WO2015182097A1 - Contactless power-supplying device and contactless power-supplying system in which same is used - Google Patents

Contactless power-supplying device and contactless power-supplying system in which same is used Download PDF

Info

Publication number
WO2015182097A1
WO2015182097A1 PCT/JP2015/002603 JP2015002603W WO2015182097A1 WO 2015182097 A1 WO2015182097 A1 WO 2015182097A1 JP 2015002603 W JP2015002603 W JP 2015002603W WO 2015182097 A1 WO2015182097 A1 WO 2015182097A1
Authority
WO
WIPO (PCT)
Prior art keywords
primary side
characteristic
frequency
primary
coil
Prior art date
Application number
PCT/JP2015/002603
Other languages
French (fr)
Japanese (ja)
Inventor
田村 秀樹
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015182097A1 publication Critical patent/WO2015182097A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-contact power supply apparatus and a non-contact power supply system using the same, and more specifically to a non-contact power supply apparatus that performs non-contact power supply by electromagnetic induction and a non-contact power supply system using the same.
  • Document 1 a non-contact power supply device that performs non-contact power supply by electromagnetic induction has been provided (for example, see Japanese Patent Application Publication No. 2013-211932, hereinafter referred to as “Document 1”).
  • the contactless power supply device described in Document 1 is used together with a contactless power receiving device that receives power from the contactless power supply device.
  • the non-contact power feeding device includes a primary side coil and an AC power source that inputs AC power to the primary side coil.
  • the non-contact power receiving device includes a secondary side coil.
  • the non-contact power receiving device is mounted on a vehicle including a relatively large capacity secondary battery and a charging circuit for charging the secondary battery, such as an electric vehicle and a hybrid vehicle, and a power source for the charging circuit described above. Become.
  • non-contact power supply device as described above is used, convenience such as plugging / unplugging / unplugging becomes unnecessary as compared with the case where power supply is performed by wire.
  • the mutual inductance between the primary side coil and the secondary side coil changes according to the positional relationship between the primary side coil and the secondary side coil.
  • the non-contact power receiving device is mounted on an automobile and the non-contact power feeding device is fixed to the ground
  • the mutual inductance is different.
  • the vehicle height is low, the mutual inductance value and coupling coefficient value between the primary coil of the contactless power supply device on the ground side and the secondary coil present on the vehicle body side are values that can be practically used. It can be operated with.
  • the vehicle height of the automobile is high, the distance between the primary side coil and the secondary side coil is increased, so that the mutual inductance value and the coupling coefficient value are insufficient.
  • the electric power input to the primary coil and the electrical stress applied to the circuit components of the AC power supply depend on the mutual inductance.
  • the life of the AC power supply may be shortened due to excessive electrical stress, and the efficiency may be reduced. May be wasted.
  • An object of the present invention is to provide a non-contact power feeding device that can suppress a decrease in efficiency due to a positional relationship between a primary side coil and a secondary side coil, and a non-contact power feeding system using the same.
  • a non-contact power feeding device inputs AC power to a primary side coil, a primary side capacitor that constitutes a primary side LC circuit together with the primary side coil, and the primary side LC circuit.
  • An AC power source configured as described above, a power source control unit that controls the AC power source, and a characteristic estimation unit configured to perform a characteristic estimation operation that estimates a characteristic of the primary side LC circuit.
  • the control unit sets the effective value of the output voltage to the steady operation before starting the steady operation of controlling the AC power supply so that the frequency of the output voltage is constant.
  • the characteristic estimation unit performs the characteristic estimation operation during the start-up period.
  • a non-contact power feeding system of the present invention includes the non-contact power feeding device and a secondary side coil configured to induce a current by an electromagnetic field generated by the primary side coil. And a non-contact power receiving device.
  • FIG. 1 is a circuit block diagram illustrating a non-contact power feeding system according to a first embodiment. It is explanatory drawing which shows an example of the usage pattern of the non-contact electric power feeding system which concerns on Embodiment 1.
  • FIG. It is explanatory drawing which shows the example of the frequency characteristic of the primary side LC circuit in the non-contact electric power feeding system which concerns on Embodiment 1 about the case where the coupling coefficient of a primary side coil and a secondary side coil differs, respectively.
  • It is explanatory drawing which shows an example of the time change of the output current I of the alternating current power supply in the slow phase mode, and the output voltage V.
  • FIG. 3 is an explanatory diagram illustrating an example of frequency characteristics of a primary side LC circuit in the non-contact power feeding system according to the first embodiment. It is explanatory drawing which shows another example of the frequency characteristic of the primary side LC circuit in the non-contact electric power feeding system which concerns on Embodiment 1.
  • FIG. 3 is a circuit diagram illustrating an example of a primary side capacitor in the non-contact power feeding system according to the first embodiment. 3 is a circuit diagram illustrating an example of a primary side coil in the non-contact power feeding system according to Embodiment 1.
  • FIG. 13A to 13D are explanatory diagrams illustrating examples of first characteristics in the non-contact power feeding system according to the second embodiment.
  • FIG. 14A is an explanatory diagram illustrating an example of frequency characteristics of the primary LC circuit in the non-contact power feeding system according to the second embodiment.
  • 14B is an explanatory diagram illustrating another example of the frequency characteristics of the primary LC circuit in the wireless power supply system according to the second embodiment.
  • 10 is an explanatory diagram illustrating an example of frequency characteristics of a primary side LC circuit in a non-contact power feeding system according to Embodiment 3.
  • FIG. It is explanatory drawing which shows another example of the frequency characteristic of the primary side LC circuit in the non-contact electric power feeding system which concerns on Embodiment 3.
  • the non-contact power feeding device 2 includes a primary side coil L1 and a primary side capacitor C1 that constitutes a primary side LC circuit 24 together with the primary side coil L1.
  • the non-contact power feeding device 2 includes an AC power source 21 configured to input AC power to the primary side LC circuit 24 and a primary side control unit 22 as a power source control unit that controls the AC power source 21.
  • the non-contact power feeding device 2 includes a primary side control unit 22 as a characteristic estimation unit configured to perform a characteristic estimation operation of estimating the characteristic of the primary side LC circuit 24.
  • the primary side control unit 22 as the power source control unit has a start period before starting a steady operation of controlling the AC power source 21 so that the frequency of the output voltage V is constant.
  • the effective value of the output voltage V is set lower than that during steady operation.
  • the primary side control unit 22 as the characteristic estimation unit performs a characteristic estimation operation during the starting period.
  • the primary side control unit 22 as the characteristic estimation unit estimates the characteristic of the primary side LC circuit 24 in a state where the primary side coil L1 is magnetically coupled to the secondary side coil L2.
  • the characteristic of the primary side LC circuit 24 is that the current flowing through the primary side LC circuit 24 with respect to the frequency of the output voltage V output from the AC power source 21 after the primary side coil L1 is magnetically coupled to the secondary side coil L2. This is the frequency characteristic of I.
  • the frequency characteristics (resonance characteristics) of the primary side LC circuit 24 are different for each coupling coefficient k between the primary side coil L1 and the secondary side coil L2. For example, the coupling coefficient k changes when the relative positions of the primary coil L1 and the secondary coil L2 shift.
  • the primary side control unit 22 as the characteristic estimation unit performs a characteristic estimation operation for estimating the frequency characteristic of the current I during the start period, and the output that can be fed to the secondary coil L2 side by the non-contact power feeding device 2 in a desired state. Estimate the frequency of the voltage V. And the primary side control part 22 as a characteristic estimation part controls the alternating current power supply 21 so that the frequency of the output voltage V may be made constant, and starts steady operation
  • the non-contact electric power feeder 2 can suppress the fall of the efficiency by the positional relationship of the primary side coil L1 and the secondary side coil L2.
  • the primary side control unit 22 as the characteristic estimation unit may estimate the characteristic based on the current in the AC power source 21.
  • the primary side control unit 22 as the characteristic estimation unit may estimate the characteristic based on the difference between the phase of the output voltage V and the phase of the output current I in the AC power supply 21. .
  • the primary side control unit 22 as a power supply control unit may gradually change the frequency of the output voltage V of the AC power supply 21 while the characteristic estimation operation is being performed.
  • the primary side control unit 22 as the characteristic estimation unit detects the effective value of the output current I of the AC power supply 21 a plurality of times in a state where the frequency of the output voltage of the AC power supply 21 is different. May be.
  • a primary side control unit 22 as a characteristic adjustment unit that controls at least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1.
  • the primary side control unit 22 as the characteristic adjustment unit determines at least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1 according to the characteristic estimated by the characteristic estimation operation before the steady operation is started. The characteristic adjustment operation is performed to obtain
  • a storage unit 26 in which a table showing a correspondence relationship between at least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1 and the characteristic estimated by the characteristic estimation operation is stored in advance. May be provided.
  • the primary side control unit 22 serving as the characteristic adjustment unit sets at least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1 as a table for the characteristic estimated by the characteristic estimation operation. The value associated with.
  • the primary side control unit 22 as a characteristic adjustment unit changes at least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1, and then performs primary side control as a characteristic estimation unit.
  • the unit 22 may estimate the characteristics again.
  • a non-contact power feeding system 1 includes any non-contact power feeding device 2 described above and a secondary side coil L2 configured to induce a current by an electromagnetic field generated by the primary side coil L1. And a contact power receiving device 3.
  • the non-contact power receiving device 3 includes an open / close unit 31 that opens and closes an electric path between both ends of the secondary coil L2, and a secondary control unit 32 that controls the open / close unit 31. May be.
  • the secondary side control unit 32 turns on the opening / closing unit 31 during the period during which the characteristic estimation operation is performed, and turns off the opening / closing unit 31 during the period during which the steady operation is performed. .
  • the non-contact power receiving device 3 includes a rectifying unit 30 that rectifies the output of the secondary coil L2, and the opening / closing unit 31 is electrically connected between the output terminals of the rectifying unit 30. It is desirable that
  • the non-contact electric power feeding system can suppress the fall of the efficiency by the positional relationship of the primary side coil L1 and the secondary side coil L2.
  • the non-contact electric power feeding system 1 which concerns on Embodiment 1 of this invention is demonstrated.
  • the non-contact power feeding system 1 according to Embodiment 1 of the present invention includes a non-contact power feeding device 2 and a non-contact power receiving device 3.
  • the non-contact power feeding device 2 includes a primary side coil L1, a primary side capacitor C1 that forms the primary side LC circuit 24 together with the primary side coil L1, an AC power source 21 that supplies AC power to the primary side LC circuit 24, and an AC power source.
  • the primary side control part 22 as a power supply control part which controls 21 is provided.
  • the AC power source 21 includes a DC power source unit 210 that can change the output voltage, and an inverter unit 211 that converts the output of the DC power source unit 210 into AC and outputs the AC voltage to the primary LC circuit 24.
  • the inverter unit 211 is a so-called full bridge type inverter circuit in which a series circuit of two switching elements Q1 and Q2 and a series circuit of two switching elements Q3 and Q4 are connected in parallel to each other. Each series circuit is electrically connected in parallel between a pair of output terminals of the DC power supply unit 210. A connection point between the switching element Q1 and the switching element Q2 is electrically connected to one input terminal of the primary side LC circuit 24. A connection point between the switching element Q3 and the switching element Q4 is electrically connected to the other input terminal of the primary side LC circuit 24. In the example of FIG.
  • n-channel and enhancement type MOSFETs Metal-Oxide-Semiconductor Field-Effect Transistors
  • the drain is directed to the high potential side
  • the source is directed to the low potential side
  • the gate is connected to the primary side control unit 22.
  • IGBTs Insulated Gate Bipolar Transistors
  • the primary-side control unit 22 uses a rectangular-wave-shaped first drive signal G1 whose duty ratio is slightly lower than 50% to switch the switching element Q1 on the high potential side of one series circuit of the inverter unit 211 and the low level of the other series circuit.
  • the potential side switching element Q4 is driven.
  • the primary side control unit 22 switches the remaining two switching units of the inverter unit 211 by a rectangular-wave-like second drive signal G2 having a common duty ratio and frequency with respect to the first drive signal G1 and having a phase different by 180 degrees.
  • Elements Q2 and Q3 are driven. That is, the pair of two switching elements Q1 and Q4 positioned diagonally to each other and the pair of the remaining two switching elements Q2 and Q3 are alternately turned on and off.
  • the output voltage of the DC power supply unit 210 is alternated and input to the primary side LC circuit 24.
  • the inverter unit 211 inverts the polarity of the output voltage of the DC power supply unit 210 in accordance with the first drive signal G1 and the second drive signal G2, and outputs the result to the primary side LC circuit 24.
  • the primary side control part 22 is realizable using a microcomputer, for example.
  • the DC power supply unit 210 is configured such that the height of the output voltage is variable under the control of the primary side control unit 22.
  • DC power supply unit 210 is formed by connecting a series circuit of battery E1 and switch QE1 and a series circuit of battery E2 and switch QE2 in parallel with each other.
  • the switches QE1 and QE2 are on / off controlled by the primary side control unit 22, respectively.
  • the switches QE1 and QE2 as described above, for example, known semiconductor switches can be used.
  • the batteries E1 and E2 have different output voltages. In the present embodiment, the battery E1 outputs a higher output voltage than the battery E2. That is, a voltage having a different height is output from the DC power supply unit 210 depending on which of the switches QE1 and QE2 is turned on by the primary side control unit 22.
  • the output voltage of the DC power supply unit 210 may be variable by using a known switching power supply circuit controlled by the primary side control unit 22 as the DC power supply unit 210.
  • the non-contact power receiving device 3 includes a secondary side coil L2 configured such that current is induced by an electromagnetic field generated by the primary side coil L1, and a secondary side capacitor C2 connected in series to the secondary side coil L2.
  • the non-contact power receiving device 3 includes a rectifier 30 that performs full-wave rectification on the output of the secondary coil L2 by connecting AC input terminals to both ends of the series circuit of the secondary coil L2 and the secondary capacitor C2.
  • an output capacitor C3 that smoothes the output of the rectifying unit 30. That is, the current induced in the secondary coil L2 is rectified by the rectifier 30 and the output capacitor C3 is charged by the rectified current. Both ends of the output capacitor C3 are electrically connected to the subsequent load 91 as output terminals of the non-contact power receiving device 3.
  • the load 91 is a charging circuit that is mounted on the automobile 9 as shown in FIG. 2 and charges the secondary battery 90 with electric power obtained by appropriately converting the output of the non-contact power receiving device 3.
  • the secondary coil L2 is disposed below the automobile 9, and the non-contact power feeding device 2 is fixed to the ground. By stopping the automobile 9 so that the secondary coil L2 is positioned on the primary coil L1, power can be supplied from the non-contact power supply device 2 to the non-contact power reception device 3, and thus the secondary battery 90 Charging becomes possible.
  • the primary side control unit 22 When the primary side control unit 22 starts the AC power supply 21, the frequencies of the first drive signal G1 and the second drive signal G2 (that is, the frequency of the output voltage V of the AC power supply 21; hereinafter referred to as “operation frequency”).
  • the characteristics of the primary side LC circuit 24 are estimated during the start-up period before starting a steady operation with f being constant. That is, the primary side control unit 22 also serves as a characteristic estimation unit that performs a characteristic estimation operation of estimating the characteristic of the primary side LC circuit 24.
  • the primary side control unit 22 controls the DC power supply unit 210 so that the effective value of the output voltage V of the AC power supply 21 is lower during the characteristic estimation operation than during the steady operation.
  • the DC power supply unit 210 is configured as shown in FIG. 1, the switch QE1 connected in series to the battery E1 whose output voltage is higher than that of the battery E2 is turned off, and the output voltage is lower than that of the battery E1.
  • the switch QE2 connected to the battery E2 is turned on.
  • the non-contact power feeding device 2 includes a current detection unit 25 that detects a current (hereinafter simply referred to as “output current”) I output from the AC power supply 21 to the primary coil L ⁇ b> 1, and a storage unit 26. .
  • a current detection unit 25 for example, a shunt resistor or a Hall element may be used.
  • the storage unit 26 a known memory can be used.
  • the primary side control unit 22 obtains an effective value Ie of the output current I detected by the current detection unit 25 and stores it in the storage unit 26 a plurality of times while gradually changing the operation frequency f. I do. With the above operation, the storage unit 26 stores the frequency characteristics of the primary side LC circuit 24.
  • the primary side control unit 22 may obtain the effective value Ie by calculation from the instantaneous value of the current I detected by the current detection unit 25.
  • the current detection unit 25 outputs, for example, a voltage proportional to the effective value Ie of the current I to the primary side control unit 22 in addition to outputting the effective value Ie of the current I. It may be configured as follows.
  • the current detection unit 25 may detect and output a representative value (a peak value, an average value, etc.) other than the effective value Ie instead of the effective value Ie of the output current I of the AC power supply 21.
  • the primary side control unit 22 causes the DC power supply unit 210 of the AC power supply 21 to have a higher effective value of the output voltage V than during the characteristic estimation operation.
  • the DC power supply unit 210 is configured as shown in FIG. 1, the switch QE2 connected to the battery E2 whose output voltage is lower than the battery E1 is turned off, and the battery whose output voltage is higher than that of the battery E2.
  • the switch QE1 connected in series with E1 is turned on.
  • the frequency characteristics of the primary side LC circuit 24 are different for each coupling coefficient k between the primary side coil L1 and the secondary side coil L2, as shown in FIG. Specifically, when the coupling coefficient k is small to some extent (for example, k ⁇ 0.1), the maximum value of the frequency characteristic is one place, and no minimum value is generated. However, when the coupling coefficient k is large to some extent (for example, k ⁇ 0.15), the maximum value of the frequency characteristic is generated at two locations, and the minimum value is generated at the frequency between the two maximum values. Further, the larger the coupling coefficient k (that is, the greater the mutual inductance), the larger the interval between the maximum frequency.
  • the coupling coefficient k that is, the greater the mutual inductance
  • phase of the output current I is delayed from the phase of the output voltage V as shown in FIG. 4, and the output current I of the AC power source 21 as shown in FIG. There is a phase advance mode in which the phase advances more than the phase of the output voltage V.
  • the operating mode is a phase advance mode.
  • the frequency band in which the operation mode becomes the phase advance mode as described above is on the lower frequency side (f ⁇ fr0) than the frequency fr0 of the maximum value.
  • the frequency band in which the operation mode is the phase advance mode is lower than the frequency fr1 of the maximum value on the low frequency side (f ⁇ fr1), and the minimum value. Between the frequency fr2 and the maximum frequency fr3 on the high frequency side (fr2 ⁇ f ⁇ fr3).
  • the operating mode is a slow phase mode.
  • the frequency band in which the operation mode becomes the slow phase mode is higher frequency side (right side) f> fr0 than the frequency fr0 of the maximum value.
  • the frequency band in which the operation mode is the slow phase mode is between the maximum frequency fr1 and the minimum frequency fr2 on the low frequency side (fr1 ⁇ f ⁇ fr2) and the high frequency side (f> fr3) from the maximum value fr3 on the high frequency side.
  • switching of the switching elements Q1 to Q4 is so-called hard switching, so that the electrical stress applied to the switching elements Q1 to Q4 is relatively high and the power consumption is relatively increased.
  • switching of the switching elements Q1 to Q4 is so-called soft switching.
  • loss due to switching of the switching elements Q1 to Q4 can be reduced, and excessive electrical stress can be suppressed from being applied to the switching elements Q1 to Q4. Therefore, it is desirable that the operation mode of the AC power supply 21 is a slow phase mode.
  • the operation mode is the slow phase mode or the fast phase mode with respect to a certain operating frequency f depends on the coupling coefficient k. For example, when the operating frequency f is the frequency f1 shown in FIG. 3, if the coupling coefficient k is 0.25 or 0.35, the operating mode is the slow phase mode, but if the coupling coefficient k is 0.15. The operation mode becomes the phase advance mode.
  • the primary side control unit 22 operates so as to set the operation mode in the steady operation to the slow phase mode.
  • the operating frequency f during steady operation is a frequency included in the frequency band of the slow phase mode estimated in the characteristic estimation operation.
  • the frequency band on the low frequency side that is, sandwiched between the two maximum values
  • fr1 ⁇ f ⁇ fr2 fr1 ⁇ f ⁇ fr2
  • the range of the operating frequency f to be changed is, for example, a range that includes at least the frequency fr1 of the maximum value on the low frequency side and the frequency of the minimum value fr2 within the range of assumed conditions ( For example, 70 kHz to 120 kHz).
  • the frequency resolution in the frequency sweep (that is, the interval of the operating frequency f for storing the effective value Ie of the output current I) is, for example, 1 kHz.
  • the primary-side control unit 22 changes the characteristic of the primary-side LC circuit 24 so that the operating frequency f during steady-state operation is a fixed value (for example, 85 kHz, hereinafter referred to as “steady-frequency”) fs. A mode may be realized.
  • the primary side control unit 22 also serves as a characteristic adjustment unit. If this configuration is adopted, the frequency of noise generated by the non-contact power feeding device 2 during the steady operation becomes substantially constant, so that the above-described noise hardly affects other devices.
  • At least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1 can be changed by the control of the primary side control unit 22. There is a need.
  • the primary side capacitor C1 As the primary side capacitor C1 whose capacitance can be changed by the control of the primary side control unit 22, in addition to a known varactor diode, for example, a configuration shown in FIG.
  • the primary side capacitor C1 in FIG. 8 includes two capacitors C11 and C12 having different capacitances and two switches QC1 and QC2 connected in series to the one capacitor C11 and C12, respectively.
  • a series circuit composed of one capacitor C11 and one switch QC1 and a series circuit composed of another capacitor C12 and another switch QC2 are connected in parallel to each other. .
  • the primary side coil L1 whose inductance can be changed by the control of the primary side control unit 22, for example, a configuration shown in FIG. 9 can be considered.
  • the primary coil L1 in FIG. 9 includes two coils L10 and L11 connected in series with each other, and a switch QL1 connected in parallel with one coil L11.
  • the above switches QC1, QC2 and QL1 are on / off controlled by the primary side control unit 22, respectively.
  • known semiconductor switches such as MOSFETs can be used.
  • the primary side control unit 22 causes the stationary frequency fs to be included in the frequency band of the slow mode.
  • the characteristics of the primary side LC circuit 24 are changed.
  • the capacitance of the primary side capacitor C1 is C
  • the inductance of the primary side coil L1 is L
  • the mutual inductance between the primary side coil L1 and the secondary side coil L2 is M.
  • the primary side control unit 22 increases the capacitance C and the inductance L in order to make the maximum frequency fr1 lower than the steady frequency fs.
  • the primary side control unit 22 increases the capacitance C and the inductance L in order to make the maximum frequency fr1 lower than the steady frequency fs.
  • the primary side control unit 22 lowers the capacitance C and the inductance L in order to make the frequency fr2 having the minimum value higher than the steady frequency fs.
  • the switch QC1 is turned off in the steady operation and the other switch is turned on. Turn on QC2.
  • the switch QL1 is turned off in the primary coil L1 during the characteristic estimation operation, the switch QL1 is turned on in the steady operation.
  • the frequency band of the slow-phase mode in the characteristic during the steady-state operation has the steady frequency fs. (That is, fr1 ⁇ fs ⁇ fr2).
  • the capacitance of the primary capacitor C1 can be changed in multiple stages.
  • the inductance of the primary side coil L1 can be changed in more stages.
  • a table stored in advance in the storage unit 26 may be used for determination of capacitance and inductance.
  • a known nonvolatile memory such as a read-only memory (so-called ROM: read only memory) or a flash memory can be used.
  • the above table shows the correspondence between the characteristics estimated during the characteristic estimation operation (specifically, for example, the frequency fr1 having the maximum value on the low frequency side) and the capacitance of the primary capacitor C1 and the inductance of the primary coil L1. Show.
  • parameters that indirectly indicate capacitance and inductance for example, ON / OFF states of the switches QC1, QC2, and QL1 may be shown instead of the numerical values of capacitance and inductance themselves.
  • the estimation of characteristics may be performed again.
  • the characteristic detected in the characteristic estimation operation may be an operation mode in a state where the operating frequency f is set to the steady frequency fs.
  • the primary side control unit 22 advances the operation mode based on the difference between the phase of the output voltage V of the AC power supply 21 and the phase of the output current I in a state where the operating frequency f is the steady frequency fs. Estimate whether phase mode or slow mode. More specifically, the primary side control unit 22 compares the timing at which the switching elements Q1 to Q4 of the inverter unit 211 are switched (that is, the phase of the drive signals S1 and S2) with the zero crossing timing of the output current I.
  • the primary side control unit 22 changes the characteristics of the primary side LC circuit 24 and then estimates the operation mode again.
  • the change of the characteristic of the primary side LC circuit 24 is achieved, for example, by changing at least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1 as described above.
  • the primary side control unit 22 ends the characteristic estimation operation and shifts to a steady operation.
  • the control according to the estimated characteristic causes the above-mentioned in the steady operation. It is possible to suppress a decrease in efficiency due to characteristic fluctuations.
  • the effective value of the output voltage V of the AC power supply 21 is set lower during the characteristic estimation operation than during steady operation. As a result, electrical stress applied to the AC power supply 21 can be suppressed.
  • the non-contact power receiving device 3 of the present embodiment includes an electric circuit between the DC output ends of the rectifying unit 30 (that is, an electric circuit between both ends of the secondary coil L2 and does not include the output capacitor C3 and includes the rectifying unit 30.
  • An open / close unit 31 that opens and closes the electrical circuit
  • a secondary-side control unit 32 that controls the open / close unit 31.
  • the opening / closing unit 31 includes a series circuit of a resistor 310 and a switch 311 that is driven on and off by the secondary-side control unit 32.
  • the resistor 310 can be omitted if the allowable current of the switch 311 is sufficiently high.
  • the non-contact power feeding device 2 and the non-contact power receiving device 3 include communication units 23 and 33 that communicate with each other by a radio signal using radio waves as a medium, for example. Since such communication units 23 and 33 can be realized by a well-known technique, detailed description thereof is omitted.
  • the primary side control unit 22 controls the communication unit 23 to transmit an on signal that is a radio signal instructing to turn on the opening / closing unit 31.
  • the secondary side control unit 32 controls the switch 311 to turn on and closes the opening / closing unit 31.
  • the primary side control part 22 controls the communication part 23 at the time of the start of steady operation, and transmits the OFF signal which is a radio signal which instruct
  • the secondary side control unit 32 controls the switch 311 to be turned off to turn off (open) the opening / closing unit 31.
  • the opening / closing unit 31 may be provided before the rectifying unit 30.
  • an element such as a MOSFET that cuts off only in one direction is used as the switch 311 when provided in the subsequent stage of the rectifying unit 30. It is desirable because it can.
  • circuit component configuration and arrangement are not limited in any way.
  • the primary side control unit 22 does not necessarily need to be configured by one chip.
  • a circuit included in the primary side control unit 22 for example, there is a circuit corresponding to a power supply control unit.
  • a circuit corresponding to the power supply control unit there are a circuit for driving the switching elements Q1 to Q4 of the inverter unit 211, a circuit for driving the switches QE1 and QE2 of the DC power supply unit 210, and the like.
  • the circuit included in the primary side control unit 22 includes a circuit corresponding to a characteristic estimation unit.
  • a circuit corresponding to the characteristic estimation unit a circuit for estimating the maximum value frequency fr1 and the minimum value frequency fr2 from the frequency characteristics stored in the storage unit 26, or whether the operation mode is the fast phase mode or the slow phase mode is estimated. There is a circuit to do. Further, as a circuit included in the primary side control unit 22, in addition to the above, there is a circuit corresponding to the characteristic adjustment unit.
  • the circuit corresponding to the characteristic adjusting unit is specifically a circuit that drives the switches QC1, QC2, and QL1, for example. Circuits other than the above included in the primary side control unit 22 include a circuit that controls the communication unit 23.
  • the various circuits described above may be mounted on separate printed wiring boards when not integrated.
  • a circuit for driving the switching elements Q1 to Q4 of the inverter unit 211 and a circuit corresponding to the characteristic estimation unit may be mounted on separate printed wiring boards.
  • the current detection unit 25 may detect an input current from the DC power supply unit 210 to the inverter unit 211 as shown in FIG. 10 instead of detecting the output current I of the AC power supply 21 as shown in FIG. .
  • the characteristic estimated by the characteristic estimation operation is the operation mode (advanced phase mode or delayed phase mode)
  • detection of the output current I of the AC power source 21 as shown in FIG. Is desirable because it becomes easier.
  • the characteristic estimated by the characteristic estimation operation is a frequency characteristic
  • the configuration for obtaining the effective value Ie can be relatively simplified when the input current of the AC power supply 21 is detected as shown in FIG. desirable.
  • the primary side control unit 22 as the characteristic estimation unit estimates the characteristic of the primary side LC circuit 24 based on the current in the AC power source 21 (the output current I of the AC power source 21 or the input current of the AC power source 21). Also good.
  • the non-contact power receiving device 3 may be configured to detect the current and change the capacitance and inductance as performed in the non-contact power feeding device 2 in the above example. In this case, notification of the detected current and an instruction to change the capacitance or inductance are performed by communication via the communication units 23 and 33. However, it is desirable that the detection of current and the change of capacitance and inductance be performed by the non-contact power feeding device 2 because the configuration can be made relatively simple.
  • the primary side capacitor C1 may be incorporated in a capacity adjustment circuit 240 as shown in FIG.
  • the capacitance adjustment circuit 240 of FIG. 11 has four switching elements Q5 to Q8 each made of an n-channel and enhancement type MOSFET. Of the four switching elements Q5, the two switching elements Q5 and Q7 have their drains electrically connected to each other, and the other two switching elements Q6 and Q8 have their sources electrically connected to each other. Yes.
  • the source of one switching element Q5 among the switching elements Q5 and Q7 whose drains are electrically connected to each other is electrically connected to one output terminal of the AC power supply 21.
  • the drain of one switching element Q6 among the switching elements Q6 and Q8 whose sources are electrically connected to each other is also electrically connected to the one output terminal of the AC power supply 21.
  • the source of the other switching element Q7 among the switching elements Q5 and Q7 whose drains are electrically connected to each other is electrically connected to one end of the primary coil L1.
  • the drain of the other switching element Q8 among the switching elements Q6 and Q8 whose sources are electrically connected to each other is also electrically connected to the one end of the primary coil L1.
  • the primary side capacitor C1 is connected between the drains of the switching elements Q5 and Q7 whose drains are electrically connected to each other and the sources of the two switching elements Q6 and Q8 whose sources are electrically connected to each other.
  • the primary side control unit 22 drives the switching element Q5 whose source is connected to the AC power supply 21 and the switching element Q8 whose drain is connected to the primary side coil L1 by a third drive signal G3 that is common to each other. Further, the primary side control unit 22 drives the switching element Q6 whose drain is connected to the AC power source 21 and the switching element Q7 whose source is connected to the primary side coil L1 by the fourth drive signal G4 that is common to each other.
  • the third drive signal G3 and the fourth drive signal G4 are rectangular waves each having a duty ratio of about 50%, and the phase of the third drive signal G3 and the phase of the fourth drive signal G4 are different by 180 degrees. .
  • the third drive signal G3 and the fourth drive signal G4 are alternately at the H level.
  • the second state is repeated alternately.
  • the output current I passes through the primary capacitor C1 during the period when the output voltage V of the AC power supply 21 is positive.
  • the output current I includes the switching element Q8 whose drain is connected to the primary coil L1 and the drain to the AC power supply 21. It passes through the parasitic diode of the connected switching element Q6. That is, in the first state, the output current I does not pass through the primary capacitor C1 during the period when the output voltage V of the AC power supply 21 is negative.
  • the output current I does not pass through the parasitic diode of the switching element Q5 and the primary capacitor C1 during the period when the output voltage V of the AC power supply 21 is positive.
  • the output current I passes through the primary side capacitor C1.
  • the primary control unit 22 can reduce reactive power by appropriately adjusting the phase difference between the first drive signal G1 and the third drive signal G3.
  • the capacitance adjusting circuit 240 is realized by using two double gate type bidirectional switches Q9 and Q10 as shown in FIG. 12 instead of using the four switching elements Q5 to Q8 as described above. May be.
  • the bidirectional switches Q9 and Q10 have two gates, and function as diodes in the direction corresponding to the gate whose input is at the H level when only the input to one gate is at the H level. To do.
  • one bidirectional switch Q9 is connected in series with the capacitor C1 between the AC power source 21 and the primary side coil L1
  • the other bidirectional switch Q10 includes the one bidirectional switch Q9 and the capacitor C1. Are connected in parallel to the series circuit.
  • the third drive is performed so that the conduction directions of the two bidirectional switches Q9 and Q10 are opposite to each other in both the first state and the second state.
  • the signal G3 and the fourth drive signal G4 are input to different gates.
  • the operating frequency f in the frequency sweep of the characteristic estimation operation, is changed in a range including at least the maximum frequency fr1 and the minimum frequency fr2 on the low frequency side. .
  • the range of frequencies that can be used in the wireless power supply system 1 may be limited by laws and standards.
  • the operating frequency f in the frequency sweep of the characteristic estimation operation, cannot be changed in the above range, and the frequency characteristic of the primary side LC circuit 24 may not be estimated. There is.
  • the contactless power feeding system 1 of the present embodiment is characterized in that the frequency characteristic of the primary side LC circuit 24 can be estimated by the characteristic estimation operation even when the usable frequency range is limited.
  • the characteristics of the non-contact power feeding system 1 of the present embodiment will be described in detail.
  • the lowest frequency in the usable frequency range is ‘fl1’ and the highest frequency is ‘fl2’ (fl1 ⁇ f ⁇ fl2).
  • the usable frequency range is, for example, a frequency range centered on 85 kHz.
  • the primary side control unit 22 as a characteristic estimation unit performs a first process, a second process, and a third process in the characteristic estimation operation.
  • the first process is a process of estimating a frequency characteristic (hereinafter referred to as “first characteristic”) in the usable frequency range of the primary side LC circuit 24 by performing a frequency sweep in the usable frequency range. It is.
  • the first process executes a frequency sweep that detects a measurement value related to the characteristics of the primary side LC circuit 24 a plurality of times while gradually changing the frequency of the output voltage V of the AC power supply 21 in a predetermined frequency range. In this way, the first characteristic of the primary side LC circuit 24 is estimated.
  • the measured value is the effective value Ie of the output current I of the AC power supply 21.
  • FIGS. 13A to 13D Examples of the first characteristic estimated by the first process are shown in FIGS. 13A to 13D.
  • the operation mode is estimated as the phase advance mode.
  • the operation mode is estimated to be the slow mode.
  • FIG. 13C when the effective value Ie of the output current I increases and then decreases as the frequency increases in the first characteristic, the operation mode shifts from the advanced phase mode to the delayed phase mode. Mode (hereinafter referred to as “first transition mode”).
  • first transition mode when the effective value Ie of the output current I decreases after the frequency increases in the first characteristic and then increases, the operation mode shifts from the slow phase mode to the fast phase mode. Mode (hereinafter referred to as “second transition mode”).
  • the primary control unit 22 is in any mode of the low-frequency-side phase advance mode and the high-frequency-side phase advance mode. It is difficult to estimate.
  • the primary side control unit 22 is in any mode of the low-frequency side slow mode and the high-frequency side slow mode. It is difficult to estimate.
  • the primary side control unit 22 executes the second process after the first process.
  • the second process is a process of changing at least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1. Since the method for changing the capacitance of the primary side capacitor C1 or the inductance of the primary side coil L1 has already been described in the first embodiment, the description thereof is omitted here.
  • FIGS. 14A and 14B show changes in frequency characteristics of the primary side LC circuit 24 when the capacitance of the primary side capacitor C1 is changed.
  • FIG. 14A shows a case where there are two local maximum values, and the frequency characteristic before changing the capacitance of the primary side capacitor C1 is indicated by a first curve FC1.
  • FC1 the frequency characteristic of the primary side LC circuit 24 shifts from the first curve FC1 to the second curve FC2.
  • FIG. 14A when the capacitance of the primary side capacitor C1 is reduced, the frequency characteristic of the primary side LC circuit 24 shifts from the first curve FC1 to the third curve FC3.
  • FIG. 14B shows a case where there is only one maximum value, and the frequency characteristic before changing the capacitance of the primary side capacitor C1 is indicated by a fourth curve FC4.
  • the frequency characteristic of the primary side LC circuit 24 shifts from the fourth curve FC4 to the fifth curve FC5.
  • the frequency characteristic of the primary side LC circuit 24 shifts from the fourth curve FC4 to the sixth curve FC6.
  • the primary-side control unit 22 estimates the frequency characteristic (hereinafter referred to as “second characteristic”) in the usable frequency range of the primary-side LC circuit 24 by performing a frequency sweep after the second process.
  • the third process is executed.
  • the primary side control unit 22 in the second process at least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1 by an amount corresponding to the first characteristic. It has changed. And the primary side control part 22 determines the value of the capacitance of the primary side capacitor
  • the third process includes a process of performing frequency sweep and a process of determining whether or not the operation mode is the slow phase mode based on the estimated second characteristic.
  • the primary side control unit 22 performs a frequency sweep in order to estimate the frequency characteristic changed from the first characteristic to the second characteristic by the second process.
  • the primary side control part 22 determines whether an operation mode is a late phase mode based on the estimated 2nd characteristic.
  • the primary side control unit 22 ends the characteristic estimation operation.
  • the primary side control part 22 performs a 2nd process again, when it determines with an operation mode being a phase advance mode. That is, the primary side control unit 22 repeats the second process and the third process until it determines that the operation mode is the slow phase mode.
  • the primary side control unit 22 determines the capacitance value of the capacitor C1 when it is estimated from the first characteristic that the operation mode is the phase advance mode (see FIG. 13A), the primary side control unit 22 reduces the capacitance of the primary side capacitor C1 in the second process, and then performs the third process. Execute. When it is estimated from the second characteristic estimated by the third process that the operation mode is the phase advance mode again, the primary side control unit 22 determines that the changed operation mode is the phase advance mode on the low frequency side. presume.
  • the primary side control unit 22 sets the capacitance of the primary side capacitor C1 to be larger than the initial value so that the operation mode becomes the low-frequency side slow-phase mode, and ends the characteristic estimation operation. Thereby, the value of the capacitance of the primary side capacitor C1 is set to a value larger than the initial value.
  • the primary-side control unit 22 indicates that the changed operation mode is the low-frequency side slow-phase mode. Estimated. In this case, the primary side control unit 22 ends the characteristic estimation operation. That is, the value of the capacitance of the primary side capacitor C1 is set to an initial value.
  • the primary side control unit 22 increases the capacitance of the primary side capacitor C1 in the second process, and then 3 processes are executed.
  • the primary side control unit 22 estimates that the changed operation mode is the high frequency side slow phase mode. To do. Then, the primary-side control unit 22 sets the capacitance of the primary-side capacitor C1 to be smaller than the initial value so that the operation mode becomes the low-frequency side slow-phase mode, and ends the characteristic estimation operation.
  • the primary side control unit 22 sets the operation mode before the change to the low frequency side. Estimated to be in late phase mode. And the primary side control part 22 returns the capacitance of the primary side capacitor
  • the primary side control unit 22 increases the capacitance of the primary side capacitor C1 in the second process, and then The third process is executed. If it is estimated from the second characteristic estimated by the third process that the operation mode is the slow phase mode or the second transition mode, the primary side control unit 22 determines that the operation mode before the change is the first on the low frequency side. Estimated to be in transition mode. Then, the primary side control unit 22 sets the capacitance of the primary side capacitor C1 to be larger than the initial value so that the operation mode becomes the low-frequency side slow-phase mode, and ends the characteristic estimation operation.
  • the primary side control unit 22 determines that the changed operation mode is the high frequency side slow phase mode. presume. Then, the primary-side control unit 22 sets the capacitance of the primary-side capacitor C1 to be smaller than the initial value so that the operation mode becomes the low-frequency side slow-phase mode, and ends the characteristic estimation operation.
  • the primary-side control unit 22 when it is estimated from the first characteristic that the operation mode is the second transition mode (see FIG. 13D), the primary-side control unit 22 is configured so that the operation mode becomes the low-frequency side slow-phase mode. The capacitance of the primary side capacitor C1 is reduced, and the characteristic estimation operation ends.
  • the primary control unit 22 determines the inductance value of the primary coil L1
  • the primary side control unit 22 changes the inductance of the primary side coil L1 in the second process, and then executes the third process.
  • the primary side control part 22 changes the inductance of the primary side coil L1, and complete
  • the characteristic estimation operation for changing the inductance of the primary side coil L1 the following may be read in the characteristic estimation operation for changing the capacitance of the primary side capacitor C1.
  • the capacitance of the primary side capacitor C1 is made larger than the initial value
  • the inductance of the primary side coil L1 is made smaller than the initial value
  • “make the capacitance of the primary side capacitor C1 smaller than the initial value” may be read as “make the inductance of the primary side coil L1 larger than the initial value”.
  • the primary side control unit 22 as the characteristic estimation unit executes the first process, the second process, and the third process in the characteristic estimation operation. Yes.
  • the primary side control unit 22 changes at least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1 by an amount corresponding to the first characteristic.
  • the non-contact electric power feeding system 1 of this embodiment can estimate the frequency characteristic of the primary side LC circuit 24 by characteristic estimation operation
  • the primary side control unit 22 sets at least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1 as a value according to the second characteristic. For this reason, the non-contact power feeding system 1 of the present embodiment changes the frequency characteristics of the primary side LC circuit 24 so that the operation mode becomes the lag mode even when the usable frequency range is limited. Can do.
  • the primary side control unit 22 performs the second process and the third process once each, but may perform the process a plurality of times.
  • the characteristic estimation operation executed by the primary side control unit 22 is different from that of the contactless power feeding system 1 of the second embodiment. That is, in the non-contact power feeding system 1 of the present embodiment, the primary side control unit 22 changes at least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1 by a predetermined amount in the second process. Yes. Moreover, in the non-contact electric power feeding system 1 of this embodiment, the primary side control part 22 respond
  • the primary side control unit 22 After executing the first process, the primary side control unit 22 reduces the capacitance of the primary side capacitor C1 in the second process, and then executes the third process. And the primary side control part 22 performs a 2nd process and a 3rd process alternately, making the capacitance of the primary side capacitor
  • the frequency characteristic of the primary side LC circuit 24 has two maximum values, the first characteristic and the second characteristic as shown in FIG. 15 are estimated.
  • a curve S1 indicates the first characteristic estimated by the first process.
  • curves S2 to S5 each indicate the second characteristic estimated by the third process.
  • the primary side control unit 22 places the primary side capacitor C1 so that the usable frequency range is located between the second characteristic represented by the curve S2 and the second characteristic represented by the curve S3. The capacitance is adjusted, and the characteristic estimation operation is terminated.
  • a curve S6 shows the first characteristic estimated by the first process.
  • curves S7 to S10 each indicate the second characteristic estimated by the third process.
  • the primary-side control unit 22 places the primary-side capacitor C1 so that the usable frequency range is located between the second characteristic represented by the curve S8 and the second characteristic represented by the curve S10. The capacitance is adjusted, and the characteristic estimation operation is terminated.
  • the primary side control unit 22 as the characteristic estimation unit has at least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1 in the second process. Is changed by a predetermined amount. For this reason, the non-contact electric power feeding system 1 of this embodiment can estimate the frequency characteristic of the primary side LC circuit 24 by characteristic estimation operation
  • the primary side control unit 22 determines at least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1 according to the first characteristic and the second characteristic. Value. For this reason, the non-contact power feeding system 1 of the present embodiment changes the frequency characteristics of the primary side LC circuit 24 so that the operation mode becomes the lag mode even when the usable frequency range is limited. Can do.
  • the primary side control unit 22 alternately executes the second process and the third process a plurality of times, but each of the second process and the third process is 1 It may be executed only once.
  • the effective value Ie of the output current I of the AC power supply 21 is a measured value related to the characteristics of the primary side LC circuit 24, but other values are used. May be.
  • a representative value (a peak value, an average value, etc.) other than the effective value Ie of the output current I of the AC power supply 21 may be used as the measurement value.
  • the phase difference between the phase of the output current I of the AC power supply 21 and the phase of the output voltage V of the AC power supply 21 may be used as the measurement value.
  • an input current of the AC power source 21 an input current from the DC power source unit 210 to the inverter unit 211 or an input power of the AC power source 21 may be used as the measurement value.
  • the primary side coil L1 and the secondary side coil L2 may be solenoid type coils or spiral type coils.
  • the solenoid type coil is a coil that is formed in a spiral shape by winding a conducting wire.
  • a spiral type coil is a coil formed by winding a conducting wire in a spiral shape around an arbitrary point, and is also called a circular type coil.
  • the shape of the spiral coil in plan view is not limited to a circular shape, and may be, for example, an elliptical shape or a rectangular shape.
  • the spiral type coil has the advantage that unnecessary radiation noise is less likely to occur than the solenoid type coil.
  • the use of the spiral type coil has the advantage that unnecessary radiation noise is reduced and the operating frequency range usable in the inverter unit 211 is expanded.
  • the resonance characteristics of the non-contact power feeding systems in Embodiments 1 to 3 change according to the coupling coefficient k between the primary side coil L1 and the secondary side coil L2.
  • the coupling coefficient k is 0.15 or more
  • the maximum value is generated in two places, and the minimum value is generated between the two maximum values.
  • the resonance characteristic in the non-contact power supply system shows a so-called bimodal characteristic in which two maximum values are generated in the output as shown in FIG.
  • two “mountains” in which the output becomes maximum are generated at each of the maximum frequency fr1 on the low frequency side and the maximum frequency fr3 on the high frequency side.
  • a “valley” in which the output is minimized at the frequency fr2 of the minimum value occurs. That is, the frequencies fr1, fr2, and fr3 have a relationship of fr1 ⁇ fr2 ⁇ fr3.
  • a frequency region lower than the frequency fr2 is referred to as a “low frequency region”
  • a frequency region higher than the frequency fr2 is referred to as a “high frequency region”.
  • an inverter is provided in each of a low frequency region (a mountain region where the frequency fr1 is a maximum) and a high frequency region (a mountain region where the frequency fr3 is a maximum).
  • a region where the unit 211 operates in the slow phase mode (hereinafter referred to as “slow phase region”) occurs. Therefore, the inverter unit 211 can operate in the slow phase mode regardless of whether the operating frequency f is in the high frequency region or the low frequency region.
  • the current flowing through the primary coil L1 and the current flowing through the secondary coil L2 are in phase.
  • the current flowing through the primary coil L1 and the current flowing through the secondary coil L2 are in opposite phases. Therefore, in the low frequency region, the unnecessary radiation noise generated in the primary coil L1 and the unnecessary radiation noise generated in the secondary coil L2 cancel each other. Noise is reduced. That is, unnecessary radiation noise of the non-contact power feeding system can be reduced when the operating frequency f of the inverter unit 211 is in the low frequency region than when it is in the high frequency region. Therefore, if the operating frequency f of the inverter unit 211 is in the slow phase region (fr1 ⁇ f ⁇ fr2) in the low frequency region, the inverter unit 211 operates in the slow phase mode and unnecessary radiation noise is reduced.
  • the slow phase region of the low frequency region changes in accordance with the coupling coefficient k between the primary side coil L1 and the secondary side coil L2.
  • the operating frequency f of the inverter unit 211 needs to be stored in a slow phase region that varies according to the coupling coefficient k in order to reduce unnecessary radiation noise of the non-contact power feeding system.
  • the spiral type coil is less likely to generate unwanted radiation noise than the solenoid type coil. Therefore, when the spiral type coil is employed, unnecessary radiation noise is reduced even when the operating frequency f of the inverter unit 211 is stored in the slow phase region (f> fr3) of the high frequency region as compared with the case where the solenoid type coil is employed. Can be reduced. Therefore, when the spiral type coil is employed, the operating frequency f of the inverter unit 211 may be stored in either the low frequency region or the slow phase region of the high frequency region. The range expands.
  • the slow phase region in the high frequency region also changes according to the coupling coefficient k, but if the operating frequency f of the inverter unit 211 is swept from a sufficiently high frequency to a low frequency side, the operating frequency f becomes the slow phase region in the high frequency region. Pass through. For this reason, the operating frequency f of the inverter unit 211 can be kept in the slow phase region of the high frequency region without complicated control.

