WO2015011961A1 - Composite material comprising metal and carbon fibers, and method for producing same - Google Patents

Composite material comprising metal and carbon fibers, and method for producing same Download PDF

Info

Publication number
WO2015011961A1
WO2015011961A1 PCT/JP2014/060698 JP2014060698W WO2015011961A1 WO 2015011961 A1 WO2015011961 A1 WO 2015011961A1 JP 2014060698 W JP2014060698 W JP 2014060698W WO 2015011961 A1 WO2015011961 A1 WO 2015011961A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
foil
thickness
composite material
layer
Prior art date
Application number
PCT/JP2014/060698
Other languages
French (fr)
Japanese (ja)
Inventor
溝 達寛
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2015011961A1 publication Critical patent/WO2015011961A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/06Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element
    • C22C47/062Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element from wires or filaments only
    • C22C47/068Aligning wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/20Making alloys containing metallic or non-metallic fibres or filaments by subjecting to pressure and heat an assembly comprising at least one metal layer or sheet and one layer of fibres or filaments

Definitions

  • the present invention relates to a composite material of metal and carbon fiber and a method for producing the same.
  • aluminum is used to include an aluminum alloy
  • copper is used to include a copper alloy
  • Patent Document 1 Patent No. 5150905
  • Patent Document 2 Patent No. 5145591
  • metal layers and carbon fiber layers are alternately formed.
  • a plurality of laminated and united joints are known.
  • This type of composite material is expected to be used as a material for members that require high heat conduction characteristics.
  • each metal layer on both sides of the carbon fiber layer is mainly diffused through the carbon fiber layer and thermally diffused into the other metal layer, thereby joining the two metal layers together.
  • all the metal layers and the carbon fiber layers are integrated. Therefore, it is desirable that the carbon fiber layer is as thin as possible in terms of increasing bonding strength.
  • this type of composite material when used as a constituent layer of a heat-dissipating insulating substrate that releases heat from a semiconductor element such as an IC, the difference in linear expansion coefficient between the composite material and the ceramic layer included in the insulating substrate In order to prevent the occurrence of cracking or peeling due to thermal stress caused by the composite material, it is desirable that the linear expansion coefficient of the composite material be as small as possible.
  • the linear expansion coefficient of carbon fiber is smaller than the linear expansion coefficient of metal. Therefore, it is desirable that the carbon fiber content in the composite (eg, the volume content of carbon fiber) be as large as possible because the linear expansion coefficient of the composite can be reduced.
  • the thermal conductivity of carbon fibers is generally higher than that of metals. Therefore, it is desirable that the carbon fiber content in the composite material is as large as possible in terms of increasing the thermal conductivity of the composite material (that is, improving the heat dissipation characteristics).
  • the carbon fiber layer in order to increase the bonding strength, reduce the linear expansion coefficient of the composite material, and further increase the thermal conductivity of the composite material, it is desirable to make the carbon fiber layer as thin as possible and increase the carbon fiber content as much as possible. In order to do this, it is preferable that both the metal layer and the carbon fiber layer are thinned and laminated.
  • the mechanical strength of the outer surface of the composite material decreases.
  • a surface defect occurs in which the carbon fiber is exposed from the scratch and the metal layer is easily peeled off from the scratch.
  • the thickness of the metal layer disposed on the outermost side in the stacking direction of the composite material approaches the diameter dimension of the carbon fiber, and the outermost metal layer is distorted so as to correspond to the shape of the carbon fiber. The outer surface of the composite material is very easily damaged and the surface defects described above are more likely to occur.
  • the present invention has been made in view of the above-described technical background, and the object thereof is a composite material of metal and carbon fiber, which has high thermal conductivity and a small linear expansion coefficient, and has high mechanical strength on the outer surface. It is in providing the manufacturing method.
  • the present invention provides the following means.
  • a plurality of metal layers and carbon fiber layers are alternately laminated in such a manner that metal layers are arranged on both outermost sides in the lamination direction, and these layers are joined and integrated by diffusion bonding.
  • the thickness of the outermost metal layer is a composite material of a metal and carbon fiber that is set to be thicker than the thickness of the inner metal layer disposed between the outermost metal layers.
  • the metal layer is made of aluminum,
  • the inner metal layer has a thickness of 20 ⁇ m or less, 2.
  • the metal layer is made of copper,
  • the inner metal layer has a thickness of 15 ⁇ m or less, 2.
  • the metal foil is an aluminum foil
  • the inner metal foil has a thickness of 20 ⁇ m or less
  • the thickness of the outermost metal foil disposed adjacent to the mixture layer of the preform foil is 30 ⁇ m or more
  • the thickness of the outermost metal foil is the total thickness of the adjacent metal foils
  • the metal foil is a copper foil
  • the inner metal foil has a thickness of 15 ⁇ m or less
  • the thickness of the outermost metal foil disposed adjacent to the mixture layer of the preform foil in the final laminate is 20 ⁇ m or more
  • the thickness of the outermost metal foil is the total thickness of the adjacent metal foils
  • the present invention has the following effects.
  • the composite material of [1] has a structure in which a plurality of metal layers and carbon fiber layers are alternately laminated. Thereby, the heat conductivity of a composite material can be made high and the linear expansion coefficient of a composite material can be made small. Furthermore, since the thickness of the outermost metal layer is set to be greater than the thickness of the inner metal layer, the mechanical strength of the outer surface in the stacking direction of the composite material is high, and therefore the occurrence of surface defects can be prevented.
  • the composite material according to [1] can be reliably produced. Further, in the joining step, the final laminate is joined and integrated by diffusion joining at a temperature lower than the melting temperature of the metal foil in a non-oxidizing atmosphere or in vacuum, thereby causing a chemical reaction between the metal of the metal foil and the carbon fiber. Formation of metal carbide can be prevented. Thereby, the characteristic change of the composite material accompanying the production
  • the composite material of the preceding item [2] can be reliably manufactured. Furthermore, generation of aluminum carbide (Al 4 C 3 ) as a metal carbide can be prevented.
  • aluminum carbide reacts with water and moisture in the air to produce hydrocarbon gas (eg, methane gas) or changes to metal oxide, so the formation of aluminum carbide is the cause of internal defects in the composite material It becomes. Therefore, it is desirable that aluminum carbide is not generated as much as possible.
  • hydrocarbon gas eg, methane gas
  • it is desirable that aluminum carbide is not generated as much as possible.
  • since the formation of aluminum carbide is prevented as described above, it is possible to obtain a composite material in which internal defects due to the formation of aluminum carbide hardly occur.
  • the composite material of the previous item [3] can be reliably manufactured.
  • the composite material can be joined and integrated more firmly.
  • FIG. 1 is a cross-sectional view of a composite material of metal and carbon fiber according to the first embodiment of the present invention.
  • FIG. 2A is a block diagram showing a manufacturing process of the composite material.
  • FIG. 2B is a schematic view illustrating the manufacturing process of the composite material.
  • FIG. 3 is a cross-sectional view showing a state in the middle of forming the final laminate for obtaining the composite material.
  • FIG. 4 is a cross-sectional view showing a state in the middle of joining and integrating the final laminate by a discharge plasma sintering method.
  • FIG. 5 is a cross-sectional view of a composite material of metal and carbon fiber according to the second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a state in the middle of forming the final laminate for obtaining the composite material.
  • FIG. 7 is a cross-sectional view of a composite material of metal and carbon fiber according to the third embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing a state in the middle of forming the final laminate for obtaining the composite material.
  • FIG. 9 is a cross-sectional view of a composite material of metal and carbon fiber according to the fourth embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing a state in the middle of forming the final laminate for obtaining the composite material.
  • the metal layers 2a and the carbon fiber layers 3 are alternately arranged on the outermost sides in the laminating direction, respectively.
  • a plurality of layers 2b are laminated in such a manner that 2b is arranged, and these layers 2 and 3 are joined and integrated by diffusion bonding.
  • the carbon fiber layer 3 is shown by dot hatching to distinguish it from the metal layer 2.
  • the stacking direction is set to the vertical direction.
  • the thickness direction of the composite material 1A is set to the stacking direction.
  • the present invention is not limited to setting the stacking direction in the vertical direction, and can be set in any direction such as the front-rear direction and the left-right direction.
  • the metal layer 2 disposed on the uppermost side as one side of both outermost sides in the stacking direction (that is, the vertical direction) among all the metal layers 2 is particularly “the uppermost side”.
  • the metal layer 2a "and the metal layer 2 disposed on the lowermost side as the other side are particularly referred to as” the lowermost metal layer 2b ", and further between the uppermost metal layer 2a and the lowermost metal layer 2b.
  • the disposed metal layer 2 is particularly referred to as an “inner metal layer 2c”.
  • the length of the composite material 1A is set to, for example, 10 to 300 mm
  • the width is set to, for example, 10 to 200 mm
  • the thickness that is, the thickness in the stacking direction
  • the size (length, width, thickness) of the composite material 1A is not limited to be set within such a range, and may vary depending on the use of the composite material 1A. Is set.
  • the respective metal layers 2 and 2 on both sides of the carbon fiber layer 3 pass through the carbon fiber layer 3 and thermally diffuse into the opposite metal layer 2, whereby both metal layers 2 As a result, all the metal layers 2 and the carbon fiber layers 3 are integrated.
  • the metal that forms the metal layer 2 is not limited, but is preferably aluminum or copper, and by doing so, the thermal conductivity of the composite material 1A can be reliably increased.
  • all the metal layers 2 are formed of the same kind of metal, and specifically described below as being formed of aluminum or copper.
  • the carbon fibers 40 (see FIG. 2B) forming the carbon fiber layer 3 are PAN-based carbon fibers, pitch-based carbon fibers, and carbon nanotubes (for example, vapor-grown carbon nanofibers, single-wall carbon nanofibers, multi-wall carbon nanotubes). Or a short carbon fiber having a fiber diameter of 0.1 nm to 20 ⁇ m and a fiber length of 0.5 ⁇ m to 1.0 mm, or two or more fiber diameters of 0.1 nm to 20 ⁇ m and a fiber length selected from the group consisting of A mixed short carbon fiber of 0.5 ⁇ m to 1.0 mm is desirable.
  • PAN-based carbon fibers and pitch-based carbon fibers are preferably chopped fibers or milled fibers having a fiber diameter of 5 to 15 ⁇ m and a fiber length of 50 ⁇ m to 1 mm.
  • the fiber diameter is 0.1 nm to 20 ⁇ m and the fiber length is 0.5 ⁇ m to 1 mm.
  • the carbon fibers 40 are arranged in a state of being oriented in a direction perpendicular to the stacking direction (that is, a plane direction).
  • the carbon fiber layer 3 is formed mainly of the carbon fiber 40.
  • the carbon fiber layer 3 may be formed of only the carbon fibers 40, or may be formed of the carbon fibers 40 and a binder 41 described later, or a dry residue of the binder 41 and carbon. It may be formed with the fiber 40, or may be formed with the combustion residue of the binder 41 and the carbon fiber 40. Furthermore, the carbon fiber layer 3 may be formed of only the carbon fibers 40 left by drying or burning the binder 41.
  • the composite material 1A of the first embodiment has a structure in which a plurality of metal layers 2 and carbon fiber layers 3 are alternately stacked. Thereby, the linear expansion coefficient of the composite material 1A is small, and the thermal conductivity of the composite material 1A is high. Furthermore, the thickness of the uppermost metal layer 2a and the lowermost metal layer 2b is set to be thicker than the thickness of each inner metal layer 2c. As a result, the mechanical strength of the upper surface 1a and the lower surface 1b of the composite material 1A (that is, both outer surfaces in the stacking direction of the composite material 1A) is increased, and therefore surface defects (carbon) caused by scratching the upper and lower surfaces 1a, 1b.
  • the desirable thickness of the metal layer 2 is as follows.
  • each inner metal layer 2c is 20 ⁇ m or less, and the thicknesses of the uppermost metal layer 2a and the lowermost metal layer 2b are each 30 ⁇ m or more (particularly desirably 50 ⁇ m). As described above, it is desirable to prevent the occurrence of surface defects in a state where the linear expansion coefficient of the composite material 1A is small and the thermal conductivity is increased.
  • the lower limit of the thickness of each inner metal layer 2c is not limited, but is preferably 10 ⁇ m, and by doing so, the metal layers 2 and 2 on both sides sandwiching the carbon fiber layer 3 are firmly formed. It is possible to join by diffusion joining, and the joining strength can be reliably increased.
  • the upper limit of the thickness of the uppermost metal layer 2a and the lowermost metal layer 2b is not limited, and is set to 10 mm, for example.
  • any aluminum that can be used as a foil can be used.
  • pure aluminum, JIS (Japanese Industrial Standard) alloy symbols A1000, A3000, and A8000 series aluminum are preferably used. It is done.
  • each inner metal layer 2c is 15 ⁇ m or less, and the thicknesses of the uppermost metal layer 2a and the lowermost metal layer 2b are each 20 ⁇ m or more (particularly desirably 30 ⁇ m). As described above, it is desirable to prevent the occurrence of surface defects in a state where the linear expansion coefficient of the composite material 1A is small and the thermal conductivity is increased.
  • the lower limit of the thickness of each inner metal layer 2c is not limited, but is particularly preferably 6 ⁇ m, and by doing so, the metal layers 2 and 2 on both sides sandwiching the carbon fiber layer 3 are strengthened. It is possible to join by diffusion joining, and the joining strength can be reliably increased.
  • the upper limit of the thickness of the uppermost metal layer 2a and the lowermost metal layer 2b is not limited, and is set to 10 mm, for example.
  • the metal layer 2 As the copper forming the metal layer 2, rolled copper, electrolytic copper, or the like is used. That is, the metal layer 2 is formed from a rolled copper foil or an electrolytic copper foil.
  • volume content of the carbon fibers 40 excluding the uppermost metal layer 2a and the lowermost metal layer 2b in the composite material 1A (hereinafter, simply referred to as “carbon fiber volume content Vf”)
  • carbon fiber volume content Vf Various values are set according to the type and the application of the composite material 1A, and it is particularly preferable to set the value within the range of 30 to 50% by volume.
  • the number of the inner metal layers 2c and the number of the carbon fiber layers 3 in the composite material 1A are not limited respectively, and are variously set according to the use of the composite material 1A.
  • the number of the inner metal layers 2c is The number of carbon fiber layers 3 may be one or more and two or more. Further, the upper limit of the number of inner metal layers 2c and the upper limit of the number of carbon fiber layers 3 are not limited respectively, and may be, for example, several thousand layers (example: 3000 layers).
  • each inner metal layer 2c is a layer formed from one metal foil 12.
  • the uppermost metal layer 2a is a layer formed from one metal foil 12a
  • the lowermost metal layer 2b is a plurality of two sheets laminated together. This is a layer formed by joining and integrating the metal foils 12 and 12b by diffusion bonding.
  • the manufacturing method of 1 A of composite materials of this 1st Embodiment comprises the mixture adhesion process S1, the drying process S2, the laminated body formation process S3, the joining process S4, etc., as shown to FIG. 2A.
  • the mixture adhering step S ⁇ b> 1 is performed on at least one surface of both surfaces of the metal foil 12 with the mixture 45 as a coating liquid obtained by mixing the carbon fibers 40 with the binder 41 and the solvent 42 on the metal foil 12.
  • This is a step of obtaining a preform foil 20 in which the mixture layer 13 is formed on at least one surface of the metal foil 12 by being attached in layers.
  • the mixture 45 is deposited on the upper surface as one side of the metal foil 12 in a layered manner over substantially the entire surface thereof, so that the preform foil 20 is disposed on the substantially upper surface of the metal foil 12.
  • the mixture layer 13 is formed over the entire area.
  • metal layer 2 of the composite material 1 ⁇ / b> A is formed of aluminum
  • an aluminum foil is used as the metal foil 12.
  • metal layer 2 of the composite material 1 ⁇ / b> A is formed of copper
  • a copper foil is used as the metal foil 12. A desirable thickness of the metal foil 12 will be described later.
  • a resin such as polyethylene oxide (polyethylene glycol, polyoxyethylene) or acrylic is preferably used.
  • solvent 42 water, alcohol (eg, methanol), glycol solvent (eg, ethylene glycol, diethylene glycol, propylene glycol, ethylene glycol ethers (cellosolve), acetates, diethylene glycol ethers, acetates, propylene Glycol ethers, acetates) and the like.
  • the carbon fiber 40, the binder 41, and the solvent 42 are put in a mixing container 49, and these are stirred and mixed by a stirrer (example: mixer) 48.
  • a mixture 45 containing 40 is obtained as a coating liquid.
  • metal particles of the same type as the metal of the metal foil 12 metal layer 2 (its particle size: 1 to 150 ⁇ m) may be mixed.
  • a dispersant for adjusting the mixture (paint liquid) 45, a surface conditioner, a thickener, and the like may be mixed.
  • the adhering amount of the mixture 45 is not limited, but desirably it is set to be in the range of 20 to 50 g / m 2 after the mixture 45 is dried in the drying step S2 described later. .
  • the coating apparatus 50 As the coating apparatus 50, a roll coater, a gravure coater or the like is used.
