WO2015045417A1 - Method of producing carbon nanotube dispersion - Google Patents

Method of producing carbon nanotube dispersion Download PDF

Info

Publication number
WO2015045417A1
WO2015045417A1 PCT/JP2014/004980 JP2014004980W WO2015045417A1 WO 2015045417 A1 WO2015045417 A1 WO 2015045417A1 JP 2014004980 W JP2014004980 W JP 2014004980W WO 2015045417 A1 WO2015045417 A1 WO 2015045417A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
cnt
substrate
solvent
dispersion
Prior art date
Application number
PCT/JP2014/004980
Other languages
French (fr)
Japanese (ja)
Inventor
克彦 藤田
悟 深町
清茂 児島
Original Assignee
日本ゼオン株式会社
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社, 国立大学法人九州大学 filed Critical 日本ゼオン株式会社
Priority to JP2015538919A priority Critical patent/JPWO2015045417A1/en
Publication of WO2015045417A1 publication Critical patent/WO2015045417A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/08Aligned nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter

Definitions

  • the present invention relates to a method for producing a carbon nanotube dispersion.
  • CNT carbon nanotubes
  • CNT dispersion liquid containing a solvent and CNT
  • Patent Document 1 a substrate in which CNTs are grown on a surface, a solvent, and a dispersant are introduced into a container, and then the CNTs are peeled from the substrate in a solvent containing the dispersant.
  • a CNT dispersion in which CNTs are well dispersed CNTs grown on a substrate using a chemical vapor deposition method or the like exist in a state in which the distance between adjacent CNTs is relatively long. According to the method described in Patent Document 1, aggregation occurs. Since the CNTs on the substrate kept in a small separated state can be directly dispersed in the solvent in the presence of the dispersant, a CNT dispersion liquid in which CNTs are well dispersed can be obtained.
  • Patent Document 1 since the manufacturing method described in Patent Document 1 uses a solvent containing a dispersant, the dispersant is inevitably mixed into the obtained CNT dispersion. Therefore, when various products such as films and fibers are manufactured using the CNT dispersion, the dispersant may be mixed in the product, and the performance such as conductivity may not be sufficiently improved. On the other hand, when the dispersant is removed from the CNT dispersion or product using means such as washing or heating, the manufacturing process becomes complicated and the cost increases.
  • an object of the present invention is to provide a method for efficiently producing a dispersion in which carbon nanotubes are uniformly dispersed without using a dispersant.
  • the present inventors have intensively studied for the purpose of solving the above problems. And, when the present inventors manufactured a CNT dispersion by peeling an aligned aggregate of carbon nanotubes having a predetermined property synthesized on a substrate from the substrate in a solvent, surprisingly, a dispersant was used. Even without this, it was found that a CNT dispersion liquid in which CNTs were uniformly dispersed was obtained, and the present invention was completed.
  • the present invention aims to advantageously solve the above problems, and the method for producing a carbon nanotube dispersion of the present invention comprises an aligned aggregate of carbon nanotubes formed on a substrate, and a solvent.
  • the carbon nanotubes constituting the aligned carbon nanotubes have an average diameter (Av), comprising a step (1) of contacting and a step (2) of separating the aligned carbon nanotubes from the substrate in the solvent.
  • Av average diameter
  • the diameter distribution (3 ⁇ ) satisfy the relational expression: 0.20 ⁇ (3 ⁇ / Av) ⁇ 0.60, and one of the major features is that the average length is 100 ⁇ m or more.
  • an aligned carbon nanotube assembly composed of carbon nanotubes having a ratio of diameter distribution to average diameter (3 ⁇ / Av) of more than 0.20 and less than 0.60 and an average length of 100 ⁇ m or more is obtained in a solvent. If the substrate is separated from the substrate, a CNT dispersion in which CNTs are uniformly dispersed in a solvent can be efficiently produced without using a dispersant.
  • diameter distribution (3 ⁇ ) refers to a value obtained by multiplying the sample standard deviation ( ⁇ ) of the diameter of the carbon nanotube by 3.
  • average diameter of carbon nanotube (Av) “sample standard deviation of carbon nanotube diameter ( ⁇ )”, and “average length of carbon nanotube” are respectively observed with a transmission electron microscope.
  • the diameter (outer diameter) and length of 100 randomly selected carbon nanotubes can be measured and determined.
  • the method for producing a carbon nanotube dispersion of the present invention further includes a step (3) of dispersing the aligned carbon nanotube aggregate separated from the substrate in the solvent. This is because a CNT dispersion with further improved CNT dispersibility can be obtained by further dispersing the carbon nanotube alignment aggregate after separating it from the substrate.
  • the carbon nanotube-containing aggregate in contact with the solvent is placed under reduced pressure between the step (1) and the step (2) ( 4) is preferably further included. If the carbon nanotube alignment aggregate is placed in contact with a solvent under a reduced pressure before separating the carbon nanotube alignment aggregate from the substrate, air or the like existing in the gaps between the CNTs constituting the carbon nanotube alignment aggregate Discharged. As a result, it becomes easier for the solvent to be impregnated in the gaps between the CNTs, and the solvent can be uniformly distributed in the aligned CNT aggregate.
  • the substrate is a plate-like, particle-like or linear substrate. This is because a plate-like, particle-like, or linear substrate is easy to handle, and the aligned carbon nanotube aggregates can be easily separated from the substrate.
  • a dispersion in which carbon nanotubes are uniformly dispersed can be efficiently produced without using a dispersant.
  • the method for producing a carbon nanotube dispersion of the present invention can be used when producing a carbon nanotube dispersion obtained by dispersing CNTs in a solvent.
  • the CNT dispersion liquid manufactured according to the manufacturing method of the carbon nanotube dispersion liquid of this invention is not specifically limited, It can use when manufacturing various products, such as a film and a fiber.
  • the CNT dispersion liquid is, for example, coated with a CNT dispersion liquid on a substrate and dried to produce a carbon nanotube-containing film, or mixed with a polymer material such as resin or rubber to contain CNT. It can be used when producing a composite material.
  • the method for producing a carbon nanotube dispersion according to the present invention includes (1) a step of contacting an aligned aggregate of carbon nanotubes formed on a substrate and a solvent (contact step), and (2) a solvent after the contact step. And a step of separating the aligned carbon nanotube aggregate from the substrate (separation step).
  • the carbon nanotubes constituting the aligned carbon nanotube aggregate have a predetermined average diameter (Av), diameter distribution (3 ⁇ ), and average length.
  • distributed uniformly can be manufactured efficiently.
  • a step (dispersion step) of dispersing the carbon nanotube alignment aggregate separated from the substrate in a solvent is performed. May be.
  • the aligned carbon nanotube aggregate formed on the substrate made of carbon nanotubes having a predetermined property is brought into contact with the solvent.
  • the contact may be performed by immersing the aligned carbon nanotube aggregate formed on the substrate in a solvent together with the substrate, or the solvent with respect to the substrate on which the carbon nanotube aligned aggregate is formed on the surface. May be performed by adding.
  • the aligned carbon nanotube assembly and the solvent may be contacted by immersing the aligned carbon nanotube assembly in the solvent together with the substrate. preferable.
  • the aligned carbon nanotube aggregate formed on the substrate refers to a structure in which a large number of CNTs grown on the substrate are aligned in a specific direction.
  • a base material having a catalyst layer on the surface which is a catalyst layer for CNT growth
  • a substrate obtained by forming a catalyst layer made of iron, nickel, cobalt, molybdenum, or a chloride or alloy thereof on a metal or ceramic base material is used. it can.
  • the shape of the substrate can be any shape, but it may be flat, particulate, or linear from the viewpoint of handleability and ease of separation of the aligned carbon nanotube aggregate from the substrate. preferable.
  • the average diameter (Av) and the diameter distribution (3 ⁇ ) of the CNTs constituting the aligned carbon nanotube aggregate are 0.60> (3 ⁇ / Av)> 0. .20 and the average length needs to be 100 ⁇ m or more. This is because, when the CNTs have the above properties, the CNTs can be uniformly dispersed in the solvent without using a dispersant when preparing a CNT dispersion by carrying out a separation step described later.
  • the ratio (3 ⁇ / Av) of the diameter distribution (3 ⁇ ) to the average diameter (Av) is preferably more than 0.50.
  • the average length of the CNT is preferably 300 ⁇ m or more, more preferably 500 ⁇ m or more.
  • the average length of the CNTs Is preferably 10 mm or less, more preferably 5 mm or less, and even more preferably 3 mm or less.
  • the above-mentioned CNT preferably has a normal distribution when plotted by taking the diameter on the horizontal axis and the frequency on the vertical axis and approximating with Gaussian.
  • the CNT constituting the aligned carbon nanotube assembly may be one having a functional group such as a carboxyl group introduced on the surface.
  • the functional group can be introduced by a known oxidation treatment method using hydrogen peroxide, nitric acid or the like.
  • the CNTs constituting the aligned carbon nanotube assembly may be single-walled or multi-walled, but the performance (for example, conductivity and mechanical properties) of products manufactured using the CNT dispersion liquid may be used. From the standpoint of improving the optical characteristics, single to five layers are preferable, and single layers are more preferable. Furthermore, the CNT preferably has a peak of Radial Breathing Mode (RBM) when evaluated using Raman spectroscopy. Note that there is no RBM in the Raman spectrum of multi-walled carbon nanotubes of three or more layers.
  • RBM Radial Breathing Mode
  • CNTs preferably have a G-band peak intensity ratio (G / D ratio) of 1 to 20 in the Raman spectrum. If G / D ratio is 1 or more and 20 or less, the dispersibility with respect to a solvent can be improved.
  • the average diameter (Av) of the CNT described above is preferably 0.5 nm or more, more preferably 1 nm or more, and preferably 15 nm or less. More preferably, it is 10 nm or less.
  • the specific surface area of the CNT is preferably 600 m 2 / g or more, more preferably 800 m 2 / g or more, preferably 2500 m 2 / g or less, and 1200 m 2 / g or less. Is more preferable. Furthermore, when the CNTs are mainly opened, the specific surface area is preferably 1300 m 2 / g or more. In the aligned carbon nanotube aggregate composed of CNTs having a specific surface area of 600 m 2 / g or more, it is presumed that there are minute gaps between the CNTs in the vicinity of the surface of the substrate on which the aggregate is formed. In the separation step, CNT can be well dispersed in the solvent.
  • the specific surface area of CNT is 600 m ⁇ 2 > / g or more, the performance of the product manufactured using CNT dispersion liquid can fully be improved. Moreover, if the specific surface area of CNT is 2500 m ⁇ 2 > / g or less, a CNT dispersion liquid with favorable dispersibility can be obtained by suppressing aggregation of CNT. In addition, the specific surface area of a carbon nanotube can be calculated
  • the CNT constituting the aligned carbon nanotube assembly preferably has a plurality of micropores.
  • the CNT preferably has micropores having a pore diameter smaller than 2 nm, and the abundance of the micropores is a micropore volume determined by the following method, preferably 0.40 mL / g or more, more preferably It is 0.43 mL / g or more, more preferably 0.45 mL / g or more, and the upper limit is usually about 0.65 mL / g.
  • the micropore volume can be adjusted, for example, by appropriately changing the CNT preparation method and preparation conditions.
  • Vp is a nitrogen adsorption / desorption isotherm at a liquid nitrogen temperature (77 K) of the carbon nanotube
  • P is a measurement pressure at the time of adsorption equilibrium
  • P0 is a saturated vapor pressure of liquid nitrogen at the time of measurement
  • M is an adsorbate (nitrogen) molecular weight of 28.010
  • is an adsorbate (nitrogen).
  • micropore volume can be easily determined using, for example, “BELSORP (registered trademark) -mini” (manufactured by Nippon Bell Co., Ltd.).
  • the CNT constituting the aligned carbon nanotube assembly preferably has a mass density of 0.002 g / cm 3 or more and 0.2 g / cm 3 or less, more preferably 0.01 g / cm 3 or more and 0.1 g / cm 3 or less. It is.
  • the aligned carbon nanotube aggregate composed of CNTs having a mass density of 0.2 g / cm 3 or less the individual CNTs are not excessively strongly bonded to each other and are very loosely bonded. CNT can be well dispersed in the solvent.
  • the mass density of the CNTs is 0.002 g / cm 3 or more, the carbon nanotube alignment aggregates made of CNTs have some degree of integrity, and the carbon nanotube alignment aggregates and the solvent are brought into contact with each other before contacting them. Can be prevented from peeling off from the substrate.
  • the mass density can be calculated by dividing the mass of the carbon nanotube alignment aggregate by the volume.
  • the mass of the carbon nanotube alignment aggregate is the mass of the substrate after the carbon nanotube alignment aggregate is formed, and the carbon nanotube. It can be calculated by determining the difference from the mass of the substrate before forming the alignment aggregate.
  • the mass density of the CNTs can be controlled, for example, by adjusting the number density of the catalyst fine particles present on the base material of the substrate.
  • the CNTs constituting the carbon nanotube alignment aggregate described above have a high degree of orientation and are aligned on the substrate.
  • the CNTs preferably have a high degree of orientation that satisfies at least one of the following (i) to (iii).
  • the aligned carbon nanotube assembly composed of the above-described carbon nanotubes is used, for example, when a raw material compound and a carrier gas are supplied onto the above-described substrate and the carbon nanotubes are synthesized by chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • the method of significantly improving the catalytic activity of the catalyst layer for producing CNTs by making a small amount of oxidizing agent present in the system (super growth method; see International Publication No.
  • the catalyst layer can be formed on the surface by a wet process, and can be efficiently produced by using a raw material gas containing acetylene as a main component (for example, a gas containing 50% by volume or more of acetylene).
  • the solvent to be brought into contact with the above-mentioned aligned carbon nanotube aggregate is not particularly limited.
  • the amount of the solvent to be brought into contact with the aligned carbon nanotube assembly formed on the substrate can be adjusted according to the desired concentration of the carbon nanotube dispersion.
  • the amount of the solvent used is preferably 20 parts by mass or more per 1 part by mass of the CNTs constituting the aligned carbon nanotube aggregate.
  • the amount of the solvent used is preferably 20000 parts by mass or less per 1 part by mass of CNTs constituting the aligned carbon nanotube aggregate.
  • the carbon nanotube dispersion produced according to the production method of the present invention includes a dispersant, an organic or inorganic binder, a coupling agent, a crosslinking agent, a stabilizer, a colorant, a charge adjusting agent, a lubricant, and the like as necessary.
  • the additive may be contained. Therefore, the solvent may contain the above-described additive.
  • the carbon nanotube dispersion liquid does not substantially contain a dispersant.
  • a dispersant Nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants and other surfactants and polymers such as polypeptides, polysaccharides, nucleic acids, conjugated polymers. It is preferably not included.
  • substantially does not contain a dispersant means that the concentration of the dispersant described above is less than 0.01% by mass, preferably zero.
  • ⁇ Decompression step> In the depressurization step, the aligned carbon nanotube assembly in contact with the solvent is placed under reduced pressure after the contacting step and before separating the aligned carbon nanotube assembly from the substrate.
  • the aligned carbon nanotube aggregate in contact with the solvent By placing the aligned carbon nanotube aggregate in contact with the solvent through the contact step under reduced pressure, air or the like existing in the gaps between the CNTs constituting the aligned carbon nanotube aggregate is discharged from the aligned carbon nanotube aggregate, It becomes easy to impregnate a solvent into the gap. For this reason, it is speculated that in the decompression step, the solvent can be uniformly distributed in the aligned carbon nanotube aggregate before separation from the substrate.
  • the depressurization method is not particularly limited as long as the aligned carbon nanotube aggregate after the contacting step is placed under reduced pressure together with the solvent.
  • the carbon nanotube-containing aggregate in contact with the solvent is placed in the desiccator together with the substrate. And a method of degassing the desiccator.
  • the conditions for the depressurization step are not particularly limited, but are usually less than atmospheric pressure (for example, pressure 0.0001 Pa to 5000 Pa) for 1 minute to 600 minutes, more preferably about 5 minutes to 180 minutes.
  • the conditions for the decompression step can be adjusted as appropriate according to the type of the solvent.
  • a pressure reduction step is optionally performed, and then a separation step is performed.
  • the separation step the aligned carbon nanotube aggregate is separated from the substrate in a solvent.
  • a solvent does not contain a dispersing agent substantially.
  • separation of the aligned carbon nanotube aggregate from the substrate can be performed by peeling the aligned carbon nanotube aggregate from the substrate using a physical, chemical or mechanical method.
  • a peeling method for example, a method of peeling an aligned carbon nanotube aggregate from a substrate using an electric field, a magnetic field, centrifugal force or surface tension, cutting with a thin blade such as a cutter blade, or suction with a vacuum pump is used.
  • a method of mechanically peeling the aligned carbon nanotube aggregate directly from the substrate or a method of peeling the aligned carbon nanotube aggregate from the substrate using pressure or heat can be used.
  • the CNTs constituting the aligned carbon nanotube aggregate separated from the substrate in the separation step are well dispersed in the solvent.
  • the reason why the CNTs constituting the aligned carbon nanotube aggregate can be favorably dispersed without using a dispersant is not clear, but is presumed to be because the CNTs have the above properties. Is done. That is, the CNTs constituting the aligned carbon nanotube aggregate have an average diameter (Av) and a diameter distribution (3 ⁇ ) satisfying 0.60> (3 ⁇ / Av)> 0.20 and an average length of 100 ⁇ m or more. Therefore, it is estimated that a minute gap exists between the CNTs in the vicinity of the surface of the substrate on which the aggregate is formed.
  • the substrate after separating the aligned carbon nanotube aggregates can be removed from the solvent using a known method such as decantation, centrifugation, filter filtration, picking using tweezers, a robot arm, or the like. Among these, since only the substrate can be easily removed mechanically, it is preferable to employ picking as a method for separating the substrate.
  • the aligned carbon nanotube aggregate separated from the substrate in the separation step is dispersed in a solvent, and the CNTs constituting the aligned carbon nanotube assembly are further favorably dispersed in the solvent.
  • substrate mentioned above may be implemented before a dispersion
  • the dispersion step is preferably performed separately from the separation step.
  • the separation step and the dispersion step are performed at the same time, in other words, when the aligned carbon nanotube aggregate is separated from the substrate using the dispersion treatment method described later, collision between the separated CNT and the substrate occurs, and impurities are mixed. And deterioration of CNT is likely to occur.
  • examples of the dispersion processing method include dispersion processing that can provide a cavitation effect or a crushing effect. Therefore, a description will be given below of distributed processing that provides a cavitation effect or a crushing effect.
  • the dispersion treatment that provides a cavitation effect is a dispersion method that uses a shock wave that is generated when a vacuum bubble generated in water bursts when high energy is applied to a liquid. By using this dispersion method, it is possible to further favorably disperse the CNTs constituting the aligned carbon nanotube aggregate.
  • dispersion treatment that provides a cavitation effect
  • dispersion treatment using ultrasonic waves dispersion treatment using a jet mill
  • dispersion treatment using high shear stirring Only one of these distributed processes may be performed, or a plurality of distributed processes may be combined. More specifically, for example, an ultrasonic homogenizer, a jet mill, and a high shear stirring device are preferably used. These devices may be conventionally known devices.
  • the ultrasonic homogenizer may be used to irradiate the solvent containing the aligned carbon nanotube aggregate separated from the substrate.
  • the irradiation time may be appropriately set depending on the amount of the aligned carbon nanotube aggregate, and is preferably, for example, 3 minutes or more, more preferably 30 minutes or more, and preferably 5 hours or less, more preferably 2 hours or less.
  • the output is preferably 0.1 W or more and 500 W or less, more preferably 1 W or more and 300 W or less, further preferably 5 W or more and 100 W or less
  • the temperature is preferably 15 ° C. or more and 50 ° C. or less.
  • the number of treatments may be appropriately set depending on the amount of aligned carbon nanotube aggregates, etc., for example, preferably 2 times or more, more preferably 5 times or more, preferably 100 times or less, 50 times The following is more preferable.
  • the pressure is preferably 20 MPa or more and 250 MPa or less
  • the temperature is preferably 15 ° C. or more and 50 ° C. or less.
  • stirring and shearing may be applied to the solvent containing the aligned carbon nanotube aggregate separated from the substrate by a high shear stirring device.
  • the operation time time during which the machine is rotating
  • the peripheral speed is preferably 5 m / s or more and 50 m / s or less
  • the temperature is preferably 15 ° C. or more and 50 ° C. or less.
  • the dispersion treatment for obtaining the above-described cavitation effect it is more preferable to perform the dispersion treatment for obtaining the above-described cavitation effect at a temperature of 50 ° C. or lower. This is because a change in concentration due to the volatilization of the solvent is suppressed.
  • the dispersion treatment that provides the crushing effect is not only capable of uniformly dispersing the CNTs constituting the aligned carbon nanotube aggregate in the solvent, but also by the shock wave when the bubbles disappear, compared to the dispersion treatment that provides the cavitation effect described above. This is more advantageous in that damage to CNT can be suppressed.
  • a shear force is applied to the solvent containing the aligned carbon nanotube aggregates separated from the substrate to crush and disperse the CNT aggregates, and a back pressure is applied to the solvent containing CNTs.
  • a back pressure is applied to the solvent containing CNT
  • the back pressure applied to the solvent containing CNT may be reduced to atmospheric pressure all at once, but it is preferable to reduce the pressure in multiple steps.
  • the disperser includes a disperser orifice having an inner diameter d1, a dispersive space having an inner diameter d2, and a terminal portion having an inner diameter d3 from the inflow side to the outflow side of the solvent containing CNT (where d2> d3 > D1).
  • the inflowing solvent containing high-pressure (10 to 400 MPa, preferably 50 to 250 MPa) CNT passes through the disperser orifice and becomes a high flow rate fluid with a decrease in pressure.
  • the solvent containing the high flow rate CNTs flowing into the dispersion space flows at high speed in the dispersion space, and receives a shearing force at that time.
  • the flow rate of the solvent containing CNTs decreases and the CNTs in the solvent are well dispersed.
  • the fluid of the pressure (back pressure) lower than the pressure of the solvent containing the inflowing CNT flows out from the terminal portion as the CNT dispersion liquid.
  • the back pressure of the solvent containing CNT can be applied to the solvent containing CNT by applying a load to the flow of the solvent containing CNT.
  • a multistage step-down pressure device is disposed downstream of the disperser.
  • a desired back pressure can be applied to the solvent containing CNTs.
  • the disperser may include a heat exchanger or a coolant supply mechanism for cooling the solvent containing CNTs. This is because the generation of bubbles in the solvent containing CNTs can be further suppressed by cooling the solvent containing CNTs that have been heated to a high temperature by applying a shearing force with a disperser. In addition, it can suppress that a bubble generate
  • a distributed system having the above-described configuration for example, there is a distributed system configured by using a product name “BERYU SYSTEM PRO” (manufactured by Migrain Co., Ltd.). And the dispersion
  • a desired CNT dispersion can be efficiently produced.
  • the obtained CNT dispersion is suitably used for the production of, for example, a CNT-containing film or a carbon nanotube-containing composite material.
  • the CNT-containing film is suitably used as a conductive film.
  • the production method of the CNT-containing film using the CNT dispersion obtained by the present invention is not particularly limited, and a known film forming method can be used.
  • the CNT-containing film can be produced by using the CNT dispersion and using the following method (i) or (ii).
  • a CNT dispersion liquid is applied on a peeling support, and the solvent is removed from the applied CNT dispersion to form a CNT-containing film with a peeling support, and then optionally obtained CNT with a peeling support.
  • membrane produced using the method of the above-mentioned (i) or (ii) normally contains CNT and arbitrary additives in the ratio similar to a CNT dispersion liquid.
  • the substrate film to which the CNT dispersion is applied when the CNT-containing film is produced is not particularly limited, and a known substrate film can be used depending on the application of the produced CNT-containing film. Specifically, for example, when the obtained CNT-containing film is used as a transparent conductive film, examples of the substrate film include a resin substrate and a glass substrate.
  • Resin base materials include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyimide, polyphenylene sulfide, aramid, polypropylene, polyethylene, polylactic acid, polyvinyl chloride, polycarbonate, polymethyl methacrylate, and alicyclic.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polyimide polyphenylene sulfide
  • aramid polypropylene
  • polyethylene polylactic acid
  • polyvinyl chloride polycarbonate
  • polymethyl methacrylate polymethyl methacrylate
  • alicyclic alicyclic.
  • the base material which consists of an acrylic resin, a cycloolefin resin, a triacetyl cellulose etc. can be mentioned.
  • the glass substrate include a substrate made of ordinary soda glass.
  • the surface of the base film is treated according to a known method such as treatment by UV irradiation, treatment by corona discharge or treatment by ozone, treatment by application of a silane coupling agent, acrylic resin or urethane resin, etc. It may be.
  • a conductive layer (conductive film) other than the hard coat layer, gas barrier layer, pressure-sensitive adhesive layer, and CNT-containing film may be formed on the above-described resin substrate and glass substrate.
  • the thickness of the base film may be appropriately determined according to the use, but is usually 10 to 10,000 ⁇ m.
  • the light transmittance (measurement wavelength: 500 nm) of the base film used when the CNT-containing film is used as a transparent conductive film is preferably 60% or more.
  • the light transmittance (measurement wavelength: 500 nm) of the base film can be measured using, for example, a spectrophotometer (manufactured by JASCO Corporation, V-570).
  • the coating method includes dipping method, roll coating method, gravure coating method, knife coating method, air knife coating method, roll knife coating method, die coating method, screen printing method, spray coating method, gravure offset method, etc. Can be used.
  • a known drying method can be employed as a method for removing the solvent from the CNT dispersion applied on the base film.
  • the drying method include a hot air drying method, a vacuum drying method, a hot roll drying method, and an infrared irradiation method.
  • the drying temperature is not particularly limited, but is usually room temperature to 200 ° C.
  • the drying time is not particularly limited, but is usually 0.1 to 150 minutes.
  • the thickness of the CNT-containing film obtained after removal of the solvent is not particularly limited, but is usually from 100 nm to 1 mm. Further, the content of carbon nanotubes contained in the CNT-containing film is not particularly limited, but is usually 0.1 ⁇ 10 ⁇ 6 to 15 mg / cm 2 .
  • a peeling support for applying a CNT dispersion when producing a CNT-containing film the film formed thereon can be sufficiently fixed, and the formed film can be peeled off using a thin film peeling method.
  • the peeling support include synthetic resin sheets such as PTFE (polytetrafluoroethylene) sheet and PET (polyethylene terephthalate) sheet, membrane filters made of nitrocellulose, and the like.
  • the thickness of the peeling support may be appropriately determined, but is usually 10 to 10,000 ⁇ m.
  • the CNT-containing film formed on the peeling support can be peeled from the peeling support by using a known thin film peeling method. For example, when the peeling support is dissolved in a predetermined solvent, the CNT-containing film is taken out alone by immersing the CNT-containing film with the peeling support in the solvent and dissolving the peeling support. be able to.
  • the method for applying the CNT dispersion on the peeling support and the method for removing the solvent from the CNT dispersion applied on the peeling support are the same as the method (i) for producing the CNT-containing film described above. Can be adopted.
  • the CNT-containing film is usually composed of a single layer, but may be a film having a multilayer structure of two or more layers by appropriately repeating the application of the CNT dispersion and the removal of the solvent. Further, after obtaining the CNT-containing film, the dispersant may be appropriately removed from the film according to a known method. Further, the CNT-containing film may be doped with a p-type dopant or an n-type dopant by a known method.
  • the conductive film produced using the CNT dispersion obtained by the present invention has excellent conductivity and reliability.
  • an electroconductive film is obtained by laminating
  • a conductive film can be obtained by transferring a conductive film produced on a peeling support to a base film, or by sticking a conductive film that is a self-supporting film on the base film. You can also The conductive film can also be obtained by directly forming a conductive film on the base film, such as by applying the CNT dispersion onto the base film and removing the solvent from the applied CNT dispersion.
  • the surface resistivity of the conductive film is usually 10 5 ⁇ / ⁇ or less, preferably 10 4 ⁇ / ⁇ or less, more preferably 5 ⁇ 10 3 ⁇ / ⁇ or less, and particularly preferably 2 ⁇ 10 3 ⁇ / ⁇ .
  • the lower limit is not particularly limited, but is usually 0.01 ⁇ / ⁇ or more.
  • the surface resistivity of an electroconductive film can be measured by the method as described in the Example of this specification.
  • the conductive film obtained by using the CNT dispersion liquid of the present invention and the conductive film including the conductive film are preferably used for, for example, an antistatic film, electronic paper, a light control film, a touch panel and a solar cell, It is suitably used for battery electrodes.
  • gum or resin and CNT obtained using the CNT dispersion liquid of this invention is equipped with electroconductivity and intensity
  • the CNT-containing composite material can be prepared by using a known method such as solidification after mixing the CNT dispersion and rubber or resin latex.
  • a substrate A with aligned carbon nanotube aggregates was obtained by the super-growth method. Specifically, carbon nanotubes were grown on a flat substrate in which a metal catalyst layer made of an iron thin film (thickness 1 nm) was provided on a substrate (1 cm ⁇ 1 cm) made of a silicon wafer. The obtained aligned carbon nanotube assembly was mainly composed of single-walled CNTs.
  • the CNTs constituting the carbon nanotube aligned aggregate have a BET specific surface area of 800 m 2 / g, a mass density of 0.03 g / cm 3 , a micropore volume of 0.44 mL / g, and an average diameter.
  • (Av) was 3.3 nm
  • diameter distribution (3 ⁇ ) was 1.9 nm
  • (3 ⁇ / Av) was 0.58
  • the average length was 500 ⁇ m.
  • a substrate B with an aligned carbon nanotube assembly was obtained in the same manner as in Preparation Example 1 except that the thickness of the iron thin film as the metal catalyst layer was changed to 5 nm.
  • the obtained aligned carbon nanotube assembly was composed of CNTs including double-walled CNTs.
  • the CNTs constituting the aligned carbon nanotube assembly have a BET specific surface area of 620 m 2 / g, a mass density of 0.03 g / cm 3 , a micropore volume of 0.41 mL / g, and an average diameter.
  • (Av) was 5.9 nm
  • the diameter distribution (3 ⁇ ) was 3.3 nm
  • (3 ⁇ / Av) was 0.56
  • the average length was 500 ⁇ m.
  • Substrate C with an aligned carbon nanotube assembly was obtained in the same manner as in Preparation Example 1, except that the time for growing carbon nanotubes on the substrate (feeding and heating time for source gas) was doubled.
  • the obtained aligned carbon nanotube assembly was mainly composed of single-walled CNTs.
  • the CNTs constituting the aligned carbon nanotube aggregate have a BET specific surface area of 820 m 2 / g, a mass density of 0.03 g / cm 3 , a micropore volume of 0.42 mL / g, and an average diameter.
  • (Av) was 3.5 nm
  • the diameter distribution (3 ⁇ ) was 2.0 nm
  • (3 ⁇ / Av) was 0.57
  • the average length was 1000 ⁇ m.
  • ⁇ Surface resistivity> Using a resistivity meter (manufactured by Mitsubishi Chemical Analytech Co., Ltd., product name “Loresta (registered trademark) -GP MCP-T610”), it was measured and evaluated by the method in accordance with JIS K7194 as follows. Specifically, the surface resistivity (sheet resistance) of the laminate was measured using a four-terminal method in an environment of a temperature of 25 ° C. and a humidity of 20% RH, and evaluated according to the following criteria. A: Less than 6000 ⁇ / ⁇ B: 6000 ⁇ / ⁇ or more and less than 7000 ⁇ / ⁇ C: 7000 ⁇ / ⁇ or more
  • Example 1 Substrate A with an aligned carbon nanotube assembly produced in Preparation Example 1 was immersed in orthodichlorobenzene as a solvent (contact process). Next, the aligned carbon nanotube aggregate was separated from the substrate using a spatula in a solvent (separation step). Thereafter, the substrate was removed with tweezers, and a dispersion treatment was performed using a ultrasonic homogenizer under the conditions of 20 W and 30 minutes (dispersion step) to obtain a carbon nanotube dispersion. And the presence or absence of the aggregate and the dispersibility of the carbon nanotube were evaluated about the obtained carbon nanotube dispersion liquid.
  • the above CNT dispersion was applied on a PET film as a base film (Toyobo Co., Ltd., “Cosmo Shine (registered trademark)”, product number A4100, with an easy-adhesion layer) using a spray coating method,
  • the CNT dispersion on the PET film was dried at 80 ° C. to form a CNT-containing film.
  • the surface resistivity of the obtained CNT-containing film and PET film laminate (conductive film formed by laminating a conductive film made of a CNT-containing film on a base film) on the CNT-containing film side was measured. The results are shown in Table 1.
  • Example 2 A carbon nanotube dispersion liquid and a laminate were prepared in the same manner as in Example 1 except that the carbon nanotube dispersion liquid was obtained by performing only the separation process after the contact process without performing the dispersion process. Then, in the same manner as in Example 1, the presence or absence of aggregates and the dispersibility of the carbon nanotubes were evaluated. Moreover, the surface resistivity of the obtained laminated body was measured. The results are shown in Table 1.
  • Example 3 A carbon nanotube dispersion and a laminate were prepared in the same manner as in Example 1 except that the substrate B with aligned carbon nanotube assemblies prepared in Preparation Example 2 was used as the substrate with aligned carbon nanotube assemblies. Then, in the same manner as in Example 1, the presence or absence of aggregates and the dispersibility of the carbon nanotubes were evaluated. Moreover, the surface resistivity of the obtained laminated body was measured. The results are shown in Table 1.
  • Example 4 The substrate A with an aligned carbon nanotube assembly produced in Preparation Example 1 was immersed in a container (glass petri dish) in orthodichlorobenzene as a solvent (contact process). Next, the substrate A with an aligned CNT aggregate was placed in a desiccator together with the glass petri dish, and the inside of the desiccator was decompressed to less than atmospheric pressure (1000 Pa) with a diaphragm pump (decompression step). Foaming was observed from the aligned CNT aggregate impregnated with orthodichlorobenzene, and foaming continued for about 180 minutes from the start of decompression.
  • atmospheric pressure 1000 Pa
  • Example 5 Substrate C with an aligned carbon nanotube assembly produced in Preparation Example 3 was immersed in orthodichlorobenzene as a solvent in a glass petri dish (contact process). Next, the substrate C with the aligned CNT aggregate was put into a desiccator together with the glass petri dish, and the inside of the desiccator was decompressed to less than atmospheric pressure (1000 Pa) with a diaphragm pump (decompression step). Foaming was observed from the aligned CNT aggregate impregnated with orthodichlorobenzene, and foaming continued for about 180 minutes from the start of decompression.
  • atmospheric pressure 1000 Pa
  • Table 1 shows that in Examples 1 to 5, CNT dispersions in which CNTs are well dispersed can be obtained without using a dispersant.
  • CNT dispersions obtained in Examples 4 and 5 in which the decompression step was performed it can be seen that a CNT-containing film (conductive film) having particularly excellent conductivity can be obtained.
  • a dispersion in which carbon nanotubes are uniformly dispersed can be efficiently produced without using a dispersant.