Abstract

 Provided is a contactless power-supplying device with which it is possible to suppress a reduction in efficiency due to the positional relationship between a primary coil and a secondary coil. Also provided is a contactless power-supplying system in which said device is used. A contactless power-supplying device (2) is provided with a primary LC circuit (24) that comprises a primary coil (L1) and a primary capacitor (C1), an alternating current power source (21) for inputting alternating current electrical power to the primary LC circuit (24), and a primary control unit (22) for controlling the alternating current power source (21). When the alternating current power source (21) is started and before normal operations begin, the primary control unit (22) carries out a property-estimating operation for estimating the properties of the primary LC circuit (24) while controlling the alternating current power source (21) such that the effective value of the output voltage (V) is lower than the output voltage during normal operation.

Description

非接触給電装置およびそれを用いた非接触給電システムNon-contact power supply device and non-contact power supply system using the same
 本発明は、非接触給電装置およびそれを用いた非接触給電システムに関し、より具体的には、電磁誘導による非接触給電を行う非接触給電装置およびそれを用いた非接触給電システムに関する。 The present invention relates to a non-contact power supply apparatus and a non-contact power supply system using the same, and more specifically to a non-contact power supply apparatus that performs non-contact power supply by electromagnetic induction and a non-contact power supply system using the same.
 従来、電磁誘導による非接触給電を行う非接触給電装置が提供されている(例えば、日本国特許出願公開番号2013-211932号参照、以下「文献1」という)。文献1に記載の非接触給電装置は、非接触給電装置からの給電を受ける非接触受電装置とともに用いられる。 Conventionally, a non-contact power supply device that performs non-contact power supply by electromagnetic induction has been provided (for example, see Japanese Patent Application Publication No. 2013-211932, hereinafter referred to as “Document 1”). The contactless power supply device described in Document 1 is used together with a contactless power receiving device that receives power from the contactless power supply device.
 非接触給電装置は、一次側コイルと、この一次側コイルに交流電力を入力する交流電源とを備える。 The non-contact power feeding device includes a primary side coil and an AC power source that inputs AC power to the primary side coil.
 また、非接触受電装置は、二次側コイルを備える。 Further, the non-contact power receiving device includes a secondary side coil.
 すなわち、交流電源から一次側コイルに交流電力が入力されると、一次側コイルが発生させる電磁界により二次側コイルに電流が誘導され、これによって非接触給電が達成される。 That is, when AC power is input from the AC power source to the primary coil, a current is induced in the secondary coil by the electromagnetic field generated by the primary coil, thereby achieving non-contact power feeding.
 非接触受電装置は、例えば、電気自動車やハイブリッド車など、比較的に大容量の二次電池と、この二次電池を充電する充電回路とを備える自動車に搭載され、上記の充電回路の電源となる。 The non-contact power receiving device is mounted on a vehicle including a relatively large capacity secondary battery and a charging circuit for charging the secondary battery, such as an electric vehicle and a hybrid vehicle, and a power source for the charging circuit described above. Become.
 上記のような非接触給電装置を用いれば、給電を有線で行う場合と比較して、プラグの抜き差しのような作業が不要となるから利便性が向上する。 If the non-contact power supply device as described above is used, convenience such as plugging / unplugging / unplugging becomes unnecessary as compared with the case where power supply is performed by wire.
 しかしながら、上記の非接触給電装置においては、一次側コイルと二次側コイルとの位置関係に応じて、一次側コイルと二次側コイルとの相互インダクタンスが変化する。 However, in the non-contact power feeding device described above, the mutual inductance between the primary side coil and the secondary side coil changes according to the positional relationship between the primary side coil and the secondary side coil.
 例えば、非接触受電装置が自動車に搭載されていて非接触給電装置が地面に固定されている場合、給電時に自動車を停車する位置がずれれば上記の相互インダクタンスに違いが生じる。また、自動車の車高が低ければ、地面側である非接触給電装置の一次側コイルと、自動車の車体側に存在する二次側コイルとの、相互インダクタンス値や結合係数値は実用に耐える値で運用できる。しかしながら、自動車の車高が高ければ、一次側コイルと二次側コイルとの距離が離れるので、相互インダクタンス値や結合係数値が不足してしまう。 For example, when the non-contact power receiving device is mounted on an automobile and the non-contact power feeding device is fixed to the ground, if the position where the automobile is stopped at the time of power feeding is shifted, the mutual inductance is different. If the vehicle height is low, the mutual inductance value and coupling coefficient value between the primary coil of the contactless power supply device on the ground side and the secondary coil present on the vehicle body side are values that can be practically used. It can be operated with. However, if the vehicle height of the automobile is high, the distance between the primary side coil and the secondary side coil is increased, so that the mutual inductance value and the coupling coefficient value are insufficient.
 また、一次側コイルに入力される電力や、交流電源の回路部品にかかる電気的なストレスは、上記の相互インダクタンスに依存する。 Moreover, the electric power input to the primary coil and the electrical stress applied to the circuit components of the AC power supply depend on the mutual inductance.
 従って、交流電源の出力電圧の周波数が一定でも、一次側コイルと二次側コイルとの位置関係によっては、過剰な電気的ストレスにより交流電源の寿命が短くなる可能性や、効率が低下し電力が無駄に消費される可能性がある。 Therefore, even if the frequency of the output voltage of the AC power supply is constant, depending on the positional relationship between the primary side coil and the secondary side coil, the life of the AC power supply may be shortened due to excessive electrical stress, and the efficiency may be reduced. May be wasted.
 本発明の目的は、一次側コイルと二次側コイルとの位置関係による効率の低下を抑えることができる非接触給電装置およびそれを用いた非接触給電システムを提供することにある。 An object of the present invention is to provide a non-contact power feeding device that can suppress a decrease in efficiency due to a positional relationship between a primary side coil and a secondary side coil, and a non-contact power feeding system using the same.
 上記課題を解決するために、本発明の非接触給電装置は、一次側コイルと、前記一次側コイルとともに一次側LC回路を構成する一次側コンデンサと、前記一次側LC回路に交流電力を入力するように構成された交流電源と、前記交流電源を制御する電源制御部と、前記一次側LC回路の特性を推定するという特性推定動作を行うように構成された特性推定部とを備え、前記電源制御部は、前記交流電源を始動させる際、出力電圧の周波数を一定とするように前記交流電源を制御するという定常動作を開始する前の始動期間には、出力電圧の実効値を前記定常動作中よりも低くし、前記特性推定部は、前記始動期間に、前記特性推定動作を行うことを特徴とする。 In order to solve the above-described problems, a non-contact power feeding device according to the present invention inputs AC power to a primary side coil, a primary side capacitor that constitutes a primary side LC circuit together with the primary side coil, and the primary side LC circuit. An AC power source configured as described above, a power source control unit that controls the AC power source, and a characteristic estimation unit configured to perform a characteristic estimation operation that estimates a characteristic of the primary side LC circuit. When starting the AC power supply, the control unit sets the effective value of the output voltage to the steady operation before starting the steady operation of controlling the AC power supply so that the frequency of the output voltage is constant. The characteristic estimation unit performs the characteristic estimation operation during the start-up period.
 上記課題を解決するために、本発明の非接触給電システムは、前記非接触給電装置と、前記一次側コイルが発生させる電磁界により電流を誘導されるように構成された二次側コイルを有する非接触受電装置とを備えることを特徴とする。 In order to solve the above problems, a non-contact power feeding system of the present invention includes the non-contact power feeding device and a secondary side coil configured to induce a current by an electromagnetic field generated by the primary side coil. And a non-contact power receiving device.
実施形態1に係る非接触給電システムを示す回路ブロック図である。1 is a circuit block diagram illustrating a non-contact power feeding system according to a first embodiment. 実施形態1に係る非接触給電システムの使用形態の一例を示す説明図である。It is explanatory drawing which shows an example of the usage pattern of the non-contact electric power feeding system which concerns on Embodiment 1. FIG. 実施形態1に係る非接触給電システムにおける一次側LC回路の周波数特性の例を、一次側コイルと二次側コイルとの結合係数がそれぞれ異なる複数通りの場合について示す説明図である。It is explanatory drawing which shows the example of the frequency characteristic of the primary side LC circuit in the non-contact electric power feeding system which concerns on Embodiment 1 about the case where the coupling coefficient of a primary side coil and a secondary side coil differs, respectively. 遅相モードにおける交流電源の出力電流Iと出力電圧Vとの時間変化の一例を示す説明図である。It is explanatory drawing which shows an example of the time change of the output current I of the alternating current power supply in the slow phase mode, and the output voltage V. FIG. 進相モードにおける交流電源の出力電流Iと出力電圧Vとの時間変化の一例を示す説明図である。It is explanatory drawing which shows an example of the time change of the output current I and the output voltage V of AC power supply in a phase advance mode. 実施形態1に係る非接触給電システムにおける一次側LC回路の周波数特性の一例を示す説明図である。FIG. 3 is an explanatory diagram illustrating an example of frequency characteristics of a primary side LC circuit in the non-contact power feeding system according to the first embodiment. 実施形態1に係る非接触給電システムにおける一次側LC回路の周波数特性の別の例を示す説明図である。It is explanatory drawing which shows another example of the frequency characteristic of the primary side LC circuit in the non-contact electric power feeding system which concerns on Embodiment 1. FIG. 実施形態1に係る非接触給電システムにおける一次側コンデンサの一例を示す回路図である。FIG. 3 is a circuit diagram illustrating an example of a primary side capacitor in the non-contact power feeding system according to the first embodiment. 実施形態1に係る非接触給電システムにおける一次側コイルの一例を示す回路図である。3 is a circuit diagram illustrating an example of a primary side coil in the non-contact power feeding system according to Embodiment 1. FIG. 実施形態1に係る非接触給電システムの変更例を示す回路ブロック図である。It is a circuit block diagram which shows the example of a change of the non-contact electric power feeding system which concerns on Embodiment 1. 実施形態1に係る非接触給電システムの別の変更例の要部を示す回路図である。It is a circuit diagram which shows the principal part of another modification of the non-contact electric power feeding system which concerns on Embodiment 1. FIG. 実施形態1に係る非接触給電システムの更に別の変更例の要部を示す回路図である。It is a circuit diagram which shows the principal part of another modification of the non-contact electric power feeding system which concerns on Embodiment 1. FIG. 図13A~図13Dは、それぞれ実施形態2に係る非接触給電システムにおける第1特性の一例を示す説明図である。13A to 13D are explanatory diagrams illustrating examples of first characteristics in the non-contact power feeding system according to the second embodiment. 図14Aは、実施形態2に係る非接触給電システムにおける一次側LC回路の周波数特性の一例を示す説明図である。図14Bは、実施形態2に係る非接触給電システムにおける一次側LC回路の周波数特性の別の例を示す説明図である。FIG. 14A is an explanatory diagram illustrating an example of frequency characteristics of the primary LC circuit in the non-contact power feeding system according to the second embodiment. FIG. 14B is an explanatory diagram illustrating another example of the frequency characteristics of the primary LC circuit in the wireless power supply system according to the second embodiment. 実施形態3に係る非接触給電システムにおける一次側LC回路の周波数特性の一例を示す説明図である。10 is an explanatory diagram illustrating an example of frequency characteristics of a primary side LC circuit in a non-contact power feeding system according to Embodiment 3. FIG. 実施形態3に係る非接触給電システムにおける一次側LC回路の周波数特性の別の例を示す説明図である。It is explanatory drawing which shows another example of the frequency characteristic of the primary side LC circuit in the non-contact electric power feeding system which concerns on Embodiment 3. FIG.
 図1に示すように、本発明に係る非接触給電装置2は、一次側コイルL1と、一次側コイルL1とともに一次側LC回路24を構成する一次側コンデンサC1とを備える。また、非接触給電装置2は、一次側LC回路24に交流電力を入力するように構成された交流電源21と、交流電源21を制御する電源制御部としての一次側制御部22を備える。さらに、非接触給電装置2は、一次側LC回路24の特性を推定するという特性推定動作を行うように構成された特性推定部としての一次側制御部22を備える。電源制御部としての一次側制御部22は、交流電源21を始動させる際、出力電圧Vの周波数を一定とするように交流電源21を制御するという定常動作を開始する前の始動期間には、出力電圧Vの実効値を定常動作中よりも低くする。特性推定部としての一次側制御部22は、始動期間に、特性推定動作を行う。 As shown in FIG. 1, the non-contact power feeding device 2 according to the present invention includes a primary side coil L1 and a primary side capacitor C1 that constitutes a primary side LC circuit 24 together with the primary side coil L1. The non-contact power feeding device 2 includes an AC power source 21 configured to input AC power to the primary side LC circuit 24 and a primary side control unit 22 as a power source control unit that controls the AC power source 21. Further, the non-contact power feeding device 2 includes a primary side control unit 22 as a characteristic estimation unit configured to perform a characteristic estimation operation of estimating the characteristic of the primary side LC circuit 24. When starting the AC power source 21, the primary side control unit 22 as the power source control unit has a start period before starting a steady operation of controlling the AC power source 21 so that the frequency of the output voltage V is constant. The effective value of the output voltage V is set lower than that during steady operation. The primary side control unit 22 as the characteristic estimation unit performs a characteristic estimation operation during the starting period.
 一例において、特性推定部としての一次側制御部22は、一次側コイルL1が二次側コイルL2と磁気的に結合した状態での一次側LC回路24の特性を推定する。一次側LC回路24の特性とは、一次側コイルL1が二次側コイルL2と磁気的に結合された後に交流電源21から出力される出力電圧Vの周波数に対する、一次側LC回路24を流れる電流Iの周波数特性である。一次側LC回路24の周波数特性(共振特性)は、一次側コイルL1と二次側コイルL2との結合係数k毎に異なる。この結合係数kは、例えば一次側コイルL1と二次側コイルL2との相対的な位置がずれると変化する。そこで特性推定部としての一次側制御部22は、始動期間に電流Iの周波数特性を推定する特性推定動作を行い、非接触給電装置2が所望の状態で二次側コイルL2側に給電できる出力電圧Vの周波数を推定する。そして特性推定部としての一次側制御部22は、出力電圧Vの周波数を一定とするように交流電源21を制御して定常動作を開始する。 In one example, the primary side control unit 22 as the characteristic estimation unit estimates the characteristic of the primary side LC circuit 24 in a state where the primary side coil L1 is magnetically coupled to the secondary side coil L2. The characteristic of the primary side LC circuit 24 is that the current flowing through the primary side LC circuit 24 with respect to the frequency of the output voltage V output from the AC power source 21 after the primary side coil L1 is magnetically coupled to the secondary side coil L2. This is the frequency characteristic of I. The frequency characteristics (resonance characteristics) of the primary side LC circuit 24 are different for each coupling coefficient k between the primary side coil L1 and the secondary side coil L2. For example, the coupling coefficient k changes when the relative positions of the primary coil L1 and the secondary coil L2 shift. Therefore, the primary side control unit 22 as the characteristic estimation unit performs a characteristic estimation operation for estimating the frequency characteristic of the current I during the start period, and the output that can be fed to the secondary coil L2 side by the non-contact power feeding device 2 in a desired state. Estimate the frequency of the voltage V. And the primary side control part 22 as a characteristic estimation part controls the alternating current power supply 21 so that the frequency of the output voltage V may be made constant, and starts steady operation | movement.
 上記の構成によれば、非接触給電装置2は、一次側コイルL1と二次側コイルL2との位置関係による効率の低下を抑えることができる。 According to said structure, the non-contact electric power feeder 2 can suppress the fall of the efficiency by the positional relationship of the primary side coil L1 and the secondary side coil L2.
 上記の非接触給電装置2において、特性推定部としての一次側制御部22は、交流電源21における電流に基づいて、特性を推定してもよい。 In the non-contact power feeding device 2 described above, the primary side control unit 22 as the characteristic estimation unit may estimate the characteristic based on the current in the AC power source 21.
 上記の非接触給電装置2において、特性推定部としての一次側制御部22は、交流電源21における出力電圧Vの位相と出力電流Iの位相とのずれに基づいて、特性を推定してもよい。 In the non-contact power feeding device 2 described above, the primary side control unit 22 as the characteristic estimation unit may estimate the characteristic based on the difference between the phase of the output voltage V and the phase of the output current I in the AC power supply 21. .
 上記の非接触給電装置2において、電源制御部としての一次側制御部22は、特性推定動作が行われている間、交流電源21の出力電圧Vの周波数を徐々に変化させてもよい。 In the non-contact power supply apparatus 2 described above, the primary side control unit 22 as a power supply control unit may gradually change the frequency of the output voltage V of the AC power supply 21 while the characteristic estimation operation is being performed.
 上記の非接触給電装置2において、特性推定部としての一次側制御部22は、交流電源21の出力電流Iの実効値を、それぞれ交流電源21の出力電圧の周波数が異なる状態で複数回検出してもよい。 In the non-contact power feeding device 2 described above, the primary side control unit 22 as the characteristic estimation unit detects the effective value of the output current I of the AC power supply 21 a plurality of times in a state where the frequency of the output voltage of the AC power supply 21 is different. May be.
 上記の非接触給電装置2において、一次側コンデンサC1のキャパシタンスと一次側コイルL1のインダクタンスとの少なくとも一方を制御する特性調整部としての一次側制御部22を備えることが望ましい。特性調整部としての一次側制御部22は、定常動作が開始される前に、一次側コンデンサC1のキャパシタンスと一次側コイルL1のインダクタンスとの少なくとも一方を、特性推定動作で推定された特性に応じた値とするという特性調整動作を行う。 In the non-contact power feeding device 2 described above, it is desirable to include a primary side control unit 22 as a characteristic adjustment unit that controls at least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1. The primary side control unit 22 as the characteristic adjustment unit determines at least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1 according to the characteristic estimated by the characteristic estimation operation before the steady operation is started. The characteristic adjustment operation is performed to obtain
 上記の非接触給電装置2において、一次側コンデンサC1のキャパシタンスと一次側コイルL1のインダクタンスとの少なくとも一方と特性推定動作で推定される特性との対応関係を示すテーブルが予め記憶された記憶部26を備えてもよい。この場合、特性調整部としての一次側制御部22は、特性調整動作において、一次側コンデンサC1のキャパシタンスと一次側コイルL1のインダクタンスとの少なくとも一方を、特性推定動作で推定された特性に対しテーブルにおいて対応付けられた値とする。 In the non-contact power feeding device 2 described above, a storage unit 26 in which a table showing a correspondence relationship between at least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1 and the characteristic estimated by the characteristic estimation operation is stored in advance. May be provided. In this case, in the characteristic adjustment operation, the primary side control unit 22 serving as the characteristic adjustment unit sets at least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1 as a table for the characteristic estimated by the characteristic estimation operation. The value associated with.
 上記の非接触給電装置2において、特性調整部としての一次側制御部22が一次側コンデンサC1のキャパシタンスと一次側コイルL1のインダクタンスとの少なくとも一方を変更した後、特性推定部としての一次側制御部22は、特性を再度推定してもよい。 In the contactless power supply device 2 described above, the primary side control unit 22 as a characteristic adjustment unit changes at least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1, and then performs primary side control as a characteristic estimation unit. The unit 22 may estimate the characteristics again.
 本発明に係る非接触給電システム1は、上記いずれかの非接触給電装置2と、一次側コイルL1が発生させる電磁界により電流を誘導されるように構成された二次側コイルL2を有する非接触受電装置3とを備えることを特徴とする。 A non-contact power feeding system 1 according to the present invention includes any non-contact power feeding device 2 described above and a secondary side coil L2 configured to induce a current by an electromagnetic field generated by the primary side coil L1. And a contact power receiving device 3.
 上記の非接触給電システム1において、非接触受電装置3は、二次側コイルL2の両端間の電路を開閉する開閉部31と、開閉部31を制御する二次側制御部32とを有してもよい。この場合、二次側制御部32は、特性推定動作が行われている期間中には開閉部31をオンし、定常動作が行われている期間中には開閉部31をオフすることが望ましい。 In the non-contact power feeding system 1 described above, the non-contact power receiving device 3 includes an open / close unit 31 that opens and closes an electric path between both ends of the secondary coil L2, and a secondary control unit 32 that controls the open / close unit 31. May be. In this case, it is preferable that the secondary side control unit 32 turns on the opening / closing unit 31 during the period during which the characteristic estimation operation is performed, and turns off the opening / closing unit 31 during the period during which the steady operation is performed. .
 上記の非接触給電システムにおいて、非接触受電装置3は、二次側コイルL2の出力を整流する整流部30を有し、開閉部31は、整流部30の出力端間に電気的に接続されていることが望ましい。 In the above non-contact power feeding system, the non-contact power receiving device 3 includes a rectifying unit 30 that rectifies the output of the secondary coil L2, and the opening / closing unit 31 is electrically connected between the output terminals of the rectifying unit 30. It is desirable that
 上記の構成によれば、非接触給電システムは、一次側コイルL1と二次側コイルL2との位置関係による効率の低下を抑えることができる。 According to said structure, the non-contact electric power feeding system can suppress the fall of the efficiency by the positional relationship of the primary side coil L1 and the secondary side coil L2.
 以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
 (実施形態1)
 以下、本発明の実施形態1に係る非接触給電システム1について説明する。図1に示すように、本発明の実施形態1に係る非接触給電システム1は、非接触給電装置2と、非接触受電装置3とを備える。
(Embodiment 1)
Hereinafter, the non-contact electric power feeding system 1 which concerns on Embodiment 1 of this invention is demonstrated. As shown in FIG. 1, the non-contact power feeding system 1 according to Embodiment 1 of the present invention includes a non-contact power feeding device 2 and a non-contact power receiving device 3.