  • the strip 12 ⁇ / b> A of the metal foil 12 unwound from the unwinding roll 51 sequentially passes through the application roll unit 52 and the drying furnace 55 and is wound up by the winding roll 53. Adhesion of the mixture 45 is performed by the application roll unit 52.
  • the application roll unit 52 includes a mixture pan 52a, a pickup roll 52b, an applicator roll 52c, a backup roll 52d, and the like.
  • Drying step S2 is a step of drying the mixture layer 13 of the preform foil 20.
  • the mixture layer 13 is dried by the drying furnace 55 (eg, hot air drying furnace) of the coating apparatus 50 described above.
  • the drying conditions of the mixture layer 13 are not limited as long as the solvent component contained in the mixture layer 13 can be removed from the mixture layer 13 by evaporation.
  • the drying temperature is 80 to 180 ° C. and the drying time is 1 The condition of ⁇ 10 min is often applied.
  • this drying step S2 the solvent component in the mixture layer 13 of the preform foil 20 is removed by evaporation, and mainly the carbon fibers 40 remain in the mixture layer 13, that is, the mixture layer 13 becomes a layer mainly composed of carbon fibers. .
  • the laminate forming step S3 is a step of forming the final laminate 30A of the metal foil 12 and the mixture layer 13.
  • a plurality of preform foils 20 having a predetermined shape for example, a square shape
  • a plurality of preform foils 20 are laminated in the vertical direction in the same direction as shown in FIG. 3 to form (manufacture) the preform foil laminate 25, and the metal foil 12 on which the mixture layer 13 is not formed is formed.
  • the uppermost metal foil 12a and the lowermost metal foil 12b are laminated on the upper surface and the lower surface of the preform foil laminate 25, respectively.
  • the final laminated body 30A of the metal foil 12 and the mixture layer 13 is formed (manufactured).
  • the metal foils 12 on which the mixture layer 13 is not formed are arranged on the uppermost side and the lowermost side in the vertical direction (that is, the laminating direction).
  • the shapes and dimensions of the plurality of preform foils 20 stacked on each other are the same shape and the same size.
  • the uppermost metal foil 12a is arranged adjacent to the upper side of the mixture layer 13 of the preform foil 20, while the lowermost metal foil 12b is the metal of the preform foil 20.
  • the foil 12 is disposed adjacent to the lower side thereof.
  • the final laminated body 30A (specifically, all the foils forming the final laminated body 30A (that is, all the preform foils 20, the uppermost metal foil 12a, and the lowermost metal foil 12b)) are not removed.
  • This is a step of bonding and integration by diffusion bonding at a bonding temperature lower than the melting temperature of the metal foil 12 (that is, the melting point of the metal foil 12) in an oxidizing atmosphere or vacuum.
  • a discharge plasma sintering method SPS method
  • a hot press method a hot rolling roll method, or the like
  • a discharge plasma sintering method is used as diffusion bonding.
  • a discharge plasma sintering apparatus 60 including a cylindrical die 61 having conductivity and a pair of punches 62 and 62 having conductivity is prepared.
  • An electrode 63 is electrically connected to each punch 62.
  • the final laminated body 30A is arranged in the die 61, and the punches 62 are arranged on both sides in the lamination direction of the final laminated body 30A.
  • the non-oxidizing atmosphere such as an inert gas (eg, nitrogen gas, argon gas) atmosphere or vacuum (degree of vacuum: 1 to 30 Pa)
  • the final laminate 30A is applied in the stacking direction by both punches 62 and 62.
  • the final laminate 30A (specifically, all the foils forming the final laminate 30A (that is, all the preform foils 20, the uppermost metal foil). 12a and the lowermost metal foil 12b)) are joined and integrated.
  • the desired composite material 1A shown in FIG. 1 is obtained.
  • Preferred joining conditions by the discharge plasma sintering method are as follows.
  • the bonding temperature is 450 to 600 ° C.
  • the bonding time (that is, the holding time of the bonding temperature) is 10 to 300 min
  • the pressure applied to the final laminate 30A is 10 to 40 MPa. It is good to set.
  • the bonding temperature is set to 800 to 1000 ° C.
  • the holding time of the bonding temperature is set to 10 to 300 min
  • the pressure applied to the final laminate 30A is set to the range of 10 to 40 MPa. good.
  • the carbon fiber layer 3 is formed from the mixture layer 13, and the metal layers 2 and 2 are formed from the metal foils 12 and 12 on both sides of the mixture layer 13, respectively.
  • 2 both metal foils 12, 12
  • Both metal layers 2 and 2 both metal foils 12 and 12
  • the lowermost metal foil 12b and the metal foil 12 of the preform foil 20 adjacent thereto are directly joined and integrated to form one lowermost metal layer 2b.
  • the binder 41 As described above, in the carbon fiber layer 3, the binder 41, a dry residue of the binder 41, a combustion residue of the binder 41, or the like may remain, or by drying or burning the binder 41. It may be completely removed and only the carbon fiber 40 may remain.
  • a plurality of preform foils 20 are laminated and disposed between the uppermost metal foil 12a and the lowermost metal foil 12b.
  • the metal foil 12 of the preform foil 20 is an aluminum foil
  • the thickness of the aluminum foil is desirably 20 ⁇ m or less for the reasons described above, and the lower limit of the thickness is desirably 10 ⁇ m.
  • the metal foil 12 of the preform foil 20 is a copper foil
  • the thickness of the copper foil is desirably 15 ⁇ m or less for the reasons described above, and the lower limit of the thickness is desirably 6 ⁇ m.
  • the thickness of the uppermost metal foil 12a disposed adjacent to the mixture layer 13 of the preform foil 20 is greater than the thickness of the metal foil 12 of the preform foil 20. It is also set thick.
  • the thickness of the uppermost metal foil 12a is desirably 30 ⁇ m or more (particularly desirably 50 ⁇ m or more) for the reason described above.
  • the upper limit of the thickness of the uppermost metal foil 12a is not limited, and is set to 10 mm, for example.
  • the thickness of the uppermost metal foil 12a is desirably 20 ⁇ m or more (particularly desirably 30 ⁇ m or more) for the reason described above.
  • the upper limit of the thickness of the uppermost metal foil 12a is not limited, and is set to 10 mm, for example.
  • the lowermost metal foil 12b disposed adjacent to the metal foil 12 of the preform foil 20 is adjacent to the lowermost metal foil 12b as described above.
  • the lowermost metal layer 2b is formed by joining and integrating with the metal foil 12 arranged as described above, and as a result, the thickness of the metal foil 12 of the preform foil 20 (ie, the inner metal foil 12c) is reduced. Thicker than the thickness. Therefore, the lower limit of the thickness of the lowermost metal foil 12b for making the thickness of the lowermost metal layer 2b thicker than the thickness of the inner metal layer 2c is not limited.
  • the thickness of the lowermost metal foil 12b is equal to the thickness of the lowermost metal foil 12b (ie, the inner metal foil 12c). It is desirable that the total thickness of the first and second layers is set to be 30 ⁇ m or more (particularly desirably 50 ⁇ m or more). That is, for example, when the thickness of the metal foil 12 (inner metal foil 12c) adjacent to the lowermost metal foil 12b is 10 ⁇ m, the thickness of the lowermost metal foil 12b is 20 ⁇ m or more (particularly desirably 40 ⁇ m or more).
  • the thickness of the lowermost metal foil 12b is equal to the thickness of the lowermost metal foil 12b (that is, the inner metal foil 12c). It is desirable that the total thickness is set to 20 ⁇ m or more (particularly desirably 30 ⁇ m or more). That is, for example, when the thickness of the metal foil 12 (inner metal foil 12c) adjacent to the lowermost metal foil 12b is 6 ⁇ m, the thickness of the lowermost metal foil 12b is 14 ⁇ m or more (particularly desirably 24 ⁇ m or more). It is desirable that
  • the final laminate 30A is joined and integrated by diffusion joining at a temperature lower than the melting temperature of the metal foil 12 in a non-oxidizing atmosphere or vacuum. Therefore, generation of metal carbide due to a chemical reaction between the metal of the metal foil 12 and the carbon fiber 40 can be prevented. Thereby, the characteristic change of 1 A of composite materials accompanying the production
  • the metal foil 12 is an aluminum foil
  • the production of aluminum carbide (Al 4 C 3 ) as a metal carbide can be prevented. Therefore, it is possible to obtain a composite material 1A in which internal defects due to the formation of aluminum carbide hardly occur, thereby maintaining the mechanical strength and thermal conductivity of the composite material 1A in a good state.
  • the final laminate 30A can be joined and integrated more firmly in the joining step S4.
  • FIGS. 5 and 6 are views for explaining a composite material 1B of metal and carbon fiber according to the second embodiment of the present invention.
  • the second embodiment will be described focusing on the differences from the first embodiment.
  • the preform disposed on the lowermost side.
  • the thickness of the metal foil 12 of the reform foil 20 is thicker than the thickness of the metal foil 12 of the other preform foils 20.
  • This preform foil 20 is particularly referred to as “thick preform foil 20b” for convenience of explanation.
  • the metal foil 12 of the thick preform foil 20b corresponds to the lowermost metal foil 12b.
  • a plurality of preform foils 20 are laminated to form a preform foil laminate 25, and the metal foil 12 on which the mixture layer 13 is not formed is used as the uppermost metal foil 12a.
  • the thick preform foil 20b is laminated on the lower surface of the preform foil laminate 25 so that the metal foil 12 of the thick preform foil 20b is disposed on the lowermost side.
  • the final laminated body 30B of the metal foil 12 and the mixture layer 13 is formed.
  • the metal foil 12 without the mixture layer 13 is disposed on the uppermost side in the vertical direction (that is, the laminating direction), while the thick preform foil 20b is disposed on the lowermost side.
  • the metal foil 12 is arranged as the lowermost metal foil 12b.
  • the final laminated body 30B (specifically, all the foils forming the final laminated body 30B (that is, all the preform foils 20, 20b, the uppermost metal foil 12a)) are treated in a non-oxidizing atmosphere or Bonding and integration are performed by diffusion bonding at a temperature lower than the melting temperature of the metal foil 12 in a vacuum.
  • the lowermost metal layer 2b is directly formed by the lowermost metal foil 12b and the metal foil 12 of the preform foil 20 adjacent thereto. Are integrally formed with each other (see FIG. 1).
  • the lowermost metal layer 2b is formed only of the metal foil 12 of the thick preform foil 20b (see FIG. 5).
  • FIG. 7 and 8 are views for explaining a composite material 1C of metal and carbon fiber according to the third embodiment of the present invention.
  • the third embodiment will be described focusing on differences from the first and second embodiments.
  • the composite material 1 ⁇ / b> C of the third embodiment includes three metal layers 2 (the breakdown: two outermost metal layers 2 a and 2 b and one inner metal layer 2 c) and two layers.
  • the carbon fiber layer 3 is formed.
  • the inner metal layer 2c is a layer formed from one metal foil 12, like the composite material 1A of the first embodiment.
  • the uppermost metal layer 2a is a layer formed from one metal foil 12a, while the lowermost metal layer 2b is adjacent to the lowermost metal foil 12b.
  • the preform foil 20 is formed by directly joining and integrating the metal foil 12 (see FIG. 8).
  • the composite material 1C of the third embodiment includes two preform foils 20 and a metal foil 12a as one uppermost metal foil 12a on which the mixture layer 13 is not formed.
  • the metal foil 12b as the lowermost metal foil 12b on which the mixture layer 13 is not formed, it is manufactured by the same method as the method for manufacturing the composite material 1A of the first embodiment.
  • FIGS. 9 and 10 are views for explaining a composite material 1D of metal and carbon fiber according to the fourth embodiment of the present invention.
  • the fourth embodiment will be described focusing on the differences from the first to third embodiments.
  • the composite material 1D of the fourth embodiment is composed of three metal layers 2 (breakdown: two outermost metal layers 2a, as in the composite material 1C of the third embodiment). 2b and one inner metal layer 2c) and two carbon fiber layers 3. And the inner metal layer 2c is a layer formed from one metal foil 12, like the composite material 1A of the second embodiment.
  • the uppermost metal layer 2a is a layer formed from one metal foil 12a, while the lowermost metal layer 2b is only the metal foil 12 of the thick preform foil 20b. (See FIG. 10).
  • the two preform foils 20 and 20b are formed of the metal foil 12 of the thick preform foil 20b in the vertical direction.
  • the preform foil laminate 25 is formed by being laminated so as to be arranged at the lowermost side (that is, the lamination direction), and the metal foil 12 on which the mixture layer 13 is not formed is used as the uppermost metal foil 12a. Lamination is performed on the upper surface of the laminate 25. Thereby, the final laminated body 30D of the metal foil 12 and the mixture layer 13 is formed.
  • the metal foil 12 on which the mixture layer 13 is not formed is disposed on the uppermost side in the vertical direction (that is, the laminating direction), while the thick preform foil 20b is disposed on the lowermost side.
  • the metal foil 12 is arranged as the lowermost metal foil 12b.
  • the final laminated body 30D (specifically, all the foils forming the final laminated body 30A (that is, all the preform foils 20, 20b and the uppermost metal foil 12a)) are treated in a non-oxidizing atmosphere or Bonding and integration are performed by diffusion bonding at a temperature lower than the melting temperature of the metal foil 12 in a vacuum.
  • the outer surface of the outermost metal layer may be bonded with titanium, stainless steel, nickel or the like to improve the corrosion resistance of the outer surface, or the outer surface may be plated with zinc or the like. It may be improved.
  • Example> 1A of the first embodiment shown in FIG. 1 was manufactured by the following procedure.
  • the mixture 45 is applied in a layered manner with a coating amount of 100 g / m 2 on the upper surface of the strip 12A of aluminum foil (material: JIS alloy symbol A1N30) 12 having a thickness of 15 ⁇ m as a metal foil (application).
  • a strip material 20A of the preform foil 20 in which the mixture layer 13 was formed on the upper surface of the aluminum foil 12 was obtained.
  • the melting point of the aluminum foil 12 is 680 ° C.
  • the mixture layer 13 of the strip 20A of the preform foil 20 was dried under the conditions of a drying temperature of 100 ° C. and a drying time of 10 minutes. As a result, the amount of the mixture layer 13 after drying became about 20 g / m 2 . .
  • a plurality of rectangular preform foils (its dimensions: 50 mm length and 50 mm width) 20 were cut out from the strip 20 A of the preform foil 20.
  • 80 preform foils 20 are stacked in the same direction to form a preform foil laminate 25, and a 30 ⁇ m thick aluminum foil (material: A1N30) 12 without the mixture layer 13 formed.
  • A1N30 aluminum foil
  • Is laminated on the upper surface of the preform foil laminate 25 as the uppermost aluminum foil 12a, and the 15 ⁇ m thick aluminum foil (material: A1N30) 12 on which the mixture layer 13 is not formed is used as the lowermost aluminum foil 12b.
  • the final laminated body 30A of the aluminum foil 12 and the mixture layer 13 was obtained.
  • the final laminate 30A (specifically, all the foils forming the final laminate 30A (that is, all the preform foils 12, the uppermost aluminum foil 12a, and the lowermost aluminum) are formed using the discharge plasma sintering apparatus 60.
  • the foil 12b) was joined and integrated in a vacuum by a discharge plasma sintering method, thereby producing a composite material 1A of metal and carbon fiber.
  • the joining conditions at this time are a joining temperature of 550 ° C., a joining time of 3 hours, a pressure of 30 MPa applied to the final laminate 30A, and a degree of vacuum of 10 Pa.
  • the characteristics of the obtained composite material 1A are: specific gravity 2.54, thermal conductivity 300 W / (m ⁇ K) in the direction perpendicular to the stacking direction, and coefficient of linear expansion 1.6 ⁇ 10 ⁇ 6 in the direction perpendicular to the stacking direction. / K.
  • the upper surface 1a of the composite material 1A was rubbed with a metal spatula. Did not occur. Therefore, it was confirmed that the mechanical strength of the upper surface 1a of the composite material 1A was high.
  • a plurality of preform foils 20 were cut out from the strip material 20A of the preform foil 20 manufactured by the same method as in the above example. Then, 80 preform foils 20 are stacked in the vertical direction in the same direction, and 15 ⁇ m thick aluminum foil (material: A1N30) 12 on which the mixture layer 13 is not formed is used as the uppermost aluminum foil 12a. Lamination was performed on the upper surface of the laminate 25, while no lamination was performed on the lower surface of the preform foil laminate 25. This obtained the final laminated body of aluminum foil and a mixture layer.
  • the final laminate was joined and integrated by the discharge plasma sintering method under the same joining conditions as in the above examples, thereby producing a composite material of metal and carbon fiber.
  • the characteristics of the obtained composite material are as follows: specific gravity 2.53, thermal conductivity 300 W / (m ⁇ K) perpendicular to the stacking direction, and linear expansion coefficient 1.6 ⁇ 10 ⁇ 6 / vertical to the stacking direction. K.
  • the upper surface of the composite material was rubbed with a metal spatula. As a result, a hole due to a scratch was formed on the upper surface, and the carbon fiber was exposed from this hole. Therefore, it was confirmed that the mechanical strength of the upper surface of the composite material was weak.
  • the present invention can be used for a composite material of metal and carbon fiber and a manufacturing method thereof.
  • 1A to 1D Composite material of metal and carbon fiber 2: Metal layer 2a: Uppermost metal layer (outermost metal layer) 2b: Lowermost metal layer (outermost metal layer) 2c: inner metal layer 3: carbon fiber layer 12: metal foil 12a: uppermost metal foil (outermost metal foil) 12b: Bottom metal foil (outermost metal foil) 13: Mixture layer 20: Preform foil 25: Preform foil laminate 30A to 30D: Final laminate 40 of metal foil and mixture layer 40: Carbon fiber 41: Binder 42: Solvent 45: Mixture 50: Coating device 60: Spark plasma sintering equipment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

A composite material (1A) comprising a metal and carbon fibers, in which multiple metal layers (2) and multiple carbon fiber layers (3) are laminated alternately in such a manner that metal layers (2a, 2b) are respectively arranged on both of the outermost sides of the resultant laminate as observed in the direction of the lamination, and the layers are integrated together by diffusion bonding. The thickness of each of the outermost-side metal layers (2a, 2b) is larger than the thickness of each of the inside metal layers (2c) that are arranged between the outermost-side metal layers (2a, 2b).

