WO2016098178A1 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
WO2016098178A1
WO2016098178A1 PCT/JP2014/083242 JP2014083242W WO2016098178A1 WO 2016098178 A1 WO2016098178 A1 WO 2016098178A1 JP 2014083242 W JP2014083242 W JP 2014083242W WO 2016098178 A1 WO2016098178 A1 WO 2016098178A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
power
group
groups
inverter
Prior art date
Application number
PCT/JP2014/083242
Other languages
French (fr)
Japanese (ja)
Inventor
秋山 悟
隆誠 藤田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to DE112014007164.1T priority Critical patent/DE112014007164B4/en
Priority to PCT/JP2014/083242 priority patent/WO2016098178A1/en
Priority to JP2016564488A priority patent/JP6231225B2/en
Publication of WO2016098178A1 publication Critical patent/WO2016098178A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0074Plural converter units whose inputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Definitions

  • the present invention relates to a power converter, for example, a power converter in a railway vehicle that receives a plurality of AC power from a plurality of AC power overhead lines.
  • Patent Document 1 describes a technique related to a converter system used in a railway vehicle drive system. This converter system has a plurality of partial converter systems as a power source for a motor that is a load system. In this converter system, an alternating voltage is supplied to the series circuit of the partial converter system.
  • a typical object of the present invention is to provide a power converter capable of improving reliability in, for example, a railway vehicle that receives a plurality of AC power from a plurality of AC power overhead lines.
  • the power converter includes a first converter, a first inverter, a transformer, a second converter, and a second inverter.
  • the first converter converts a first AC power among a plurality of AC powers into a first DC power.
  • the first inverter converts the first DC power into second AC power.
  • the transformer converts the second AC power into third AC power.
  • the second converter converts the third AC power into second DC power.
  • the second inverter converts the second DC power into fourth AC power.
  • the first converter, the first inverter, and the second converter are composed of unipolar elements, and the second inverter is composed of a bipolar element.
  • the power converter includes a first converter, a first inverter, a transformer, and a second converter.
  • the first converter converts a first AC power among a plurality of AC powers into a first DC power.
  • the first inverter converts the first DC power into second AC power.
  • the transformer converts the second AC power into third AC power.
  • the second converter converts the third AC power into second DC power.
  • the first converter, the first inverter, the transformer, and the second converter constitute one converter group. The breakdown voltage when a plurality of the converter groups are connected in series is higher than the highest voltage among the plurality of AC powers.
  • the power converter includes a first converter, a first inverter, a transformer, a second converter, a voltage detector, and a control circuit.
  • the first converter converts a first AC power of the plurality of AC powers into a first DC power in a railway vehicle that receives a plurality of AC powers from a plurality of AC power overhead lines.
  • the first inverter converts the first DC power into second AC power.
  • the transformer converts the second AC power into third AC power.
  • the second converter converts the third AC power into second DC power.
  • the voltage detector detects voltages of the plurality of AC powers input to the railway vehicle.
  • the control circuit controls the first converter, the first inverter, and the second converter based on the voltage detected by the voltage detector.
  • the first converter, the first inverter, the transformer, the second converter, the voltage detector, and the control circuit constitute one converter group.
  • the power converter includes the plurality of converter groups connected in series and a plurality of short-circuits that short-circuit each of the plurality of converter groups.
  • the plurality of AC powers include a first voltage AC power and a second voltage AC power lower than the first voltage.
  • the power converter performs a power conversion operation using a part of the plurality of converter groups.
  • a power converter that can improve reliability can be provided.
  • FIG. 2 is a circuit diagram showing an example of a configuration of a converter group and a short circuit constituting a power converter in the railway vehicle of FIG. 1.
  • (A) (b) (c) is explanatory drawing which shows an example of operation
  • (A) (b) is explanatory drawing which shows an example of the external appearance of the module which accommodates the converter group corresponding to the operation
  • FIG. 3 is a cross-sectional view showing an example of the structure of a semiconductor switch element (SiC-MOS) used in the power converter of FIG. 2. It is sectional drawing which shows an example of the structure of the semiconductor switch element (SiC-IGBT) utilized for the power converter of FIG. (A) and (b) are the top views and sectional drawings which show an example of the structure of the semiconductor diode element (SiC-SBD) utilized for the power converter of FIG. (A) and (b) are the top views and sectional drawings which show an example of the structure of the semiconductor diode element (SiC-PND) utilized for the power converter of FIG.
  • FIG. 2 is a circuit diagram illustrating an example of a configuration of a converter group and a final stage inverter that constitute a power converter in the railway vehicle of FIG. 1.
  • the constituent elements are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
  • the shapes, positional relationships, etc. of the components, etc. when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges. [Outline of the embodiment]
  • the power converter includes a first converter (13), a first inverter (14), a transformer (15), a second converter (16), and a second inverter (21).
  • the first converter converts a first AC power among a plurality of AC powers into a first DC power.
  • the first inverter converts the first DC power into second AC power.
  • the transformer converts the second AC power into third AC power.
  • the second converter converts the third AC power into second DC power.
  • the second inverter converts the second DC power into fourth AC power.
  • the first converter, the first inverter, and the second converter are composed of unipolar elements, and the second inverter is composed of a bipolar element.
  • the power converter includes a first converter (13), a first inverter (14), a transformer (15), and a second converter (16).
  • the first converter converts a first AC power among a plurality of AC powers into a first DC power.
  • the first inverter converts the first DC power into second AC power.
  • the transformer converts the second AC power into third AC power.
  • the second converter converts the third AC power into second DC power.
  • the first converter, the first inverter, the transformer, and the second converter constitute one converter group (10). The breakdown voltage when a plurality of the converter groups are connected in series is higher than the highest voltage among the plurality of AC powers.
  • the power converter includes a first converter (13), a first inverter (14), a transformer (15), a second converter (16), a voltage detector (11), a control circuit ( 12).
  • the first converter converts a first AC power of the plurality of AC powers into a first DC power in a railway vehicle that receives a plurality of AC powers from a plurality of AC power overhead lines.
  • the first inverter converts the first DC power into second AC power.
  • the transformer converts the second AC power into third AC power.
  • the second converter converts the third AC power into second DC power.
  • the voltage detector detects voltages of the plurality of AC powers input to the railway vehicle.
  • the control circuit controls the first converter, the first inverter, and the second converter based on the voltage detected by the voltage detector.
  • the first converter, the first inverter, the transformer, the second converter, the voltage detector, and the control circuit constitute one converter group (10).
  • the power converter includes a plurality of converter groups connected in series and a plurality of short-circuit circuits (40) that short-circuit each of the plurality of converter groups.
  • the plurality of AC powers include a first voltage AC power and a second voltage AC power lower than the first voltage.
  • the power converter performs a power conversion operation using a part of the plurality of converter groups.
  • FIG. 1 is a block diagram showing an example of the configuration of a railway vehicle using this power converter.
  • FIG. 1 shows a power converter including a multi-series converter circuit of a railway vehicle for an AC / DC overhead line.
  • the power converter 1 is used for a railway vehicle that receives a plurality of AC powers from a plurality of AC power overhead lines 2.
  • a plurality of AC powers from a plurality of AC power overhead lines 2 for example, a single phase (1 ⁇ ), AC 15 kV, AC 25 kV will be described.
  • the input of several DC power from the several DC power overhead line 3 is also possible, and the example of DC3kV and DC1.5kV is demonstrated here, for example.
  • the power converter 1 includes a voltage detector (VDT) 11, a control circuit (CTL) 12, a first converter (AC / DC) 13, a first inverter (DC / AC) 14, a transformer (MFT) 15, and A plurality of converter groups 10 each including a second converter (AC / DC) 16 are included.
  • VDT voltage detector
  • CTL control circuit
  • AC / DC first converter
  • DC / AC first inverter
  • MFT transformer
  • AC power is supplied to a plurality of converter groups 10 from a plurality of AC power overhead lines 2 through a pantograph 4 that is a current collector of a railway vehicle. Further, DC power is also supplied from a plurality of DC power overhead lines 3 through a pantograph 4 which is a current collector for a railway vehicle.
  • a changeover switch 5 is connected between the pantograph 4 and the plurality of converter groups 10.
  • the changeover switch 5 has a common terminal COM connected to the pantograph 4, an AC power terminal AC connected to an input node of the first stage converter group of the plurality of converter groups 10, and a DC power terminal DC
  • the plurality of converter groups 10 are connected to the shorted output node.
  • the changeover switch 5 when supplying AC power from the AC power overhead line 2, the changeover switch 5 is switched to the AC power terminal AC, and when supplying DC power from the DC power overhead line 3, the changeover switch 5 is It is switched to the DC power terminal DC side.
  • the changeover switch 5 is changed over according to an instruction from, for example, a railway vehicle driver.
  • the voltage detector 11 is a voltage detector that detects a plurality of AC power voltages (AC 15 kV, AC 25 kV) input to the railway vehicle.
  • the control circuit 12 is a control circuit that controls the first converter 13, the first inverter 14, and the second converter 16 that constitute the converter group 10 based on the voltage detected by the voltage detector 11.
  • the control circuit 12 also controls a short circuit 40 (described later) connected to each converter group 10.
  • the first converter 13 is a converter that converts the first AC power among the plurality of AC powers from the plurality of AC power overhead lines 2 to the first DC power.
  • the first inverter 14 is an inverter that converts the first DC power converted by the first converter 13 into second AC power.
  • the transformer 15 is a transformer that converts the second AC power converted by the first inverter 14 into third AC power.
  • the second converter 16 is a converter that converts the third AC power converted by the transformer 15 into second DC power.
  • the plurality of converter groups 10 are connected in series. A plurality of AC powers from a plurality of AC power overhead lines 2 are supplied to a first converter group of the plurality of converter groups 10 from a pantograph 4 that is a current collector of a railway vehicle via a changeover switch 5. The Moreover, the last converter group of the plurality of converter groups 10 is connected to the ground potential from the wheel 6 of the railway vehicle through the rail.
  • the output nodes of the plurality of converter groups 10 are short-circuited, and the short-circuited nodes are connected to the input side of the second inverter (DC / AC) 21 for driving the motor.
  • the second inverter 21 is an inverter that converts second DC power from a short-circuited node of the plurality of converter groups 10 into fourth AC power.
  • a motor (M3) 7 for driving the railway vehicle is connected to the output side of the second inverter 21.
  • the motor 7 is driven by AC power output from the second inverter 21.
  • the motor 7 shows an example of a three-phase motor driven by, for example, three-phase (3 ⁇ ) AC power.
  • the short-circuited nodes of the plurality of converter groups 10 are also connected to the input side of the power supply inverter group.
  • the power supply inverter group includes a third inverter (DC / AC) 31, a transformer 32, a third converter (AC / DC) 33, and a fourth inverter (DC / AC) 34.
  • the third inverter 31 is an inverter that converts the second DC power from the short-circuited node of the plurality of converter groups 10 into the fifth AC power.
  • the transformer 32 is a transformer that converts the fifth AC power converted by the third inverter 31 into the sixth AC power.
  • the third converter 33 is a converter that converts the sixth AC power converted by the transformer 32 into the fourth DC power.
  • the fourth inverter 34 is an inverter that converts the fourth DC power converted by the third converter 33 into seventh AC power.
  • the load device 8 is connected to the output side of the fourth inverter 34.
  • the load device 8 is, for example, an air conditioner, an air conditioner, or other devices installed in a railway vehicle.
  • an example is shown in which the load device 8 is driven by, for example, AC 440V.
  • FIG. 2 is a circuit diagram showing an example of a configuration of a converter group and a short circuit constituting the power converter.
  • the converter group and short circuit which comprise a multi-serial converter are shown.
  • the power converter includes a plurality of converter groups 10 and a plurality of short circuits 40 that short-circuit each of the plurality of converter groups 10.
  • Each of the plurality of converter groups 10 includes the first converter 13, the first inverter 14, the transformer 15, and the second converter 16 illustrated in FIG. 1.
  • the voltage detector 11 and the control circuit 12 are omitted.
  • the change-over switch 5 is also omitted. When the change-over switch 5 is switched to the AC power terminal AC and AC power from the AC power overhead line 2 is supplied through the pantograph 4 (1 ⁇ , AC15 kV, AC25 kV). Indicates the state.
  • each of the plurality of short-circuit circuits 40 is included in the control circuit 12 illustrated in FIG.
  • each short circuit 40 can be included in each converter group 10 or provided individually.
  • the first converter 13 includes four semiconductor switch elements SW11 to SW14 and four semiconductor diode elements D11 to D14 that form a bridge circuit.
  • Each of the semiconductor diode elements D11 to D14 is connected between the drain terminal and the source terminal of each of the semiconductor switch elements SW11 to SW14 so as to be in the forward direction from the source terminal to the drain terminal.
  • the first inverter 14 includes four semiconductor switch elements SW21 to SW24 and four semiconductor diode elements D21 to D24 that form a bridge circuit.
  • connection node between the semiconductor switch elements SW11 and SW12 of the first converter 13 and the connection node between the semiconductor switch elements SW21 and SW22 of the first inverter 14 A connection node between the semiconductor switch elements SW13 and SW14 of the first converter 13 and a connection node between the semiconductor switch elements SW23 and SW24 of the first inverter 14 are respectively connected.
  • the connection node between the semiconductor switch elements SW14 and SW11 and the connection node between the semiconductor switch elements SW12 and SW13 of the first converter 13 are connected to the short circuit 40.
  • the connection node between the semiconductor switch elements SW24 and SW21 and the connection node between the semiconductor switch elements SW22 and SW23 of the first inverter 14 are connected to the primary side (input side) of the transformer 15.
  • the second converter 16 includes four semiconductor switch elements SW31 to SW34 and four semiconductor diode elements D31 to D34 that form a bridge circuit.
  • the connection node between the semiconductor switch elements SW34 and SW31 and the connection node between the semiconductor switch elements SW32 and SW33 of the second converter 16 are connected to the secondary side (output side) of the transformer 15.
  • the connection node between the semiconductor switch elements SW31 and SW32 of the second converter 16 and the connection node between the semiconductor switch elements SW33 and SW34 are connected at the output node of the second converter 16 of each converter group 10.
  • Each short circuit 40 includes two semiconductor switch elements SW41 to SW42 and two semiconductor diode elements D41 to D42.
  • Each of the semiconductor diode elements D41 to D42 is connected between the drain terminal and the source terminal of each of the semiconductor switch elements SW41 to SW42 so as to be in the forward direction from the source terminal to the drain terminal.
  • the source terminal of the semiconductor switch element SW41 and the source terminal of the semiconductor switch element SW42 are connected, and the drain terminal of the semiconductor switch element SW41 is connected to the semiconductor switch elements SW14 and SW11 of the first converter 13 of each converter group 10.
  • the drain terminal of the semiconductor switch element SW42 is connected to a connection node between the semiconductor switch elements SW12 and SW13 of the first converter 13 of each converter group 10.
  • connection node between the semiconductor switch elements SW14 and SW11 of the first converter 13 of each converter group 10 is the pantograph 4 (only the first stage) or the semiconductor switch element SW12 of the first converter 13 of the converter group 10 connected in the previous stage. Are connected to the connection node of SW13. Further, the connection node between the semiconductor switch elements SW12 and SW13 of the first converter 13 of each converter group 10 is the connection node or ground of the semiconductor switch elements SW14 and SW11 of the first converter 13 of the converter group 10 connected at the subsequent stage. It is connected to the potential (only the last stage).
  • the plurality of converter groups 10 include at least one redundant converter group.
  • one of 15 sets of converter groups 10 is a redundant converter group 10-R
  • the other 14 groups are normal converter groups 10-1 to 10-14.
  • the plurality of short-circuit circuits 40 respectively connected to the plurality of converter groups 10 are also one set of redundancy short-circuit circuits 40-R
  • the other 14 groups are regular short-circuit circuits 40-1 to 40-R. 40-14.
  • the 14 pairs of normal converter groups 10-1 to 10-14 when 14 pairs of normal converter groups are driven, AC 25 kV can be handled, and 8 pairs of normal converter groups are driven. In this case, AC 15 kV can be handled.
  • Redundant converter group 10-R is a first converter group when an operation failure occurs in one of the 14 pairs of normal converter groups 10-1 to 10-14.
  • the short circuit 40 connected to is activated to bypass the first converter group, and the redundant converter group performs power conversion operation instead of the first converter group.
  • the short circuit 40-R connected to the redundant converter group 10-R may be multiplexed.
  • FIG. 2 an example is shown in which two short circuit circuits 40-R are connected in parallel to the redundant converter group 10-R and are duplicated.
  • the semiconductor switch elements constituting the first converter 13, the first inverter 14, and the second converter 16 included in each of the plurality of converter groups 10 are gate-controlled by the control circuit 12.
  • the first converter 13 receives AC power input from the pantograph 4 (first stage only) or the converter group 10 connected in the previous stage by turning on / off the semiconductor switch elements SW11 to SW14 by gate control by the control circuit 12. Convert to DC power.
  • the first inverter 14 converts the DC power input from the first converter 13 into AC power by turning on / off the semiconductor switch elements SW21 to SW24 by gate control by the control circuit 12.
  • the AC power converted by the first inverter 14 becomes an input to the primary side of the transformer 15.
  • the transformer 15 converts AC power input to the primary side into desired AC power and outputs it from the secondary side.
  • the second converter 16 converts the AC power input from the secondary side of the transformer 15 into DC power by turning on / off the semiconductor switch elements SW31 to SW34 by gate control by the control circuit 12.
  • the semiconductor switch elements SW41 to SW42 constituting each of the plurality of short-circuit circuits 40 are also gate-controlled by the control circuit 12.
