WO2016153155A1 - Biomimetic based pressure sensor manufacturing method and pressure sensor manufactured thereby - Google Patents

Biomimetic based pressure sensor manufacturing method and pressure sensor manufactured thereby Download PDF

Info

Publication number
WO2016153155A1
WO2016153155A1 PCT/KR2015/014384 KR2015014384W WO2016153155A1 WO 2016153155 A1 WO2016153155 A1 WO 2016153155A1 KR 2015014384 W KR2015014384 W KR 2015014384W WO 2016153155 A1 WO2016153155 A1 WO 2016153155A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanowires
pressure sensor
metal film
pdms
coated
Prior art date
Application number
PCT/KR2015/014384
Other languages
French (fr)
Korean (ko)
Inventor
고현협
하민정
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Publication of WO2016153155A1 publication Critical patent/WO2016153155A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress

Definitions

  • the present invention relates to a bio-simulating pressure sensor, and more particularly, hierarchical by fusing the microstructure patterning of organic materials and the nanostructure of inorganic materials.
  • the present invention relates to a method for manufacturing a bio simulation-based pressure sensor which improves performance as a pressure sensor by maximizing surface area by interlocking the fabricated structure.
  • Human skin can experience real touch, vibration, texture, and hardness through several types of tactile receptors.
  • Human skin in particular, can distinguish between static and dynamic mechanical stimuli due to different types of mechanical receptors, such as Ruffini Organs and Pancinian blood cells.
  • Slow-adapted lupine organs are suitable for static sensing, such as gripping objects at constant pressure, while fast-adapted Pacinian blood cells are usually suitable for detecting dynamic stimuli of high-frequency vibrations.
  • Typical sensing materials used in electronic skin are polymer conductive polymers with high dielectric constants (k) (poly (3-hexylthiophene), polypyrrole, polyaniline), or semiconductors (silicon, zinc oxide, cadmium selenide) and elastomers.
  • conductive materials such as nanomaterial metals (CNTs, graphene, gold, and silver) contained in (elastomers).
  • the conductive polymer and the composite pressure sensor has a viscoelastic (viscoelastic), there is a problem that the reaction rate is slow and the sensor performance changes with respect to the external temperature also frequently.
  • piezoresistive method that can be detected by changing the resistance as the contact area changes with the pressure recently, and the capacitance that can be detected by changing the capacitance as the thickness of the dielectric layer changes according to the external pressure.
  • Capacitive, piezoelectric, which reacts to external pressure using piezoelectric materials, and triboelectirc electronic skin that senses the movement of objects using electrostatic properties commonly seen in everyday life. Etc. are being developed.
  • the present invention is to fuse the microstructure patterning (organic) material of the organic material (nanostructure) and the nanostructure (organic structure) of the inorganic material (inorganic) to produce a hierarchical structure It is an object of the present invention to provide a method for manufacturing a bio simulation-based pressure sensor that improves the performance as a pressure sensor by maximizing the surface area by interlocking.
  • the present invention is to provide a pressure sensor capable of recognizing both static and dynamic pressure, such as human skin using a nano-material capable of both resistance / piezoelectric signal transmission. It is done.
  • a method of manufacturing a bio simulation-based pressure sensor comprising: (a) forming a plurality of microfillers on each of a pair of PDMS substrates from a silicon microhole pattern; (b) growing nanowires on a plurality of microfillers formed on the pair of PDMS substrates; (c) coating any one of the pair of PDMS substrates with a metal film on the microfiller on which the nanowires are grown; And (d) engaging the PDMS substrate on which the nanowires are grown with the PDMS substrate partially coated with the metal film in step (c) of the pair of PDMS substrates, wherein (b) The nanowire of the PDMS substrate of step) and the nanowire of the step (c) are connected to each other so that the pressure sensor of the piezoresistive method, the nanowire of the PDMS substrate of the step (b) and the metal film of the step (c) The coated nanowires are interlocked to simultaneously implement a piezo
  • a hierarchical structure is manufactured by fusing a microstructure patterning of an organic material and a nanostructure of an inorganic material. By interlocking with each other, the surface area is maximized, and effective pressure transmission is possible, thereby improving performance as a pressure sensor.
  • bio simulation-based pressure sensor manufacturing method by using an inorganic material of non-viscoelastic properties is very fast reaction speed compared to the conventional pressure sensor, and has an excellent stability against external temperature changes.
  • the method for manufacturing a bio simulation-based pressure sensor according to the present invention can detect both static and dynamic external pressure by using the structural and material-specific piezolectic properties of zinc oxide (ZnO). It has an effect.
  • FIG. 1 illustrates a biobased hierarchical ZnO nanowire array
  • FIG. 2 is a diagram comparing the static pressure sensing capability of the electronic skin based on the interlocking structure of the hierarchical ZnO nanowire array;
  • 3 is a view for explaining the dynamic pressure sensing capability of the electronic skin based on the engagement structure of the hierarchical ZnO nanowire array;
  • FIG. 6 is a graph illustrating the relationship between the frequency and the current of the piezoresistive and piezoelectric methods.
  • FIG. 1 is a diagram illustrating a manufacturing process of a bio simulation-based pressure sensor according to the present invention.
  • a microfiller is formed on a PDMS (polydimethylsiloxane) substrate through a soft lithography method from a silicon microhole pattern (S100).
  • PDMS polydimethylsiloxane
  • FIG. 1 illustrates the formation of a micropillar on one PDMS (polydimethylsiloxane) substrate
  • the microfiller is substantially formed on a pair of PDMS (polydimethylsiloxane) substrates in step S100.
  • a hierarchical zinc oxide layer on the pair of PDMS micropillar arrays is formed through hydrothermal synthesis to fabricate a hierarchical micro and nanostructured interlocking structure for flexible electronic skin (or pressure sensor).
  • ZnO performing a step of forming a nanowire (NW) (S200).
  • the zinc oxide nanowire array according to the hydrothermal synthesis method can be fixed at low cost, large area and low temperature, and can be grown on a flexible substrate with high aspect ratio according to optimized experimental conditions.
  • the PDMS microarray was formed from the original microphone-hole patterned silicon micromold. At this time, ZnO nanowires are formed on the top of the PDMS micropillar array by hydrothermal method.
  • the hierarchical zinc oxide nanowires are coated with a thin metal film to reduce electrical conductivity and resistance (S300).
  • a metal film is partially coated on the plurality of microfillers in which the nanowires are grown on any one PDMS substrate among the pair of PDMS substrates.
  • the electron micrograph in FIG. 1D shows that the ZnO nanowires were uniformly grown on the top of the PDMS microfiller array by the hydrothermal method.
  • the zinc oxide nanowires are grown through hydrothermal synthesis using zinc oxide nanocrystals uniformly coated on a PDMS micropillar array as a nucleus by a dip-coating method.
  • the PDMS substrate is suspended on the surface of the growth solution in a state in which the lower side of the microfiller is in contact with the solution so that the zinc oxide nanowires can be uniformly grown without any zinc oxide deposit.
  • zinc cations (Zn 2+ ) from zinc nitrate hydrate (Zn (NO 3 ) 2 xH 2 O) and oxygen anions from distilled water (DI) water follow the C axis of the ZnO nanowires. Alternately stacked
  • the thin metal film coated on top of the ZnO nanowire array is 10 times higher than the pure resistance of ZnO nanowires.
  • the electrical resistance can be reduced by more than -3 times to facilitate the current flow between ZnO nanowires.
  • the resistive method is primarily responsible for the stress (or stress) -induced change in contact area between interlocked hierarchical structures. Affected by
  • the dimensions of the zinc oxide nanowires and PDMS microfillers have a significant impact on the strain-induced contact area change and thus on the overall performance of the electronic skin.
  • the aspect ratio (AR) of ZnO nanowires (Fig. 2C, d) and the pitch of PDMS microfiller arrays (Fig. 3 and Table 1) are systematically investigated to investigate the detection performance of the electronic skin. , 30, 40um).
  • Figure 3a shows a hierarchical micro and nano structure interlock device configuration for highly sensitive resistive electronic skin.
  • the electron microscopy image in FIG. 3b clearly shows that the top and bottom of the ZnO nanowires are interlocked with each other on the PDMS microfiller array.
  • the pressure applied in this interlocked structure induces a change in contact surface between the interlocked nanowires and a change in contact resistance.
  • the hierarchical structure of ZnO nanowires on PDMS micropillar arrays provides a large surface area that can lead to large changes in contact resistance.
  • the hierarchical structure allows for minimal contact between nanowires at an early stage without any pressure, and allows for a continuous increase of the contact area under pressure, resulting in very sensitive resistance changes in the electronic skin. Cause.
  • microfiller arrays of different pitch sizes and planar nanowire arrays were introduced to compare resistance changes with pressure.
  • 3c shows that the relative resistance of the electronic skin decreases rapidly with increasing contact area at low pressure (below 2 kPa) and slowly decreases at high pressure (more than 2 kpa).
  • Resistance change is nonlinear depending on pressure change. That is, the pressure change may be due to the nonlinear relationship between the applied pressure and the contact area between the nanowires.
  • the gradual decrease in sensitivity as a function of nonlinear exponential law is advantageous for increasing the dynamic range of the pressure sensor to detect stimuli over a wide pressure range.
  • the index b is known to be proportional to the surface roughness and the surface area.
  • step S400 a step of configuring a pressure sensor of a piezoresistive type and a piezoelectric type is performed (S400).
  • the contact resistance is changed depending on the pressure, and thus the static pressure may be mainly detected.
  • the piezoelectric pressure sensor is a pressure sensor formed by engaging a hierarchical structure without any metal coating according to S300 among the pair of PDMS substrates being engaged.
  • the metal-coated ZnO nanowire hierarchy and the non-metal-coated ZnO nanowire contacts are in Schottky contact.
  • the piezoelectric pressure sensor may sense dynamic pressure by generating an instantaneous electrical potential difference in the piezoelectric material due to pressure.
  • the piezoelectric pressure sensor will be described with reference to FIG. 5.
  • FIG. 5D shows that the piezoelectric electronic skin can detect high frequency stimulation of 3 Hz or higher
  • FIG. 5E shows that the hierarchical nanowire array has a high signal-to-noise ratio at the output voltage. It can be seen that (2.1m / s) can be detected.
  • the piezoelectric current and the voltage signal are increased, so that the external pressure can be detected.
  • the high frequency of 250Hz was also detected according to the possible characteristics, and when compared with the piezoresisitive method that can recognize static pressure, it can be seen that it transmits the accurate signal even at the high frequency.
  • the piezoelectric method When referring to the formula related to the current, the current is related to the strain rate of the nanowire, which increases as the frequency increases, resulting in an increase in the strain rate. I can see that