Description

金属と炭素繊維との複合材及びその製造方法Composite material of metal and carbon fiber and method for producing the same
 本発明は、金属と炭素繊維との複合材及びその製造方法に関する。 The present invention relates to a composite material of metal and carbon fiber and a method for producing the same.
 なお、本明細書及び特許請求の範囲において、特に明示しない限り、「アルミニウム」の語はアルミニウム合金も含む意味で用いられ、また「銅」の語は銅合金も含む意味で用いられる。 In the present specification and claims, unless otherwise specified, the term “aluminum” is used to include an aluminum alloy, and the term “copper” is used to include a copper alloy.
 金属と炭素繊維との複合材として、例えば特許文献1(特許第5150905号公報)や特許文献2(特許第5145591号公報)に記載されているように、金属層と炭素繊維層とが交互に複数積層されて接合一体化されたものが知られている。この種の複合材は、高い熱伝導特性が必要な部材用の材料としての利用が期待されている。 As a composite material of a metal and carbon fiber, for example, as described in Patent Document 1 (Patent No. 5150905) and Patent Document 2 (Patent No. 5145591), metal layers and carbon fiber layers are alternately formed. A plurality of laminated and united joints are known. This type of composite material is expected to be used as a material for members that require high heat conduction characteristics.
特許第5150905号公報Japanese Patent No. 5150905 特開第5145591号公報Japanese Patent No. 5145591
 この種の複合材では、主に、炭素繊維層を挟んだ両側の金属層のそれぞれの金属が炭素繊維層を通過して相手の金属層中へ熱拡散することにより、両金属層同士が接合されることで、全ての金属層及び炭素繊維層が一体化される。したがって、炭素繊維層はなるべく薄い方が、接合強度が高くなる点で望ましい。 In this type of composite material, each metal layer on both sides of the carbon fiber layer is mainly diffused through the carbon fiber layer and thermally diffused into the other metal layer, thereby joining the two metal layers together. By doing so, all the metal layers and the carbon fiber layers are integrated. Therefore, it is desirable that the carbon fiber layer is as thin as possible in terms of increasing bonding strength.
 また、IC等の半導体素子の熱を放出する放熱用絶縁基板の構成層としてこの種の複合材を用いる場合には、複合材と絶縁基板に含まれたセラミック層との間の線膨張係数差に起因する熱応力によって割れや剥離が発生しないようにするため、複合材の線膨張係数はなるべく小さい方が望ましい。ここで、一般に炭素繊維の線膨張係数は金属の線膨張係数よりも小さい。したがって、複合体における炭素繊維の含有量(例:炭素繊維の体積含有率)はなるべく多い方が、複合材の線膨張係数を小さくできる点で望ましい。 In addition, when this type of composite material is used as a constituent layer of a heat-dissipating insulating substrate that releases heat from a semiconductor element such as an IC, the difference in linear expansion coefficient between the composite material and the ceramic layer included in the insulating substrate In order to prevent the occurrence of cracking or peeling due to thermal stress caused by the composite material, it is desirable that the linear expansion coefficient of the composite material be as small as possible. Here, generally, the linear expansion coefficient of carbon fiber is smaller than the linear expansion coefficient of metal. Therefore, it is desirable that the carbon fiber content in the composite (eg, the volume content of carbon fiber) be as large as possible because the linear expansion coefficient of the composite can be reduced.
 さらに、一般に炭素繊維の熱伝導率は金属のそれよりも高い。したがって、複合材における炭素繊維の含有量はなるべく多い方が、複合材の熱伝導率を高くできる(即ち放熱特性を向上できる)点で望ましい。 Furthermore, the thermal conductivity of carbon fibers is generally higher than that of metals. Therefore, it is desirable that the carbon fiber content in the composite material is as large as possible in terms of increasing the thermal conductivity of the composite material (that is, improving the heat dissipation characteristics).
 したがって、接合強度を高めるとともに複合材の線膨張係数を小さくし更に複合材の熱伝導率を高くするためには、炭素繊維層をなるべく薄くするとともに炭素繊維の含有量をなるべく多くするのが望ましく、こうするためには、金属層と炭素繊維層をともに薄くして積層させるのが良い。 Therefore, in order to increase the bonding strength, reduce the linear expansion coefficient of the composite material, and further increase the thermal conductivity of the composite material, it is desirable to make the carbon fiber layer as thin as possible and increase the carbon fiber content as much as possible. In order to do this, it is preferable that both the metal layer and the carbon fiber layer are thinned and laminated.
 ところが、金属層を薄くすると次のような問題が発生する。 However, the following problems occur when the metal layer is thinned.
 すなわち、薄い金属層が複合材の最外側に配置されると、複合材の外面の機械的強度が低下する。その結果、複合材の外面に傷が付いた場合、この傷部から炭素繊維が露出するとともにこの傷部から金属層が簡単に剥がれるという表面欠陥が生じる。しかも、複合材の積層方向の最外側に配置された金属層の厚さが炭素繊維の直径寸法に近づいて当該最外側金属層が炭素繊維の形状に対応するように歪んでしまい、その結果、複合材の外面が非常に傷つき易くなって上述の表面欠陥が益々生じ易くなる。 That is, when the thin metal layer is disposed on the outermost side of the composite material, the mechanical strength of the outer surface of the composite material decreases. As a result, when the outer surface of the composite material is scratched, a surface defect occurs in which the carbon fiber is exposed from the scratch and the metal layer is easily peeled off from the scratch. In addition, the thickness of the metal layer disposed on the outermost side in the stacking direction of the composite material approaches the diameter dimension of the carbon fiber, and the outermost metal layer is distorted so as to correspond to the shape of the carbon fiber. The outer surface of the composite material is very easily damaged and the surface defects described above are more likely to occur.
 本発明は、上述した技術背景に鑑みてなされたもので、その目的は、高い熱伝導率と小さな線膨張係数を有するとともに、外面の機械的強度が高い、金属と炭素繊維との複合材及びその製造方法を提供することにある。 The present invention has been made in view of the above-described technical background, and the object thereof is a composite material of metal and carbon fiber, which has high thermal conductivity and a small linear expansion coefficient, and has high mechanical strength on the outer surface. It is in providing the manufacturing method.
 本発明のその他の目的及び利点は、以下の好ましい実施形態から明らかにされるであろう。 Other objects and advantages of the present invention will become apparent from the following preferred embodiments.
 本発明は以下の手段を提供する。 The present invention provides the following means.
 [1] 金属層と炭素繊維層が交互に且つ積層方向の両最外側にそれぞれ金属層が配置される態様にして複数積層されるとともに、これらの層が拡散接合により接合一体化されたものであり、
 前記最外側金属層の厚さは、前記両最外側金属層の間に配置された内側金属層の厚さよりも厚く設定されている金属と炭素繊維との複合材。
[1] A plurality of metal layers and carbon fiber layers are alternately laminated in such a manner that metal layers are arranged on both outermost sides in the lamination direction, and these layers are joined and integrated by diffusion bonding. Yes,
The thickness of the outermost metal layer is a composite material of a metal and carbon fiber that is set to be thicker than the thickness of the inner metal layer disposed between the outermost metal layers.
 [2] 前記金属層はアルミニウムで形成されており、
 前記内側金属層の厚さは20μm以下であり、
 前記最外側金属層の厚さは30μm以上である前項1記載の金属と炭素繊維との複合材。
[2] The metal layer is made of aluminum,
The inner metal layer has a thickness of 20 μm or less,
2. The metal / carbon fiber composite material according to item 1, wherein the outermost metal layer has a thickness of 30 μm or more.
 [3] 前記金属層は銅で形成されており、
 前記内側金属層の厚さは15μm以下であり、
 前記最外側金属層の厚さは20μm以上である前項1記載の金属と炭素繊維との複合材。
[3] The metal layer is made of copper,
The inner metal layer has a thickness of 15 μm or less,
2. The metal / carbon fiber composite material according to item 1, wherein the outermost metal layer has a thickness of 20 μm or more.
 [4] 炭素繊維がバインダー及び溶剤と混合された混合物を金属箔上に層状に付着させて、金属箔上に混合物層が形成されたプリフォーム箔を得る混合物付着工程と、
 前記プリフォーム箔を複数積層してプリフォーム箔積層体を形成するとともに、積層方向の両最外側にそれぞれ金属箔が配置されるように、前記プリフォーム箔、又は前記混合物層が形成されていない金属箔を、前記プリフォーム箔積層体の積層方向の少なくとも片面に対して積層して、金属箔と混合物層との最終積層体を形成する積層体形成工程と、
 前記最終積層体を非酸化雰囲気又は真空中にて前記金属箔の溶融温度よりも低い温度で拡散接合により接合一体化する接合工程と、を具備しており、
 前記積層体形成工程では、前記最終積層体における前記プリフォーム箔の前記混合物層に隣接して配置される最外側金属箔の厚さが、両最外側金属箔の間に配置される内側金属箔の厚さよりも厚く設定されている金属と炭素繊維との複合材の製造方法。
[4] A mixture adhering step of obtaining a preform foil in which a mixture layer is formed on a metal foil by adhering a mixture in which carbon fibers are mixed with a binder and a solvent in a layered manner on the metal foil;
A plurality of the preform foils are laminated to form a preform foil laminate, and the preform foil or the mixture layer is not formed so that the metal foils are respectively disposed on both outermost sides in the lamination direction. Laminate forming step of laminating a metal foil with respect to at least one surface in the laminating direction of the preform foil laminate to form a final laminate of the metal foil and the mixture layer;
A step of bonding and integrating the final laminate by diffusion bonding at a temperature lower than the melting temperature of the metal foil in a non-oxidizing atmosphere or vacuum, and
In the laminate forming step, the thickness of the outermost metal foil disposed adjacent to the mixture layer of the preform foil in the final laminate is an inner metal foil disposed between both outermost metal foils. A method for producing a composite material of metal and carbon fiber that is set to be thicker than the thickness of the metal.
 [5] 前記金属箔はアルミニウム箔であり、
 前記内側金属箔の厚さは20μm以下であり、
 前記プリフォーム箔の前記混合物層に隣接して配置される最外側金属箔の厚さは30μm以上であり、
 前記最終積層体における前記プリフォーム箔の前記金属箔に隣接して最外側金属箔が配置される場合には、当該最外側金属箔の厚さは、前記隣接する金属箔の厚さとの合計厚さが30μm以上になるように設定されている前項4記載の金属と炭素繊維との複合材の製造方法。
[5] The metal foil is an aluminum foil,
The inner metal foil has a thickness of 20 μm or less,
The thickness of the outermost metal foil disposed adjacent to the mixture layer of the preform foil is 30 μm or more,
When the outermost metal foil is disposed adjacent to the metal foil of the preform foil in the final laminate, the thickness of the outermost metal foil is the total thickness of the adjacent metal foils The manufacturing method of the composite material of the metal and carbon fiber of the preceding clause 4 set so that thickness may become 30 micrometers or more.
 [6] 前記金属箔は銅箔であり、
 前記内側金属箔の厚さは15μm以下であり、
 前記最終積層体における前記プリフォーム箔の前記混合物層に隣接して配置される最外側金属箔の厚さは20μm以上であり、
 前記最終積層体における前記プリフォーム箔の前記金属箔に隣接して最外側金属箔が配置される場合には、当該最外側金属箔の厚さは、前記隣接する金属箔の厚さとの合計厚さが20μm以上になるように設定されている前項4記載の金属と炭素繊維との複合材の製造方法。
[6] The metal foil is a copper foil,
The inner metal foil has a thickness of 15 μm or less,
The thickness of the outermost metal foil disposed adjacent to the mixture layer of the preform foil in the final laminate is 20 μm or more,
When the outermost metal foil is disposed adjacent to the metal foil of the preform foil in the final laminate, the thickness of the outermost metal foil is the total thickness of the adjacent metal foils The manufacturing method of the composite material of the metal and carbon fiber of the preceding clause 4 set so that may become 20 micrometers or more.
 [7] 前記積層体形成工程の前に、前記プリフォーム箔の前記混合物層を乾燥させる乾燥工程を更に具備している前項4~6のいずれかに記載の金属と炭素繊維との複合材の製造方法。 [7] The metal / carbon fiber composite material according to any one of [4] to [6], further including a drying step of drying the mixture layer of the preform foil before the laminate forming step. Production method.
 本発明は以下の効果を奏する。 The present invention has the following effects.
 前項[1]の複合材では、金属層と炭素繊維層が交互に複数積層された構造を有している。これにより、複合材の熱伝導率を高くすることができるし、複合材の線膨張係数を小さくすることができる。さらに、最外側金属層の厚さが内側金属層の厚さよりも厚く設定されているので、複合材の積層方向の外面の機械的強度が高く、したがって表面欠陥の発生を防止することができる。 The composite material of [1] has a structure in which a plurality of metal layers and carbon fiber layers are alternately laminated. Thereby, the heat conductivity of a composite material can be made high and the linear expansion coefficient of a composite material can be made small. Furthermore, since the thickness of the outermost metal layer is set to be greater than the thickness of the inner metal layer, the mechanical strength of the outer surface in the stacking direction of the composite material is high, and therefore the occurrence of surface defects can be prevented.
 前項[2]では、前項[1]の複合材による上記効果を確実に奏し得るアルミニウムと炭素繊維との複合材を提供できる。 In the preceding item [2], it is possible to provide a composite material of aluminum and carbon fiber that can surely exhibit the above-described effect of the composite material of the preceding item [1].
 前項[3]では、前項[1]の複合材による上記効果を確実に奏し得る銅と炭素繊維との複合材を提供できる。 In the previous item [3], it is possible to provide a composite material of copper and carbon fiber that can surely achieve the above-described effect of the composite material of the previous item [1].
 前項[4]の複合材の製造方法では、前項[1]の複合材を確実に製造することができる。さらに、接合工程では、最終積層体を非酸化雰囲気又は真空中にて金属箔の溶融温度よりも低い温度で拡散接合により接合一体化することにより、金属箔の金属と炭素繊維との化学反応による金属炭化物の生成を防止できる。これにより、金属炭化物の生成に伴う複合材の特性変化を防止できる。 In the method for producing a composite material according to [4], the composite material according to [1] can be reliably produced. Further, in the joining step, the final laminate is joined and integrated by diffusion joining at a temperature lower than the melting temperature of the metal foil in a non-oxidizing atmosphere or in vacuum, thereby causing a chemical reaction between the metal of the metal foil and the carbon fiber. Formation of metal carbide can be prevented. Thereby, the characteristic change of the composite material accompanying the production | generation of a metal carbide can be prevented.
 前項[5]では、前項[2]の複合材を確実に製造することができる。さらに、金属炭化物として炭化アルミニウム(Al)の生成を防止できる。ここで、炭化アルミニウムは水や空気中の水分と反応して炭化水素ガス(例:メタンガス)を生じたり金属酸化物に変質したりするため、炭化アルミニウムの生成は複合材の内部欠陥の発生原因となる。したがって、炭化アルミニウムはできる限り生成されさないことが望ましい。しかるに、前項[5]では、上述したように炭化アルミニウムの生成が防止されるので、炭化アルミニウムの生成による内部欠陥が殆ど発生しない複合材を得ることができる。 In the preceding item [5], the composite material of the preceding item [2] can be reliably manufactured. Furthermore, generation of aluminum carbide (Al 4 C 3 ) as a metal carbide can be prevented. Here, aluminum carbide reacts with water and moisture in the air to produce hydrocarbon gas (eg, methane gas) or changes to metal oxide, so the formation of aluminum carbide is the cause of internal defects in the composite material It becomes. Therefore, it is desirable that aluminum carbide is not generated as much as possible. However, in the preceding item [5], since the formation of aluminum carbide is prevented as described above, it is possible to obtain a composite material in which internal defects due to the formation of aluminum carbide hardly occur.
 前項[6]では、前項[3]の複合材を確実に製造することができる。 In the previous item [6], the composite material of the previous item [3] can be reliably manufactured.
 前項[7]では、複合材をより強固に接合一体化することができる。 In the previous item [7], the composite material can be joined and integrated more firmly.
図1は、本発明の第1実施形態に係る、金属と炭素繊維との複合材の断面図である。FIG. 1 is a cross-sectional view of a composite material of metal and carbon fiber according to the first embodiment of the present invention. 図2Aは、同複合材の製造工程を示すブロック図である。FIG. 2A is a block diagram showing a manufacturing process of the composite material. 図2Bは、同複合材の製造工程を説明する概略図である。FIG. 2B is a schematic view illustrating the manufacturing process of the composite material. 図3は、同複合材を得るための最終積層体を形成する途中の状態を示す断面図である。FIG. 3 is a cross-sectional view showing a state in the middle of forming the final laminate for obtaining the composite material. 図4は、同最終積層体を放電プラズマ焼結法により接合一体化する途中の状態を示す断面図である。FIG. 4 is a cross-sectional view showing a state in the middle of joining and integrating the final laminate by a discharge plasma sintering method. 図5は、本発明の第2実施形態に係る、金属と炭素繊維との複合材の断面図である。FIG. 5 is a cross-sectional view of a composite material of metal and carbon fiber according to the second embodiment of the present invention. 図6は、同複合材を得るための最終積層体を形成する途中の状態を示す断面図である。FIG. 6 is a cross-sectional view showing a state in the middle of forming the final laminate for obtaining the composite material. 図7は、本発明の第3実施形態に係る、金属と炭素繊維との複合材の断面図である。FIG. 7 is a cross-sectional view of a composite material of metal and carbon fiber according to the third embodiment of the present invention. 図8は、同複合材を得るための最終積層体を形成する途中の状態を示す断面図である。FIG. 8 is a cross-sectional view showing a state in the middle of forming the final laminate for obtaining the composite material. 図9は、本発明の第4実施形態に係る、金属と炭素繊維との複合材の断面図である。FIG. 9 is a cross-sectional view of a composite material of metal and carbon fiber according to the fourth embodiment of the present invention. 図10は、同複合材を得るための最終積層体を形成する途中の状態を示す断面図である。FIG. 10 is a cross-sectional view showing a state in the middle of forming the final laminate for obtaining the composite material.
 次に、本発明の幾つかの実施形態について図面を参照して以下に説明する。 Next, some embodiments of the present invention will be described below with reference to the drawings.
 図1に示すように、本発明の第1実施形態に係る金属と炭素繊維との複合材1Aは、金属層2と炭素繊維層3が交互に且つ積層方向の両最外側にそれぞれ金属層2a、2bが配置される態様にして複数積層されており、更に、これらの層2、3が拡散接合により接合一体化されたものである。なお図面では、炭素繊維層3は金属層2と区別するためドットハッチングで示されている。 As shown in FIG. 1, in the composite material 1A of metal and carbon fiber according to the first embodiment of the present invention, the metal layers 2a and the carbon fiber layers 3 are alternately arranged on the outermost sides in the laminating direction, respectively. A plurality of layers 2b are laminated in such a manner that 2b is arranged, and these layers 2 and 3 are joined and integrated by diffusion bonding. In the drawing, the carbon fiber layer 3 is shown by dot hatching to distinguish it from the metal layer 2.
 ここで、本第1実施形態の複合材1Aでは、説明の便宜上、積層方向を上下方向に設定している。さらに、複合材1Aの厚さ方向を積層方向に設定している。ただし本発明は、積層方向を上下方向に設定することに限定されるものではなく、前後方向や左右方向などの任意の方向に設定することができる。 Here, in the composite material 1A of the first embodiment, for convenience of explanation, the stacking direction is set to the vertical direction. Furthermore, the thickness direction of the composite material 1A is set to the stacking direction. However, the present invention is not limited to setting the stacking direction in the vertical direction, and can be set in any direction such as the front-rear direction and the left-right direction.