Abstract

The purpose of the present invention is to provide a method which, even without the use of a dispersant, allows efficiently producing a dispersion comprising uniformly dispersed carbon nanotubes. This method of producing a carbon nanotube dispersion is characterized by involving a step for bringing an aligned carbon nanotube aggregate formed on a substrate into contact with a solvent, and a step for separating the aligned carbon nanotube aggregate from the substrate in the solvent, wherein the carbon nanotubes configuring the aligned carbon nanotube aggregate fulfill the relation between the average diameter (Av) and the diameter distribution (3σ) of 0.20 < (3σ / Av) < 0.60, and the average length is greater than or equal to 100μm.

Description

カーボンナノチューブ分散液の製造方法Method for producing carbon nanotube dispersion
 本発明は、カーボンナノチューブ分散液の製造方法に関するものである。 The present invention relates to a method for producing a carbon nanotube dispersion.
 従来、導電性や機械的特性に優れる物質として、カーボンナノチューブ(以下、「CNT」と称することがある。)が知られている。そして、近年では、CNTを使用することによりフィルムや繊維などの各種製品の導電性や機械的特性を向上させる技術が提案されている。具体的には、溶媒とCNTとを含むカーボンナノチューブ分散液(以下、「CNT分散液」と称することがある。)を材料として使用し、CNTを含有する製品を製造することにより、製品の導電性および機械的特性を向上させる技術が提案されている。 Conventionally, carbon nanotubes (hereinafter sometimes referred to as “CNT”) are known as substances having excellent conductivity and mechanical properties. And in recent years, the technique which improves the electroconductivity and mechanical characteristic of various products, such as a film and a fiber, by using CNT is proposed. Specifically, by using a carbon nanotube dispersion liquid (hereinafter sometimes referred to as “CNT dispersion liquid”) containing a solvent and CNT as a material and manufacturing a product containing CNT, Techniques for improving the properties and mechanical properties have been proposed.
 ここで、上記技術を用いて製品の導電性および機械的特性を効果的に向上させるためには、CNTが良好に分散したCNT分散液を使用することが有用である。しかし、一般にCNTは、凝集し易く、分散させ難い。そのため、CNTが良好に分散したCNT分散液を製造する方法の開発が求められている。 Here, in order to effectively improve the electrical conductivity and mechanical properties of the product using the above technique, it is useful to use a CNT dispersion in which CNTs are well dispersed. However, in general, CNT is easy to aggregate and difficult to disperse. Therefore, development of a method for producing a CNT dispersion in which CNTs are well dispersed is demanded.
 このような要求に対し、例えば特許文献1では、表面上にCNTを成長させた基体と、溶媒と、分散剤とを容器に投入した後、分散剤を含む溶媒中で基体からCNTを剥がす処理を行うことによって、CNTが良好に分散したCNT分散液を製造する方法が提案されている。化学気相成長法などを用いて基体上に成長させたCNTは隣接するCNT間の距離が比較的離れた状態で存在しているところ、この特許文献1に記載の方法によれば、凝集が少なく分離した状態を保っている基体上のCNTを分散剤の存在下で溶媒に直接分散させることができるので、CNTが良好に分散したCNT分散液が得られる。 In response to such a request, for example, in Patent Document 1, a substrate in which CNTs are grown on a surface, a solvent, and a dispersant are introduced into a container, and then the CNTs are peeled from the substrate in a solvent containing the dispersant. Has been proposed to produce a CNT dispersion in which CNTs are well dispersed. CNTs grown on a substrate using a chemical vapor deposition method or the like exist in a state in which the distance between adjacent CNTs is relatively long. According to the method described in Patent Document 1, aggregation occurs. Since the CNTs on the substrate kept in a small separated state can be directly dispersed in the solvent in the presence of the dispersant, a CNT dispersion liquid in which CNTs are well dispersed can be obtained.
特開2008-24523号公報JP 2008-24523 A
 しかし、上記特許文献1に記載の製造方法では、分散剤を含む溶媒を使用するため、得られるCNT分散液には必然的に分散剤が混入する。従って、当該CNT分散液を用いてフィルムや繊維などの各種製品を製造すると、製品中に分散剤が混入し、導電性などの性能を十分に高めることができない場合がある。一方で、洗浄や加熱などの手段を用いてCNT分散液や製品から分散剤を除去する場合、製造工程が煩雑になると共に、コストが増大する。 However, since the manufacturing method described in Patent Document 1 uses a solvent containing a dispersant, the dispersant is inevitably mixed into the obtained CNT dispersion. Therefore, when various products such as films and fibers are manufactured using the CNT dispersion, the dispersant may be mixed in the product, and the performance such as conductivity may not be sufficiently improved. On the other hand, when the dispersant is removed from the CNT dispersion or product using means such as washing or heating, the manufacturing process becomes complicated and the cost increases.
 そこで、本発明は、カーボンナノチューブが均一に分散した分散液を、分散剤を使用せずとも、効率的に製造する方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for efficiently producing a dispersion in which carbon nanotubes are uniformly dispersed without using a dispersant.
 本発明者らは、上記課題を解決することを目的として、鋭意検討を行った。そして、本発明者らは、基板上で合成された所定の性状を有するカーボンナノチューブ配向集合体を溶媒中で基板から剥離させてCNT分散液を製造した場合、驚くべきことに、分散剤を使用しなくても、CNTが均一に分散したCNT分散液が得られることを見出し、本発明を完成させた。 The present inventors have intensively studied for the purpose of solving the above problems. And, when the present inventors manufactured a CNT dispersion by peeling an aligned aggregate of carbon nanotubes having a predetermined property synthesized on a substrate from the substrate in a solvent, surprisingly, a dispersant was used. Even without this, it was found that a CNT dispersion liquid in which CNTs were uniformly dispersed was obtained, and the present invention was completed.
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のカーボンナノチューブ分散液の製造方法は、基板上に形成されたカーボンナノチューブ配向集合体と、溶媒とを接触させる工程(1)と、前記溶媒中で前記カーボンナノチューブ配向集合体を前記基板から分離させる工程(2)とを含み、前記カーボンナノチューブ配向集合体を構成するカーボンナノチューブが、平均直径(Av)と直径分布(3σ)とが関係式:0.20<(3σ/Av)<0.60を満たし、且つ、平均長さが100μm以上であることを大きな特徴の1つとする。このように、平均直径に対する直径分布の比(3σ/Av)が0.20超0.60未満であり、且つ、平均長さが100μm以上であるカーボンナノチューブよりなるカーボンナノチューブ配向集合体を溶媒中で基板から分離させれば、分散剤を使用しなくても、溶媒中にCNTが均一に分散したCNT分散液を効率的に製造することができる。
 ここで、本発明において、「直径分布(3σ)」とは、カーボンナノチューブの直径の標本標準偏差(σ)に3を乗じたものを指す。そして、本発明において、「カーボンナノチューブの平均直径(Av)」、「カーボンナノチューブの直径の標本標準偏差(σ)」および「カーボンナノチューブの平均長さ」は、それぞれ、透過型電子顕微鏡での観察下、無作為に選択したカーボンナノチューブ100本の直径(外径)および長さを測定して求めることができる。
That is, the present invention aims to advantageously solve the above problems, and the method for producing a carbon nanotube dispersion of the present invention comprises an aligned aggregate of carbon nanotubes formed on a substrate, and a solvent. The carbon nanotubes constituting the aligned carbon nanotubes have an average diameter (Av), comprising a step (1) of contacting and a step (2) of separating the aligned carbon nanotubes from the substrate in the solvent. And the diameter distribution (3σ) satisfy the relational expression: 0.20 <(3σ / Av) <0.60, and one of the major features is that the average length is 100 μm or more. As described above, an aligned carbon nanotube assembly composed of carbon nanotubes having a ratio of diameter distribution to average diameter (3σ / Av) of more than 0.20 and less than 0.60 and an average length of 100 μm or more is obtained in a solvent. If the substrate is separated from the substrate, a CNT dispersion in which CNTs are uniformly dispersed in a solvent can be efficiently produced without using a dispersant.
Here, in the present invention, “diameter distribution (3σ)” refers to a value obtained by multiplying the sample standard deviation (σ) of the diameter of the carbon nanotube by 3. In the present invention, “average diameter of carbon nanotube (Av)”, “sample standard deviation of carbon nanotube diameter (σ)”, and “average length of carbon nanotube” are respectively observed with a transmission electron microscope. Below, the diameter (outer diameter) and length of 100 randomly selected carbon nanotubes can be measured and determined.
 ここで、本発明のカーボンナノチューブ分散液の製造方法は、前記基板から分離させた前記カーボンナノチューブ配向集合体を前記溶媒中で分散処理する工程(3)を更に含むことが好ましい。カーボンナノチューブ配向集合体を基板から分離させた後に更に分散処理を施せば、CNTの分散性が更に向上したCNT分散液を得ることができるからである。 Here, it is preferable that the method for producing a carbon nanotube dispersion of the present invention further includes a step (3) of dispersing the aligned carbon nanotube aggregate separated from the substrate in the solvent. This is because a CNT dispersion with further improved CNT dispersibility can be obtained by further dispersing the carbon nanotube alignment aggregate after separating it from the substrate.
 また、本発明のカーボンナノチューブ分散液の製造方法は、前記工程(1)と前記工程(2)との間に、前記溶媒に接触している前記カーボンナノチューブ配合集合体を減圧下に置く工程(4)を更に含むことが好ましい。カーボンナノチューブ配向集合体を基板から分離する前にカーボンナノチューブ配向集合体を溶媒と接触させている状態で減圧下に置けば、カーボンナノチューブ配向集合体を構成するCNT間の隙間に存在する空気などが排出される。その結果、CNT間の隙間に溶媒が含浸しやすくなり、CNT配向集合体中に溶媒を万遍なく行き渡らせることができるからである。 In the method for producing a carbon nanotube dispersion of the present invention, the carbon nanotube-containing aggregate in contact with the solvent is placed under reduced pressure between the step (1) and the step (2) ( 4) is preferably further included. If the carbon nanotube alignment aggregate is placed in contact with a solvent under a reduced pressure before separating the carbon nanotube alignment aggregate from the substrate, air or the like existing in the gaps between the CNTs constituting the carbon nanotube alignment aggregate Discharged. As a result, it becomes easier for the solvent to be impregnated in the gaps between the CNTs, and the solvent can be uniformly distributed in the aligned CNT aggregate.
 本発明のカーボンナノチューブ分散液の製造方法は、前記基板が、平板状、粒子状または線状の基板であることが好ましい。平板状、粒子状または線状の基板は、取り扱いが容易であり、また、基板からのカーボンナノチューブ配向集合体の分離を容易に行うことができるからである。 In the method for producing a carbon nanotube dispersion of the present invention, it is preferable that the substrate is a plate-like, particle-like or linear substrate. This is because a plate-like, particle-like, or linear substrate is easy to handle, and the aligned carbon nanotube aggregates can be easily separated from the substrate.
 本発明のカーボンナノチューブ分散液の製造方法によれば、カーボンナノチューブが均一に分散した分散液を、分散剤を使用せずとも、効率的に製造することができる。 According to the method for producing a carbon nanotube dispersion of the present invention, a dispersion in which carbon nanotubes are uniformly dispersed can be efficiently produced without using a dispersant.
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明のカーボンナノチューブ分散液の製造方法は、溶媒中にCNTを分散させてなるカーボンナノチューブ分散液を製造する際に用いることができる。
 そして、本発明のカーボンナノチューブ分散液の製造方法に従い製造したCNT分散液は、特に限定されることなく、フィルムや繊維などの各種製品を製造する際に用いることができる。具体的には、CNT分散液は、例えば、CNT分散液を基材上に塗布し、乾燥してカーボンナノチューブ含有膜を製造する際や、樹脂やゴム等の高分子材料と混合してCNT含有複合材料を製造する際に用いることができる。
Hereinafter, embodiments of the present invention will be described in detail.
Here, the method for producing a carbon nanotube dispersion of the present invention can be used when producing a carbon nanotube dispersion obtained by dispersing CNTs in a solvent.
And the CNT dispersion liquid manufactured according to the manufacturing method of the carbon nanotube dispersion liquid of this invention is not specifically limited, It can use when manufacturing various products, such as a film and a fiber. Specifically, the CNT dispersion liquid is, for example, coated with a CNT dispersion liquid on a substrate and dried to produce a carbon nanotube-containing film, or mixed with a polymer material such as resin or rubber to contain CNT. It can be used when producing a composite material.
(カーボンナノチューブ分散液の製造方法)
 本発明に係るカーボンナノチューブ分散液の製造方法は、(1)基板上に形成されたカーボンナノチューブ配向集合体と、溶媒とを接触させる工程(接触工程)と、(2)接触工程の後に、溶媒中でカーボンナノチューブ配向集合体を基板から分離させる工程(分離工程)と、を含む。また、本発明に係るカーボンナノチューブ分散液の製造方法は、前記カーボンナノチューブ配向集合体を構成するカーボンナノチューブが、所定の平均直径(Av)、直径分布(3σ)および平均長さを有することを大きな特徴の1つとする。
 そして、本発明に係るカーボンナノチューブ分散液の製造方法によれば、分散剤を使用せずとも、カーボンナノチューブが均一に分散した分散液を効率的に製造することができる。
 なお、本発明に係るカーボンナノチューブ分散液の製造方法では、分離工程の後に、任意に、(3)基板から分離させたカーボンナノチューブ配向集合体を溶媒中で分散処理する工程(分散工程)を実施してもよい。また、接触工程と分離工程との間に、任意に、(4)溶媒に接触しているカーボンナノチューブ配合集合体を減圧下に置く工程(減圧工程)を実施してもよい。
(Method for producing carbon nanotube dispersion)
The method for producing a carbon nanotube dispersion according to the present invention includes (1) a step of contacting an aligned aggregate of carbon nanotubes formed on a substrate and a solvent (contact step), and (2) a solvent after the contact step. And a step of separating the aligned carbon nanotube aggregate from the substrate (separation step). In the method for producing a carbon nanotube dispersion according to the present invention, the carbon nanotubes constituting the aligned carbon nanotube aggregate have a predetermined average diameter (Av), diameter distribution (3σ), and average length. One of the features.
And according to the manufacturing method of the carbon nanotube dispersion liquid concerning this invention, even if it does not use a dispersing agent, the dispersion liquid with which the carbon nanotube was disperse | distributed uniformly can be manufactured efficiently.
In the method for producing a carbon nanotube dispersion according to the present invention, after the separation step, (3) a step (dispersion step) of dispersing the carbon nanotube alignment aggregate separated from the substrate in a solvent is performed. May be. Moreover, you may implement (4) the process (pressure reduction process) which puts the carbon nanotube mixing aggregate which is contacting the solvent under reduced pressure arbitrarily between a contact process and a separation process.
 以下に、本発明に係るカーボンナノチューブ分散液の製造方法の接触工程、減圧工程、分離工程および分散工程について、順次説明する。 Hereinafter, the contact process, the decompression process, the separation process, and the dispersion process of the carbon nanotube dispersion manufacturing method according to the present invention will be described in order.
<接触工程>
 接触工程では、所定の性状を有するカーボンナノチューブよりなる、基板上に形成されたカーボンナノチューブ配向集合体と、溶媒とを接触させる。
<Contact process>
In the contacting step, the aligned carbon nanotube aggregate formed on the substrate made of carbon nanotubes having a predetermined property is brought into contact with the solvent.
 ここで、接触は、基板上に形成されたカーボンナノチューブ配向集合体を基板と共に溶媒中に浸漬することにより行ってもよいし、表面上にカーボンナノチューブ配向集合体が形成された基板に対して溶媒を加えることにより行ってもよい。
 なお、溶媒との接触工程の後、後述する分離工程を円滑に行う観点からは、カーボンナノチューブ配向集合体を基板と共に溶媒中に浸漬することによりカーボンナノチューブ配向集合体と溶媒とを接触させることが好ましい。
Here, the contact may be performed by immersing the aligned carbon nanotube aggregate formed on the substrate in a solvent together with the substrate, or the solvent with respect to the substrate on which the carbon nanotube aligned aggregate is formed on the surface. May be performed by adding
In addition, from the viewpoint of smoothly performing the separation step described later after the contact step with the solvent, the aligned carbon nanotube assembly and the solvent may be contacted by immersing the aligned carbon nanotube assembly in the solvent together with the substrate. preferable.
[カーボンナノチューブ配向集合体]
 基板上に形成されたカーボンナノチューブ配向集合体とは、基板上に成長した多数のCNTが特定の方向に配向した構造体をいう。
[Aligned carbon nanotube assembly]
The aligned carbon nanotube aggregate formed on the substrate refers to a structure in which a large number of CNTs grown on the substrate are aligned in a specific direction.
[[基板]]
 ここで、基板としては、CNT成長用の触媒の層である触媒層を表面に有する基材を用いることができる。具体的には、基板としては、金属またはセラミック製の基材の上に、鉄、ニッケル、コバルト、モリブデン、或いは、これらの塩化物または合金よりなる触媒層を形成してなる基板を用いることができる。
[[substrate]]
Here, as the substrate, a base material having a catalyst layer on the surface, which is a catalyst layer for CNT growth, can be used. Specifically, as the substrate, a substrate obtained by forming a catalyst layer made of iron, nickel, cobalt, molybdenum, or a chloride or alloy thereof on a metal or ceramic base material is used. it can.