  • the semiconductor switch element SW41 When the short circuit 40 is activated, the semiconductor switch element SW41 is turned on and the semiconductor switch element SW42 is turned off by gate control by the control circuit 12, so that the current flows through the semiconductor switch element SW41 and the semiconductor diode element D42. The flow and the short circuit 40 are made to flow.
  • the converter group 10 connected to the short circuit 40 becomes non-conductive, and the converter group 10 is bypassed.
  • the semiconductor switch elements SW41 and SW42 are turned off by gate control by the control circuit 12, thereby making the short circuit 40 non-conductive.
  • the converter group 10 connected to the short circuit 40 becomes a flow, and the converter group 10 performs a power conversion operation.
  • FIGS. 3A, 3B, and 3C are explanatory diagrams illustrating an example of operations of the converter group and the short circuit when the different overhead line voltages are input.
  • 4A and 4B are explanatory diagrams showing an example of the appearance of a module that houses a converter group and a short circuit corresponding to the operation of FIG.
  • one set is a redundant converter group 10-R, and the other 14 groups are regular converter groups 10-1 to 10-14.
  • the plurality of short circuits 40 are also one set of redundant short circuits 40-R and the other 14 sets are regular short circuits 40-1 to 40-14.
  • the withstand voltage when a plurality of converter groups 10 are connected in series is higher than the highest voltage of the plurality of AC power from the plurality of AC power overhead wires 2.
  • the withstand voltage when 14 sets of converter groups are connected in series is higher than AC25 kV
  • the withstand voltage when 8 sets of converter groups are connected in series is higher than AC15 kV.
  • FIG. 3A shows a case where 14 converter groups are driven
  • FIGS. 3B and 3C show a case where 8 converter groups are driven.
  • circles indicated by broken lines indicate the short circuit 40, the first converter 13, the first inverter 14, and the second converter 16, respectively.
  • the white background indicates a current-flowing state in which a current flows in the corresponding circuit
  • the dot notation indicates a non-current state in which the current does not flow through the corresponding circuit.
  • the short circuit 40 connected thereto is in a non-conduction state.
  • the short circuit 40 connected to the first converter 13, the first inverter 14, and the second converter 16 is in a current state.
  • the transducer group is bypassed.
  • FIG. 3A when AC power on the high voltage overhead line side such as 1 ⁇ and AC 25 kV is input to a plurality of AC power overhead lines 2, a part of 14 of 15 converter groups 10 A power conversion operation is performed using a pair of converter groups 10-1 to 10-14.
  • the other set is a redundant converter group 10-R.
  • the eighth converter group is the redundancy converter group 10-R.
  • the first to seventh converter groups 10-1 to 10-7 performing power conversion operation are connected in series, bypassing the eighth redundant converter group 10-R,
  • the ninth to fifteenth converter groups 10-8 to 10-14 that perform power conversion operation are connected in series.
  • the eighth redundant converter group 10-R becomes a converter group that activates the short circuit 40-R connected to the redundant converter group and does not perform the power conversion operation.
  • the current when AC 25 kV AC power is input is supplied to the first to seventh converter groups 10-1 to 10-7 and the eighth redundant converter group 10-R. It flows to the ground potential through the connected short circuit 40-R, the 9th to 15th converter groups 10-8 to 10-14.
  • the redundant conversion The short circuit 40-R connected to the device group 10-R is activated (flowed), and the redundant converter group 10-R is bypassed. If any of the first to seventh converter groups 10-1 to 10-7 and the ninth to fifteenth converter groups 10-8 to 10-14 (for example, the converter group 10-5). ) Is inactivated, the short circuit 40-R connected to the redundant converter group 10-R is deactivated instead of the converter group (for example, the converter group 10-5) in which this defect has occurred.
  • the redundant converter group 10-R is subjected to a power conversion operation.
  • the first, third, fifth, seventh, ninth, eleventh, thirteenth, thirteenth, and fifteenth converter groups 10-1 and 10-3 performing power conversion operation.
  • the first, tenth, twelfth, and fourteenth transducer groups 10-2, 10-4, 10-6, 10-R, 10-9, 10-11, and 10-13 are alternately connected in series. Connected. In this connection state, the current when AC 15 kV AC power is input is the short circuit 40-2, 3 connected to the first set of converter group 10-1 and the second set of converter group 10-2.
  • Short circuit 40-4 connected to the fourth converter group 10-3, the fourth converter group 10-4,..., The seventh converter group 10-7, the eighth redundant conversion Short circuit 40-R connected to the device group 10-R, 9th converter group 10-8,..., 15 short circuit 40-13, 15 sets connected to the 14th converter group 10-13 It flows to the ground potential through the eye transducer group 10-14.
  • the eighth redundant converter group The short-circuit circuit 40-R connected to the 10-R is deactivated (non-energized), and the redundant converter group 10-R is operated for power conversion.
  • the second group, the fourth group, the sixth group, the tenth group, the 12th group, 14th in addition to the eighth group of redundant converter groups 10-R.
  • the converter groups 10-2, 10-4, 10-6, 10-9, 10-11, and 10-13 in the set can be subjected to power conversion operation.
  • FIG. 10 when AC power on the low voltage overhead line side such as 1 ⁇ and AC 15 kV is input, a configuration as shown in FIG. In this configuration, the first to seventh converter groups 10-1 to 10-7 that perform power conversion operation are connected in series, and the short-circuit circuit is activated and the power conversion operation is not performed.
  • the converter groups 10-R and 10-8 to 10-13 are connected in series, and the 15th converter group 10-14 that performs power conversion operation is connected.
  • the eighth to fourteenth converter groups 10-R , 10-8 to 10-13 are activated (flowed) to bypass each converter group. If a failure occurs in any of the first to seventh and fifteenth converter groups 10-1 to 10-7, 10-14, instead of the converter group in which the defect has occurred, Then, the short-circuit circuit 40-R connected to the eighth redundant converter group 10-R is deactivated (non-energized), and the redundant converter group 10-R is subjected to power conversion operation. Instead of the converter group in which the failure has occurred, in addition to the eighth redundant converter group 10-R, the ninth to fourteenth converter groups 10-8 to 10-13 are subjected to power conversion. It is also possible to operate.
  • FIG. 4 (a) is a diagram showing an example of the appearance of a module that houses a converter group and a short circuit corresponding to the operation of FIG. 3 (b). That is, FIG. 4A shows the first group, the third group, the fifth group, the seventh group, the ninth group, the eleventh group, the thirteenth group, and the fifteenth group of converters 10- 1, 10-3, 10-5, 10-7, 10-8, 10-10, 10-12, 10-14, and the second set in which the short circuit is activated and the power conversion operation is not performed.
  • the modules for storing 10-13 are arranged alternately.
  • FIG. 4B is a diagram showing an example of the appearance of a module that houses a converter group and a short circuit corresponding to the operation of FIG. That is, in FIG. 4B, modules that house the first to seventh converter groups 10-1 to 10-7 that perform power conversion operation are arranged side by side, and a short circuit is activated next to the modules.
  • the eighth to fourteenth converter groups 10-R and 10-8 to 10-13 are arranged side by side, and the 15th converter group 10- 14 is arranged.
  • the driving method shown in FIG. 3 (b) and the driving method shown in FIG. 3 (c) are compared, the driving method shown in FIG. Since the converter groups that are not allowed are grouped together, it is easy to control the operation by activation / deactivation. Further, when the module configuration shown in FIG. 4A is compared with the module configuration shown in FIG. 4B, the module configuration shown in FIG. 4A accommodates a converter group that performs power conversion operation. Since the modules that house the converter groups that are not to perform the power conversion operation are alternately arranged, heat generation due to the operation of the converter groups is also alternated, which is excellent in terms of heat dissipation. ⁇ Semiconductor switch element and semiconductor diode element>
  • FIGS. 5 and 6 show examples of the structure of the semiconductor switch element, respectively
  • FIGS. 7A, 7B, and 8A, 8B show examples of the structure of the semiconductor diode element, respectively.
  • the semiconductor switch element and the semiconductor diode element used for the power converter in the present embodiment are made of a silicon material or a compound material of silicon carbide (SiC) or gallium nitride (GaN).
  • SiC silicon carbide
  • GaN gallium nitride
  • the semiconductor switch element is made of a silicon material
  • the semiconductor diode element is made of a compound material.
  • the semiconductor switch element and the semiconductor diode element are made of a compound material.
  • FIG. 5 is a cross-sectional view showing an example of the structure of a semiconductor switch element (SiC-MOS).
  • the SiC-MOS is a semiconductor switch element SW of a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) made of a SiC compound material.
  • FIG. 5 shows a so-called DMOS (Double Diffusion Metal Oxide Semiconductor) type SiC-MOS.
  • SPm is a source electrode
  • GPm is a gate electrode
  • DRm is a drain electrode
  • SUB is a substrate
  • Tox is a gate insulating film
  • N + is a source layer
  • P is a base layer
  • DFT is a drift layer.
  • the source layer N + serving as the n + -type region connected to the source electrode SPm is connected to the drift layer DFT via a channel formed in the base layer P serving as the p-type region. Connected to.
  • the drift layer DFT is, for example, an n ⁇ type region, and plays a role of securing a breakdown voltage.
  • the substrate SUB is, for example, an n + type region, and the drain electrode DRm is connected to the substrate SUB.
  • each of the source electrode SPm, the gate electrode GPm, and the drain electrode DRm is connected to each electrode pad using a metal wiring layer.
  • SiC-DMOS there is an advantage that the element structure is simple and the manufacturing cost can be reduced as compared with a trench structure type SiC-MOS. Therefore, a low-cost and low-loss power converter can be realized.
  • FIG. 6 is a cross-sectional view showing an example of the structure of a semiconductor switch element (SiC-IGBT).
  • the SiC-IGBT is an IGBT (Insulated Gate Bipolar Transistor) semiconductor switch element SW made of a SiC compound material.
  • the SiC-IGBT in FIG. 6 is different from the SiC-MOS in that a high concentration P + layer and a buffer layer N + Buf exist between the drift layer DFT and the substrate SUB.
  • the presence of the high-concentration P + layer causes a conductivity modulation phenomenon and dramatically reduces the on-resistance.
  • the switching loss of the element can be reduced by applying the buffer layer N + Buf as necessary.
  • the SiC-IGBT structure is more complex than the SiC-MOS structure and requires more cost to form an element.
  • the switch loss can be reduced, there is an advantage that the loss of the converter can be reduced.
  • FIG. 7A and 7B are diagrams showing an example of the structure of the semiconductor diode element (SiC-SBD), where FIG. 7A is a plan view and FIG. 7B is a cross-sectional view taken along the line A-A ′ in FIG. SiC-SBD is a semiconductor diode element of a Schottky barrier diode composed of a SiC compound material.
  • the structure of the Schottky barrier diode D shown in FIG. 7 is a JTE (Junction Termination Extension) structure.
  • JTE Joint Termination Extension
  • AP is an anode electrode pad
  • SUB is a substrate
  • DFTd is a drift layer
  • ACTd is an active region
  • TMd is a termination region
  • CHSTPd is a channel stop region
  • IL3 is a passivation film
  • Cathode is a back electrode
  • IL1 is a surface electrode
  • IL2 is an electrode connected to the channel stop region CHSTPd.
  • FIG. 7 shows an n ⁇ type drift layer DFTd on an n + type substrate SUBd, and p + type guard ring regions p + , p type regions p and n + type channel stop regions formed on the upper surface of the n ⁇ type drift layer DFTd. Only the CHSTPd, the passivation film IL3, the back electrode Cathode, the front surface electrode IL1, and the electrode IL2 are shown, and the passivation film and the resin film formed above the illustration are omitted.
  • the active region ACTd at the center of the semiconductor chip is illustrated as a so-called JBS (Junction Barrier Schottky) structure in which p + regions and n ⁇ regions are alternately arranged.
  • JBS Joint Barrier Schottky
  • the electric field tends to concentrate on the edge portion of the p + -type guard ring region, but the presence of the p-type JTE region p can alleviate the electric field concentration. As a result, the breakdown voltage of the power device can be increased. That is, by using in combination with the power module according to the present embodiment, a more reliable power conversion system can be realized.
  • FIG. 8A and 8B are diagrams showing an example of the structure of the semiconductor diode element (SiC-PND), where FIG. 8A is a plan view and FIG. 8B is a cross-sectional view taken along the line AA ′ in FIG.
  • the SiC-PND is a PN junction diode semiconductor diode element made of a SiC compound material.
  • the PN junction diode D of FIG. 8 is different from the Schottky barrier diode of FIG. 7 in that a high concentration p + region is formed above the active region ACTd and forms a PN junction with n ⁇ of the drift layer DFTd. It is. Since a PN junction exists in the active region ACTd, the conductivity modulation phenomenon occurs in this portion.
  • FIG. 9 is a circuit diagram showing an example of a configuration of a converter group and a final stage inverter that constitute the power converter.
  • FIG. 9 shows an example in which the converter group (converter group 10-1 is shown) and the semiconductor switch element and the semiconductor diode element of the final stage inverter are composed of a SiC compound material.
  • Each converter group 10 which comprises a power converter contains the 1st converter 13, the 1st inverter 14, the transformer 15, and the 2nd converter 16, as demonstrated in FIG.
  • the first converter 13 is composed of semiconductor switch elements SW11 to SW14 and semiconductor diode elements D11 to D14.
  • the semiconductor switch elements SW11 to SW14 are composed of SiC-MOS, and the semiconductor diode elements D11 to D14 are composed of SiC-SBD.
  • the semiconductor switch elements SW21 to SW24 and SW31 to SW34 are composed of SiC-MOS, and the semiconductor diode elements D21 to D24 and D31 to D34 are composed of SiC-SBD.
  • each short circuit 40 for short-circuiting each converter group 10 shown in FIG. 2 is also configured by the semiconductor switch elements SW41 to SW42 being made of SiC-MOS, and the semiconductor diode elements D41 to D40.
  • D42 is composed of SiC-SBD.
  • the second inverter 21 which is the final stage inverter connected to the shorted node of the output node of each converter group 10 is composed of semiconductor switch elements SW51 to SW56 and semiconductor diode elements D51 to D56.
  • the semiconductor switch elements SW51 to SW56 are composed of SiC-IGBT, and the semiconductor diode elements D51 to D56 are composed of SiC-PND.
  • the semiconductor switch elements SW51 to SW56 and the semiconductor diode elements D51 to D56 of the second inverter 21 are preferably made of a compound material, but can also be made of a silicon material.
  • the semiconductor switch elements of the converter group 10 are composed of wide band gap unipolar elements, and the semiconductor switch element of the second inverter 21 is composed of a wide band gap bipolar element. Composed.
  • compound semiconductors such as SiC and GaN having a larger band gap than silicon are attracting attention. Since the compound semiconductor has a large band gap, the breakdown voltage is about 10 times that of silicon. For this reason, the compound device can be made thinner than the Si device, and the resistance value (Ron) during conduction can be greatly reduced.
  • the power converter in the present embodiment uses a switch element and a diode element using a compound material.
  • the device which uses a different kind of element by the semiconductor switch element of the converter group 10 and the semiconductor switch element of the 2nd inverter 21 is also performed.
  • a unipolar element as the semiconductor switch element of the converter group 10
  • the switch loss is small and an operation with a high frequency is possible.
  • the unipolar element has a high input impedance, it has an advantage that a weak voltage can be amplified with little noise and has a high withstand voltage.
  • a bipolar element as the semiconductor switching element of the second inverter 21, it is possible to cope with a large current.
  • the power converter 1 that can be provided can be provided. More details are as follows.
  • the first converter 13, the first inverter 14, and the second converter 16 are configured by unipolar elements, and the second inverter 21 is configured by a bipolar element, so that it corresponds to the characteristics of the elements.
  • a suitable operation can be realized.
  • the switch loss utilizing the characteristics of the unipolar element is small, and it is possible to cope with a high current operation utilizing the characteristics of the bipolar element and the operation at high frequency.
  • the first converter 13, the first inverter 14, the transformer 15, and the second converter 16 constitute one converter group 10, and a plurality of withstand voltages are obtained when the plurality of converter groups 10 are connected in series. It is possible to improve the reliability of the power converter 1 by selecting the converter group 10 to be activated according to the overhead voltage of the AC power overhead line 2 by being higher than the highest voltage of the AC power overhead line 2 of it can.
  • the plurality of converter groups 10 include the redundant converter group 10-R, when an operation failure occurs in one converter group, the plurality of converter groups 10 are connected to the converter group in which the failure occurs.
  • the short circuit 40 is activated to bypass this converter group, and instead the redundant converter group 10-R can perform a power conversion operation, so that the power converter 1 can perform a continuous power conversion operation.
  • the short circuit 40-R connected to the redundancy converter group 10-R is multiplexed, the short circuit can be made redundant.
  • a part of the converter group 10 that performs the power conversion operation and the converter group 10 that activates the short circuit 40 and does not perform the power conversion operation are alternately connected in series, so that the heat generated by the operation of the converter group 10 Since generation
  • Each of the converter groups 10 that perform power conversion operation is connected in series, and each of the converter groups 10 that activates the short circuit 40 and does not perform power conversion operation is connected in series, thereby performing power conversion operation. Since the converter group 10 and the converter group 10 that does not perform the power conversion operation are gathered together, the power converter 1 that can easily control the operation by activation / deactivation can be realized.
  • the short-circuit circuit 40-R connected to the redundant converter group 10-R is activated to bypass the redundant converter group 10-R.
  • the redundant converter group 10-R can be made a converter group that does not perform the power conversion operation.
  • the semiconductor switch element and the semiconductor diode element constituting the first converter 13, the first inverter 14, and the second converter 16 are made of a compound material of SiC or GaN. It is possible to increase the reliability of the power converter 1 by realizing high withstand voltage and low loss by utilizing the above, high efficiency and long life associated therewith.
  • the first converter 13, the first inverter 14, the transformer 15, the second converter 16, the voltage detector 11, and the control circuit 12 constitute one converter group 10. Even in a configuration in which a plurality of units are connected in series, the same effects as the above (1) to (10) can be obtained.
  • a power converter used for a railway vehicle has been described as an example.
  • the present invention is not limited to this, and may be applied to a wind power generation system, a solar power generation system, or the like. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Provided is a power converter enabling an increase in reliability in a railway vehicle, for example, into which a plurality of AC powers are input from a plurality of AC power overhead contact lines. The power converter has a first converter, a first inverter, a transformer, a second converter, and a second inverter. The first converter converts a first AC power among a plurality of AC powers to a first DC power. The first inverter converts the first DC power to a second AC power. The transformer converts the second AC power to a third AC power. The second converter converts the third AC power to a second DC power. The second inverter converts the second DC power to a fourth AC power. The first converter, first inverter, and second converter are constituted by unipolar elements, and the second inverter is constituted by bipolar elements.