 非接触給電装置2は、一次側コイルL1と、一次側コイルL1とともに一次側LC回路24を構成する一次側コンデンサC1と、一次側LC回路24に交流電力を供給する交流電源21と、交流電源21を制御する電源制御部としての一次側制御部22とを備える。 The non-contact power feeding device 2 includes a primary side coil L1, a primary side capacitor C1 that forms the primary side LC circuit 24 together with the primary side coil L1, an AC power source 21 that supplies AC power to the primary side LC circuit 24, and an AC power source. The primary side control part 22 as a power supply control part which controls 21 is provided.
 交流電源21は、出力電圧を変更可能な直流電源部210と、直流電源部210の出力を交流に変換して一次側LC回路24に出力するインバータ部211とを備える。 The AC power source 21 includes a DC power source unit 210 that can change the output voltage, and an inverter unit 211 that converts the output of the DC power source unit 210 into AC and outputs the AC voltage to the primary LC circuit 24.
 インバータ部211は、2個のスイッチング素子Q1,Q2の直列回路と2個のスイッチング素子Q3,Q4の直列回路とが互いに並列に接続された、いわゆるフルブリッジ型のインバータ回路である。各直列回路は、直流電源部210の一対の出力端間に電気的に並列に接続されている。スイッチング素子Q1とスイッチング素子Q2との接続点は、一次側LC回路24の一方の入力端に電気的に接続されている。スイッチング素子Q3とスイッチング素子Q4との接続点は、一次側LC回路24の他方の入力端に電気的に接続されている。図1の例では、スイッチング素子Q1~Q4としてnチャネル型かつエンハンスメント型のMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)が用いられている。各スイッチング素子Q1~Q4は、それぞれ、ドレインを高電位側へ向け、ソースを低電位側へ向けており、ゲートが一次側制御部22に接続されている。なお、スイッチング素子Q1~Q4としては、例えばIGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)などの他の周知の半導体スイッチを用いてもよい。 The inverter unit 211 is a so-called full bridge type inverter circuit in which a series circuit of two switching elements Q1 and Q2 and a series circuit of two switching elements Q3 and Q4 are connected in parallel to each other. Each series circuit is electrically connected in parallel between a pair of output terminals of the DC power supply unit 210. A connection point between the switching element Q1 and the switching element Q2 is electrically connected to one input terminal of the primary side LC circuit 24. A connection point between the switching element Q3 and the switching element Q4 is electrically connected to the other input terminal of the primary side LC circuit 24. In the example of FIG. 1, n-channel and enhancement type MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors) are used as the switching elements Q1 to Q4. In each of the switching elements Q1 to Q4, the drain is directed to the high potential side, the source is directed to the low potential side, and the gate is connected to the primary side control unit 22. As the switching elements Q1 to Q4, other known semiconductor switches such as IGBTs (Insulated Gate Bipolar Transistors) may be used.
 一次側制御部22は、デューティ比が50%よりも僅かに低い矩形波状の第1駆動信号G1により、インバータ部211の一方の直列回路の高電位側のスイッチング素子Q1と他方の直列回路の低電位側のスイッチング素子Q4とを駆動する。また、一次側制御部22は、第1駆動信号G1に対しデューティ比及び周波数が共通であって且つ位相が180度異なる矩形波状の第2駆動信号G2により、インバータ部211の残り2個のスイッチング素子Q2,Q3を駆動する。つまり、互いに対角に位置する2個のスイッチング素子Q1,Q4の組と残り2個のスイッチング素子Q2,Q3の組とが交互にオンオフ駆動される。これにより、直流電源部210の出力電圧が交番されて一次側LC回路24に入力される。言い換えると、インバータ部211は、第1駆動信号G1および第2駆動信号G2に応じて直流電源部210の出力電圧の極性を反転させて一次側LC回路24に出力する。一次側制御部22は例えばマイコンを用いて実現可能である。 The primary-side control unit 22 uses a rectangular-wave-shaped first drive signal G1 whose duty ratio is slightly lower than 50% to switch the switching element Q1 on the high potential side of one series circuit of the inverter unit 211 and the low level of the other series circuit. The potential side switching element Q4 is driven. Further, the primary side control unit 22 switches the remaining two switching units of the inverter unit 211 by a rectangular-wave-like second drive signal G2 having a common duty ratio and frequency with respect to the first drive signal G1 and having a phase different by 180 degrees. Elements Q2 and Q3 are driven. That is, the pair of two switching elements Q1 and Q4 positioned diagonally to each other and the pair of the remaining two switching elements Q2 and Q3 are alternately turned on and off. Thereby, the output voltage of the DC power supply unit 210 is alternated and input to the primary side LC circuit 24. In other words, the inverter unit 211 inverts the polarity of the output voltage of the DC power supply unit 210 in accordance with the first drive signal G1 and the second drive signal G2, and outputs the result to the primary side LC circuit 24. The primary side control part 22 is realizable using a microcomputer, for example.
 また、直流電源部210は、一次側制御部22の制御により出力電圧の高さを可変とされている。具体的には、直流電源部210は、電池E1とスイッチQE1との直列回路と、電池E2とスイッチQE2との直列回路とが、互いに並列に接続されてなる。上記のスイッチQE1,QE2はそれぞれ一次側制御部22によりオンオフ制御される。上記のようなスイッチQE1,QE2としては例えば周知の半導体スイッチを用いることができる。また、上記の電池E1,E2は出力電圧の高さが互いに異なる。本実施形態では、電池E1は電池E2よりも高い出力電圧を出力する。すなわち、一次側制御部22が上記のスイッチQE1,QE2のいずれをオンするかに応じて、異なる高さの電圧が直流電源部210から出力される。 In addition, the DC power supply unit 210 is configured such that the height of the output voltage is variable under the control of the primary side control unit 22. Specifically, DC power supply unit 210 is formed by connecting a series circuit of battery E1 and switch QE1 and a series circuit of battery E2 and switch QE2 in parallel with each other. The switches QE1 and QE2 are on / off controlled by the primary side control unit 22, respectively. As the switches QE1 and QE2 as described above, for example, known semiconductor switches can be used. The batteries E1 and E2 have different output voltages. In the present embodiment, the battery E1 outputs a higher output voltage than the battery E2. That is, a voltage having a different height is output from the DC power supply unit 210 depending on which of the switches QE1 and QE2 is turned on by the primary side control unit 22.
 または、直流電源部210として、一次側制御部22によって制御される周知のスイッチング電源回路を用いることで、直流電源部210の出力電圧を可変としてもよい。 Alternatively, the output voltage of the DC power supply unit 210 may be variable by using a known switching power supply circuit controlled by the primary side control unit 22 as the DC power supply unit 210.
 非接触受電装置3は、一次側コイルL1が発生させる電磁界により電流が誘導されるように構成された二次側コイルL2と、二次側コイルL2に直列に接続された二次側コンデンサC2とを備える。また、非接触受電装置3は、二次側コイルL2と二次側コンデンサC2との直列回路の両端にそれぞれ交流入力端が接続されて二次側コイルL2の出力を全波整流する整流部30と、整流部30の出力を平滑化する出力コンデンサC3とを備える。すなわち、二次側コイルL2に誘導された電流が整流部30によって整流され、この整流された電流により出力コンデンサC3が充電される。出力コンデンサC3の両端は非接触受電装置3の出力端として後段の負荷91に電気的に接続される。 The non-contact power receiving device 3 includes a secondary side coil L2 configured such that current is induced by an electromagnetic field generated by the primary side coil L1, and a secondary side capacitor C2 connected in series to the secondary side coil L2. With. In addition, the non-contact power receiving device 3 includes a rectifier 30 that performs full-wave rectification on the output of the secondary coil L2 by connecting AC input terminals to both ends of the series circuit of the secondary coil L2 and the secondary capacitor C2. And an output capacitor C3 that smoothes the output of the rectifying unit 30. That is, the current induced in the secondary coil L2 is rectified by the rectifier 30 and the output capacitor C3 is charged by the rectified current. Both ends of the output capacitor C3 are electrically connected to the subsequent load 91 as output terminals of the non-contact power receiving device 3.
 負荷91は例えば図2に示すように自動車9に搭載されて非接触受電装置3の出力を適宜変換した電力により二次電池90を充電する充電回路である。この場合、二次側コイルL2は自動車9の下側に配置され、非接触給電装置2は地上に固定される。一次側コイルL1の上に二次側コイルL2が位置するように自動車9を停車させることで、非接触給電装置2から非接触受電装置3への給電が可能となり、これによって二次電池90の充電が可能となる。 The load 91 is a charging circuit that is mounted on the automobile 9 as shown in FIG. 2 and charges the secondary battery 90 with electric power obtained by appropriately converting the output of the non-contact power receiving device 3. In this case, the secondary coil L2 is disposed below the automobile 9, and the non-contact power feeding device 2 is fixed to the ground. By stopping the automobile 9 so that the secondary coil L2 is positioned on the primary coil L1, power can be supplied from the non-contact power supply device 2 to the non-contact power reception device 3, and thus the secondary battery 90 Charging becomes possible.
 以下、本実施形態の特徴である、始動時の一次側制御部22の動作について説明する。 Hereinafter, the operation of the primary side control unit 22 at the start, which is a feature of the present embodiment, will be described.
 一次側制御部22は、交流電源21を始動させる際、第1駆動信号G1および第2駆動信号G2の周波数(すなわち交流電源21の出力電圧Vの周波数。以下、「動作周波数」と呼ぶ。)fを一定とする定常動作を開始する前の始動期間に、一次側LC回路24の特性を推定する。つまり、一次側制御部22は、一次側LC回路24の特性を推定するという特性推定動作を行う特性推定部を兼ねている。 When the primary side control unit 22 starts the AC power supply 21, the frequencies of the first drive signal G1 and the second drive signal G2 (that is, the frequency of the output voltage V of the AC power supply 21; hereinafter referred to as “operation frequency”). The characteristics of the primary side LC circuit 24 are estimated during the start-up period before starting a steady operation with f being constant. That is, the primary side control unit 22 also serves as a characteristic estimation unit that performs a characteristic estimation operation of estimating the characteristic of the primary side LC circuit 24.
 一次側制御部22は、特性推定動作中には、定常動作中よりも交流電源21の出力電圧Vの実効値を低くするように直流電源部210を制御する。具体的には、直流電源部210が図1に示すように構成されている場合、出力電圧が電池E2より高い電池E1に直列に接続されたスイッチQE1をオフし、出力電圧が電池E1より低い電池E2に接続されたスイッチQE2をオンする。 The primary side control unit 22 controls the DC power supply unit 210 so that the effective value of the output voltage V of the AC power supply 21 is lower during the characteristic estimation operation than during the steady operation. Specifically, when the DC power supply unit 210 is configured as shown in FIG. 1, the switch QE1 connected in series to the battery E1 whose output voltage is higher than that of the battery E2 is turned off, and the output voltage is lower than that of the battery E1. The switch QE2 connected to the battery E2 is turned on.
 また、非接触給電装置2は、交流電源21から一次側コイルL1に出力される電流(以下、単に「出力電流」と呼ぶ。)Iを検出する電流検出部25と、記憶部26とを備える。電流検出部25としては、例えばシャント抵抗を用いてもよいし、ホール素子を用いてもよい。記憶部26としては周知のメモリを用いることができる。一次側制御部22は、特性推定動作中、動作周波数fを徐々に変化させながら複数回、電流検出部25が検出した出力電流Iの実効値Ieを得て記憶部26に記憶するという周波数掃引を行う。上記動作により、記憶部26には、一次側LC回路24の周波数特性が記憶される。なお、一次側制御部22は、電流検出部25が出力した実効値Ieを用いる他にも、電流検出部25によって検出された電流Iの瞬時値から演算によって実効値Ieを求めてもよい。なお、電流Iの実効値Ieに関しては、電流検出部25は、電流Iの実効値Ieを出力する他にも、例えば電流Iの実効値Ieに比例する電圧を一次側制御部22に出力するように構成されていてもよい。さらに電流検出部25は、交流電源21の出力電流Iの実効値Ieの代わりに、実効値Ie以外の代表値(ピーク値、平均値など)を検出して出力してもよい。 The non-contact power feeding device 2 includes a current detection unit 25 that detects a current (hereinafter simply referred to as “output current”) I output from the AC power supply 21 to the primary coil L <b> 1, and a storage unit 26. . As the current detection unit 25, for example, a shunt resistor or a Hall element may be used. As the storage unit 26, a known memory can be used. During the characteristic estimation operation, the primary side control unit 22 obtains an effective value Ie of the output current I detected by the current detection unit 25 and stores it in the storage unit 26 a plurality of times while gradually changing the operation frequency f. I do. With the above operation, the storage unit 26 stores the frequency characteristics of the primary side LC circuit 24. In addition to using the effective value Ie output from the current detection unit 25, the primary side control unit 22 may obtain the effective value Ie by calculation from the instantaneous value of the current I detected by the current detection unit 25. Regarding the effective value Ie of the current I, the current detection unit 25 outputs, for example, a voltage proportional to the effective value Ie of the current I to the primary side control unit 22 in addition to outputting the effective value Ie of the current I. It may be configured as follows. Furthermore, the current detection unit 25 may detect and output a representative value (a peak value, an average value, etc.) other than the effective value Ie instead of the effective value Ie of the output current I of the AC power supply 21.
 また、特性推定動作を終了して定常動作を開始する際には、一次側制御部22は、特性推定動作中よりも出力電圧Vの実効値を高くするように交流電源21の直流電源部210を制御する。具体的には、直流電源部210が図1に示すように構成されている場合、出力電圧が電池E1より低い電池E2に接続されたスイッチQE2をオフするとともに、出力電圧が電池E2より高い電池E1に直列に接続されたスイッチQE1をオンする。 Further, when the characteristic estimation operation is finished and the steady operation is started, the primary side control unit 22 causes the DC power supply unit 210 of the AC power supply 21 to have a higher effective value of the output voltage V than during the characteristic estimation operation. To control. Specifically, when the DC power supply unit 210 is configured as shown in FIG. 1, the switch QE2 connected to the battery E2 whose output voltage is lower than the battery E1 is turned off, and the battery whose output voltage is higher than that of the battery E2. The switch QE1 connected in series with E1 is turned on.
 ここで、一次側LC回路24の周波数特性は、図3に示すように、一次側コイルL1と二次側コイルL2との結合係数k毎に異なる。具体的に言うと、結合係数kがある程度小さい(例えばk≦0.1)と周波数特性の極大値は1箇所であって極小値は発生しない。しかしながら、結合係数kがある程度大きい(例えばk≧0.15)と周波数特性の極大値が2箇所に発生し、その2箇所の極大値の間の周波数に極小値が発生する。また、結合係数kが大きいほど(つまり相互インダクタンスが大きいほど)、極大値の周波数間の間隔が大きくなる。 Here, the frequency characteristics of the primary side LC circuit 24 are different for each coupling coefficient k between the primary side coil L1 and the secondary side coil L2, as shown in FIG. Specifically, when the coupling coefficient k is small to some extent (for example, k ≦ 0.1), the maximum value of the frequency characteristic is one place, and no minimum value is generated. However, when the coupling coefficient k is large to some extent (for example, k ≧ 0.15), the maximum value of the frequency characteristic is generated at two locations, and the minimum value is generated at the frequency between the two maximum values. Further, the larger the coupling coefficient k (that is, the greater the mutual inductance), the larger the interval between the maximum frequency.
 また、交流電源21の動作モードとしては、図4に示すように出力電流Iの位相が出力電圧Vの位相よりも遅れる遅相モードと、図5に示すように交流電源21の出力電流Iの位相が出力電圧Vの位相よりも進む進相モードとがある。 Further, as the operation mode of the AC power source 21, the phase of the output current I is delayed from the phase of the output voltage V as shown in FIG. 4, and the output current I of the AC power source 21 as shown in FIG. There is a phase advance mode in which the phase advances more than the phase of the output voltage V.
 交流電源21において、動作周波数fに対して出力電流Iの実効値Ieが正の相関を有するときには、動作モードは進相モードとなる。周波数特性が図6のように極大値を1個のみ有する場合、上記のように動作モードが進相モードとなる周波数帯は、極大値の周波数fr0よりも低周波側(f<fr0)である。周波数特性が図7のように極大値を2箇所有する場合、動作モードが進相モードとなる周波数帯は、低周波側の極大値の周波数fr1より低周波側(f<fr1)と、極小値の周波数fr2と高周波側の極大値の周波数fr3との間(fr2<f<fr3)とである。 In the AC power source 21, when the effective value Ie of the output current I has a positive correlation with the operating frequency f, the operating mode is a phase advance mode. When the frequency characteristic has only one maximum value as shown in FIG. 6, the frequency band in which the operation mode becomes the phase advance mode as described above is on the lower frequency side (f <fr0) than the frequency fr0 of the maximum value. . When the frequency characteristic has two maximum values as shown in FIG. 7, the frequency band in which the operation mode is the phase advance mode is lower than the frequency fr1 of the maximum value on the low frequency side (f <fr1), and the minimum value. Between the frequency fr2 and the maximum frequency fr3 on the high frequency side (fr2 <f <fr3).
 また、交流電源21において、動作周波数fに対して出力電流Iの実効値Ieが負の相関を有するときには、動作モードは遅相モードとなる。周波数特性が図6のように極大値を1個のみ有する場合、動作モードが遅相モードとなる周波数帯は、極大値の周波数fr0よりも高周波側(右側)f>fr0である。周波数特性が図7のように極大値を2箇所に有する場合、動作モードが遅相モードとなる周波数帯は、低周波側の極大値の周波数fr1と極小値の周波数fr2との間(fr1<f<fr2)と高周波側の極大値fr3よりも高周波側(f>fr3)とである。 Further, in the AC power source 21, when the effective value Ie of the output current I has a negative correlation with the operating frequency f, the operating mode is a slow phase mode. When the frequency characteristic has only one maximum value as shown in FIG. 6, the frequency band in which the operation mode becomes the slow phase mode is higher frequency side (right side) f> fr0 than the frequency fr0 of the maximum value. When the frequency characteristic has the maximum value at two places as shown in FIG. 7, the frequency band in which the operation mode is the slow phase mode is between the maximum frequency fr1 and the minimum frequency fr2 on the low frequency side (fr1 < f <fr2) and the high frequency side (f> fr3) from the maximum value fr3 on the high frequency side.
 進相モードでは、スイッチング素子Q1~Q4のスイッチングはいわゆるハードスイッチングとなるので、スイッチング素子Q1~Q4にかかる電気的ストレスが比較的に高くなる上に、消費電力が比較的に増大してしまう。一方、遅相モードでは、スイッチング素子Q1~Q4のスイッチングはいわゆるソフトスイッチングになる。遅相モードでは、スイッチング素子Q1~Q4のスイッチングによる損失を低減することができ、また、スイッチング素子Q1~Q4に過大な電気的ストレスがかかるのを抑制できる。従って、交流電源21の動作モードは遅相モードであることが望ましい。 In the advanced phase mode, switching of the switching elements Q1 to Q4 is so-called hard switching, so that the electrical stress applied to the switching elements Q1 to Q4 is relatively high and the power consumption is relatively increased. On the other hand, in the slow phase mode, switching of the switching elements Q1 to Q4 is so-called soft switching. In the slow phase mode, loss due to switching of the switching elements Q1 to Q4 can be reduced, and excessive electrical stress can be suppressed from being applied to the switching elements Q1 to Q4. Therefore, it is desirable that the operation mode of the AC power supply 21 is a slow phase mode.
 しかしながら、一定の動作周波数fに対して動作モードが遅相モードとなるか進相モードとなるかは、結合係数kに依存する。例えば、動作周波数fが図3に示す周波数f1である場合、結合係数kが0.25や0.35であれば動作モードは遅相モードであるが、結合係数kが0.15であれば動作モードが進相モードとなってしまう。 However, whether the operation mode is the slow phase mode or the fast phase mode with respect to a certain operating frequency f depends on the coupling coefficient k. For example, when the operating frequency f is the frequency f1 shown in FIG. 3, if the coupling coefficient k is 0.25 or 0.35, the operating mode is the slow phase mode, but if the coupling coefficient k is 0.15. The operation mode becomes the phase advance mode.
 そこで、一次側制御部22は、定常動作での動作モードを遅相モードとするように動作する。具体的には例えば、定常動作中の動作周波数fは、特性推定動作において推定された遅相モードの周波数帯に含まれる周波数とする。周波数特性が極大値を2箇所に有する場合、遅相モードとなる2個の周波数帯fr1<f<fr2,f>fr3のうち、低周波側の周波数帯(つまり、2個の極大値に挟まれた周波数帯)fr1<f<fr2を用いることが、不要輻射を抑えるためには望ましい。 Therefore, the primary side control unit 22 operates so as to set the operation mode in the steady operation to the slow phase mode. Specifically, for example, the operating frequency f during steady operation is a frequency included in the frequency band of the slow phase mode estimated in the characteristic estimation operation. When the frequency characteristic has maximum values at two locations, the frequency band on the low frequency side (that is, sandwiched between the two maximum values) out of the two frequency bands fr1 <f <fr2, f> fr3 that are in the slow phase mode. In order to suppress unnecessary radiation, it is desirable to use fr1 <f <fr2.
 特性推定動作の周波数掃引において、変化させる動作周波数fの範囲は、例えば、想定される条件の範囲内で低周波側の極大値の周波数fr1と極小値fr2の周波数とを少なくとも含むような範囲(例えば70kHz~120kHz)とされる。また、周波数掃引における周波数分解能(つまり、出力電流Iの実効値Ieを記憶する動作周波数fの間隔)は例えば1kHzとされる。 In the frequency sweep of the characteristic estimation operation, the range of the operating frequency f to be changed is, for example, a range that includes at least the frequency fr1 of the maximum value on the low frequency side and the frequency of the minimum value fr2 within the range of assumed conditions ( For example, 70 kHz to 120 kHz). Further, the frequency resolution in the frequency sweep (that is, the interval of the operating frequency f for storing the effective value Ie of the output current I) is, for example, 1 kHz.
 または、一次側制御部22は、定常動作中の動作周波数fは固定値(例えば85kHz。以下、「定常周波数」と呼ぶ。)fsとして、一次側LC回路24の特性を変更することで遅相モードを実現してもよい。この場合、一次側制御部22は特性調整部を兼ねる。この構成を採用すれば、定常動作中に非接触給電装置2が発生させるノイズの周波数がほぼ一定となるから、上記のノイズが他の機器に影響を与えにくい。 Alternatively, the primary-side control unit 22 changes the characteristic of the primary-side LC circuit 24 so that the operating frequency f during steady-state operation is a fixed value (for example, 85 kHz, hereinafter referred to as “steady-frequency”) fs. A mode may be realized. In this case, the primary side control unit 22 also serves as a characteristic adjustment unit. If this configuration is adopted, the frequency of noise generated by the non-contact power feeding device 2 during the steady operation becomes substantially constant, so that the above-described noise hardly affects other devices.
 上記のように一次側LC回路24の特性を変更するには、一次側コンデンサC1のキャパシタンスと一次側コイルL1のインダクタンスとの少なくとも一方が、一次側制御部22の制御によって変更可能とされている必要がある。 In order to change the characteristics of the primary side LC circuit 24 as described above, at least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1 can be changed by the control of the primary side control unit 22. There is a need.
 一次側制御部22の制御によってキャパシタンスを変更可能な一次側コンデンサC1としては、周知のバラクタダイオードのほか、例えば、図8に示す構成が考えられる。図8の一次側コンデンサC1は、それぞれキャパシタンスが異なる2個のコンデンサC11,C12と、1個ずつのコンデンサC11,C12に直列に接続された2個のスイッチQC1,QC2とを備える。そして、1個のコンデンサC11と1個のスイッチQC1とからなる直列回路と、別の1個のコンデンサC12と別の1個のスイッチQC2とからなる直列回路とが、互いに並列に接続されている。 As the primary side capacitor C1 whose capacitance can be changed by the control of the primary side control unit 22, in addition to a known varactor diode, for example, a configuration shown in FIG. The primary side capacitor C1 in FIG. 8 includes two capacitors C11 and C12 having different capacitances and two switches QC1 and QC2 connected in series to the one capacitor C11 and C12, respectively. A series circuit composed of one capacitor C11 and one switch QC1 and a series circuit composed of another capacitor C12 and another switch QC2 are connected in parallel to each other. .
