WO2015072370A1 - 炭素繊維膜 - Google Patents

炭素繊維膜 Download PDF

Info

Publication number
WO2015072370A1
WO2015072370A1 PCT/JP2014/079219 JP2014079219W WO2015072370A1 WO 2015072370 A1 WO2015072370 A1 WO 2015072370A1 JP 2014079219 W JP2014079219 W JP 2014079219W WO 2015072370 A1 WO2015072370 A1 WO 2015072370A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
fiber membrane
mass
nanotube
fiber length
Prior art date
Application number
PCT/JP2014/079219
Other languages
English (en)
French (fr)
Inventor
佑介 川口
青木 誠志
利彰 志水
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201480061628.0A priority Critical patent/CN105722787A/zh
Priority to US15/035,656 priority patent/US10020123B2/en
Priority to JP2015547735A priority patent/JP6077134B2/ja
Publication of WO2015072370A1 publication Critical patent/WO2015072370A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/159Carbon nanotubes single-walled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application

Definitions

  • the present invention relates to a carbon fiber film used for a polarizable electrode such as an electric double layer capacitor.
  • carbon nanotubes have a larger specific surface area than activated carbon, use of carbon nanotubes as polarizable electrodes such as electric double layer capacitors as a carbon fiber film has been studied. On the other hand, carbon nanotubes are expensive, and an increase in the manufacturing cost of polarizable electrodes such as electric double layer capacitors is inevitable with carbon nanotubes alone.
  • the conventional carbon fiber film has a disadvantage that the electric capacity per mass cannot be sufficiently increased.
  • An object of the present invention is to provide a carbon fiber membrane that eliminates such inconveniences and that is inexpensive and can sufficiently increase the electric capacity per mass.
  • the carbon fiber membrane of the present invention is a carbon fiber membrane consisting only of carbon nanotubes and a carbon material other than carbon nanotubes, and the total amount of carbon nanotubes having a fiber length in the range of 30 to 500 ⁇ m. In an amount in the range of 3% by mass or more and less than 100% by mass.
  • the carbon fiber membrane of the present invention contains carbon nanotubes having a fiber length in the range of 30 to 500 ⁇ m in an amount in the range of 3% by mass or more and less than 100% by mass of the total amount of carbon nanotubes and carbon materials other than carbon nanotubes.
  • the film can be formed without any binder. If the carbon nanotube fiber length is less than 30 ⁇ m, or the carbon nanotube fiber length is 30 ⁇ m or more, the carbon fiber membrane cannot be formed when the amount of the carbon nanotube is less than 3% by mass of the total amount. .
  • the carbon fiber membrane can be formed only by carbon nanotubes having a fiber length in the above range (including carbon nanotubes having a fiber length in the above range with respect to the total amount), but in this case, the manufacturing cost is increased. Is inevitable. Therefore, the carbon fiber membrane of the first aspect of the present invention needs to contain carbon nanotubes having a fiber length in the above range in an amount in the range of 3% by mass to less than 100% by mass of the total amount.
  • the carbon fiber membrane of the present invention consists only of carbon nanotubes and carbon materials other than carbon nanotubes, and does not contain a binder, so that the electric capacity per mass can be sufficiently increased.
  • the carbon fiber membrane of the present invention includes a carbon nanotube and a cheaper carbon material other than the carbon nanotube, the carbon fiber membrane can be manufactured at a lower cost as compared with the case of only the carbon nanotube.
  • the carbon fiber membrane of the present invention preferably contains carbon nanotubes having a fiber length in the above range in a range of 3 to 50% by mass of the total amount in order to manufacture at a lower cost as compared with the case where the carbon fiber membrane is composed only of carbon nanotubes. .
  • any one of carbon black and activated carbon can be used as the carbon material other than the carbon nanotube.
  • the carbon nanotube includes a first carbon nanotube having an average fiber length in the range of 10 to 50 ⁇ m and a second carbon having an average fiber length in the range of 100 to 250 ⁇ m. It is preferable to consist of a nanotube.
  • the carbon fiber membrane of the present invention is compared with the case where only one type of carbon nanotube having a fiber length in the range of 30 to 500 ⁇ m is used because the carbon nanotube is composed of the first carbon nanotube and the second carbon nanotube. If the total amount of carbon nanotubes is the same, a better tensile strength can be obtained.
  • the amount of the first carbon nanotube is in the range of 2 to 15% by mass of the total amount.
  • the second carbon nanotubes may be included in an amount ranging from 1 to 5% by mass of the total amount, and the carbon material other than the carbon nanotubes may be included in an amount ranging from 80 to 97% by mass.
  • the carbon nanotubes can be composed of, for example, first carbon nanotubes having an average fiber length of 30 ⁇ m and second carbon nanotubes having an average fiber length of 125 ⁇ m.
  • carbon black when the carbon nanotube is composed of the first carbon nanotube and the second carbon nanotube, carbon black can be used as a carbon material other than the carbon nanotube.
  • the graph which shows frequency distribution of the fiber length of the 1st carbon nanotube used for the carbon fiber membrane of this invention The graph which shows frequency distribution of the fiber length of the 2nd carbon nanotube used for the carbon fiber membrane of this invention.
  • the carbon fiber membrane according to the first aspect of the present embodiment is a carbon fiber membrane composed only of carbon nanotubes and a carbon material other than carbon nanotubes, and a total of 3 carbon nanotubes having a fiber length in the range of 30 ⁇ m to 500 ⁇ m. It is necessary to contain in the quantity of the range of more than mass% and less than 100 mass%. If the carbon nanotube fiber length is less than 30 ⁇ m, or the carbon nanotube fiber length is 30 ⁇ m or more, the carbon fiber membrane cannot be formed when the amount of the carbon nanotube is less than 3% by mass of the total amount. .
  • the carbon nanotube may be a single wall or a multilayer of two or more layers.
  • the carbon nanotubes are the first carbon nanotubes having an average fiber length in the range of 30 to 50 ⁇ m and the average fiber lengths in the range of 100 to 250 ⁇ m. And the second carbon nanotube.
  • the carbon fiber membrane according to the second aspect of the present embodiment has such a configuration, so that if the total amount of carbon nanotubes is the same, the carbon fiber membrane has superior strength compared to the carbon fiber membrane according to the first aspect. Obtainable.
  • the carbon fiber membrane of the second aspect of the present embodiment includes, for example, an amount in the range of 2 to 15% by mass of the total amount of the first carbon nanotubes and 1 to 5% by mass of the total amount of the second carbon nanotubes.
  • a carbon material other than the carbon nanotube can be included in an amount in the range of 80 to 97% by mass of the total amount.
  • the first carbon nanotube one having a fiber length having a frequency distribution shown in FIG. 1, for example, can be used.
  • the said 2nd carbon nanotube can use what the fiber length equips with frequency distribution shown, for example in FIG.
  • Examples of the carbon material other than the carbon nanotube include graphene, graphite, carbon black, activated carbon and the like.
  • the carbon fiber membrane of the present embodiment can be manufactured as follows, for example.
  • carbon nanotubes having an average fiber length in the range of 50 to 500 ⁇ m and carbon materials other than the carbon nanotubes are weighed in predetermined amounts and dispersed in a solvent.
  • the amount of the carbon nanotube and the carbon material other than the carbon nanotube is, for example, in the range of 10 to 20% by mass of the carbon nanotube and 80 to 90% by mass of the carbon material other than the carbon nanotube based on the total amount. Adjust as follows.
  • Examples of the solvent include alcohols, organic solvents such as aprotic polar solvents, and water.
  • examples of the alcohol include ethanol and 2-propanol.
  • examples of the aprotic polar solvent include N-methylpyrrolidone.