Abstract

A biomimetic-based pressure sensor manufacturing method according to the present invention comprises: (a) a step of forming a plurality of micropillars on each of a pair of PDMS substrates from a silicon microhole pattern; (b) a step of growing nanowire in a plurality of micropillars formed on the pair of PDMS substrates; (c) a step of partially coating any one of the pair of PDMS substrates, in which the nanowire has grown in the micropillars, with a metal film; and (d) a step of engaging the PDMS substrates in which the nanowire has grown, among the pair of PDMS substrates, with the PDMS substrate which has been partially coated with the metal film in step (c). The method is effective in improving the performance as a pressure sensor by maximizing the surface area and enabling effective pressure transmission.

Description

생체모사 기반 압력센서 제조방법 및 그 제조방법에 의해 제조된 압력센서Bio simulation based pressure sensor manufacturing method and pressure sensor manufactured by the manufacturing method
본 발명은 생체모사 기반 압력센서에 관한 것으로, 더욱 상세하게는 유기(organic) 물질의 마이크로구조(microstructure) 패터닝(patterning)과 무기(inorganic) 물질의 나노구조(nanostructure)를 융합하여 계층적(hierarchical) 구조를 제작하여 서로 맞물림(interlocking)으로써 표면적을 극대화하여 압력센서로서의 성능을 향상시킨 생체모사 기반 압력센서 제조방법에 관한 것이다.The present invention relates to a bio-simulating pressure sensor, and more particularly, hierarchical by fusing the microstructure patterning of organic materials and the nanostructure of inorganic materials. The present invention relates to a method for manufacturing a bio simulation-based pressure sensor which improves performance as a pressure sensor by maximizing surface area by interlocking the fabricated structure.
전자피부(또는 압력센서)의 개발은 로봇, 의수족, 건강 모니터링, 착용형 전자기기, 및 의료진단 등의 많은 적용분야에서 큰 각광을 받고 있다. 그러나, 종래 전자피부는 인간피부처럼 유연성, 고감도, 및 빠른 응답의 수행과는 여전히 거리가 멀다.The development of electronic skin (or pressure sensors) is gaining much attention in many applications such as robots, prostheses, health monitoring, wearable electronics, and medical diagnostics. However, conventional electronic skin is still far from performing flexibility, high sensitivity, and quick response like human skin.
인간피부의 큰 감각기관은 촉각 수용체의 여러 유형을 통해 실제 터치, 진동, 텍스처 및 경도를 느낄 수 있다. 특히 인간피부는 루피니 기관(Ruffini Organs)과 Pancinian 혈구 같은 상이한 종류의 기계적 수용기 때문에 정적 및 동적인 기계적 자극을 구별할 수 있다.Large sensory organs in human skin can experience real touch, vibration, texture, and hardness through several types of tactile receptors. Human skin, in particular, can distinguish between static and dynamic mechanical stimuli due to different types of mechanical receptors, such as Ruffini Organs and Pancinian blood cells.
느린 적응의 루피니 기관은 일정한 압력으로 물체를 파지하는 것과 같은 정적인 감지에 적합한 반면, 빠른 적응의 Pacinian 혈구는 대개 고주파수 진동의 동적자극을 감지하는데 적합하다.Slow-adapted lupine organs are suitable for static sensing, such as gripping objects at constant pressure, while fast-adapted Pacinian blood cells are usually suitable for detecting dynamic stimuli of high-frequency vibrations.
전자피부에 사용되는 전형적인 감지물질은 높은 유전상수(k)를 가진 고분자 전도성 중합체(폴리(3-헥 실티오펜), 폴리피롤, 폴리아닐린), 또는 반도체(실리콘, 산화아연, 카트뮴 셀레나이드)와 엘라스토머(elastomers)에 포함된 나노물질 금속제(CNT, 그래핀, 금, 은)같은 전도성 복합체 등이 있다.Typical sensing materials used in electronic skin are polymer conductive polymers with high dielectric constants (k) (poly (3-hexylthiophene), polypyrrole, polyaniline), or semiconductors (silicon, zinc oxide, cadmium selenide) and elastomers. conductive materials such as nanomaterial metals (CNTs, graphene, gold, and silver) contained in (elastomers).
그러나, 점탄성 거동을 가진 엘라스토머는 느린 응답시간(~10초)과 큰 히스테리시스를 초래하고 또한, 전도성 중합체의 큰 열팽창은 고유한 전기적 특성을 변화시키는 문제점이 있다.However, elastomers with viscoelastic behavior lead to slow response time (˜10 seconds) and large hysteresis, and also large thermal expansion of conductive polymers has the problem of changing inherent electrical properties.
특히, 전도성 고분자 및 복합체 압력 센서는 점탄성(viscoelastic)이 있어, 반응 속도가 느리고 외부 온도에 대한 센서 성능의 변화도 잦다는 문제점이 있다.In particular, the conductive polymer and the composite pressure sensor has a viscoelastic (viscoelastic), there is a problem that the reaction rate is slow and the sensor performance changes with respect to the external temperature also frequently.
또한, 최근 압력에 따라 접촉 면적이 바뀌면서 저항이 변화함으로써 감지가 가능한 저항(piezoresistive)방식, 외부 압력에 따라 유전체 층(dielectric layer)의 두께가 변화하면서 커패시턴스(capacitance)가 변화하여 감지 할 수 있는 커패시티브(capacitive)방식, 압전 소재를 이용하여 외부압력에 반응할 수 있는 압전(piezoelectric)방식 및 일상에서 흔히 볼 수 있는 정전기 성질을 이용하여 물체의 움직임을 감지 하는 정전기(triboelectirc) 방식의 전자피부 등이 개발되고 있다.In addition, it is a piezoresistive method that can be detected by changing the resistance as the contact area changes with the pressure recently, and the capacitance that can be detected by changing the capacitance as the thickness of the dielectric layer changes according to the external pressure. Capacitive, piezoelectric, which reacts to external pressure using piezoelectric materials, and triboelectirc electronic skin that senses the movement of objects using electrostatic properties commonly seen in everyday life. Etc. are being developed.
하지만, 상술한 종래 기술은 단일 방식의 압력 감지로 인해 인간의 피부와 달리 정적 및 동적 압력을 동시에 인식 할 수 없다는 문제점이 있다.However, the above-described prior art has a problem in that due to the pressure sensing in a single manner, unlike the human skin, the static and dynamic pressure cannot be simultaneously recognized.
(선행기술문헌)(Prior art document)
(특허문헌)(Patent literature)
대한민국 등록특허공보 제10-1308104호(2013. 09. 06)Republic of Korea Patent Publication No. 10-1308104 (2013. 09. 06)
상술한 문제점을 해결하기 위하여, 본 발명은 유기(organic) 물질의 마이크로구조(microstructure) 패터닝(patterning)과 무기(inorganic) 물질의 나노구조(nanostructure)를 융합하여 계층적(hierarchical) 구조를 제작하여 서로 맞물림(interlocking)으로써 표면적을 극대화하여 압력센서로서의 성능을 향상시킨 생체모사 기반 압력센서 제조방법의 제공을 목적으로 한다.In order to solve the above problems, the present invention is to fuse the microstructure patterning (organic) material of the organic material (nanostructure) and the nanostructure (organic structure) of the inorganic material (inorganic) to produce a hierarchical structure It is an object of the present invention to provide a method for manufacturing a bio simulation-based pressure sensor that improves the performance as a pressure sensor by maximizing the surface area by interlocking.
또한, 상술한 문제점을 해결하기 위하여, 본 발명은 저항/압전 방식의 신호전달이 모두 가능한 나노 물질을 이용하여 인간의 피부와 같이 정적 및 동적인 압력을 모두 인식 할 수 있는 압력센서의 제공을 목적으로 한다.In addition, in order to solve the above problems, the present invention is to provide a pressure sensor capable of recognizing both static and dynamic pressure, such as human skin using a nano-material capable of both resistance / piezoelectric signal transmission. It is done.