 また、一次側制御部22の制御によってインダクタンスを変更可能な一次側コイルL1としては、例えば、図9に示す構成が考えられる。図9の一次側コイルL1は、互いに直列に接続された2個のコイルL10,L11と、一方のコイルL11に並列に接続されたスイッチQL1とを備える。 Further, as the primary side coil L1 whose inductance can be changed by the control of the primary side control unit 22, for example, a configuration shown in FIG. 9 can be considered. The primary coil L1 in FIG. 9 includes two coils L10 and L11 connected in series with each other, and a switch QL1 connected in parallel with one coil L11.
 上記の各スイッチQC1,QC2,QL1はそれぞれ一次側制御部22によってオンオフ制御される。上記のスイッチQC1,QC2,QL1としては例えばMOSFETのような周知の半導体スイッチを用いることができる。 The above switches QC1, QC2 and QL1 are on / off controlled by the primary side control unit 22, respectively. As the switches QC1, QC2, and QL1, known semiconductor switches such as MOSFETs can be used.
 一次側制御部22は、特性推定動作で推定された周波数特性において、定常周波数fsが遅相モードの周波数帯に含まれていない場合、定常周波数fsが遅相モードの周波数帯に含まれるように、一次側LC回路24の特性を変更する。 When the stationary frequency fs is not included in the frequency band of the slow mode in the frequency characteristic estimated by the characteristic estimation operation, the primary side control unit 22 causes the stationary frequency fs to be included in the frequency band of the slow mode. The characteristics of the primary side LC circuit 24 are changed.
 ここで、一次側コンデンサC1のキャパシタンスをCとし、一次側コイルL1のインダクタンスをLとし、一次側コイルL1と二次側コイルL2との相互インダクタンスをMとする。すると、図6の場合における極大値の周波数fr0と、図7の場合における低周波側の極大値の周波数fr1、極小値の周波数fr2、高周波側の極大値の周波数fr3とは、それぞれ次式で表される。 Here, the capacitance of the primary side capacitor C1 is C, the inductance of the primary side coil L1 is L, and the mutual inductance between the primary side coil L1 and the secondary side coil L2 is M. Then, the maximum frequency fr0 in the case of FIG. 6, the maximum frequency fr1, the minimum frequency fr2, and the maximum frequency fr3 on the high frequency side in the case of FIG. expressed.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 すなわち、キャパシタンスCやインダクタンスLが高くなるほど、上記の各周波数fr0~fr3はそれぞれ低下する。 That is, the higher the capacitance C and the inductance L, the lower the respective frequencies fr0 to fr3.
 例えば、特性推定動作において推定された周波数特性において、定常周波数fsが低周波側の極大値の周波数fr1よりも低かった場合を考える。この場合、一次側制御部22は、極大値の周波数fr1を定常周波数fsよりも低くするために、キャパシタンスCやインダクタンスLを高くする。具体的には例えば、図8に示すように、特性推定動作中に一次側コンデンサC1においてキャパシタンスがコンデンサC12より大きいコンデンサC11側のスイッチQC1のみがオンされていた場合、定常動作では両方のスイッチQC1,QC2をオン状態とする。これにより一次側コンデンサC1の合成容量が大きくなるので、一次側コンデンサC1のキャパシタンスを高めることができる。または例えば、図9に示すように、特性推定動作中に一次側コイルL1においてスイッチQL1がオンされていた場合、定常動作ではスイッチQL1をオフする。これにより、一次側コイルL1の合成インダクタンスが大きくなるので、一次側コイルL1のインダクタンスを高めることができる。 For example, let us consider a case where, in the frequency characteristic estimated in the characteristic estimation operation, the stationary frequency fs is lower than the maximum frequency fr1 on the low frequency side. In this case, the primary side control unit 22 increases the capacitance C and the inductance L in order to make the maximum frequency fr1 lower than the steady frequency fs. Specifically, for example, as shown in FIG. 8, when only the switch QC1 on the capacitor C11 side whose capacitance is larger than the capacitor C12 is turned on in the primary side capacitor C1 during the characteristic estimation operation, both switches QC1 in the steady operation. , QC2 is turned on. As a result, the combined capacitance of the primary side capacitor C1 is increased, so that the capacitance of the primary side capacitor C1 can be increased. Or, for example, as shown in FIG. 9, when the switch QL1 is turned on in the primary coil L1 during the characteristic estimation operation, the switch QL1 is turned off in the steady operation. Thereby, since the synthetic | combination inductance of the primary side coil L1 becomes large, the inductance of the primary side coil L1 can be raised.
 または、特性推定動作において推定された周波数特性において、定常周波数fsが極小値の周波数fr2よりも高かった場合を考える。この場合、一次側制御部22は、極小値の周波数fr2を定常周波数fsよりも高くするために、キャパシタンスCやインダクタンスLを低くする。具体的には例えば、特性推定動作中に一次側コンデンサC1においてキャパシタンスがより大きい一方のコンデンサC11側のスイッチQC1のみがオンされていた場合、定常動作では上記のスイッチQC1をオフして他方のスイッチQC2をオンする。または例えば、特性推定動作中に一次側コイルL1においてスイッチQL1がオフされていた場合、定常動作ではスイッチQL1をオンする。 Or, consider the case where the steady frequency fs is higher than the minimum frequency fr2 in the frequency characteristic estimated in the characteristic estimation operation. In this case, the primary side control unit 22 lowers the capacitance C and the inductance L in order to make the frequency fr2 having the minimum value higher than the steady frequency fs. Specifically, for example, when only the switch QC1 on the side of the capacitor C11 having a larger capacitance in the primary side capacitor C1 is turned on during the characteristic estimation operation, the switch QC1 is turned off in the steady operation and the other switch is turned on. Turn on QC2. Alternatively, for example, when the switch QL1 is turned off in the primary coil L1 during the characteristic estimation operation, the switch QL1 is turned on in the steady operation.
 上記のような制御の結果、特性推定動作中の特性での進相モードの周波数帯に定常周波数fsが含まれていても、定常動作中の特性では遅相モードの周波数帯が定常周波数fsを含む(つまりfr1<fs<fr2となる)可能性がある。 As a result of the control described above, even if the steady-state frequency fs is included in the frequency band of the fast-phase mode in the characteristic during the characteristic estimation operation, the frequency band of the slow-phase mode in the characteristic during the steady-state operation has the steady frequency fs. (That is, fr1 <fs <fr2).
 なお、図8の例において、コンデンサC11,C12とスイッチQC1,QC2との直列回路の個数を増やせば、一次側コンデンサC1のキャパシタンスをより多段階に変更可能とすることができる。また、図9の例において、コイルL11とスイッチQL1との並列回路の個数を増やせば、一次側コイルL1のインダクタンスをより多段階に変更可能とすることができる。 In the example of FIG. 8, if the number of series circuits of the capacitors C11 and C12 and the switches QC1 and QC2 is increased, the capacitance of the primary capacitor C1 can be changed in multiple stages. In the example of FIG. 9, if the number of parallel circuits of the coil L11 and the switch QL1 is increased, the inductance of the primary side coil L1 can be changed in more stages.
 また、記憶部26に予め記憶されたテーブルが、キャパシタンスやインダクタンスの決定に用いられてもよい。記憶部26において上記のテーブルを記憶する部位としては、読み出し専用のメモリ(いわゆるROM:read only memory)やフラッシュメモリなどの周知の不揮発性メモリを用いることができる。上記のテーブルは、特性推定動作中に推定される特性(具体的には例えば低周波側の極大値の周波数fr1)と、一次側コンデンサC1のキャパシタンスや一次側コイルL1のインダクタンスとの対応関係を示す。上記のテーブルには、キャパシタンスやインダクタンスの数値そのものに代えて、キャパシタンスやインダクタンスを間接的に示すパラメータ(例えばスイッチQC1,QC2,QL1のオンオフ状態)が示されていてもよい。 Further, a table stored in advance in the storage unit 26 may be used for determination of capacitance and inductance. As a part for storing the table in the storage unit 26, a known nonvolatile memory such as a read-only memory (so-called ROM: read only memory) or a flash memory can be used. The above table shows the correspondence between the characteristics estimated during the characteristic estimation operation (specifically, for example, the frequency fr1 having the maximum value on the low frequency side) and the capacitance of the primary capacitor C1 and the inductance of the primary coil L1. Show. In the above table, parameters that indirectly indicate capacitance and inductance (for example, ON / OFF states of the switches QC1, QC2, and QL1) may be shown instead of the numerical values of capacitance and inductance themselves.
 さらに、上記のように一次側コンデンサC1のキャパシタンスや一次側コイルL1のインダクタンスが切り替えられた後、特性の推定が再度行われてもよい。 Furthermore, after the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1 are switched as described above, the estimation of characteristics may be performed again.
 または、特性推定動作において検出される特性は、動作周波数fが定常周波数fsとされた状態での動作モードであってもよい。一次側制御部22は、特性推定動作において、動作周波数fを定常周波数fsとした状態で、交流電源21の出力電圧Vの位相と出力電流Iの位相とのずれに基づいて、動作モードが進相モードか遅相モードかを推定する。より具体的には、一次側制御部22は、インバータ部211のスイッチング素子Q1~Q4が切り替えられるタイミング(つまり駆動信号S1,S2の位相)と、出力電流Iのゼロクロスのタイミングとを比較する。そして、推定された動作モードが進相モードである場合には、一次側制御部22は、一次側LC回路24の特性を変更した上で、動作モードを再度推定する。一次側LC回路24の特性の変更は、例えば、上記のように一次側コンデンサC1のキャパシタンスと一次側コイルL1のインダクタンスとの少なくとも一方を変更することで達成される。また、推定された動作モードが遅相モードである場合には、一次側制御部22は、特性推定動作を終了して定常動作に移行する。 Alternatively, the characteristic detected in the characteristic estimation operation may be an operation mode in a state where the operating frequency f is set to the steady frequency fs. In the characteristic estimation operation, the primary side control unit 22 advances the operation mode based on the difference between the phase of the output voltage V of the AC power supply 21 and the phase of the output current I in a state where the operating frequency f is the steady frequency fs. Estimate whether phase mode or slow mode. More specifically, the primary side control unit 22 compares the timing at which the switching elements Q1 to Q4 of the inverter unit 211 are switched (that is, the phase of the drive signals S1 and S2) with the zero crossing timing of the output current I. When the estimated operation mode is the phase advance mode, the primary side control unit 22 changes the characteristics of the primary side LC circuit 24 and then estimates the operation mode again. The change of the characteristic of the primary side LC circuit 24 is achieved, for example, by changing at least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1 as described above. When the estimated operation mode is the slow phase mode, the primary side control unit 22 ends the characteristic estimation operation and shifts to a steady operation.
 上記構成によれば、一次側コイルL1と二次側コイルL2との位置関係に依存する特性が定常動作の開始前に推定されるから、推定された特性に応じた制御により、定常動作では上記特性の変動による効率の低下を抑えることができる。 According to the above configuration, since the characteristic depending on the positional relationship between the primary side coil L1 and the secondary side coil L2 is estimated before the start of the steady operation, the control according to the estimated characteristic causes the above-mentioned in the steady operation. It is possible to suppress a decrease in efficiency due to characteristic fluctuations.
 また、特性推定動作中に動作周波数fが進相モードの周波数帯となる場合であっても、特性推定動作中には交流電源21の出力電圧Vの実効値が定常動作中よりも低くされていることで、交流電源21にかかる電気的なストレスが抑えられる。 Even if the operating frequency f is in the phase advance mode frequency band during the characteristic estimation operation, the effective value of the output voltage V of the AC power supply 21 is set lower during the characteristic estimation operation than during steady operation. As a result, electrical stress applied to the AC power supply 21 can be suppressed.
 ところで、負荷91が、低い入力電圧に対して高い入力インピーダンスを有する場合、特性推定動作中には、出力コンデンサC3から負荷91への放電が達成されないことで、二次側コイルL2に電流が流れない可能性がある。このように二次側コイルL2に電流が流れないと、一次側コイルL1と二次側コイルL2との間に相互インダクタンスMが発生しないから、一次側LC回路24の特性が、定常動作中の特性とは異なってしまう。 By the way, when the load 91 has a high input impedance with respect to a low input voltage, a current flows through the secondary coil L2 because the discharge from the output capacitor C3 to the load 91 is not achieved during the characteristic estimation operation. There is no possibility. If no current flows in the secondary coil L2 in this way, mutual inductance M does not occur between the primary coil L1 and the secondary coil L2, and therefore the characteristics of the primary LC circuit 24 are in steady operation. It will be different from the characteristics.
 そこで、本実施形態の非接触受電装置3は、整流部30の直流出力端間の電路(つまり、二次側コイルL2の両端間の電路であって出力コンデンサC3を含まず整流部30を含む電路)を開閉する開閉部31と、開閉部31を制御する二次側制御部32とを備える。 Therefore, the non-contact power receiving device 3 of the present embodiment includes an electric circuit between the DC output ends of the rectifying unit 30 (that is, an electric circuit between both ends of the secondary coil L2 and does not include the output capacitor C3 and includes the rectifying unit 30. An open / close unit 31 that opens and closes the electrical circuit) and a secondary-side control unit 32 that controls the open / close unit 31.
 開閉部31は、抵抗310と、二次側制御部32によってオンオフ駆動されるスイッチ311との直列回路からなる。なお、抵抗310はスイッチ311の許容電流が十分高ければ省略可能である。 The opening / closing unit 31 includes a series circuit of a resistor 310 and a switch 311 that is driven on and off by the secondary-side control unit 32. The resistor 310 can be omitted if the allowable current of the switch 311 is sufficiently high.
 また、非接触給電装置2と非接触受電装置3とは、図1に示すように、例えば電波を媒体とする無線信号により相互に通信を行う通信部23,33を備える。このような通信部23,33は周知技術によって実現可能であるので、詳細な説明は省略する。 Further, as shown in FIG. 1, the non-contact power feeding device 2 and the non-contact power receiving device 3 include communication units 23 and 33 that communicate with each other by a radio signal using radio waves as a medium, for example. Since such communication units 23 and 33 can be realized by a well-known technique, detailed description thereof is omitted.
 また、一次側制御部22は、特性推定動作の開始時には、通信部23を制御し、開閉部31のオンを指示する無線信号であるオン信号を送信させる。二次側制御部32は、上記のオン信号が通信部33に受信されると、スイッチ311をオン制御して開閉部31をオン(閉路)させる。これにより、負荷91の特性に関わらず、二次側コイルL2には電流が流れる。 Also, at the start of the characteristic estimation operation, the primary side control unit 22 controls the communication unit 23 to transmit an on signal that is a radio signal instructing to turn on the opening / closing unit 31. When the ON signal is received by the communication unit 33, the secondary side control unit 32 controls the switch 311 to turn on and closes the opening / closing unit 31. As a result, a current flows through the secondary coil L2 regardless of the characteristics of the load 91.
 さらに、一次側制御部22は、定常動作の開始時には、通信部23を制御し、開閉部31のオフを指示する無線信号であるオフ信号を送信させる。二次側制御部32は、上記のオフ信号が通信部33に受信されると、スイッチ311をオフ制御して開閉部31をオフ(開路)させる。 Furthermore, the primary side control part 22 controls the communication part 23 at the time of the start of steady operation, and transmits the OFF signal which is a radio signal which instruct | indicates the opening / closing part 31 to be turned off. When the above-described OFF signal is received by the communication unit 33, the secondary side control unit 32 controls the switch 311 to be turned off to turn off (open) the opening / closing unit 31.
 ここで、上記の開閉部31は整流部30の前段に設けてもよいが、上記のように整流部30の後段に設けたほうが、スイッチ311として片方向のみ遮断するMOSFETのような素子を用いることができるから望ましい。 Here, the opening / closing unit 31 may be provided before the rectifying unit 30. However, as described above, an element such as a MOSFET that cuts off only in one direction is used as the switch 311 when provided in the subsequent stage of the rectifying unit 30. It is desirable because it can.
 なお、回路の部品構成や配置といった構造的な側面が何ら限定されるものではないことはいうまでもない。 It goes without saying that structural aspects such as circuit component configuration and arrangement are not limited in any way.
 例えば、一次側制御部22は必ずしも1チップで構成されている必要はない。一次側制御部22に含まれる回路としては、例えば、電源制御部に相当する回路がある。電源制御部に相当する回路としては、インバータ部211のスイッチング素子Q1~Q4を駆動する回路や、直流電源部210のスイッチQE1,QE2を駆動する回路などがある。また、一次側制御部22に含まれる回路としては、上記の他に、特性推定部に相当する回路もある。特性推定部に相当する回路としては、記憶部26に記憶された周波数特性から極大値の周波数fr1や極小値の周波数fr2を推定する回路や、動作モードが進相モードか遅相モードかを推定する回路などがある。さらに、一次側制御部22に含まれる回路としては、上記の他に、特性調整部に相当する回路もある。特性調整部に相当する回路は、具体的には例えばスイッチQC1,QC2,QL1を駆動する回路である。一次側制御部22に含まれる上記以外の回路としては、通信部23を制御する回路などがある。 For example, the primary side control unit 22 does not necessarily need to be configured by one chip. As a circuit included in the primary side control unit 22, for example, there is a circuit corresponding to a power supply control unit. As a circuit corresponding to the power supply control unit, there are a circuit for driving the switching elements Q1 to Q4 of the inverter unit 211, a circuit for driving the switches QE1 and QE2 of the DC power supply unit 210, and the like. In addition to the above, the circuit included in the primary side control unit 22 includes a circuit corresponding to a characteristic estimation unit. As a circuit corresponding to the characteristic estimation unit, a circuit for estimating the maximum value frequency fr1 and the minimum value frequency fr2 from the frequency characteristics stored in the storage unit 26, or whether the operation mode is the fast phase mode or the slow phase mode is estimated. There is a circuit to do. Further, as a circuit included in the primary side control unit 22, in addition to the above, there is a circuit corresponding to the characteristic adjustment unit. The circuit corresponding to the characteristic adjusting unit is specifically a circuit that drives the switches QC1, QC2, and QL1, for example. Circuits other than the above included in the primary side control unit 22 include a circuit that controls the communication unit 23.
 上記各種の回路は、集積化されない場合において、別々のプリント配線板に実装されてもよい。例えば、インバータ部211のスイッチング素子Q1~Q4を駆動する回路と、特性推定部に相当する回路とが、別々のプリント配線板に実装されてもよい。 The various circuits described above may be mounted on separate printed wiring boards when not integrated. For example, a circuit for driving the switching elements Q1 to Q4 of the inverter unit 211 and a circuit corresponding to the characteristic estimation unit may be mounted on separate printed wiring boards.
 ただし、部品点数が多くなるほど、また、素子間の電路が長くなるほど、大型化や消費電力の増大を招くので、可能な限り多くの回路が、1チップに集積化され、または互いに共通のプリント配線板に実装されることが望ましい。さらに、記憶部26や通信部23の一部または全部が、一次側制御部22とともに1チップに集積化されてもよい。 However, the larger the number of components and the longer the electric circuit between the elements, the larger the size and the power consumption increase. Therefore, as many circuits as possible are integrated on one chip or printed wiring common to each other. It is desirable to be mounted on a board. Furthermore, a part or all of the storage unit 26 and the communication unit 23 may be integrated on one chip together with the primary side control unit 22.
 また、電流検出部25は、図1のように交流電源21の出力電流Iを検出する代わりに、図10に示すように直流電源部210からインバータ部211への入力電流を検出してもよい。特性推定動作で推定される特性が動作モード(進相モードまたは遅相モード)である場合には、図1のように交流電源21の出力電流Iが検出されたほうが、比較的にゼロクロスの検出が容易になるから望ましい。特性推定動作で推定される特性が周波数特性である場合には、図10のように交流電源21の入力電流が検出されたほうが、実効値Ieを得るための構成を比較的に簡略化できるから望ましい。また、図10の場合には、図1の場合に比べ、電流検出部25によって検出される電流の変動が少ないから、電流検出部25の自由度が比較的に高くなる。つまり、特性推定部としての一次側制御部22は、交流電源21における電流(交流電源21の出力電流Iまたは交流電源21の入力電流)に基づいて、一次側LC回路24の特性を推定してもよい。 Further, the current detection unit 25 may detect an input current from the DC power supply unit 210 to the inverter unit 211 as shown in FIG. 10 instead of detecting the output current I of the AC power supply 21 as shown in FIG. . When the characteristic estimated by the characteristic estimation operation is the operation mode (advanced phase mode or delayed phase mode), detection of the output current I of the AC power source 21 as shown in FIG. Is desirable because it becomes easier. When the characteristic estimated by the characteristic estimation operation is a frequency characteristic, the configuration for obtaining the effective value Ie can be relatively simplified when the input current of the AC power supply 21 is detected as shown in FIG. desirable. Further, in the case of FIG. 10, since the fluctuation of the current detected by the current detection unit 25 is less than that in the case of FIG. That is, the primary side control unit 22 as the characteristic estimation unit estimates the characteristic of the primary side LC circuit 24 based on the current in the AC power source 21 (the output current I of the AC power source 21 or the input current of the AC power source 21). Also good.
 さらに、電流検出部25としてシャント抵抗のように電路に挿入される素子が用いられる場合、一次側制御部22によって制御されて特性推定動作中にはオフされて定常動作中にはオンされるスイッチを、電流検出部25に並列に接続してもよい。この構成を採用すれば、定常動作中には電流検出部25による電力消費が抑えられる。 Further, when an element inserted in the electric circuit, such as a shunt resistor, is used as the current detection unit 25, a switch that is controlled by the primary side control unit 22 and is turned off during the characteristic estimation operation and turned on during the steady operation. May be connected to the current detection unit 25 in parallel. If this configuration is adopted, power consumption by the current detection unit 25 can be suppressed during steady operation.
 また、上記の例の非接触給電装置2で行われているような、電流の検出や、キャパシタンスやインダクタンスの変更が、非接触受電装置3で行われるように構成してもよい。この場合、検出された電流の通知や、キャパシタンスやインダクタンスの変更の指示は、通信部23,33を介した通信によって行われる。ただし、電流の検出や、キャパシタンスやインダクタンスの変更は、非接触給電装置2で行われるように構成したほうが、比較的に構成を簡易とすることができるから望ましい。 Further, the non-contact power receiving device 3 may be configured to detect the current and change the capacitance and inductance as performed in the non-contact power feeding device 2 in the above example. In this case, notification of the detected current and an instruction to change the capacitance or inductance are performed by communication via the communication units 23 and 33. However, it is desirable that the detection of current and the change of capacitance and inductance be performed by the non-contact power feeding device 2 because the configuration can be made relatively simple.
