 배치하여 승화 원료의 승화로 기체 침투반응(Gas Infiltration Reaction)에 의해 탄소섬유로부터 탄화규소 섬유를 제조하여 이루어진다.Sublimation raw material and carbon fiber selected from silicon or silicon dioxide, or mixtures thereof are placed in a vacuum or inert gas atmosphere and at a high temperature so that sublimation of the sublimation raw material is carried out from the carbon carbide from the carbon carbide by gas infiltration reaction. By making fibers.
또 본 발명에 따른 탄화규소 섬유의 제조방법 및 이에 의한 탄화규소 섬유는In addition, the method for producing silicon carbide fibers according to the present invention and the silicon carbide fibers thereby
승화 원료와 원섬유재료를 진공 또는 불활성 가스 분위기 및 고온 상태에 배치하여 승화 원료의 승화로 기체 침투반응(Gas Infiltration Reaction)에 의해 원섬유재료로부터 유리, 알루미나, 실리카, Si3N4, 실리테이트, 보론, SiCO, Si-C-N-O 섬유로 제조하여 발열체로 사용한다.Sublimation raw materials and fibrous materials are placed in a vacuum or inert gas atmosphere and at a high temperature, and then the glass, alumina, silica, Si3N4, silicate, boron, It is made of SiCO, Si-CNO fiber and used as heating element.
본 발명에 따른 탄화규소 섬유의 제조방법 및 이에 의한 탄화규소 섬유는The method for producing silicon carbide fibers according to the present invention and the silicon carbide fibers thereby
탄소섬유와 함께 도핑원을 더 고온 상태에 배치하여 나노도핑 탄화규소 섬유를 제조하고,The nano-doped silicon carbide fibers are prepared by placing the doping source together with the carbon fibers at a higher temperature.
특히 상기 금속은 티타늄, 알루미늄, 지르코늄, 몰리브덴, 붕소, 할로겐, 또는 이들의 조합으로 이루어진 군으로부터 선택되고,In particular the metal is selected from the group consisting of titanium, aluminum, zirconium, molybdenum, boron, halogen, or combinations thereof,
기체 침투반응 온도는 5~20 oC/min 승온 속도로 1,000 ~ 2,000 oC까지 가열하여 이루어지고,Gas permeation reaction temperature is made by heating to 1,000 ~ 2,000 oC at a temperature increase rate of 5 ~ 20 oC / min,
회분식 또는 연속식 공정으로 진행되는 것이 바람직하다.It is preferred to proceed with a batch or continuous process.
나아가 본 발명에 따른 탄화규소 섬유, 이의 제조방법, 이를 이용한 발열체, 기타 응용에서 Furthermore, in the silicon carbide fiber according to the present invention, a manufacturing method thereof, a heating element using the same, in other applications
상기 제조된 탄화규소 섬유의 Si/C 원소함량은 0.01 ~ 2.0 이고,Si / C element content of the prepared silicon carbide fiber is 0.01 ~ 2.0,
제조된 탄화규소 섬유의 산소 함량은 2.0% 이하이며,Oxygen content of the manufactured silicon carbide fiber is less than 2.0%,
탄소섬유는 폴리아크릴로니트릴, 피치 또는 레이온과 같은 섬유의 전구체로 제조된 탄소섬유를 의미하며, Carbon fiber refers to carbon fiber made of a precursor of a fiber such as polyacrylonitrile, pitch or rayon,
이 탄소규소 섬유의 모노필라멘트 직경은 5 ~ 100 um인 것이 바람직하다. It is preferable that the monofilament diameter of this carbon silicon fiber is 5-100um.
한편, 상기와 같은 목적을 달성하기 위하여 본 발명에 따른 탄화규소 섬유 발열체는On the other hand, the silicon carbide fiber heating element according to the present invention in order to achieve the above object
규소 또는 이산화규소, 또는 이들의 혼합물로부터 선택된 어느 한 승화 원료와 탄소섬유를 진공 또는 불활성 가스 분위기 및 고온 상태에 배치하여,Any sublimation raw material and carbon fiber selected from silicon or silicon dioxide, or mixtures thereof are placed in a vacuum or inert gas atmosphere and a high temperature state,
승화 원료의 승화로 기체 침투반응(Gas Infiltration Reaction)에 의해 탄소섬유로부터 제조되고,It is made from carbon fiber by gas infiltration reaction by sublimation of sublimation raw materials,
마이크로웨이브를 가하여 발열하거나, 전기저항 방식으로 발열한다.Heat is generated by applying a microwave, or heat generated by the electrical resistance method.
나아가 상기 탄화규소 섬유 발열체를 이용한 발열장치는Furthermore, the heating device using the silicon carbide fiber heating element
탄화규소 섬유 발열체의 공진·발열을 위한 마이크로웨이브를 생성하는 마그네트론을 포함하여 이루어진다.And a magnetron for generating microwaves for resonance and heat generation of the silicon carbide fiber heating element.
또 본 발명에 따른 탄화규소 섬유 발열체를 이용한 발열장치는In addition, the heating device using the silicon carbide fiber heating element according to the present invention
탄화규소 섬유 발열체;Silicon carbide fiber heating element;
이 탄화규소 섬유 발열체와 접하는 열전도체; 및A heat conductor in contact with the silicon carbide fiber heating element; And
상기 탄화규소 섬유 발열체를 자극하여 발열시키는 전원부;A power supply unit for generating heat by stimulating the silicon carbide fiber heating element;
를 포함하여 이루어진다.It is made, including.
아울러 본 발명에 따른 탄화규소 섬유 발열체를 이용한 발열장치는In addition, the heating device using the silicon carbide fiber heating element according to the present invention
탄화규소 섬유 발열체; Silicon carbide fiber heating element;
상기 탄화규소 섬유 발열체를 자극하여 발열시키는 전원부;A power supply unit for generating heat by stimulating the silicon carbide fiber heating element;
를 포함하여 이루어진다.It is made, including.