상술한 목적을 달성하기 위한 본 발명에 따른 생체모사 기반 압력센서 제조방법은 (a) 실리콘 마이크로홀 패턴으로부터 한 쌍의 PDMS 기판에 각각에 복수의 마이크로필러를 형성시키는 단계; (b) 한 쌍의 상기 PDMS 기판에 형성된 복수의 마이크로필러에 나노와이어를 성장시키는 단계; (c) 한 쌍의 상기 PDMS 기판 중, 어느 하나의 PDMS 기판은 상기 나노와이어가 성장된 상기 마이크로필러에 부분적으로 금속필름을 코팅하는 단계; 및 (d) 한 쌍의 상기 PDMS 기판 중, 상기 나노와이어가 성장된 PDMS 기판과 상기 (c)단계에서 부분적으로 금속필름이 코팅된 PDMS 기판을 맞물리는 단계;를 포함하되, 이때, 상기 (b)단계의 PDMS 기판의 나노와이어와 상기 (c)단계의 나노와이어가 맞물려 저항(Piezoresistive) 방식의 압력센서와, 상기 (b)단계의 PDMS 기판의 나노와이어와 상기 (c)단계의 금속필름이 코팅된 나노와이어가 맞물려 압전(piezoelectric)방식의 압력센서를 동시에 구현되는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a method of manufacturing a bio simulation-based pressure sensor, comprising: (a) forming a plurality of microfillers on each of a pair of PDMS substrates from a silicon microhole pattern; (b) growing nanowires on a plurality of microfillers formed on the pair of PDMS substrates; (c) coating any one of the pair of PDMS substrates with a metal film on the microfiller on which the nanowires are grown; And (d) engaging the PDMS substrate on which the nanowires are grown with the PDMS substrate partially coated with the metal film in step (c) of the pair of PDMS substrates, wherein (b) The nanowire of the PDMS substrate of step) and the nanowire of the step (c) are connected to each other so that the pressure sensor of the piezoresistive method, the nanowire of the PDMS substrate of the step (b) and the metal film of the step (c) The coated nanowires are interlocked to simultaneously implement a piezoelectric pressure sensor.
본 발명에 따른 생체모사 기반 압력센서 제조방법은 유기(organic) 물질의 마이크로구조(microstructure) 패터닝(patterning)과 무기(inorganic) 물질의 나노구조(nanostructure)를 융합하여 계층적(hierarchical) 구조를 제작하여 서로 맞물림(interlocking)으로써 표면적을 극대화하고, 효과적인 압력 전달이 가능하여 압력센서로서의 성능을 향상시킬 수 있는 효과가 있다.In the method of manufacturing a bio simulation-based pressure sensor according to the present invention, a hierarchical structure is manufactured by fusing a microstructure patterning of an organic material and a nanostructure of an inorganic material. By interlocking with each other, the surface area is maximized, and effective pressure transmission is possible, thereby improving performance as a pressure sensor.
또한, 본 발명에 따른 생체모사 기반 압력센서 제조방법은 비-점탄성 성질의 무기물질을 이용함으로써 종래 압력센서 대비 반응 속도가 매우 빠르며, 외부 온도변화에 대한 안정성이 우수한 효과가 있다.In addition, the bio simulation-based pressure sensor manufacturing method according to the present invention by using an inorganic material of non-viscoelastic properties is very fast reaction speed compared to the conventional pressure sensor, and has an excellent stability against external temperature changes.
또한, 본 발명에 따른 생체모사 기반 압력센서 제조방법은 기존의 압력센서와 다르게 산화아연(ZnO)의 구조적, 재료 고유의 압전(piezoelectic) 특성 을 이용하여 정적 및 동적인 외부 압력을 모두 감지 할 수 있는 효과가 있다.In addition, unlike the conventional pressure sensor, the method for manufacturing a bio simulation-based pressure sensor according to the present invention can detect both static and dynamic external pressure by using the structural and material-specific piezolectic properties of zinc oxide (ZnO). It has an effect.
도 1은 생체기반 계층적 ZnO 나노와이어 어레이를 도시한 도면,1 illustrates a biobased hierarchical ZnO nanowire array;
도 2는 계층적 ZnO 나노와이어 어레이의 연동구조에 기반한 전자피부의 정적 압력 센싱능력을 비교한 도면,2 is a diagram comparing the static pressure sensing capability of the electronic skin based on the interlocking structure of the hierarchical ZnO nanowire array;
도 3은 계층적 ZnO 나노와이어 어레이의 맞물림구조에 기반한 전자피부의 동적 압력 센싱능력을 설명하기 위해 도시한 도면, 3 is a view for explaining the dynamic pressure sensing capability of the electronic skin based on the engagement structure of the hierarchical ZnO nanowire array;
도 4는 가해진 압력에 따른 접촉 저항의 변화를 설명하기 위한 도면,4 is a view for explaining a change in contact resistance according to the applied pressure,
도 5는 압전(piezoelectric)방식의 압력센서을 설명하기 위한 도면, 및5 is a view for explaining a piezoelectric pressure sensor, and
도 6은 저항(piezoresisitive)방식과 압전(piezoelectric)방식의 진동수와 전류의 관계 그래프 도면이다.6 is a graph illustrating the relationship between the frequency and the current of the piezoresistive and piezoelectric methods.
이하, 첨부 도면을 참조하여 본 발명의 실시예를 보다 상세하게 설명하고자 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정하여 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, with reference to the accompanying drawings will be described in detail an embodiment of the present invention. Prior to this, terms or words used in the present specification and claims should not be construed as being limited to the ordinary or dictionary meanings, and the inventors should properly explain the concept of terms in order to best explain their own inventions. Based on the principle that it can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.
도 1은 본 발명에 따른 생체모사 기반 압력센서 제조과정을 도시한 도면이다.1 is a diagram illustrating a manufacturing process of a bio simulation-based pressure sensor according to the present invention.
도 1에 도시된 바와 같이, 실리콘 마이크로홀 패턴으로부터 소프트리소그래피 방식을 통해 PDMS(폴리디메틸실록산)기판상에 마이크로필러를 형성시키는 단계를 수행한다(S100).As shown in FIG. 1, a microfiller is formed on a PDMS (polydimethylsiloxane) substrate through a soft lithography method from a silicon microhole pattern (S100).
도 1에서 하나의 PDMS(폴리디메틸실록산)기판상에 마이크로필러를 형성하는 것을 도시하고 있지만, 실질적으로 상기 `S100`단계에서 한 쌍의 PDMS(폴리디메틸실록산)기판상에 마이크로필러를 형성시킨다..Although FIG. 1 illustrates the formation of a micropillar on one PDMS (polydimethylsiloxane) substrate, the microfiller is substantially formed on a pair of PDMS (polydimethylsiloxane) substrates in step S100. .
이후, 유연한 전자피부(또는 압력센서)을 위한 계층적 마이크로 및 나노구조의 맞물림(연동)구조를 제작하기 위해 수열합성을 통해 한 쌍의 상기 PDMS 마이크로필러 배열상에 계층적(hierarchical) 산화아연(ZnO) 나노와이어(NW)를형성시키는 단계를 수행한다(S200). Thereafter, a hierarchical zinc oxide layer on the pair of PDMS micropillar arrays is formed through hydrothermal synthesis to fabricate a hierarchical micro and nanostructured interlocking structure for flexible electronic skin (or pressure sensor). ZnO) performing a step of forming a nanowire (NW) (S200).
수열합성 방법 따른 산화아연 나노와이어 어레이는 저비용, 대면적, 및 저온 고정이 가능하며, 최적화된 실험 조건에 따라 고종횡비로 유연한 기판위에 성장시킬 수 있다.The zinc oxide nanowire array according to the hydrothermal synthesis method can be fixed at low cost, large area and low temperature, and can be grown on a flexible substrate with high aspect ratio according to optimized experimental conditions.
이러한 제조과정에 있어 상기 PDMS 마이크로 어레이는 최초 마이크-홀 무늬의 실리콘 마이크로몰드로부터 형성되었다. 이때, ZnO 나노와이어는 수열법에 의해 PDMS 마이크로필러 어레이의 상단에 형성된다.In this process, the PDMS microarray was formed from the original microphone-hole patterned silicon micromold. At this time, ZnO nanowires are formed on the top of the PDMS micropillar array by hydrothermal method.
다음 단계로, 상기 계층적 산화아연 나노와이어는 전기 전도도와 저항을 줄이기 위해 얇은 금속 필름으로 코팅하는 단계를 수행한다(S300).As a next step, the hierarchical zinc oxide nanowires are coated with a thin metal film to reduce electrical conductivity and resistance (S300).