Description

電力変換器Power converter
 本発明は、電力変換器に関し、例えば、複数の交流電力架線からの複数の交流電力を入力とする鉄道車両における電力変換器に関する。 The present invention relates to a power converter, for example, a power converter in a railway vehicle that receives a plurality of AC power from a plurality of AC power overhead lines.
 鉄道車両における電力変換技術として、例えば特許文献1に記載された技術がある。特許文献1には、鉄道車両の駆動システムに使用されるコンバータシステムに関する技術が記載されている。このコンバータシステムは、負荷システムであるモータの電源として、複数の部分コンバータシステムを有する。このコンバータシステムにおいて、交流電圧は、部分コンバータシステムの直列回路に供給される。 As a power conversion technique in a railway vehicle, for example, there is a technique described in Patent Document 1. Patent Document 1 describes a technique related to a converter system used in a railway vehicle drive system. This converter system has a plurality of partial converter systems as a power source for a motor that is a load system. In this converter system, an alternating voltage is supplied to the series circuit of the partial converter system.
特表平11-511949号公報Japanese National Patent Publication No. 11-511949
 前記特許文献1に記載された技術では、冗長構成の部分コンバータシステムによりその利用性が改善されるが、電力変換器に入力される交流電圧として、異なる電圧値の複数の入力がある場合については検討されていない。また、部分コンバータシステムの各コンバータを構成するスイッチング素子として、高耐圧化や低損失化などによる信頼性の向上が可能なワイドバンドギャップ素子を用いることなども検討されていない。 In the technique described in Patent Document 1, the availability is improved by the redundant partial converter system. However, there is a case where there are a plurality of inputs having different voltage values as the AC voltage input to the power converter. Not considered. In addition, as a switching element constituting each converter of the partial converter system, use of a wide band gap element capable of improving reliability by increasing a breakdown voltage or reducing a loss has not been studied.
 本発明の代表的な目的は、例えば、複数の交流電力架線からの複数の交流電力を入力とする鉄道車両において、信頼性の向上を可能とする電力変換器を提供することにある。 A typical object of the present invention is to provide a power converter capable of improving reliability in, for example, a railway vehicle that receives a plurality of AC power from a plurality of AC power overhead lines.
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.
 (1)電力変換器は、第1コンバータと、第1インバータと、変圧器と、第2コンバータと、第2インバータと、を有する。前記第1コンバータは、複数の交流電力のうちの第1交流電力を第1直流電力に変換する。前記第1インバータは、前記第1直流電力を第2交流電力に変換する。前記変圧器は、前記第2交流電力を第3交流電力に変換する。前記第2コンバータは、前記第3交流電力を第2直流電力に変換する。前記第2インバータは、前記第2直流電力を第4交流電力に変換する。前記第1コンバータ、前記第1インバータ、および、前記第2コンバータは、ユニポーラ型素子から構成され、前記第2インバータは、バイポーラ型素子から構成される。 (1) The power converter includes a first converter, a first inverter, a transformer, a second converter, and a second inverter. The first converter converts a first AC power among a plurality of AC powers into a first DC power. The first inverter converts the first DC power into second AC power. The transformer converts the second AC power into third AC power. The second converter converts the third AC power into second DC power. The second inverter converts the second DC power into fourth AC power. The first converter, the first inverter, and the second converter are composed of unipolar elements, and the second inverter is composed of a bipolar element.
 (2)電力変換器は、第1コンバータと、第1インバータと、変圧器と、第2コンバータと、を有する。前記第1コンバータは、複数の交流電力のうちの第1交流電力を第1直流電力に変換する。前記第1インバータは、前記第1直流電力を第2交流電力に変換する。前記変圧器は、前記第2交流電力を第3交流電力に変換する。前記第2コンバータは、前記第3交流電力を第2直流電力に変換する。前記第1コンバータ、前記第1インバータ、前記変圧器、および、前記第2コンバータは、1つの変換器群を構成する。前記変換器群を複数直列接続した場合の耐圧が、前記複数の交流電力のうちの最高電圧よりも高い。 (2) The power converter includes a first converter, a first inverter, a transformer, and a second converter. The first converter converts a first AC power among a plurality of AC powers into a first DC power. The first inverter converts the first DC power into second AC power. The transformer converts the second AC power into third AC power. The second converter converts the third AC power into second DC power. The first converter, the first inverter, the transformer, and the second converter constitute one converter group. The breakdown voltage when a plurality of the converter groups are connected in series is higher than the highest voltage among the plurality of AC powers.
 (3)電力変換器は、第1コンバータと、第1インバータと、変圧器と、第2コンバータと、電圧検出器と、制御回路と、を有する。前記第1コンバータは、複数の交流電力架線からの複数の交流電力を入力とする鉄道車両において、前記複数の交流電力のうちの第1交流電力を第1直流電力に変換する。前記第1インバータは、前記第1直流電力を第2交流電力に変換する。前記変圧器は、前記第2交流電力を第3交流電力に変換する。前記第2コンバータは、前記第3交流電力を第2直流電力に変換する。前記電圧検出器は、前記鉄道車両に入力される前記複数の交流電力の電圧を検出する。前記制御回路は、前記電圧検出器で検出された電圧に基づいて、前記第1コンバータ、前記第1インバータ、および、前記第2コンバータを制御する。前記第1コンバータ、前記第1インバータ、前記変圧器、前記第2コンバータ、前記電圧検出器、および、前記制御回路は、1つの変換器群を構成する。前記電力変換器は、前記変換器群を複数直列接続した構成において、前記直列接続した複数の変換器群と、前記複数の変換器群のそれぞれを短絡する複数の短絡回路と、を有する。前記複数の交流電力は、第1電圧の交流電力と、前記第1電圧より低い第2電圧の交流電力とを含む。前記電力変換器は、前記第2電圧の交流電力を入力とする場合、前記複数の変換器群の一部を利用して電力変換動作をする。 (3) The power converter includes a first converter, a first inverter, a transformer, a second converter, a voltage detector, and a control circuit. The first converter converts a first AC power of the plurality of AC powers into a first DC power in a railway vehicle that receives a plurality of AC powers from a plurality of AC power overhead lines. The first inverter converts the first DC power into second AC power. The transformer converts the second AC power into third AC power. The second converter converts the third AC power into second DC power. The voltage detector detects voltages of the plurality of AC powers input to the railway vehicle. The control circuit controls the first converter, the first inverter, and the second converter based on the voltage detected by the voltage detector. The first converter, the first inverter, the transformer, the second converter, the voltage detector, and the control circuit constitute one converter group. In the configuration in which a plurality of the converter groups are connected in series, the power converter includes the plurality of converter groups connected in series and a plurality of short-circuits that short-circuit each of the plurality of converter groups. The plurality of AC powers include a first voltage AC power and a second voltage AC power lower than the first voltage. When the AC power having the second voltage is input, the power converter performs a power conversion operation using a part of the plurality of converter groups.
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。 Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.
 代表的な効果は、例えば、複数の交流電力架線からの複数の交流電力を入力とする鉄道車両において、信頼性の向上を可能とする電力変換器を提供することができる。 As a typical effect, for example, in a railway vehicle that receives a plurality of AC power from a plurality of AC power overhead lines, a power converter that can improve reliability can be provided.
本発明の実施の形態1における電力変換器を用いた鉄道車両の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the rail vehicle using the power converter in Embodiment 1 of this invention. 図1の鉄道車両において、電力変換器を構成する変換器群および短絡回路の構成の一例を示す回路図である。FIG. 2 is a circuit diagram showing an example of a configuration of a converter group and a short circuit constituting a power converter in the railway vehicle of FIG. 1. (a)(b)(c)は図2の電力変換器において、異なる架線電圧を入力とした場合の変換器群および短絡回路の動作の一例を示す説明図である。(A) (b) (c) is explanatory drawing which shows an example of operation | movement of a converter group and a short circuit when a different overhead wire voltage is input into the power converter of FIG. (a)(b)は図3の動作に対応する変換器群および短絡回路を収納するモジュールの外観の一例を示す説明図である。(A) (b) is explanatory drawing which shows an example of the external appearance of the module which accommodates the converter group corresponding to the operation | movement of FIG. 3, and a short circuit. 図2の電力変換器に利用する半導体スイッチ素子(SiC-MOS)の構造の一例を示す断面図である。FIG. 3 is a cross-sectional view showing an example of the structure of a semiconductor switch element (SiC-MOS) used in the power converter of FIG. 2. 図2の電力変換器に利用する半導体スイッチ素子(SiC-IGBT)の構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the semiconductor switch element (SiC-IGBT) utilized for the power converter of FIG. (a)(b)は図2の電力変換器に利用する半導体ダイオード素子(SiC-SBD)の構造の一例を示す平面図および断面図である。(A) and (b) are the top views and sectional drawings which show an example of the structure of the semiconductor diode element (SiC-SBD) utilized for the power converter of FIG. (a)(b)は図2の電力変換器に利用する半導体ダイオード素子(SiC-PND)の構造の一例を示す平面図および断面図である。(A) and (b) are the top views and sectional drawings which show an example of the structure of the semiconductor diode element (SiC-PND) utilized for the power converter of FIG. 図1の鉄道車両において、電力変換器を構成する変換器群および最終段インバータの構成の一例を示す回路図である。FIG. 2 is a circuit diagram illustrating an example of a configuration of a converter group and a final stage inverter that constitute a power converter in the railway vehicle of FIG. 1.
 以下の実施の形態においては、便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらは互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。 In the following embodiments, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant and one is the other. There are some or all of the modifications, details, supplementary explanations, and the like. Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number.
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
 [実施の形態の概要]
Further, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say. Similarly, in the following embodiments, when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
[Outline of the embodiment]
 まず、実施の形態の概要について説明する。本実施の形態の概要では、一例として、括弧内に実施の形態の対応する構成要素の符号等を付して説明する。 First, the outline of the embodiment will be described. In the outline of the present embodiment, as an example, the reference numerals of the corresponding components of the embodiment are given in parentheses.
 (1)電力変換器は、第1コンバータ(13)と、第1インバータ(14)と、変圧器(15)と、第2コンバータ(16)と、第2インバータ(21)と、を有する。前記第1コンバータは、複数の交流電力のうちの第1交流電力を第1直流電力に変換する。前記第1インバータは、前記第1直流電力を第2交流電力に変換する。前記変圧器は、前記第2交流電力を第3交流電力に変換する。前記第2コンバータは、前記第3交流電力を第2直流電力に変換する。前記第2インバータは、前記第2直流電力を第4交流電力に変換する。前記第1コンバータ、前記第1インバータ、および、前記第2コンバータは、ユニポーラ型素子から構成され、前記第2インバータは、バイポーラ型素子から構成される。 (1) The power converter includes a first converter (13), a first inverter (14), a transformer (15), a second converter (16), and a second inverter (21). The first converter converts a first AC power among a plurality of AC powers into a first DC power. The first inverter converts the first DC power into second AC power. The transformer converts the second AC power into third AC power. The second converter converts the third AC power into second DC power. The second inverter converts the second DC power into fourth AC power. The first converter, the first inverter, and the second converter are composed of unipolar elements, and the second inverter is composed of a bipolar element.
 (2)電力変換器は、第1コンバータ(13)と、第1インバータ(14)と、変圧器(15)と、第2コンバータ(16)と、を有する。前記第1コンバータは、複数の交流電力のうちの第1交流電力を第1直流電力に変換する。前記第1インバータは、前記第1直流電力を第2交流電力に変換する。前記変圧器は、前記第2交流電力を第3交流電力に変換する。前記第2コンバータは、前記第3交流電力を第2直流電力に変換する。前記第1コンバータ、前記第1インバータ、前記変圧器、および、前記第2コンバータは、1つの変換器群(10)を構成する。前記変換器群を複数直列接続した場合の耐圧が、前記複数の交流電力のうちの最高電圧よりも高い。 (2) The power converter includes a first converter (13), a first inverter (14), a transformer (15), and a second converter (16). The first converter converts a first AC power among a plurality of AC powers into a first DC power. The first inverter converts the first DC power into second AC power. The transformer converts the second AC power into third AC power. The second converter converts the third AC power into second DC power. The first converter, the first inverter, the transformer, and the second converter constitute one converter group (10). The breakdown voltage when a plurality of the converter groups are connected in series is higher than the highest voltage among the plurality of AC powers.
 (3)電力変換器は、第1コンバータ(13)と、第1インバータ(14)と、変圧器(15)と、第2コンバータ(16)と、電圧検出器(11)と、制御回路(12)と、を有する。前記第1コンバータは、複数の交流電力架線からの複数の交流電力を入力とする鉄道車両において、前記複数の交流電力のうちの第1交流電力を第1直流電力に変換する。前記第1インバータは、前記第1直流電力を第2交流電力に変換する。前記変圧器は、前記第2交流電力を第3交流電力に変換する。前記第2コンバータは、前記第3交流電力を第2直流電力に変換する。前記電圧検出器は、前記鉄道車両に入力される前記複数の交流電力の電圧を検出する。前記制御回路は、前記電圧検出器で検出された電圧に基づいて、前記第1コンバータ、前記第1インバータ、および、前記第2コンバータを制御する。前記第1コンバータ、前記第1インバータ、前記変圧器、前記第2コンバータ、前記電圧検出器、および、前記制御回路は、1つの変換器群(10)を構成する。前記電力変換器は、前記変換器群を複数直列接続した構成において、前記直列接続した複数の変換器群と、前記複数の変換器群のそれぞれを短絡する複数の短絡回路(40)と、を有する。前記複数の交流電力は、第1電圧の交流電力と、前記第1電圧より低い第2電圧の交流電力とを含む。前記電力変換器は、前記第2電圧の交流電力を入力とする場合、前記複数の変換器群の一部を利用して電力変換動作をする。 (3) The power converter includes a first converter (13), a first inverter (14), a transformer (15), a second converter (16), a voltage detector (11), a control circuit ( 12). The first converter converts a first AC power of the plurality of AC powers into a first DC power in a railway vehicle that receives a plurality of AC powers from a plurality of AC power overhead lines. The first inverter converts the first DC power into second AC power. The transformer converts the second AC power into third AC power. The second converter converts the third AC power into second DC power. The voltage detector detects voltages of the plurality of AC powers input to the railway vehicle. The control circuit controls the first converter, the first inverter, and the second converter based on the voltage detected by the voltage detector. The first converter, the first inverter, the transformer, the second converter, the voltage detector, and the control circuit constitute one converter group (10). In the configuration in which a plurality of the converter groups are connected in series, the power converter includes a plurality of converter groups connected in series and a plurality of short-circuit circuits (40) that short-circuit each of the plurality of converter groups. Have. The plurality of AC powers include a first voltage AC power and a second voltage AC power lower than the first voltage. When the AC power having the second voltage is input, the power converter performs a power conversion operation using a part of the plurality of converter groups.
 以下、上述した実施の形態の概要に基づいた一実施の形態を図面に基づいて詳細に説明する。なお、一実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
 [一実施の形態]
Hereinafter, an embodiment based on the outline of the above-described embodiment will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.
[One Embodiment]
 本実施の形態における電力変換器、およびそれを用いた鉄道車両について、図1~図9を用いて説明する。
 <電力変換器を用いた鉄道車両>
A power converter and a railway vehicle using the same according to the present embodiment will be described with reference to FIGS.
<Railway vehicles using power converters>
 まず、図1を用いて、本実施の形態における電力変換器を用いた鉄道車両について説明する。図1は、この電力変換器を用いた鉄道車両の構成の一例を示すブロック図である。図1では、交流直流架線向け鉄道車両の多直列コンバータ回路からなる電力変換器を示している。 First, a railway vehicle using the power converter according to the present embodiment will be described with reference to FIG. FIG. 1 is a block diagram showing an example of the configuration of a railway vehicle using this power converter. FIG. 1 shows a power converter including a multi-series converter circuit of a railway vehicle for an AC / DC overhead line.