또 본 발명에 따른 탄화규소 섬유 발열체를 이용한 발열장치에서In the heat generator using the silicon carbide fiber heating element according to the present invention
상기 열전도체는 유체가 흐르는 관로이고,The heat conductor is a pipeline through which a fluid flows,
상기 전원부는 상기 탄화규소 섬유 발열체의 공진·발열을 위한 마이크로웨이브를 생성하는 마그네트론을 포함하는 것이 바람직하다.The power supply unit preferably includes a magnetron for generating microwaves for resonance and heat generation of the silicon carbide fiber heating element.
본 발명에 따르면 고온에서 승화 기체 침투반응을 통해 탄소섬유를 탄화규소 섬유로 직접 전환(그 외 유리, 알루미나, 실리카, Si3N4, 실리테이트, 보론, SiCO, Si-C-N-O 섬유도 가능)시키는 방법으로 공정이 간단할 뿐만 아니라 발열체를 연속적으로 생산할 수 있고, 단순한 반응조건 조절을 통해 물성이 우수한 결정형 탄화규소 섬유의 생산이 가능하며, 특히 내산화성, 내열성 등이 향상된 도핑원 도핑된 탄화규소 섬유를 생산할 수 있어, 내열성, 내식성, 전기적 특성이 우수하여 첨단 전기, 전자, 화학, 물리 등 실험분야 및 전자, 항공, 기계 등 다양한 산업분야, According to the present invention, the carbon fiber is directly converted into silicon carbide fiber by sublimation gas permeation reaction at high temperature (other glass, alumina, silica, Si3N4, silicate, boron, SiCO, Si-CNO fibers are also available). Not only this simple but also the heating element can be continuously produced, it is possible to produce crystalline silicon carbide fibers with excellent physical properties by controlling the reaction conditions, in particular, to produce doped source doped silicon carbide fibers with improved oxidation resistance, heat resistance, etc. It has excellent heat resistance, corrosion resistance and electrical characteristics, so it can be used in high-tech electrical, electronic, chemical, physics and other industrial fields,
특히 용광로, 발전소, 산업용·농업용 건조로, 가정용 난방기기 또는 조리용 가열기기(핫플레이트, 전기레인지 등) 등에 활용될 수 있는 발열체 및 이를 이용한 다양한 발열장치를 제공할 수 있다. In particular, it is possible to provide a heating element that can be utilized in a furnace, a power plant, an industrial / agricultural drying furnace, a household heating device or a cooking heating device (hot plate, electric range, etc.) and various heating devices using the same.
또 본 발명에 따른 탄화규소 섬유 발열체 및 이를 이용한 발열장치는 마그네트론에서 발생되는 마이크로웨이브의 파장이 탄화규소 섬유에 흡수되어 섬유 내 공진을 통해서, 또는 전기저항방식을 통해서 짧은 시간 내에 급속 발열이 가능하고, 또 열에너지에 대한 손실을 최소화할 수 있어 고효율 특성을 제공한다.In addition, the silicon carbide fiber heating element and the heating device using the same according to the present invention, the wavelength of the microwave generated from the magnetron is absorbed by the silicon carbide fiber and can be rapidly generated within a short time through the resonance in the fiber or through the electrical resistance method In addition, the loss of thermal energy can be minimized to provide high efficiency characteristics.
나아가 본 발명에 따른 발열장치는 급속 가열성 고효율 탄화규소 섬유 발열체를 이용하므로 열에너지에 대한 손실의 최소화와 병행 가능한 급속 가열 특성을 제공하며, Furthermore, the heating device according to the present invention uses a rapid heating highly efficient silicon carbide fiber heating element, thereby providing a rapid heating characteristic that can be minimized with loss of thermal energy.
섬유 구조 특성으로 다양한 히터 또는 난방기기 형상과 무관하게 다양한 발열체로 적용될 수 있으며, 짧은 시간에 급속히 열을 발생시키고 가열할 수 있게 함으로써 열에너지에 대한 손실을 최소화하면서 가열될 수 있게 하는 고효율 탄화규소 섬유 발열체를 이용한 발열장치를 제공할 수 있다.High-efficiency silicon carbide fiber heating element that can be applied to various heating elements regardless of the shape of various heaters or heaters, and can be heated while minimizing the loss of thermal energy by allowing heat to be rapidly generated and heated in a short time. It is possible to provide a heating device using.
도 1은 본 발명에 따른 탄화규소 섬유 발열체의 제조방법에 의하여 기체 침투반응에 의하여 탄소섬유 표면에서부터 탄화규소 층이 형성되는 과정을 나타낸 모식도.1 is a schematic diagram showing a process of forming a silicon carbide layer from the surface of the carbon fiber by the gas permeation reaction by the method for producing a silicon carbide fiber heating element according to the present invention.
도 2는 마이크로웨이브에 의하여 발열되는 탄화규소 섬유 발열체의 확대사진.2 is an enlarged photograph of a silicon carbide fiber heating element generated by microwaves.
도 3은 본 발명에 따른 마그네트론을 구비한 발열장치의 개념도.3 is a conceptual diagram of a heating device having a magnetron according to the present invention.
도 4는 본 발명에 따른 탄화규소 섬유 발열체를 이용한 발열장치의 개략도.Figure 4 is a schematic diagram of a heating device using a silicon carbide fiber heating element according to the present invention.
*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *
100 : 발열장치 110 : 케이싱100: heating device 110: casing
111 : 관로 112 : 단열재111: pipeline 112: insulation
114 : 발열체114: heating element
상술한 본 발명의 목적, 특징 및 장점은 첨부된 도면과 관련한 다음의 실시예를 통하여 보다 분명해질 것이다. The objects, features, and advantages of the present invention described above will become more apparent through the following embodiments in conjunction with the accompanying drawings.