즉, 상기 `S300`단계에서는 한 쌍의 상기 PDMS 기판 중, 어느 하나의 PDMS 기판에 상기 나노와이어가 성장된 복수의 상기 마이크로필러에 부분적으로 금속필름을 코팅한다.That is, in the step S300, a metal film is partially coated on the plurality of microfillers in which the nanowires are grown on any one PDMS substrate among the pair of PDMS substrates.
도 1d에 전자 현미경 사진은 산화아연 나노와이어 어레이가 수열법에 의해 PDMS 마이크로필러 어레이의 상단에 균일하게 ZnO 나노와이어가 성장했음을 보여준다.The electron micrograph in FIG. 1D shows that the ZnO nanowires were uniformly grown on the top of the PDMS microfiller array by the hydrothermal method.
도 2a에 도시된 바와 같이, 침지코팅(dip-coating)방법에 의해 PDMS 마이크로필러 어레이 위에 균일하게 코팅된 산화아연 나노 결정을 핵으로 하여 상기 산화아연 나노와이어가 수열합성을 통해 성장한다.As shown in FIG. 2A, the zinc oxide nanowires are grown through hydrothermal synthesis using zinc oxide nanocrystals uniformly coated on a PDMS micropillar array as a nucleus by a dip-coating method.
이때, 상기 PDMS 기판은 어떤 산화아연 침전물도 없이 산화아연 나노와이어가 균일하게 성장할 수 있도록 마이크로필러 하방측이 용액과 접촉한 상태로 성장용액의 표면에 부유 한다.At this time, the PDMS substrate is suspended on the surface of the growth solution in a state in which the lower side of the microfiller is in contact with the solution so that the zinc oxide nanowires can be uniformly grown without any zinc oxide deposit.
산화아연 나노와이어가 성장하는 동안, 질산 아연 수화물(Zn(NO3)2xH2O)로부터 온 아연 양이온(Zn2+)과 증류수(DI)물로부터 온 산소 음이온은 ZnO 나노와이어의 C축을 따라 번갈아 가며 적층된다.During the growth of the zinc oxide nanowires, zinc cations (Zn 2+ ) from zinc nitrate hydrate (Zn (NO 3 ) 2 xH 2 O) and oxygen anions from distilled water (DI) water follow the C axis of the ZnO nanowires. Alternately stacked
도 2b에 도시된 바와 같이, X-선 회절분석은 성장된 산화아연 나노와이어가 C-축 결정 성장방향에 대해 가장 높은 평면 피크(002)와 육방 대칭에 대한 소수의 평면피크(100, 101, 102)을 가지는 육방 우르자이트 구조를 보여줌을 나타낸다.As shown in FIG. 2B, X-ray diffraction analysis showed that the grown zinc oxide nanowires had the highest planar peak (002) with respect to the C-axis crystal growth direction and a few planar peaks for hexagonal symmetry. 102) shows a hexagonal urzite structure.
큰 다이렉트 밴드 갭((~3.3 eV)을 가진 반도체 ZnO 나노와이어는 높은 전기 저항(~109Ω)을 가지기 때문에, ZnO 나노와이어 어레이 상단에 코팅된 얇은 금속필름은 ZnO 나노와이어의 순수 저항 보다 10-3 배 이상까지 전기저항을 줄일 수 있어서 ZnO 나노와이어사이의 전류흐름을 용이하게 할 수 있다.Since semiconducting ZnO nanowires with large direct band gaps ((~ 3.3 eV) have high electrical resistance (~ 10 9 Ω), the thin metal film coated on top of the ZnO nanowire array is 10 times higher than the pure resistance of ZnO nanowires. The electrical resistance can be reduced by more than -3 times to facilitate the current flow between ZnO nanowires.
종래 전도성 복합필름과 상반되게, 연동된 계층적 마이크로 및 나노구조에 기초한 전자피부 설계에 있어서, 저항(piezoresistive) 방식은 주로 연동된 계층적 구조 사이에 접촉면적의 응력(또는 스트레스)-유도변화에 의해 영향을 받는다.In contrast to conventional conductive composite films, in electronic skin design based on interlocked hierarchical micro and nanostructures, the resistive method is primarily responsible for the stress (or stress) -induced change in contact area between interlocked hierarchical structures. Affected by
따라서, 산화아연 나노와이어과 PDMS 마이크로 필러의 치수는 변형-유도 접촉면적 변화와 그에 따른 전자피부의 전체적인 성능에 상당한 영향을 미친다.Thus, the dimensions of the zinc oxide nanowires and PDMS microfillers have a significant impact on the strain-induced contact area change and thus on the overall performance of the electronic skin.
본 발명에서 전자피부의 감지성능을 조사하기 위해 시스템적으로 ZnO 나노와이어의 종횡비(AR:Aspect Ratio)(도2c, d), 및 PDMS 마이크로 필러 어레이(도3, 및 표 1)의 피치(20, 30, 40um) 에 변화를 주었다.In the present invention, the aspect ratio (AR) of ZnO nanowires (Fig. 2C, d) and the pitch of PDMS microfiller arrays (Fig. 3 and Table 1) are systematically investigated to investigate the detection performance of the electronic skin. , 30, 40um).
표 1
Pattern information Micropillar
Pitch size(um) 20 30 40
Diameter/Width(um) 10
Height(um) 8.3±0.2
Table 1
Pattern information Micropillar
Pitch size (um) 20 30 40
Diameter / Width (um) 10
Height (um) 8.3 ± 0.2
도 3a는 매우 민감한 저항방식의 전자피부에 대한 계층적 마이크로 및 나노구조의 연동구조 장치구성을 보여준다.Figure 3a shows a hierarchical micro and nano structure interlock device configuration for highly sensitive resistive electronic skin.
도 3b에 전자 현미경 이미지는 PDMS 마이크로 필러 어레이 상에 ZnO 나노와이어상단과 하단이 서로 연동되어 있음을 분명히 보여준다. 도 4에 도시된 바와 같이, 이런 연동된 구조에서 가해진 압력은 연동된 나노 와이어 사이에서 접촉면 변화를 유도하고, 접촉 저항의 변화를 유도한다.The electron microscopy image in FIG. 3b clearly shows that the top and bottom of the ZnO nanowires are interlocked with each other on the PDMS microfiller array. As shown in FIG. 4, the pressure applied in this interlocked structure induces a change in contact surface between the interlocked nanowires and a change in contact resistance.
특히, PDMS 마이크로필러 어레이 상에 ZnO 나노와이어의 계층적 구조는 접촉 저항의 큰 변화를 유도할 수 있는 큰 표면적을 제공한다.In particular, the hierarchical structure of ZnO nanowires on PDMS micropillar arrays provides a large surface area that can lead to large changes in contact resistance.
또한, 상기 계층적 구조는 어떤 압력도 작용하지 않은 초기단계에 나노 와이어 사이의 최소 접촉을 가능하게 하고, 압력이 작용한 접촉영역의 연속적인 증가를 가능하게 하여, 전자피부에서 매우 민감한 저항 변화를 야기한다. In addition, the hierarchical structure allows for minimal contact between nanowires at an early stage without any pressure, and allows for a continuous increase of the contact area under pressure, resulting in very sensitive resistance changes in the electronic skin. Cause.
구조적 형상과 계층적 나노 와이어 어레이의 압력감도 사이에 관계를 확인하기 위하여 본 발명에서 상이한 피치 크기의 마이크로 필러 어레이 및 평면의 나노와이어 어레이를 도입하여 압력에 따른 저항변화를 비교했다.In order to confirm the relationship between the structural shape and the pressure sensitivity of the hierarchical nanowire array, in the present invention, microfiller arrays of different pitch sizes and planar nanowire arrays were introduced to compare resistance changes with pressure.
도 3c는 전자피부의 상대적인 저항이 저압상태(2kPa이하)에서 접촉면적의 증가로 빠르게 감소하고, 고압상태(2kpa 이상)에서 느리게 감소함을 보여준다.3c shows that the relative resistance of the electronic skin decreases rapidly with increasing contact area at low pressure (below 2 kPa) and slowly decreases at high pressure (more than 2 kpa).
마이크로 필러 어레이의 상이한 피치 사이즈에 따른 접촉 면적 차이로 인해, 저항의 가장 큰 감소는 가장 작은 피치 사이즈(20um) 센서 즉, 0.3kPa 이하의 압력에서 평면의 어레이 보다 3.7배 높은 압력감도 센서에서 관찰됨을 아래의 [표 2]를 통해 알 수 있다.Due to the difference in contact area with different pitch sizes of the micropillar array, the largest reduction in resistance is observed in the smallest pitch size (20um) sensor, 3.7 times higher than the planar array at pressures below 0.3 kPa. This can be seen in Table 2 below.
표 2
Pattern types Linear pressure-sensitivities (|kPa-1|)
Low pressure range(0 -0.33 kPa) Middle pressure range(0.33 -4.57 kPa) High pressure range(4.57 -13.07 kPa)
Planar 1.86 0.015 0.0016
Micropillar 6.82 0.010 6.78×10-5
TABLE 2
Pattern types Linear pressure-sensitivities (| kPa -1 |)
Low pressure range (0 -0.33 kPa) Middle pressure range (0.33-4.57 kPa) High pressure range (4.57 -13.07 kPa)