 なお、基板の形状は、任意の形状とすることができるが、取り扱い性および基板からのカーボンナノチューブ配向集合体の分離の容易性の観点からは、平板状、粒子状または線状であることが好ましい。 The shape of the substrate can be any shape, but it may be flat, particulate, or linear from the viewpoint of handleability and ease of separation of the aligned carbon nanotube aggregate from the substrate. preferable.
[[カーボンナノチューブ]]
 また、本発明に係るカーボンナノチューブ分散液の製造方法において、カーボンナノチューブ配向集合体を構成するCNTは、平均直径(Av)と直径分布(3σ)とが0.60>(3σ/Av)>0.20を満たし、且つ、平均長さが100μm以上である必要がある。CNTが上記性状を有する場合、後述する分離工程を実施してCNT分散液を調製する際に分散剤を使用しなくても、溶媒中でCNTを均一に分散させることができるからである。なお、CNT分散液とした後でも、CNTが一定以上の長さを保持し、当該CNT分散液を用いて製造した製品の性能(例えば、導電性および機械的特性)が良好に発揮され得る観点からは、平均直径(Av)に対する直径分布(3σ)の比(3σ/Av)は、0.50超であることが好ましい。また、同様の理由により、CNTの平均長さは、好ましくは300μm以上、より好ましくは500μm以上である。更に、CNTの分散性を高めると共に、基板上に形成されたカーボンナノチューブ配向集合体と溶媒とを接触させる際にCNTが基板から剥離してしまうのを防止する観点からは、CNTの平均長さは、好ましくは10mm以下、より好ましくは5mm以下、さらに好ましくは3mm以下である。
[[carbon nanotube]]
In the method for producing a carbon nanotube dispersion according to the present invention, the average diameter (Av) and the diameter distribution (3σ) of the CNTs constituting the aligned carbon nanotube aggregate are 0.60> (3σ / Av)> 0. .20 and the average length needs to be 100 μm or more. This is because, when the CNTs have the above properties, the CNTs can be uniformly dispersed in the solvent without using a dispersant when preparing a CNT dispersion by carrying out a separation step described later. In addition, even after making the CNT dispersion, the viewpoint that the CNT can maintain a certain length or more and the performance (for example, conductivity and mechanical properties) of the product manufactured using the CNT dispersion can be satisfactorily exhibited. Therefore, the ratio (3σ / Av) of the diameter distribution (3σ) to the average diameter (Av) is preferably more than 0.50. For the same reason, the average length of the CNT is preferably 300 μm or more, more preferably 500 μm or more. Furthermore, from the viewpoint of enhancing the dispersibility of CNTs and preventing the CNTs from peeling off from the substrate when contacting the aligned carbon nanotube aggregates formed on the substrate with the solvent, the average length of the CNTs Is preferably 10 mm or less, more preferably 5 mm or less, and even more preferably 3 mm or less.
 なお、上述したCNTは、直径を横軸に、その頻度を縦軸に取ってプロットし、ガウシアンで近似した際に、正規分布を取ることが好ましい。 The above-mentioned CNT preferably has a normal distribution when plotted by taking the diameter on the horizontal axis and the frequency on the vertical axis and approximating with Gaussian.
 また、カーボンナノチューブ配向集合体を構成するCNTは、表面にカルボキシル基等の官能基が導入されたものであってもよい。官能基の導入は、過酸化水素や硝酸等を用いる公知の酸化処理法により行うことができる。 Further, the CNT constituting the aligned carbon nanotube assembly may be one having a functional group such as a carboxyl group introduced on the surface. The functional group can be introduced by a known oxidation treatment method using hydrogen peroxide, nitric acid or the like.
 更に、カーボンナノチューブ配向集合体を構成するCNTは、単層のものであっても、多層のものであってもよいが、CNT分散液を用いて製造した製品の性能(例えば、導電性および機械的特性)を向上させる観点からは、単層から5層のものが好ましく、単層のものがより好ましい。
 更に、CNTは、ラマン分光法を用いて評価した際に、Radial Breathing Mode(RBM)のピークを有することが好ましい。なお、三層以上の多層カーボンナノチューブのラマンスペクトルには、RBMが存在しない。
Furthermore, the CNTs constituting the aligned carbon nanotube assembly may be single-walled or multi-walled, but the performance (for example, conductivity and mechanical properties) of products manufactured using the CNT dispersion liquid may be used. From the standpoint of improving the optical characteristics, single to five layers are preferable, and single layers are more preferable.
Furthermore, the CNT preferably has a peak of Radial Breathing Mode (RBM) when evaluated using Raman spectroscopy. Note that there is no RBM in the Raman spectrum of multi-walled carbon nanotubes of three or more layers.
 また、CNTは、ラマンスペクトルにおけるDバンドピーク強度に対するGバンドピーク強度の比(G/D比)が1以上20以下であることが好ましい。G/D比が1以上20以下であれば、溶媒に対する分散性を高めることができる。 CNTs preferably have a G-band peak intensity ratio (G / D ratio) of 1 to 20 in the Raman spectrum. If G / D ratio is 1 or more and 20 or less, the dispersibility with respect to a solvent can be improved.
 ここで、上記したCNTの平均直径(Av)は、優れた分散性を得る観点から、0.5nm以上であることが好ましく、1nm以上であることがより好ましく、15nm以下であることが好ましく、10nm以下であることがより好ましい。 Here, from the viewpoint of obtaining excellent dispersibility, the average diameter (Av) of the CNT described above is preferably 0.5 nm or more, more preferably 1 nm or more, and preferably 15 nm or less. More preferably, it is 10 nm or less.
 また、CNTの比表面積は、600m2/g以上であることが好ましく、800m2/g以上であることがより好ましく、2500m2/g以下であることが好ましく、1200m2/g以下であることがより好ましい。更に、CNTが主として開口したものにあっては、比表面積が1300m2/g以上であることが好ましい。比表面積が600m2/g以上のCNTよりなるカーボンナノチューブ配向集合体には、特に、当該集合体が形成された基板の表面近傍においてCNT間に微小な隙間が存在していると推定され、後述する分離工程において溶媒中にCNTを良好に分散させることができる。また、CNTの比表面積が600m2/g以上であれば、CNT分散液を用いて製造した製品の性能を十分に向上させることができる。また、CNTの比表面積が2500m2/g以下であれば、CNTの凝集を抑制して分散性の良好なCNT分散液を得ることができる。
 なお、カーボンナノチューブの比表面積は、BET法により窒素吸着比表面積として求めることができる。
Further, the specific surface area of the CNT is preferably 600 m 2 / g or more, more preferably 800 m 2 / g or more, preferably 2500 m 2 / g or less, and 1200 m 2 / g or less. Is more preferable. Furthermore, when the CNTs are mainly opened, the specific surface area is preferably 1300 m 2 / g or more. In the aligned carbon nanotube aggregate composed of CNTs having a specific surface area of 600 m 2 / g or more, it is presumed that there are minute gaps between the CNTs in the vicinity of the surface of the substrate on which the aggregate is formed. In the separation step, CNT can be well dispersed in the solvent. Moreover, if the specific surface area of CNT is 600 m < 2 > / g or more, the performance of the product manufactured using CNT dispersion liquid can fully be improved. Moreover, if the specific surface area of CNT is 2500 m < 2 > / g or less, a CNT dispersion liquid with favorable dispersibility can be obtained by suppressing aggregation of CNT.
In addition, the specific surface area of a carbon nanotube can be calculated | required as a nitrogen adsorption specific surface area by BET method.
 更に、カーボンナノチューブ配向集合体を構成するCNTは、複数の微小孔を有することが好ましい。中でも、CNTは、孔径が2nmよりも小さいマイクロ孔を有するのが好ましく、そのマイクロ孔の存在量は、下記の方法で求めたマイクロ孔容積で、好ましくは0.40mL/g以上、より好ましくは0.43mL/g以上、更に好ましくは0.45mL/g以上であり、上限としては、通常、0.65mL/g程度である。CNTが上記のようなマイクロ孔を有することは、溶媒中での分散性を向上させる観点から好ましい。なお、マイクロ孔容積は、例えば、CNTの調製方法および調製条件を適宜変更することで調整することができる。
 ここで、「マイクロ孔容積(Vp)」は、カーボンナノチューブの液体窒素温度(77K)での窒素吸脱着等温線を測定し、相対圧P/P0=0.19における窒素吸着量をVとして、式(I):Vp=(V/22414)×(M/ρ)より、算出することができる。なお、Pは吸着平衡時の測定圧力、P0は測定時の液体窒素の飽和蒸気圧であり、式(I)中、Mは吸着質(窒素)の分子量28.010、ρは吸着質(窒素)の77Kにおける密度0.808g/cm3である。マイクロ孔容積は、例えば、「BELSORP(登録商標)-mini」(日本ベル(株)製)を使用して容易に求めることができる。
Furthermore, the CNT constituting the aligned carbon nanotube assembly preferably has a plurality of micropores. Among them, the CNT preferably has micropores having a pore diameter smaller than 2 nm, and the abundance of the micropores is a micropore volume determined by the following method, preferably 0.40 mL / g or more, more preferably It is 0.43 mL / g or more, more preferably 0.45 mL / g or more, and the upper limit is usually about 0.65 mL / g. It is preferable that CNT have the above micropores from the viewpoint of improving dispersibility in a solvent. The micropore volume can be adjusted, for example, by appropriately changing the CNT preparation method and preparation conditions.
Here, the “micropore volume (Vp)” is a nitrogen adsorption / desorption isotherm at a liquid nitrogen temperature (77 K) of the carbon nanotube, and V is a nitrogen adsorption amount at a relative pressure P / P0 = 0.19. It can be calculated from the formula (I): Vp = (V / 22414) × (M / ρ). Here, P is a measurement pressure at the time of adsorption equilibrium, P0 is a saturated vapor pressure of liquid nitrogen at the time of measurement, and in formula (I), M is an adsorbate (nitrogen) molecular weight of 28.010, and ρ is an adsorbate (nitrogen). ) At 77K with a density of 0.808 g / cm 3 . The micropore volume can be easily determined using, for example, “BELSORP (registered trademark) -mini” (manufactured by Nippon Bell Co., Ltd.).
 また、カーボンナノチューブ配向集合体を構成するCNTは、質量密度が好ましくは0.002g/cm3以上0.2g/cm3以下、より好ましくは0.01g/cm3以上0.1g/cm3以下である。質量密度が0.2g/cm3以下のCNTよりなるカーボンナノチューブ配向集合体は、個々のCNT同士が過度に強く結合しておらず、非常に緩やかに結合しているので、後述する分離工程において溶媒中にCNTを良好に分散させることができる。一方、CNTの質量密度が0.002g/cm3以上であれば、CNTよりなるカーボンナノチューブ配向集合体にある程度の一体性を持たせて、カーボンナノチューブ配向集合体と溶媒とを接触させる前にCNTが基板から剥離してしまうのを防止することができる。
 なお、質量密度は、カーボンナノチューブ配向集合体の質量を体積で割って算出することができ、カーボンナノチューブ配向集合体の質量は、カーボンナノチューブ配向集合体を形成した後の基板の質量と、カーボンナノチューブ配向集合体を形成する前の基板の質量との差を求めることにより算出することができる。そして、CNTの質量密度は、例えば、基板の基材上に存在する触媒微粒子の個数密度を調整することによって制御可能である。
Further, the CNT constituting the aligned carbon nanotube assembly preferably has a mass density of 0.002 g / cm 3 or more and 0.2 g / cm 3 or less, more preferably 0.01 g / cm 3 or more and 0.1 g / cm 3 or less. It is. In the aligned carbon nanotube aggregate composed of CNTs having a mass density of 0.2 g / cm 3 or less, the individual CNTs are not excessively strongly bonded to each other and are very loosely bonded. CNT can be well dispersed in the solvent. On the other hand, if the mass density of the CNTs is 0.002 g / cm 3 or more, the carbon nanotube alignment aggregates made of CNTs have some degree of integrity, and the carbon nanotube alignment aggregates and the solvent are brought into contact with each other before contacting them. Can be prevented from peeling off from the substrate.
The mass density can be calculated by dividing the mass of the carbon nanotube alignment aggregate by the volume. The mass of the carbon nanotube alignment aggregate is the mass of the substrate after the carbon nanotube alignment aggregate is formed, and the carbon nanotube. It can be calculated by determining the difference from the mass of the substrate before forming the alignment aggregate. The mass density of the CNTs can be controlled, for example, by adjusting the number density of the catalyst fine particles present on the base material of the substrate.
[[配向性]]
 ここで、上述したカーボンナノチューブ配向集合体を構成するCNTは、高い配向度を有して基板上に整列していることが好ましい。具体的には、CNTは、下記(i)~(iii)の少なくとも1つ以上を満たすような高い配向度を有していることが好ましい。
(i)CNTの長手方向に平行な第1方向と、第1方向に直交する第2方向とからX線を入射してX線回折強度を測定(θ-2θ法)した場合に、第2方向からの反射強度が第1方向からの反射強度より大きくなるθ角と反射方位とが存在し、且つ、第1方向からの反射強度が第2方向からの反射強度より大きくなるθ角と反射方位とが存在する
(ii)CNTの長手方向に直交する方向からX線を入射して得られた2次元回折パターン像でX線回折強度を測定(ラウエ法)した場合に、異方性の存在を示す回折ピークパターンが出現する
(iii)ヘルマンの配向係数が、θ-2θ法またはラウエ法で得られたX線回折強度を用いると0より大きく1より小さい
[[Orientation]]
Here, it is preferable that the CNTs constituting the carbon nanotube alignment aggregate described above have a high degree of orientation and are aligned on the substrate. Specifically, the CNTs preferably have a high degree of orientation that satisfies at least one of the following (i) to (iii).
(I) When the X-ray diffraction intensity is measured by incident X-rays from the first direction parallel to the longitudinal direction of the CNT and the second direction orthogonal to the first direction (θ-2θ method), the second There is a θ angle at which the reflection intensity from the direction is greater than the reflection intensity from the first direction and a reflection azimuth, and the θ angle and the reflection at which the reflection intensity from the first direction is greater than the reflection intensity from the second direction. (Ii) When X-ray diffraction intensity is measured (Laue method) with a two-dimensional diffraction pattern image obtained by entering X-rays from a direction orthogonal to the longitudinal direction of CNT, (Iii) The Herman's orientation coefficient is greater than 0 and less than 1 using the X-ray diffraction intensity obtained by the θ-2θ method or the Laue method.
[[カーボンナノチューブ配向集合体の製造]]
 なお、上述したカーボンナノチューブよりなるカーボンナノチューブ配向集合体は、例えば、上述した基板上に、原料化合物およびキャリアガスを供給して、化学的気相成長法(CVD法)によりカーボンナノチューブを合成する際に、系内に微量の酸化剤を存在させることで、CNT製造用の触媒層の触媒活性を飛躍的に向上させるという方法(スーパーグロース法;国際公開第2006/011655号参照)において、基材表面への触媒層の形成をウェットプロセスにより行い、アセチレンを主成分とする原料ガス(例えば、アセチレンを50体積%以上含むガス)を用いることにより、効率的に製造することができる。
[[Production of aligned carbon nanotube assemblies]]
The aligned carbon nanotube assembly composed of the above-described carbon nanotubes is used, for example, when a raw material compound and a carrier gas are supplied onto the above-described substrate and the carbon nanotubes are synthesized by chemical vapor deposition (CVD). In addition, in the method of significantly improving the catalytic activity of the catalyst layer for producing CNTs by making a small amount of oxidizing agent present in the system (super growth method; see International Publication No. 2006/011655), The catalyst layer can be formed on the surface by a wet process, and can be efficiently produced by using a raw material gas containing acetylene as a main component (for example, a gas containing 50% by volume or more of acetylene).
[溶媒]
 上述したカーボンナノチューブ配向集合体と接触させる溶媒としては、特に限定されることなく、例えば、水、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、t-ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、アミルアルコールなどのアルコール類、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン類、酢酸エチル、酢酸ブチルなどのエステル類、ジエチルエーテル、ジオキサン、テトラヒドロフランなどのエーテル類、N,N-ジメチルホルムアミド、N-メチルピロリドンなどのアミド系極性有機溶媒、トルエン、キシレン、クロロベンゼン、オルトジクロロベンゼン、パラジクロロベンゼンなどの芳香族炭化水素類などが挙げられる。これらは1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。
 なお、基板上に形成されたカーボンナノチューブ配向集合体と接触させる溶媒の量は、所望のカーボンナノチューブ分散液の濃度に応じて調整することができる。ここで、CNT分散液中でのCNTの分散性を良好に保つ観点からは、溶媒の使用量は、カーボンナノチューブ配向集合体を構成するCNT1質量部当たり、20質量部以上とすることが好ましい。一方、経済性の観点からは、溶媒の使用量は、カーボンナノチューブ配向集合体を構成するCNT1質量部当たり、20000質量部以下とすることが好ましい。
[solvent]
The solvent to be brought into contact with the above-mentioned aligned carbon nanotube aggregate is not particularly limited. For example, water, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, pentanol, hexanol , Alcohols such as heptanol, octanol, nonanol, decanol, amyl alcohol, ketones such as acetone, methyl ethyl ketone and cyclohexanone, esters such as ethyl acetate and butyl acetate, ethers such as diethyl ether, dioxane and tetrahydrofuran, N, N -Amide polar organic solvents such as dimethylformamide and N-methylpyrrolidone, aromatic carbonization such as toluene, xylene, chlorobenzene, orthodichlorobenzene and paradichlorobenzene Motorui and the like. These may be used alone or in combination of two or more.
The amount of the solvent to be brought into contact with the aligned carbon nanotube assembly formed on the substrate can be adjusted according to the desired concentration of the carbon nanotube dispersion. Here, from the viewpoint of maintaining good CNT dispersibility in the CNT dispersion, the amount of the solvent used is preferably 20 parts by mass or more per 1 part by mass of the CNTs constituting the aligned carbon nanotube aggregate. On the other hand, from the viewpoint of economy, the amount of the solvent used is preferably 20000 parts by mass or less per 1 part by mass of CNTs constituting the aligned carbon nanotube aggregate.
[その他の成分]
 なお、本発明の製造方法に従い製造されるカーボンナノチューブ分散液は、必要に応じて、分散剤、有機もしくは無機バインダー、カップリング剤、架橋剤、安定化剤、着色剤、電荷調整剤、滑剤などの添加物を含有していてもよい。従って、上記溶媒は、上述した添加物を含有するものであってもよい。
[Other ingredients]
The carbon nanotube dispersion produced according to the production method of the present invention includes a dispersant, an organic or inorganic binder, a coupling agent, a crosslinking agent, a stabilizer, a colorant, a charge adjusting agent, a lubricant, and the like as necessary. The additive may be contained. Therefore, the solvent may contain the above-described additive.