이하의 특정한 구조 내지 기능적 설명들은 단지 본 발명의 개념에 따른 실시예를 설명하기 위한 목적으로 예시된 것으로, 본 발명의 개념에 따른 실시예들은 다양한 형태로 실시될 수 있으며, 본 명세서에 설명된 실시예들에 한정되는 것으로 해석되어서는 아니 된다. The following specific structures or functional descriptions are merely illustrated for the purpose of describing embodiments in accordance with the inventive concept, and embodiments according to the inventive concept may be embodied in various forms and may be described in detail herein. It should not be construed as limited to the examples.
본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로, 특정 실시예들은 도면에 예시하고 본 명세서에 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시예들을 특정한 개시 형태에 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경물, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Embodiments in accordance with the concepts of the present invention can be variously modified and have a variety of forms, specific embodiments will be illustrated in the drawings and described in detail herein. However, this is not intended to limit the embodiments in accordance with the concept of the present invention to a particular disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
제1 및/또는 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 한정되지는 않는다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소들로부터 구별하는 목적으로만, 예컨대 본 발명의 개념에 따른 권리 범위로부터 이탈되지 않은 채, 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소는 제1 구성 요소로도 명명될 수 있다. Terms such as first and / or second may be used to describe various components, but the components are not limited to the terms. The terms are only for the purpose of distinguishing one component from other components, for example, without departing from the scope of the rights according to the inventive concept, the first component may be called a second component, and For example, the second component may also be referred to as a first component.
어떠한 구성 요소가 다른 구성 요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떠한 구성 요소가 다른 구성 요소에 "직접 연결되어" 있다거나 또는 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성 요소들 간의 관계를 설명하기 위한 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 인접하는"과 "~에 직접 인접하는" 등의 표현도 마찬가지로 해석되어야 한다. When a component is referred to as being "connected" or "connected" to another component, it may be directly connected or connected to that other component, but it may be understood that other components may be present in the middle. Should be. On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that no other component exists in the middle. Other expressions to describe the relationship between components, such as "between" and "immediately between" or "adjacent to" and "directly adjacent to", should be interpreted as well.
본 명세서에서 사용하는 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로서, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서 "포함하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. The terms "comprise" or "having" herein are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof that is practiced, and that one or more other features or numbers, It is to be understood that it does not exclude in advance the possibility of the presence or addition of steps, actions, components, parts or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art, and are not construed in ideal or excessively formal meanings unless expressly defined herein. Do not.
본 발명에 따른 탄화규소 섬유의 제조방법 및 이에 의한 탄화규소 섬유는The method for producing silicon carbide fibers according to the present invention and the silicon carbide fibers thereby
규소 또는 이산화규소, 또는 이들의 혼합물로부터 선택된 어느 한 승화 원료를 고온에서 승화(Sublimation)시키는 단계를 거쳐 승화된 기체 침투반응(Gas Infiltration Reaction)에 의해 함께 배치된 탄소섬유(Carbon Fibers)로부터 제조된다.Sublimation of any sublimation raw material selected from silicon or silicon dioxide, or a mixture thereof is made from carbon fibers disposed together by a sublimated gas infiltration reaction. .
이 기체 침투반응은 진공 또는 불활성 가스 분위기에서 진행되는 것이 바람직하다.This gas permeation reaction is preferably carried out in a vacuum or inert gas atmosphere.
또 본 발명에 따른 탄화규소 섬유, 그 발열체 및 이를 이용한 발열장치는 도핑(doping)원(原)을 추가 배치하여 해당 도핑원이 나노도핑된 탄화규소 섬유를 제조하여 내산화성 및 내열성 등의 물성을 개선한 탄화규소 섬유 및 그 발열체를 제조하는 것이 바람직하다.In addition, the silicon carbide fiber, the heating element and the heating device using the same according to the present invention to further arrange a doping source to produce a silicon carbide fiber doped with the doping source to the physical properties such as oxidation resistance and heat resistance It is desirable to produce improved silicon carbide fibers and heating elements thereof.
특히 이 도핑원은 티타늄, 알루미늄, 지르코늄, 몰리브덴, 붕소, 할로겐 또는 이들의 조합으로 이루어진 군으로부터 선택되는 것이 바람직하다. 이들 도핑원 입자는 SiC 표면에 배치될 수도 있고, SiC 입자 내에 배치될 수도 있다.In particular, the doping source is preferably selected from the group consisting of titanium, aluminum, zirconium, molybdenum, boron, halogen or combinations thereof. These doped source particles may be disposed on the SiC surface or may be disposed in the SiC particles.
나아가 본 발명에 따른 탄화규소 섬유 및 그 발열체의 제조방법은 상기 탄화규소 섬유로 직접 전환되는 공정으로써 회분식 또는 연속식 공정을 거쳐 이루어진다. Furthermore, the method for producing the silicon carbide fiber and the heating element according to the present invention is a step of converting the silicon carbide fiber directly into a batch or continuous process.
한편, 제조되는 탄화규소 섬유 및 그 발열체는 탄소섬유(Carbon Fibers)로부터 제조된 탄화규소 섬유(Silicon Carbide Fibers, SiCf) 외에 유리, 알루미나, 실리카, Si3N4, 실리테이트, 보론(보론나이트라이드(Boron Nitride, BNf) 등), SiCO, Si-C-N-O 섬유일 수 있고, 역시 도핑원을 더 배치하여 도핑원입자(원소 등)가 도핑된 이들의 세라믹 섬유를 제공한다.On the other hand, the silicon carbide fiber and its heating element are manufactured from carbon fibers (Silicon Carbide Fibers, SiCf) in addition to glass, alumina, silica, Si3N4, silicate, boron (Boron Nitride , BNf), etc.), SiCO, Si-CNO fibers, and also a doping source is further arranged to provide these ceramic fibers doped with doping source particles (elements, etc.).