 さらに、第1実施形態の複合材1Aでは、全ての金属層2のうち積層方向(即ち上下方向)の両最外側のうち一方側としての最上側に配置された金属層2を特に「最上側金属層2a」及び他方側としての最下側に配置された金属層2を特に「最下側金属層2b」といい、更に、最上側金属層2aと最下側金属層2bとの間に配置された金属層2を特に「内側金属層2c」という。 Further, in the composite material 1A of the first embodiment, the metal layer 2 disposed on the uppermost side as one side of both outermost sides in the stacking direction (that is, the vertical direction) among all the metal layers 2 is particularly “the uppermost side”. The metal layer 2a "and the metal layer 2 disposed on the lowermost side as the other side are particularly referred to as" the lowermost metal layer 2b ", and further between the uppermost metal layer 2a and the lowermost metal layer 2b. The disposed metal layer 2 is particularly referred to as an “inner metal layer 2c”.
 この複合材1Aの長さは例えば10~300mm、その幅は例えば10~200mm、その厚さ(即ち積層方向の厚さ)は例えば0.5~20mmの範囲に設定されている。ただし本発明では、複合材1Aの大きさ(長さ、幅、厚さ)はこのような範囲内に設定されることに限定されるものではなく、複合材1Aの用途などに応じて様々に設定されるものである。 The length of the composite material 1A is set to, for example, 10 to 300 mm, the width is set to, for example, 10 to 200 mm, and the thickness (that is, the thickness in the stacking direction) is set to, for example, 0.5 to 20 mm. However, in the present invention, the size (length, width, thickness) of the composite material 1A is not limited to be set within such a range, and may vary depending on the use of the composite material 1A. Is set.
 この複合材1Aでは、炭素繊維層3を挟んだ両側の金属層2、2のそれぞれの金属が炭素繊維層3を通過して相手の金属層2中へ熱拡散することにより、両金属層2、2同士が接合されており、その結果、全ての金属層2及び炭素繊維層3が一体化されている。 In this composite material 1A, the respective metal layers 2 and 2 on both sides of the carbon fiber layer 3 pass through the carbon fiber layer 3 and thermally diffuse into the opposite metal layer 2, whereby both metal layers 2 As a result, all the metal layers 2 and the carbon fiber layers 3 are integrated.
 金属層2を形成する金属は限定されるものではないが、特にアルミニウム又は銅であることが望ましく、こうすることにより、複合材1Aの熱伝導率を確実に高めることができる。 The metal that forms the metal layer 2 is not limited, but is preferably aluminum or copper, and by doing so, the thermal conductivity of the composite material 1A can be reliably increased.
 本第1実施形態では、全ての金属層2は同種の金属で形成されており、具体的にはアルミニウムで形成されているか又は銅で形成されているとして以下に説明する。 In the first embodiment, all the metal layers 2 are formed of the same kind of metal, and specifically described below as being formed of aluminum or copper.
 炭素繊維層3を形成する炭素繊維40(図2B参照)は、PAN系炭素繊維、ピッチ系炭素繊維及びカーボンナノチューブ類(例えば、気相成長カーボンナノファイバー、シングルウォールカーボンナノファイバー、マルチウォールカーボンナノチューブ)からなる群より選択される1種の繊維径0.1nm~20μm及び繊維長0.5μm~1.0mmの短炭素繊維であるか又は2種以上の繊維径0.1nm~20μm及び繊維長0.5μm~1.0mmの混合短炭素繊維であることが望ましい。特に、PAN系炭素繊維及びピッチ系炭素繊維についてはチョップドファイバー又はミルドファイバーであって繊維径5~15μm及び繊維長50μm~1mmのものであることが望ましく、更に、気相成長カーボンナノファイバーについては繊維径0.1nm~20μm及び繊維長0.5μm~1mmのものであることが望ましく、こうすることにより、炭素繊維40がバインダー41及び溶剤42と混合された混合物45を確実に塗料液化することができる(図2B参照)。 The carbon fibers 40 (see FIG. 2B) forming the carbon fiber layer 3 are PAN-based carbon fibers, pitch-based carbon fibers, and carbon nanotubes (for example, vapor-grown carbon nanofibers, single-wall carbon nanofibers, multi-wall carbon nanotubes). Or a short carbon fiber having a fiber diameter of 0.1 nm to 20 μm and a fiber length of 0.5 μm to 1.0 mm, or two or more fiber diameters of 0.1 nm to 20 μm and a fiber length selected from the group consisting of A mixed short carbon fiber of 0.5 μm to 1.0 mm is desirable. In particular, PAN-based carbon fibers and pitch-based carbon fibers are preferably chopped fibers or milled fibers having a fiber diameter of 5 to 15 μm and a fiber length of 50 μm to 1 mm. Desirably, the fiber diameter is 0.1 nm to 20 μm and the fiber length is 0.5 μm to 1 mm. By doing this, the mixture 45 in which the carbon fiber 40 is mixed with the binder 41 and the solvent 42 is surely liquefied. (See FIG. 2B).
 また、炭素繊維層3では、炭素繊維40が積層方向に対し垂直方向(即ち面方向)に配向した状態に配置されている。 Further, in the carbon fiber layer 3, the carbon fibers 40 are arranged in a state of being oriented in a direction perpendicular to the stacking direction (that is, a plane direction).
 ここで、炭素繊維層3は炭素繊維40を主体として形成されたものである。具体的には、炭素繊維層3は、炭素繊維40だけで形成されていても良いし、炭素繊維40と後述するバインダー41とで形成されていても良いし、バインダー41の乾燥残留物と炭素繊維40とで形成されていても良いし、バインダー41の燃焼残渣と炭素繊維40とで形成されていても良い。さらに、炭素繊維層3は、バインダー41が乾燥又は燃焼することで残った炭素繊維40だけで形成されていても良い。 Here, the carbon fiber layer 3 is formed mainly of the carbon fiber 40. Specifically, the carbon fiber layer 3 may be formed of only the carbon fibers 40, or may be formed of the carbon fibers 40 and a binder 41 described later, or a dry residue of the binder 41 and carbon. It may be formed with the fiber 40, or may be formed with the combustion residue of the binder 41 and the carbon fiber 40. Furthermore, the carbon fiber layer 3 may be formed of only the carbon fibers 40 left by drying or burning the binder 41.
 本第1実施形態の複合材1Aでは、金属層2と炭素繊維層3が交互に複数積層された構造を有している。これにより、複合材1Aの線膨張係数は小さく且つ複合材1Aの熱伝導率は高くなっている。さらに、最上側金属層2a及び最下側金属層2bの厚さはそれぞれ各内側金属層2cの厚さよりも厚く設定されている。これにより、複合材1Aの上面1a及び下面1b(即ち複合材1Aの積層方向の両外面)の機械的強度が高くなっており、したがって上下各面1a、1bが傷付くことによる表面欠陥(炭素繊維層3の露出、最外側金層層2a、2bの剥がれ等)の発生を防止することができる。しかも、最上側金属層2a及び最下側金属層2bだけが厚いので、複合材1Aの線膨張係数の増大及び熱伝導率の低下を極力抑制することができる。 The composite material 1A of the first embodiment has a structure in which a plurality of metal layers 2 and carbon fiber layers 3 are alternately stacked. Thereby, the linear expansion coefficient of the composite material 1A is small, and the thermal conductivity of the composite material 1A is high. Furthermore, the thickness of the uppermost metal layer 2a and the lowermost metal layer 2b is set to be thicker than the thickness of each inner metal layer 2c. As a result, the mechanical strength of the upper surface 1a and the lower surface 1b of the composite material 1A (that is, both outer surfaces in the stacking direction of the composite material 1A) is increased, and therefore surface defects (carbon) caused by scratching the upper and lower surfaces 1a, 1b. Generation of the fiber layer 3 exposure, peeling of the outermost gold layer layers 2a and 2b, etc.) can be prevented. Moreover, since only the uppermost metal layer 2a and the lowermost metal layer 2b are thick, an increase in the linear expansion coefficient and a decrease in thermal conductivity of the composite material 1A can be suppressed as much as possible.
 金属層2の望ましい厚さは以下のとおりである。 The desirable thickness of the metal layer 2 is as follows.
 金属層2がアルミニウムで形成されている場合、各内側金属層2cの厚さは20μm以下であり且つ最上側金属層2a及び最下側金属層2bの厚さはそれぞれ30μm以上(特に望ましくは50μm以上)であることが望ましく、こうすることにより、複合材1Aの線膨張係数を小さく且つ熱伝導率を高めた状態で表面欠陥の発生を確実に防止できる。各内側金属層2cの厚さの下限は限定されるものではないが、特に10μmであることが望ましく、こうすることにより、炭素繊維層3を挟んだ両側の金属層2、2同士を強固に拡散接合により接合することができて接合強度を確実に高めることができる。最上側金属層2a及び最下側金属層2bの厚さの上限は限定されるものではなく、例えば10mmに設定される。 When the metal layer 2 is made of aluminum, the thickness of each inner metal layer 2c is 20 μm or less, and the thicknesses of the uppermost metal layer 2a and the lowermost metal layer 2b are each 30 μm or more (particularly desirably 50 μm). As described above, it is desirable to prevent the occurrence of surface defects in a state where the linear expansion coefficient of the composite material 1A is small and the thermal conductivity is increased. The lower limit of the thickness of each inner metal layer 2c is not limited, but is preferably 10 μm, and by doing so, the metal layers 2 and 2 on both sides sandwiching the carbon fiber layer 3 are firmly formed. It is possible to join by diffusion joining, and the joining strength can be reliably increased. The upper limit of the thickness of the uppermost metal layer 2a and the lowermost metal layer 2b is not limited, and is set to 10 mm, for example.
 金属層2を形成するアルミニウムとしては、箔になりうるアルミニウムであれば何でも用いることができ、例えば、純アルミニウム、JIS(日本工業規格)合金記号A1000、A3000、A8000番系のアルミニウムが好適に用いられる。 As the aluminum forming the metal layer 2, any aluminum that can be used as a foil can be used. For example, pure aluminum, JIS (Japanese Industrial Standard) alloy symbols A1000, A3000, and A8000 series aluminum are preferably used. It is done.
 金属層2が銅で形成されている場合、各内側金属層2cの厚さは15μm以下であり且つ最上側金属層2a及び最下側金属層2bの厚さはそれぞれ20μm以上(特に望ましくは30μm以上)であることが望ましく、こうすることにより、複合材1Aの線膨張係数を小さく且つ熱伝導率を高めた状態で表面欠陥の発生を確実に防止できる。各内側金属層2cの厚さの下限は限定されるものではないが、特に6μmであることが望ましく、こうすることにより、炭素繊維層3を挟んだ両側の金属層2、2同士を強固に拡散接合により接合することができて接合強度を確実に高めることができる。最上側金属層2a及び最下側金属層2bの厚さの上限は限定されるものではなく、例えば10mmに設定される。 When the metal layer 2 is made of copper, the thickness of each inner metal layer 2c is 15 μm or less, and the thicknesses of the uppermost metal layer 2a and the lowermost metal layer 2b are each 20 μm or more (particularly desirably 30 μm). As described above, it is desirable to prevent the occurrence of surface defects in a state where the linear expansion coefficient of the composite material 1A is small and the thermal conductivity is increased. The lower limit of the thickness of each inner metal layer 2c is not limited, but is particularly preferably 6 μm, and by doing so, the metal layers 2 and 2 on both sides sandwiching the carbon fiber layer 3 are strengthened. It is possible to join by diffusion joining, and the joining strength can be reliably increased. The upper limit of the thickness of the uppermost metal layer 2a and the lowermost metal layer 2b is not limited, and is set to 10 mm, for example.
 金属層2を形成する銅としては、圧延銅や電解銅などが用いられる。すなわち、金属層2は圧延銅箔や電解銅箔などから形成される。 As the copper forming the metal layer 2, rolled copper, electrolytic copper, or the like is used. That is, the metal layer 2 is formed from a rolled copper foil or an electrolytic copper foil.
 複合材1Aにおける最上側金属層2a及び最下側金属層2bを除いた炭素繊維40の体積含有率(以下、単に「炭素繊維の体積含有率Vf」と記する)については、炭素繊維40の種類や複合材1Aの用途に応じて様々に設定されるものであるが、特に30~50体積%の範囲に設定されることが望ましい。このように炭素繊維の体積含有率Vf及び炭素繊維層3の厚さを設定することにより、接合強度を確実に高めることができるし複合材1Aの線膨張係数を確実に小さくすることができるし複合材1Aの熱伝導率を確実に高めることができる。 Regarding the volume content of the carbon fibers 40 excluding the uppermost metal layer 2a and the lowermost metal layer 2b in the composite material 1A (hereinafter, simply referred to as “carbon fiber volume content Vf”), Various values are set according to the type and the application of the composite material 1A, and it is particularly preferable to set the value within the range of 30 to 50% by volume. By setting the volume content Vf of carbon fiber and the thickness of the carbon fiber layer 3 in this way, the bonding strength can be reliably increased and the linear expansion coefficient of the composite material 1A can be reliably reduced. The thermal conductivity of the composite material 1A can be reliably increased.
 複合材1Aにおける内側金属層2cの数及び炭素繊維層3の数はそれぞれ限定されるものではなく、複合材1Aの用途に応じて様々に設定されるものであり、内側金属層2cの数は1層以上で炭素繊維層3の数は2層以上であれば良い。また、内側金属層2cの数の上限及び炭素繊維層3の数の上限についてもそれぞれ限定されるものではなく、例えば数千層(例:3000層)であっても良い。 The number of the inner metal layers 2c and the number of the carbon fiber layers 3 in the composite material 1A are not limited respectively, and are variously set according to the use of the composite material 1A. The number of the inner metal layers 2c is The number of carbon fiber layers 3 may be one or more and two or more. Further, the upper limit of the number of inner metal layers 2c and the upper limit of the number of carbon fiber layers 3 are not limited respectively, and may be, for example, several thousand layers (example: 3000 layers).
 この複合材1Aでは、各内側金属層2cは1枚の金属箔12から形成された層である。両最外側金属層2a、2bのうち最上側金属層2aは1枚の金属箔12aから形成された層であり、一方、最下側金属層2bは互いに積層された複数枚としての2枚の金属箔12、12b同士が拡散接合により接合一体化されて形成された層である。 In this composite material 1A, each inner metal layer 2c is a layer formed from one metal foil 12. Of the outermost metal layers 2a and 2b, the uppermost metal layer 2a is a layer formed from one metal foil 12a, while the lowermost metal layer 2b is a plurality of two sheets laminated together. This is a layer formed by joining and integrating the metal foils 12 and 12b by diffusion bonding.
 次に、本第1実施形態の複合材1Aの製造方法について図2A~4を参照して以下に説明する。 Next, a manufacturing method of the composite material 1A of the first embodiment will be described below with reference to FIGS.
 本第1実施形態の複合材1Aの製造方法は、図2Aに示すように、混合物付着工程S1、乾燥工程S2、積層体形成工程S3、接合工程S4などを具備している。 The manufacturing method of 1 A of composite materials of this 1st Embodiment comprises the mixture adhesion process S1, the drying process S2, the laminated body formation process S3, the joining process S4, etc., as shown to FIG. 2A.
 混合物付着工程S1は、図2Bに示すように、炭素繊維40がバインダー41及び溶剤42と混合されてなる塗料液としての混合物45を金属箔12上として金属箔12の両面のうち少なくとも片面上に層状に付着させ、これにより、金属箔12の少なくとも片面上に混合物層13が形成されたプリフォーム箔20を得る工程である。本第1実施形態では、混合物45は金属箔12の片面としての上面上にその略全面に亘って層状に付着されており、したがって、プリフォーム箔20は金属箔12の上面上にその略全面に亘って混合物層13が形成されたものである。 As shown in FIG. 2B, the mixture adhering step S <b> 1 is performed on at least one surface of both surfaces of the metal foil 12 with the mixture 45 as a coating liquid obtained by mixing the carbon fibers 40 with the binder 41 and the solvent 42 on the metal foil 12. This is a step of obtaining a preform foil 20 in which the mixture layer 13 is formed on at least one surface of the metal foil 12 by being attached in layers. In the first embodiment, the mixture 45 is deposited on the upper surface as one side of the metal foil 12 in a layered manner over substantially the entire surface thereof, so that the preform foil 20 is disposed on the substantially upper surface of the metal foil 12. The mixture layer 13 is formed over the entire area.
 ここで、複合材1Aの金属層2がアルミニウムで形成される場合、金属箔12としてアルミニウム箔が用いられる。複合材1Aの金属層2が銅で形成される場合、金属箔12として銅箔が用いられる。金属箔12の望ましい厚さについては後述する。 Here, when the metal layer 2 of the composite material 1 </ b> A is formed of aluminum, an aluminum foil is used as the metal foil 12. When the metal layer 2 of the composite material 1 </ b> A is formed of copper, a copper foil is used as the metal foil 12. A desirable thickness of the metal foil 12 will be described later.
 バインダー41としては、ポリエチレンオキシド(ポリエチレングリコール、ポリオキシエチレン)、アクリル等の樹脂が好適に用いられる。その溶剤42としては、水、アルコール(例:メタノール)、グリコール系溶剤(例:エチレングリコール、ジエチレングリコール、プロピレングリコール、エチレングリコールのエーテル類(セロソルブ)、アセテート類、ジエチレングリコールのエーテル類、アセテート類、プロピレングリコールのエーテル類、アセテート類)等が用いられる。 As the binder 41, a resin such as polyethylene oxide (polyethylene glycol, polyoxyethylene) or acrylic is preferably used. As the solvent 42, water, alcohol (eg, methanol), glycol solvent (eg, ethylene glycol, diethylene glycol, propylene glycol, ethylene glycol ethers (cellosolve), acetates, diethylene glycol ethers, acetates, propylene Glycol ethers, acetates) and the like.
 図2Bに示すように、混合物付着工程S1では、炭素繊維40、バインダー41及び溶剤42を混合容器49内に入れてこれらを撹拌器(例:ミキサー)48により撹拌混合し、これにより、炭素繊維40を含有した混合物45を塗料液として得る。このとき、炭素繊維40だけではなく更に金属箔12(金属層2)の金属と同種の金属粒子(その粒径:1~150μm)も混合しても良い。さらに、混合物(塗料液)45の調整用の分散剤、表面調整剤、増粘剤なども混合しても良い。 As shown in FIG. 2B, in the mixture adhering step S1, the carbon fiber 40, the binder 41, and the solvent 42 are put in a mixing container 49, and these are stirred and mixed by a stirrer (example: mixer) 48. A mixture 45 containing 40 is obtained as a coating liquid. At this time, not only the carbon fiber 40 but also metal particles of the same type as the metal of the metal foil 12 (metal layer 2) (its particle size: 1 to 150 μm) may be mixed. Further, a dispersant for adjusting the mixture (paint liquid) 45, a surface conditioner, a thickener, and the like may be mixed.
 次いで、塗工装置50を用いて混合物45を金属箔12の上面上にその略全面に亘って層状に付着(塗布)させる。混合物45の付着量は限定されるものではないが、望ましくは、後述する乾燥工程S2で混合物45を乾燥させた後の状態で20~50g/mの範囲になるように設定するのが良い。 Next, the mixture 45 is adhered (applied) on the upper surface of the metal foil 12 in a layered manner over the substantially entire surface using the coating apparatus 50. The adhering amount of the mixture 45 is not limited, but desirably it is set to be in the range of 20 to 50 g / m 2 after the mixture 45 is dried in the drying step S2 described later. .
 塗工装置50としてはロールコーター、グラビアコーター等が用いられる。図2Bに示した塗工装置50では、巻出しロール51から巻き出された金属箔12の条材12Aが塗布ロールユニット52及び乾燥炉55を順次通過して巻取りロール53で巻き取られる。混合物45の付着は、塗布ロールユニット52で行われる。すなわち、巻出しロール51から巻き出された金属箔12の条材12Aは、塗布ロールユニット52を通過する際にその上面上に塗布ロールユニット52により混合物45が層状に付着されて、混合物層13が形成されたプリフォーム箔20の条材20Aとなり、そして乾燥炉55を通過したのち巻取りロール53で巻き取られる。なお、塗布ロールユニット52は、混合物用パン52a、ピックアップロール52b、アプリケーターロール52c、バックアップロール52d等を備えている。 As the coating apparatus 50, a roll coater, a gravure coater or the like is used. In the coating apparatus 50 shown in FIG. 2B, the strip 12 </ b> A of the metal foil 12 unwound from the unwinding roll 51 sequentially passes through the application roll unit 52 and the drying furnace 55 and is wound up by the winding roll 53. Adhesion of the mixture 45 is performed by the application roll unit 52. That is, when the strip 12A of the metal foil 12 unwound from the unwinding roll 51 passes through the coating roll unit 52, the mixture 45 is adhered to the upper surface of the strip 12A by the coating roll unit 52, and the mixture layer 13 Is formed into the strip material 20A of the preform foil 20, and after passing through the drying furnace 55, it is wound up by the winding roll 53. The application roll unit 52 includes a mixture pan 52a, a pickup roll 52b, an applicator roll 52c, a backup roll 52d, and the like.
 乾燥工程S2は、プリフォーム箔20の混合物層13を乾燥させる工程である。本第1実施形態では、混合物層13の乾燥は上述した塗工装置50の乾燥炉55(例:熱風式乾燥炉)により行われる。 Drying step S2 is a step of drying the mixture layer 13 of the preform foil 20. In the first embodiment, the mixture layer 13 is dried by the drying furnace 55 (eg, hot air drying furnace) of the coating apparatus 50 described above.
 混合物層13の乾燥条件は、混合物層13中に含まれる溶剤成分を混合物層13から蒸発除去可能な条件であれば限定されるものではないが、特に、乾燥温度80~180℃及び乾燥時間1~10minの条件が適用されることが多い。この乾燥工程S2によってプリフォーム箔20の混合物層13中の溶剤成分が蒸発除去されて、混合物層13中には主に炭素繊維40が残存し、即ち混合物層13は炭素繊維主体の層となる。 The drying conditions of the mixture layer 13 are not limited as long as the solvent component contained in the mixture layer 13 can be removed from the mixture layer 13 by evaporation. In particular, the drying temperature is 80 to 180 ° C. and the drying time is 1 The condition of ˜10 min is often applied. By this drying step S2, the solvent component in the mixture layer 13 of the preform foil 20 is removed by evaporation, and mainly the carbon fibers 40 remain in the mixture layer 13, that is, the mixture layer 13 becomes a layer mainly composed of carbon fibers. .