 但し、本発明の製造方法に従い製造されるカーボンナノチューブ分散液の汎用性を高める観点からは、カーボンナノチューブ分散液は分散剤を実質的に含有しないことが好ましく、上述した溶媒は、分散剤(例えば、非イオン性界面活性剤、陰イオン性界面活性剤、陽イオン性界面活性剤、両性界面活性剤などの界面活性剤や、ポリペプチド、多糖類、核酸、共役系ポリマーなどのポリマー)を実質的に含まないことが好ましい。なお、本発明において、「分散剤を実質的に含まない」とは、上述した分散剤の濃度が、0.01質量%未満、好ましくはゼロであることを指す。 However, from the viewpoint of enhancing the versatility of the carbon nanotube dispersion liquid produced according to the production method of the present invention, it is preferable that the carbon nanotube dispersion liquid does not substantially contain a dispersant. , Nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants and other surfactants and polymers such as polypeptides, polysaccharides, nucleic acids, conjugated polymers) It is preferably not included. In the present invention, “substantially does not contain a dispersant” means that the concentration of the dispersant described above is less than 0.01% by mass, preferably zero.
<減圧工程>
 減圧工程では、上述の接触工程後、カーボンナノチューブ配向集合体を基板から分離させる前に、溶媒と接触しているカーボンナノチューブ配向集合体を減圧下に置く。接触工程を経て溶媒と接触したカーボンナノチューブ配向集合体を減圧下に置くことで、カーボンナノチューブ配向集合体を構成するCNT間の隙間に存在する空気などがカーボンナノチューブ配向集合体から排出され、CNT間の隙間に溶媒が含浸しやすくなる。そのため、減圧工程では、基板から分離する前のカーボンナノチューブ配向集合体中に溶媒を万遍なく行き渡らせることができると推察される。その結果、CNT分散液中でのCNTの分散性がより高まると考えられる。そして、減圧工程を経て得られたCNT分散液を用いて調製した導電膜などは、減圧工程を経ていないCNT分散液を用いた場合と比べて、導電性が高まる。
 ここで、減圧の方法は、接触工程後のカーボンナノチューブ配向集合体を、溶媒と共に減圧下に置ければ特に限定されないが、例えば溶媒と接触しているカーボンナノチューブ配合集合体を基板ごとデシケーター内に移し、デシケーター内を脱気する方法が挙げられる。減圧工程の条件は特に限定されないが、通常は大気圧未満(例えば、圧力0.0001Pa~5000Pa)で、1分間~600分間、より好ましくは5分間~180分間程度である。なお、減圧工程の条件は溶媒の種類等に応じて適宜調整することができる。
<Decompression step>
In the depressurization step, the aligned carbon nanotube assembly in contact with the solvent is placed under reduced pressure after the contacting step and before separating the aligned carbon nanotube assembly from the substrate. By placing the aligned carbon nanotube aggregate in contact with the solvent through the contact step under reduced pressure, air or the like existing in the gaps between the CNTs constituting the aligned carbon nanotube aggregate is discharged from the aligned carbon nanotube aggregate, It becomes easy to impregnate a solvent into the gap. For this reason, it is speculated that in the decompression step, the solvent can be uniformly distributed in the aligned carbon nanotube aggregate before separation from the substrate. As a result, it is considered that the dispersibility of CNTs in the CNT dispersion is further enhanced. And the electrically conductive film etc. which were prepared using the CNT dispersion liquid obtained through the pressure reduction process have higher conductivity than the case where the CNT dispersion liquid which has not been subjected to the pressure reduction process is used.
Here, the depressurization method is not particularly limited as long as the aligned carbon nanotube aggregate after the contacting step is placed under reduced pressure together with the solvent. For example, the carbon nanotube-containing aggregate in contact with the solvent is placed in the desiccator together with the substrate. And a method of degassing the desiccator. The conditions for the depressurization step are not particularly limited, but are usually less than atmospheric pressure (for example, pressure 0.0001 Pa to 5000 Pa) for 1 minute to 600 minutes, more preferably about 5 minutes to 180 minutes. The conditions for the decompression step can be adjusted as appropriate according to the type of the solvent.
<分離工程>
 接触工程の後、任意に減圧工程を行ってから、分離工程を実施する。分離工程では、溶媒中でカーボンナノチューブ配向集合体を基板から分離させる。その際、溶媒は分散剤を実質的に含まないのが好ましい。
<Separation process>
After the contact step, a pressure reduction step is optionally performed, and then a separation step is performed. In the separation step, the aligned carbon nanotube aggregate is separated from the substrate in a solvent. In that case, it is preferable that a solvent does not contain a dispersing agent substantially.
 ここで、基板からのカーボンナノチューブ配向集合体の分離は、カーボンナノチューブ配向集合体を基板から物理的、化学的あるいは機械的な方法を用いて剥離することにより行うことができる。具体的には、剥離方法としては、例えば電場、磁場、遠心力または表面張力を用いて基板からカーボンナノチューブ配向集合体を剥離する方法、カッターブレードなどの薄い刃物による切断や真空ポンプによる吸引を用いて基板からカーボンナノチューブ配向集合体を機械的に直接剥ぎ取る方法、或いは、圧力や熱を用いて基板からカーボンナノチューブ配向集合体を剥離する方法などを用いることができる。 Here, separation of the aligned carbon nanotube aggregate from the substrate can be performed by peeling the aligned carbon nanotube aggregate from the substrate using a physical, chemical or mechanical method. Specifically, as a peeling method, for example, a method of peeling an aligned carbon nanotube aggregate from a substrate using an electric field, a magnetic field, centrifugal force or surface tension, cutting with a thin blade such as a cutter blade, or suction with a vacuum pump is used. For example, a method of mechanically peeling the aligned carbon nanotube aggregate directly from the substrate or a method of peeling the aligned carbon nanotube aggregate from the substrate using pressure or heat can be used.
 そして、分離工程で基板から分離されたカーボンナノチューブ配向集合体を構成するCNTは、溶媒中に良好に分散する。ここで、カーボンナノチューブ配向集合体を構成するCNTを、分散剤を使用することなく良好に分散させることができる理由は、明らかではないが、CNTが上記性状を有しているためであると推察される。即ち、カーボンナノチューブ配向集合体を構成するCNTは、平均直径(Av)と直径分布(3σ)とが0.60>(3σ/Av)>0.20を満たし、且つ、平均長さが100μm以上であるので、当該集合体が形成された基板の表面近傍においては、CNT間に微小な隙間が存在していると推定される。従って、当該集合体を溶媒に接触させた際に当該隙間に溶媒が浸透し、その結果、溶媒中でCNTを基板から剥離した際に、CNTが凝集することなく解れ易くなり、分散剤の不存在下でもCNTが溶媒中で均一に分散すると推定される。 Then, the CNTs constituting the aligned carbon nanotube aggregate separated from the substrate in the separation step are well dispersed in the solvent. Here, the reason why the CNTs constituting the aligned carbon nanotube aggregate can be favorably dispersed without using a dispersant is not clear, but is presumed to be because the CNTs have the above properties. Is done. That is, the CNTs constituting the aligned carbon nanotube aggregate have an average diameter (Av) and a diameter distribution (3σ) satisfying 0.60> (3σ / Av)> 0.20 and an average length of 100 μm or more. Therefore, it is estimated that a minute gap exists between the CNTs in the vicinity of the surface of the substrate on which the aggregate is formed. Therefore, when the aggregate is brought into contact with the solvent, the solvent penetrates into the gap, and as a result, when the CNT is peeled off from the substrate in the solvent, the CNT is easily released without agglomeration, and the dispersion agent is eliminated. It is estimated that CNTs are uniformly dispersed in the solvent even in the presence.
 なお、カーボンナノチューブ配向集合体を分離させた後の基板は、デカンテーション、遠心分離、フィルター濾過、ピンセットやロボットアーム等を用いたピッキングなどの既知の手法を用いて溶媒中から除去することができる。これらの中でも、機械的に基板のみを容易に取り除けることから、基板を分離する方法としては、ピッキングを採用するのが好ましい。 The substrate after separating the aligned carbon nanotube aggregates can be removed from the solvent using a known method such as decantation, centrifugation, filter filtration, picking using tweezers, a robot arm, or the like. . Among these, since only the substrate can be easily removed mechanically, it is preferable to employ picking as a method for separating the substrate.
<分散工程>
 分散工程では、分離工程において基板から分離したカーボンナノチューブ配向集合体を溶媒中で分散処理し、カーボンナノチューブ配向集合体を構成するCNTを溶媒中で更に良好に分散させる。
 なお、分散工程を実施する場合、上述した基板の除去は、分散工程の前に実施してもよいし、分散工程の後に実施してもよいが、分散処理を良好に行う観点からは、基板は分散工程の前に除去することが好ましい。また、不純物の混入などによる、CNTの純度や品質の低下を防止する観点からは、分散工程は、分離工程とは別個に行うことが好ましい。分離工程と分散工程とを同時に実施した場合、換言すれば、後述する分散処理方法を用いてカーボンナノチューブ配向集合体を基板から分離した場合、分離したCNTと基板との衝突が生じ、不純物の混入やCNTの劣化が生じやすくなる。
<Dispersing process>
In the dispersion step, the aligned carbon nanotube aggregate separated from the substrate in the separation step is dispersed in a solvent, and the CNTs constituting the aligned carbon nanotube assembly are further favorably dispersed in the solvent.
In addition, when performing a dispersion | distribution process, the removal of the board | substrate mentioned above may be implemented before a dispersion | distribution process, and may be implemented after a dispersion | distribution process, but it is a board | substrate from a viewpoint of performing a dispersion process favorably. Is preferably removed before the dispersing step. In addition, from the viewpoint of preventing a decrease in the purity and quality of CNT due to contamination of impurities, the dispersion step is preferably performed separately from the separation step. When the separation step and the dispersion step are performed at the same time, in other words, when the aligned carbon nanotube aggregate is separated from the substrate using the dispersion treatment method described later, collision between the separated CNT and the substrate occurs, and impurities are mixed. And deterioration of CNT is likely to occur.
 ここで、分散処理方法としては、キャビテーション効果または解砕効果が得られる分散処理が挙げられる。そこで、以下に、キャビテーション効果または解砕効果が得られる分散処理について説明する。 Here, examples of the dispersion processing method include dispersion processing that can provide a cavitation effect or a crushing effect. Therefore, a description will be given below of distributed processing that provides a cavitation effect or a crushing effect.
[キャビテーション効果が得られる分散処理]
 キャビテーション効果が得られる分散処理は、液体に高エネルギーを付与した際、水に生じた真空の気泡が破裂することにより生じる衝撃波を利用した分散方法である。この分散方法を用いることにより、カーボンナノチューブ配向集合体を構成するCNTを更に良好に分散させることができる。
[Distributed processing with cavitation effect]
The dispersion treatment that provides a cavitation effect is a dispersion method that uses a shock wave that is generated when a vacuum bubble generated in water bursts when high energy is applied to a liquid. By using this dispersion method, it is possible to further favorably disperse the CNTs constituting the aligned carbon nanotube aggregate.
 ここで、キャビテーション効果が得られる分散処理の具体例としては、超音波による分散処理、ジェットミルによる分散処理および高剪断撹拌による分散処理が挙げられる。これらの分散処理は一つのみを行なってもよく、複数の分散処理を組み合わせて行なってもよい。より具体的には、例えば超音波ホモジナイザー、ジェットミルおよび高剪断撹拌装置が好適に用いられる。これらの装置は従来公知のものを使用すればよい。 Here, specific examples of the dispersion treatment that provides a cavitation effect include dispersion treatment using ultrasonic waves, dispersion treatment using a jet mill, and dispersion treatment using high shear stirring. Only one of these distributed processes may be performed, or a plurality of distributed processes may be combined. More specifically, for example, an ultrasonic homogenizer, a jet mill, and a high shear stirring device are preferably used. These devices may be conventionally known devices.
 カーボンナノチューブ配向集合体を構成するCNTの分散に超音波ホモジナイザーを用いる場合には、基板から分離されたカーボンナノチューブ配向集合体を含む溶媒に対し、超音波ホモジナイザーにより超音波を照射すればよい。照射する時間は、カーボンナノチューブ配向集合体の量等により適宜設定すればよく、例えば、3分以上が好ましく、30分以上がより好ましく、また、5時間以下が好ましく、2時間以下がより好ましい。また、例えば、出力は0.1W以上500W以下が好ましく、1W以上300W以下がより好ましく、5W以上100W以下がさらに好ましく、温度は15℃以上50℃以下が好ましい。 When an ultrasonic homogenizer is used to disperse the CNTs constituting the aligned carbon nanotube aggregate, the ultrasonic homogenizer may be used to irradiate the solvent containing the aligned carbon nanotube aggregate separated from the substrate. The irradiation time may be appropriately set depending on the amount of the aligned carbon nanotube aggregate, and is preferably, for example, 3 minutes or more, more preferably 30 minutes or more, and preferably 5 hours or less, more preferably 2 hours or less. For example, the output is preferably 0.1 W or more and 500 W or less, more preferably 1 W or more and 300 W or less, further preferably 5 W or more and 100 W or less, and the temperature is preferably 15 ° C. or more and 50 ° C. or less.
 また、ジェットミルを用いる場合、処理回数は、カーボンナノチューブ配向集合体の量等により適宜設定すればよく、例えば、2回以上が好ましく、5回以上がより好ましく、100回以下が好ましく、50回以下がより好ましい。また、例えば、圧力は20MPa以上250MPa以下が好ましく、温度は15℃以上50℃以下が好ましい。 In the case of using a jet mill, the number of treatments may be appropriately set depending on the amount of aligned carbon nanotube aggregates, etc., for example, preferably 2 times or more, more preferably 5 times or more, preferably 100 times or less, 50 times The following is more preferable. For example, the pressure is preferably 20 MPa or more and 250 MPa or less, and the temperature is preferably 15 ° C. or more and 50 ° C. or less.
 さらに、高剪断撹拌を用いる場合には、基板から分離されたカーボンナノチューブ配向集合体を含む溶媒に対し、高剪断撹拌装置により撹拌および剪断を加えればよい。旋回速度は速ければ速いほどよい。例えば、運転時間(機械が回転動作をしている時間)は3分以上4時間以下が好ましく、周速は5m/s以上50m/s以下が好ましく、温度は15℃以上50℃以下が好ましい。 Furthermore, when high shear stirring is used, stirring and shearing may be applied to the solvent containing the aligned carbon nanotube aggregate separated from the substrate by a high shear stirring device. The faster the turning speed, the better. For example, the operation time (time during which the machine is rotating) is preferably 3 minutes or more and 4 hours or less, the peripheral speed is preferably 5 m / s or more and 50 m / s or less, and the temperature is preferably 15 ° C. or more and 50 ° C. or less.
 なお、上記したキャビテーション効果が得られる分散処理は、50℃以下の温度で行なうことがより好ましい。溶媒の揮発による濃度変化が抑制されるからである。 In addition, it is more preferable to perform the dispersion treatment for obtaining the above-described cavitation effect at a temperature of 50 ° C. or lower. This is because a change in concentration due to the volatilization of the solvent is suppressed.
[解砕効果が得られる分散処理]
 解砕効果が得られる分散処理は、カーボンナノチューブ配向集合体を構成するCNTを溶媒中に均一に分散できることは勿論、上記したキャビテーション効果が得られる分散処理に比べ、気泡が消滅する際の衝撃波によるCNTの損傷を抑制することができる点で一層有利である。
[Dispersion treatment that can produce a crushing effect]
The dispersion treatment that provides the crushing effect is not only capable of uniformly dispersing the CNTs constituting the aligned carbon nanotube aggregate in the solvent, but also by the shock wave when the bubbles disappear, compared to the dispersion treatment that provides the cavitation effect described above. This is more advantageous in that damage to CNT can be suppressed.
 この解砕効果が得られる分散処理では、基板から分離されたカーボンナノチューブ配向集合体を含む溶媒にせん断力を与えてCNTの凝集体を解砕・分散させ、さらにCNTを含む溶媒に背圧を負荷し、また必要に応じ、CNTを含む溶媒を冷却することで、気泡の発生を抑制しつつ、CNTを溶媒中に均一に分散させることができる。
 なお、CNTを含む溶媒に背圧を負荷する場合、CNTを含む溶媒に負荷した背圧は、大気圧まで一気に降圧させてもよいが、多段階で降圧することが好ましい。
In the dispersion treatment in which this crushing effect is obtained, a shear force is applied to the solvent containing the aligned carbon nanotube aggregates separated from the substrate to crush and disperse the CNT aggregates, and a back pressure is applied to the solvent containing CNTs. By loading and cooling the solvent containing CNTs as necessary, CNTs can be uniformly dispersed in the solvent while suppressing the generation of bubbles.
In addition, when a back pressure is applied to the solvent containing CNT, the back pressure applied to the solvent containing CNT may be reduced to atmospheric pressure all at once, but it is preferable to reduce the pressure in multiple steps.
 ここに、CNTを含む溶媒にせん断力を与えて溶媒中のCNTをさらに分散させるには、例えば、以下のような構造の分散器を有する分散システムを用いればよい。
 すなわち、分散器は、CNTを含む溶媒の流入側から流出側に向かって、内径がd1の分散器オリフィスと、内径がd2の分散空間と、内径がd3の終端部と(但し、d2>d3>d1である。)、を順次備える。
 そして、この分散器では、流入する高圧(10~400MPa、好ましくは50~250MPa)のCNTを含む溶媒が、分散器オリフィスを通過することで、圧力の低下を伴いつつ、高流速の流体となって分散空間に流入する。その後、分散空間に流入した高流速のCNTを含む溶媒は、分散空間内を高速で流動し、その際にせん断力を受ける。その結果、CNTを含む溶媒の流速が低下すると共に、溶媒中のCNTが良好に分散する。そして、終端部から、流入したCNTを含む溶媒の圧力よりも低い圧力(背圧)の流体が、CNT分散液として流出することになる。
Here, in order to further disperse the CNTs in the solvent by applying a shearing force to the solvent containing the CNTs, for example, a dispersion system having a disperser having the following structure may be used.