 電力変換器1は、複数の交流電力架線2からの複数の交流電力を入力とする鉄道車両に用いられる。ここでは、複数の交流電力架線2からの複数の交流電力として、例えば、単相(1φ)で、AC15kV、AC25kVの例を説明する。また、本実施の形態においては、複数の直流電力架線3からの複数の直流電力の入力も可能としており、ここでは、例えばDC3kV、DC1.5kVの例を説明する。 The power converter 1 is used for a railway vehicle that receives a plurality of AC powers from a plurality of AC power overhead lines 2. Here, as a plurality of AC powers from a plurality of AC power overhead lines 2, for example, a single phase (1φ), AC 15 kV, AC 25 kV will be described. Moreover, in this Embodiment, the input of several DC power from the several DC power overhead line 3 is also possible, and the example of DC3kV and DC1.5kV is demonstrated here, for example.
 電力変換器1は、電圧検出器(VDT)11、制御回路(CTL)12、第1コンバータ(AC/DC)13、第1インバータ(DC/AC)14、変圧器(MFT)15、および、第2コンバータ(AC/DC)16をそれぞれ含む複数の変換器群10を有する。ここでは、例えば15組の変換器群10を有する例を図示している。なお、後述するが、15組の変換器群10のうち、14組の変換器群は正規用であり、残りの1組の変換器群は冗長用である。正規用の変換器群において、14組の変換器群を駆動させた場合にはAC25kVに対応可能であり、8組の変換器群を駆動させた場合にはAC15kVに対応可能である。 The power converter 1 includes a voltage detector (VDT) 11, a control circuit (CTL) 12, a first converter (AC / DC) 13, a first inverter (DC / AC) 14, a transformer (MFT) 15, and A plurality of converter groups 10 each including a second converter (AC / DC) 16 are included. Here, for example, an example having 15 sets of converter groups 10 is illustrated. As will be described later, of the 15 converter groups 10, 14 converter groups are for regular use, and the remaining 1 set of converter groups is for redundancy. In the normal converter group, when 14 converter groups are driven, AC 25 kV can be handled, and when 8 converter groups are driven, AC 15 kV can be handled.
 複数の変換器群10には、複数の交流電力架線2から、鉄道車両の集電装置であるパンタグラフ4を通じて交流電力が供給される。また、複数の直流電力架線3から、鉄道車両の集電装置であるパンタグラフ4を通じて直流電力も供給される。このために、パンタグラフ4と複数の変換器群10との間には、切り替えスイッチ5が接続されている。この切り替えスイッチ5は、共通端子COMがパンタグラフ4に接続され、交流電力用端子ACが複数の変換器群10のうちの最初段の変換器群の入力ノードに接続され、直流電力用端子DCが複数の変換器群10の短絡された出力ノードに接続されている。例えば、交流電力架線2からの交流電力を供給する場合には切り替えスイッチ5が交流電力用端子AC側に切り替えられ、また、直流電力架線3からの直流電力を供給する場合には切り替えスイッチ5が直流電力用端子DC側に切り替えられる。この切り替えスイッチ5の切り替えは、例えば鉄道車両の運転士などからの指示により切り替えられる。 AC power is supplied to a plurality of converter groups 10 from a plurality of AC power overhead lines 2 through a pantograph 4 that is a current collector of a railway vehicle. Further, DC power is also supplied from a plurality of DC power overhead lines 3 through a pantograph 4 which is a current collector for a railway vehicle. For this purpose, a changeover switch 5 is connected between the pantograph 4 and the plurality of converter groups 10. The changeover switch 5 has a common terminal COM connected to the pantograph 4, an AC power terminal AC connected to an input node of the first stage converter group of the plurality of converter groups 10, and a DC power terminal DC The plurality of converter groups 10 are connected to the shorted output node. For example, when supplying AC power from the AC power overhead line 2, the changeover switch 5 is switched to the AC power terminal AC, and when supplying DC power from the DC power overhead line 3, the changeover switch 5 is It is switched to the DC power terminal DC side. The changeover switch 5 is changed over according to an instruction from, for example, a railway vehicle driver.
 各変換器群10において、電圧検出器11は、鉄道車両に入力される複数の交流電力の電圧(AC15kV、AC25kV)を検出する電圧検出器である。 In each converter group 10, the voltage detector 11 is a voltage detector that detects a plurality of AC power voltages (AC 15 kV, AC 25 kV) input to the railway vehicle.
 制御回路12は、電圧検出器11で検出された電圧に基づいて、変換器群10を構成する、第1コンバータ13、第1インバータ14、および、第2コンバータ16を制御する制御回路である。また、制御回路12は、各変換器群10に対応してそれぞれ接続される後述する短絡回路40も制御する。 The control circuit 12 is a control circuit that controls the first converter 13, the first inverter 14, and the second converter 16 that constitute the converter group 10 based on the voltage detected by the voltage detector 11. The control circuit 12 also controls a short circuit 40 (described later) connected to each converter group 10.
 第1コンバータ13は、複数の交流電力架線2からの複数の交流電力のうちの第1交流電力を第1直流電力に変換するコンバータである。 The first converter 13 is a converter that converts the first AC power among the plurality of AC powers from the plurality of AC power overhead lines 2 to the first DC power.
 第1インバータ14は、第1コンバータ13で変換された第1直流電力を第2交流電力に変換するインバータである。 The first inverter 14 is an inverter that converts the first DC power converted by the first converter 13 into second AC power.
 変圧器15は、第1インバータ14で変換された第2交流電力を第3交流電力に変換する変圧器である。 The transformer 15 is a transformer that converts the second AC power converted by the first inverter 14 into third AC power.
 第2コンバータ16は、変圧器15で変換された第3交流電力を第2直流電力に変換するコンバータである。 The second converter 16 is a converter that converts the third AC power converted by the transformer 15 into second DC power.
 複数の変換器群10は、直列に接続されて構成されている。複数の変換器群10のうちの最初段の変換器群には、複数の交流電力架線2からの複数の交流電力が鉄道車両の集電装置であるパンタグラフ4から切り替えスイッチ5を介して供給される。また、複数の変換器群10のうちの最終段の変換器群は、鉄道車両の車輪6からレールを通じてグランド電位に接続されている。 The plurality of converter groups 10 are connected in series. A plurality of AC powers from a plurality of AC power overhead lines 2 are supplied to a first converter group of the plurality of converter groups 10 from a pantograph 4 that is a current collector of a railway vehicle via a changeover switch 5. The Moreover, the last converter group of the plurality of converter groups 10 is connected to the ground potential from the wheel 6 of the railway vehicle through the rail.
 また、複数の変換器群10の出力ノードは短絡され、この短絡されたノードがモータ駆動用の第2インバータ(DC/AC)21の入力側に接続されている。第2インバータ21は、複数の変換器群10の短絡されたノードからの第2直流電力を第4交流電力に変換するインバータである。ここでは、第2インバータ21に入力される第2直流電力として、例えばDC3kVの例を示している。第2インバータ21の出力側には、鉄道車両を駆動するためのモータ(M3)7が接続されている。このモータ7は、第2インバータ21から出力される交流電力により駆動される。ここでは、モータ7は、例えば3相(3φ)交流電力により駆動する3相モータの例を示している。 Also, the output nodes of the plurality of converter groups 10 are short-circuited, and the short-circuited nodes are connected to the input side of the second inverter (DC / AC) 21 for driving the motor. The second inverter 21 is an inverter that converts second DC power from a short-circuited node of the plurality of converter groups 10 into fourth AC power. Here, as the second DC power input to the second inverter 21, for example, an example of DC 3 kV is shown. A motor (M3) 7 for driving the railway vehicle is connected to the output side of the second inverter 21. The motor 7 is driven by AC power output from the second inverter 21. Here, the motor 7 shows an example of a three-phase motor driven by, for example, three-phase (3φ) AC power.
 また、複数の変換器群10の短絡されたノードは、電源供給用インバータ群の入力側にも接続されている。電源供給用インバータ群は、第3インバータ(DC/AC)31、変圧器32、第3コンバータ(AC/DC)33、第4インバータ(DC/AC)34を有する。 The short-circuited nodes of the plurality of converter groups 10 are also connected to the input side of the power supply inverter group. The power supply inverter group includes a third inverter (DC / AC) 31, a transformer 32, a third converter (AC / DC) 33, and a fourth inverter (DC / AC) 34.
 第3インバータ31は、複数の変換器群10の短絡されたノードからの第2直流電力を第5交流電力に変換するインバータである。 The third inverter 31 is an inverter that converts the second DC power from the short-circuited node of the plurality of converter groups 10 into the fifth AC power.
 変圧器32は、第3インバータ31で変換された第5交流電力を第6交流電力に変換する変圧器である。 The transformer 32 is a transformer that converts the fifth AC power converted by the third inverter 31 into the sixth AC power.
 第3コンバータ33は、変圧器32で変換された第6交流電力を第4直流電力に変換するコンバータである。 The third converter 33 is a converter that converts the sixth AC power converted by the transformer 32 into the fourth DC power.
 第4インバータ34は、第3コンバータ33で変換された第4直流電力を第7交流電力に変換するインバータである。 The fourth inverter 34 is an inverter that converts the fourth DC power converted by the third converter 33 into seventh AC power.
 第4インバータ34の出力側には、負荷機器8が接続されている。この負荷機器8は、例えば鉄道車両内に装備された空調機器、エアコン、その他の各機器である。ここでは、負荷機器8は、例えばAC440Vで駆動する例を示している。
 <電力変換器を構成する変換器群および短絡回路>
The load device 8 is connected to the output side of the fourth inverter 34. The load device 8 is, for example, an air conditioner, an air conditioner, or other devices installed in a railway vehicle. Here, an example is shown in which the load device 8 is driven by, for example, AC 440V.
<Converter group and short circuit constituting power converter>
 図2を用いて、前述した図1の鉄道車両において、電力変換器を構成する変換器群および短絡回路について説明する。図2は、この電力変換器を構成する変換器群および短絡回路の構成の一例を示す回路図である。図2では、多直列変換器を構成する変換器群および短絡回路を示している。 Referring to FIG. 2, the converter group and the short circuit constituting the power converter in the above-described railway vehicle of FIG. 1 will be described. FIG. 2 is a circuit diagram showing an example of a configuration of a converter group and a short circuit constituting the power converter. In FIG. 2, the converter group and short circuit which comprise a multi-serial converter are shown.
 電力変換器は、複数の変換器群10と、複数の変換器群10のそれぞれを短絡する複数の短絡回路40と、を有する。複数の変換器群10は、それぞれ、図1に示した、第1コンバータ13、第1インバータ14、変圧器15、および、第2コンバータ16を含んでいる。図2では、電圧検出器11と制御回路12は省略している。さらに、切り替えスイッチ5も省略しており、この切り替えスイッチ5を交流電力用端子AC側に切り替えて、交流電力架線2からの交流電力がパンタグラフ4を通じて供給される場合(1φ、AC15kV、AC25kV)の状態を示している。また、複数の短絡回路40は、それぞれ、図1に示した制御回路12に含まれている。あるいは、各短絡回路40を、各変換器群10に含めたり、個別に設けることも可能である。 The power converter includes a plurality of converter groups 10 and a plurality of short circuits 40 that short-circuit each of the plurality of converter groups 10. Each of the plurality of converter groups 10 includes the first converter 13, the first inverter 14, the transformer 15, and the second converter 16 illustrated in FIG. 1. In FIG. 2, the voltage detector 11 and the control circuit 12 are omitted. Further, the change-over switch 5 is also omitted. When the change-over switch 5 is switched to the AC power terminal AC and AC power from the AC power overhead line 2 is supplied through the pantograph 4 (1φ, AC15 kV, AC25 kV). Indicates the state. In addition, each of the plurality of short-circuit circuits 40 is included in the control circuit 12 illustrated in FIG. Alternatively, each short circuit 40 can be included in each converter group 10 or provided individually.
 各変換器群10において、第1コンバータ13は、ブリッジ回路を構成する4個の半導体スイッチ素子SW11~SW14および4個の半導体ダイオード素子D11~D14から構成される。各半導体ダイオード素子D11~D14は、各半導体スイッチ素子SW11~SW14のドレイン端子とソース端子との間に、ソース端子からドレイン端子へ向けて順方向となるように接続されている。第1インバータ14は、第1コンバータ13と同様に、ブリッジ回路を構成する4個の半導体スイッチ素子SW21~SW24および4個の半導体ダイオード素子D21~D24から構成される。 In each converter group 10, the first converter 13 includes four semiconductor switch elements SW11 to SW14 and four semiconductor diode elements D11 to D14 that form a bridge circuit. Each of the semiconductor diode elements D11 to D14 is connected between the drain terminal and the source terminal of each of the semiconductor switch elements SW11 to SW14 so as to be in the forward direction from the source terminal to the drain terminal. Similar to the first converter 13, the first inverter 14 includes four semiconductor switch elements SW21 to SW24 and four semiconductor diode elements D21 to D24 that form a bridge circuit.
 第1コンバータ13と第1インバータ14との間では、第1コンバータ13の半導体スイッチ素子SW11とSW12との接続ノードと第1インバータ14の半導体スイッチ素子SW21とSW22との接続ノードとの間、第1コンバータ13の半導体スイッチ素子SW13とSW14との接続ノードと第1インバータ14の半導体スイッチ素子SW23とSW24との接続ノードとの間、がそれぞれ接続されている。第1コンバータ13の半導体スイッチ素子SW14とSW11との接続ノード、半導体スイッチ素子SW12とSW13との接続ノードは、短絡回路40に接続されている。第1インバータ14の半導体スイッチ素子SW24とSW21との接続ノード、半導体スイッチ素子SW22とSW23との接続ノードは、変圧器15の一次側(入力側)に接続されている。 Between the first converter 13 and the first inverter 14, between the connection node between the semiconductor switch elements SW11 and SW12 of the first converter 13 and the connection node between the semiconductor switch elements SW21 and SW22 of the first inverter 14, A connection node between the semiconductor switch elements SW13 and SW14 of the first converter 13 and a connection node between the semiconductor switch elements SW23 and SW24 of the first inverter 14 are respectively connected. The connection node between the semiconductor switch elements SW14 and SW11 and the connection node between the semiconductor switch elements SW12 and SW13 of the first converter 13 are connected to the short circuit 40. The connection node between the semiconductor switch elements SW24 and SW21 and the connection node between the semiconductor switch elements SW22 and SW23 of the first inverter 14 are connected to the primary side (input side) of the transformer 15.
 第2コンバータ16は、第1コンバータ13と同様に、ブリッジ回路を構成する4個の半導体スイッチ素子SW31~SW34および4個の半導体ダイオード素子D31~D34から構成される。第2コンバータ16の半導体スイッチ素子SW34とSW31との接続ノード、半導体スイッチ素子SW32とSW33との接続ノードは、変圧器15の二次側(出力側)に接続されている。第2コンバータ16の半導体スイッチ素子SW31とSW32との接続ノード、半導体スイッチ素子SW33とSW34との接続ノードは、各変換器群10の第2コンバータ16の出力ノードで接続されている。 As with the first converter 13, the second converter 16 includes four semiconductor switch elements SW31 to SW34 and four semiconductor diode elements D31 to D34 that form a bridge circuit. The connection node between the semiconductor switch elements SW34 and SW31 and the connection node between the semiconductor switch elements SW32 and SW33 of the second converter 16 are connected to the secondary side (output side) of the transformer 15. The connection node between the semiconductor switch elements SW31 and SW32 of the second converter 16 and the connection node between the semiconductor switch elements SW33 and SW34 are connected at the output node of the second converter 16 of each converter group 10.
 各短絡回路40は、2個の半導体スイッチ素子SW41~SW42および2個の半導体ダイオード素子D41~D42から構成される。各半導体ダイオード素子D41~D42は、各半導体スイッチ素子SW41~SW42のドレイン端子とソース端子との間に、ソース端子からドレイン端子へ向けて順方向となるように接続されている。半導体スイッチ素子SW41のソース端子と半導体スイッチ素子SW42のソース端子との間が接続され、半導体スイッチ素子SW41のドレイン端子は、各変換器群10の第1コンバータ13の半導体スイッチ素子SW14とSW11との接続ノードに接続され、半導体スイッチ素子SW42のドレイン端子は、各変換器群10の第1コンバータ13の半導体スイッチ素子SW12とSW13との接続ノードに接続されている。 Each short circuit 40 includes two semiconductor switch elements SW41 to SW42 and two semiconductor diode elements D41 to D42. Each of the semiconductor diode elements D41 to D42 is connected between the drain terminal and the source terminal of each of the semiconductor switch elements SW41 to SW42 so as to be in the forward direction from the source terminal to the drain terminal. The source terminal of the semiconductor switch element SW41 and the source terminal of the semiconductor switch element SW42 are connected, and the drain terminal of the semiconductor switch element SW41 is connected to the semiconductor switch elements SW14 and SW11 of the first converter 13 of each converter group 10. Connected to the connection node, the drain terminal of the semiconductor switch element SW42 is connected to a connection node between the semiconductor switch elements SW12 and SW13 of the first converter 13 of each converter group 10.