한편, 기체 침투반응 온도는 5~20 oC/min 승온 속도로 1,000 ~ 2,000 oC까지 가열하여 이루어지는 것이 바람직하다.On the other hand, the gas permeation reaction temperature is preferably made by heating to 1,000 ~ 2,000 oC at a temperature increase rate of 5 ~ 20 oC / min.
본 발명에서 베이스 재료인 탄소섬유는 폴리아크릴로니트릴, 피치 또는 레이온과 같은 섬유의 전구체로 제조된 탄소섬유를 의미하며, 이 탄소섬유의 직경은 5 ~ 100 um인 것이 바람직하다.In the present invention, the carbon fiber as the base material means a carbon fiber made of a precursor of a fiber such as polyacrylonitrile, pitch or rayon, and the diameter of the carbon fiber is preferably 5 to 100 um.
본 발명에 따른 제조방법에 의한 탄화규소 섬유 및 그 발열체는 Si/C 원소함량은 0.01 ~ 2.0 이고, 탄화규소 섬유의 산소 함량은 2.0% 이하인 것이 바람직하다.Silicon carbide fibers and the heating element according to the production method according to the invention is preferably Si / C element content of 0.01 ~ 2.0, the oxygen content of silicon carbide fibers is preferably 2.0% or less.
특히 본 발명의 탄화규소 섬유 및 그 발열체는 Si-C, Si-O-C, Si-C-N-O와 같은 성분으로 이루어진 탄화규소 섬유 및 모노필라멘트 직경이 5 ~ 100 um인 탄화규소 섬유를 발열체로 사용하는 것이 바람직하다.In particular, the silicon carbide fiber and the heating element of the present invention is preferably used as a heating element, silicon carbide fiber consisting of components such as Si-C, Si-OC, Si-CNO and silicon carbide fibers having a monofilament diameter of 5 to 100 um. Do.
또 본 발명의 탄화규소 섬유 발열체는 산업, 농업, 가정용 등 다양한 발열장치에 적용하기 위하여 직조 또는 적층 등의 2차 가공을 통하여 망상, 판상, 봉상 등 다양한 형상으로 가공하여 활용할 수 있다.In addition, the silicon carbide fiber heating element of the present invention may be utilized by processing into various shapes such as mesh, plate, rod and the like through secondary processing such as weaving or lamination to apply to various heating devices such as industrial, agricultural, and household.
[제조예 1][Production Example 1]
알루미나 튜브가 장착된 회분식 전기로에 규소 또는 이산화규소, 또는 이들의 혼합물로부터 선택된 승화 원료와 탄소섬유를 위치시킨 후 질소 또는 아르곤 가스 분위기 하에서 10 oC/min 승온 속도로 1,000 ~ 2,000 oC까지 가열하여, 탄화규소 섬유 발열체로 사용 가능한 탄화규소 섬유 발열체를 제조하였다.Sublimation raw material and carbon fiber selected from silicon or silicon dioxide, or mixtures thereof are placed in a batch electric furnace equipped with alumina tube, and then carbonized by heating to 1,000 to 2,000 oC at a temperature of 10 oC / min at a temperature of 10 oC / min under nitrogen or argon gas atmosphere. A silicon carbide fiber heating element that can be used as a silicon fiber heating element was prepared.
상기 일정 온도에서 승화 기체의 확산반응 시간을 조절하여 탄화규소 섬유 및 이의 응용 즉, 발열체를 제조한다.By controlling the diffusion reaction time of the sublimation gas at the predetermined temperature to produce a silicon carbide fiber and its application, that is, a heating element.
[제조예 2][Production Example 2]
알루미나 튜브가 장착된 연속식 전기로에 규소 또는 이산화규소, 또는 이들의 혼합물로부터 선택된 승화 원료를 위치시킨 후 탄소섬유를 알루미나 튜브에 배치한 후After placing a sublimation raw material selected from silicon or silicon dioxide or a mixture thereof in a continuous electric furnace equipped with alumina tubes, the carbon fibers are placed in an alumina tube.
질소 또는 아르곤 가스 분위기 하에서 10 oC/min승온 속도로 1,000 ~ 2,000 oC의 승화 온도를 유지시킨 후 After maintaining a sublimation temperature of 1,000 to 2,000 oC at a temperature of 10 oC / min in a nitrogen or argon gas atmosphere
섬유 권사기의 권취 속도를 목적하는 생산 속도에 맞게 목적하는 수준으로 설정하여 연속으로, 탄화규소 섬유 발열체로 사용 가능한 탄화규소 섬유를 제조한다.The winding speed of the fiber winding machine is set to the desired level according to the desired production speed, thereby producing silicon carbide fibers which can be used as a silicon carbide fiber heating element continuously.
[실시예 1 내지 3][Examples 1-3]
제조예 1로부터 1,750 oC의 승화 온도를 유지시킨 후 확산 반응 시간을 30분(실시예 1), 60분(실시예 2), 120분(실시예 3)으로 다양화하여 실시하였다.After maintaining a sublimation temperature of 1,750 oC from Preparation Example 1, the diffusion reaction time was varied by 30 minutes (Example 1), 60 minutes (Example 2), 120 minutes (Example 3).
[실시예 4 내지 8][Examples 4 to 8]
제조예 1로부터 승화 원료에 티타늄 0.1 wt%(실시예 4), 알루미늄 0.1 wt%(실시예 5), 지르코늄 0.1 wt%(실시예 6), 몰리브덴 0.1 wt%(실시예 7), 붕소 0.1 wt%(실시예 8)를 각각 더 혼합하여 1,750 oC의 승화 온도에서 120분 동안 승화시켜 승화 기체와 탄소섬유의 확산 반응을 수행하여, 탄화규소 섬유 발열체로 사용 가능하며 도핑원이 도핑된 탄화규소 섬유 및 그 발열체를 제조하였다.0.1 wt% titanium (Example 4), aluminum 0.1 wt% (Example 5), zirconium 0.1 wt% (Example 6), molybdenum 0.1 wt% (Example 7), 0.1 wt% of boron in the sublimation raw material from Preparation Example 1 % (Example 8) was further mixed with each other to sublimate for 120 minutes at a sublimation temperature of 1750 oC to perform the diffusion reaction of the sublimation gas and carbon fiber, which can be used as a silicon carbide fiber heating element, doped silicon carbide fibers doped with a doping source And the heating element was manufactured.