 積層体形成工程S3は、金属箔12と混合物層13との最終積層体30Aを形成する工程である。この工程S3では、まず乾燥工程S2で混合物層13が乾燥されて巻取りロール53で巻き取られたプリフォーム箔20の条材20Aから所定形状(例:四角形状)のプリフォーム箔20を複数切り出す。そして、プリフォーム箔20を図3に示すように同じ向きにして上下方向に複数積層してプリフォーム箔積層体25を形成(製作)するとともに、混合物層13が形成されていない金属箔12を最上側金属箔12a及び最下側金属箔12bとしてプリフォーム箔積層体25の上面及び下面に対してそれぞれ積層する。これにより、金属箔12と混合物層13との最終積層体30Aが形成(製作)される。この最終積層体30Aでは、上下方向(即ち積層方向)の最上側と最下側にはそれぞれ混合物層13が形成されていない金属箔12が配置されている。互いに積層される複数のプリフォーム箔20の形状及び寸法は、互いに同形及び同寸である。 The laminate forming step S3 is a step of forming the final laminate 30A of the metal foil 12 and the mixture layer 13. In this step S3, first, a plurality of preform foils 20 having a predetermined shape (for example, a square shape) are formed from the strip material 20A of the preform foil 20 that is dried in the drying step S2 and wound by the winding roll 53. cut. Then, a plurality of preform foils 20 are laminated in the vertical direction in the same direction as shown in FIG. 3 to form (manufacture) the preform foil laminate 25, and the metal foil 12 on which the mixture layer 13 is not formed is formed. The uppermost metal foil 12a and the lowermost metal foil 12b are laminated on the upper surface and the lower surface of the preform foil laminate 25, respectively. Thereby, the final laminated body 30A of the metal foil 12 and the mixture layer 13 is formed (manufactured). In the final laminate 30A, the metal foils 12 on which the mixture layer 13 is not formed are arranged on the uppermost side and the lowermost side in the vertical direction (that is, the laminating direction). The shapes and dimensions of the plurality of preform foils 20 stacked on each other are the same shape and the same size.
 また、この最終積層体30Aでは、最上側金属箔12aはプリフォーム箔20の混合物層13にその上側に隣接して配置されており、一方、最下側金属箔12bはプリフォーム箔20の金属箔12にその下側に隣接して配置されている。 Further, in this final laminate 30A, the uppermost metal foil 12a is arranged adjacent to the upper side of the mixture layer 13 of the preform foil 20, while the lowermost metal foil 12b is the metal of the preform foil 20. The foil 12 is disposed adjacent to the lower side thereof.
 接合工程S4は、最終積層体30A(詳述すると、最終積層体30Aを形成する全ての箔(即ち、全てのプリフォーム箔20、最上側金属箔12a及び最下側金属箔12b))を非酸化雰囲気又は真空中にて金属箔12の溶融温度(即ち金属箔12の融点)よりも低い接合温度で拡散接合により接合一体化する工程である。拡散接合としては放電プラズマ焼結法(SPS法)、ホットプレス法、熱圧延ロール法等が用いられる。本第1実施形態では、拡散接合として放電プラズマ焼結法が用いられる。 In the joining step S4, the final laminated body 30A (specifically, all the foils forming the final laminated body 30A (that is, all the preform foils 20, the uppermost metal foil 12a, and the lowermost metal foil 12b)) are not removed. This is a step of bonding and integration by diffusion bonding at a bonding temperature lower than the melting temperature of the metal foil 12 (that is, the melting point of the metal foil 12) in an oxidizing atmosphere or vacuum. As the diffusion bonding, a discharge plasma sintering method (SPS method), a hot press method, a hot rolling roll method, or the like is used. In the first embodiment, a discharge plasma sintering method is used as diffusion bonding.
 最終積層体30Aを放電プラズマ焼結法により接合一体化する方法について以下に説明する。 A method of joining and integrating the final laminate 30A by the discharge plasma sintering method will be described below.
 図4に示すように、導電性を有する筒状ダイ61、導電性を有する一対のパンチ62、62などを備えた放電プラズマ焼結装置60を準備する。各パンチ62には電極63が電気的に接続されている。ダイ61内に最終積層体30Aを配置するとともに最終積層体30Aの積層方向の両側にそれぞれパンチ62を配置する。そして、不活性ガス(例:窒素ガス、アルゴンガス)雰囲気等の非酸化性雰囲気又は真空(真空度:例えば1~30Pa)中にて両パンチ62、62で最終積層体30Aを積層方向に加圧しつつ両パンチ62、62間にパルス電流を通電することにより、最終積層体30A(詳述すると、最終積層体30Aを形成する全ての箔(即ち、全てのプリフォーム箔20、最上側金属箔12a及び最下側金属箔12b))を接合一体化する。これにより、図1に示した所望する複合材1Aを得る。 As shown in FIG. 4, a discharge plasma sintering apparatus 60 including a cylindrical die 61 having conductivity and a pair of punches 62 and 62 having conductivity is prepared. An electrode 63 is electrically connected to each punch 62. The final laminated body 30A is arranged in the die 61, and the punches 62 are arranged on both sides in the lamination direction of the final laminated body 30A. Then, in the non-oxidizing atmosphere such as an inert gas (eg, nitrogen gas, argon gas) atmosphere or vacuum (degree of vacuum: 1 to 30 Pa), the final laminate 30A is applied in the stacking direction by both punches 62 and 62. By applying a pulse current between the punches 62 and 62 while pressing, the final laminate 30A (specifically, all the foils forming the final laminate 30A (that is, all the preform foils 20, the uppermost metal foil). 12a and the lowermost metal foil 12b)) are joined and integrated. Thus, the desired composite material 1A shown in FIG. 1 is obtained.
 放電プラズマ焼結法による好ましい接合条件は以下のとおりである。 Preferred joining conditions by the discharge plasma sintering method are as follows.
 金属箔12がアルミニウム箔である場合には、接合温度は450~600℃、接合時間(即ち接合温度の保持時間)は10~300min、最終積層体30Aへの加圧力は10~40MPaの範囲に設定されるのが良い。金属箔12が銅箔である場合には、接合温度は800~1000℃、接合温度の保持時間は10~300min、最終積層体30Aへの加圧力は10~40MPaの範囲に設定されるのが良い。 When the metal foil 12 is an aluminum foil, the bonding temperature is 450 to 600 ° C., the bonding time (that is, the holding time of the bonding temperature) is 10 to 300 min, and the pressure applied to the final laminate 30A is 10 to 40 MPa. It is good to set. When the metal foil 12 is a copper foil, the bonding temperature is set to 800 to 1000 ° C., the holding time of the bonding temperature is set to 10 to 300 min, and the pressure applied to the final laminate 30A is set to the range of 10 to 40 MPa. good.
 この接合工程S4では、混合物層13から炭素繊維層3が形成され、また混合物層13を挟んだ両側の金属箔12、12からそれぞれ金属層2、2が形成されるとともに、両金属層2、2(両金属箔12、12)のそれぞれの金属が接合時の熱によって炭素繊維層3(混合物層13)を通過して相手の金属層2(金属箔12)中へ熱拡散することにより、両金属層2、2(両金属箔12、12)同士が接合される。さらに、最下側金属箔12bとこれに隣接するプリフォーム箔20の金属箔12とが直接的に接合一体化されて、1つの最下側金属層2bが形成される。 In this bonding step S4, the carbon fiber layer 3 is formed from the mixture layer 13, and the metal layers 2 and 2 are formed from the metal foils 12 and 12 on both sides of the mixture layer 13, respectively. 2 (both metal foils 12, 12) pass through the carbon fiber layer 3 (mixture layer 13) by heat at the time of bonding and thermally diffuse into the partner metal layer 2 (metal foil 12), Both metal layers 2 and 2 (both metal foils 12 and 12) are joined. Further, the lowermost metal foil 12b and the metal foil 12 of the preform foil 20 adjacent thereto are directly joined and integrated to form one lowermost metal layer 2b.
 ここで上述したように、炭素繊維層3には、バインダー41、バインダー41の乾燥残留物、バインダー41の燃焼残渣などが残存していても良いし、あるいは、バインダー41が乾燥又は燃焼することにより完全に除去されて炭素繊維40だけが残存していても良い。 As described above, in the carbon fiber layer 3, the binder 41, a dry residue of the binder 41, a combustion residue of the binder 41, or the like may remain, or by drying or burning the binder 41. It may be completely removed and only the carbon fiber 40 may remain.
 以上の複合材1Aの製造方法において、積層体形成工程S3では、最上側金属箔12a及び最下側金属箔12bの間に、複数のプリフォーム箔20が積層されて配置されている。プリフォーム箔20の金属箔12がアルミニウム箔である場合、上述した理由によりアルミニウム箔の厚さは20μm以下であることが望ましく、またその厚さの下限は10μmであることが望ましい。プリフォーム箔20の金属箔12が銅箔である場合、上述した理由により銅箔の厚さは15μm以下であることが望ましく、また厚さの下限は6μmであることが望ましい。 In the manufacturing method of the composite material 1A described above, in the laminated body forming step S3, a plurality of preform foils 20 are laminated and disposed between the uppermost metal foil 12a and the lowermost metal foil 12b. When the metal foil 12 of the preform foil 20 is an aluminum foil, the thickness of the aluminum foil is desirably 20 μm or less for the reasons described above, and the lower limit of the thickness is desirably 10 μm. When the metal foil 12 of the preform foil 20 is a copper foil, the thickness of the copper foil is desirably 15 μm or less for the reasons described above, and the lower limit of the thickness is desirably 6 μm.
 最上側金属箔12a及び最下側金属箔12bのうちプリフォーム箔20の混合物層13に隣接して配置される最上側金属箔12aの厚さは、プリフォーム箔20の金属箔12の厚さよりも厚く設定されている。 Of the uppermost metal foil 12a and the lowermost metal foil 12b, the thickness of the uppermost metal foil 12a disposed adjacent to the mixture layer 13 of the preform foil 20 is greater than the thickness of the metal foil 12 of the preform foil 20. It is also set thick.
 金属箔12がアルミニウム箔である場合、上述した理由により最上側金属箔12aの厚さは30μm以上(特に望ましくは50μm以上)であることが望ましい。最上側金属箔12aの厚さの上限は限定されるものではなく、例えば10mmに設定される。一方、最上側金属箔12aが銅箔である場合、上述した理由により最上側金属箔12aの厚さは20μm以上(特に望ましくは30μm以上)であることが望ましい。最上側金属箔12aの厚さの上限は限定されるものではなく、例えば10mmに設定される。 When the metal foil 12 is an aluminum foil, the thickness of the uppermost metal foil 12a is desirably 30 μm or more (particularly desirably 50 μm or more) for the reason described above. The upper limit of the thickness of the uppermost metal foil 12a is not limited, and is set to 10 mm, for example. On the other hand, when the uppermost metal foil 12a is a copper foil, the thickness of the uppermost metal foil 12a is desirably 20 μm or more (particularly desirably 30 μm or more) for the reason described above. The upper limit of the thickness of the uppermost metal foil 12a is not limited, and is set to 10 mm, for example.
 最上側金属箔12a及び最下側金属箔12bのうちプリフォーム箔20の金属箔12に隣接して配置される最下側金属箔12bは、上述したように当該最下側金属箔12bに隣接して配置される金属箔12と接合一体化されて、1つの最下側金属層2bが形成され、その結果、その厚さがプリフォーム箔20の金属箔12(即ち内側金属箔12c)の厚さよりも厚くなる。したがって、最下側金属層2bの厚さを内側金属層2cの厚さよりも厚くするための最下側金属箔12bの厚さの下限は限定されるものではない。しかるに、金属箔12がアルミニウム箔である場合、上述した理由により、最下側金属箔12bの厚さは、当該最下側金属箔12bの厚さと隣接する金属箔12(即ち内側金属箔12c)の厚さとの合計厚さが30μm以上(特に望ましくは50μm以上)になるように設定されるのが望ましい。すなわち、例えば、最下側金属箔12bと隣接する金属箔12(内側金属箔12c)の厚さが10μmである場合、最下側金属箔12bの厚さは20μm以上(特に望ましくは40μm以上)であることが望ましい。一方、金属箔12が銅箔である場合、上述した理由により、最下側金属箔12bの厚さは、当該最下側金属箔12bの厚さと隣接する金属箔(即ち内側金属箔12c)の厚さとの合計厚さが20μm以上(特に望ましくは30μm以上)になるように設定されるのが望ましい。すなわち、例えば、最下側金属箔12bと隣接する金属箔12(内側金属箔12c)の厚さが6μmである場合、最下側金属箔12bの厚さは14μm以上(特に望ましくは24μm以上)であることが望ましい。 Of the uppermost metal foil 12a and the lowermost metal foil 12b, the lowermost metal foil 12b disposed adjacent to the metal foil 12 of the preform foil 20 is adjacent to the lowermost metal foil 12b as described above. Thus, the lowermost metal layer 2b is formed by joining and integrating with the metal foil 12 arranged as described above, and as a result, the thickness of the metal foil 12 of the preform foil 20 (ie, the inner metal foil 12c) is reduced. Thicker than the thickness. Therefore, the lower limit of the thickness of the lowermost metal foil 12b for making the thickness of the lowermost metal layer 2b thicker than the thickness of the inner metal layer 2c is not limited. However, when the metal foil 12 is an aluminum foil, for the reasons described above, the thickness of the lowermost metal foil 12b is equal to the thickness of the lowermost metal foil 12b (ie, the inner metal foil 12c). It is desirable that the total thickness of the first and second layers is set to be 30 μm or more (particularly desirably 50 μm or more). That is, for example, when the thickness of the metal foil 12 (inner metal foil 12c) adjacent to the lowermost metal foil 12b is 10 μm, the thickness of the lowermost metal foil 12b is 20 μm or more (particularly desirably 40 μm or more). It is desirable that On the other hand, when the metal foil 12 is a copper foil, for the reasons described above, the thickness of the lowermost metal foil 12b is equal to the thickness of the lowermost metal foil 12b (that is, the inner metal foil 12c). It is desirable that the total thickness is set to 20 μm or more (particularly desirably 30 μm or more). That is, for example, when the thickness of the metal foil 12 (inner metal foil 12c) adjacent to the lowermost metal foil 12b is 6 μm, the thickness of the lowermost metal foil 12b is 14 μm or more (particularly desirably 24 μm or more). It is desirable that
 上記第1実施形態の複合材1Aの製造方法によれば、接合工程S4では、最終積層体30Aを非酸化雰囲気又は真空中にて金属箔12の溶融温度よりも低い温度で拡散接合により接合一体化するので、金属箔12の金属と炭素繊維40との化学反応による金属炭化物の生成を防止できる。これにより、金属炭化物の生成に伴う複合材1Aの特性変化を防止できる。特に、金属箔12がアルミニウム箔である場合には、金属炭化物として炭化アルミニウム(Al)の生成を防止できる。そのため、炭化アルミニウムの生成による内部欠陥が殆ど発生しない複合材1Aを得ることができ、これにより、複合材1Aの機械的強度及び熱伝導率を良好な状態に維持することができる。 According to the method of manufacturing the composite material 1A of the first embodiment, in the joining step S4, the final laminate 30A is joined and integrated by diffusion joining at a temperature lower than the melting temperature of the metal foil 12 in a non-oxidizing atmosphere or vacuum. Therefore, generation of metal carbide due to a chemical reaction between the metal of the metal foil 12 and the carbon fiber 40 can be prevented. Thereby, the characteristic change of 1 A of composite materials accompanying the production | generation of a metal carbide can be prevented. In particular, when the metal foil 12 is an aluminum foil, the production of aluminum carbide (Al 4 C 3 ) as a metal carbide can be prevented. Therefore, it is possible to obtain a composite material 1A in which internal defects due to the formation of aluminum carbide hardly occur, thereby maintaining the mechanical strength and thermal conductivity of the composite material 1A in a good state.
 さらに、乾燥工程S2で混合物層13が乾燥されて混合物層13中の液成分が除去されているので、接合工程S4において最終積層体30Aをより強固に接合一体化することができる。 Furthermore, since the mixture layer 13 is dried in the drying step S2 and the liquid component in the mixture layer 13 is removed, the final laminate 30A can be joined and integrated more firmly in the joining step S4.
 図5及び6は、本発明の第2実施形態の金属と炭素繊維との複合材1Bを説明する図である。以下では、本第2実施形態について上記第1実施形態との相異点を中心に説明する。 FIGS. 5 and 6 are views for explaining a composite material 1B of metal and carbon fiber according to the second embodiment of the present invention. In the following, the second embodiment will be described focusing on the differences from the first embodiment.
 本第2実施形態の複合材1Bの製造方法では、図6に示すように、金属箔12上に混合物層13が形成された複数のプリフォーム箔20のうち、最下側に配置されるプリフォーム箔20の金属箔12の厚さは、他のプリフォーム箔20の金属箔12の厚さよりも厚くなっている。このプリフォーム箔20を説明の便宜上、特に「厚肉プリフォーム箔20b」という。なお、この厚肉プリフォーム箔20bの金属箔12が最下側金属箔12bに対応している。 In the method for manufacturing the composite material 1B according to the second embodiment, as shown in FIG. 6, among the plurality of preform foils 20 in which the mixture layer 13 is formed on the metal foil 12, the preform disposed on the lowermost side. The thickness of the metal foil 12 of the reform foil 20 is thicker than the thickness of the metal foil 12 of the other preform foils 20. This preform foil 20 is particularly referred to as “thick preform foil 20b” for convenience of explanation. The metal foil 12 of the thick preform foil 20b corresponds to the lowermost metal foil 12b.
 積層体形成工程S3では、プリフォーム箔20を複数積層してプリフォーム箔積層体25を形成するとともに、混合物層13が形成されていない金属箔12を最上側金属箔12aとしてプリフォーム箔積層体25の上面に対して積層し、且つ、厚肉プリフォーム箔20bを最下側に厚肉プリフォーム箔20bの金属箔12が配置されるようにプリフォーム箔積層体25の下面に対して積層する。これにより、金属箔12と混合物層13との最終積層体30Bを形成する。この最終積層体30Bでは、上下方向(即ち積層方向)の最上側には混合物層13が形成されていない金属箔12が配置されており、一方、最下側には厚肉プリフォーム箔20bの金属箔12が最下側金属箔12bとして配置されている。 In the laminate forming step S3, a plurality of preform foils 20 are laminated to form a preform foil laminate 25, and the metal foil 12 on which the mixture layer 13 is not formed is used as the uppermost metal foil 12a. 25, and the thick preform foil 20b is laminated on the lower surface of the preform foil laminate 25 so that the metal foil 12 of the thick preform foil 20b is disposed on the lowermost side. To do. Thereby, the final laminated body 30B of the metal foil 12 and the mixture layer 13 is formed. In the final laminate 30B, the metal foil 12 without the mixture layer 13 is disposed on the uppermost side in the vertical direction (that is, the laminating direction), while the thick preform foil 20b is disposed on the lowermost side. The metal foil 12 is arranged as the lowermost metal foil 12b.
 次いで、接合工程S4において、最終積層体30B(詳述すると、最終積層体30Bを形成する全ての箔(即ち、全てのプリフォーム箔20、20b、最上側金属箔12a))を非酸化雰囲気又は真空中にて金属箔12の溶融温度よりも低い温度で拡散接合により接合一体化する。 Next, in the bonding step S4, the final laminated body 30B (specifically, all the foils forming the final laminated body 30B (that is, all the preform foils 20, 20b, the uppermost metal foil 12a)) are treated in a non-oxidizing atmosphere or Bonding and integration are performed by diffusion bonding at a temperature lower than the melting temperature of the metal foil 12 in a vacuum.
 本第2実施形態におけるその他の構成は、上記第1実施形態と同じである。 Other configurations in the second embodiment are the same as those in the first embodiment.
 ここで、上記第1実施形態の複合材1Aでは、最下側金属層2bは、上述したように、最下側金属箔12bとこれに隣接するプリフォーム箔20の金属箔12とが直接的に接合一体化されて形成されたものである(図1参照)。これに対し、本第2実施形態の複合材1Bでは、最下側金属層2bは厚肉プリフォーム箔20bの金属箔12だけで形成されている(図5参照)。 Here, in the composite material 1A of the first embodiment, as described above, the lowermost metal layer 2b is directly formed by the lowermost metal foil 12b and the metal foil 12 of the preform foil 20 adjacent thereto. Are integrally formed with each other (see FIG. 1). On the other hand, in the composite material 1B of the second embodiment, the lowermost metal layer 2b is formed only of the metal foil 12 of the thick preform foil 20b (see FIG. 5).
 図7及び8は、本発明の第3実施形態の金属と炭素繊維との複合材1Cを説明する図である。以下では、本第3実施形態について上記第1及び第2実施形態との相異点を中心に説明する。 7 and 8 are views for explaining a composite material 1C of metal and carbon fiber according to the third embodiment of the present invention. In the following, the third embodiment will be described focusing on differences from the first and second embodiments.