Planar 1.86 0.015 0.0016
Micropillar 6.82 0.010 6.78 × 10 -5
저항변화는 압력변화에 종속하여 비선형을 보인다. 즉 압력변화는 가해진 압력과 나노 와이어간 접촉면적 사이에 비선형 관계에 기인할 수 있다.Resistance change is nonlinear depending on pressure change. That is, the pressure change may be due to the nonlinear relationship between the applied pressure and the contact area between the nanowires.
비선형 지수법칙 함수에 따른 감도의 점진적 감소는 넓은 압력 범위의 자극을 검출하기 위한 압력센서의 동적 범위를 증가시키는데 유리하다.The gradual decrease in sensitivity as a function of nonlinear exponential law is advantageous for increasing the dynamic range of the pressure sensor to detect stimuli over a wide pressure range.
압력에 대한 저항의 비선형 의존성은 지수법칙 함수 y = ax -b (도3c)에 의해 정의될 수 있다. 도 3d에서 알 수 있는 바와 같이, 20um피치 센서에 대한 0.64값 을 가지는 지수b는 마이크로 필러 피치의 증가로 감소하고, 최종적으로 무한 피치 크기를 가진 평면 산화아연 나노와이어에 해당되는 0.17에 도달하였다.The nonlinear dependence of resistance on pressure depends on the exponential law function y = ax -b It can be defined by (Fig. 3c). As can be seen in Figure 3d, the index b with a 0.64 value for the 20um pitch sensor decreases with an increase in the microfiller pitch and finally reaches 0.17, corresponding to planar zinc oxide nanowires with infinite pitch size.
전형적인 접촉면의 탄성 변형 때문에, 지수b는 표면 거칠기 및 표면영역에 비례하는 것으로 알려져 있다.Because of the typical elastic deformation of the contact surface, the index b is known to be proportional to the surface roughness and the surface area.
상술한 바와 같이, 한 쌍의 PDMS 기판 중, 상기 `S200`단계에서 산화아연 나노와이어가 형성된 PDMS 기판과, 상기 `S300`단계에서 부분적으로 금속필름이 코팅된 나머지 하나의 PDMS 기판을 맞물려, 도 1e에 도시된 바와 같이 저항(Piezoresistive) 방식과 압전(piezoelectric)방식의 압력센서를 구성하는 단계를 수행한다(S400).As described above, among the pair of PDMS substrates, the PDMS substrate on which the zinc oxide nanowires are formed in step S200 and the other PDMS substrate partially coated with a metal film in step S300 are engaged with each other. As shown in FIG. 1e, a step of configuring a pressure sensor of a piezoresistive type and a piezoelectric type is performed (S400).
상기 저항(Piezoresistive)방식은 압력에 따라 접촉저항이 변하여 감지가 가능한 방식으로 주로 정적인 압력을 감지할 수 있다.In the piezoresistive method, the contact resistance is changed depending on the pressure, and thus the static pressure may be mainly detected.
이때, 상기 압전(piezoelectric)방식의 압력센서는 맞물림되는 한쌍의 상기 PDMS 기판 중, 어느 하나의 기판을 상기 S300에 따른 금속코팅이 되지않게 하여 계층 구조를 맞물림으로써 형성시킨 압력센서이다.At this time, the piezoelectric pressure sensor is a pressure sensor formed by engaging a hierarchical structure without any metal coating according to S300 among the pair of PDMS substrates being engaged.
특히, 금속이 코팅된 ZnO 나노와이어 계층구조와 금속이 코팅되지 않은 ZnO 나노와이어 접촉부위는 쇼트키 접촉(Schottky contact)을 하고 있다.In particular, the metal-coated ZnO nanowire hierarchy and the non-metal-coated ZnO nanowire contacts are in Schottky contact.
상기 압전(piezoelectric)방식의 압력센서는 압력에 의하여 압전 물질에 순간적인 전기적 전위차가 발생하여 동적인 압력을 감지할 수 있다.The piezoelectric pressure sensor may sense dynamic pressure by generating an instantaneous electrical potential difference in the piezoelectric material due to pressure.
보다 상세히, 도 5를 참조하여 상기 압전(piezoelectric)방식의 압력센서에 대하여 설명한다.In more detail, the piezoelectric pressure sensor will be described with reference to FIG. 5.
도 5a 도시된 바와 같이 ZnO 나노와이어가 니켈필름으로 코팅된 상부층과 산화아연 나노와이어 자체만의 하부층으로 구성된 압력센서에 압력이 가해지면, 맞물려 있는 산화아연 나노와이어들이 스트레스를 받게되며, 코팅되지 않은 나노와이어의 스트레칭 부분에서 양의 전기적 전위차가 발생하고, 컴프레싱 부분에서 음의 전기적 전위차기 발생한다.As shown in FIG. 5A, when pressure is applied to a pressure sensor composed of a top layer coated with a nickel film and a bottom layer of zinc oxide nanowires as shown in FIG. 5A, the interlocked zinc oxide nanowires are stressed and are not coated. A positive electrical potential difference occurs in the stretching portion of the nanowire, and a negative electrical potential difference occurs in the compression portion.
이로 인해 양의 전기적 전위차를 가진 나노 와이어와 금속의 접촉부위에선 reverse-bias 형태의 쇼트키 접촉이 나타나며, 음의(negative) 전기적 전위차를 가진 나노 와이어와 금속의 접촉부위에서는 forward-bias 형태의 쇼트키 접촉이 나타나서 전자가 음의 전기적 전위차를 가진 나노와이어에서 금속 코팅된 나노와이어 쪽으로 흐를 수 있게된다.This results in a Schottky contact in the form of reverse-bias at the contact between the nanowire and the metal having a positive electrical potential difference, and in the forward-bias form at the contact between the nanowire and the metal having a negative electrical potential difference. Key contacts appear to allow electrons to flow from the nanowires with negative electrical potential differences towards the metal coated nanowires.
도 5b 및 도 5c에 도시된 바와 같이, 계층적 구조가 평면적 구조보다 가해지는 압력이 증가할수록 출력전압 및 전류밀도의 변화가 크다는 것을 보여준다.As shown in FIGS. 5B and 5C, as the pressure applied to the hierarchical structure is greater than that of the planar structure, the change in output voltage and current density is larger.
또한, 도 5d를 통해 압전 전자피부가 3Hz 이상의 고주파 자극을 탐지할 수 있음을 알 수 있고, 도 5e를 통해, 계층적 나노와이어 어레이가 출력전압에서 신호대 잡음비가 높은 것을 알 수 있으며, 약한 가스 흐름(2.1m/s)을 탐지할 수 있음을 알 수 있다.In addition, it can be seen from FIG. 5D that the piezoelectric electronic skin can detect high frequency stimulation of 3 Hz or higher, and FIG. 5E shows that the hierarchical nanowire array has a high signal-to-noise ratio at the output voltage. It can be seen that (2.1m / s) can be detected.
즉, 압력의 세기에 따라 스트레스를 받게되는 나노와이어의 개수증가로 인해 압전(piezoelectric)방식의 전류와 전압신호가 커짐으로써 외부압력을 감지할 수 있고, 도 6을 통해 주로 동적인 압력을 감지할 수 있는 특성에 따라 250Hz의 높은 진동수도 감지 하였으며, 정적인 압력을 인식 할 수 있는 저항(piezoresisitive)방식과 비교하여 보았을때, 높은 진동수에도 정확한 신호를 전달함을 알 수 있으며, 압전(piezoelectric)방식의 전류와 관련된 공식을 참고하여 보았을때 전류는 나노와이어의의 변형속도(strain rate)와 관련이 있으며 이는 진동수가 커짐으로써 상기 변형속도(strain rate)가 증가하여 결과적으로 전류 값이 진동수와 비례 관계라는 것을 알수 있다That is, due to the increase in the number of nanowires that are stressed according to the strength of the pressure, the piezoelectric current and the voltage signal are increased, so that the external pressure can be detected. The high frequency of 250Hz was also detected according to the possible characteristics, and when compared with the piezoresisitive method that can recognize static pressure, it can be seen that it transmits the accurate signal even at the high frequency.The piezoelectric method When referring to the formula related to the current, the current is related to the strain rate of the nanowire, which increases as the frequency increases, resulting in an increase in the strain rate. I can see that
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 하기에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다. As described above, although the present invention has been described by means of a limited embodiment and drawings, the present invention is not limited thereto and by those skilled in the art to which the present invention pertains, Of course, various modifications and variations are possible within the scope of equivalents of the claims to be described.