  • the amount of the solvent may be an amount that can disperse the carbon nanotube and a carbon material other than the carbon nanotube, and does not need to be used excessively. Specifically, the amount of the solvent can be adjusted in a range of 500 to 1000 times the total mass of the carbon nanotube and the carbon material other than the carbon nanotube.
  • the carbon nanotubes are stirred by stirring a solvent in which the carbon nanotubes and a carbon material other than the carbon nanotubes are dispersed using a stirring device such as an ultrasonic cleaner, a ball mill, a bead mill, a homogenizer, or a jet mill.
  • the fiber length is adjusted to a predetermined fiber length.
  • the fiber length is adjusted so that the amount of carbon nanotubes having a fiber length of 30 to 500 ⁇ m is 3% by mass or more and less than 100% by mass with respect to the total amount of the carbon nanotubes and the carbon material other than the carbon nanotubes. is required.
  • the adjustment of the fiber length is such that the first carbon nanotube having an average fiber length in the range of 30 to 50 ⁇ m is 2 to 15 mass% with respect to the total amount of the carbon nanotube and the carbon material other than the carbon nanotube. It is preferable that the second carbon nanotubes having an average fiber length in the range of 100 to 250 ⁇ m are in the range of 1 to 5% by mass.
  • the dispersion is filtered using a filter, and a carbon fiber film precursor composed of the carbon nanotubes and a carbon material other than the carbon nanotubes is formed on the filter.
  • the filtration can be performed, for example, by vacuum filtration using a polytetrafluoroethylene filter having a pore size in the range of 0.2 to 1 ⁇ m.
  • the carbon fiber membrane precursor of this embodiment is obtained by drying the carbon fiber membrane precursor with a dryer. Drying with the dryer can be performed by holding the carbon fiber membrane precursor at a temperature in the range of 10 to 30 ° C. for 5 to 60 minutes, for example.
  • a carbon nanotube having a fiber length of 30 to 500 ⁇ m is bonded to a carbon material other than the carbon nanotube by van der Waals force, so that the carbon fiber membrane does not contain a binder. It is thought that it is formed.
  • the first carbon nanotubes are bonded to a carbon material other than the carbon nanotubes by van der Waals force, and the number of contacts is increased by the first carbon nanotubes. It is thought that it is in the state. And it is thought that the carbon fiber membrane is formed without including a binder, when the second carbon nanotube is further bonded to the state by van der Waals force and entangled.
  • Example 1 In this example, first, carbon nanotubes having an average fiber length in the range of 50 to 500 ⁇ m, carbon black as a carbon material other than carbon nanotubes, and 10% by mass of the carbon nanotubes based on the total amount, carbon black was 90% by mass, and dispersed in ethanol as a solvent.
  • the amount of the solvent was 500 mass times the total mass of the carbon nanotube and carbon black.
  • the fiber length of the carbon nanotubes was adjusted by stirring the solvent in which the carbon nanotubes and carbon black were dispersed using an ultrasonic cleaner as a stirring device.
  • the amount of carbon nanotubes having a fiber length of 30 ⁇ m was 3% by mass with respect to the total amount of carbon nanotubes and carbon black, and the balance was carbon black.
  • the carbon nanotubes with adjusted fiber lengths, carbon black, and the solvent are mixed as described above, and a dispersion liquid in which the carbon nanotubes and carbon black are dispersed in the solvent is obtained. Prepared.
  • the dispersion was filtered under reduced pressure using a polytetrafluoroethylene filter having a pore size of 1.0 ⁇ m, and a carbon fiber membrane precursor composed of the carbon nanotubes and carbon black was formed on the filter.
  • the carbon fiber membrane precursor was dried at a temperature of 20 ° C. for 10 minutes using a dryer.
  • Comparative Example 1 In this comparative example, an attempt was made to produce a carbon fiber membrane in exactly the same manner as in Example 1 except that no carbon nanotubes were used and only carbon black as a carbon material other than carbon nanotubes was used. However, the carbon fiber membrane could not be obtained. The results are shown in Table 1.
  • the fiber length of the carbon nanotubes is adjusted by stirring the solvent in which the carbon nanotubes and carbon black are dispersed using the stirring device, and the carbon nanotubes having a fiber length of 30 ⁇ m with respect to the total amount.
  • a carbon fiber membrane was produced in exactly the same manner as in Example 1, except that the amount of was 100% by mass.
  • Example 2 In this example, the fiber length of the carbon nanotube was adjusted by stirring the solvent in which the carbon nanotube and carbon black were dispersed using the stirring device, and the carbon nanotube having a fiber length of 30 ⁇ m with respect to the total amount.
  • the carbon fiber membrane was manufactured in exactly the same manner as in Example 1 except that the amount of carbon black was 50% by mass and the balance was carbon black.
  • Example 3 the fiber length of the carbon nanotube was adjusted by stirring the solvent in which the carbon nanotube and carbon black were dispersed using the stirring device, and the carbon nanotube having a fiber length of 30 ⁇ m with respect to the total amount.
  • the carbon fiber membrane was manufactured in exactly the same manner as in Example 1 except that the amount of carbon was 10% by mass and the balance was carbon black.
  • Example 4 In this example, a carbon fiber membrane was produced in exactly the same manner as in Example 3 except that activated carbon was used instead of the carbon black.
  • Example 5 the fiber length of the carbon nanotube was adjusted by stirring the solvent in which the carbon nanotube and carbon black were dispersed using the stirring device, and the carbon nanotube having a fiber length of 120 ⁇ m with respect to the total amount.
  • the carbon fiber membrane was manufactured in exactly the same manner as in Example 1 except that the amount of carbon was 10% by mass and the balance was carbon black.
  • Example 6 the fiber length of the carbon nanotube was adjusted by stirring the solvent in which the carbon nanotube and carbon black were dispersed using the stirring device, and the carbon nanotube having a fiber length of 250 ⁇ m with respect to the total amount.
  • the carbon fiber membrane was manufactured in exactly the same manner as in Example 1 except that the amount of carbon was 10% by mass and the balance was carbon black.
  • Example 7 the fiber length of the carbon nanotube was adjusted by stirring the solvent in which the carbon nanotube and carbon black were dispersed using the stirring device, and the carbon nanotube having a fiber length of 500 ⁇ m with respect to the total amount.
  • the carbon fiber membrane was manufactured in exactly the same manner as in Example 1 except that the amount of carbon was 10% by mass and the balance was carbon black.
  • Example 8 the fiber length of the carbon nanotubes was adjusted by stirring the solvent in which the carbon nanotubes and carbon black were dispersed using the stirring device, and the average fiber length was 30 ⁇ m with respect to the total amount.
  • the amount of the first carbon nanotubes was 15% by mass
  • the amount of the second carbon nanotubes having an average fiber length of 125 ⁇ m was 5% by mass
  • the remainder was carbon black.
  • a carbon fiber membrane was produced in exactly the same manner.
  • Example 9 In this example, the amount of the first carbon nanotubes having an average fiber length of 30 ⁇ m is 5% by mass and the amount of the second carbon nanotubes having an average fiber length of 125 ⁇ m is 5% by mass with respect to the total amount.
  • a carbon fiber membrane was produced in exactly the same manner as in Example 8 except that the balance was carbon black.
  • Example 10 In this example, the amount of the first carbon nanotubes having an average fiber length of 30 ⁇ m is 2% by mass and the amount of the second carbon nanotubes having an average fiber length of 125 ⁇ m is 1% by mass with respect to the total amount.
  • a carbon fiber membrane was produced in exactly the same manner as in Example 8 except that the balance was carbon black.
  • Example 9 in Table 3 and Examples 3 to 7 in Table 2 by using two types of carbon nanotubes, the first carbon nanotube and the second carbon nanotube, the total amount of carbon nanotubes is the same. If so, it is apparent that a carbon fiber membrane having a remarkably superior tensile strength can be obtained as compared with the case where only one type of carbon nanotube having a fiber length of 30 to 500 ⁇ m is used.