 さらに、一次側コンデンサC1が、図11に示すような容量調整回路240に組み込まれていてもよい。図11の容量調整回路240は、それぞれnチャネル型かつエンハンスメント型のMOSFETからなる4個のスイッチング素子Q5~Q8を有する。上記4個のスイッチング素子Q5のうち、2個のスイッチング素子Q5,Q7はドレイン同士を互いに電気的に接続され、他の2個のスイッチング素子Q6,Q8はソース同士を互いに電気的に接続されている。また、ドレイン同士を互いに電気的に接続されたスイッチング素子Q5,Q7のうち一方のスイッチング素子Q5のソースは、交流電源21の一方の出力端に電気的に接続されている。さらに、ソース同士を互いに電気的に接続されたスイッチング素子Q6,Q8のうち一方のスイッチング素子Q6のドレインも、交流電源21の上記一方の出力端に電気的に接続されている。さらに、ドレイン同士を互いに電気的に接続されたスイッチング素子Q5,Q7のうち他方のスイッチング素子Q7のソースは、一次側コイルL1の一端に電気的に接続されている。また、ソース同士を互いに電気的に接続されたスイッチング素子Q6,Q8のうち他方のスイッチング素子Q8のドレインも、一次側コイルL1の上記一端に電気的に接続されている。また、一次側コンデンサC1は、ドレイン同士を互いに電気的に接続されたスイッチング素子Q5,Q7のドレインと、ソース同士を互いに電気的に接続された2個のスイッチング素子Q6,Q8のソースとの間に電気的に接続されている。一次側制御部22は、ソースが交流電源21に接続されたスイッチング素子Q5とドレインが一次側コイルL1に接続されたスイッチング素子Q8とを、互いに共通の第3駆動信号G3によって駆動する。また、一次側制御部22は、ドレインが交流電源21に接続されたスイッチング素子Q6とソースが一次側コイルL1に接続されたスイッチング素子Q7とを、互いに共通の第4駆動信号G4によって駆動する。第3駆動信号G3と第4駆動信号G4とはそれぞれ約50%のデューティ比を有する矩形波であって、第3駆動信号G3の位相と第4駆動信号G4の位相とは180度異なっている。つまり、第3駆動信号G3と第4駆動信号G4とは交互にHレベルとなる。言い換えると、第3駆動信号G3がHレベルであって第4駆動信号G4がLレベルである第1状態と、第3駆動信号G3がLレベルであって第4駆動信号G4がHレベルである第2状態とが交互に繰り返される。 Furthermore, the primary side capacitor C1 may be incorporated in a capacity adjustment circuit 240 as shown in FIG. The capacitance adjustment circuit 240 of FIG. 11 has four switching elements Q5 to Q8 each made of an n-channel and enhancement type MOSFET. Of the four switching elements Q5, the two switching elements Q5 and Q7 have their drains electrically connected to each other, and the other two switching elements Q6 and Q8 have their sources electrically connected to each other. Yes. The source of one switching element Q5 among the switching elements Q5 and Q7 whose drains are electrically connected to each other is electrically connected to one output terminal of the AC power supply 21. Further, the drain of one switching element Q6 among the switching elements Q6 and Q8 whose sources are electrically connected to each other is also electrically connected to the one output terminal of the AC power supply 21. Furthermore, the source of the other switching element Q7 among the switching elements Q5 and Q7 whose drains are electrically connected to each other is electrically connected to one end of the primary coil L1. The drain of the other switching element Q8 among the switching elements Q6 and Q8 whose sources are electrically connected to each other is also electrically connected to the one end of the primary coil L1. The primary side capacitor C1 is connected between the drains of the switching elements Q5 and Q7 whose drains are electrically connected to each other and the sources of the two switching elements Q6 and Q8 whose sources are electrically connected to each other. Is electrically connected. The primary side control unit 22 drives the switching element Q5 whose source is connected to the AC power supply 21 and the switching element Q8 whose drain is connected to the primary side coil L1 by a third drive signal G3 that is common to each other. Further, the primary side control unit 22 drives the switching element Q6 whose drain is connected to the AC power source 21 and the switching element Q7 whose source is connected to the primary side coil L1 by the fourth drive signal G4 that is common to each other. The third drive signal G3 and the fourth drive signal G4 are rectangular waves each having a duty ratio of about 50%, and the phase of the third drive signal G3 and the phase of the fourth drive signal G4 are different by 180 degrees. . That is, the third drive signal G3 and the fourth drive signal G4 are alternately at the H level. In other words, the first state in which the third drive signal G3 is at the H level and the fourth drive signal G4 is at the L level, and the third drive signal G3 is at the L level and the fourth drive signal G4 is at the H level. The second state is repeated alternately.
 上記の第1状態では、交流電源21の出力電圧Vが正極性の期間には、出力電流Iが一次側コンデンサC1を通る。しかしながら、上記の第1状態では、交流電源21の出力電圧Vが負極性の期間には、出力電流Iは、ドレインを一次側コイルL1に接続されたスイッチング素子Q8と、ドレインを交流電源21に接続されたスイッチング素子Q6の寄生ダイオードとを通る。つまり、上記の第1状態では、交流電源21の出力電圧Vが負極性の期間には、出力電流Iは、一次側コンデンサC1を通らない。 In the first state, the output current I passes through the primary capacitor C1 during the period when the output voltage V of the AC power supply 21 is positive. However, in the first state, during the period in which the output voltage V of the AC power supply 21 is negative, the output current I includes the switching element Q8 whose drain is connected to the primary coil L1 and the drain to the AC power supply 21. It passes through the parasitic diode of the connected switching element Q6. That is, in the first state, the output current I does not pass through the primary capacitor C1 during the period when the output voltage V of the AC power supply 21 is negative.
 逆に、上記の第2状態では、交流電源21の出力電圧Vが正極性の期間には出力電流Iがスイッチング素子Q5の寄生ダイオードを通って一次側コンデンサC1を通らず、交流電源21の出力電圧Vが負極性の期間には出力電流Iが一次側コンデンサC1を通る。 Conversely, in the second state, the output current I does not pass through the parasitic diode of the switching element Q5 and the primary capacitor C1 during the period when the output voltage V of the AC power supply 21 is positive. When the voltage V is negative, the output current I passes through the primary side capacitor C1.
 上記のような容量調整回路240を用いれば、一次側制御部22は、第1駆動信号G1と第3駆動信号G3との位相差を適宜調整することで、無効電力を低減することができる。 If the capacity adjustment circuit 240 as described above is used, the primary control unit 22 can reduce reactive power by appropriately adjusting the phase difference between the first drive signal G1 and the third drive signal G3.
 また、容量調整回路240は、上記のように4個のスイッチング素子Q5~Q8を用いる代わりに、図12に示すように、2個のダブルゲート型の双方向スイッチQ9,Q10を用いて実現されてもよい。上記の双方向スイッチQ9,Q10は、2個のゲートを有し、一方のゲートへの入力のみがHレベルとされた状態では、入力がHレベルとされたゲートに応じた向きのダイオードとして機能する。図12の例では、一方の双方向スイッチQ9は交流電源21と一次側コイルL1との間でコンデンサC1に直列に接続され、他方の双方向スイッチQ10は上記一方の双方向スイッチQ9とコンデンサC1との直列回路に対して並列に接続されている。また、第1状態と第2状態とのいずれでも上記2個の双方向スイッチQ9,Q10の導通の向きが互いに逆向きとなるように、各双方向スイッチQ9,Q10のそれぞれで、第3駆動信号G3と第4駆動信号G4とが互いに異なるゲートに入力されている。 Further, the capacitance adjusting circuit 240 is realized by using two double gate type bidirectional switches Q9 and Q10 as shown in FIG. 12 instead of using the four switching elements Q5 to Q8 as described above. May be. The bidirectional switches Q9 and Q10 have two gates, and function as diodes in the direction corresponding to the gate whose input is at the H level when only the input to one gate is at the H level. To do. In the example of FIG. 12, one bidirectional switch Q9 is connected in series with the capacitor C1 between the AC power source 21 and the primary side coil L1, and the other bidirectional switch Q10 includes the one bidirectional switch Q9 and the capacitor C1. Are connected in parallel to the series circuit. In each of the bidirectional switches Q9 and Q10, the third drive is performed so that the conduction directions of the two bidirectional switches Q9 and Q10 are opposite to each other in both the first state and the second state. The signal G3 and the fourth drive signal G4 are input to different gates.
 (実施形態2)
 以下、本発明の実施形態2に係る非接触給電システム1について説明する。なお、本実施形態の非接触給電システム1において、実施形態1の非接触給電システム1と共通する構成要素については適宜説明を省略する。
(Embodiment 2)
Hereinafter, the non-contact electric power feeding system 1 which concerns on Embodiment 2 of this invention is demonstrated. In the non-contact power feeding system 1 of the present embodiment, the description of the components common to the non-contact power feeding system 1 of the first embodiment is omitted as appropriate.
 実施形態1の非接触給電システム1では、特性推定動作の周波数掃引において、低周波側の極大値の周波数fr1と極小値の周波数fr2とを少なくとも含むような範囲で動作周波数fを変化させている。しかしながら、将来、法律や規格などにより非接触給電システム1において使用可能な周波数の範囲が制限される可能性がある。この場合、実施形態1の非接触給電システム1では、特性推定動作の周波数掃引において、上記の範囲で動作周波数fを変化させることができず、一次側LC回路24の周波数特性を推定できない可能性がある。 In the non-contact power feeding system 1 of the first embodiment, in the frequency sweep of the characteristic estimation operation, the operating frequency f is changed in a range including at least the maximum frequency fr1 and the minimum frequency fr2 on the low frequency side. . However, in the future, the range of frequencies that can be used in the wireless power supply system 1 may be limited by laws and standards. In this case, in the non-contact power feeding system 1 of the first embodiment, in the frequency sweep of the characteristic estimation operation, the operating frequency f cannot be changed in the above range, and the frequency characteristic of the primary side LC circuit 24 may not be estimated. There is.
 本実施形態の非接触給電システム1は、使用可能な周波数の範囲が制限された場合でも、特性推定動作により一次側LC回路24の周波数特性を推定できることを特徴とする。以下、本実施形態の非接触給電システム1の特徴について詳細に説明する。以下の説明では、使用可能な周波数の範囲の最低周波数を‘fl1’、最高周波数を‘fl2’とする(fl1<f<fl2)。なお、使用可能な周波数の範囲は、例えば、85kHzを中心とする周波数の範囲である。 The contactless power feeding system 1 of the present embodiment is characterized in that the frequency characteristic of the primary side LC circuit 24 can be estimated by the characteristic estimation operation even when the usable frequency range is limited. Hereinafter, the characteristics of the non-contact power feeding system 1 of the present embodiment will be described in detail. In the following description, the lowest frequency in the usable frequency range is ‘fl1’ and the highest frequency is ‘fl2’ (fl1 <f <fl2). The usable frequency range is, for example, a frequency range centered on 85 kHz.
 本実施形態の非接触給電システム1では、特性推定部としての一次側制御部22は、特性推定動作において、第1処理と、第2処理と、第3処理とを実行する。第1処理は、使用可能な周波数の範囲で周波数掃引を実行することで、一次側LC回路24の使用可能な周波数の範囲における周波数特性(以下、「第1特性」と称する)を推定する処理である。言い換えれば、第1処理は、交流電源21の出力電圧Vの周波数を所定の周波数範囲で徐々に変化させながら一次側LC回路24の特性に関連する測定値を複数回検出する周波数掃引を実行することで、一次側LC回路24の第1特性を推定する処理である。ここでは、測定値は、交流電源21の出力電流Iの実効値Ieである。 In the non-contact power feeding system 1 of the present embodiment, the primary side control unit 22 as a characteristic estimation unit performs a first process, a second process, and a third process in the characteristic estimation operation. The first process is a process of estimating a frequency characteristic (hereinafter referred to as “first characteristic”) in the usable frequency range of the primary side LC circuit 24 by performing a frequency sweep in the usable frequency range. It is. In other words, the first process executes a frequency sweep that detects a measurement value related to the characteristics of the primary side LC circuit 24 a plurality of times while gradually changing the frequency of the output voltage V of the AC power supply 21 in a predetermined frequency range. In this way, the first characteristic of the primary side LC circuit 24 is estimated. Here, the measured value is the effective value Ie of the output current I of the AC power supply 21.
 第1処理により推定される第1特性の例を図13A~図13Dに示す。図13Aに示すように、第1特性において周波数の上昇に伴い出力電流Iの実効値Ieが増加する場合、動作モードは進相モードと推定される。また、図13Bに示すように、第1特性において周波数の上昇に伴い出力電流Iの実効値Ieが減少する場合、動作モードは遅相モードと推定される。また、図13Cに示すように、第1特性において周波数の上昇に伴い出力電流Iの実効値Ieが増加した後に減少に転じた場合、動作モードは、進相モードから遅相モードへと移行するモード(以下、「第1移行モード」と称する)と推定される。また、図13Dに示すように、第1特性において周波数の上昇に伴い出力電流Iの実効値Ieが減少した後に増加に転じた場合、動作モードは、遅相モードから進相モードへと移行するモード(以下、「第2移行モード」と称する)と推定される。 Examples of the first characteristic estimated by the first process are shown in FIGS. 13A to 13D. As shown in FIG. 13A, in the first characteristic, when the effective value Ie of the output current I increases as the frequency increases, the operation mode is estimated as the phase advance mode. Further, as shown in FIG. 13B, when the effective value Ie of the output current I decreases as the frequency increases in the first characteristic, the operation mode is estimated to be the slow mode. Further, as shown in FIG. 13C, when the effective value Ie of the output current I increases and then decreases as the frequency increases in the first characteristic, the operation mode shifts from the advanced phase mode to the delayed phase mode. Mode (hereinafter referred to as “first transition mode”). Further, as shown in FIG. 13D, when the effective value Ie of the output current I decreases after the frequency increases in the first characteristic and then increases, the operation mode shifts from the slow phase mode to the fast phase mode. Mode (hereinafter referred to as “second transition mode”).
 ここで、第1処理により推定される第1特性のみでは、一次側LC回路24の周波数特性を推定することは難しい。例えば、図13Aに示す第1特性が第1処理により推定された場合、一次側制御部22は、動作モードが低周波側の進相モードと高周波側の進相モードとの何れのモードであるかを推定することは難しい。また、図13Bに示す第1特性が第1処理により推定された場合、一次側制御部22は、動作モードが低周波側の遅相モードと高周波側の遅相モードとの何れのモードであるかを推定することは難しい。 Here, it is difficult to estimate the frequency characteristic of the primary side LC circuit 24 only with the first characteristic estimated by the first processing. For example, when the first characteristic shown in FIG. 13A is estimated by the first process, the primary control unit 22 is in any mode of the low-frequency-side phase advance mode and the high-frequency-side phase advance mode. It is difficult to estimate. When the first characteristic shown in FIG. 13B is estimated by the first processing, the primary side control unit 22 is in any mode of the low-frequency side slow mode and the high-frequency side slow mode. It is difficult to estimate.
 そこで、一次側制御部22は、第1処理の後に第2処理を実行する。第2処理は、一次側コンデンサC1のキャパシタンスと一次側コイルL1のインダクタンスとの少なくとも一方を変更する処理である。なお、一次側コンデンサC1のキャパシタンス、または一次側コイルL1のインダクタンスを変更する方法については、実施形態1で既に述べているので、ここでは説明を省略する。 Therefore, the primary side control unit 22 executes the second process after the first process. The second process is a process of changing at least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1. Since the method for changing the capacitance of the primary side capacitor C1 or the inductance of the primary side coil L1 has already been described in the first embodiment, the description thereof is omitted here.
 例として、一次側コンデンサC1のキャパシタンスを変更した場合の一次側LC回路24の周波数特性の変化を図14A,図14Bに示す。図14Aには、極大値を2個有する場合であり、一次側コンデンサC1のキャパシタンスを変更する前の周波数特性を第1曲線FC1で示している。図14Aにおいて、一次側コンデンサC1のキャパシタンスを大きくすると、一次側LC回路24の周波数特性は、第1曲線FC1から第2曲線FC2にシフトする。また、図14Aにおいて、一次側コンデンサC1のキャパシタンスを小さくすると、一次側LC回路24の周波数特性は、第1曲線FC1から第3曲線FC3にシフトする。 As an example, FIGS. 14A and 14B show changes in frequency characteristics of the primary side LC circuit 24 when the capacitance of the primary side capacitor C1 is changed. FIG. 14A shows a case where there are two local maximum values, and the frequency characteristic before changing the capacitance of the primary side capacitor C1 is indicated by a first curve FC1. In FIG. 14A, when the capacitance of the primary side capacitor C1 is increased, the frequency characteristic of the primary side LC circuit 24 shifts from the first curve FC1 to the second curve FC2. In FIG. 14A, when the capacitance of the primary side capacitor C1 is reduced, the frequency characteristic of the primary side LC circuit 24 shifts from the first curve FC1 to the third curve FC3.
 図14Bには、極大値を1個のみ有する場合であり、一次側コンデンサC1のキャパシタンスを変更する前の周波数特性を第4曲線FC4で示している。図14Bにおいて、一次側コンデンサC1のキャパシタンスを大きくすると、一次側LC回路24の周波数特性は、第4曲線FC4から第5曲線FC5にシフトする。また、図14Bにおいて、一次側コンデンサC1のキャパシタンスを小さくすると、一次側LC回路24の周波数特性は、第4曲線FC4から第6曲線FC6にシフトする。 FIG. 14B shows a case where there is only one maximum value, and the frequency characteristic before changing the capacitance of the primary side capacitor C1 is indicated by a fourth curve FC4. In FIG. 14B, when the capacitance of the primary side capacitor C1 is increased, the frequency characteristic of the primary side LC circuit 24 shifts from the fourth curve FC4 to the fifth curve FC5. In FIG. 14B, when the capacitance of the primary side capacitor C1 is reduced, the frequency characteristic of the primary side LC circuit 24 shifts from the fourth curve FC4 to the sixth curve FC6.
 このように、第2処理により一次側LC回路24の周波数特性が変化するため、一次側LC回路24の使用可能な周波数の範囲における周波数特性も変化する。そして、一次側制御部22は、第2処理の後に、周波数掃引を実行することで一次側LC回路24の使用可能な周波数の範囲における周波数特性(以下、「第2特性」と称する)を推定する第3処理を実行する。 Thus, since the frequency characteristic of the primary side LC circuit 24 is changed by the second processing, the frequency characteristic in the usable frequency range of the primary side LC circuit 24 is also changed. Then, the primary-side control unit 22 estimates the frequency characteristic (hereinafter referred to as “second characteristic”) in the usable frequency range of the primary-side LC circuit 24 by performing a frequency sweep after the second process. The third process is executed.
 本実施形態の非接触給電システム1では、一次側制御部22は、第2処理において、一次側コンデンサC1のキャパシタンスと一次側コイルL1のインダクタンスとの少なくとも一方を、第1特性に応じた量だけ変更している。そして、一次側制御部22は、第3処理により一次側コンデンサC1のキャパシタンスおよび一次側コイルL1のインダクタンスの値を定める。 In the non-contact power feeding system 1 of the present embodiment, the primary side control unit 22 in the second process, at least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1 by an amount corresponding to the first characteristic. It has changed. And the primary side control part 22 determines the value of the capacitance of the primary side capacitor | condenser C1, and the inductance of the primary side coil L1 by 3rd process.
 第3処理は、周波数掃引を実行する処理と、推定された第2特性に基づいて動作モードが遅相モードであるか否かを判定する処理とを含む。一次側制御部22は、第3処理において、第2処理により第1特性から第2特性に変化した周波数特性を推定するために、周波数掃引を実行する。そして一次側制御部22は、推定された第2特性に基づいて動作モードが遅相モードであるか否かを判定する。一次側制御部22は、動作モードが遅相モードであると判定した場合、特性推定動作を終了する。一次側制御部22は、動作モードが進相モードであると判定した場合、再度第2処理を実行する。つまり一次側制御部22は、動作モードが遅相モードであると判定するまで第2処理と第3処理とを繰り返す。 The third process includes a process of performing frequency sweep and a process of determining whether or not the operation mode is the slow phase mode based on the estimated second characteristic. In the third process, the primary side control unit 22 performs a frequency sweep in order to estimate the frequency characteristic changed from the first characteristic to the second characteristic by the second process. And the primary side control part 22 determines whether an operation mode is a late phase mode based on the estimated 2nd characteristic. When determining that the operation mode is the slow phase mode, the primary side control unit 22 ends the characteristic estimation operation. The primary side control part 22 performs a 2nd process again, when it determines with an operation mode being a phase advance mode. That is, the primary side control unit 22 repeats the second process and the third process until it determines that the operation mode is the slow phase mode.
 以下、コンデンサC1のキャパシタンスおよび一次側コイルL1のインダクタンスの値を定める具体例について説明する。まず、一次側制御部22がコンデンサC1のキャパシタンスの値を定める例について説明する。例えば、第1特性から動作モードが進相モードであると推定された場合(図13A参照)、一次側制御部22は、第2処理において一次側コンデンサC1のキャパシタンスを小さくし、その後第3処理を実行する。第3処理により推定される第2特性から、動作モードが再度進相モードであると推定されると、一次側制御部22は、変更後の動作モードが低周波側の進相モードであると推定する。そして、一次側制御部22は、動作モードが低周波側の遅相モードとなるように、一次側コンデンサC1のキャパシタンスを初期値よりも大きくし、特性推定動作を終了する。これにより一次側コンデンサC1のキャパシタンスの値は、初期値よりも大きい値に定められる。 Hereinafter, specific examples for determining the values of the capacitance of the capacitor C1 and the inductance of the primary coil L1 will be described. First, an example in which the primary side control unit 22 determines the capacitance value of the capacitor C1 will be described. For example, when it is estimated from the first characteristic that the operation mode is the phase advance mode (see FIG. 13A), the primary side control unit 22 reduces the capacitance of the primary side capacitor C1 in the second process, and then performs the third process. Execute. When it is estimated from the second characteristic estimated by the third process that the operation mode is the phase advance mode again, the primary side control unit 22 determines that the changed operation mode is the phase advance mode on the low frequency side. presume. Then, the primary side control unit 22 sets the capacitance of the primary side capacitor C1 to be larger than the initial value so that the operation mode becomes the low-frequency side slow-phase mode, and ends the characteristic estimation operation. Thereby, the value of the capacitance of the primary side capacitor C1 is set to a value larger than the initial value.
 一方、第3処理により推定される第2特性から、動作モードが遅相モードであると推定されると、一次側制御部22は、変更後の動作モードが低周波側の遅相モードであると推定する。この場合、一次側制御部22は、特性推定動作を終了する。つまり一次側コンデンサC1のキャパシタンスの値は初期値に定められる。 On the other hand, when it is estimated from the second characteristic estimated by the third process that the operation mode is the slow-phase mode, the primary-side control unit 22 indicates that the changed operation mode is the low-frequency side slow-phase mode. Estimated. In this case, the primary side control unit 22 ends the characteristic estimation operation. That is, the value of the capacitance of the primary side capacitor C1 is set to an initial value.
 また、例えば、第1特性から動作モードが遅相モードであると推定された場合(図13B参照)、一次側制御部22は、第2処理において一次側コンデンサC1のキャパシタンスを大きくし、その後第3処理を実行する。第3処理により推定される第2特性から、動作モードが再度遅相モードであると推定されると、一次側制御部22は、変更後の動作モードが高周波側の遅相モードであると推定する。そして、一次側制御部22は、動作モードが低周波側の遅相モードとなるように、一次側コンデンサC1のキャパシタンスを初期値よりも小さくし、特性推定動作を終了する。一方、第3処理により推定される第2特性から、動作モードが第2移行モードまたは進相モードであると推定されると、一次側制御部22は、変更前の動作モードが低周波側の遅相モードであると推定する。そして、一次側制御部22は、一次側コンデンサC1のキャパシタンスを初期値に戻し、特性推定動作を終了する。 For example, when it is estimated from the first characteristic that the operation mode is the slow phase mode (see FIG. 13B), the primary side control unit 22 increases the capacitance of the primary side capacitor C1 in the second process, and then 3 processes are executed. When it is estimated from the second characteristic estimated by the third process that the operation mode is the slow phase mode again, the primary side control unit 22 estimates that the changed operation mode is the high frequency side slow phase mode. To do. Then, the primary-side control unit 22 sets the capacitance of the primary-side capacitor C1 to be smaller than the initial value so that the operation mode becomes the low-frequency side slow-phase mode, and ends the characteristic estimation operation. On the other hand, when it is estimated from the second characteristic estimated by the third process that the operation mode is the second transition mode or the phase advance mode, the primary side control unit 22 sets the operation mode before the change to the low frequency side. Estimated to be in late phase mode. And the primary side control part 22 returns the capacitance of the primary side capacitor | condenser C1 to an initial value, and complete | finishes characteristic estimation operation | movement.