 また、各変換器群10の第1コンバータ13の半導体スイッチ素子SW14とSW11との接続ノードは、パンタグラフ4(最初段のみ)または前段接続の変換器群10の第1コンバータ13の半導体スイッチ素子SW12とSW13との接続ノードに接続されている。また、各変換器群10の第1コンバータ13の半導体スイッチ素子SW12とSW13との接続ノードは、後段接続の変換器群10の第1コンバータ13の半導体スイッチ素子SW14とSW11との接続ノードまたはグランド電位(最終段のみ)に接続されている。 The connection node between the semiconductor switch elements SW14 and SW11 of the first converter 13 of each converter group 10 is the pantograph 4 (only the first stage) or the semiconductor switch element SW12 of the first converter 13 of the converter group 10 connected in the previous stage. Are connected to the connection node of SW13. Further, the connection node between the semiconductor switch elements SW12 and SW13 of the first converter 13 of each converter group 10 is the connection node or ground of the semiconductor switch elements SW14 and SW11 of the first converter 13 of the converter group 10 connected at the subsequent stage. It is connected to the potential (only the last stage).
 複数の変換器群10は、少なくとも1つ以上の冗長用変換器群を含む。図2では、15組の変換器群10のうち、1組は冗長用変換器群10-Rであり、他の14組は正規用変換器群10-1~10-14である。これに対応して、複数の変換器群10にそれぞれ接続される複数の短絡回路40も、1組は冗長用短絡回路40-Rであり、他の14組は正規用短絡回路40-1~40-14である。14組の正規用変換器群10-1~10-14において、14組の正規用変換器群を駆動させた場合にはAC25kVに対応可能であり、8組の正規用変換器群を駆動させた場合にはAC15kVに対応可能である。 The plurality of converter groups 10 include at least one redundant converter group. In FIG. 2, one of 15 sets of converter groups 10 is a redundant converter group 10-R, and the other 14 groups are normal converter groups 10-1 to 10-14. Correspondingly, the plurality of short-circuit circuits 40 respectively connected to the plurality of converter groups 10 are also one set of redundancy short-circuit circuits 40-R, and the other 14 groups are regular short-circuit circuits 40-1 to 40-R. 40-14. In the 14 pairs of normal converter groups 10-1 to 10-14, when 14 pairs of normal converter groups are driven, AC 25 kV can be handled, and 8 pairs of normal converter groups are driven. In this case, AC 15 kV can be handled.
 冗長用変換器群10-Rは、14組の正規用変換器群10-1~10-14のうちの1つの第1変換器群に動作不良が発生した場合に、この第1変換器群に接続される短絡回路40を活性化して第1変換器群をバイパスし、冗長用変換器群が第1変換器群の代わりに電力変換動作する。 Redundant converter group 10-R is a first converter group when an operation failure occurs in one of the 14 pairs of normal converter groups 10-1 to 10-14. The short circuit 40 connected to is activated to bypass the first converter group, and the redundant converter group performs power conversion operation instead of the first converter group.
 また、冗長用変換器群10-Rに接続される短絡回路40-Rは多重化されていてもよい。図2の例では、冗長用変換器群10-Rに2つの短絡回路40-Rが並列に接続され、二重化されている例を示している。 Further, the short circuit 40-R connected to the redundant converter group 10-R may be multiplexed. In the example of FIG. 2, an example is shown in which two short circuit circuits 40-R are connected in parallel to the redundant converter group 10-R and are duplicated.
 複数の変換器群10にそれぞれ含まれる第1コンバータ13、第1インバータ14、および、第2コンバータ16を構成する半導体スイッチ素子は、制御回路12によりゲート制御される。第1コンバータ13は、制御回路12によるゲート制御により半導体スイッチ素子SW11~SW14がオン/オフされることにより、パンタグラフ4(最初段のみ)または前段接続の変換器群10から入力される交流電力を直流電力に変換する。第1インバータ14は、制御回路12によるゲート制御により半導体スイッチ素子SW21~SW24がオン/オフされることにより、第1コンバータ13から入力される直流電力を交流電力に変換する。この第1インバータ14で変換された交流電力は、変圧器15の一次側への入力となる。変圧器15は、一次側に入力された交流電力を所望の交流電力に変換して二次側から出力する。第2コンバータ16は、制御回路12によるゲート制御により半導体スイッチ素子SW31~SW34がオン/オフされることにより、変圧器15の二次側から入力される交流電力を直流電力に変換する。 The semiconductor switch elements constituting the first converter 13, the first inverter 14, and the second converter 16 included in each of the plurality of converter groups 10 are gate-controlled by the control circuit 12. The first converter 13 receives AC power input from the pantograph 4 (first stage only) or the converter group 10 connected in the previous stage by turning on / off the semiconductor switch elements SW11 to SW14 by gate control by the control circuit 12. Convert to DC power. The first inverter 14 converts the DC power input from the first converter 13 into AC power by turning on / off the semiconductor switch elements SW21 to SW24 by gate control by the control circuit 12. The AC power converted by the first inverter 14 becomes an input to the primary side of the transformer 15. The transformer 15 converts AC power input to the primary side into desired AC power and outputs it from the secondary side. The second converter 16 converts the AC power input from the secondary side of the transformer 15 into DC power by turning on / off the semiconductor switch elements SW31 to SW34 by gate control by the control circuit 12.
 複数の短絡回路40のそれぞれを構成する半導体スイッチ素子SW41~SW42も、制御回路12によりゲート制御される。短絡回路40を活性化する場合には、制御回路12によるゲート制御により、半導体スイッチ素子SW41がオンされ、半導体スイッチ素子SW42がオフされることで、電流は半導体スイッチ素子SW41、半導体ダイオード素子D42を通じて流れ、短絡回路40を通流にする。このとき、この短絡回路40に接続された変換器群10は非通流となり、この変換器群10はバイパスされる。また、短絡回路40を非活性化する場合には、制御回路12によるゲート制御により、半導体スイッチ素子SW41およびSW42がオフされることで、短絡回路40を非通流にする。このとき、この短絡回路40に接続された変換器群10は通流となり、この変換器群10は電力変換動作する。 The semiconductor switch elements SW41 to SW42 constituting each of the plurality of short-circuit circuits 40 are also gate-controlled by the control circuit 12. When the short circuit 40 is activated, the semiconductor switch element SW41 is turned on and the semiconductor switch element SW42 is turned off by gate control by the control circuit 12, so that the current flows through the semiconductor switch element SW41 and the semiconductor diode element D42. The flow and the short circuit 40 are made to flow. At this time, the converter group 10 connected to the short circuit 40 becomes non-conductive, and the converter group 10 is bypassed. Further, when the short circuit 40 is deactivated, the semiconductor switch elements SW41 and SW42 are turned off by gate control by the control circuit 12, thereby making the short circuit 40 non-conductive. At this time, the converter group 10 connected to the short circuit 40 becomes a flow, and the converter group 10 performs a power conversion operation.
 <異なる架線電圧を入力とした場合の変換器群および短絡回路> <Converters and short circuits when different overhead wire voltages are input>
 図3および図4を用いて、前述した図2の電力変換器において、異なる架線電圧を入力とした場合の変換器群および短絡回路について説明する。図3(a)(b)(c)は、この異なる架線電圧を入力とした場合の変換器群および短絡回路の動作の一例を示す説明図である。図4(a)(b)は、図3の動作に対応する変換器群および短絡回路を収納するモジュールの外観の一例を示す説明図である。 3 and 4, the converter group and the short-circuit circuit when different overhead line voltages are input in the power converter of FIG. 2 described above will be described. FIGS. 3A, 3B, and 3C are explanatory diagrams illustrating an example of operations of the converter group and the short circuit when the different overhead line voltages are input. 4A and 4B are explanatory diagrams showing an example of the appearance of a module that houses a converter group and a short circuit corresponding to the operation of FIG.
 複数の変換器群10は、図2で説明したように、1組は冗長用変換器群10-Rであり、他の14組は正規用変換器群10-1~10-14である。これに対応して、複数の短絡回路40も、1組は冗長用短絡回路40-Rであり、他の14組は正規用短絡回路40-1~40-14である。ここでは、15組の変換器群10のうち、14組の変換器群を駆動させた場合には1φ、AC25kVに対応可能であり、8組の変換器群を駆動させた場合には1φ、AC15kVに対応可能である。この構成において、変換器群10を複数直列接続した場合の耐圧が、複数の交流電力架線2からの複数の交流電力の最高電圧よりも高い構成となっている。例えば、14組の変換器群を直列接続した場合の耐圧はAC25kVよりも高く、8組の変換器群を直列接続した場合の耐圧はAC15kVよりも高い。 In the plurality of converter groups 10, as described with reference to FIG. 2, one set is a redundant converter group 10-R, and the other 14 groups are regular converter groups 10-1 to 10-14. Correspondingly, the plurality of short circuits 40 are also one set of redundant short circuits 40-R and the other 14 sets are regular short circuits 40-1 to 40-14. Here, out of the 15 converter groups 10, when 14 converter groups are driven, 1φ and AC 25 kV can be handled, and when 8 converter groups are driven, 1φ, AC 15 kV can be supported. In this configuration, the withstand voltage when a plurality of converter groups 10 are connected in series is higher than the highest voltage of the plurality of AC power from the plurality of AC power overhead wires 2. For example, the withstand voltage when 14 sets of converter groups are connected in series is higher than AC25 kV, and the withstand voltage when 8 sets of converter groups are connected in series is higher than AC15 kV.
 図3(a)は14組の変換器群を駆動させた場合、図3(b)(c)は8組の変換器群を駆動させた場合をそれぞれ示す。図3において、破線による丸印は、短絡回路40、第1コンバータ13、第1インバータ14、第2コンバータ16をそれぞれ示している。また、破線による丸印において、白地は対応する回路に電流が流れて動作する通流状態、ドット表記は対応する回路に電流が流れずに動作しない非通流状態をそれぞれ示している。例えば、ある変換器群10の、第1コンバータ13、第1インバータ14、および、第2コンバータ16が通流状態の時には、これに接続された短絡回路40は非通流状態である。逆に、ある変換器群10の、第1コンバータ13、第1インバータ14、および、第2コンバータ16が非通流状態の時には、これに接続された短絡回路40は通流状態であり、この変換器群はバイパスされる。 3A shows a case where 14 converter groups are driven, and FIGS. 3B and 3C show a case where 8 converter groups are driven. In FIG. 3, circles indicated by broken lines indicate the short circuit 40, the first converter 13, the first inverter 14, and the second converter 16, respectively. Further, in the circles indicated by broken lines, the white background indicates a current-flowing state in which a current flows in the corresponding circuit and the dot notation indicates a non-current state in which the current does not flow through the corresponding circuit. For example, when the first converter 13, the first inverter 14, and the second converter 16 of a certain converter group 10 are in a conduction state, the short circuit 40 connected thereto is in a non-conduction state. Conversely, when the first converter 13, the first inverter 14, and the second converter 16 of a certain converter group 10 are in a non-current state, the short circuit 40 connected to the first converter 13, the first inverter 14, and the second converter 16 is in a current state. The transducer group is bypassed.
 例えば図3(a)に示すように、複数の交流電力架線2において、1φ、AC25kVのような高電圧架線側の交流電力を入力とする場合、15組の変換器群10の一部の14組の変換器群10-1~10-14を利用して電力変換動作をする。この場合に、それ以外の1組は冗長用変換器群10-Rとなる。ここでは、8組目を冗長用変換器群10-Rとしている。この8組目とは、図3において上側から8番目を指すものとし、同様に、n(n=1~15)組目は図3において上側からn番目を指すものとする。 For example, as shown in FIG. 3A, when AC power on the high voltage overhead line side such as 1φ and AC 25 kV is input to a plurality of AC power overhead lines 2, a part of 14 of 15 converter groups 10 A power conversion operation is performed using a pair of converter groups 10-1 to 10-14. In this case, the other set is a redundant converter group 10-R. Here, the eighth converter group is the redundancy converter group 10-R. The eighth set indicates the eighth from the upper side in FIG. 3, and similarly, the n (n = 1 to 15) set indicates the nth from the upper side in FIG.
 この構成では、電力変換動作する1組目から7組目の変換器群10-1~10-7が直列接続され、8組目の冗長用変換器群10-Rをバイパスして、さらに、電力変換動作する9組目から15組目の変換器群10-8~10-14が直列接続される。8組目の冗長用変換器群10-Rは、この冗長用変換器群に接続される短絡回路40-Rを活性化して、電力変換動作させない変換器群となる。この接続状態において、AC25kVの交流電力を入力とする場合の電流は、1組目から7組目の変換器群10-1~10-7、8組目の冗長用変換器群10-Rに接続された短絡回路40-R、9組目から15組目の変換器群10-8~10-14を通じて、グランド電位に流れる。 In this configuration, the first to seventh converter groups 10-1 to 10-7 performing power conversion operation are connected in series, bypassing the eighth redundant converter group 10-R, The ninth to fifteenth converter groups 10-8 to 10-14 that perform power conversion operation are connected in series. The eighth redundant converter group 10-R becomes a converter group that activates the short circuit 40-R connected to the redundant converter group and does not perform the power conversion operation. In this connection state, the current when AC 25 kV AC power is input is supplied to the first to seventh converter groups 10-1 to 10-7 and the eighth redundant converter group 10-R. It flows to the ground potential through the connected short circuit 40-R, the 9th to 15th converter groups 10-8 to 10-14.
 1組目から7組目の変換器群10-1~10-7と9組目から15組目の変換器群10-8~10-14に不良が発生していない場合は、冗長用変換器群10-Rに接続される短絡回路40-Rを活性化(通流)して、この冗長用変換器群10-Rをバイパスする。もし、1組目から7組目の変換器群10-1~10-7と9組目から15組目の変換器群10-8~10-14のいずれか(例えば変換器群10-5)に不良が発生した場合は、この不良が発生した変換器群(例えば変換器群10-5)の代わりに、冗長用変換器群10-Rに接続される短絡回路40-Rを非活性化(非通流)して、この冗長用変換器群10-Rを電力変換動作させる。 If there is no defect in the first to seventh converter groups 10-1 to 10-7 and the ninth to fifteenth converter groups 10-8 to 10-14, the redundant conversion The short circuit 40-R connected to the device group 10-R is activated (flowed), and the redundant converter group 10-R is bypassed. If any of the first to seventh converter groups 10-1 to 10-7 and the ninth to fifteenth converter groups 10-8 to 10-14 (for example, the converter group 10-5). ) Is inactivated, the short circuit 40-R connected to the redundant converter group 10-R is deactivated instead of the converter group (for example, the converter group 10-5) in which this defect has occurred. The redundant converter group 10-R is subjected to a power conversion operation.
 例えば図3(b)に示すように、複数の交流電力架線2において、1φ、AC15kVのような低電圧架線側の交流電力を入力とする場合、15組の変換器群10の一部の8組の変換器群10-1,10-3,10-5,10-7,10-8,10-10,10-12,10-14を利用して電力変換動作をする。この場合に、それ以外の1組は冗長用変換器群10-Rとなり、残りの6組は電力変換動作させない変換器群10-2,10-4,10-6,10-9,10-11,10-13となる。 For example, as shown in FIG. 3 (b), when the AC power on the low voltage overhead line side such as 1φ and AC15 kV is input to the plurality of AC power overhead lines 2, 8 of some 15 sets of the converter group 10 A power conversion operation is performed using the converter groups 10-1, 10-3, 10-5, 10-7, 10-8, 10-10, 10-12, and 10-14. In this case, the other set is the redundant converter group 10-R, and the remaining six sets are the converter groups 10-2, 10-4, 10-6, 10-9, 10- 11, 10-13.
 この構成では、電力変換動作する1組目、3組目、5組目、7組目、9組目、11組目、13組目、15組目の変換器群10-1,10-3,10-5,10-7,10-8,10-10,10-12,10-14と、短絡回路を活性化して電力変換動作させない2組目、4組目、6組目、8組目、10組目、12組目、14組目の変換器群10-2,10-4,10-6,10-R,10-9,10-11,10-13とが、交互に直列接続される。この接続状態において、AC15kVの交流電力を入力とする場合の電流は、1組目の変換器群10-1、2組目の変換器群10-2に接続された短絡回路40-2、3組目の変換器群10-3、4組目の変換器群10-4に接続された短絡回路40-4、…、7組目の変換器群10-7、8組目の冗長用変換器群10-Rに接続された短絡回路40-R、9組目の変換器群10-8、…、14組目の変換器群10-13に接続された短絡回路40-13、15組目の変換器群10-14を通じて、グランド電位に流れる。 In this configuration, the first, third, fifth, seventh, ninth, eleventh, thirteenth, thirteenth, and fifteenth converter groups 10-1 and 10-3 performing power conversion operation. , 10-5, 10-7, 10-8, 10-10, 10-12, 10-14, and the second set, the fourth set, the sixth set, and the eighth set that activate the short circuit and do not operate the power conversion operation The first, tenth, twelfth, and fourteenth transducer groups 10-2, 10-4, 10-6, 10-R, 10-9, 10-11, and 10-13 are alternately connected in series. Connected. In this connection state, the current when AC 15 kV AC power is input is the short circuit 40-2, 3 connected to the first set of converter group 10-1 and the second set of converter group 10-2. Short circuit 40-4 connected to the fourth converter group 10-3, the fourth converter group 10-4,..., The seventh converter group 10-7, the eighth redundant conversion Short circuit 40-R connected to the device group 10-R, 9th converter group 10-8,..., 15 short circuit 40-13, 15 sets connected to the 14th converter group 10-13 It flows to the ground potential through the eye transducer group 10-14.