That is, the disperser includes a disperser orifice having an inner diameter d1, a dispersive space having an inner diameter d2, and a terminal portion having an inner diameter d3 from the inflow side to the outflow side of the solvent containing CNT (where d2> d3 > D1).
In this disperser, the inflowing solvent containing high-pressure (10 to 400 MPa, preferably 50 to 250 MPa) CNT passes through the disperser orifice and becomes a high flow rate fluid with a decrease in pressure. Into the dispersed space. Thereafter, the solvent containing the high flow rate CNTs flowing into the dispersion space flows at high speed in the dispersion space, and receives a shearing force at that time. As a result, the flow rate of the solvent containing CNTs decreases and the CNTs in the solvent are well dispersed. And the fluid of the pressure (back pressure) lower than the pressure of the solvent containing the inflowing CNT flows out from the terminal portion as the CNT dispersion liquid.
 なお、CNTを含む溶媒の背圧は、CNTを含む溶媒の流れに負荷をかけることでCNTを含む溶媒に負荷することができ、例えば、多段降圧器を分散器の下流側に配設することにより、CNTを含む溶媒に所望の背圧を負荷することができる。
 そして、CNTを含む溶媒の背圧を多段降圧器により多段階で降圧することで、最終的にCNT分散液を大気圧に開放した際に、CNT分散液中に気泡が発生するのを抑制できる。
In addition, the back pressure of the solvent containing CNT can be applied to the solvent containing CNT by applying a load to the flow of the solvent containing CNT. For example, a multistage step-down pressure device is disposed downstream of the disperser. Thus, a desired back pressure can be applied to the solvent containing CNTs.
And by reducing the back pressure of the solvent containing CNTs in multiple stages with a multistage pressure reducer, it is possible to suppress the generation of bubbles in the CNT dispersion liquid when the CNT dispersion liquid is finally released to atmospheric pressure. .
 また、この分散器は、CNTを含む溶媒を冷却するための熱交換器や冷却液供給機構を備えていてもよい。というのは、分散器でせん断力を与えられて高温になったCNTを含む溶媒を冷却することにより、CNTを含む溶媒中で気泡が発生するのをさらに抑制できるからである。
 なお、熱交換器等の配設に替えて、CNTを含む溶媒を予め冷却しておくことでも、CNTを含む溶媒中で気泡が発生することを抑制できる。
In addition, the disperser may include a heat exchanger or a coolant supply mechanism for cooling the solvent containing CNTs. This is because the generation of bubbles in the solvent containing CNTs can be further suppressed by cooling the solvent containing CNTs that have been heated to a high temperature by applying a shearing force with a disperser.
In addition, it can suppress that a bubble generate | occur | produces in the solvent containing CNT also by cooling in advance the solvent containing CNT instead of arrangement | positioning of a heat exchanger etc.
 上記したように、この解砕効果が得られる分散処理では、キャビテーションの発生を抑制できるので、時として懸念されるキャビテーションに起因したCNTの損傷、特に、気泡が消滅する際の衝撃波に起因したCNTの損傷を抑制することができる。加えて、CNTへの気泡の付着や、気泡の発生によるエネルギーロスを抑制して、比表面積が大きいCNTであっても、均一かつ効率的に分散させることができる。
 なお、CNTへの気泡の付着の抑制による分散性の向上効果は、比表面積が大きいCNT、特に、比表面積が800m2/g以上のCNTにおいて非常に大きい。CNTの比表面積が大きく、表面に気泡が付着し易いCNTであるほど、気泡が発生して付着した際に分散性が低下し易いからである。
As described above, in the dispersion treatment in which this crushing effect is obtained, since the occurrence of cavitation can be suppressed, damage to CNT caused by cavitation that is sometimes a concern, in particular, CNT caused by shock waves when bubbles disappear. Damage can be suppressed. In addition, it is possible to uniformly and efficiently disperse even CNTs having a large specific surface area by suppressing the adhesion of bubbles to the CNTs and energy loss due to the generation of bubbles.
The effect of improving dispersibility by suppressing the adhesion of bubbles to CNTs is very large in CNTs having a large specific surface area, particularly CNTs having a specific surface area of 800 m 2 / g or more. This is because the larger the specific surface area of CNTs and the easier the bubbles are attached to the surface, the more easily the dispersibility decreases when bubbles are generated and attached.
 以上のような構成を有する分散システムとしては、例えば、製品名「BERYU SYSTEM PRO」(株式会社美粒製)を用いて構成した分散システムなどがある。そして、解砕効果が得られる分散処理は、このような分散システムを用い、分散条件を適切に制御することで、実施することができる。 As a distributed system having the above-described configuration, for example, there is a distributed system configured by using a product name “BERYU SYSTEM PRO” (manufactured by Migrain Co., Ltd.). And the dispersion | distribution process from which a crushing effect is acquired can be implemented by controlling a dispersion | distribution condition appropriately using such a dispersion | distribution system.
 以上の本発明のカーボンナノチューブ分散液の製造方法によれば、所望のCNT分散液を効率的に製造することができる。得られたCNT分散液は、例えば、CNT含有膜やカーボンナノチューブ含有複合材料の製造に好適に用いられる。特に、CNT含有膜は導電膜として好適に用いられる。 According to the above method for producing a carbon nanotube dispersion of the present invention, a desired CNT dispersion can be efficiently produced. The obtained CNT dispersion is suitably used for the production of, for example, a CNT-containing film or a carbon nanotube-containing composite material. In particular, the CNT-containing film is suitably used as a conductive film.
(CNT含有膜の作製方法)
 本発明により得られるCNT分散液を用いる、CNT含有膜の作製方法は特に限定されず、公知の膜形成方法を使用することができる。例えば、CNT含有膜は、前記CNT分散液を用いて、以下の(i)または(ii)の方法を用いて作製することができる。
(i)CNT分散液を基材フィルム上に塗布し、塗布したCNT分散液から溶媒を除去し、基材フィルム上に積層されたCNT含有膜を得る方法。
(ii)CNT分散液を剥離用支持体上に塗布し、塗布したCNT分散液から溶媒を除去して剥離用支持体付きCNT含有膜を形成後、任意に得られた剥離用支持体付きCNT含有膜から剥離用支持体を剥離することでCNT含有膜を得る方法。
 そして、上述の(i)または(ii)の方法を用いて作製されたCNT含有膜は、通常、CNTと、任意の添加剤と、をCNT分散液と同様の比率で含有している。
(Method for producing CNT-containing film)
The production method of the CNT-containing film using the CNT dispersion obtained by the present invention is not particularly limited, and a known film forming method can be used. For example, the CNT-containing film can be produced by using the CNT dispersion and using the following method (i) or (ii).
(I) A method of applying a CNT dispersion onto a substrate film, removing the solvent from the applied CNT dispersion, and obtaining a CNT-containing film laminated on the substrate film.
(Ii) A CNT dispersion liquid is applied on a peeling support, and the solvent is removed from the applied CNT dispersion to form a CNT-containing film with a peeling support, and then optionally obtained CNT with a peeling support. A method of obtaining a CNT-containing film by peeling a peeling support from a containing film.
And the CNT containing film | membrane produced using the method of the above-mentioned (i) or (ii) normally contains CNT and arbitrary additives in the ratio similar to a CNT dispersion liquid.
<CNT含有膜の作製方法(i)>
 ここで、CNT含有膜を作製する際にCNT分散液を塗布する基材フィルムとしては、特に限定されることなく、作製するCNT含有膜の用途に応じて既知の基材フィルムを用いることができる。具体的には、例えば、得られたCNT含有膜を透明導電膜として使用する場合には、基材フィルムとしては、樹脂基材、ガラス基材などを挙げることができる。樹脂基材としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などのポリエステル、ポリイミド、ポリフェニレンスルフィド、アラミド、ポリプロピレン、ポリエチレン、ポリ乳酸、ポリ塩化ビニル、ポリカーボネート、ポリメタクリル酸メチル、脂環式アクリル樹脂、シクロオレフィン樹脂、トリアセチルセルロースなどよりなる基材を挙げることができる。ガラス基材としては、通常のソーダガラスよりなる基材を挙げることができる。
<Method for producing CNT-containing film (i)>
Here, the substrate film to which the CNT dispersion is applied when the CNT-containing film is produced is not particularly limited, and a known substrate film can be used depending on the application of the produced CNT-containing film. . Specifically, for example, when the obtained CNT-containing film is used as a transparent conductive film, examples of the substrate film include a resin substrate and a glass substrate. Resin base materials include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyimide, polyphenylene sulfide, aramid, polypropylene, polyethylene, polylactic acid, polyvinyl chloride, polycarbonate, polymethyl methacrylate, and alicyclic. The base material which consists of an acrylic resin, a cycloolefin resin, a triacetyl cellulose etc. can be mentioned. Examples of the glass substrate include a substrate made of ordinary soda glass.
 そして基材フィルムは、UV照射による処理、コロナ放電照射による処理またはオゾンによる処理や、シランカップリング剤、アクリル樹脂またはウレタン樹脂の塗布による処理など、公知の方法に従って、その表面が処理されたものであってもよい。基材フィルムの表面を上記のようにして処理することで、CNT含有膜との密着性やCNT分散液の濡れ性などを制御することができる。また、例えば、上述した樹脂基材、ガラス基材の上には、ハードコート層、ガスバリア層、粘着剤層およびCNT含有膜とは別の導電層(導電膜)等が形成されていてもよい。基材フィルムの厚みは、用途に応じて適宜決定すればよいが、通常、10~10000μmである。
 また、CNT含有膜を透明導電膜として使用する場合に使用される基材フィルムの光線透過率(測定波長:500nm)は、好ましくは60%以上である。なお、基材フィルムの光線透過率(測定波長:500nm)は、例えば、分光光度計(日本分光社製、V-570)を用いて測定することができる。
And the surface of the base film is treated according to a known method such as treatment by UV irradiation, treatment by corona discharge or treatment by ozone, treatment by application of a silane coupling agent, acrylic resin or urethane resin, etc. It may be. By treating the surface of the base film as described above, it is possible to control the adhesion to the CNT-containing film, the wettability of the CNT dispersion, and the like. Further, for example, a conductive layer (conductive film) other than the hard coat layer, gas barrier layer, pressure-sensitive adhesive layer, and CNT-containing film may be formed on the above-described resin substrate and glass substrate. . The thickness of the base film may be appropriately determined according to the use, but is usually 10 to 10,000 μm.
Moreover, the light transmittance (measurement wavelength: 500 nm) of the base film used when the CNT-containing film is used as a transparent conductive film is preferably 60% or more. The light transmittance (measurement wavelength: 500 nm) of the base film can be measured using, for example, a spectrophotometer (manufactured by JASCO Corporation, V-570).
 CNT分散液を基材フィルム上に塗布する方法としては、公知の塗布方法を採用できる。具体的には、塗布方法としては、ディッピング法、ロールコート法、グラビアコート法、ナイフコート法、エアナイフコート法、ロールナイフコート法、ダイコート法、スクリーン印刷法、スプレーコート法、グラビアオフセット法等を用いることができる。 As a method of applying the CNT dispersion on the base film, a known application method can be adopted. Specifically, the coating method includes dipping method, roll coating method, gravure coating method, knife coating method, air knife coating method, roll knife coating method, die coating method, screen printing method, spray coating method, gravure offset method, etc. Can be used.
 基材フィルム上に塗布したCNT分散液から溶媒を除去する方法としては、公知の乾燥方法を採用できる。乾燥方法としては、熱風乾燥法、真空乾燥法、熱ロール乾燥法、赤外線照射法等が挙げられる。乾燥温度は、特に限定されないが、通常、室温~200℃、乾燥時間は、特に限定されないが、通常、0.1~150分である。 As a method for removing the solvent from the CNT dispersion applied on the base film, a known drying method can be employed. Examples of the drying method include a hot air drying method, a vacuum drying method, a hot roll drying method, and an infrared irradiation method. The drying temperature is not particularly limited, but is usually room temperature to 200 ° C., and the drying time is not particularly limited, but is usually 0.1 to 150 minutes.
 溶媒の除去後に得られるCNT含有膜の厚みは、特に限定されないが、通常、100nmから1mmである。また、CNT含有膜中に含まれるカーボンナノチューブの含有量は、特に限定されないが、通常、0.1×10-6~15mg/cm2である。 The thickness of the CNT-containing film obtained after removal of the solvent is not particularly limited, but is usually from 100 nm to 1 mm. Further, the content of carbon nanotubes contained in the CNT-containing film is not particularly limited, but is usually 0.1 × 10 −6 to 15 mg / cm 2 .
<CNT含有膜の作製方法(ii)>
 CNT含有膜を作製する際にCNT分散液を塗布する剥離用支持体としては、その上に形成した膜を十分に固定することができ、かつ、薄膜剥離方法を用いて、形成した膜を剥離用支持体から剥離することができるものであれば特に限定されない。剥離用支持体としては、例えば、PTFE(ポリテトラフルオロエチレン)シート、PET(ポリエチレンテレフタレート)シート等の合成樹脂シートや、ニトロセルロース等からなるメンブレンフィルター等が挙げられる。
 剥離用支持体の厚みは、適宜決定すればよいが、通常、10~10000μmである。
<Method for producing CNT-containing film (ii)>
As a peeling support for applying a CNT dispersion when producing a CNT-containing film, the film formed thereon can be sufficiently fixed, and the formed film can be peeled off using a thin film peeling method. There is no particular limitation as long as it can be peeled off from the support. Examples of the peeling support include synthetic resin sheets such as PTFE (polytetrafluoroethylene) sheet and PET (polyethylene terephthalate) sheet, membrane filters made of nitrocellulose, and the like.
The thickness of the peeling support may be appropriately determined, but is usually 10 to 10,000 μm.
 剥離用支持体上に形成されたCNT含有膜は、公知の薄膜剥離方法を利用することにより、剥離用支持体から剥離することができる。例えば、剥離用支持体が所定の溶媒に溶解するものである場合、剥離用支持体付きCNT含有膜をその溶媒に浸漬させて剥離用支持体を溶解させることで、CNT含有膜を単独で取り出すことができる。 The CNT-containing film formed on the peeling support can be peeled from the peeling support by using a known thin film peeling method. For example, when the peeling support is dissolved in a predetermined solvent, the CNT-containing film is taken out alone by immersing the CNT-containing film with the peeling support in the solvent and dissolving the peeling support. be able to.
 CNT分散液を剥離用支持体上に塗布する方法、および剥離用支持体上に塗布したCNT分散液から溶媒を除去する方法としては、上述したCNT含有膜の作製方法(i)と同様の方法を採用することができる。 The method for applying the CNT dispersion on the peeling support and the method for removing the solvent from the CNT dispersion applied on the peeling support are the same as the method (i) for producing the CNT-containing film described above. Can be adopted.
 なお、CNT含有膜は、通常、一層からなるが、CNT分散液の塗布と溶媒の除去とを適宜繰り返すことにより、二層以上の複数層構造を有する膜としてもよい。また、CNT含有膜を得た後、公知の方法に従って、該膜から適宜分散剤を洗浄除去してもよい。さらに、CNT含有膜に対し、公知の方法により、p型ドーパントやn型ドーパントなどでドーピング処理を行ってもよい。 The CNT-containing film is usually composed of a single layer, but may be a film having a multilayer structure of two or more layers by appropriately repeating the application of the CNT dispersion and the removal of the solvent. Further, after obtaining the CNT-containing film, the dispersant may be appropriately removed from the film according to a known method. Further, the CNT-containing film may be doped with a p-type dopant or an n-type dopant by a known method.
(導電膜)
 本発明により得られるCNT分散液を用いて作製した導電膜は、優れた導電性および信頼性を有している。
(Conductive film)
The conductive film produced using the CNT dispersion obtained by the present invention has excellent conductivity and reliability.
(導電性フィルム)
 また、前記導電膜を基材フィルム上に積層することで導電性フィルムが得られる。導電性フィルムは、前記導電膜と同様、優れた導電性および信頼性を有している。かかる導電性フィルムは、剥離用支持体上に作製した導電膜を、基材フィルムに転写することで得ることもできるし、自立膜である導電膜を、基材フィルム上に貼り付けることで得ることもできる。また、導電性フィルムは、CNT分散液を基材フィルム上に塗布し、塗布したCNT分散液から溶媒を除去するなど、基材フィルム上に導電膜を直接形成することによっても得ることができる。
(Conductive film)
Moreover, an electroconductive film is obtained by laminating | stacking the said electrically conductive film on a base film. Similar to the conductive film, the conductive film has excellent conductivity and reliability. Such a conductive film can be obtained by transferring a conductive film produced on a peeling support to a base film, or by sticking a conductive film that is a self-supporting film on the base film. You can also The conductive film can also be obtained by directly forming a conductive film on the base film, such as by applying the CNT dispersion onto the base film and removing the solvent from the applied CNT dispersion.
 前記導電性フィルムの表面抵抗率は、通常、105Ω/□以下、好ましくは104Ω/□以下、より好ましくは5×103Ω/□以下、特に好ましくは2×103Ω/□以下であり、下限は特に限定されないが、通常、0.01Ω/□以上である。なお、本発明において導電性フィルムの表面抵抗率は、本明細書の実施例に記載の方法で測定することができる。 The surface resistivity of the conductive film is usually 10 5 Ω / □ or less, preferably 10 4 Ω / □ or less, more preferably 5 × 10 3 Ω / □ or less, and particularly preferably 2 × 10 3 Ω / □. The lower limit is not particularly limited, but is usually 0.01Ω / □ or more. In addition, in this invention, the surface resistivity of an electroconductive film can be measured by the method as described in the Example of this specification.
 本発明のCNT分散液を用いて得られる導電膜、および該導電膜を備える導電性フィルムは、例えば、帯電防止フィルム、電子ペーパー、調光フィルム、タッチパネルおよび太陽電池に好適に用いられ、特に太陽電池用電極に好適に用いられる。