 本第3実施形態の複合材1Cは、図7に示すように、3層の金属層2(その内訳:2層の最外側金属層2a、2b及び1層の内側金属層2c)と2層の炭素繊維層3とで形成されている。そして、上記第1実施形態の複合材1Aと同様に、内側金属層2cは1枚の金属箔12から形成された層である。両最外側金属層2a、2bのうち最上側金属層2aは1枚の金属箔12aから形成された層であり、一方、最下側金属層2bは、最下側金属箔12bとこれに隣接するプリフォーム箔20の金属箔12とが直接的に接合一体化されて形成されたものである(図8参照)。 As shown in FIG. 7, the composite material 1 </ b> C of the third embodiment includes three metal layers 2 (the breakdown: two outermost metal layers 2 a and 2 b and one inner metal layer 2 c) and two layers. The carbon fiber layer 3 is formed. And the inner metal layer 2c is a layer formed from one metal foil 12, like the composite material 1A of the first embodiment. Of the outermost metal layers 2a and 2b, the uppermost metal layer 2a is a layer formed from one metal foil 12a, while the lowermost metal layer 2b is adjacent to the lowermost metal foil 12b. The preform foil 20 is formed by directly joining and integrating the metal foil 12 (see FIG. 8).
 本第3実施形態の複合材1Cは、図8に示すように、2枚のプリフォーム箔20と、混合物層13が形成されていない1枚の最上側金属箔12aとしての金属箔12aと、混合物層13が形成されていない1枚の最下側金属箔12bとしての金属箔12bとを用いて、上記第1実施形態の複合材1Aの製造方法と同じ方法で製造される。 As shown in FIG. 8, the composite material 1C of the third embodiment includes two preform foils 20 and a metal foil 12a as one uppermost metal foil 12a on which the mixture layer 13 is not formed. Using the metal foil 12b as the lowermost metal foil 12b on which the mixture layer 13 is not formed, it is manufactured by the same method as the method for manufacturing the composite material 1A of the first embodiment.
 図9及び10は、本発明の第4実施形態の金属と炭素繊維との複合材1Dを説明する図である。以下では、本第4実施形態について上記第1~第3実施形態との相異点を中心に説明する。 9 and 10 are views for explaining a composite material 1D of metal and carbon fiber according to the fourth embodiment of the present invention. In the following, the fourth embodiment will be described focusing on the differences from the first to third embodiments.
 本第4実施形態の複合材1Dは、図9に示すように、上記第3実施形態の複合材1Cと同様に、3層の金属層2(その内訳:2層の最外側金属層2a、2b及び1層の内側金属層2c)と2層の炭素繊維層3とで形成されている。そして、上記第2実施形態の複合材1Aと同様に、内側金属層2cは1枚の金属箔12から形成された層である。両最外側金属層2a、2bのうち最上側金属層2aは1枚の金属箔12aから形成された層であり、一方、最下側金属層2bは厚肉プリフォーム箔20bの金属箔12だけで形成されている(図10参照)。 As shown in FIG. 9, the composite material 1D of the fourth embodiment is composed of three metal layers 2 (breakdown: two outermost metal layers 2a, as in the composite material 1C of the third embodiment). 2b and one inner metal layer 2c) and two carbon fiber layers 3. And the inner metal layer 2c is a layer formed from one metal foil 12, like the composite material 1A of the second embodiment. Of the outermost metal layers 2a and 2b, the uppermost metal layer 2a is a layer formed from one metal foil 12a, while the lowermost metal layer 2b is only the metal foil 12 of the thick preform foil 20b. (See FIG. 10).
 本第4実施形態の複合材1Dの製造方法における積層体形成工程S3では、図10に示すように、2枚のプリフォーム箔20、20bを厚肉プリフォーム箔20bの金属箔12が上下方向(即ち積層方向)の最下側に配置されるように積層してプリフォーム箔積層体25を形成するとともに、混合物層13が形成されていない金属箔12を最上側金属箔12aとしてプリフォーム箔積層体25の上面に対して積層する。これにより、金属箔12と混合物層13との最終積層体30Dを形成する。この最終積層体30Dでは、上下方向(即ち積層方向)の最上側には混合物層13が形成されていない金属箔12が配置されており、一方、最下側には厚肉プリフォーム箔20bの金属箔12が最下側金属箔12bとして配置されている。 In the laminated body forming step S3 in the manufacturing method of the composite material 1D of the fourth embodiment, as shown in FIG. 10, the two preform foils 20 and 20b are formed of the metal foil 12 of the thick preform foil 20b in the vertical direction. The preform foil laminate 25 is formed by being laminated so as to be arranged at the lowermost side (that is, the lamination direction), and the metal foil 12 on which the mixture layer 13 is not formed is used as the uppermost metal foil 12a. Lamination is performed on the upper surface of the laminate 25. Thereby, the final laminated body 30D of the metal foil 12 and the mixture layer 13 is formed. In this final laminated body 30D, the metal foil 12 on which the mixture layer 13 is not formed is disposed on the uppermost side in the vertical direction (that is, the laminating direction), while the thick preform foil 20b is disposed on the lowermost side. The metal foil 12 is arranged as the lowermost metal foil 12b.
 次いで、接合工程S4において、最終積層体30D(詳述すると、最終積層体30Aを形成する全ての箔(即ち、全てのプリフォーム箔20、20b及び最上側金属箔12a))を非酸化雰囲気又は真空中にて金属箔12の溶融温度よりも低い温度で拡散接合により接合一体化する。 Next, in the bonding step S4, the final laminated body 30D (specifically, all the foils forming the final laminated body 30A (that is, all the preform foils 20, 20b and the uppermost metal foil 12a)) are treated in a non-oxidizing atmosphere or Bonding and integration are performed by diffusion bonding at a temperature lower than the melting temperature of the metal foil 12 in a vacuum.
 本第4実施形態におけるその他の構成は、上記第1及び第2実施形態と同じである。 Other configurations in the fourth embodiment are the same as those in the first and second embodiments.
 以上で、本発明の幾つかの実施形態を説明したが、本発明は上記実施形態に限定されるものではなく本発明の要旨を逸脱しない範囲内で様々に変更可能である。 As mentioned above, although some embodiment of this invention was described, this invention is not limited to the said embodiment, In the range which does not deviate from the summary of this invention, it can change variously.
 また本発明では、最外側金属層の外面に、チタン、ステンレス鋼、ニッケル等を貼り合わせることで外面について耐腐食性を向上させても良いし、亜鉛等を貼り合わせることで外面についてメッキ性を向上させても良い。 In the present invention, the outer surface of the outermost metal layer may be bonded with titanium, stainless steel, nickel or the like to improve the corrosion resistance of the outer surface, or the outer surface may be plated with zinc or the like. It may be improved.
 次に、本発明の具体的な実施例及び比較例を以下に説明する。 Next, specific examples and comparative examples of the present invention will be described below.
 <実施例>
 図1に示した上記第1実施形態の金属と炭素繊維との複合材1Aを、以下の手順で製造した。
<Example>
1A of the first embodiment shown in FIG. 1 was manufactured by the following procedure.
 炭素繊維40として炭素繊維ミルドファイバー(日本グラファイトファイバー(株)製:XN-100)10gとメタノール50mlと分散剤としてポリビニルアセトアミド(昭和電工(株)製:PNVA(登録商標))0.2gとをミキサーにより混合分散し、炭素繊維分散液を得た。 10 g of carbon fiber milled fiber (manufactured by Nippon Graphite Fiber Co., Ltd .: XN-100) as carbon fiber 40, 50 ml of methanol, and 0.2 g of polyvinyl acetamide (manufactured by Showa Denko KK: PNVA (registered trademark)) as a dispersant. The mixture was mixed and dispersed with a mixer to obtain a carbon fiber dispersion.
 また、バインダー樹脂41としてポリオキシエチレン(明成化学工業(株)製:アルコックス(登録商標)E-45)とその溶剤42とを質量比0.2:1で混合した混合液2gを、炭素繊維分散液に添加して撹拌混合し、これにより、塗料液としての混合物45を得た。溶剤42としてはメタノール-水(体積比1:1)溶液を用いた。 Further, 2 g of a mixed solution obtained by mixing polyoxyethylene (manufactured by Meisei Chemical Industry Co., Ltd .: Alcox (registered trademark) E-45) as a binder resin 41 and a solvent 42 thereof in a mass ratio of 0.2: 1 was added to carbon. The mixture was added to the fiber dispersion and mixed with stirring, whereby a mixture 45 as a coating liquid was obtained. As the solvent 42, a methanol-water (volume ratio 1: 1) solution was used.
 次いで、金属箔として厚さ15μmのアルミニウム箔(材質:JIS合金記号A1N30)12の条材12Aの上面上にその全面に亘って混合物45を100g/mの付着量で層状に付着(塗布)させ、これにより、混合物層13がアルミニウム箔12の上面上に形成されたプリフォーム箔20の条材20Aを得た。なお、このアルミニウム箔12の融点は680℃である。そして、プリフォーム箔20の条材20Aの混合物層13を乾燥温度100℃×乾燥時間10minの条件で乾燥させ、その結果、乾燥後の混合物層13の付着量が約20g/mになった。 Next, the mixture 45 is applied in a layered manner with a coating amount of 100 g / m 2 on the upper surface of the strip 12A of aluminum foil (material: JIS alloy symbol A1N30) 12 having a thickness of 15 μm as a metal foil (application). Thus, a strip material 20A of the preform foil 20 in which the mixture layer 13 was formed on the upper surface of the aluminum foil 12 was obtained. The melting point of the aluminum foil 12 is 680 ° C. Then, the mixture layer 13 of the strip 20A of the preform foil 20 was dried under the conditions of a drying temperature of 100 ° C. and a drying time of 10 minutes. As a result, the amount of the mixture layer 13 after drying became about 20 g / m 2 . .
 次いで、プリフォーム箔20の条材20Aから方形状のプリフォーム箔(その寸法:縦50mm及び横50mm)20を複数切り出した。そして、プリフォーム箔20を同じ向きにして上下方向に80枚積層してプリフォーム箔積層体25を形成するとともに、混合物層13が形成されていない厚さ30μmのアルミニウム箔(材質:A1N30)12を最上側アルミニウム箔12aとしてプリフォーム箔積層体25の上面に対して積層し、且つ、混合物層13が形成されていない厚さ15μmのアルミニウム箔(材質:A1N30)12を最下側アルミニウム箔12bとしてプリフォーム箔積層体25の下面に対して積層した。これにより、アルミニウム箔12と混合物層13との最終積層体30Aを得た。 Next, a plurality of rectangular preform foils (its dimensions: 50 mm length and 50 mm width) 20 were cut out from the strip 20 A of the preform foil 20. Then, 80 preform foils 20 are stacked in the same direction to form a preform foil laminate 25, and a 30 μm thick aluminum foil (material: A1N30) 12 without the mixture layer 13 formed. Is laminated on the upper surface of the preform foil laminate 25 as the uppermost aluminum foil 12a, and the 15 μm thick aluminum foil (material: A1N30) 12 on which the mixture layer 13 is not formed is used as the lowermost aluminum foil 12b. Was laminated on the lower surface of the preform foil laminate 25. Thereby, the final laminated body 30A of the aluminum foil 12 and the mixture layer 13 was obtained.
 そして、放電プラズマ焼結装置60を用いて最終積層体30A(詳述すると、最終積層体30Aを形成する全ての箔(即ち、全てのプリフォーム箔12、最上側アルミニウム箔12a及び最下側アルミニウム箔12b))を真空中にて放電プラズマ焼結法により接合一体化し、これにより、金属と炭素繊維との複合材1Aを製造した。この際の接合条件は、接合温度550℃、接合時間3h、最終積層体30Aへの加圧力30MPa、真空度10Paである。 Then, the final laminate 30A (specifically, all the foils forming the final laminate 30A (that is, all the preform foils 12, the uppermost aluminum foil 12a, and the lowermost aluminum) are formed using the discharge plasma sintering apparatus 60. The foil 12b)) was joined and integrated in a vacuum by a discharge plasma sintering method, thereby producing a composite material 1A of metal and carbon fiber. The joining conditions at this time are a joining temperature of 550 ° C., a joining time of 3 hours, a pressure of 30 MPa applied to the final laminate 30A, and a degree of vacuum of 10 Pa.
 得られた複合材1Aの特性は、比重2.54、積層方向に対し垂直方向の熱伝導率300W/(m・K)、積層方向に対し垂直方向の線膨張係数1.6×10-6/Kであった。 The characteristics of the obtained composite material 1A are: specific gravity 2.54, thermal conductivity 300 W / (m · K) in the direction perpendicular to the stacking direction, and coefficient of linear expansion 1.6 × 10 −6 in the direction perpendicular to the stacking direction. / K.
 そして、得られた複合材1Aについて機械的強度を評価するため、複合材1Aの上面1aを金属へらで擦ったところ、上面1aに傷は付いたが最上側アルミニウム層2aは破壊されず表面欠陥は生じなかった。したがって、複合材1Aの上面1aの機械的強度が高いことを確認し得た。 Then, in order to evaluate the mechanical strength of the obtained composite material 1A, the upper surface 1a of the composite material 1A was rubbed with a metal spatula. Did not occur. Therefore, it was confirmed that the mechanical strength of the upper surface 1a of the composite material 1A was high.
 <比較例>
 上記実施例と同じ方法で製作したプリフォーム箔20の条材20Aからプリフォーム箔20を複数切り出した。そして、プリフォーム箔20を同じ向きにして上下方向に80枚積層するとともに、混合物層13が形成されていない厚さ15μmのアルミニウム箔(材質:A1N30)12を最上側アルミニウム箔12aとしてプリフォーム箔積層体25の上面に対して積層し、一方、プリフォーム箔積層体25の下面に対しては何ら積層しなかった。これにより、アルミニウム箔と混合物層との最終積層体を得た。
<Comparative example>
A plurality of preform foils 20 were cut out from the strip material 20A of the preform foil 20 manufactured by the same method as in the above example. Then, 80 preform foils 20 are stacked in the vertical direction in the same direction, and 15 μm thick aluminum foil (material: A1N30) 12 on which the mixture layer 13 is not formed is used as the uppermost aluminum foil 12a. Lamination was performed on the upper surface of the laminate 25, while no lamination was performed on the lower surface of the preform foil laminate 25. This obtained the final laminated body of aluminum foil and a mixture layer.
 次いで、最終積層体を上記実施例と同じ接合条件で放電プラズマ焼結法により接合一体化し、これにより、金属と炭素繊維との複合材を製造した。 Next, the final laminate was joined and integrated by the discharge plasma sintering method under the same joining conditions as in the above examples, thereby producing a composite material of metal and carbon fiber.
 得られた複合材の特性は、比重2.53、積層方向に対し垂直方向の熱伝導率300W/(m・K)、積層方向に対し垂直方向の線膨張係数1.6×10-6/Kであった。 The characteristics of the obtained composite material are as follows: specific gravity 2.53, thermal conductivity 300 W / (m · K) perpendicular to the stacking direction, and linear expansion coefficient 1.6 × 10 −6 / vertical to the stacking direction. K.
 そして、得られた複合材について機械的強度を評価するため、複合材の上面を金属へらで擦ったところ、上面に傷による穴が開いてこの穴から炭素繊維が露出した。したがって、複合材の上面の機械的強度は弱いことを確認し得た。 Then, in order to evaluate the mechanical strength of the obtained composite material, the upper surface of the composite material was rubbed with a metal spatula. As a result, a hole due to a scratch was formed on the upper surface, and the carbon fiber was exposed from this hole. Therefore, it was confirmed that the mechanical strength of the upper surface of the composite material was weak.
 本願は、2013年7月25日付で出願された日本国特許出願の特願2013-154524号の優先権主張を伴うものであり、その開示内容は、そのまま本願の一部を構成するものである。 This application is accompanied by the priority claim of Japanese Patent Application No. 2013-154524 filed on July 25, 2013, the disclosure of which constitutes part of the present application as it is. .
 ここに用いられた用語及び表現は、説明のために用いられたものであって限定的に解釈するために用いられたものではなく、ここに示され且つ述べられた特徴事項の如何なる均等物をも排除するものではなく、この発明のクレームされた範囲内における各種変形をも許容するものであると認識されなければならない。 The terms and expressions used herein are for illustrative purposes and are not to be construed as limiting, but represent any equivalent of the features shown and described herein. It should be recognized that various modifications within the claimed scope of the present invention are permissible.
 本発明は、多くの異なった形態で具現化され得るものであるが、この開示は本発明の原理の実施例を提供するものと見なされるべきであって、それら実施例は、本発明をここに記載しかつ/または図示した好ましい実施形態に限定することを意図するものではないという了解のもとで、多くの図示実施形態がここに記載されている。 While this invention may be embodied in many different forms, this disclosure is to be considered as providing examples of the principles of the invention, which examples are hereby incorporated by reference. Many illustrated embodiments are described herein with the understanding that they are not intended to be limited to the preferred embodiments described and / or illustrated.
 本発明の図示実施形態を幾つかここに記載したが、本発明は、ここに記載した各種の好ましい実施形態に限定されるものではなく、この開示に基づいていわゆる当業者によって認識され得る、均等な要素、修正、削除、組み合わせ(例えば、各種実施形態に跨る特徴の組み合わせ)、改良及び/又は変更を有するありとあらゆる実施形態をも包含するものである。クレームの限定事項はそのクレームで用いられた用語に基づいて広く解釈されるべきであり、本明細書あるいは本願のプロセキューション中に記載された実施例に限定されるべきではなく、そのような実施例は非排他的であると解釈されるべきである。例えば、この開示において、「preferably」という用語は非排他的なものであって、「好ましいがこれに限定されるものではない」ということを意味するものである。この開示および本願のプロセキューション中において、ミーンズ・プラス・ファンクションあるいはステップ・プラス・ファンクションの限定事項は、特定クレームの限定事項に関し、a)「means for」あるいは「step for」と明確に記載されており、かつb)それに対応する機能が明確に記載されており、かつc)その構成を裏付ける構成、材料あるいは行為が言及されていない、という条件の全てがその限定事項に存在する場合にのみ適用される。この開示および本願のプロセキューション中において、「present invention」または「invention」という用語は、この開示範囲内における1または複数の側面に言及するものとして使用されている場合がある。このpresent inventionまたはinventionという用語は、臨界を識別するものとして不適切に解釈されるべきではなく、全ての側面すなわち全ての実施形態に亘って適用するものとして不適切に解釈されるべきではなく(すなわち、本発明は多数の側面および実施形態を有していると理解されなければならない)、本願ないしはクレームの範囲を限定するように不適切に解釈されるべきではない。この開示および本願のプロセキューション中において、「embodiment」という用語は、任意の側面、特徴、プロセスあるいはステップ、それらの任意の組み合わせ、及び/又はそれらの任意の部分等を記載する場合にも用いられる。 Although several illustrated embodiments of the present invention have been described herein, the present invention is not limited to the various preferred embodiments described herein, and is equivalent to what may be recognized by those skilled in the art based on this disclosure. Any and all embodiments having various elements, modifications, deletions, combinations (eg, combinations of features across the various embodiments), improvements and / or changes are encompassed. Claim limitations should be construed broadly based on the terms used in the claims, and should not be limited to the embodiments described herein or in the process of this application, as such The examples should be construed as non-exclusive. For example, in this disclosure, the term “preferably” is non-exclusive and means “preferably but not limited to”. In this disclosure and in the process of this application, means plus function or step plus function limitations are clearly stated as a) “means for” or “step for” with respect to the limitations of specific claims. And b) the corresponding function is clearly described, and c) all the conditions that the configuration, material or action supporting the configuration are not mentioned are present in the limitation. Applied. In this disclosure and in the process of this application, the term “present inventory” or “invention” may be used to refer to one or more aspects within the scope of this disclosure. The term present invention or inventory should not be construed inappropriately as identifying criticality, nor should it be construed as inappropriately applied across all aspects or all embodiments ( That is, it should be understood that the present invention has numerous aspects and embodiments) and should not be construed inappropriately to limit the scope of the present application or the claims. In this disclosure and in the process of this application, the term “embodiment” is also used to describe any aspect, feature, process or step, any combination thereof, and / or any part thereof. It is done.
 本発明は、金属と炭素繊維との複合材及びその製造方法に利用可能である。 The present invention can be used for a composite material of metal and carbon fiber and a manufacturing method thereof.
1A~1D:金属と炭素繊維との複合材
2:金属層
2a:最上側金属層(最外側金属層)
2b:最下側金属層(最外側金属層)
2c:内側金属層
3:炭素繊維層
12:金属箔
12a:最上側金属箔(最外側金属箔)
12b:最下側金属箔(最外側金属箔)
13:混合物層
20:プリフォーム箔
25:プリフォーム箔積層体
30A~30D:金属箔と混合物層との最終積層体
40:炭素繊維
41:バインダー
42:溶剤
45:混合物
50:塗工装置
60:放電プラズマ焼結装置
1A to 1D: Composite material of metal and carbon fiber 2: Metal layer 2a: Uppermost metal layer (outermost metal layer)
2b: Lowermost metal layer (outermost metal layer)
2c: inner metal layer 3: carbon fiber layer 12: metal foil 12a: uppermost metal foil (outermost metal foil)
12b: Bottom metal foil (outermost metal foil)
13: Mixture layer 20: Preform foil 25: Preform foil laminate 30A to 30D: Final laminate 40 of metal foil and mixture layer 40: Carbon fiber 41: Binder 42: Solvent 45: Mixture 50: Coating device 60: Spark plasma sintering equipment