Abstract

 安価で質量当たりの電気容量を十分に大きくできる炭素繊維膜を提供する。 炭素繊維膜は、カーボンナノチューブと、カーボンナノチューブ以外の炭素材料とのみからなり、30~500μmの繊維長のカーボンナノチューブを全量の3質量%以上100質量%未満の量で含む。

Description

炭素繊維膜
 本発明は、電気二重層キャパシタ等の分極性電極に用いられる炭素繊維膜に関する。
 カーボンナノチューブは、活性炭に比較して比表面積が大きいので、炭素繊維膜として電気二重層キャパシタ等の分極性電極に用いることが検討されている。一方、カーボンナノチューブは高価であり、カーボンナノチューブのみでは電気二重層キャパシタ等の分極性電極の製造コストの増大が避けられない。
 そこで、従来、カーボンナノチューブと、カーボンナノチューブ以外のより安価な炭素材料とをバインダにより結合させた炭素繊維膜が知られている(例えば、特許文献1,2参照)。
特開2000-124079号公報 特開2008-10681号公報
 しかしながら、前記バインダは一般に導電性を備えていないので、前記従来の炭素繊維膜では、質量当たりの電気容量を十分に大きくすることができないことがあるという不都合がある。
 本発明は、かかる不都合を解消して、安価で質量当たりの電気容量を十分に大きくすることができる炭素繊維膜を提供することを目的とする。
 かかる目的を達成するために、本発明の炭素繊維膜は、カーボンナノチューブと、カーボンナノチューブ以外の炭素材料とのみからなる炭素繊維膜であって、30~500μmの範囲の繊維長のカーボンナノチューブを全量の3質量%以上100質量%未満の範囲の量で含むことを特徴とする。
 本発明の炭素繊維膜は、30~500μmの範囲の繊維長のカーボンナノチューブを全量の3質量%以上100質量%未満の範囲の量で含むことにより、カーボンナノチューブと、カーボンナノチューブ以外の炭素材料とのみからなり、バインダを含むことなく、成膜することができる。カーボンナノチューブの繊維長が30μm未満であるか、カーボンナノチューブの繊維長が30μm以上であっても該カーボンナノチューブの量が全量の3質量%未満であるときには、前記炭素繊維膜を形成することができない。
 また、炭素繊維膜は、前記範囲の繊維長のカーボンナノチューブのみ(前記範囲の繊維長のカーボンナノチューブを全量に対し100質量%含む)によって形成することもできるが、この場合には製造コストの増大が避けられない。従って、本発明の第1の態様の炭素繊維膜は、前記範囲の繊維長のカーボンナノチューブを全量の3質量%以上100質量%未満の範囲の量で含むことが必要である。
 本発明の炭素繊維膜によれば、カーボンナノチューブと、カーボンナノチューブ以外の炭素材料とのみからなり、バインダを含むことがないので、質量当たりの電気容量を十分に大きくすることができる。また、本発明の炭素繊維膜は、カーボンナノチューブと共に、カーボンナノチューブ以外のより安価な炭素材料を含むので、カーボンナノチューブのみからなる場合に比較して安価に製造することができる。
 また、本発明の炭素繊維膜は、カーボンナノチューブのみからなる場合に比較して安価に製造するために、前記範囲の繊維長のカーボンナノチューブを全量の3~50質量%の範囲で含むことが好ましい。
 また、本発明の炭素繊維膜において、前記カーボンナノチューブ以外の炭素材料としては、カーボンブラック又は活性炭のいずれか1種を用いることができる。
 また、本発明の炭素繊維膜において、前記カーボンナノチューブは、繊維長の平均が10~50μmの範囲にある第1のカーボンナノチューブと、繊維長の平均が100~250μmの範囲にある第2のカーボンナノチューブとからなることが好ましい。本発明の炭素繊維膜は、前記カーボンナノチューブが前記第1のカーボンナノチューブと前記第2のカーボンナノチューブとからなることにより、30~500μmの範囲の繊維長のカーボンナノチューブを1種のみ用いる場合に比較して、カーボンナノチューブの総量が同一であれば、より優れた引張強度を得ることができる。
 本発明の炭素繊維膜は、前記カーボンナノチューブが前記第1のカーボンナノチューブと前記第2のカーボンナノチューブとからなる場合、例えば、前記第1のカーボンナノチューブを全量の2~15質量%の範囲の量、前記第2のカーボンナノチューブを全量の1~5質量%の範囲の量、前記カーボンナノチューブ以外の炭素材料を全量の80~97質量%の範囲の量で含むことができる。
 また、前記カーボンナノチューブは、例えば、繊維長の平均が30μmである第1のカーボンナノチューブと、繊維長の平均が125μmである第2のカーボンナノチューブとからなることができる。
 また、本発明の炭素繊維膜は、前記カーボンナノチューブが前記第1のカーボンナノチューブと前記第2のカーボンナノチューブとからなる場合、前記カーボンナノチューブ以外の炭素材料としては、カーボンブラックを用いることができる。
本発明の炭素繊維膜に用いる第1のカーボンナノチューブの繊維長の度数分布を示すグラフ。 本発明の炭素繊維膜に用いる第2のカーボンナノチューブの繊維長の度数分布を示すグラフ。
 次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。