 また、本発明のCNT分散液を用いて得られる、ゴムまたは樹脂とCNTとの複合材料(CNT含有複合材料)は、導電性と強度とを備えているため、帯電防止シート、容器、タイヤ、ホース、タイミングベルト、ゴムパッキン、チューブ、糸などに好適に用いられる。なお、CNT含有複合材料は、CNT分散液とゴムまたは樹脂のラテックスとを混合した後に凝固させるなど、公知の方法を用いて調製することができる。
The conductive film obtained by using the CNT dispersion liquid of the present invention and the conductive film including the conductive film are preferably used for, for example, an antistatic film, electronic paper, a light control film, a touch panel and a solar cell, It is suitably used for battery electrodes.
Moreover, since the composite material (CNT containing composite material) of rubber | gum or resin and CNT obtained using the CNT dispersion liquid of this invention is equipped with electroconductivity and intensity | strength, an antistatic sheet | seat, a container, a tire, It is suitably used for hoses, timing belts, rubber packings, tubes, threads and the like. The CNT-containing composite material can be prepared by using a known method such as solidification after mixing the CNT dispersion and rubber or resin latex.
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 なお、実施例および比較例において使用したカーボンナノチューブ配向集合体付き基板は、それぞれ以下の方法で調製した。また、カーボンナノチューブ分散液中の凝集物の有無およびカーボンナノチューブの分散性は、それぞれ以下の方法を使用して評価した。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.
The substrates with aligned carbon nanotube assemblies used in the examples and comparative examples were prepared by the following methods, respectively. The presence or absence of aggregates in the carbon nanotube dispersion and the dispersibility of the carbon nanotubes were evaluated using the following methods, respectively.
(カーボンナノチューブ配向集合体付き基板の調製)
<調製例1>
 国際公開第2006/011655号の記載に従って、スーパーグロース法によりカーボンナノチューブ配向集合体付き基板Aを得た。
 具体的には、シリコンウェハーよりなる基材(1cm×1cm)上に鉄薄膜(厚み1nm)よりなる金属触媒層を設けてなる平板状の基板上にカーボンナノチューブを成長させた。
 得られたカーボンナノチューブ配向集合体は、主に単層CNTから構成されていた。そして、カーボンナノチューブ配向集合体を構成するCNTは、BET比表面積が800m2/gであり、質量密度が0.03g/cm3であり、マイクロ孔容積が0.44mL/gであり、平均直径(Av)が3.3nmであり、直径分布(3σ)が1.9nmであり、(3σ/Av)が0.58であり、平均長さが500μmであった。
(Preparation of substrate with aligned carbon nanotubes)
<Preparation Example 1>
In accordance with the description in International Publication No. 2006/011655, a substrate A with aligned carbon nanotube aggregates was obtained by the super-growth method.
Specifically, carbon nanotubes were grown on a flat substrate in which a metal catalyst layer made of an iron thin film (thickness 1 nm) was provided on a substrate (1 cm × 1 cm) made of a silicon wafer.
The obtained aligned carbon nanotube assembly was mainly composed of single-walled CNTs. The CNTs constituting the carbon nanotube aligned aggregate have a BET specific surface area of 800 m 2 / g, a mass density of 0.03 g / cm 3 , a micropore volume of 0.44 mL / g, and an average diameter. (Av) was 3.3 nm, diameter distribution (3σ) was 1.9 nm, (3σ / Av) was 0.58, and the average length was 500 μm.
<調製例2>
 金属触媒層としての鉄薄膜の厚みを5nmにした以外は調製例1と同様にして、カーボンナノチューブ配向集合体付き基板Bを得た。
 得られたカーボンナノチューブ配向集合体は、二層CNTを含むCNTから構成されていた。そして、カーボンナノチューブ配向集合体を構成するCNTは、BET比表面積が620m2/gであり、質量密度が0.03g/cm3であり、マイクロ孔容積が0.41mL/gであり、平均直径(Av)が5.9nmであり、直径分布(3σ)が3.3nmであり、(3σ/Av)が0.56であり、平均長さが500μmであった。
<Preparation Example 2>
A substrate B with an aligned carbon nanotube assembly was obtained in the same manner as in Preparation Example 1 except that the thickness of the iron thin film as the metal catalyst layer was changed to 5 nm.
The obtained aligned carbon nanotube assembly was composed of CNTs including double-walled CNTs. The CNTs constituting the aligned carbon nanotube assembly have a BET specific surface area of 620 m 2 / g, a mass density of 0.03 g / cm 3 , a micropore volume of 0.41 mL / g, and an average diameter. (Av) was 5.9 nm, the diameter distribution (3σ) was 3.3 nm, (3σ / Av) was 0.56, and the average length was 500 μm.
<調製例3>
 基板上にカーボンナノチューブを成長させる時間(原料ガスの供給・加熱時間)を2倍にしたこと以外は、調製例1と同様にして、カーボンナノチューブ配向集合体付き基板Cを得た。
 得られたカーボンナノチューブ配向集合体は、主に単層CNTから構成されていた。そして、カーボンナノチューブ配向集合体を構成するCNTは、BET比表面積が820m2/gであり、質量密度が0.03g/cm3であり、マイクロ孔容積が0.42mL/gであり、平均直径(Av)が3.5nmであり、直径分布(3σ)が2.0nmであり、(3σ/Av)が0.57であり、平均長さが1000μmであった。
<Preparation Example 3>
Substrate C with an aligned carbon nanotube assembly was obtained in the same manner as in Preparation Example 1, except that the time for growing carbon nanotubes on the substrate (feeding and heating time for source gas) was doubled.
The obtained aligned carbon nanotube assembly was mainly composed of single-walled CNTs. The CNTs constituting the aligned carbon nanotube aggregate have a BET specific surface area of 820 m 2 / g, a mass density of 0.03 g / cm 3 , a micropore volume of 0.42 mL / g, and an average diameter. (Av) was 3.5 nm, the diameter distribution (3σ) was 2.0 nm, (3σ / Av) was 0.57, and the average length was 1000 μm.
(評価方法)
<凝集物の有無>
 得られたカーボンナノチューブ分散液を光学顕微鏡で観察し、直径1mm以上の凝集物の有無を確認した。
<カーボンナノチューブの分散性>
 得られたカーボンナノチューブ分散液を1000Gで15分間遠心し、沈殿物の有無を目視にて確認し、以下の基準でカーボンナノチューブの分散性を評価した。
○:カーボンナノチューブが良好に分散しており、沈殿物が確認できない。
×:カーボンナノチューブが良好に分散しておらず、沈殿物が確認できた。
<表面抵抗率>
 抵抗率計(三菱化学アナリテック社製、製品名「ロレスタ(登録商標)-GP MCP-T610」)を使用し、JIS K7194に準拠した方法で以下のように測定し、評価した。
 具体的には、四端子法を用いて、温度25℃、湿度20%RHの環境で、積層体の表面抵抗率(シート抵抗)を測定し、以下の基準に従って評価した。
 A:6000Ω/□未満
 B:6000Ω/□以上7000Ω/□未満
 C:7000Ω/□以上
(Evaluation methods)
<Presence of aggregates>
The obtained carbon nanotube dispersion was observed with an optical microscope to confirm the presence or absence of aggregates having a diameter of 1 mm or more.
<Dispersibility of carbon nanotubes>
The obtained carbon nanotube dispersion was centrifuged at 1000 G for 15 minutes, the presence or absence of precipitates was visually confirmed, and the dispersibility of the carbon nanotubes was evaluated according to the following criteria.
○: The carbon nanotubes are well dispersed and no precipitate can be confirmed.
X: The carbon nanotube was not disperse | distributed favorably and the deposit was confirmed.
<Surface resistivity>
Using a resistivity meter (manufactured by Mitsubishi Chemical Analytech Co., Ltd., product name “Loresta (registered trademark) -GP MCP-T610”), it was measured and evaluated by the method in accordance with JIS K7194 as follows.
Specifically, the surface resistivity (sheet resistance) of the laminate was measured using a four-terminal method in an environment of a temperature of 25 ° C. and a humidity of 20% RH, and evaluated according to the following criteria.
A: Less than 6000Ω / □ B: 6000Ω / □ or more and less than 7000Ω / □ C: 7000Ω / □ or more
(実施例1)
 調製例1で作製したカーボンナノチューブ配向集合体付き基板Aを、溶媒としてのオルトジクロロベンゼン中に浸漬した(接触工程)。次に、溶媒中で、スパチュラを用いてカーボンナノチューブ配向集合体を基板から分離した(分離工程)。その後、ピンセットにより基板を除去し、超音波ホモジナイザーを用いて20W、30分間の条件で分散処理を施して(分散工程)、カーボンナノチューブ分散液を得た。
 そして、得られたカーボンナノチューブ分散液について凝集物の有無およびカーボンナノチューブの分散性を評価した。また、基材フィルムとしてのPETフィルム(東洋紡社製、「コスモシャイン(登録商標)」、品番A4100、易接着層有り)上に、上記のCNT分散液を、スプレーコート法を用いて塗布し、PETフィルム上のCNT分散液を80℃で乾燥して、CNT含有膜を形成した。得られたCNT含有膜とPETフィルムの積層体(CNT含有膜からなる導電膜を基材フィルム上に積層してなる導電性フィルム)のCNT含有膜側の表面抵抗率を測定した。結果を表1に示す。
Example 1
Substrate A with an aligned carbon nanotube assembly produced in Preparation Example 1 was immersed in orthodichlorobenzene as a solvent (contact process). Next, the aligned carbon nanotube aggregate was separated from the substrate using a spatula in a solvent (separation step). Thereafter, the substrate was removed with tweezers, and a dispersion treatment was performed using a ultrasonic homogenizer under the conditions of 20 W and 30 minutes (dispersion step) to obtain a carbon nanotube dispersion.
And the presence or absence of the aggregate and the dispersibility of the carbon nanotube were evaluated about the obtained carbon nanotube dispersion liquid. Further, the above CNT dispersion was applied on a PET film as a base film (Toyobo Co., Ltd., “Cosmo Shine (registered trademark)”, product number A4100, with an easy-adhesion layer) using a spray coating method, The CNT dispersion on the PET film was dried at 80 ° C. to form a CNT-containing film. The surface resistivity of the obtained CNT-containing film and PET film laminate (conductive film formed by laminating a conductive film made of a CNT-containing film on a base film) on the CNT-containing film side was measured. The results are shown in Table 1.
(実施例2)
 分散工程を実施せず、接触工程の後に分離工程のみを行ってカーボンナノチューブ分散液を得た以外は、実施例1と同様にしてカーボンナノチューブ分散液および積層体を調製した。
 そして、実施例1と同様にして、凝集物の有無およびカーボンナノチューブの分散性を評価した。また、得られた積層体の表面抵抗率を測定した。結果を表1に示す。
(Example 2)
A carbon nanotube dispersion liquid and a laminate were prepared in the same manner as in Example 1 except that the carbon nanotube dispersion liquid was obtained by performing only the separation process after the contact process without performing the dispersion process.
Then, in the same manner as in Example 1, the presence or absence of aggregates and the dispersibility of the carbon nanotubes were evaluated. Moreover, the surface resistivity of the obtained laminated body was measured. The results are shown in Table 1.
(実施例3)
 カーボンナノチューブ配向集合体付き基板として調製例2で作製したカーボンナノチューブ配向集合体付き基板Bを使用した以外は、実施例1と同様にしてカーボンナノチューブ分散液および積層体を調製した。
 そして、実施例1と同様にして、凝集物の有無およびカーボンナノチューブの分散性を評価した。また、得られた積層体の表面抵抗率を測定した。結果を表1に示す。
Example 3
A carbon nanotube dispersion and a laminate were prepared in the same manner as in Example 1 except that the substrate B with aligned carbon nanotube assemblies prepared in Preparation Example 2 was used as the substrate with aligned carbon nanotube assemblies.
Then, in the same manner as in Example 1, the presence or absence of aggregates and the dispersibility of the carbon nanotubes were evaluated. Moreover, the surface resistivity of the obtained laminated body was measured. The results are shown in Table 1.
(実施例4)
 調製例1で作製したカーボンナノチューブ配向集合体付き基板Aを、溶媒としてのオルトジクロロベンゼンに容器(ガラスシャーレ)中で浸漬した(接触工程)。次に、CNT配向集合体付き基板Aをガラスシャーレごとデシケーターに入れ、ダイアフラムポンプでデシケーター内を大気圧未満(1000Pa)に減圧した(減圧工程)。オルトジクロロベンゼンに含浸させたCNT配向集合体から発泡が観察され、発泡は減圧開始から180分間ほど続いた。その後、常圧に戻してガラスシャーレをデシケーターから取り出し、溶媒中で、スパチュラを用いてカーボンナノチューブ配向集合体を基板から分離した(分離工程)。その後、ピンセットにより基板を除去し、超音波ホモジナイザーを用いて20W、30分間の条件で分散処理を施して(分散工程)、カーボンナノチューブ分散液を得た。また、得られたカーボンナノチューブ分散液を使用し、実施例1と同様にして積層体を調製した。
 そして、実施例1と同様にして、凝集物の有無およびカーボンナノチューブの分散性を評価した。また、得られた積層体の表面抵抗率を測定した。結果を表1に示す。
Example 4
The substrate A with an aligned carbon nanotube assembly produced in Preparation Example 1 was immersed in a container (glass petri dish) in orthodichlorobenzene as a solvent (contact process). Next, the substrate A with an aligned CNT aggregate was placed in a desiccator together with the glass petri dish, and the inside of the desiccator was decompressed to less than atmospheric pressure (1000 Pa) with a diaphragm pump (decompression step). Foaming was observed from the aligned CNT aggregate impregnated with orthodichlorobenzene, and foaming continued for about 180 minutes from the start of decompression. Thereafter, the pressure was returned to normal pressure, the glass petri dish was taken out from the desiccator, and the aligned carbon nanotube aggregate was separated from the substrate using a spatula in a solvent (separation step). Thereafter, the substrate was removed with tweezers, and a dispersion treatment was performed using a ultrasonic homogenizer under the conditions of 20 W and 30 minutes (dispersion step) to obtain a carbon nanotube dispersion. In addition, a laminate was prepared in the same manner as in Example 1 using the obtained carbon nanotube dispersion.
Then, in the same manner as in Example 1, the presence or absence of aggregates and the dispersibility of the carbon nanotubes were evaluated. Moreover, the surface resistivity of the obtained laminated body was measured. The results are shown in Table 1.
(実施例5)
 調製例3で作製したカーボンナノチューブ配向集合体付き基板Cを、溶媒としてのオルトジクロロベンゼンにガラスシャーレ中で浸漬した(接触工程)。次に、CNT配向集合体付き基板Cをガラスシャーレごとデシケーターに入れ、ダイアフラムポンプでデシケーター内を大気圧未満(1000Pa)に減圧した(減圧工程)。オルトジクロロベンゼンに含浸させたCNT配向集合体から発泡が観察され、発泡は減圧開始から180分間ほど続いた。その後、常圧に戻してガラスシャーレをデシケーターから取り出し、溶媒中で、スパチュラを用いてカーボンナノチューブ配向集合体を基板から分離した(分離工程)。その後、ピンセットにより基板を除去し、超音波ホモジナイザーを用いて20W、30分間の条件で分散処理を施して(分散工程)、カーボンナノチューブ分散液を得た。また、得られたカーボンナノチューブ分散液を使用し、実施例1と同様にして積層体を調製した。
 そして、実施例1と同様にして、凝集物の有無およびカーボンナノチューブの分散性を評価した。また、得られた積層体の表面抵抗率を測定した。結果を表1に示す。
(Example 5)
Substrate C with an aligned carbon nanotube assembly produced in Preparation Example 3 was immersed in orthodichlorobenzene as a solvent in a glass petri dish (contact process). Next, the substrate C with the aligned CNT aggregate was put into a desiccator together with the glass petri dish, and the inside of the desiccator was decompressed to less than atmospheric pressure (1000 Pa) with a diaphragm pump (decompression step). Foaming was observed from the aligned CNT aggregate impregnated with orthodichlorobenzene, and foaming continued for about 180 minutes from the start of decompression. Thereafter, the pressure was returned to normal pressure, the glass petri dish was taken out from the desiccator, and the aligned carbon nanotube aggregate was separated from the substrate using a spatula in a solvent (separation step). Thereafter, the substrate was removed with tweezers, and a dispersion treatment was performed using a ultrasonic homogenizer under the conditions of 20 W and 30 minutes (dispersion step) to obtain a carbon nanotube dispersion. In addition, a laminate was prepared in the same manner as in Example 1 using the obtained carbon nanotube dispersion.
Then, in the same manner as in Example 1, the presence or absence of aggregates and the dispersibility of the carbon nanotubes were evaluated. Moreover, the surface resistivity of the obtained laminated body was measured. The results are shown in Table 1.
(比較例1)
 スパチュラを用いてカーボンナノチューブ配向集合体付き基板Aからカーボンナノチューブ配向集合体を剥離した。その後、剥離したカーボンナノチューブ配向集合体を溶媒としてのオルトジクロロベンゼン中に投入し、撹拌してカーボンナノチューブ分散液を調製した。また、得られたカーボンナノチューブ分散液を使用し、実施例1と同様にして積層体を調製した。
 そして、実施例1と同様にして、凝集物の有無およびカーボンナノチューブの分散性を評価した。また、得られた積層体の表面抵抗率を測定した。結果を表1に示す。
(Comparative Example 1)
The aligned carbon nanotube aggregate was peeled from the substrate A with the aligned carbon nanotube aggregate A using a spatula. Thereafter, the separated aligned carbon nanotubes were put into orthodichlorobenzene as a solvent and stirred to prepare a carbon nanotube dispersion. In addition, a laminate was prepared in the same manner as in Example 1 using the obtained carbon nanotube dispersion.
Then, in the same manner as in Example 1, the presence or absence of aggregates and the dispersibility of the carbon nanotubes were evaluated. Moreover, the surface resistivity of the obtained laminated body was measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1~5では、分散剤を使用せずとも、CNTが良好に分散したCNT分散液が得られることが分かる。特に減圧工程を実施した実施例4および5で得られたCNT分散液によれば、導電性に特に優れたCNT含有膜(導電膜)が得られることが分かる。 Table 1 shows that in Examples 1 to 5, CNT dispersions in which CNTs are well dispersed can be obtained without using a dispersant. In particular, according to the CNT dispersions obtained in Examples 4 and 5 in which the decompression step was performed, it can be seen that a CNT-containing film (conductive film) having particularly excellent conductivity can be obtained.
 本発明のカーボンナノチューブ分散液の製造方法によれば、カーボンナノチューブが均一に分散した分散液を、分散剤を使用せずとも、効率的に製造することができる。 According to the method for producing a carbon nanotube dispersion of the present invention, a dispersion in which carbon nanotubes are uniformly dispersed can be efficiently produced without using a dispersant.