Claims (7)

  1.  金属層と炭素繊維層が交互に且つ積層方向の両最外側にそれぞれ金属層が配置される態様にして複数積層されるとともに、これらの層が拡散接合により接合一体化されたものであり、
     前記最外側金属層の厚さは、前記両最外側金属層の間に配置された内側金属層の厚さよりも厚く設定されている金属と炭素繊維との複合材。
    A plurality of metal layers and carbon fiber layers are alternately laminated in such a manner that the metal layers are arranged on both outermost sides in the lamination direction, and these layers are joined and integrated by diffusion bonding,
    The thickness of the outermost metal layer is a composite material of a metal and carbon fiber that is set to be thicker than the thickness of the inner metal layer disposed between the outermost metal layers.
  2.  前記金属層はアルミニウムで形成されており、
     前記内側金属層の厚さは20μm以下であり、
     前記最外側金属層の厚さは30μm以上である請求項1記載の金属と炭素繊維との複合材。
    The metal layer is formed of aluminum;
    The inner metal layer has a thickness of 20 μm or less,
    The metal / carbon fiber composite material according to claim 1, wherein the outermost metal layer has a thickness of 30 μm or more.
  3.  前記金属層は銅で形成されており、
     前記内側金属層の厚さは15μm以下であり、
     前記最外側金属層の厚さは20μm以上である請求項1記載の金属と炭素繊維との複合材。
    The metal layer is formed of copper;
    The inner metal layer has a thickness of 15 μm or less,
    The composite material of metal and carbon fiber according to claim 1, wherein the outermost metal layer has a thickness of 20 μm or more.
  4.  炭素繊維がバインダー及び溶剤と混合された混合物を金属箔上に層状に付着させて、金属箔上に混合物層が形成されたプリフォーム箔を得る混合物付着工程と、
     前記プリフォーム箔を複数積層してプリフォーム箔積層体を形成するとともに、積層方向の両最外側にそれぞれ金属箔が配置されるように、前記プリフォーム箔、又は前記混合物層が形成されていない金属箔を、前記プリフォーム箔積層体の積層方向の少なくとも片面に対して積層して、金属箔と混合物層との最終積層体を形成する積層体形成工程と、
     前記最終積層体を非酸化雰囲気又は真空中にて前記金属箔の溶融温度よりも低い温度で拡散接合により接合一体化する接合工程と、を具備しており、
     前記積層体形成工程では、前記最終積層体における前記プリフォーム箔の前記混合物層に隣接して配置される最外側金属箔の厚さが、両最外側金属箔の間に配置される内側金属箔の厚さよりも厚く設定されている金属と炭素繊維との複合材の製造方法。
    A mixture adhering step of obtaining a preform foil in which a mixture layer is formed on a metal foil by adhering a mixture in which carbon fibers are mixed with a binder and a solvent in a layer form on the metal foil;
    A plurality of the preform foils are laminated to form a preform foil laminate, and the preform foil or the mixture layer is not formed so that the metal foils are respectively disposed on both outermost sides in the lamination direction. Laminate forming step of laminating a metal foil with respect to at least one surface in the laminating direction of the preform foil laminate to form a final laminate of the metal foil and the mixture layer;
    A step of bonding and integrating the final laminate by diffusion bonding at a temperature lower than the melting temperature of the metal foil in a non-oxidizing atmosphere or vacuum, and
    In the laminate forming step, the thickness of the outermost metal foil disposed adjacent to the mixture layer of the preform foil in the final laminate is an inner metal foil disposed between both outermost metal foils. A method for producing a composite material of metal and carbon fiber that is set to be thicker than the thickness of the metal.
  5.  前記金属箔はアルミニウム箔であり、
     前記内側金属箔の厚さは20μm以下であり、
     前記最終積層体における前記プリフォーム箔の前記混合物層に隣接して配置される最外側金属箔の厚さは30μm以上であり、
     前記最終積層体における前記プリフォーム箔の前記金属箔に隣接して最外側金属箔が配置される場合には、当該最外側金属箔の厚さは、前記隣接する金属箔の厚さとの合計厚さが30μm以上になるように設定されている請求項4記載の金属と炭素繊維との複合材の製造方法。
    The metal foil is an aluminum foil,
    The inner metal foil has a thickness of 20 μm or less,
    The thickness of the outermost metal foil disposed adjacent to the mixture layer of the preform foil in the final laminate is 30 μm or more,
    When the outermost metal foil is disposed adjacent to the metal foil of the preform foil in the final laminate, the thickness of the outermost metal foil is the total thickness of the adjacent metal foils The method for producing a composite material of metal and carbon fiber according to claim 4, wherein the thickness is set to be 30 μm or more.
  6.  前記金属箔は銅箔であり、
     前記内側金属箔の厚さは15μm以下であり、
     前記最終積層体における前記プリフォーム箔の前記混合物層に隣接して配置される最外側金属箔の厚さは20μm以上であり、
     前記最終積層体における前記プリフォーム箔の前記金属箔に隣接して最外側金属箔が配置される場合には、当該最外側金属箔の厚さは、前記隣接する金属箔の厚さとの合計厚さが20μm以上になるように設定されている請求項4記載の金属と炭素繊維との複合材の製造方法。
    The metal foil is a copper foil,
    The inner metal foil has a thickness of 15 μm or less,
    The thickness of the outermost metal foil disposed adjacent to the mixture layer of the preform foil in the final laminate is 20 μm or more,
    When the outermost metal foil is disposed adjacent to the metal foil of the preform foil in the final laminate, the thickness of the outermost metal foil is the total thickness of the adjacent metal foils The manufacturing method of the composite material of the metal and carbon fiber of Claim 4 currently set so that may become 20 micrometers or more.
  7.  前記積層体形成工程の前に、前記プリフォーム箔の前記混合物層を乾燥させる乾燥工程を更に具備している請求項4~6のいずれかに記載の金属と炭素繊維との複合材の製造方法。 The method for producing a composite material of metal and carbon fiber according to any one of claims 4 to 6, further comprising a drying step of drying the mixture layer of the preform foil before the laminate forming step. .
PCT/JP2014/060698 2013-07-25 2014-04-15 Composite material comprising metal and carbon fibers, and method for producing same WO2015011961A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013154524A JP6166117B2 (en) 2013-07-25 2013-07-25 Method for producing composite material of metal and carbon fiber
JP2013-154524 2013-07-25