 1組目、3組目、5組目、7組目、9組目、11組目、13組目、15組目の変換器群10-1,10-3,10-5,10-7,10-8,10-10,10-12,10-14に不良が発生していない場合は、2組目、4組目、6組目、8組目、10組目、12組目、14組目の変換器群10-2,10-4,10-6,10-R,10-9,10-11,10-13に接続される短絡回路を活性化(通流)して、各変換器群をバイパスする。もし、1組目、3組目、5組目、7組目、9組目、11組目、13組目、15組目の変換器群10-1,10-3,10-5,10-7,10-8,10-10,10-12,10-14のいずれかに不良が発生した場合は、この不良が発生した変換器群の代わりに、8組目の冗長用変換器群10-Rに接続される短絡回路40-Rを非活性化(非通流)して、この冗長用変換器群10-Rを電力変換動作させる。なお、不良が発生した変換器群の代わりに、8組目の冗長用変換器群10-Rの他に、2組目、4組目、6組目、10組目、12組目、14組目の変換器群10-2,10-4,10-6,10-9,10-11,10-13を電力変換動作させることも可能である。 1st group, 3rd group, 5th group, 7th group, 9th group, 11th group, 13th group, 15th group of transducer groups 10-1, 10-3, 10-5, 10-7 , 10-8, 10-10, 10-12, 10-14, if there is no defect, 2nd, 4th, 6th, 8th, 10th, 12th, Activating (flowing) the short circuit connected to the 14th set of converters 10-2, 10-4, 10-6, 10-R, 10-9, 10-11, 10-13, Bypass each transducer group. If the first group, the third group, the fifth group, the seventh group, the ninth group, the eleventh group, the thirteenth group, and the fifteenth group of converters 10-1, 10-3, 10-5, 10 When a failure occurs in any one of −7, 10-8, 10-10, 10-12, and 10-14, instead of the converter group in which this failure has occurred, the eighth redundant converter group The short-circuit circuit 40-R connected to the 10-R is deactivated (non-energized), and the redundant converter group 10-R is operated for power conversion. Instead of the converter group in which a failure has occurred, the second group, the fourth group, the sixth group, the tenth group, the 12th group, 14th in addition to the eighth group of redundant converter groups 10-R. The converter groups 10-2, 10-4, 10-6, 10-9, 10-11, and 10-13 in the set can be subjected to power conversion operation.
 また、1φ、AC15kVのような低電圧架線側の交流電力を入力とする場合、例えば図3(c)に示すような構成にすることも可能である。この構成では、電力変換動作する1組目から7組目の変換器群10-1~10-7が直列接続され、短絡回路を活性化して電力変換動作させない8組目から14組目の変換器群10-R,10-8~10-13が直列接続され、電力変換動作する15組目の変換器群10-14が接続される。この接続状態において、AC15kVの交流電力を入力とする場合の電流は、1組目から7組目の変換器群10-1~10-7、8組目から14組目の変換器群10-R,10-8~10-13に接続された短絡回路40-R,40-8~40-13、15組目の変換器群10-14を通じて、グランド電位に流れる。 Further, when AC power on the low voltage overhead line side such as 1φ and AC 15 kV is input, a configuration as shown in FIG. In this configuration, the first to seventh converter groups 10-1 to 10-7 that perform power conversion operation are connected in series, and the short-circuit circuit is activated and the power conversion operation is not performed. The converter groups 10-R and 10-8 to 10-13 are connected in series, and the 15th converter group 10-14 that performs power conversion operation is connected. In this connection state, when the AC power of 15 kV AC is input, currents from the first group to the seventh group of converter groups 10-1 to 10-7 and the eighth group to the 14th group of converter groups 10- The electric current flows to the ground potential through the short-circuit circuits 40-R, 40-8 to 40-13 connected to R, 10-8 to 10-13, and the 15th converter group 10-14.
 1組目から7組目、15組目の変換器群10-1~10-7,10-14に不良が発生していない場合は、8組目から14組目の変換器群10-R,10-8~10-13に接続される短絡回路を活性化(通流)して、各変換器群をバイパスする。もし、1組目から7組目、15組目の変換器群10-1~10-7,10-14のいずれかに不良が発生した場合は、この不良が発生した変換器群の代わりに、8組目の冗長用変換器群10-Rに接続される短絡回路40-Rを非活性化(非通流)して、この冗長用変換器群10-Rを電力変換動作させる。なお、不良が発生した変換器群の代わりに、8組目の冗長用変換器群10-Rの他に、9組目から14組目の変換器群10-8~10-13を電力変換動作させることも可能である。 If no defect occurs in the first to seventh and fifteenth converter groups 10-1 to 10-7 and 10-14, the eighth to fourteenth converter groups 10-R , 10-8 to 10-13 are activated (flowed) to bypass each converter group. If a failure occurs in any of the first to seventh and fifteenth converter groups 10-1 to 10-7, 10-14, instead of the converter group in which the defect has occurred, Then, the short-circuit circuit 40-R connected to the eighth redundant converter group 10-R is deactivated (non-energized), and the redundant converter group 10-R is subjected to power conversion operation. Instead of the converter group in which the failure has occurred, in addition to the eighth redundant converter group 10-R, the ninth to fourteenth converter groups 10-8 to 10-13 are subjected to power conversion. It is also possible to operate.
 図4において、図4(a)は図3(b)の動作に対応する変換器群および短絡回路を収納するモジュールの外観の一例を示す図である。すなわち、図4(a)は、電力変換動作する1組目、3組目、5組目、7組目、9組目、11組目、13組目、15組目の変換器群10-1,10-3,10-5,10-7,10-8,10-10,10-12,10-14を収納するモジュールと、短絡回路を活性化して電力変換動作させない2組目、4組目、6組目、8組目、10組目、12組目、14組目の変換器群10-2,10-4,10-6,10-R,10-9,10-11,10-13を収納するモジュールとが、交互に配置される構成である。 4, FIG. 4 (a) is a diagram showing an example of the appearance of a module that houses a converter group and a short circuit corresponding to the operation of FIG. 3 (b). That is, FIG. 4A shows the first group, the third group, the fifth group, the seventh group, the ninth group, the eleventh group, the thirteenth group, and the fifteenth group of converters 10- 1, 10-3, 10-5, 10-7, 10-8, 10-10, 10-12, 10-14, and the second set in which the short circuit is activated and the power conversion operation is not performed. Transformer groups 10-2, 10-4, 10-6, 10-R, 10-9, 10-11 of the group 6, the group 8, the group 8, the group 12, the group 14 The modules for storing 10-13 are arranged alternately.
 また、図4(b)は図3(c)の動作に対応する変換器群および短絡回路を収納するモジュールの外観の一例を示す図である。すなわち、図4(b)は、電力変換動作する1組目から7組目の変換器群10-1~10-7を収納するモジュールが並んで配置され、その隣に、短絡回路を活性化して電力変換動作させない8組目から14組目の変換器群10-R,10-8~10-13が並んで配置され、その隣に、電力変換動作する15組目の変換器群10-14が配置される構成である。 FIG. 4B is a diagram showing an example of the appearance of a module that houses a converter group and a short circuit corresponding to the operation of FIG. That is, in FIG. 4B, modules that house the first to seventh converter groups 10-1 to 10-7 that perform power conversion operation are arranged side by side, and a short circuit is activated next to the modules. The eighth to fourteenth converter groups 10-R and 10-8 to 10-13 are arranged side by side, and the 15th converter group 10- 14 is arranged.
 上述した図3(b)に示す駆動方法と図3(c)に示す駆動方法とを比較すると、図3(c)に示す駆動方法の方が、電力変換動作する変換器群と電力変換動作させない変換器群がそれぞれまとまっているので、活性化/非活性化による動作の制御が容易である。また、図4(a)に示すモジュール構成と図4(b)に示すモジュール構成とを比較すると、図4(a)に示すモジュール構成の方が、電力変換動作する変換器群を収納するモジュールと電力変換動作させない変換器群を収納するモジュールとが交互に配置されているので、変換器群の動作による熱の発生も交互になるので、放熱性の面で優れている。
 <半導体スイッチ素子および半導体ダイオード素子>
When the driving method shown in FIG. 3 (b) and the driving method shown in FIG. 3 (c) are compared, the driving method shown in FIG. Since the converter groups that are not allowed are grouped together, it is easy to control the operation by activation / deactivation. Further, when the module configuration shown in FIG. 4A is compared with the module configuration shown in FIG. 4B, the module configuration shown in FIG. 4A accommodates a converter group that performs power conversion operation. Since the modules that house the converter groups that are not to perform the power conversion operation are alternately arranged, heat generation due to the operation of the converter groups is also alternated, which is excellent in terms of heat dissipation.
<Semiconductor switch element and semiconductor diode element>
 図5~図8を用いて、前述した図2の電力変換器に利用する半導体スイッチ素子および半導体ダイオード素子について説明する。図5および図6は半導体スイッチ素子の構造の一例をそれぞれ示し、図7(a)(b)および図8(a)(b)は半導体ダイオード素子の構造の一例をそれぞれ示す。 A semiconductor switch element and a semiconductor diode element used in the power converter shown in FIG. 2 will be described with reference to FIGS. 5 and 6 show examples of the structure of the semiconductor switch element, respectively, and FIGS. 7A, 7B, and 8A, 8B show examples of the structure of the semiconductor diode element, respectively.
 本実施の形態における電力変換器に利用する半導体スイッチ素子および半導体ダイオード素子は、シリコン材料、または、シリコンカーバイド(SiC)もしくはガリウムナイトライド(GaN)の化合物材料から構成される。例えば、複数の変換器群10のそれぞれを構成する、第1コンバータ13、第1インバータ14、および、第2コンバータ16や、各変換器群10を短絡する各短絡回路40、第2インバータ21、第3インバータ31、第3コンバータ33、第4インバータ34などの各半導体スイッチ素子および各半導体ダイオード素子が対象となる。一例として、半導体スイッチ素子はシリコン材料から構成され、半導体ダイオード素子は化合物材料から構成される。あるいは、半導体スイッチ素子および半導体ダイオード素子は化合物材料から構成される。以下において、SiCの化合物材料から構成される半導体スイッチ素子および半導体ダイオード素子の構造について説明する。 The semiconductor switch element and the semiconductor diode element used for the power converter in the present embodiment are made of a silicon material or a compound material of silicon carbide (SiC) or gallium nitride (GaN). For example, the first converter 13, the first inverter 14, and the second converter 16, each short circuit 40 that short-circuits each converter group 10, the second inverter 21, which constitute each of the plurality of converter groups 10, Each semiconductor switch element and each semiconductor diode element such as the third inverter 31, the third converter 33, and the fourth inverter 34 are targeted. As an example, the semiconductor switch element is made of a silicon material, and the semiconductor diode element is made of a compound material. Alternatively, the semiconductor switch element and the semiconductor diode element are made of a compound material. Below, the structure of the semiconductor switch element and semiconductor diode element comprised from the compound material of SiC is demonstrated.
 図5は、半導体スイッチ素子(SiC-MOS)の構造の一例を示す断面図である。SiC-MOSは、SiCの化合物材料から構成されるMOSFET(Metal Oxide Semiconductor Field Effect Transistor)の半導体スイッチ素子SWである。図5には、所謂DMOS(Double Diffusion Metal Oxide Semiconductor)タイプのSiC-MOSが示されている。図5において、SPmはソース電極、GPmはゲート電極、DRmはドレイン電極、SUBは基板、Toxはゲート絶縁膜、Nはソース層、Pはベース層、DFTはドリフト層である。 FIG. 5 is a cross-sectional view showing an example of the structure of a semiconductor switch element (SiC-MOS). The SiC-MOS is a semiconductor switch element SW of a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) made of a SiC compound material. FIG. 5 shows a so-called DMOS (Double Diffusion Metal Oxide Semiconductor) type SiC-MOS. In FIG. 5, SPm is a source electrode, GPm is a gate electrode, DRm is a drain electrode, SUB is a substrate, Tox is a gate insulating film, N + is a source layer, P is a base layer, and DFT is a drift layer.
 図5に示すSiC-DMOSにおいて、ソース電極SPmに接続されたn型の領域となるソース層Nは、p型の領域となるベース層P内に形成されるチャネルを介してドリフト層DFTに接続される。ドリフト層DFTは、例えばn型の領域であり、耐圧を確保する役目を担う。基板SUBは、例えばn型の領域であり、当該基板SUBにドレイン電極DRmが接続される。なお図示していないが、ソース電極SPm、ゲート電極GPm、ドレイン電極DRmの各電極は金属配線層を用いて各電極パッドに接続される。SiC-DMOSの場合、素子構造が簡素であり、トレンチ構造タイプのSiC-MOSに比べて製造コストが低くできるという利点がある。したがって、低コストで低損失な電力変換器が実現できる。 In the SiC-DMOS shown in FIG. 5, the source layer N + serving as the n + -type region connected to the source electrode SPm is connected to the drift layer DFT via a channel formed in the base layer P serving as the p-type region. Connected to. The drift layer DFT is, for example, an n type region, and plays a role of securing a breakdown voltage. The substrate SUB is, for example, an n + type region, and the drain electrode DRm is connected to the substrate SUB. Although not shown, each of the source electrode SPm, the gate electrode GPm, and the drain electrode DRm is connected to each electrode pad using a metal wiring layer. In the case of SiC-DMOS, there is an advantage that the element structure is simple and the manufacturing cost can be reduced as compared with a trench structure type SiC-MOS. Therefore, a low-cost and low-loss power converter can be realized.
 図6は、半導体スイッチ素子(SiC-IGBT)の構造の一例を示す断面図である。SiC-IGBTは、SiCの化合物材料から構成されるIGBT(Insulated Gate Bipolar Transistor)の半導体スイッチ素子SWである。図6のSiC-IGBTは、ドリフト層DFTと基板SUBとの間に高濃度P層とバッファ層NBufが存在する点が、SiC-MOSとは異なる点である。高濃度P層があることで伝導度変調現象が発生し、オン抵抗が劇的に低減される。また、必要に応じてバッファ層NBufを適用することで素子のスイッチング損失を低減することができる。このように、SiC-IGBT構造は、SiC-MOS構造と比較すると複雑であり素子形成にコストがかかるものの、大電流を必要とする鉄道車両向けの変換器などに利用する場合は、オン抵抗やスイッチ損失が削減できるために変換器の低損失化を実現できる利点がある。 FIG. 6 is a cross-sectional view showing an example of the structure of a semiconductor switch element (SiC-IGBT). The SiC-IGBT is an IGBT (Insulated Gate Bipolar Transistor) semiconductor switch element SW made of a SiC compound material. The SiC-IGBT in FIG. 6 is different from the SiC-MOS in that a high concentration P + layer and a buffer layer N + Buf exist between the drift layer DFT and the substrate SUB. The presence of the high-concentration P + layer causes a conductivity modulation phenomenon and dramatically reduces the on-resistance. In addition, the switching loss of the element can be reduced by applying the buffer layer N + Buf as necessary. As described above, the SiC-IGBT structure is more complex than the SiC-MOS structure and requires more cost to form an element. However, when used for a converter for a railway vehicle that requires a large current, Since the switch loss can be reduced, there is an advantage that the loss of the converter can be reduced.
 図7は、半導体ダイオード素子(SiC-SBD)の構造の一例を示す図であり、(a)は平面図、(b)は(a)のA-A’切断線における断面図である。SiC-SBDは、SiCの化合物材料から構成されるショットキーバリアダイオードの半導体ダイオード素子である。図7に示すショットキーバリアダイオードDの構造は、JTE(Junction Termination Extension)構造である。図7において、APはアノード電極パッド、SUBは基板、DFTdはドリフト層、ACTdはアクティブ領域、TMdはターミネーション領域、CHSTPdはチャネルストップ領域、IL3はパッシベーション膜、Cathodeは裏面電極、IL1は表面電極、IL2はチャネルストップ領域CHSTPdに接続する電極である。 7A and 7B are diagrams showing an example of the structure of the semiconductor diode element (SiC-SBD), where FIG. 7A is a plan view and FIG. 7B is a cross-sectional view taken along the line A-A ′ in FIG. SiC-SBD is a semiconductor diode element of a Schottky barrier diode composed of a SiC compound material. The structure of the Schottky barrier diode D shown in FIG. 7 is a JTE (Junction Termination Extension) structure. In FIG. 7, AP is an anode electrode pad, SUB is a substrate, DFTd is a drift layer, ACTd is an active region, TMd is a termination region, CHSTPd is a channel stop region, IL3 is a passivation film, Cathode is a back electrode, IL1 is a surface electrode, IL2 is an electrode connected to the channel stop region CHSTPd.
 図7は、n型基板SUBd上のn型ドリフト層DFTdと、n型ドリフト層DFTd上面に形成されたp型ガードリング領域p、p型領域pおよびn型チャネルストップ領域CHSTPd、パッシベーション膜IL3、裏面電極Cathode、表面電極IL1、電極IL2のみを示しており、それより上部に形成されたパッシベーション膜および樹脂膜などは図示を省略している。また、図7では、半導体チップの中央部にあるアクティブ領域ACTdをp領域とn領域が交互に配置された所謂JBS(Junction Barrier Schottky)構造として図示している。p型ガードリング領域のエッジ部分には電界が集中しやすいが、p型JTE領域pが存在することによって電界集中を緩和できる。これにより、パワーデバイスの高耐圧化が可能となる。すなわち、本実施の形態によるパワーモジュールと組み合わせて利用することで、より信頼性の高い電力変換システムが実現できる。 FIG. 7 shows an n type drift layer DFTd on an n + type substrate SUBd, and p + type guard ring regions p + , p type regions p and n + type channel stop regions formed on the upper surface of the n type drift layer DFTd. Only the CHSTPd, the passivation film IL3, the back electrode Cathode, the front surface electrode IL1, and the electrode IL2 are shown, and the passivation film and the resin film formed above the illustration are omitted. In FIG. 7, the active region ACTd at the center of the semiconductor chip is illustrated as a so-called JBS (Junction Barrier Schottky) structure in which p + regions and n regions are alternately arranged. The electric field tends to concentrate on the edge portion of the p + -type guard ring region, but the presence of the p-type JTE region p can alleviate the electric field concentration. As a result, the breakdown voltage of the power device can be increased. That is, by using in combination with the power module according to the present embodiment, a more reliable power conversion system can be realized.