Claims (9)

  1. (a) 실리콘 마이크로홀 패턴으로부터 한 쌍의 PDMS 기판에 각각에 복수의 마이크로필러를 형성시키는 단계;(a) forming a plurality of microfillers in each of the pair of PDMS substrates from the silicon microhole pattern;
    (b) 한 쌍의 상기 PDMS 기판에 형성된 복수의 마이크로필러에 나노와이어를 성장시키는 단계;(b) growing nanowires on a plurality of microfillers formed on the pair of PDMS substrates;
    (c) 한 쌍의 상기 PDMS 기판 중, 어느 하나의 PDMS 기판은 상기 나노와이어가 성장된 상기 마이크로필러에 부분적으로 금속필름을 코팅하는 단계; 및(c) coating any one of the pair of PDMS substrates with a metal film on the microfiller on which the nanowires are grown; And
    (d) 한 쌍의 상기 PDMS 기판 중, 상기 나노와이어가 성장된 PDMS 기판과 상기 (c)단계에서 부분적으로 금속필름이 코팅된 PDMS 기판을 맞물리는 단계;를 포함하는 것을 특징으로 하는 생체모사 기반 압력센서 제조방법.(D) of the pair of the PDMS substrate, the nanowire-grown PDMS substrate and the step of engaging the PDMS substrate partially coated with a metal film in the step (c); Pressure sensor manufacturing method.
  2. 제 1항에 있어서, The method of claim 1,
    상기 (d)단계에서, In the step (d),
    상기 (b)단계의 PDMS 기판의 나노와이어와 상기 (c)단계의 나노와이어가 맞물려 저항(Piezoresistive) 방식의 압력센서와, 상기 (b)단계의 PDMS 기판의 나노와이어와 상기 (c)단계의 금속필름이 코팅된 나노와이어가 맞물려 압전(piezoelectric)방식의 압력센서를 동시에 구현되는 것을 특징으로 하는 생체모사 기반 압력센서 제조방법.The nanowires of the PDMS substrate of step (b) and the nanowires of step (c) are coupled to each other so that the pressure sensor of the piezoresistive type, the nanowires of the PDMS substrate of step (b) and the nanowires of step (c) Biofilm-based pressure sensor manufacturing method characterized in that the metal film coated nanowires are engaged to simultaneously implement a piezoelectric pressure sensor.
  3. 제 1항에 있어서, The method of claim 1,
    상기 (a)단계에서, In step (a),
    상기 마이크로필러 어레이는 소프트리소그래피 방식을 통해 상기 PDMS 기판에 형성되는 것을 특징으로 하는 생체모사 기반 압력센서 제조방법.And the micropillar array is formed on the PDMS substrate through a soft lithography method.
  4. 제 1항에 있어서, The method of claim 1,
    상기 (b)단계에서,In step (b),
    상기 나노와이어는 수열합성을 통해 상기 마이크로필러에 형성되는 것을 특징으로 하는 생체모사 기반 압력센서 제조방법.The nanowires are bio simulation-based pressure sensor manufacturing method characterized in that formed on the micro-pillar through hydrothermal synthesis.
  5. 제 1항에 있어서,The method of claim 1,
    상기 (a)단계에서 In step (a)
    상기 PDMS 기판에 형성된 상기 마이크로필러간의 간격을 나타내는 피치 사이즈(pitch size)는 20um인 것을 특징으로 하는 생체모사 기반 압력센서 제조방법.And a pitch size representing a distance between the micropillars formed on the PDMS substrate is 20 um.
  6. 제 2항에 있어서, The method of claim 2,
    상기 압전(piezoelectric)방식의 압력센서 구현시, When the piezoelectric pressure sensor is implemented,
    금속필름이 코팅된 상기 나노와이어 구조와 금속이 코팅되지 않은 나노와이어는 쇼트키 접촉(Schottky contact)하는 것을 특징으로 하는 생체모사 기반 압력센서 제조방법.The nanowire structure coated with the metal film and the nanowires not coated with the metal are Schottky contact, characterized in that the bio-simulating method of manufacturing a pressure sensor.
  7. 제 2항에 있어서, The method of claim 2,
    상기 압전(piezoelectric)방식의 압력센서 구현시When implementing the piezoelectric pressure sensor
    금속필름으로 코팅된 상기 나노와이어와, 상기 금속필름으로 코팅되지 않은 나노와이어가 맞물린 상태에서 압력이 가해지면, 금속필름으로 코팅된 상기 나노와이어에서 양전하가 생성되고, 금속으로 코팅되지 않은 상기 나노와이어에서 음전하가 생성되어 전위차가 발생하는 것을 특징으로 하는 생체모사 기반 압력센서 제조방법.When pressure is applied while the nanowires coated with the metal film and the nanowires not coated with the metal film are engaged, positive charges are generated in the nanowires coated with the metal film, and the nanowires not coated with the metal film are applied. Bio-simulation-based pressure sensor manufacturing method characterized in that the negative charge is generated in the potential difference occurs.
  8. 제 1항 내지 제 7항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 7,
    상기 나노와이어는 산화아연(ZnO) 나노와이어인 것을 특징으로 하는 생체모사 기반 압력센서 제조방법.The nanowires are zinc oxide (ZnO) nanowires characterized in that the manufacturing method of the bio-simulating pressure sensor.
  9. 제 1항 내지 제 7항 중 어느 한 항의 제조방법에 의해 제조되는 것을 특징으로 하는 생체모사 기반 압력센서.The bio simulation-based pressure sensor, characterized in that produced by the method of any one of claims 1 to 7.
PCT/KR2015/014384 2015-03-23 2015-12-29 Biomimetic based pressure sensor manufacturing method and pressure sensor manufactured thereby WO2016153155A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150040004 2015-03-23
KR10-2015-0040004 2015-03-23