[실시예 9]Example 9
제조예 2로부터 질소 또는 아르곤 가스 분위기 하에서 1,750 oC의 승화 온도에서 섬유 권사기의 권취 속도를 3cm/min로 연속적으로, 탄화규소 섬유 발열체로 사용 가능한 탄화규소 섬유를 제조하였다.From the preparation example 2, the silicon carbide fiber which can be used as a silicon carbide fiber heating element was continuously manufactured at a sublimation temperature of 1,750 ° C. under a nitrogen or argon gas atmosphere at a speed of 3 cm / min.
표 1
Figure PCTKR2016002609-appb-T000001
Table 1
Figure PCTKR2016002609-appb-T000001
상기 표 1 및 첨부 도 1과 같이(도 1은 승화 기체 침투반응(Gas Infiltration Reaction)에 의하여 탄소섬유 표면에서부터 탄화규소 층이 형성되는 모식도 및 특정 시간대의 탄화규소 섬유의 SEM 분석 사진을 함께 도시하고 있다),As shown in Table 1 and the accompanying FIG. 1 (FIG. 1 is a schematic diagram showing a silicon carbide layer formed from a carbon fiber surface by a sublimation gas infiltration reaction and a SEM analysis photograph of silicon carbide fibers at a specific time period. have),
반응 시간이 증가될수록 탄화규소 층이 증가되어 최종적으로 탄화규소 섬유로 전환됨을 확인할 수 있다. It can be seen that as the reaction time increases, the silicon carbide layer is increased to finally convert to silicon carbide fibers.
본 발명에서 탄소섬유(코어쉘)의 직경은 1~3㎛인 것이 바람직하다.In the present invention, the diameter of the carbon fiber (core shell) is preferably 1 to 3㎛.
[실험예 1]Experimental Example 1
실시예 4에 따른 도핑원(Ti)이 도핑된 탄화규소 섬유를 제조하고, 이를 탄화규소 섬유 발열체로 사용하여, 마그네트론을 구비한 발열장치에서 발열체로 발열 실험을 하였다.A silicon carbide fiber doped with a doping source (Ti) according to Example 4 was prepared and used as a silicon carbide fiber heating element, and an exothermic experiment was performed with a heating element in a heating device equipped with a magnetron.
그 결과 도 2의 확대 사진에서와 같이, 망상의 탄화규소 섬유 발열체(L 150mm×W 150mm×H 5mm)가 300W 이하의 저전력으로도 발열이 되며, 특히 4초 내에 1,000℃ 이상의 고온으로 발열이 되는 것으로 확인되었다.As a result, as shown in the enlarged photograph of FIG. 2, the reticulated silicon carbide fiber heating element (L 150mm × W 150mm × H 5mm) generates heat even at low power of 300W or less, and in particular, generates heat at a high temperature of 1,000 ° C. or more within 4 seconds. It was confirmed that.
나아가 본 발명에 따른 발열장치는 상기 승화된 기체 침투반응을 통하여 제조된 탄화규소 섬유 발열체와, 이 발열체의 공진·발열을 위한 마이크로웨이브를 생성하는 마그네트론을 포함하여 이루어지는 것이 바람직하다.Furthermore, the heating device according to the present invention preferably comprises a silicon carbide fiber heating element manufactured through the sublimation gas penetration reaction, and a magnetron for generating microwaves for resonance and heat generation of the heating element.
대안적으로 본 발명에 따른 탄화규소 섬유 발열체를 이용한 발열장치는 탄화규소 섬유 발열체를 자극하여 발열시키는 전원부를 포함하여 구성된, 전기저항 방식의 발열장치로 구성될 수 있다(단위체적의 탄화 규소 섬유 발열체에 소모전력 17w, 35V, 0.49 A 정도를 가하여 전기저항 방식으로 가열하는 경우, 2초 내에 1,000℃ 이상까지 급속 가열하며, 종래 발열체 보다 빠른 냉각 거동을 보인다).Alternatively, the heating device using the silicon carbide fiber heating element according to the present invention may be composed of an electric resistance type heating device including a power supply unit for stimulating the silicon carbide fiber heating element to generate heat (silicon carbide fiber heating element of a unit volume). In the case of heating by electric resistance method by adding power consumption of 17w, 35V, 0.49A, rapid heating to 1,000 ° C or more within 2 seconds, showing faster cooling behavior than the conventional heating element).
상기 탄화규소 섬유 발열체는 마그네트론에서 발생되는 마이크로웨이브의 파장 흡수 및 공진을 통해 2 ~ 5초 라는 짧은 시간 내에 급속히 열을 발생시키고, 섬유상의 특징으로 인하여 열에너지에 대한 손실을 최소화할 수 있어 고효율 특성을 확보할 수 있다.The silicon carbide fiber heating element rapidly generates heat within a short time of 2 to 5 seconds through wavelength absorption and resonance of the microwave generated from the magnetron, and due to the characteristics of the fiber, it is possible to minimize the loss of thermal energy, thereby achieving high efficiency characteristics. It can be secured.