 本実施形態の第1の態様の炭素繊維膜は、カーボンナノチューブと、カーボンナノチューブ以外の炭素材料とのみからなる炭素繊維膜であって、30μm~500μmの範囲の繊維長のカーボンナノチューブを全量の3質量%以上100質量%未満の範囲の量で含んでいることが必要である。カーボンナノチューブの繊維長が30μm未満であるか、カーボンナノチューブの繊維長が30μm以上であっても該カーボンナノチューブの量が全量の3質量%未満であるときには、前記炭素繊維膜を形成することができない。尚、前記カーボンナノチューブは単層であってもよく、2層以上の複層であってもよい。
 また、本実施形態の第2の態様の炭素繊維膜は、前記カーボンナノチューブが、繊維長の平均が30~50μmの範囲にある第1のカーボンナノチューブと、繊維長の平均が100~250μmの範囲にある第2のカーボンナノチューブとからなる。本実施形態の第2の態様の炭素繊維膜は、このような構成とすることにより、カーボンナノチューブの総量が同一であれば、前記第1の態様の炭素繊維膜に比較して優れた強度を得ることができる。
 本実施形態の第2の態様の炭素繊維膜は、例えば、前記第1のカーボンナノチューブを全量の2~15質量%の範囲の量、前記第2のカーボンナノチューブを全量の1~5質量%の範囲の量、前記カーボンナノチューブ以外の炭素材料を全量の80~97質量%の範囲の量で含むことができる。
 前記第1のカーボンナノチューブは、その繊維長が、例えば図1に示す度数分布を備えるものを用いることができる。また、前記第2のカーボンナノチューブは、その繊維長が、例えば図2に示す度数分布を備えるものを用いることができる。
 前記カーボンナノチューブ以外の炭素材料としては、例えば、グラフェン、グラファイト、カーボンブラック、活性炭等を挙げることができる。
 本実施形態の炭素繊維膜は、例えば、次のようにして製造することができる。
 例えば、繊維長の平均が50~500μmの範囲にあるカーボンナノチューブと、前記カーボンナノチューブ以外の炭素材料を所定量ずつ秤量し、溶媒に分散させる。前記カーボンナノチューブと前記カーボンナノチューブ以外の炭素材料の量は、例えば、その合計量に対し、該カーボンナノチューブが10~20質量%、該カーボンナノチューブ以外の炭素材料が80~90質量%の範囲となるように調整する。
 前記溶媒としては、例えば、アルコール、非プロトン性極性溶媒等の有機溶媒又は水を挙げることができる。前記アルコールとしては、エタノール、2-プロパノール等を挙げることができる。また、非プロトン性極性溶媒としては、N-メチルピロリドン等を挙げることができる。
 前記溶媒の量は、前記カーボンナノチューブと前記カーボンナノチューブ以外の炭素材料とが分散できる量であればよく、過剰に用いる必要はない。前記溶媒の量は、具体的には、前記カーボンナノチューブと前記カーボンナノチューブ以外の炭素材料との合計質量に対し、500~1000質量倍の範囲で調整することができる。
 次に、超音波洗浄機、ボールミル、ビーズミル、ホモジナイザー、ジェットミル等の撹拌装置を用いて、前記カーボンナノチューブと前記カーボンナノチューブ以外の炭素材料とが分散された溶媒を撹拌することにより、前記カーボンナノチューブの繊維長を所定の繊維長に調整する。前記繊維長の調整は、前記カーボンナノチューブと前記カーボンナノチューブ以外の炭素材料との合計量に対し、繊維長30~500μmのカーボンナノチューブが3質量%以上100質量%未満の量となるように行うことが必要である。
 また、前記繊維長の調整は、前記カーボンナノチューブと前記カーボンナノチューブ以外の炭素材料との合計量に対し、繊維長の平均が30~50μmの範囲にある第1のカーボンナノチューブが2~15質量%、繊維長の平均が100~250μmの範囲にある第2のカーボンナノチューブが1~5質量%の範囲となるように行うことが好ましい。
 次に、前記撹拌装置を用いて、前記のように繊維長が調整されたカーボンナノチューブと、前記カーボンナノチューブ以外の炭素材料と、前記溶媒とを混合し、該カーボンナノチューブと、該カーボンナノチューブ以外の炭素材料とが該溶媒に分散された分散液を調製する。
 次に、フィルターを用いて前記分散液を濾過し、該フィルター上に前記カーボンナノチューブと、前記カーボンナノチューブ以外の炭素材料とからなる炭素繊維膜前駆体を形成する。前記濾過は、例えば、0.2~1μmの範囲の孔径を備えるポリテトラフルオロエチレン製フィルターを用いる減圧濾過により行うことができる。
 次に、前記炭素繊維膜前駆体を、乾燥機により乾燥させることにより本実施形態の炭素繊維膜を得る。前記乾燥機による乾燥は、前記炭素繊維膜前駆体を、例えば10~30℃の範囲の温度に5~60分間の時間保持することにより行うことができる。
 前記第1の態様の炭素繊維膜では、前記カーボンナノチューブ以外の炭素材料に対し、繊維長30~500μmのカーボンナノチューブがファンデルワールス力により結合することにより、バインダを含むことなく、炭素繊維膜が形成されているものと考えられる。
 また、前記第2の態様の炭素繊維膜では、まず、前記カーボンナノチューブ以外の炭素材料に対し、前記第1のカーボンナノチューブがファンデルワールス力により結合し、該第1のカーボンナノチューブにより接点が増加した状態となっていると考えられる。そして、前記状態にさらに前記第2のカーボンナノチューブがファンデルワールス力により結合し、絡みつくことにより、バインダを含むことなく、炭素繊維膜が形成されているものと考えられる。
 次に、本発明の実施例及び比較例を示す。
 〔実施例1〕