 また、例えば、第1特性から動作モードが第1移行モードであると推定された場合(図13C参照)、一次側制御部22は、第2処理において一次側コンデンサC1のキャパシタンスを大きくし、その後第3処理を実行する。第3処理により推定される第2特性から、動作モードが遅相モードまたは第2移行モードであると推定されると、一次側制御部22は、変更前の動作モードが低周波側の第1移行モードであると推定する。そして、一次側制御部22は、動作モードが低周波側の遅相モードとなるように、一次側コンデンサC1のキャパシタンスを初期値よりも大きくし、特性推定動作を終了する。一方、第3処理により推定される第2特性から、動作モードが遅相モードであると推定されると、一次側制御部22は、変更後の動作モードが高周波側の遅相モードであると推定する。そして、一次側制御部22は、動作モードが低周波側の遅相モードとなるように、一次側コンデンサC1のキャパシタンスを初期値よりも小さくし、特性推定動作を終了する。 For example, when it is estimated from the first characteristic that the operation mode is the first transition mode (see FIG. 13C), the primary side control unit 22 increases the capacitance of the primary side capacitor C1 in the second process, and then The third process is executed. If it is estimated from the second characteristic estimated by the third process that the operation mode is the slow phase mode or the second transition mode, the primary side control unit 22 determines that the operation mode before the change is the first on the low frequency side. Estimated to be in transition mode. Then, the primary side control unit 22 sets the capacitance of the primary side capacitor C1 to be larger than the initial value so that the operation mode becomes the low-frequency side slow-phase mode, and ends the characteristic estimation operation. On the other hand, when it is estimated from the second characteristic estimated by the third process that the operation mode is the slow phase mode, the primary side control unit 22 determines that the changed operation mode is the high frequency side slow phase mode. presume. Then, the primary-side control unit 22 sets the capacitance of the primary-side capacitor C1 to be smaller than the initial value so that the operation mode becomes the low-frequency side slow-phase mode, and ends the characteristic estimation operation.
 また、例えば、第1特性から動作モードが第2移行モードであると推定された場合(図13D参照)、一次側制御部22は、動作モードが低周波側の遅相モードとなるように、一次側コンデンサC1のキャパシタンスを小さくし、特性推定動作を終了する。 For example, when it is estimated from the first characteristic that the operation mode is the second transition mode (see FIG. 13D), the primary-side control unit 22 is configured so that the operation mode becomes the low-frequency side slow-phase mode. The capacitance of the primary side capacitor C1 is reduced, and the characteristic estimation operation ends.
 次に、一次側制御部22が一次側コイルL1のインダクタンスの値を定める例について説明する。一次側制御部22は、例えば、第1特性から動作モードが進相モードであると推定された場合、第2処理において一次側コイルL1のインダクタンスを変更し、その後第3処理を実行する。そして一次側制御部22は、動作モードが低周波側の遅相モードとなるように、一次側コイルL1のインダクタンスを変更し、特性推定動作を終了する。なお、一次側コイルL1のインダクタンスを変更する特性推定動作の場合は、上述の一次側コンデンサC1のキャパシタンスを変更する特性推定動作において、次のように読み替えればよい。一次側コイルL1のインダクタンスを変更する特性推定動作の場合は「一次側コンデンサC1のキャパシタンスを初期値よりも大きくする」を「一次側コイルL1のインダクタンスを初期値よりも小さくする」に読み替えればよい。同様に、「一次側コンデンサC1のキャパシタンスを初期値よりも小さくする」を「一次側コイルL1のインダクタンスを初期値よりも大きくする」に読み替えればよい。 Next, an example in which the primary control unit 22 determines the inductance value of the primary coil L1 will be described. For example, when it is estimated from the first characteristic that the operation mode is the phase advance mode, the primary side control unit 22 changes the inductance of the primary side coil L1 in the second process, and then executes the third process. And the primary side control part 22 changes the inductance of the primary side coil L1, and complete | finishes a characteristic estimation operation | movement so that an operation mode may be a slow phase mode by the side of a low frequency. In the case of the characteristic estimation operation for changing the inductance of the primary side coil L1, the following may be read in the characteristic estimation operation for changing the capacitance of the primary side capacitor C1. In the case of the characteristic estimation operation for changing the inductance of the primary side coil L1, if “the capacitance of the primary side capacitor C1 is made larger than the initial value” is read as “the inductance of the primary side coil L1 is made smaller than the initial value”. Good. Similarly, “make the capacitance of the primary side capacitor C1 smaller than the initial value” may be read as “make the inductance of the primary side coil L1 larger than the initial value”.
 上述のように、本実施形態の非接触給電システム1では、特性推定部としての一次側制御部22は、第1処理と、第2処理と、第3処理とを特性推定動作において実行している。そして、一次側制御部22は、第2処理において、一次側コンデンサC1のキャパシタンスと一次側コイルL1のインダクタンスとの少なくとも一方を、第1特性に応じた量だけ変更している。このため、本実施形態の非接触給電システム1は、使用可能な周波数の範囲が制限された場合でも、特性推定動作により一次側LC回路24の周波数特性を推定することができる。 As described above, in the non-contact power feeding system 1 of the present embodiment, the primary side control unit 22 as the characteristic estimation unit executes the first process, the second process, and the third process in the characteristic estimation operation. Yes. In the second process, the primary side control unit 22 changes at least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1 by an amount corresponding to the first characteristic. For this reason, the non-contact electric power feeding system 1 of this embodiment can estimate the frequency characteristic of the primary side LC circuit 24 by characteristic estimation operation | movement, even when the range of the frequency which can be used is restrict | limited.
 さらに、本実施形態の非接触給電システム1では、一次側制御部22は、一次側コンデンサC1のキャパシタンスと一次側コイルL1のインダクタンスとの少なくとも一方を、第2特性に応じた値としている。このため、本実施形態の非接触給電システム1は、使用可能な周波数の範囲が制限された場合でも、動作モードが遅相モードとなるように、一次側LC回路24の周波数特性を変更することができる。 Furthermore, in the non-contact power feeding system 1 of the present embodiment, the primary side control unit 22 sets at least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1 as a value according to the second characteristic. For this reason, the non-contact power feeding system 1 of the present embodiment changes the frequency characteristics of the primary side LC circuit 24 so that the operation mode becomes the lag mode even when the usable frequency range is limited. Can do.
 なお、本実施形態の非接触給電システム1では、一次側制御部22は、第2処理と第3処理とを各々1回ずつ実行しているが、複数回実行してもよい。 In the contactless power supply system 1 of the present embodiment, the primary side control unit 22 performs the second process and the third process once each, but may perform the process a plurality of times.
 (実施形態3)
 以下、本発明の実施形態3に係る非接触給電システム1について説明する。なお、本実施形態の非接触給電システム1において、実施形態1,2の非接触給電システム1と共通する構成要素については適宜説明を省略する。
(Embodiment 3)
Hereinafter, the non-contact electric power feeding system 1 which concerns on Embodiment 3 of this invention is demonstrated. In the contactless power supply system 1 of the present embodiment, the description of the components common to the contactless power supply system 1 of the first and second embodiments is omitted as appropriate.
 本実施形態の非接触給電システム1では、一次側制御部22で実行する特性推定動作が実施形態2の非接触給電システム1とは異なっている。すなわち、本実施形態の非接触給電システム1では、一次側制御部22は、第2処理において、一次側コンデンサC1のキャパシタンスと一次側コイルL1のインダクタンスとの少なくとも一方を、所定量だけ変更している。また、本実施形態の非接触給電システム1では、一次側制御部22は、一次側コンデンサC1のキャパシタンスと一次側コイルL1のインダクタンスとの少なくとも一方を、第1特性と、第2特性とに応じた値としている。 In the contactless power feeding system 1 of the present embodiment, the characteristic estimation operation executed by the primary side control unit 22 is different from that of the contactless power feeding system 1 of the second embodiment. That is, in the non-contact power feeding system 1 of the present embodiment, the primary side control unit 22 changes at least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1 by a predetermined amount in the second process. Yes. Moreover, in the non-contact electric power feeding system 1 of this embodiment, the primary side control part 22 respond | corresponds at least one of the capacitance of the primary side capacitor | condenser C1, and the inductance of the primary side coil L1 according to a 1st characteristic and a 2nd characteristic. Value.
 以下、具体例について説明する。一次側制御部22は、第1処理を実行した後、第2処理において一次側コンデンサC1のキャパシタンスを小さくし、その後第3処理を実行する。そして、一次側制御部22は、一次側コンデンサC1のキャパシタンスを徐々に小さくしながら、第2処理と第3処理とを交互に実行する。これにより、例えば一次側LC回路24の周波数特性が極大値を2個有する場合であれば、図15に示すような第1特性及び第2特性が推定される。図15において、曲線S1は、第1処理により推定される第1特性を示す。また、図15において、曲線S2~S5は、それぞれ第3処理により推定される第2特性を示す。 Hereinafter, specific examples will be described. After executing the first process, the primary side control unit 22 reduces the capacitance of the primary side capacitor C1 in the second process, and then executes the third process. And the primary side control part 22 performs a 2nd process and a 3rd process alternately, making the capacitance of the primary side capacitor | condenser C1 small gradually. Thereby, for example, if the frequency characteristic of the primary side LC circuit 24 has two maximum values, the first characteristic and the second characteristic as shown in FIG. 15 are estimated. In FIG. 15, a curve S1 indicates the first characteristic estimated by the first process. In FIG. 15, curves S2 to S5 each indicate the second characteristic estimated by the third process.
 この場合、低周波側の遅相モードは、曲線S2で表される第2特性と、曲線S3で表される第2特性との間にあると推定される。そこで、一次側制御部22は、使用可能な周波数の範囲が、曲線S2で表される第2特性と、曲線S3で表される第2特性との間に位置するように、一次側コンデンサC1のキャパシタンスを調整し、特性推定動作を終了する。 In this case, it is estimated that the slow phase mode on the low frequency side is between the second characteristic represented by the curve S2 and the second characteristic represented by the curve S3. Therefore, the primary side control unit 22 places the primary side capacitor C1 so that the usable frequency range is located between the second characteristic represented by the curve S2 and the second characteristic represented by the curve S3. The capacitance is adjusted, and the characteristic estimation operation is terminated.
 また、例えば一次側LC回路24の周波数特性が極大値を1個のみ有する場合であれば、図16に示すような第1特性及び第2特性が推定される。図16において、曲線S6は、第1処理により推定される第1特性を示す。また、図16において、曲線S7~S10は、それぞれ第3処理により推定される第2特性を示す。 For example, if the frequency characteristic of the primary side LC circuit 24 has only one maximum value, the first characteristic and the second characteristic as shown in FIG. 16 are estimated. In FIG. 16, a curve S6 shows the first characteristic estimated by the first process. In FIG. 16, curves S7 to S10 each indicate the second characteristic estimated by the third process.
 この場合、遅相モードは、曲線S8で表される第2特性と、曲線S10で表される第2特性との間にあると推定される。そこで、一次側制御部22は、使用可能な周波数の範囲が、曲線S8で表される第2特性と、曲線S10で表される第2特性との間に位置するように、一次側コンデンサC1のキャパシタンスを調整し、特性推定動作を終了する。 In this case, it is estimated that the slow phase mode is between the second characteristic represented by the curve S8 and the second characteristic represented by the curve S10. Therefore, the primary-side control unit 22 places the primary-side capacitor C1 so that the usable frequency range is located between the second characteristic represented by the curve S8 and the second characteristic represented by the curve S10. The capacitance is adjusted, and the characteristic estimation operation is terminated.
 上述のように、本実施形態の非接触給電システム1では、特性推定部としての一次側制御部22は、第2処理において、一次側コンデンサC1のキャパシタンスと一次側コイルL1のインダクタンスとの少なくとも一方を、所定量だけ変更している。このため、本実施形態の非接触給電システム1は、使用可能な周波数の範囲が制限された場合でも、特性推定動作により一次側LC回路24の周波数特性を推定することができる。 As described above, in the non-contact power feeding system 1 of the present embodiment, the primary side control unit 22 as the characteristic estimation unit has at least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1 in the second process. Is changed by a predetermined amount. For this reason, the non-contact electric power feeding system 1 of this embodiment can estimate the frequency characteristic of the primary side LC circuit 24 by characteristic estimation operation | movement, even when the range of the frequency which can be used is restrict | limited.
 さらに、本実施形態の非接触給電システム1では、一次側制御部22は、一次側コンデンサC1のキャパシタンスと一次側コイルL1のインダクタンスとの少なくとも一方を、第1特性と、第2特性とに応じた値としている。このため、本実施形態の非接触給電システム1は、使用可能な周波数の範囲が制限された場合でも、動作モードが遅相モードとなるように、一次側LC回路24の周波数特性を変更することができる。 Furthermore, in the non-contact power feeding system 1 of the present embodiment, the primary side control unit 22 determines at least one of the capacitance of the primary side capacitor C1 and the inductance of the primary side coil L1 according to the first characteristic and the second characteristic. Value. For this reason, the non-contact power feeding system 1 of the present embodiment changes the frequency characteristics of the primary side LC circuit 24 so that the operation mode becomes the lag mode even when the usable frequency range is limited. Can do.
 なお、本実施形態の非接触給電システム1では、一次側制御部22は、第2処理と第3処理とを交互に複数回実行しているが、第2処理と第3処理とを各々1回ずつ実行するだけでもよい。 In the non-contact power feeding system 1 of the present embodiment, the primary side control unit 22 alternately executes the second process and the third process a plurality of times, but each of the second process and the third process is 1 It may be executed only once.
 また、上記の実施形態2,3の非接触給電システム1では、交流電源21の出力電流Iの実効値Ieを一次側LC回路24の特性に関連する測定値としているが、他の値であってもよい。例えば、測定値には、交流電源21の出力電流Iの実効値Ie以外の代表値(ピーク値、平均値など)が用いられても良い。その他、測定値には、交流電源21の出力電流Iの位相と交流電源21の出力電圧Vの位相との位相差が用いられてもよい。また、測定値には、交流電源21の入力電流(直流電源部210からインバータ部211への入力電流)や、交流電源21の入力電力が用いられてもよい。 In the contactless power feeding system 1 of the second and third embodiments, the effective value Ie of the output current I of the AC power supply 21 is a measured value related to the characteristics of the primary side LC circuit 24, but other values are used. May be. For example, a representative value (a peak value, an average value, etc.) other than the effective value Ie of the output current I of the AC power supply 21 may be used as the measurement value. In addition, the phase difference between the phase of the output current I of the AC power supply 21 and the phase of the output voltage V of the AC power supply 21 may be used as the measurement value. Further, an input current of the AC power source 21 (an input current from the DC power source unit 210 to the inverter unit 211) or an input power of the AC power source 21 may be used as the measurement value.
 なお、上記の実施形態1~3の非接触給電システム1において、一次側コイルL1及び二次側コイルL2は、ソレノイド型のコイルであっても、スパイラル型のコイルであってもよい。ソレノイド型のコイルは、導線を巻き回して螺旋状に構成されるコイルである。スパイラル型のコイルは、任意の一点を中心として導線を渦巻状に巻き回して構成されるコイルであり、サーキュラー型のコイルとも呼ばれている。また、スパイラル型のコイルの平面視の形状は、円形状に限定されず、例えば楕円形状や矩形状であってもよい。 In the contactless power supply systems 1 of the first to third embodiments, the primary side coil L1 and the secondary side coil L2 may be solenoid type coils or spiral type coils. The solenoid type coil is a coil that is formed in a spiral shape by winding a conducting wire. A spiral type coil is a coil formed by winding a conducting wire in a spiral shape around an arbitrary point, and is also called a circular type coil. The shape of the spiral coil in plan view is not limited to a circular shape, and may be, for example, an elliptical shape or a rectangular shape.
 スパイラル型のコイルは、ソレノイド型のコイルに比べて、不要輻射ノイズが生じにくい、という利点がある。また、スパイラル型のコイルが用いられることで不要輻射ノイズが低減され、インバータ部211において使用可能な動作周波数の範囲が拡大される、という利点もある。以下、スパイラル型のコイルの利点について説明する。 The spiral type coil has the advantage that unnecessary radiation noise is less likely to occur than the solenoid type coil. In addition, the use of the spiral type coil has the advantage that unnecessary radiation noise is reduced and the operating frequency range usable in the inverter unit 211 is expanded. Hereinafter, advantages of the spiral coil will be described.
 実施形態1~3における非接触給電システムの共振特性は、上述したように一次側コイルL1と二次側コイルL2との結合係数kに応じて変化する。例えば実施形態1の場合、結合係数kが0.15以上の場合に極大値が2箇所に発生し、その2箇所の極大値の間に極小値が発生する。つまり非接触給電システムにおける共振特性は、図7に示すように出力に2つの極大値が生じる、いわゆる双峰特性を示す。この共振特性(双峰特性)においては、低周波側の極大の周波数fr1と高周波側の極大の周波数fr3とのそれぞれで出力が極大となる2つの“山”が生じる。これら2つの“山”の間には、極小値の周波数fr2で出力が極小となる“谷”が生じる。つまり周波数fr1,fr2,fr3は、fr1<fr2<fr3の関係にある。以下では、周波数fr2を基準に、周波数fr2より低い周波数領域を「低周波領域」といい、周波数fr2より高い周波数領域を「高周波領域」という。 As described above, the resonance characteristics of the non-contact power feeding systems in Embodiments 1 to 3 change according to the coupling coefficient k between the primary side coil L1 and the secondary side coil L2. For example, in the case of the first embodiment, when the coupling coefficient k is 0.15 or more, the maximum value is generated in two places, and the minimum value is generated between the two maximum values. That is, the resonance characteristic in the non-contact power supply system shows a so-called bimodal characteristic in which two maximum values are generated in the output as shown in FIG. In this resonance characteristic (bimodal characteristic), two “mountains” in which the output becomes maximum are generated at each of the maximum frequency fr1 on the low frequency side and the maximum frequency fr3 on the high frequency side. Between these two “mountains”, a “valley” in which the output is minimized at the frequency fr2 of the minimum value occurs. That is, the frequencies fr1, fr2, and fr3 have a relationship of fr1 <fr2 <fr3. Hereinafter, on the basis of the frequency fr2, a frequency region lower than the frequency fr2 is referred to as a “low frequency region”, and a frequency region higher than the frequency fr2 is referred to as a “high frequency region”.
 このような共振特性(双峰特性)にあっては、低周波領域(周波数fr1で極大となる山の領域)と、高周波領域(周波数fr3で極大となる山の領域)とのそれぞれに、インバータ部211が遅相モードで動作する領域(以下、「遅相領域」という)が生じる。そのため、インバータ部211は、動作周波数fが高周波領域および低周波領域のいずれにある場合でも、遅相モードで動作可能である。 In such a resonance characteristic (bimodal characteristic), an inverter is provided in each of a low frequency region (a mountain region where the frequency fr1 is a maximum) and a high frequency region (a mountain region where the frequency fr3 is a maximum). A region where the unit 211 operates in the slow phase mode (hereinafter referred to as “slow phase region”) occurs. Therefore, the inverter unit 211 can operate in the slow phase mode regardless of whether the operating frequency f is in the high frequency region or the low frequency region.
 高周波領域においては、一次側コイルL1を流れる電流と、二次側コイルL2を流れる電流とは同位相になる。これに対して、低周波領域においては、一次側コイルL1を流れる電流と、二次側コイルL2を流れる電流とは逆位相になる。そのため、低周波領域においては、一次側コイルL1で生じる不要輻射ノイズと、二次側コイルL2で生じる不要輻射ノイズとが、互いに相殺されることになり、非接触給電システム全体でみれば不要輻射ノイズは低減される。すなわち、インバータ部211の動作周波数fが低周波領域にある場合の方が、高周波領域にある場合よりも非接触給電システムの不要輻射ノイズを低減することができる。したがって、インバータ部211の動作周波数fが低周波領域の遅相領域(fr1<f<fr2)にあれば、インバータ部211が遅相モードで動作し、かつ不要輻射ノイズが低減される。 In the high frequency region, the current flowing through the primary coil L1 and the current flowing through the secondary coil L2 are in phase. On the other hand, in the low frequency region, the current flowing through the primary coil L1 and the current flowing through the secondary coil L2 are in opposite phases. Therefore, in the low frequency region, the unnecessary radiation noise generated in the primary coil L1 and the unnecessary radiation noise generated in the secondary coil L2 cancel each other. Noise is reduced. That is, unnecessary radiation noise of the non-contact power feeding system can be reduced when the operating frequency f of the inverter unit 211 is in the low frequency region than when it is in the high frequency region. Therefore, if the operating frequency f of the inverter unit 211 is in the slow phase region (fr1 <f <fr2) in the low frequency region, the inverter unit 211 operates in the slow phase mode and unnecessary radiation noise is reduced.
 ところで、低周波領域の遅相領域は、一次側コイルL1と二次側コイルL2との結合係数kに応じて変化する。ソレノイド型のコイルを採用する場合、非接触給電システムの不要輻射ノイズを低減するためには、結合係数kに応じて変化する遅相領域にインバータ部211の動作周波数fを収める必要がある。 By the way, the slow phase region of the low frequency region changes in accordance with the coupling coefficient k between the primary side coil L1 and the secondary side coil L2. When a solenoid type coil is employed, the operating frequency f of the inverter unit 211 needs to be stored in a slow phase region that varies according to the coupling coefficient k in order to reduce unnecessary radiation noise of the non-contact power feeding system.
 一方、スパイラル型のコイルは、ソレノイド型のコイルに比べて、不要輻射ノイズが生じにくい。そのため、スパイラル型のコイルを採用する場合、高周波領域の遅相領域(f>fr3)にインバータ部211の動作周波数fを収める場合でも、ソレノイド型のコイルを採用する場合に比べて不要輻射ノイズを低減することができる。そのため、スパイラル型のコイルを採用する場合、インバータ部211の動作周波数fを低周波領域および高周波領域の遅相領域のいずれかに収めればよいので、インバータ部211において使用可能な動作周波数fの範囲が拡大する。なお、高周波領域の遅相領域も結合係数kに応じて変化するが、インバータ部211の動作周波数fを十分に高い周波数から低周波側にスイープさせれば動作周波数fは高周波領域の遅相領域を通る。そのため、複雑な制御をしなくてもインバータ部211の動作周波数fを高周波領域の遅相領域に収めることができる。 On the other hand, the spiral type coil is less likely to generate unwanted radiation noise than the solenoid type coil. Therefore, when the spiral type coil is employed, unnecessary radiation noise is reduced even when the operating frequency f of the inverter unit 211 is stored in the slow phase region (f> fr3) of the high frequency region as compared with the case where the solenoid type coil is employed. Can be reduced. Therefore, when the spiral type coil is employed, the operating frequency f of the inverter unit 211 may be stored in either the low frequency region or the slow phase region of the high frequency region. The range expands. The slow phase region in the high frequency region also changes according to the coupling coefficient k, but if the operating frequency f of the inverter unit 211 is swept from a sufficiently high frequency to a low frequency side, the operating frequency f becomes the slow phase region in the high frequency region. Pass through. For this reason, the operating frequency f of the inverter unit 211 can be kept in the slow phase region of the high frequency region without complicated control.