 図8は、半導体ダイオード素子(SiC-PND)の構造の一例を示す図であり、(a)は平面図、(b)は(a)のA-A’切断線における断面図である。SiC-PNDは、SiCの化合物材料から構成されるPN接合ダイオードの半導体ダイオード素子である。図8のPN接合ダイオードDが図7のショットキーバリアダイオードと異なる点は、アクティブ領域ACTdの上部に高濃度p領域が形成され、ドリフト層DFTdのnとPN接合を形成している点である。アクティブ領域ACTd内にPN接合が存在するため、この部分で伝導度変調現象が発生する。このため、図7のユニポーラ型ショットキーバリアダイオードと比較すると大電流を流してもオン抵抗を低くすることができる。したがって、SiC-IGBTとSiC-PNDを併用して鉄道車両の変換器に適用することで、変換器の低損失化を実現することが可能となる。
 <電力変換器を構成する変換器群および最終段インバータ>
8A and 8B are diagrams showing an example of the structure of the semiconductor diode element (SiC-PND), where FIG. 8A is a plan view and FIG. 8B is a cross-sectional view taken along the line AA ′ in FIG. The SiC-PND is a PN junction diode semiconductor diode element made of a SiC compound material. The PN junction diode D of FIG. 8 is different from the Schottky barrier diode of FIG. 7 in that a high concentration p + region is formed above the active region ACTd and forms a PN junction with n − of the drift layer DFTd. It is. Since a PN junction exists in the active region ACTd, the conductivity modulation phenomenon occurs in this portion. For this reason, compared with the unipolar Schottky barrier diode shown in FIG. 7, the on-resistance can be lowered even when a large current flows. Therefore, by using a SiC-IGBT and a SiC-PND in combination with a converter for a railway vehicle, it is possible to reduce the loss of the converter.
<Converter group constituting power converter and final stage inverter>
 図9を用いて、前述した図1の鉄道車両において、電力変換器を構成する変換器群および最終段インバータについて説明する。図9は、この電力変換器を構成する変換器群および最終段インバータの構成の一例を示す回路図である。図9では、変換器群(変換器群10-1を図示)および最終段インバータの半導体スイッチ素子および半導体ダイオード素子が、SiCの化合物材料から構成される例を示している。 Referring to FIG. 9, the converter group and the final stage inverter constituting the power converter in the above-described railway vehicle of FIG. 1 will be described. FIG. 9 is a circuit diagram showing an example of a configuration of a converter group and a final stage inverter that constitute the power converter. FIG. 9 shows an example in which the converter group (converter group 10-1 is shown) and the semiconductor switch element and the semiconductor diode element of the final stage inverter are composed of a SiC compound material.
 電力変換器を構成する各変換器群10は、図2で説明したように、第1コンバータ13、第1インバータ14、変圧器15、および、第2コンバータ16を含んでいる。第1コンバータ13は、半導体スイッチ素子SW11~SW14および半導体ダイオード素子D11~D14から構成され、半導体スイッチ素子SW11~SW14がSiC-MOSで構成され、半導体ダイオード素子D11~D14がSiC-SBDで構成される。第1インバータ14および第2コンバータ16も同様に、半導体スイッチ素子SW21~SW24,SW31~SW34がSiC-MOSで構成され、半導体ダイオード素子D21~D24,D31~D34がSiC-SBDで構成される。なお、図9には図示しないが、図2に示した各変換器群10を短絡する各短絡回路40も同様に、半導体スイッチ素子SW41~SW42がSiC-MOSで構成され、半導体ダイオード素子D41~D42がSiC-SBDで構成される。 Each converter group 10 which comprises a power converter contains the 1st converter 13, the 1st inverter 14, the transformer 15, and the 2nd converter 16, as demonstrated in FIG. The first converter 13 is composed of semiconductor switch elements SW11 to SW14 and semiconductor diode elements D11 to D14. The semiconductor switch elements SW11 to SW14 are composed of SiC-MOS, and the semiconductor diode elements D11 to D14 are composed of SiC-SBD. The Similarly, in the first inverter 14 and the second converter 16, the semiconductor switch elements SW21 to SW24 and SW31 to SW34 are composed of SiC-MOS, and the semiconductor diode elements D21 to D24 and D31 to D34 are composed of SiC-SBD. Although not shown in FIG. 9, each short circuit 40 for short-circuiting each converter group 10 shown in FIG. 2 is also configured by the semiconductor switch elements SW41 to SW42 being made of SiC-MOS, and the semiconductor diode elements D41 to D40. D42 is composed of SiC-SBD.
 これに対して、各変換器群10の出力ノードの短絡されたノードに接続された最終段インバータである第2インバータ21は、半導体スイッチ素子SW51~SW56および半導体ダイオード素子D51~D56から構成され、半導体スイッチ素子SW51~SW56がSiC-IGBTで構成され、半導体ダイオード素子D51~D56がSiC-PNDで構成される。なお、第2インバータ21の半導体スイッチ素子SW51~SW56および半導体ダイオード素子D51~D56は、化合物材料から構成されることが望ましいが、シリコン材料から構成することも可能である。 On the other hand, the second inverter 21 which is the final stage inverter connected to the shorted node of the output node of each converter group 10 is composed of semiconductor switch elements SW51 to SW56 and semiconductor diode elements D51 to D56. The semiconductor switch elements SW51 to SW56 are composed of SiC-IGBT, and the semiconductor diode elements D51 to D56 are composed of SiC-PND. The semiconductor switch elements SW51 to SW56 and the semiconductor diode elements D51 to D56 of the second inverter 21 are preferably made of a compound material, but can also be made of a silicon material.
 このように、図9に示す電力変換器では、変換器群10の半導体スイッチ素子はワイドバンドギャップのユニポーラ型素子から構成され、第2インバータ21の半導体スイッチ素子はワイドバンドギャップのバイポーラ型素子から構成される。パワーデバイス材料としては、シリコンよりもバンドギャップが大きいSiCやGaNといった化合物半導体が注目されている。当該化合物半導体は、バンドギャップが大きいため、破壊耐圧がシリコンの10倍程度ある。このため、化合物デバイスはSiデバイスよりも膜厚を薄くでき、導通時の抵抗値(Ron)を大幅に下がられる。その結果、抵抗値(Ron)と導通電流(i)の積で表される、所謂導通損失(Ron×i)を削減でき、電力効率改善に大きく寄与できる。このような高耐圧化や低損失化の特徴に着目し、本実施の形態における電力変換器では、化合物材料を用いたスイッチ素子やダイオード素子が用いられている。 As described above, in the power converter shown in FIG. 9, the semiconductor switch elements of the converter group 10 are composed of wide band gap unipolar elements, and the semiconductor switch element of the second inverter 21 is composed of a wide band gap bipolar element. Composed. As power device materials, compound semiconductors such as SiC and GaN having a larger band gap than silicon are attracting attention. Since the compound semiconductor has a large band gap, the breakdown voltage is about 10 times that of silicon. For this reason, the compound device can be made thinner than the Si device, and the resistance value (Ron) during conduction can be greatly reduced. As a result, the so-called conduction loss (Ron × i 2 ) represented by the product of the resistance value (Ron) and the conduction current (i) can be reduced, which can greatly contribute to power efficiency improvement. Paying attention to such features of high breakdown voltage and low loss, the power converter in the present embodiment uses a switch element and a diode element using a compound material.
 また、変換器群10の半導体スイッチ素子と第2インバータ21の半導体スイッチ素子とで異なる種類の素子を用いる工夫も行っている。例えば、変換器群10の半導体スイッチ素子としてユニポーラ型素子を用いることで、スイッチ損失が小さく高周波による動作を可能にしている。また、ユニポーラ型素子は、入力インピーダンスが高いので微弱な電圧が、雑音が少なく増幅でき、かつ耐圧が高いという利点もある。一方、第2インバータ21の半導体スイッチ素子としてバイポーラ型素子を用いることで、大電流への対応を可能にしている。
 <実施の形態の効果>
Moreover, the device which uses a different kind of element by the semiconductor switch element of the converter group 10 and the semiconductor switch element of the 2nd inverter 21 is also performed. For example, by using a unipolar element as the semiconductor switch element of the converter group 10, the switch loss is small and an operation with a high frequency is possible. In addition, since the unipolar element has a high input impedance, it has an advantage that a weak voltage can be amplified with little noise and has a high withstand voltage. On the other hand, by using a bipolar element as the semiconductor switching element of the second inverter 21, it is possible to cope with a large current.
<Effect of Embodiment>
 以上説明した本実施の形態における電力変換器、およびそれを用いた鉄道車両によれば、例えば、複数の交流電力架線2からの複数の交流電力を入力とする鉄道車両において、信頼性の向上を可能とする電力変換器1を提供することができる。より詳細には、以下の通りである。 According to the power converter in the present embodiment described above and the railway vehicle using the power converter, for example, in a railway vehicle that receives a plurality of AC powers from a plurality of AC power overhead lines 2, the reliability can be improved. The power converter 1 that can be provided can be provided. More details are as follows.
 (1)第1コンバータ13、第1インバータ14、および、第2コンバータ16は、ユニポーラ型素子から構成され、第2インバータ21は、バイポーラ型素子から構成されることで、素子の特性に応じた好適な動作を実現することができる。例えば、ユニポーラ型素子の特性を活かしたスイッチ損失が小さく高周波による動作や、バイポーラ型素子の特性を活かした大電流への対応が可能となる。 (1) The first converter 13, the first inverter 14, and the second converter 16 are configured by unipolar elements, and the second inverter 21 is configured by a bipolar element, so that it corresponds to the characteristics of the elements. A suitable operation can be realized. For example, the switch loss utilizing the characteristics of the unipolar element is small, and it is possible to cope with a high current operation utilizing the characteristics of the bipolar element and the operation at high frequency.
 (2)第1コンバータ13、第1インバータ14、変圧器15、および、第2コンバータ16で構成した変換器群10を複数直列接続した構成において、この複数の変換器群10の出力ノードの短絡されたノードは第2インバータ21の入力側に接続されることで、交流電力架線2の電圧が異なる場合でも複数直列の変換器群10を選択的に動作させることができる。 (2) In a configuration in which a plurality of converter groups 10 including the first converter 13, the first inverter 14, the transformer 15, and the second converter 16 are connected in series, the output nodes of the plurality of converter groups 10 are short-circuited. The connected nodes are connected to the input side of the second inverter 21, so that the plurality of series converter groups 10 can be selectively operated even when the voltage of the AC power overhead line 2 is different.
 (3)第1コンバータ13、第1インバータ14、変圧器15、および、第2コンバータ16は、1つの変換器群10を構成し、この変換器群10を複数直列接続した場合の耐圧が複数の交流電力架線2のうちの最高電圧よりも高いことで、交流電力架線2の架線電圧に応じて活性化する変換器群10を選択して、電力変換器1の信頼性を向上させることができる。 (3) The first converter 13, the first inverter 14, the transformer 15, and the second converter 16 constitute one converter group 10, and a plurality of withstand voltages are obtained when the plurality of converter groups 10 are connected in series. It is possible to improve the reliability of the power converter 1 by selecting the converter group 10 to be activated according to the overhead voltage of the AC power overhead line 2 by being higher than the highest voltage of the AC power overhead line 2 of it can.
 (4)複数の変換器群10は、冗長用変換器群10-Rを含むことで、1つの変換器群に動作不良が発生した場合には、この不良が発生した変換器群に接続される短絡回路40を活性化してこの変換器群をバイパスし、代わりに冗長用変換器群10-Rで電力変換動作させることができるので、電力変換器1の連続電力変換動作が可能となる。 (4) Since the plurality of converter groups 10 include the redundant converter group 10-R, when an operation failure occurs in one converter group, the plurality of converter groups 10 are connected to the converter group in which the failure occurs. The short circuit 40 is activated to bypass this converter group, and instead the redundant converter group 10-R can perform a power conversion operation, so that the power converter 1 can perform a continuous power conversion operation.
 (5)冗長用変換器群10-Rに接続される短絡回路40-Rは多重化されていることで、短絡回路にも冗長性を持たせることができる。 (5) Since the short circuit 40-R connected to the redundancy converter group 10-R is multiplexed, the short circuit can be made redundant.
 (6)複数の交流電力架線2のうちの低電圧側の交流電力を入力とする場合、複数の変換器群10の一部を利用して電力変換動作をすることで、交流電力架線2の架線電圧に応じて活性化する変換器群10を選択して、複数ある変換器群10の稼動数を変更することで、電力変換器1としての効率化を図ることができる。 (6) When the AC power on the low voltage side of the plurality of AC power overhead lines 2 is input, by performing a power conversion operation using a part of the plurality of converter groups 10, The efficiency as the power converter 1 can be improved by selecting the converter group 10 to be activated according to the overhead line voltage and changing the number of operation of the plurality of converter groups 10.
 (7)電力変換動作する変換器群10の一部と、短絡回路40を活性化して電力変換動作させない変換器群10とは交互に直列接続されることで、変換器群10の動作による熱の発生も交互になるので、放熱性の面で優れた電力変換器1を実現することができる。 (7) A part of the converter group 10 that performs the power conversion operation and the converter group 10 that activates the short circuit 40 and does not perform the power conversion operation are alternately connected in series, so that the heat generated by the operation of the converter group 10 Since generation | occurrence | production is also alternated, the power converter 1 excellent in the surface of heat dissipation is realizable.
 (8)電力変換動作する変換器群10の一部のそれぞれが直列接続され、短絡回路40を活性化して電力変換動作させない変換器群10のそれぞれが直列接続されることで、電力変換動作する変換器群10と電力変換動作させない変換器群10がそれぞれまとまっているので、活性化/非活性化による動作の制御が容易な電力変換器1を実現することができる。 (8) Each of the converter groups 10 that perform power conversion operation is connected in series, and each of the converter groups 10 that activates the short circuit 40 and does not perform power conversion operation is connected in series, thereby performing power conversion operation. Since the converter group 10 and the converter group 10 that does not perform the power conversion operation are gathered together, the power converter 1 that can easily control the operation by activation / deactivation can be realized.
 (9)複数の変換器群10に不良が発生していない場合は、冗長用変換器群10-Rに接続される短絡回路40-Rを活性化して冗長用変換器群10-Rをバイパスすることで、この冗長用変換器群10-Rを電力変換動作させない変換器群とすることができる。 (9) When no failure occurs in the plurality of converter groups 10, the short-circuit circuit 40-R connected to the redundant converter group 10-R is activated to bypass the redundant converter group 10-R. Thus, the redundant converter group 10-R can be made a converter group that does not perform the power conversion operation.
 (10)第1コンバータ13、第1インバータ14、および、第2コンバータ16を構成する半導体スイッチ素子および半導体ダイオード素子は、SiCまたはGaNの化合物材料から構成されることで、ワイドバンドギャップ素子の特性を活かした高耐圧化や低損失化、これに伴う高効率化や長寿命化などを実現して、電力変換器1の高信頼化が可能となる。 (10) The semiconductor switch element and the semiconductor diode element constituting the first converter 13, the first inverter 14, and the second converter 16 are made of a compound material of SiC or GaN. It is possible to increase the reliability of the power converter 1 by realizing high withstand voltage and low loss by utilizing the above, high efficiency and long life associated therewith.
 (11)第1コンバータ13、第1インバータ14、変圧器15、第2コンバータ16、電圧検出器11、および、制御回路12は、1つの変換器群10を構成し、この変換器群10を複数直列接続した構成においても、上記(1)~(10)と同様の効果を得ることができる。 (11) The first converter 13, the first inverter 14, the transformer 15, the second converter 16, the voltage detector 11, and the control circuit 12 constitute one converter group 10. Even in a configuration in which a plurality of units are connected in series, the same effects as the above (1) to (10) can be obtained.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
 上記した実施の形態は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The above embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of the embodiment.
 例えば、前記実施の形態においては、一例として鉄道車両に用いられる電力変換器について説明したが、本発明はこれに限定されるものではなく、風力発電システムや太陽光発電システムなどにも適用することができる。 For example, in the above-described embodiment, a power converter used for a railway vehicle has been described as an example. However, the present invention is not limited to this, and may be applied to a wind power generation system, a solar power generation system, or the like. Can do.
1 電力変換器
2 交流電力架線
3 直流電力架線
4 パンタグラフ
5 切り替えスイッチ
6 車輪
7 モータ
8 負荷機器
10 変換器群
11 電圧検出器
12 制御回路
13 第1コンバータ
14 第1インバータ
15 変圧器
16 第2コンバータ
21 第2インバータ
31 第3インバータ
32 変圧器
33 第3コンバータ
34 第4インバータ
40 短絡回路
 