 本実施例では、まず、繊維長の平均が50~500μmの範囲にあるカーボンナノチューブと、カーボンナノチューブ以外の炭素材料としてのカーボンブラックと、その合計量に対し該カーボンナノチューブが10質量%、カーボンブラックが90質量%となるように秤量し、溶媒としてのエタノールに分散させた。前記溶媒の量は、前記カーボンナノチューブとカーボンブラックとの合計質量の500質量倍とした。
 次に、撹拌装置として超音波洗浄機を用いて、前記カーボンナノチューブとカーボンブラックとが分散された溶媒を撹拌することにより、該カーボンナノチューブの繊維長を調整した。この結果、前記カーボンナノチューブとカーボンブラックとの合計量に対し、繊維長30μmのカーボンナノチューブの量が3質量%となるようにし、残部をカーボンブラックとした。
 次に、前記撹拌装置を用いて、前記のように繊維長が調整されたカーボンナノチューブとカーボンブラックと前記溶媒とを混合し、該カーボンナノチューブとカーボンブラックとが該溶媒に分散された分散液を調製した。
 次に、1.0μmの孔径を備えるポリテトラフルオロエチレン製フィルターを用い、前記分散液を減圧濾過し、該フィルター上に前記カーボンナノチューブとカーボンブラックとからなる炭素繊維膜前駆体を形成した。次に、前記炭素繊維膜前駆体を、乾燥機により、20℃の温度に10分間保持して乾燥させた。
 本実施例によれば、成膜性は良好であり、前記カーボンナノチューブとカーボンブラックとからなる炭素繊維膜を得ることができた。結果を表1に示す。
 〔比較例1〕
 本比較例では、カーボンナノチューブを全く用いず、カーボンナノチューブ以外の炭素材料としてのカーボンブラックのみを用いた以外は、実施例1と全く同一にして炭素繊維膜の製造を試みたが、成膜性が不良であり、炭素繊維膜を得ることができなかった。結果を表1に示す。
 〔比較例2〕
 本比較例では、前記攪拌装置を用いて、前記カーボンナノチューブとカーボンブラックとが分散された溶媒を撹拌することにより、前記カーボンナノチューブの繊維長を調整し、前記カーボンナノチューブとカーボンブラックとの合計量に対し、繊維長10μmのカーボンナノチューブの量が1質量%となるようにした以外は、実施例1と全く同一にして炭素繊維膜の製造を試みた。しかし、成膜性が不良であり、炭素繊維膜を得ることができなかった。結果を表1に示す。
 〔比較例3〕
 本比較例では、前記攪拌装置を用いて、前記カーボンナノチューブとカーボンブラックとが分散された溶媒を撹拌することにより、前記カーボンナノチューブの繊維長を調整し、前記カーボンナノチューブとカーボンブラックとの合計量に対し、繊維長10μmのカーボンナノチューブの量が2質量%となるようにした以外は、実施例1と全く同一にして炭素繊維膜の製造を試みた。しかし、成膜性が不良であり、炭素繊維膜を得ることができなかった。結果を表1に示す。
 〔比較例4〕
 本比較例では、前記攪拌装置を用いて、前記カーボンナノチューブとカーボンブラックとが分散された溶媒を撹拌することにより、前記カーボンナノチューブの繊維長を調整し、前記カーボンナノチューブとカーボンブラックとの合計量に対し、繊維長10μmのカーボンナノチューブの量が3質量%となるようにした以外は、実施例1と全く同一にして炭素繊維膜の製造を試みた。しかし、成膜性が不良であり、炭素繊維膜を得ることができなかった。結果を表1に示す。
 〔比較例5〕
 本比較例では、前記攪拌装置を用いて、前記カーボンナノチューブとカーボンブラックとが分散された溶媒を撹拌することにより、前記カーボンナノチューブの繊維長を調整し、前記カーボンナノチューブとカーボンブラックとの合計量に対し、繊維長30μmのカーボンナノチューブの量が1質量%となるようにした以外は、実施例1と全く同一にして炭素繊維膜の製造を試みた。しかし、成膜性が不良であり、炭素繊維膜を得ることができなかった。結果を表1に示す。
 〔比較例6〕
 本比較例では、前記攪拌装置を用いて、前記カーボンナノチューブとカーボンブラックとが分散された溶媒を撹拌することにより、前記カーボンナノチューブの繊維長を調整し、前記カーボンナノチューブとカーボンブラックとの合計量に対し、繊維長30μmのカーボンナノチューブの量が2質量%となるようにした以外は、実施例1と全く同一にして炭素繊維膜の製造を試みた。しかし、成膜性が不良であり、炭素繊維膜を得ることができなかった。結果を表1に示す。
[表1]
Figure JPOXMLDOC01-appb-I000001
 表1から、繊維長30μmの繊維長のカーボンナノチューブを全量の3質量%の量で含んでいることにより、カーボンナノチューブとカーボンブラックとのみにより、バインダを含むことなく、炭素繊維膜を得ることができることが明らかである。一方、カーボンナノチューブの繊維長が30μm未満であるか、繊維長が30μmであってもカーボンナノチューブの量が全量の3質量%未満であるときには、前記炭素繊維膜を形成することができないことが明らかである。
 〔参考例〕
 本参考例では、前記攪拌装置を用いて、前記カーボンナノチューブとカーボンブラックとが分散された溶媒を撹拌することにより、前記カーボンナノチューブの繊維長を調整し、全量に対し、繊維長30μmのカーボンナノチューブの量が100質量%となるようにした以外は、実施例1と全く同一にして炭素繊維膜を製造した。
 次に、本参考例で得られた炭素繊維膜の引張強度を測定したところ、6.1N/mmであった。結果を表2に示す。
 〔実施例2〕