Claims (15)

  1.  一次側コイルと、前記一次側コイルとともに一次側LC回路を構成する一次側コンデンサと、前記一次側LC回路に交流電力を入力するように構成された交流電源と、前記交流電源を制御する電源制御部と、前記一次側LC回路の特性を推定するという特性推定動作を行うように構成された特性推定部とを備え、
     前記電源制御部は、前記交流電源を始動させる際、出力電圧の周波数を一定とするように前記交流電源を制御するという定常動作を開始する前の始動期間には、出力電圧の実効値を前記定常動作中よりも低くし、
     前記特性推定部は、前記始動期間に、前記特性推定動作を行うことを特徴とする非接触給電装置。
    A primary side coil, a primary side capacitor that constitutes a primary side LC circuit together with the primary side coil, an AC power source configured to input AC power to the primary side LC circuit, and a power source control that controls the AC power source And a characteristic estimation unit configured to perform a characteristic estimation operation of estimating the characteristic of the primary side LC circuit,
    When starting the AC power supply, the power supply control unit sets the effective value of the output voltage during the start-up period before starting the steady operation of controlling the AC power supply so that the frequency of the output voltage is constant. Lower than during steady operation,
    The non-contact power feeding apparatus, wherein the characteristic estimation unit performs the characteristic estimation operation during the start-up period.
  2.  前記特性推定部は、
     前記交流電源の出力電圧の周波数を所定の周波数範囲で徐々に変化させながら前記一次側LC回路の特性に関連する測定値を複数回検出する周波数掃引を実行することで、前記一次側LC回路の前記所定の周波数範囲における特性を第1特性として推定する第1処理と、
     前記第1処理の後に、前記一次側コンデンサのキャパシタンスと前記一次側コイルのインダクタンスとの少なくとも一方を変更する第2処理と、
     前記第2処理の後に、前記周波数掃引を実行することで前記一次側LC回路の前記所定の周波数範囲における特性を第2特性として推定する第3処理とを、前記特性推定動作において実行することを特徴とする請求項1記載の非接触給電装置。
    The characteristic estimation unit includes:
    The frequency of the output voltage of the AC power supply is gradually changed in a predetermined frequency range, and a frequency sweep for detecting a measurement value related to the characteristics of the primary side LC circuit is executed a plurality of times, thereby allowing the primary side LC circuit to A first process for estimating a characteristic in the predetermined frequency range as a first characteristic;
    A second process for changing at least one of a capacitance of the primary capacitor and an inductance of the primary coil after the first process;
    After the second processing, performing the frequency sweep to execute a third processing for estimating a characteristic of the primary LC circuit in the predetermined frequency range as a second characteristic in the characteristic estimation operation. The contactless power feeding device according to claim 1, wherein
  3.  前記特性推定部は、前記第2処理において、前記一次側コンデンサのキャパシタンスと前記一次側コイルのインダクタンスとの少なくとも一方を、前記第1特性に応じた量だけ変更することを特徴とする請求項2記載の非接触給電装置。 The said characteristic estimation part changes at least one of the capacitance of the said primary side capacitor | condenser and the inductance of the said primary side coil by the quantity according to the said 1st characteristic in the said 2nd process. The non-contact electric power feeder of description.
  4.  前記特性推定部は、前記第2処理において、前記一次側コンデンサのキャパシタンスと前記一次側コイルのインダクタンスとの少なくとも一方を、所定量だけ変更することを特徴とする請求項2記載の非接触給電装置。 3. The non-contact power feeding apparatus according to claim 2, wherein the characteristic estimation unit changes at least one of a capacitance of the primary side capacitor and an inductance of the primary side coil by a predetermined amount in the second process. .
  5.  前記測定値は、前記交流電源の出力電流の実効値であることを特徴とする請求項2~請求項4のいずれか1項に記載の非接触給電装置。 5. The non-contact power feeding apparatus according to claim 2, wherein the measured value is an effective value of an output current of the AC power supply.
  6.  前記特性推定部は、前記交流電源における電流に基づいて、前記特性を推定することを特徴とする請求項1記載の非接触給電装置。 The non-contact power feeding apparatus according to claim 1, wherein the characteristic estimation unit estimates the characteristic based on a current in the AC power source.
  7.  前記特性推定部は、前記交流電源における出力電圧の位相と出力電流の位相とのずれに基づいて、前記特性を推定することを特徴とする請求項6記載の非接触給電装置。 The contactless power supply device according to claim 6, wherein the characteristic estimation unit estimates the characteristic based on a shift between an output voltage phase and an output current phase in the AC power supply.
  8.  前記電源制御部は、前記特性推定動作が行われている間、前記交流電源の出力電圧の周波数を徐々に変化させることを特徴とする請求項1または請求項6または請求項7に記載の非接触給電装置。 8. The non-power supply unit according to claim 1, wherein the power supply control unit gradually changes the frequency of the output voltage of the AC power supply while the characteristic estimation operation is performed. Contact power supply device.
  9.  前記特性推定部は、前記交流電源の出力電流の実効値を、それぞれ前記交流電源の出力電圧の周波数が異なる状態で複数回検出することを特徴とする請求項8記載の非接触給電装置。 The contactless power supply device according to claim 8, wherein the characteristic estimation unit detects the effective value of the output current of the AC power supply a plurality of times in a state where the frequency of the output voltage of the AC power supply is different.
  10.  前記一次側コンデンサのキャパシタンスと前記一次側コイルのインダクタンスとの少なくとも一方を制御する特性調整部を備え、
     前記特性調整部は、前記定常動作が開始される前に、前記一次側コンデンサのキャパシタンスと前記一次側コイルのインダクタンスとの少なくとも一方を、前記特性推定動作で推定された前記特性に応じた値とするという特性調整動作を行うことを特徴とする請求項1~請求項9のいずれか1項に記載の非接触給電装置。
    A characteristic adjusting unit that controls at least one of the capacitance of the primary capacitor and the inductance of the primary coil;
    The characteristic adjustment unit sets at least one of the capacitance of the primary side capacitor and the inductance of the primary side coil to a value according to the characteristic estimated in the characteristic estimation operation before the steady operation is started. 10. The non-contact power feeding apparatus according to claim 1, wherein a characteristic adjusting operation is performed.
  11.  前記一次側コンデンサのキャパシタンスと前記一次側コイルのインダクタンスとの少なくとも一方と前記特性推定動作で推定される前記特性との対応関係を示すテーブルが予め記憶された記憶部を備え、
     前記特性調整部は、前記特性調整動作において、前記一次側コンデンサのキャパシタンスと前記一次側コイルのインダクタンスとの少なくとも一方を、前記特性推定動作で推定された前記特性に対し前記テーブルにおいて対応付けられた値とすることを特徴とする請求項10記載の非接触給電装置。
    A storage unit that stores in advance a table showing a correspondence relationship between at least one of the capacitance of the primary side capacitor and the inductance of the primary side coil and the characteristic estimated by the characteristic estimation operation;
    In the characteristic adjustment operation, the characteristic adjustment unit associates at least one of a capacitance of the primary capacitor and an inductance of the primary coil in the table with respect to the characteristic estimated in the characteristic estimation operation. The contactless power feeding device according to claim 10, wherein the value is a value.
  12.  前記特性調整部が前記一次側コンデンサのキャパシタンスと前記一次側コイルのインダクタンスとの少なくとも一方を変更した後、前記特性推定部は前記特性を再度推定することを特徴とする請求項10または請求項11記載の非接触給電装置。 12. The characteristic estimation unit re-estimates the characteristic after the characteristic adjustment unit changes at least one of a capacitance of the primary side capacitor and an inductance of the primary side coil. The non-contact electric power feeder of description.
  13.  請求項1~請求項12のいずれか1項に記載の非接触給電装置と、
     前記一次側コイルが発生させる電磁界により電流を誘導されるように構成された二次側コイルを有する非接触受電装置とを備えることを特徴とする非接触給電システム。
    A non-contact power feeding device according to any one of claims 1 to 12,
    A non-contact power supply system comprising: a non-contact power receiving device having a secondary coil configured to induce a current by an electromagnetic field generated by the primary coil.
  14.  前記非接触受電装置は、前記二次側コイルの両端間の電路を開閉する開閉部と、前記開閉部を制御する二次側制御部とを有し、
     前記二次側制御部は、前記特性推定動作が行われている期間中には前記開閉部をオンし、前記定常動作が行われている期間中には前記開閉部をオフすることを特徴とする請求項13記載の非接触給電システム。
    The non-contact power receiving device has an opening / closing part that opens and closes an electric circuit between both ends of the secondary coil, and a secondary side control part that controls the opening / closing part,
    The secondary side control unit turns on the opening / closing unit during a period in which the characteristic estimation operation is performed, and turns off the opening / closing unit in a period in which the steady operation is performed. The contactless power supply system according to claim 13.
  15.  前記非接触受電装置は、前記二次側コイルの出力を整流する整流部を有し、
     前記開閉部は、前記整流部の出力端間に電気的に接続されていることを特徴とする請求項14記載の非接触給電システム。
    The non-contact power receiving device has a rectifying unit that rectifies the output of the secondary coil,
    The contactless power feeding system according to claim 14, wherein the opening / closing part is electrically connected between output terminals of the rectifying part.
PCT/JP2015/002603 2014-05-27 2015-05-22 Contactless power-supplying device and contactless power-supplying system in which same is used WO2015182097A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-109513 2014-05-27
JP2014109513 2014-05-27
JP2014-197092 2014-09-26
JP2014197092 2014-09-26

