WO2014057577A1 - Power supply device and battery charging device - Google Patents

Power supply device and battery charging device Download PDF

Info

Publication number
WO2014057577A1
WO2014057577A1 PCT/JP2012/076469 JP2012076469W WO2014057577A1 WO 2014057577 A1 WO2014057577 A1 WO 2014057577A1 JP 2012076469 W JP2012076469 W JP 2012076469W WO 2014057577 A1 WO2014057577 A1 WO 2014057577A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
voltage
winding
transformer
switching element
Prior art date
Application number
PCT/JP2012/076469
Other languages
French (fr)
Japanese (ja)
Inventor
大澤 孝
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2014540706A priority Critical patent/JP5911591B2/en
Priority to PCT/JP2012/076469 priority patent/WO2014057577A1/en
Publication of WO2014057577A1 publication Critical patent/WO2014057577A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a power supply device such as a DC / DC converter or an AC / DC converter that outputs a predetermined voltage from a varying power supply voltage, and a battery charging device using the power supply device.
  • a power supply device such as a DC / DC converter or an AC / DC converter that outputs a predetermined voltage from a varying power supply voltage
  • a power battery mounted on the electric vehicle is charged by an external AC power source using a charging device, and the battery charging device has a coil (reactor) and a switching element for efficiently taking in power from the AC power source.
  • a power factor correction (PFC) circuit configured by a DC / DC converter including a transformer, a switching element, and the like is used.
  • the electric vehicle is also equipped with a DC / DC converter that generates a 12V power supply for auxiliary equipment from a power battery. Note that a series of configurations for outputting a DC voltage from the AC power supply can also be referred to as an AC / DC converter.
  • a PFC circuit that supplies a substantially constant DC voltage while improving the power factor is used in the front stage of the DC / DC converter of the charging device that charges the power battery from the AC power supply.
  • a PFC circuit that supplies a constant DC voltage is necessary, and the supply voltage to the DC / DC converter fluctuates using a simple PFC circuit. If this is the case, the DC / DC converter cannot perform a suitable operation.
  • the power battery serving as the power source of the DC / DC converter that generates the 12V power source for the auxiliary device is not necessarily a stable DC power source because the voltage varies depending on the charging state. In other words, it is difficult to say that the DC / DC converter always operates under a suitable power supply voltage.
  • the DC / DC converter used for the battery charger and the auxiliary device is expected to fluctuate the power supply voltage.
  • priority was given to the operation in the extreme state, and in some states, the design was admitted to allow the deterioration of the characteristics.
  • a charging device composed of a PFC circuit and a DC / DC converter there are typically two types of AC power supply voltage to be connected: a 100 Vrms system and a 200 Vrms system. If designing with emphasis on 200 Vrms, a 100 Vrms power supply is used. There is no denying the decrease in efficiency when used.
  • a switching element that operates with a narrow duty that can be used is required, the efficiency cannot be denied in the operation with the narrow duty.
  • the power supply device is an AC / DC converter that switches a tap of a primary winding of a transformer in correspondence with the level of an AC power supply voltage (that is, a rectifier and a smoothing unit that convert AC power supply voltage to DC). And a DC / DC converter to which a direct current is supplied), and appropriately selects and switches the winding ratio of the transformer to control the on-duty of the switching transistor to about 50%.
  • a transformer tap is selected and switched corresponding to an AC power source having an effective value of 100 Vrms to 240 Vrms, and corresponds to a voltage at each timing in one cycle of the AC power source changing in a sine wave shape. There is no description indicating that the taps are sequentially switched.
  • the booster circuit according to Patent Document 2 is a circuit for boosting and taking out stored power stored in an electric double layer capacitor, and includes a DC / DC converter that boosts the voltage of the capacitor.
  • the winding number reduction means reduces the number of turns on the primary side of the transformer to increase the step-up ratio of the transformer, thereby avoiding a decrease in output voltage.
  • the switching circuit 19 has a contact point 19a of an electromagnetic relay”, a slow-operating relay is used for switching the number of turns. Therefore, the switching operation is not frequently performed in a short cycle such as one cycle of the AC power supply.
  • the DC / DC converter according to Patent Document 3 can be used even if the polarity of the DC power supply voltage is reversed using a bidirectional switching element.
  • this patent document 3 there is no description indicating that the turns ratio of the transformer is switched according to the power supply voltage, and there is no description that suggests using an AC power supply as the power supply.
  • the uninterruptible power supply method uses a bi-directional semiconductor switch to charge an AC / AC converter that directly modulates an AC power supply voltage without converting it to DC and demodulates it on the secondary side, and a storage battery. And an AC / DC converter that outputs an alternating current from the storage battery.
  • Paragraph [0025] of this patent document 4 describes that the circuit configuration on the primary side of the transformer is switched between the full-bridge type and the half-bridge type in accordance with the power supply voltages of 100 Vrms and 200 Vrms. There is no description indicating that the turn ratio of the transformer is sequentially switched in accordance with the voltage at each timing in one cycle of the AC power supply that changes in a wave shape.
  • a conventional DC / DC converter absorbs fluctuations in one cycle of an AC power supply to generate a constant DC voltage, and operates the DC / DC converter suitably. Therefore, a rectifier circuit and a smoothing circuit for smoothing a change corresponding to a half cycle of the AC power supply and a PFC circuit for outputting a smoothed voltage are required.
  • the smoothing capacitor of this configuration needs to have a sufficient capacity in order to ensure the characteristics of the DC / DC converter over the half cycle of the AC power supply. Therefore, in order to secure the characteristics of the DC / DC converter, it is desired to reduce this capacity, but the reduction or elimination of the smoothing capacitor is an issue for reducing the size and cost of the power supply device. It was.