 本実施例では、前記攪拌装置を用いて、前記カーボンナノチューブとカーボンブラックとが分散された溶媒を撹拌することにより、前記カーボンナノチューブの繊維長を調整し、全量に対し、繊維長30μmのカーボンナノチューブの量が50質量%となるようにし、残部をカーボンブラックとした以外は、実施例1と全く同一にして炭素繊維膜を製造した。
 次に、本実施例で得られた炭素繊維膜の引張強度を測定したところ、2.7N/mmであった。結果を表2に示す。
 〔実施例3〕
 本実施例では、前記攪拌装置を用いて、前記カーボンナノチューブとカーボンブラックとが分散された溶媒を撹拌することにより、前記カーボンナノチューブの繊維長を調整し、全量に対し、繊維長30μmのカーボンナノチューブの量が10質量%となるようにし、残部をカーボンブラックとした以外は、実施例1と全く同一にして炭素繊維膜を製造した。
 次に、本実施例で得られた炭素繊維膜の引張強度を測定したところ、0.267N/mmであった。結果を表2に示す。
 〔実施例4〕
 本実施例では、前記カーボンブラックに代えて活性炭を用いた以外は、実施例3と全く同一にして炭素繊維膜を製造した。
 次に、本実施例で得られた炭素繊維膜の引張強度を測定したところ、0.31N/mmであった。結果を表2に示す。
 〔実施例5〕
 本実施例では、前記攪拌装置を用いて、前記カーボンナノチューブとカーボンブラックとが分散された溶媒を撹拌することにより、前記カーボンナノチューブの繊維長を調整し、全量に対し、繊維長120μmのカーボンナノチューブの量が10質量%となるようにし、残部をカーボンブラックとした以外は、実施例1と全く同一にして炭素繊維膜を製造した。
 次に、本実施例で得られた炭素繊維膜の引張強度を測定したところ、0.304N/mmであった。結果を表2に示す。
 〔実施例6〕
 本実施例では、前記攪拌装置を用いて、前記カーボンナノチューブとカーボンブラックとが分散された溶媒を撹拌することにより、前記カーボンナノチューブの繊維長を調整し、全量に対し、繊維長250μmのカーボンナノチューブの量が10質量%となるようにし、残部をカーボンブラックとした以外は、実施例1と全く同一にして炭素繊維膜を製造した。
 次に、本実施例で得られた炭素繊維膜の引張強度を測定したところ、0.251N/mmであった。結果を表2に示す。
 〔実施例7〕
 本実施例では、前記攪拌装置を用いて、前記カーボンナノチューブとカーボンブラックとが分散された溶媒を撹拌することにより、前記カーボンナノチューブの繊維長を調整し、全量に対し、繊維長500μmのカーボンナノチューブの量が10質量%となるようにし、残部をカーボンブラックとした以外は、実施例1と全く同一にして炭素繊維膜を製造した。
 次に、本実施例で得られた炭素繊維膜の引張強度を測定したところ、0.181N/mmであった。結果を表2に示す。
[表2]
Figure JPOXMLDOC01-appb-I000002
 表2から、参考例のように前記カーボンナノチューブのみでも成膜できるが、繊維長30~500μmのカーボンナノチューブを全量の3~50質量%の範囲で含むことにより、炭素繊維膜を得ることができることが明らかである。
 〔実施例8〕
 本実施例では、前記攪拌装置を用いて、前記カーボンナノチューブとカーボンブラックとが分散された溶媒を撹拌することにより、前記カーボンナノチューブの繊維長を調整し、全量に対し、繊維長の平均が30μmの第1のカーボンナノチューブの量が15質量%となり、繊維長の平均が125μmの第2のカーボンナノチューブの量が5質量%となるようにし、残部をカーボンブラックとした以外は、実施例1と全く同一にして炭素繊維膜を製造した。
 次に、本実施例で得られた炭素繊維膜の引張強度を測定したところ、0.76N/mmであった。結果を表3に示す。
 〔実施例9〕
 本実施例では、全量に対し、繊維長の平均が30μmの第1のカーボンナノチューブの量が5質量%となり、繊維長の平均が125μmの第2のカーボンナノチューブの量が5質量%となるようにし、残部をカーボンブラックとした以外は、実施例8と全く同一にして炭素繊維膜を製造した。
 次に、本実施例で得られた炭素繊維膜の引張強度を測定したところ、0.419N/mmであった。結果を表3に示す。
 〔実施例10〕
 本実施例では、全量に対し、繊維長の平均が30μmの第1のカーボンナノチューブの量が2質量%となり、繊維長の平均が125μmの第2のカーボンナノチューブの量が1質量%となるようにし、残部をカーボンブラックとした以外は、実施例8と全く同一にして炭素繊維膜を製造した。
 次に、本実施例で得られた炭素繊維膜の引張強度を測定したところ、0.14N/mmであった。結果を表3に示す。
[表3]
Figure JPOXMLDOC01-appb-I000003
 表3から、第1のカーボンナノチューブと第2のカーボンナノチューブとの2種のカーボンナノチューブを併用し、繊維長の平均が30μmの第1のカーボンナノチューブを全量の2~15質量%の量、繊維長の平均が125μmの第2のカーボンナノチューブを全量の1~5質量%の量とすることにより、優れた引張強度を備える炭素繊維膜を得ることができることが明らかである。
 また、表3の実施例9及び表2の実施例3~7から、第1のカーボンナノチューブと第2のカーボンナノチューブとの2種のカーボンナノチューブを併用することにより、カーボンナノチューブの総量が同一であれば、繊維長30~500μmのカーボンナノチューブを1種のみ用いる場合に比較して、格段に優れた引張強度を備える炭素繊維膜を得ることができることが明らかである。
 符号なし。