Publications (1)

Publication Number Publication Date
WO2015182097A1 true WO2015182097A1 (en) 2015-12-03

Family

ID=54698450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002603 WO2015182097A1 (en) 2014-05-27 2015-05-22 Contactless power-supplying device and contactless power-supplying system in which same is used

Country Status (1)

Country Link
WO (1) WO2015182097A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017216816A (en) * 2016-05-31 2017-12-07 パナソニックIpマネジメント株式会社 Non-contact power supply device, program, control method for non-contact power supply device, and non-contact power transmission system
JP2017216817A (en) * 2016-05-31 2017-12-07 パナソニックIpマネジメント株式会社 Non-contact power supply device, program, control method for non-contact power supply device, and non-contact power transmission system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011177009A (en) * 2010-01-26 2011-09-08 Equos Research Co Ltd Non-contact power transmission system
JP2012010546A (en) * 2010-06-28 2012-01-12 Equos Research Co Ltd Non-contact power transmission system, non-contact power transmission device and impedance adjusting method
JP2012157127A (en) * 2011-01-25 2012-08-16 Meidensha Corp Non-contact power supply device and non-contact power supply method
WO2012111085A1 (en) * 2011-02-15 2012-08-23 トヨタ自動車株式会社 Non-contact power receiving apparatus, vehicle having the non-contact power receiving apparatus mounted therein, non-contact power supply equipment, method for controlling non-contact power receiving apparatus, and method for controlling non-contact power supply equipment
WO2014054157A1 (en) * 2012-10-04 2014-04-10 株式会社 東芝 Control device, power transmission device, power reception device, and control method
JP2014524223A (en) * 2011-04-28 2014-09-18 サイバーロニックス,インコーポレーテッド Implantable medical device charging

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011177009A (en) * 2010-01-26 2011-09-08 Equos Research Co Ltd Non-contact power transmission system
JP2012010546A (en) * 2010-06-28 2012-01-12 Equos Research Co Ltd Non-contact power transmission system, non-contact power transmission device and impedance adjusting method
JP2012157127A (en) * 2011-01-25 2012-08-16 Meidensha Corp Non-contact power supply device and non-contact power supply method
WO2012111085A1 (en) * 2011-02-15 2012-08-23 トヨタ自動車株式会社 Non-contact power receiving apparatus, vehicle having the non-contact power receiving apparatus mounted therein, non-contact power supply equipment, method for controlling non-contact power receiving apparatus, and method for controlling non-contact power supply equipment
JP2014524223A (en) * 2011-04-28 2014-09-18 サイバーロニックス,インコーポレーテッド Implantable medical device charging
WO2014054157A1 (en) * 2012-10-04 2014-04-10 株式会社 東芝 Control device, power transmission device, power reception device, and control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017216816A (en) * 2016-05-31 2017-12-07 パナソニックIpマネジメント株式会社 Non-contact power supply device, program, control method for non-contact power supply device, and non-contact power transmission system
JP2017216817A (en) * 2016-05-31 2017-12-07 パナソニックIpマネジメント株式会社 Non-contact power supply device, program, control method for non-contact power supply device, and non-contact power transmission system

Similar Documents

Publication Publication Date Title
JP5351499B2 (en) Contactless power transmission system
JP6103061B2 (en) Power feeding device and non-contact power feeding system
JP6395096B2 (en) Non-contact power supply apparatus, program, control method for non-contact power supply apparatus, and non-contact power transmission system
US10938244B2 (en) Bidirectional wireless power transmission system
JP6440080B2 (en) Non-contact power supply apparatus, program, control method for non-contact power supply apparatus, and non-contact power transmission system
JP6176547B2 (en) Non-contact power feeding device and starting method of non-contact power feeding device
US9312778B2 (en) Power supply device
JP6454943B2 (en) Non-contact power supply device and non-contact power supply system using the same
WO2015170460A1 (en) Wireless power supply device and wireless power supply system using same
CN112448484A (en) Non-contact power supply device
US10186977B2 (en) Resonant power converter
WO2016017143A1 (en) Contactless power-feeding device and contactless power-feeding system using same
WO2015182097A1 (en) Contactless power-supplying device and contactless power-supplying system in which same is used
US20210099018A1 (en) Non-contact power feeding apparatus
US20160261195A1 (en) Electric power conversion device
WO2015083578A1 (en) Contactless power transmission device and electricity reception apparatus
US10951069B1 (en) Contactless power supply device and transmitter device
JP7238423B2 (en) Contactless power supply device and power transmission device
JP6369792B2 (en) Non-contact power supply device and non-contact power supply system
JP6685015B2 (en) NON-CONTACT POWER FEEDER, NON-CONTACT POWER TRANSMISSION SYSTEM, PROGRAM, AND METHOD FOR CONTROLLING NON-CONTACT POWER FEED DEVICE
JP6675094B2 (en) Non-contact power supply device, program, non-contact power supply device control method, and non-contact power transmission system
JP6675093B2 (en) Non-contact power supply device, program, non-contact power supply device control method, and non-contact power transmission system
JP6183671B2 (en) Non-contact power feeding device control method and non-contact power feeding device
JP6685016B2 (en) Non-contact power feeding device, program, control method of non-contact power feeding device, and non-contact power transmission system
WO2016017142A1 (en) Contactless power-feeding device and contactless power-feeding system using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15800107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15800107

Country of ref document: EP

Kind code of ref document: A1