또 도 3의 개념도에서 확인할 수 있는 바와 같이, 본 발명의 발열장치에서 마이크로웨이브를 발생시키는 마그네트론의 구동 스위칭 및 가변 출력 제어를 통해 탄화규소 섬유 발열체의 발열 온도를 300 oC ~ 1,400 oC 범위 내에서 조절할 수 있다. 도 3에서는 마그네트론 발열장치에서 마이크로웨이브에 의하여 가열된 망상 2차 가공 상태의 탄화규소 섬유 발열체의 발열 사진을 확인할 수 있다.In addition, as can be seen in the conceptual diagram of Figure 3, in the heating device of the present invention through the drive switching and variable output control of the magnetron generating microwaves to control the exothermic temperature of the silicon carbide fiber heating element within the range of 300 oC ~ 1,400 oC Can be. In FIG. 3, it is possible to check the exothermic picture of the silicon carbide fiber heating element in a reticulated secondary processing state heated by microwaves in the magnetron heating device.
한편, 본 발명의 핵심을 이루는 발열장치는 탄화규소 섬유 발열체와,On the other hand, the heating device which forms the core of the present invention is a silicon carbide fiber heating element,
이 탄화규소 섬유 발열체와 접하는 열전도체와,A heat conductor in contact with the silicon carbide fiber heating element,
상기 탄화규소 섬유 발열체를 자극하여 발열시키는 전원부를 포함하여 구성된다.It comprises a power supply for stimulating the silicon carbide fiber heating element to generate heat.
상기 열전도체는 금속 패널일 수 있고, 발열장치는 조리기구, 난방기기, 건조기 등일 수 있다.The heat conductor may be a metal panel, and the heating device may be a cooking utensil, a heating device, a dryer, or the like.
또 상기 전원부는 상기 탄화규소 섬유 발열체의 공진·발열을 위한 마이크로웨이브를 생성하는 마그네트론을 포함할 수 있고, 필요에 따라 탄화규소 섬유 발열체는 전기 저항식으로 가열되는 형태를 취할 수도 있다.In addition, the power supply unit may include a magnetron for generating a microwave for the resonance and heat generation of the silicon carbide fiber heating element, the silicon carbide fiber heating element may take the form of electric resistance heating if necessary.
나아가 본 발명에 따른 발열장치에서 상기 전원부는 탄화규소 섬유 발열체의 공진·발열을 위한 마이크로웨이브를 생성하는 마그네트론을 포함할 수 있고, Furthermore, in the heating device according to the present invention, the power supply unit may include a magnetron for generating microwaves for resonance and heat generation of the silicon carbide fiber heating element.
이 탄화규소 섬유 발열체는 앞서 설명한 승화된 기체 침투반응을 통하여 제조된 탄화규소 섬유 발열체인 것이 바람직하다.The silicon carbide fiber heating element is preferably a silicon carbide fiber heating element manufactured through the sublimation gas penetration reaction described above.
구체적으로 도 4를 살펴보면, 본 발명에 따른 발열장치로 상기 열전도체가 유체가 흐르는 관로(111)인 형태를 도시한 일종의 열풍기 또는 보일러(100)에 대한 개념도가 도시되어 있다.Specifically, referring to FIG. 4, there is shown a conceptual diagram of a kind of hot air blower or boiler 100 showing a form in which the heat conductor is a conduit 111 through which a fluid flows.
이 발열장치(100)는 케이싱(110) 내에 탄화규소 섬유 발열체(114) 및 이와 접하는 열전도체인 관로(111)가 구비되어 있다. The heat generating device 100 is provided with a silicon carbide fiber heating element 114 and a conduit 111 which is a heat conductor in contact with the casing 110.
이 관로(111)에는 유체가 흐르며, 이 유체가 송풍기(미도시됨)에 의하여 공급되는 공기인 경우에는 발열장치는 열풍기로 구성되며, 유체가 순환펌프(미도시됨)에 의하여 공급되는 난방수인 경우에는 발열장치는 난방기기인 보일러(100)를 구성한다.Fluid flows through the conduit 111, and when the fluid is air supplied by a blower (not shown), the heat generating device is configured as a hot air blower, and the fluid is supplied by the circulation pump (not shown). In the case of the heating device constitutes a boiler 100 that is a heating device.
또 상기 관로(111)는 열손실 방지를 위하여 단열재(112)에 의하여 둘러싸여 있는 것이 바람직하고, 구리 등 열전도성이 우수한 소재를 사용하는 것이 바람직하다.In addition, the pipe 111 is preferably surrounded by a heat insulating material 112 to prevent heat loss, it is preferable to use a material having excellent thermal conductivity, such as copper.
상기 단열재(112)는 고온(1300℃ 이상)의 가열 온도에서도 사용할 수 있는 불연성 소재인 것이 좋다.The heat insulating material 112 is preferably a non-combustible material that can be used even at a high temperature (1300 ℃ or more) heating temperature.
상기 탄화규소 섬유 발열체(114)를 자극하여 발열시키는 전원부는 마이크로웨이브를 생성시키기 위한 마그네트론(120)과, 이 마그네트론(120)으로부터 발생된 마이크로웨이브를 탄화규소 섬유 발열체(114)로 유도하는 도파관(130)을 포함하는 것이 바람직하다.The power supply unit for stimulating and heating the silicon carbide fiber heating element 114 generates a microwave, and a waveguide for guiding the microwaves generated from the magnetron 120 to the silicon carbide fiber heating element 114. 130).
또 필요에 따라 상기 단열재(112)와 발열체(114) 사이에는 중계체(113)가 더 구비되어 부수적인 도파부재로 활용되어 마그네트론(120)으로부터 발생된 마이크로웨이브가 도파관(130) 및 중계체(113)를 통하여 탄화규소 섬유 발열체(114)로 유도하며, 이 중계체는 세라믹 소재를 활용할 수 있다.In addition, if necessary, a relay body 113 is further provided between the heat insulator 112 and the heating element 114 to be used as an additional waveguide member, and the microwave generated from the magnetron 120 is a waveguide 130 and a relay body ( It is guided to the silicon carbide fiber heating element 114 through 113, the relay body may utilize a ceramic material.