Claims (7)

  1.  カーボンナノチューブと、カーボンナノチューブ以外の炭素材料とのみからなる炭素繊維膜であって、30~500μmの範囲の繊維長のカーボンナノチューブを全量の3質量%以上100質量%未満の範囲の量で含むことを特徴とする炭素繊維膜。
  2.  請求項1記載の炭素繊維膜において、前記範囲の繊維長のカーボンナノチューブを全量の3~50質量%の範囲の量で含むことを特徴とする炭素繊維膜。
  3.  請求項1記載の炭素繊維膜において、前記カーボンナノチューブ以外の炭素材料は、カーボンブラック又は活性炭のいずれか1種であることを特徴とする炭素繊維膜。
  4.  請求項1記載の炭素繊維膜において、前記カーボンナノチューブは、繊維長の平均が30~50μmの範囲にある第1のカーボンナノチューブと、繊維長の平均が100~250μmの範囲にある第2のカーボンナノチューブとからなることを特徴とする炭素繊維膜。
  5.  請求項4記載の炭素繊維膜において、前記第1のカーボンナノチューブを全量の2~15質量%の範囲の量、前記第2のカーボンナノチューブを全量の1~5質量%の範囲の量、前記カーボンナノチューブ以外の炭素材料を全量の80~97質量%の範囲の量で含むことを特徴とする炭素繊維膜。
  6.  請求項4記載の炭素繊維膜において、前記カーボンナノチューブは、繊維長の平均が30μmである第1のカーボンナノチューブと、繊維長の平均が125μmである第2のカーボンナノチューブとからなることを特徴とする炭素繊維膜。
  7.  請求項4記載の炭素繊維膜において、前記カーボンナノチューブ以外の炭素材料は、カーボンブラックであることを特徴とする炭素繊維膜。
PCT/JP2014/079219 2013-11-13 2014-11-04 炭素繊維膜 WO2015072370A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480061628.0A CN105722787A (zh) 2013-11-13 2014-11-04 碳纤维膜
US15/035,656 US10020123B2 (en) 2013-11-13 2014-11-04 Carbon fiber membrane
JP2015547735A JP6077134B2 (ja) 2013-11-13 2014-11-04 炭素繊維膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013235256 2013-11-13
JP2013-235256 2013-11-13

Publications (1)

Publication Number Publication Date
WO2015072370A1 true WO2015072370A1 (ja) 2015-05-21

Family

ID=53057306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079219 WO2015072370A1 (ja) 2013-11-13 2014-11-04 炭素繊維膜

Country Status (4)

Country Link
US (1) US10020123B2 (ja)
JP (1) JP6077134B2 (ja)
CN (2) CN105722787A (ja)
WO (1) WO2015072370A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018154524A (ja) * 2017-03-17 2018-10-04 本田技研工業株式会社 カーボンシートの製造方法
JP2020501367A (ja) * 2016-12-02 2020-01-16 ファーストキャップ・システムズ・コーポレイションFastCAP SYSTEMS Corporation 複合電極

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11557765B2 (en) 2019-07-05 2023-01-17 Fastcap Systems Corporation Electrodes for energy storage devices

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032371A (ja) * 2004-07-12 2006-02-02 Jfe Engineering Kk 電気二重層コンデンサおよびその製造方法
JP2007200979A (ja) * 2006-01-24 2007-08-09 Tokai Univ 電気二重層キャパシタ
JP2009246306A (ja) * 2008-03-31 2009-10-22 Nippon Chemicon Corp 電気二重層キャパシタ用電極及びその製造方法
WO2012073998A1 (ja) * 2010-12-02 2012-06-07 独立行政法人物質・材料研究機構 カーボンナノチューブ連結のグラフェンシートフィルムとその製造方法及びそれを用いたグラフェンシートキャパシター
WO2012088697A1 (zh) * 2010-12-30 2012-07-05 海洋王照明科技股份有限公司 石墨烯衍生物-碳纳米管复合材料及其制备方法
US20130089790A1 (en) * 2011-10-11 2013-04-11 Hye Ryung Byon Carbon Electrodes
JP2013098085A (ja) * 2011-11-02 2013-05-20 Asahi Glass Co Ltd 蓄電素子用電極の製造方法および蓄電素子
WO2014192776A1 (ja) * 2013-05-27 2014-12-04 日本ケミコン株式会社 電極、その電極を用いた電気二重層キャパシタ、及び電極の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124079A (ja) 1998-10-15 2000-04-28 Tokin Corp 電気二重層キャパシタ
CN1185736C (zh) * 2001-11-09 2005-01-19 上海依极科技有限公司 用于燃料电池电极气体扩散层的碳纤维纸材料及其制备方法
US20120301812A1 (en) * 2006-02-02 2012-11-29 Florida State University Research Foundation, Inc. Carbon nanotube and nanofiber film-based membrane electrode assemblies
JP2008010681A (ja) 2006-06-29 2008-01-17 Equos Research Co Ltd 蓄電デバイス用電極及びその製造方法
US20100173228A1 (en) * 2006-12-14 2010-07-08 University Of Wollongong Nanotube and Carbon Layer Nanostructured Composites
US8636972B1 (en) * 2007-07-31 2014-01-28 Raytheon Company Making a nanomaterial composite
CN101734646B (zh) * 2008-11-14 2012-03-28 清华大学 碳纳米管膜
CN101880036B (zh) * 2010-06-29 2013-02-13 清华大学 碳纳米管复合结构
US9088049B2 (en) * 2012-01-23 2015-07-21 Florida State University Research Foundation, Inc. Bifunctional hollandite Ag2Mn8O16 catalyst for lithium-air batteries
US9472354B2 (en) * 2013-03-15 2016-10-18 InHwan Do Electrodes for capacitors from mixed carbon compositions