DESCRIPTION OF SYMBOLS 1 Power converter 2 AC power overhead line 3 DC power overhead line 4 Pantograph 5 Changeover switch 6 Wheel 7 Motor 8 Load apparatus 10 Converter group 11 Voltage detector 12 Control circuit 13 1st converter 14 1st inverter 15 Transformer 16 2nd converter 21 Second inverter 31 Third inverter 32 Transformer 33 Third converter 34 Fourth inverter 40 Short circuit

Claims (15)

  1.  複数の交流電力のうちの第1交流電力を第1直流電力に変換する第1コンバータと、
     前記第1直流電力を第2交流電力に変換する第1インバータと、
     前記第2交流電力を第3交流電力に変換する変圧器と、
     前記第3交流電力を第2直流電力に変換する第2コンバータと、
     前記第2直流電力を第4交流電力に変換する第2インバータと、
     を有し、
     前記第1コンバータ、前記第1インバータ、および、前記第2コンバータは、ユニポーラ型素子から構成され、
     前記第2インバータは、バイポーラ型素子から構成される、電力変換器。
    A first converter that converts a first AC power among a plurality of AC powers to a first DC power;
    A first inverter that converts the first DC power into second AC power;
    A transformer for converting the second AC power into third AC power;
    A second converter for converting the third AC power into second DC power;
    A second inverter for converting the second DC power into fourth AC power;
    Have
    The first converter, the first inverter, and the second converter are composed of unipolar elements,
    The second inverter is a power converter composed of a bipolar element.
  2.  請求項1記載の電力変換器において、
     前記第1コンバータ、前記第1インバータ、前記変圧器、および、前記第2コンバータは1つの変換器群を構成し、前記変換器群を複数直列接続した構成において、
     前記直列接続した複数の変換器群の出力ノードは短絡され、前記短絡されたノードは前記第2インバータの入力側に接続される、電力変換器。
    The power converter according to claim 1, wherein
    In the configuration in which the first converter, the first inverter, the transformer, and the second converter constitute one converter group, and a plurality of the converter groups are connected in series.
    An output node of the plurality of converter groups connected in series is short-circuited, and the short-circuited node is connected to an input side of the second inverter.
  3.  複数の交流電力のうちの第1交流電力を第1直流電力に変換する第1コンバータと、
     前記第1直流電力を第2交流電力に変換する第1インバータと、
     前記第2交流電力を第3交流電力に変換する変圧器と、
     前記第3交流電力を第2直流電力に変換する第2コンバータと、
     を有し、
     前記第1コンバータ、前記第1インバータ、前記変圧器、および、前記第2コンバータは、1つの変換器群を構成し、
     前記変換器群を複数直列接続した場合の耐圧が、前記複数の交流電力のうちの最高電圧よりも高い、電力変換器。
    A first converter that converts a first AC power among a plurality of AC powers to a first DC power;
    A first inverter that converts the first DC power into second AC power;
    A transformer for converting the second AC power into third AC power;
    A second converter for converting the third AC power into second DC power;
    Have
    The first converter, the first inverter, the transformer, and the second converter constitute one converter group,
    A power converter, wherein a withstand voltage when a plurality of the converter groups are connected in series is higher than a maximum voltage among the plurality of AC powers.
  4.  請求項3記載の電力変換器において、
     前記電力変換器は、前記直列接続した複数の変換器群と、前記複数の変換器群のそれぞれを短絡する複数の短絡回路と、を有し、
     前記複数の変換器群は、少なくとも1つ以上の冗長用変換器群を含み、
     前記複数の変換器群のうちの第1変換器群に動作不良が発生した場合には、前記第1変換器群に接続される前記短絡回路を活性化して前記第1変換器群をバイパスし、前記冗長用変換器群が前記第1変換器群の代わりに電力変換動作する、電力変換器。
    The power converter according to claim 3, wherein
    The power converter includes a plurality of converter groups connected in series, and a plurality of short circuits that short-circuit each of the plurality of converter groups.
    The plurality of converter groups include at least one redundant converter group,
    When a malfunction occurs in the first converter group of the plurality of converter groups, the short circuit connected to the first converter group is activated to bypass the first converter group. A power converter in which the redundant converter group performs a power conversion operation instead of the first converter group.
  5.  請求項4記載の電力変換器において、
     前記冗長用変換器群に接続される前記短絡回路は多重化されている、電力変換器。
    The power converter according to claim 4, wherein
    The power converter, wherein the short circuit connected to the redundant converter group is multiplexed.
  6.  請求項4記載の電力変換器において、
     前記複数の交流電力のうちの低電圧側の交流電力を入力とする場合、前記複数の変換器群の一部を利用して電力変換動作をする、電力変換器。
    The power converter according to claim 4, wherein
    A power converter that performs a power conversion operation using a part of the plurality of converter groups when the AC power on the low voltage side of the plurality of AC powers is input.
  7.  請求項6記載の電力変換器において、
     前記電力変換動作する変換器群の一部と、前記短絡回路を活性化して電力変換動作させない変換器群とは、交互に直列接続される、電力変換器。
    The power converter according to claim 6, wherein
    A part of the converter group that performs the power conversion operation and the converter group that activates the short circuit and does not perform the power conversion operation are alternately connected in series.
  8.  請求項6記載の電力変換器において、
     前記電力変換動作する変換器群の一部のそれぞれが直列接続され、前記短絡回路を活性化して電力変換動作させない変換器群のそれぞれが直列接続される、電力変換器。
    The power converter according to claim 6, wherein
    Each of a part of the converter groups that perform the power conversion operation is connected in series, and each of the converter groups that activates the short circuit and does not perform the power conversion operation is connected in series.
  9.  請求項6記載の電力変換器において、
     前記複数の変換器群に不良が発生していない場合は、前記冗長用変換器群に接続される前記短絡回路を活性化して前記冗長用変換器群をバイパスする、電力変換器。
    The power converter according to claim 6, wherein
    A power converter that activates the short circuit connected to the redundant converter group and bypasses the redundant converter group when no defect has occurred in the plurality of converter groups.
  10.  請求項3記載の電力変換器において、
     前記第1コンバータ、前記第1インバータ、および、前記第2コンバータは、半導体スイッチ素子と、半導体ダイオード素子と、から構成され、
     前記半導体スイッチ素子および前記半導体ダイオード素子は、シリコンカーバイドまたはガリウムナイトライドの化合物材料から構成される、電力変換器。
    The power converter according to claim 3, wherein
    The first converter, the first inverter, and the second converter are composed of a semiconductor switch element and a semiconductor diode element,
    The semiconductor switch element and the semiconductor diode element are power converters composed of a compound material of silicon carbide or gallium nitride.
  11.  複数の交流電力架線からの複数の交流電力を入力とする鉄道車両において、前記複数の交流電力のうちの第1交流電力を第1直流電力に変換する第1コンバータと、
     前記第1直流電力を第2交流電力に変換する第1インバータと、
     前記第2交流電力を第3交流電力に変換する変圧器と、
     前記第3交流電力を第2直流電力に変換する第2コンバータと、
     前記鉄道車両に入力される前記複数の交流電力の電圧を検出する電圧検出器と、
     前記電圧検出器で検出された電圧に基づいて、前記第1コンバータ、前記第1インバータ、および、前記第2コンバータを制御する制御回路と、
     を有し、
     前記第1コンバータ、前記第1インバータ、前記変圧器、前記第2コンバータ、前記電圧検出器、および、前記制御回路は、1つの変換器群を構成し、前記変換器群を複数直列接続した構成において、
     前記直列接続した複数の変換器群と、前記複数の変換器群のそれぞれを短絡する複数の短絡回路と、を有し、
     前記複数の交流電力は、第1電圧の交流電力と、前記第1電圧より低い第2電圧の交流電力とを含み、
     前記第2電圧の交流電力を入力とする場合、前記複数の変換器群の一部を利用して電力変換動作をする、電力変換器。
    In a railway vehicle that receives a plurality of AC power from a plurality of AC power overhead lines, a first converter that converts a first AC power of the plurality of AC powers to a first DC power;
    A first inverter that converts the first DC power into second AC power;
    A transformer for converting the second AC power into third AC power;
    A second converter for converting the third AC power into second DC power;
    A voltage detector for detecting the voltages of the plurality of AC powers input to the railway vehicle;
    A control circuit for controlling the first converter, the first inverter, and the second converter based on the voltage detected by the voltage detector;
    Have
    The first converter, the first inverter, the transformer, the second converter, the voltage detector, and the control circuit constitute one converter group, and a plurality of the converter groups are connected in series. In
    A plurality of converter groups connected in series, and a plurality of short circuits that short-circuit each of the plurality of converter groups,
    The plurality of AC powers include a first voltage AC power and a second voltage AC power lower than the first voltage,
    A power converter that performs power conversion operation using a part of the plurality of converter groups when AC power of the second voltage is input.
  12.  請求項11記載の電力変換器において、
     前記電力変換動作する変換器群の一部と、前記短絡回路を活性化して電力変換動作させない変換器群とは、交互に直列接続される、電力変換器。
    The power converter according to claim 11, wherein
    A part of the converter group that performs the power conversion operation and the converter group that activates the short circuit and does not perform the power conversion operation are alternately connected in series.
  13.  請求項11記載の電力変換器において、
     前記電力変換動作する変換器群の一部のそれぞれが直列接続され、前記短絡回路を活性化して電力変換動作させない変換器群のそれぞれが直列接続される、電力変換器。
    The power converter according to claim 11, wherein
    Each of a part of the converter groups that perform the power conversion operation is connected in series, and each of the converter groups that activates the short circuit and does not perform the power conversion operation is connected in series.
  14.  請求項11記載の電力変換器において、
     前記複数の変換器群は、少なくとも1つ以上の冗長用変換器群を含み、
     前記複数の変換器群に不良が発生していない場合は、前記冗長用変換器群に接続される前記短絡回路を活性化して前記冗長用変換器群をバイパスする、電力変換器。
    The power converter according to claim 11, wherein
    The plurality of converter groups include at least one redundant converter group,
    A power converter that activates the short circuit connected to the redundant converter group and bypasses the redundant converter group when no defect has occurred in the plurality of converter groups.
  15.  請求項14記載の電力変換器において、
     前記複数の変換器群のうちの第1変換器群に不良が発生した場合は、前記第1変換器群に接続される前記短絡回路を活性化して前記第1変換器群をバイパスし、前記冗長用変換器群が前記第1変換器群の代わりに電力変換動作する、電力変換器。
     
    The power converter of claim 14.
    When a failure occurs in the first converter group of the plurality of converter groups, the short circuit connected to the first converter group is activated to bypass the first converter group, A power converter in which a redundant converter group performs a power conversion operation instead of the first converter group.
PCT/JP2014/083242 2014-12-16 2014-12-16 Power converter WO2016098178A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112014007164.1T DE112014007164B4 (en) 2014-12-16 2014-12-16 Electrical power converter
PCT/JP2014/083242 WO2016098178A1 (en) 2014-12-16 2014-12-16 Power converter
JP2016564488A JP6231225B2 (en) 2014-12-16 2014-12-16 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/083242 WO2016098178A1 (en) 2014-12-16 2014-12-16 Power converter

Publications (1)

Publication Number Publication Date
WO2016098178A1 true WO2016098178A1 (en) 2016-06-23

Family

ID=56126101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083242 WO2016098178A1 (en) 2014-12-16 2014-12-16 Power converter

Country Status (3)

Country Link
JP (1) JP6231225B2 (en)
DE (1) DE112014007164B4 (en)
WO (1) WO2016098178A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11923716B2 (en) 2019-09-13 2024-03-05 Milwaukee Electric Tool Corporation Power converters with wide bandgap semiconductors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63305723A (en) * 1987-06-05 1988-12-13 Mitsubishi Electric Corp Power converter
JPS63305724A (en) * 1987-06-05 1988-12-13 Mitsubishi Electric Corp Power converter
JP2005073362A (en) * 2003-08-22 2005-03-17 Rikogaku Shinkokai Power converter, motor drive arrangement, btb system, and grid-connected inverter system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19614627A1 (en) 1996-04-13 1997-10-16 Abb Patent Gmbh High voltage converter system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63305723A (en) * 1987-06-05 1988-12-13 Mitsubishi Electric Corp Power converter
JPS63305724A (en) * 1987-06-05 1988-12-13 Mitsubishi Electric Corp Power converter
JP2005073362A (en) * 2003-08-22 2005-03-17 Rikogaku Shinkokai Power converter, motor drive arrangement, btb system, and grid-connected inverter system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11923716B2 (en) 2019-09-13 2024-03-05 Milwaukee Electric Tool Corporation Power converters with wide bandgap semiconductors

Also Published As

Publication number Publication date
JP6231225B2 (en) 2017-11-15
DE112014007164B4 (en) 2023-12-28
JPWO2016098178A1 (en) 2017-07-06
DE112014007164T5 (en) 2017-08-31

Similar Documents

Publication Publication Date Title
JP5461899B2 (en) Power converter
JP4902029B1 (en) Power semiconductor module
CN110235244B (en) Power semiconductor module and power conversion device
US8610384B2 (en) Converter with distributed brake resistances
US9270193B2 (en) Power semiconductor module, power converting apparatus, and railway car
US8471535B2 (en) Large current handling capable semiconductor switching device with suppression of short circuit damage and recovery current switching loss
JP4594477B2 (en) Power semiconductor module
CN105027415B (en) Power-converting device
US20110215746A1 (en) Semiconductor device
JP6457800B2 (en) Power conversion device and railway vehicle equipped with the same
JP2008193839A (en) Semiconductor switch and power conversion apparatus applying same
JP5289536B2 (en) Power semiconductor module
US9881912B2 (en) Semiconductor device, inverter circuit, driving device, vehicle, and elevator
JP5095803B2 (en) Power semiconductor module
JP4724251B2 (en) Power semiconductor module
JP6231225B2 (en) Power converter
JP2011004243A (en) Switch circuit
US9950898B2 (en) Semiconductor device, inverter circuit, driving device, vehicle, and elevator
JP2015201947A (en) power semiconductor device
JP2020099039A (en) Bidirectional switch
JP2020039221A (en) Electric power conversion device and electric vehicle
CN112512858A (en) Modular converter
WO2024057598A1 (en) Gate drive circuit for semiconductor switching element, electric motor control system, and semiconductor device
WO2016157533A1 (en) Electric power conversion device
JP2004282940A (en) Semiconductor element module and ac-ac power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908388

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016564488

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112014007164

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908388

Country of ref document: EP

Kind code of ref document: A1