Publications (1)

Publication Number Publication Date
WO2016153155A1 true WO2016153155A1 (en) 2016-09-29

Family

ID=56978730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014384 WO2016153155A1 (en) 2015-03-23 2015-12-29 Biomimetic based pressure sensor manufacturing method and pressure sensor manufactured thereby

Country Status (1)

Country Link
WO (1) WO2016153155A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107389234A (en) * 2017-07-19 2017-11-24 华中科技大学 A kind of piezoresistive transducer for making separation layer based on nano wire and preparation method thereof
CN108267248A (en) * 2016-12-30 2018-07-10 香港科技大学深圳研究院 For monitoring the pliable pressure sensor of physiology signal and its manufacturing method
CN108318161A (en) * 2018-02-06 2018-07-24 华东理工大学 Wearable pressure sensor and its manufacturing method
WO2018187782A1 (en) * 2017-04-07 2018-10-11 The Board Of Trustees Of The University Of Illinois Nanostructured polymer-based compositions and methods to fabricate the same
CN108801512A (en) * 2018-05-03 2018-11-13 五邑大学 A kind of nano-hemisphere pressure sensor and preparation method thereof
CN108981980A (en) * 2018-05-03 2018-12-11 五邑大学 A kind of nanoscale rotary table microstructure pressure sensor and preparation method thereof
CN109406012A (en) * 2018-11-09 2019-03-01 华南理工大学 A kind of threedimensional haptic sensor array of flexible piezoelectric formula and preparation method thereof
CN110361117A (en) * 2019-06-12 2019-10-22 五邑大学 A kind of manufacturing method and its piezoresistive transducer of piezoresistive transducer
US10663361B2 (en) 2016-10-13 2020-05-26 The Trustees Of Columbia University In The City Of New York Systems and methods for tactile sensing
CN111251688A (en) * 2020-03-23 2020-06-09 北京元芯碳基集成电路研究院 Flexible conductive film, preparation method thereof and sensor
CN111811703A (en) * 2020-07-21 2020-10-23 京东方科技集团股份有限公司 Pressure sensor and electronic device
CN113340481A (en) * 2021-04-20 2021-09-03 中山大学 Pressure sensor and preparation method thereof
CN113540340A (en) * 2021-07-08 2021-10-22 东南大学 Preparation method of flexible piezoelectric nano-generator based on mesoporous silicon
CN114754906A (en) * 2022-03-18 2022-07-15 复旦大学 Ultra-sensitive flexible pressure sensor inspired by biology and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090037574A (en) * 2007-10-12 2009-04-16 삼성전자주식회사 Method for manufacturing zinc oxide nanostructures and zinc oxide nanostructures manufactured therefrom
KR20120067249A (en) * 2010-12-15 2012-06-25 전자부품연구원 Method for fabricating zno nanowire using metal masking and the zno nanowire member fabricated from the same
KR20130066138A (en) * 2011-12-12 2013-06-20 한국과학기술원 Sensor having nano channel structure and method for preparing the same
KR101486217B1 (en) * 2013-12-10 2015-02-06 한국기계연구원 Highly Sensitive Tactile Sensor using Curve-type Conducting nano or micro pillars