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032371A (ja) * 2004-07-12 2006-02-02 Jfe Engineering Kk 電気二重層コンデンサおよびその製造方法
JP2007200979A (ja) * 2006-01-24 2007-08-09 Tokai Univ 電気二重層キャパシタ
JP2009246306A (ja) * 2008-03-31 2009-10-22 Nippon Chemicon Corp 電気二重層キャパシタ用電極及びその製造方法
WO2012073998A1 (ja) * 2010-12-02 2012-06-07 独立行政法人物質・材料研究機構 カーボンナノチューブ連結のグラフェンシートフィルムとその製造方法及びそれを用いたグラフェンシートキャパシター
WO2012088697A1 (zh) * 2010-12-30 2012-07-05 海洋王照明科技股份有限公司 石墨烯衍生物-碳纳米管复合材料及其制备方法
US20130089790A1 (en) * 2011-10-11 2013-04-11 Hye Ryung Byon Carbon Electrodes
JP2013098085A (ja) * 2011-11-02 2013-05-20 Asahi Glass Co Ltd 蓄電素子用電極の製造方法および蓄電素子
WO2014192776A1 (ja) * 2013-05-27 2014-12-04 日本ケミコン株式会社 電極、その電極を用いた電気二重層キャパシタ、及び電極の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Z.-D. HUANG ET AL.: "Self-assembled reduced graphene oxide/carbon nanotube thin films as electrodes for supercapacitors", JOURNAL OF MATERIALS CHEMISTRY, vol. 22, 2012, pages 3591 - 3599 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020501367A (ja) * 2016-12-02 2020-01-16 ファーストキャップ・システムズ・コーポレイションFastCAP SYSTEMS Corporation 複合電極
JP2018154524A (ja) * 2017-03-17 2018-10-04 本田技研工業株式会社 カーボンシートの製造方法

Also Published As

Publication number Publication date
US10020123B2 (en) 2018-07-10
JP6077134B2 (ja) 2017-02-08
US20160276111A1 (en) 2016-09-22
JPWO2015072370A1 (ja) 2017-03-16
CN108538627B (zh) 2020-08-07
CN108538627A (zh) 2018-09-14
CN105722787A (zh) 2016-06-29

Similar Documents

Publication Publication Date Title
Gao et al. 3D printing of tunable energy storage devices with both high areal and volumetric energy densities
Zhang et al. Cellulose nanofibers/reduced graphene oxide/polypyrrole aerogel electrodes for high-capacitance flexible all-solid-state supercapacitors
Han et al. Electrospun core–shell nanofibrous membranes with nanocellulose-stabilized carbon nanotubes for use as high-performance flexible supercapacitor electrodes with enhanced water resistance, thermal stability, and mechanical toughness
Jyothibasu et al. Flexible and freestanding electrodes based on polypyrrole/carbon nanotube/cellulose composites for supercapacitor application
Huang et al. Flexible and Alternately Layered High‐Loading Film Electrode based on 3D Carbon Nanocoils and PEDOT: PSS for High‐Energy‐Density Supercapacitor
Fan et al. High density of free-standing holey graphene/PPy films for superior volumetric capacitance of supercapacitors
Chee et al. Flexible graphene-based supercapacitors: a review
Saha et al. Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon
Yun et al. All-solid-state flexible micro-supercapacitor arrays with patterned graphene/MWNT electrodes
Shao et al. Graphene-based materials for flexible supercapacitors
Xu et al. Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors
Ruch et al. Electrochemical characterization of single-walled carbon nanotubes for electrochemical double layer capacitors using non-aqueous electrolyte
Yang et al. 3D printed template-assisted assembly of additive-free Ti3C2T x MXene microlattices with customized structures toward high areal capacitance
Han et al. Compressible, dense, three-dimensional holey graphene monolithic architecture
Wang et al. 3D porous graphene nanostructure from a simple, fast, scalable process for high performance flexible gel-type supercapacitors
JP6077134B2 (ja) 炭素繊維膜
Choudhury et al. Flexible and freestanding supercapacitor based on nanostructured poly (m-aminophenol)/carbon nanofiber hybrid mats with high energy and power densities
Jang et al. Exposed edge planes of cup-stacked carbon nanotubes for an electrochemical capacitor
CN105694074B (zh) 一种柔性抗燃高介电纳米复合膜的制备方法
TW201446644A (zh) 石墨烯/碳組成物
WO2019065517A1 (ja) シート及びその製造方法
Yue et al. Fabrication of flexible nanoporous nitrogen-doped graphene film for high-performance supercapacitors
Smithyman et al. Binder-free composite electrodes using carbon nanotube networks as a host matrix for activated carbon microparticles
Shimizu et al. Supercapacitor electrodes of blended carbon nanotubes with diverse conductive porous structures enabling high charge/discharge rates
Hu et al. Electrochemical performance of coaxially wet-spun hierarchically porous lignin-based carbon/graphene fiber electrodes for flexible supercapacitors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862248

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015547735

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15035656

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14862248

Country of ref document: EP

Kind code of ref document: A1