Publications (1)

Publication Number Publication Date
WO2015011961A1 true WO2015011961A1 (en) 2015-01-29

Family

ID=52393019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060698 WO2015011961A1 (en) 2013-07-25 2014-04-15 Composite material comprising metal and carbon fibers, and method for producing same

Country Status (2)

Country Link
JP (1) JP6166117B2 (en)
WO (1) WO2015011961A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178047A1 (en) * 2014-05-21 2015-11-26 昭和電工株式会社 Process for producing composite material constituted of aluminum and carbon fibers
CN109562598A (en) * 2016-11-11 2019-04-02 昭和电工株式会社 Metal-carbon particle composite material and its manufacturing method
CN111386601A (en) * 2017-11-28 2020-07-07 昭和电工株式会社 Insulating substrate and heat dissipation device
CN113183565A (en) * 2021-06-03 2021-07-30 河南工业大学 Preparation method of carbon fiber reinforced sliding current collecting material for high-speed train
CN113462996A (en) * 2020-03-31 2021-10-01 昆山科森科技股份有限公司 Preparation method of metal fiber reinforced aluminum alloy

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6580385B2 (en) * 2015-06-19 2019-09-25 昭和電工株式会社 Composite of aluminum and carbon particles and method for producing the same
JP6482980B2 (en) * 2015-07-31 2019-03-13 昭和電工株式会社 Composite of aluminum and carbon particles and insulating substrate
JP6670605B2 (en) * 2015-12-22 2020-03-25 昭和電工株式会社 Manufacturing method of insulating substrate
CN108291290B (en) * 2015-12-24 2020-11-20 昭和电工株式会社 Method for manufacturing composite material of metal and carbon fiber
JP6694291B2 (en) * 2016-02-15 2020-05-13 昭和電工株式会社 Method for producing composite material of metal and carbon fiber
JP6708498B2 (en) * 2016-07-07 2020-06-10 昭和電工株式会社 Cooler and manufacturing method thereof
JP7025074B1 (en) * 2021-06-30 2022-02-24 株式会社半導体熱研究所 Joining member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941054A (en) * 1995-07-26 1997-02-10 Kawasaki Heavy Ind Ltd Engine parts for aircraft
JPH10176231A (en) * 1996-12-16 1998-06-30 Ishikawajima Harima Heavy Ind Co Ltd Fiber reinforced metal product and its manufacture
WO2006051782A1 (en) * 2004-11-09 2006-05-18 Shimane Prefectural Government Metal base carbon fiber composite material and method for production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941054A (en) * 1995-07-26 1997-02-10 Kawasaki Heavy Ind Ltd Engine parts for aircraft
JPH10176231A (en) * 1996-12-16 1998-06-30 Ishikawajima Harima Heavy Ind Co Ltd Fiber reinforced metal product and its manufacture
WO2006051782A1 (en) * 2004-11-09 2006-05-18 Shimane Prefectural Government Metal base carbon fiber composite material and method for production thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178047A1 (en) * 2014-05-21 2015-11-26 昭和電工株式会社 Process for producing composite material constituted of aluminum and carbon fibers
JP2015217655A (en) * 2014-05-21 2015-12-07 昭和電工株式会社 Method for producing composite material comprising aluminum and carbon fiber
CN106460131A (en) * 2014-05-21 2017-02-22 昭和电工株式会社 Process for producing composite material constituted of aluminum and carbon fibers
CN109562598A (en) * 2016-11-11 2019-04-02 昭和电工株式会社 Metal-carbon particle composite material and its manufacturing method
CN111386601A (en) * 2017-11-28 2020-07-07 昭和电工株式会社 Insulating substrate and heat dissipation device
CN113462996A (en) * 2020-03-31 2021-10-01 昆山科森科技股份有限公司 Preparation method of metal fiber reinforced aluminum alloy
CN113183565A (en) * 2021-06-03 2021-07-30 河南工业大学 Preparation method of carbon fiber reinforced sliding current collecting material for high-speed train

Also Published As

Publication number Publication date
JP2015025158A (en) 2015-02-05
JP6166117B2 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
JP6166117B2 (en) Method for producing composite material of metal and carbon fiber
JP5150905B2 (en) Method for producing metal-based carbon fiber composite material
WO2018088045A1 (en) Metal-carbon particle composite material and method for manufacturing same
JP6713120B1 (en) Copper Sintered Substrate Nano Silver Impregnated Bonding Sheet, Manufacturing Method and Bonding Method
US20190001652A1 (en) Method for producing metal-carbon fiber composite material
JP6876569B2 (en) Metal-carbon particle composite
JP2007177024A (en) Aromatic polyimide film and method for producing the same, and graphite sheet
CN112823214B (en) Aluminium-carbon particle composite material and its production method
TWI637081B (en) Coated aluminum material and manufacturing method thereof
JP6821409B2 (en) Method for manufacturing metal-carbon particle composite material
JP6383670B2 (en) Method for producing composite material of aluminum and carbon particles and method for producing insulating substrate
WO2017183705A1 (en) Highly oriented graphite and method for producing highly oriented graphite
KR102367298B1 (en) thermal conducting sheet and manufacturing method thereof
JP6964434B2 (en) Metal-carbon particle composite material and its manufacturing method
JP2016176138A (en) Magnetic steel sheet with insulating coating, laminated magnetic steel sheet and production method of them
JP6694291B2 (en) Method for producing composite material of metal and carbon fiber
JP2020006623A (en) Laminate material
JP7109348B2 (en) Method for producing particle-coated foil and method for producing metal-particle composite
WO2016159389A1 (en) Low-resistance metal fiber sheet and production method thereof
JP6875211B2 (en) Method for manufacturing metal-carbon particle composite material
JP2016222962A (en) Composite body of aluminium and carbon particle, and method for manufacturing the same
WO2018194066A1 (en) Carrier film and method for manufacturing electronic component
JP2018154859A (en) Material for plastic working, plastically worked body and thermal conductor
JP2019026920A (en) Manufacturing method of metal-carbon particle composite
JP6670605B2 (en) Manufacturing method of insulating substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14829169

Country of ref document: EP

Kind code of ref document: A1