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090037574A (en) * 2007-10-12 2009-04-16 삼성전자주식회사 Method for manufacturing zinc oxide nanostructures and zinc oxide nanostructures manufactured therefrom
KR20120067249A (en) * 2010-12-15 2012-06-25 전자부품연구원 Method for fabricating zno nanowire using metal masking and the zno nanowire member fabricated from the same
KR20130066138A (en) * 2011-12-12 2013-06-20 한국과학기술원 Sensor having nano channel structure and method for preparing the same
KR101486217B1 (en) * 2013-12-10 2015-02-06 한국기계연구원 Highly Sensitive Tactile Sensor using Curve-type Conducting nano or micro pillars

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIN ET AL.: "Microfibre-nanowire Hybrid Structure for Energy Scavenging", NATURE, vol. 451, no. 7180, 14 February 2008 (2008-02-14), pages 809 - 813, XP055155477 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10663361B2 (en) 2016-10-13 2020-05-26 The Trustees Of Columbia University In The City Of New York Systems and methods for tactile sensing
CN108267248B (en) * 2016-12-30 2020-12-01 香港科技大学深圳研究院 Flexible pressure sensor for monitoring physiological signals of human body and manufacturing method thereof
CN108267248A (en) * 2016-12-30 2018-07-10 香港科技大学深圳研究院 For monitoring the pliable pressure sensor of physiology signal and its manufacturing method
WO2018187782A1 (en) * 2017-04-07 2018-10-11 The Board Of Trustees Of The University Of Illinois Nanostructured polymer-based compositions and methods to fabricate the same
CN107389234B (en) * 2017-07-19 2019-09-13 华中科技大学 A kind of piezoresistive transducer and preparation method thereof for making separation layer based on nano wire
CN107389234A (en) * 2017-07-19 2017-11-24 华中科技大学 A kind of piezoresistive transducer for making separation layer based on nano wire and preparation method thereof
CN108318161A (en) * 2018-02-06 2018-07-24 华东理工大学 Wearable pressure sensor and its manufacturing method
CN108318161B (en) * 2018-02-06 2020-07-03 华东理工大学 Wearable pressure sensor and manufacturing method thereof
CN108801512A (en) * 2018-05-03 2018-11-13 五邑大学 A kind of nano-hemisphere pressure sensor and preparation method thereof
CN108981980A (en) * 2018-05-03 2018-12-11 五邑大学 A kind of nanoscale rotary table microstructure pressure sensor and preparation method thereof
CN109406012A (en) * 2018-11-09 2019-03-01 华南理工大学 A kind of threedimensional haptic sensor array of flexible piezoelectric formula and preparation method thereof
CN110361117A (en) * 2019-06-12 2019-10-22 五邑大学 A kind of manufacturing method and its piezoresistive transducer of piezoresistive transducer
CN111251688A (en) * 2020-03-23 2020-06-09 北京元芯碳基集成电路研究院 Flexible conductive film, preparation method thereof and sensor
CN111251688B (en) * 2020-03-23 2022-01-25 北京元芯碳基集成电路研究院 Flexible conductive film, preparation method thereof and sensor
CN111811703A (en) * 2020-07-21 2020-10-23 京东方科技集团股份有限公司 Pressure sensor and electronic device
CN113340481A (en) * 2021-04-20 2021-09-03 中山大学 Pressure sensor and preparation method thereof
CN113540340A (en) * 2021-07-08 2021-10-22 东南大学 Preparation method of flexible piezoelectric nano-generator based on mesoporous silicon
CN113540340B (en) * 2021-07-08 2023-08-01 东南大学 Preparation method of flexible piezoelectric nano generator based on mesoporous silicon
CN114754906A (en) * 2022-03-18 2022-07-15 复旦大学 Ultra-sensitive flexible pressure sensor inspired by biology and preparation method thereof
CN114754906B (en) * 2022-03-18 2023-09-22 复旦大学 Biosensing flexible pressure sensor and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2016153155A1 (en) Biomimetic based pressure sensor manufacturing method and pressure sensor manufactured thereby
Jeon et al. Flexible multimodal sensors for electronic skin: Principle, materials, device, array architecture, and data acquisition method
Lee et al. Graphene-based stretchable/wearable self-powered touch sensor
Sun et al. Flexible tactile electronic skin sensor with 3D force detection based on porous CNTs/PDMS nanocomposites
Duan et al. Recent progress on flexible and stretchable piezoresistive strain sensors: From design to application
Kweon et al. Wearable high-performance pressure sensors based on three-dimensional electrospun conductive nanofibers
WO2019014243A1 (en) Capacitive and tactile sensors and related sensing methods
CN109115376A (en) A kind of condenser type pliable pressure sensor and preparation method thereof
Zou et al. A wave-inspired ultrastretchable strain sensor with predictable cracks
EP4004513A1 (en) A compliant tri-axial force sensor and method of fabricating the same
KR101926371B1 (en) Method of manufacturing highly sensitive strain sensors, strain sensors and wearable devices including the same
CN107934908B (en) Stress sensor and preparation method thereof
Zhang et al. Ultrathin superhydrophobic flexible tactile sensors for normal and shear force discrimination
Lin et al. Micro/nanoarrays and their applications in flexible sensors: A review
KR101743221B1 (en) Transparent and Stretchable Motion Sensor and Process for Preparing the Same
CN109567984B (en) Electronic skin and preparation method and application thereof
KR101902790B1 (en) Laminate comprising the polymer layer/conducting layer, linearly and highly sensitive pressure sensor comprising the same, and method for preparing the same
CN107630360A (en) A kind of difunctional conductive fiber and its preparation method and application
Hosseini et al. A sensitive and flexible interdigitated capacitive strain gauge based on carbon nanofiber/PANI/silicone rubber nanocomposite for body motion monitoring
Guo et al. Advances in triboelectric pressure sensors
KR101873906B1 (en) High sensitive transparent flexible pressure sensor and method for preparing thereof
Yuan et al. Flexible, Wearable, and Ultralow-Power-Consumption Electronic Skins Based on a Thermally Reduced Graphene Oxide/Carbon Nanotube Composite Film
Yang et al. An Atlas for Large-Area Electronic Skins: From Materials to Systems Design
Xu et al. Flexible Pressure Sensors in Human–Machine Interface Applications
Guo et al. Status, Applications and Challenges of Flexible Pressure Sensors Based on 2D Materials: A Review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886601

Country of ref document: EP

Kind code of ref document: A1