한편 상기 케이싱(120)은 마이크로웨이브가 외부로 방출되는 것을 방지하고 외부 충격 등으로부터 내장 구성요소를 보호하기 위한 소재(예: SUS)를 채용하는 것이 바람직하다. On the other hand, the casing 120 preferably employs a material (eg, SUS) for preventing microwaves from being released to the outside and protecting internal components from external shocks.
본 발명에 따른 발열장치는 마그네트론에서 생성되는 마이크로웨이브가 도파관을 경유하여 케이싱 내부의 단열재와 중계체(세라믹)를 거쳐 탄화규소 섬유 발열체에 전달되어, 결국 전달된 탄화규소 섬유는 마이크로웨이브의 파장에 의해 공진·발열하게 되고, 발열된 탄화규소 섬유는 1~5초 사이에 급격이 상승하는 열에 의해 인접한 관로를 통과하는 난방수를 가열할 수 있다.In the heating device according to the present invention, the microwave generated from the magnetron is transferred to the silicon carbide fiber heating element through the heat insulating material and the relay (ceramic) inside the casing via the waveguide, and the silicon carbide fiber is finally delivered to the wavelength of the microwave. The silicon carbide fibers generated by resonance and heat generation can heat the heating water passing through the adjacent pipe line by the heat rapidly increasing between 1 to 5 seconds.
도 4에는 상기 탄화규소 섬유 발열체가 관로 하부에만 배치된 것을 기재하고 있지만 관로를 중심으로 관로를 감싸는 형태로 구성할 수 있다.Although FIG. 4 describes that the silicon carbide fiber heating element is disposed only in the lower part of the conduit, the silicon carbide fiber heating element may be configured to surround the conduit.

Claims (10)

  1. 규소 또는 이산화규소, 또는 이들의 혼합물로부터 선택된 어느 한 승화 원료와 탄소섬유를 진공 또는 불활성 가스 분위기 및 고온 상태에 배치하여 승화 원료의 승화로 기체 침투반응(Gas Infiltration Reaction)에 의해 탄소섬유로부터 탄화규소 섬유를 제조하는 탄화규소 섬유의 제조방법.Sublimation raw material and carbon fiber selected from silicon or silicon dioxide, or mixtures thereof are placed in a vacuum or inert gas atmosphere and at a high temperature so that sublimation of the sublimation raw material is carried out from the carbon carbide from the carbon carbide by gas infiltration reaction. Method for producing silicon carbide fibers to produce fibers.
  2. 제 1 항에 있어서,The method of claim 1,
    탄소섬유와 함께 도핑원을 더 고온 상태에 배치하여 나노도핑되도록 하는 것을 특징으로 하는 탄화규소 섬유의 제조방법.A method for producing silicon carbide fibers, characterized in that the doping source is placed at a higher temperature together with the carbon fibers to be nano-doped.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 도핑원은 티타늄, 알루미늄, 지르코늄, 몰리브덴, 붕소, 할로겐 또는 이들의 조합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 탄화규소 섬유의 제조방법.The doping source is a method of producing silicon carbide fibers, characterized in that selected from the group consisting of titanium, aluminum, zirconium, molybdenum, boron, halogen or a combination thereof.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    기체 침투반응 온도는 5~20 oC/min 승온 속도로 1,000 ~ 2,000 oC까지 가열하여 이루어지고,Gas permeation reaction temperature is made by heating to 1,000 ~ 2,000 oC at a temperature increase rate of 5 ~ 20 oC / min,
    회분식 또는 연속식 공정으로 진행되는 것을 특징으로 하는 탄화규소 섬유의 제조방법.Process for producing silicon carbide fibers, characterized in that the batch or continuous process.
  5. 규소 또는 이산화규소, 또는 이들의 혼합물로부터 선택된 어느 한 승화 원료와 탄소섬유를 진공 또는 불활성 가스 분위기 및 고온 상태에 배치하여,Any sublimation raw material and carbon fiber selected from silicon or silicon dioxide, or mixtures thereof are placed in a vacuum or inert gas atmosphere and a high temperature state,
    승화 원료의 승화로 기체 침투반응(Gas Infiltration Reaction)에 의해 탄소섬유로부터 탄화규소 섬유로 제조하여,It is made of silicon carbide fiber from carbon fiber by gas infiltration reaction by sublimation of sublimation raw material,
    탄소섬유와 탄화규소 섬유를 포함하는 발열체로 사용하는 섬유상 세라믹 발열체의 제조방법.A method of producing a fibrous ceramic heating element used as a heating element comprising carbon fibers and silicon carbide fibers.
  6. 규소 또는 이산화규소, 또는 이들의 혼합물로부터 선택된 어느 한 승화 원료와 탄소섬유를 진공 또는 불활성 가스 분위기 및 고온 상태에 배치하여,Any sublimation raw material and carbon fiber selected from silicon or silicon dioxide, or mixtures thereof are placed in a vacuum or inert gas atmosphere and a high temperature state,
    승화 원료의 승화로 기체 침투반응(Gas Infiltration Reaction)에 의해 탄소섬유로부터 제조되고,It is made from carbon fiber by gas infiltration reaction by sublimation of sublimation raw materials,
    마이크로웨이브를 가하여 발열하는 탄화규소 섬유 발열체.Silicon carbide fiber heating element that generates heat by applying microwave.
  7. 청구항6의 탄화규소 섬유 발열체와, The silicon carbide fiber heating element of claim 6,
    이 발열체의 공진·발열을 위한 마이크로웨이브를 생성하는 마그네트론을 포함하는 발열장치.A heating device comprising a magnetron for generating microwaves for resonance and heat generation of this heating element.
  8. 청구항5의 탄화규소 섬유 발열체;The silicon carbide fiber heating element of claim 5;
    이 탄화규소 섬유 발열체와 접하는 열전도체; 및A heat conductor in contact with the silicon carbide fiber heating element; And
    상기 탄화규소 섬유 발열체를 자극하여 발열시키는 전원부;A power supply unit for generating heat by stimulating the silicon carbide fiber heating element;
    를 포함하여 이루어진 발열장치.Heating device comprising a.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 열전도체는 유체가 흐르는 관로인 것을 특징으로 하는 발열장치.The heat conductor is a heating device, characterized in that the fluid flow through the pipe.