Claims (4)

  1.  基板上に形成されたカーボンナノチューブ配向集合体と、溶媒とを接触させる工程(1)と、
     前記溶媒中で前記カーボンナノチューブ配向集合体を前記基板から分離させる工程(2)と、を含み、
     前記カーボンナノチューブ配向集合体を構成するカーボンナノチューブが、平均直径(Av)と直径分布(3σ)とが関係式:0.20<(3σ/Av)<0.60を満たし、且つ、平均長さが100μm以上であることを特徴とする、カーボンナノチューブ分散液の製造方法。
    A step (1) of bringing the aligned carbon nanotube assembly formed on the substrate into contact with a solvent;
    Separating the aligned aggregate of carbon nanotubes from the substrate in the solvent (2),
    The carbon nanotubes constituting the carbon nanotube aligned aggregate satisfy the relational expression: 0.20 <(3σ / Av) <0.60 between the average diameter (Av) and the diameter distribution (3σ), and the average length Is 100 μm or more, A method for producing a carbon nanotube dispersion liquid.
  2.  前記基板から分離させた前記カーボンナノチューブ配向集合体を前記溶媒中で分散処理する工程(3)を更に含むことを特徴とする、請求項1に記載のカーボンナノチューブ分散液の製造方法。 The method for producing a carbon nanotube dispersion liquid according to claim 1, further comprising a step (3) of dispersing the aligned carbon nanotube aggregate separated from the substrate in the solvent.
  3.  前記工程(1)と前記工程(2)との間に、前記溶媒に接触している前記カーボンナノチューブ配合集合体を減圧下に置く工程(4)を更に含むことを特徴とする、請求項1または2に記載のカーボンナノチューブ分散液の製造方法。 The method of claim 1, further comprising a step (4) of placing the carbon nanotube-mixed aggregate in contact with the solvent under reduced pressure between the step (1) and the step (2). Or the manufacturing method of the carbon nanotube dispersion liquid of 2.
  4.  前記基板が、平板状、粒子状または線状の基板であることを特徴とする、請求項1~3の何れかに記載のカーボンナノチューブ分散液の製造方法。 The method for producing a carbon nanotube dispersion according to any one of claims 1 to 3, wherein the substrate is a plate-like, particle-like or linear substrate.
PCT/JP2014/004980 2013-09-30 2014-09-29 Method of producing carbon nanotube dispersion WO2015045417A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015538919A JPWO2015045417A1 (en) 2013-09-30 2014-09-29 Method for producing carbon nanotube dispersion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013205926 2013-09-30
JP2013-205926 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015045417A1 true WO2015045417A1 (en) 2015-04-02