  10. 청구항5의 탄화규소 섬유 발열체;The silicon carbide fiber heating element of claim 5;
    상기 탄화규소 섬유 발열체를 자극하여 발열시키는 전원부;A power supply unit for generating heat by stimulating the silicon carbide fiber heating element;
    를 포함하여 이루어진 발열장치.Heating device comprising a.
PCT/KR2016/002609 2015-06-25 2016-03-16 Method for producing silicon carbide fiber, silicon carbide fiber and silicon carbide fiber heating element produced thereby, and heating device using same WO2016208846A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2015-0090437 2015-06-25
KR1020150090437A KR101684600B1 (en) 2015-06-25 2015-06-25 Manufacturing method for silicon carbide fiber and silicon carbide fiber thereof
KR1020150150501A KR101732573B1 (en) 2015-10-28 2015-10-28 Fiber-type ceramic heating element and method for manufacturing the same
KR10-2015-0150501 2015-10-28
KR10-2016-0006913 2016-01-20
KR1020160006913A KR101734472B1 (en) 2016-01-20 2016-01-20 Microwave heating element using silicon carbide fibers and heating device thereof

Publications (1)

Publication Number Publication Date
WO2016208846A1 true WO2016208846A1 (en) 2016-12-29

Family

ID=57585930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002609 WO2016208846A1 (en) 2015-06-25 2016-03-16 Method for producing silicon carbide fiber, silicon carbide fiber and silicon carbide fiber heating element produced thereby, and heating device using same

Country Status (1)

Country Link
WO (1) WO2016208846A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129413A (en) * 1998-08-21 2000-05-09 Osaka Gas Co Ltd Carbon fiber-containing metallic material and its production
JP2002266170A (en) * 2000-12-20 2002-09-18 Showa Denko Kk Branched vapor grown carbon fiber, transparent electrically conductive composition and use thereof
KR20090093203A (en) * 2008-02-28 2009-09-02 충남대학교산학협력단 Carbon Nanofiber uniformly deposited catalytic metal as a Hydrogen Storage Medium and Manufacturing Method Thereof
JP2009298610A (en) * 2008-06-11 2009-12-24 Shin-Etsu Chemical Co Ltd Method for producing silicon carbide tube
KR20140095137A (en) * 2013-01-23 2014-08-01 주식회사 비엠에스이앤씨 Apparatus and method for preventing the drain from freezing using the microwave

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129413A (en) * 1998-08-21 2000-05-09 Osaka Gas Co Ltd Carbon fiber-containing metallic material and its production
JP2002266170A (en) * 2000-12-20 2002-09-18 Showa Denko Kk Branched vapor grown carbon fiber, transparent electrically conductive composition and use thereof
KR20090093203A (en) * 2008-02-28 2009-09-02 충남대학교산학협력단 Carbon Nanofiber uniformly deposited catalytic metal as a Hydrogen Storage Medium and Manufacturing Method Thereof
JP2009298610A (en) * 2008-06-11 2009-12-24 Shin-Etsu Chemical Co Ltd Method for producing silicon carbide tube
KR20140095137A (en) * 2013-01-23 2014-08-01 주식회사 비엠에스이앤씨 Apparatus and method for preventing the drain from freezing using the microwave

Similar Documents

Publication Publication Date Title
KR20170087380A (en) Microwave heating element using silicon carbide fibers and heating device thereof
US5720933A (en) Process for preparing ceramic fibers
CN1189430C (en) Composite carbonaceous heat insualtor and its prepn.
JP2011136904A (en) Apparatus suitable for contacting gases at high temperature
WO2011122890A2 (en) Method for coating oxidation protective layer for carbon/carbon composite, carbon heater, and cooker
JP7488890B2 (en) Composites for ceramic electric heating elements
CAI Fabrication of Y2Si2O7 coating and its oxidation protection for C/SiC composites
CN106966765A (en) Thermostructural composite long-life composite coating and preparation method thereof
WO2016208846A1 (en) Method for producing silicon carbide fiber, silicon carbide fiber and silicon carbide fiber heating element produced thereby, and heating device using same
JPH0283276A (en) Porous composite ceramic structure
CN108911752A (en) A method of synthesizing ceramic material under the conditions of extra electric field
JP5241392B2 (en) Method for producing carbonaceous film
KR20120057937A (en) Flexible Sheet Heater Using Fiber Reinforced Composite Insulation Film
KR101734472B1 (en) Microwave heating element using silicon carbide fibers and heating device thereof
JP4394345B2 (en) Non-oxide ceramic sintering furnace and non-oxide ceramic sintered body manufacturing method
KR101732573B1 (en) Fiber-type ceramic heating element and method for manufacturing the same
JP2560680B2 (en) Heat-resistant insulated wire and method of manufacturing the same, and method of manufacturing heat-resistant insulating material
KR101684600B1 (en) Manufacturing method for silicon carbide fiber and silicon carbide fiber thereof
JP2955127B2 (en) Ceramic heater
JP2636978B2 (en) Conductive ceramic sintered body and method of manufacturing the same
RU2818057C1 (en) Charge for producing composite material based on molybdenum disilicide
WO2019117473A1 (en) Sioic fiber, metal-doped sioic fiber, microwave absorption and heating element comprising same metal-doped sioic fiber, and manufacturing method therefor
WO2002061808A2 (en) Heat treatment apparatus and wafer support ring
JPH0297472A (en) Conductive silicon carbide sintered porous body and production thereof
JPH0569767B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 02/03/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16814559

Country of ref document: EP

Kind code of ref document: A1