Family

ID=52742585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004980 WO2015045417A1 (en) 2013-09-30 2014-09-29 Method of producing carbon nanotube dispersion

Country Status (2)

Country Link
JP (1) JPWO2015045417A1 (en)
WO (1) WO2015045417A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022030106A1 (en) * 2020-08-07 2022-02-10
JP7420602B2 (en) 2020-03-12 2024-01-23 日立造船株式会社 Carbon nanotube dispersion manufacturing method, carbon nanotube sheet manufacturing method, carbon nanotube wire manufacturing method, carbon nanotube dispersion, and carbon nanotube dispersion manufacturing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005089738A (en) * 2003-08-12 2005-04-07 Toray Ind Inc Carbon nanotube dispersion solution and carbon nanotube dispersion material
JP2007063051A (en) * 2005-08-30 2007-03-15 Tokai Univ Method for producing carbon nanotube dispersion
JP2013082595A (en) * 2011-10-12 2013-05-09 National Institute Of Advanced Industrial Science & Technology Carbon nanotube composite material and conductive material
WO2013080912A1 (en) * 2011-11-28 2013-06-06 日本ゼオン株式会社 Process for producing carbon nanotube composition and carbon nanotube composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005089738A (en) * 2003-08-12 2005-04-07 Toray Ind Inc Carbon nanotube dispersion solution and carbon nanotube dispersion material
JP2007063051A (en) * 2005-08-30 2007-03-15 Tokai Univ Method for producing carbon nanotube dispersion
JP2013082595A (en) * 2011-10-12 2013-05-09 National Institute Of Advanced Industrial Science & Technology Carbon nanotube composite material and conductive material
WO2013080912A1 (en) * 2011-11-28 2013-06-06 日本ゼオン株式会社 Process for producing carbon nanotube composition and carbon nanotube composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7420602B2 (en) 2020-03-12 2024-01-23 日立造船株式会社 Carbon nanotube dispersion manufacturing method, carbon nanotube sheet manufacturing method, carbon nanotube wire manufacturing method, carbon nanotube dispersion, and carbon nanotube dispersion manufacturing apparatus
JPWO2022030106A1 (en) * 2020-08-07 2022-02-10
WO2022030106A1 (en) * 2020-08-07 2022-02-10 積水化学工業株式会社 Multilayer body and secondary molded article
JP7137026B2 (en) 2020-08-07 2022-09-13 積水化学工業株式会社 Laminates and secondary moldings

Also Published As

Publication number Publication date
JPWO2015045417A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
KR102002281B1 (en) Ultrasonic spray coating of conducting and transparent films from combined graphene and conductive nano filaments
KR102512338B1 (en) Carbon nanotube film and method for producing same
WO2017188175A1 (en) Carbon nanotube dispersion, method for producing same, and conductive molded body
KR102576626B1 (en) Carbon film and its manufacturing method
CN107221387B (en) Preparation method of high-conductivity graphene film based on transient framework
WO2018066574A1 (en) Electromagnetic shielding structure and method for producing same
CN110240155B (en) Interface assembly large-area uniform carbon material film, preparation method and application thereof
JP2016190772A (en) Carbon film, and method for producing the same
WO2015045417A1 (en) Method of producing carbon nanotube dispersion
JP2015105213A (en) Carbon nanotube and dispersion liquid thereof, and self-supporting film and composite material
JP2015210955A (en) Method of producing conductive coating, and conductive coating, conductive film, electrode for solar battery and solar battery
JP2016183082A (en) Production method of carbon film, and carbon film
KR102543599B1 (en) Carbon film and manufacturing method thereof, and fibrous carbon nanostructure dispersion liquid and manufacturing method thereof
JP7211414B2 (en) Self-supporting membrane manufacturing method
JP6841318B2 (en) Carbon film and its manufacturing method
JP2015189607A (en) Carbon nanotube dispersion and conductive film
JP2015105205A (en) Surface-treated carbon nanotube and dispersion liquid thereof, and self-supporting film and composite material
JP2017119586A (en) Fibrous carbon nanostructure dispersion and production method of the same, production method of carbon film, as well as carbon film
JP7255586B2 (en) Carbon film manufacturing method
Kim et al. Preparation of properties of SWNT/graphene oxide type flexible transparent conductive films
JPWO2017104769A1 (en) Fibrous carbon nanostructure dispersion
CN114360772A (en) Carbon nano tube composite film containing metal particles and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848682

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015538919

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848682

Country of ref document: EP

Kind code of ref document: A1