  • the present invention has been made in order to solve the above-described problems, and a power supply device (DC / DC converter) that outputs a predetermined voltage from a power supply whose voltage fluctuates from time to time. The voltage fluctuates in a sine wave shape. It is an object of the present invention to provide a power supply device (AC / DC converter) that outputs a predetermined voltage from an AC power supply and a battery charging device using the power supply device.
  • the power supply device (DC / DC converter and AC / DC converter) of the present invention includes a transformer having a primary winding constituted by a plurality of windings connected in series and a plurality of windings of the primary winding.
  • a switching circuit having a plurality of switching elements connected to the control circuit, and a controller that controls operation of the switching elements and selectively applies a power supply voltage to the plurality of windings constituting a primary winding,
  • the control unit controls the switching element to switch the winding to which the power supply voltage is applied among the primary windings twice or more corresponding to the voltage at that time in one cycle of the varying power supply voltage. Is.
  • the battery charging device of the present invention is for charging a battery mounted on a vehicle using the power supply device described above.
  • the primary coil winding to which the power supply voltage is applied fluctuates and is switched twice or more corresponding to the current voltage during one cycle of the fluctuation of the power supply voltage.
  • a transformer having an appropriate turns ratio with respect to the power supply voltage of the power supply in a situation where the power supply voltage is low, by switching to the primary winding having a high turn ratio, a predetermined voltage can be obtained from the low power supply voltage. Can be output.
  • the efficiency can be increased by switching to the primary winding having a low turns ratio and performing an appropriate switching operation. Therefore, it is possible to provide a power supply device (DC / DC converter) that can output a predetermined voltage from a direct current power supply whose voltage varies every moment.
  • a predetermined voltage can be output even at a timing when the power source voltage in the repetition cycle of the AC power source is low due to the above-described characteristics.
  • a power supply device AC / DC converter that is high, has low harmonics, and high power factor can be provided.
  • the above-described characteristics when charging the battery from the AC power source, the above-described characteristics can output a predetermined voltage even when the power source voltage is low in the repetition cycle of the AC power source. It is possible to provide a battery charger having a high power factor, a low high frequency, and a high power factor.
  • FIG. 6 is a graph illustrating operation waveforms when only switches SW1 to SW4 are used in the battery charging apparatus according to Embodiment 1.
  • 6 is a graph for explaining operation waveforms when all of switches SW1 to SW6 are used in the battery charging apparatus according to the first embodiment.
  • 6 is a circuit diagram showing a modification of the battery charging device according to Embodiment 1.
  • FIG. 6 is a graph for explaining operation waveforms when an overvoltage protection unit and a snubber unit are added to the battery charging apparatus according to Embodiment 1;
  • 6 is a circuit diagram showing a modification of the battery charging device according to Embodiment 1.
  • FIG. 6 is a graph illustrating operation waveforms when only switches SW1 to SW4 are used in the battery charging apparatus according to Embodiment 1.
  • 6 is a graph for explaining operation waveforms when all of switches SW1 to SW6 are used in the battery charging apparatus according to the first embodiment.
  • 6 is a circuit diagram showing a modification of the battery charging device according
  • FIG. 6 is a circuit diagram showing a modification of the battery charging device according to Embodiment 2. It is a circuit diagram which shows the structure of the battery charging device which concerns on Embodiment 3 of this invention.
  • FIG. 6 is a diagram illustrating a transformer according to a third embodiment. 10 is a graph illustrating operation waveforms when all of switches SW1 to SW8 are used in the battery charging apparatus according to Embodiment 3. It is a circuit diagram which shows an example of the signal transmission circuit of the battery charging device which concerns on Embodiment 4 of this invention.
  • FIG. 12 is a circuit diagram showing another example of a signal transmission circuit of a battery charging device according to Embodiment 4.
  • FIG. 12 is a circuit diagram showing another example of a signal transmission circuit of a battery charging device according to Embodiment 4.
  • FIG. 12 is a circuit diagram showing another example of a signal transmission circuit of a battery charging device according to Embodiment 4. It is a circuit diagram which shows the structure of the battery charging device which concerns on Embodiment 5 of this invention. It is a figure explaining the installation example of the battery charging device which concerns on Embodiment 5.
  • FIG. It is a circuit diagram which shows the structure of the battery charging device which concerns on Embodiment 6 of this invention. It is a figure explaining the example of installation of the battery charging device which concerns on Embodiment 6.
  • FIG. FIG. 10 is an external perspective view illustrating a transformer according to a sixth embodiment.
  • Embodiment 1 FIG.
  • the battery charger 10 shown in FIG. 1 converts an alternating-current power supply voltage that changes every moment into a predetermined voltage (battery voltage) using, for example, an alternating-current power supply 1 having a period of 20 ms (50 Hz) or 17 ms (60 Hz) as a power supply.
  • the battery 2 is charged.
  • the present invention relates to a power supply device including a DC / DC converter, but the filter capacitor C1 of the power supply rectifier 11 for full-wave rectification of the AC voltage is a small-capacitance capacitor for noise filters and has almost no smoothing action.
  • the voltage rectified by the power supply rectification unit 11 is a voltage in which a sinusoidal half-wave voltage is repeated while being DC. Accordingly, the behavior of the PFC / DC / DC converter 12 with respect to the voltage supplied to the PFC / DC / DC converter 12 and the voltage is equivalent to the half cycle of the alternating current. The operation will be described according to the behavior when.
  • a battery charger 10 includes a power rectifier 11 that rectifies an AC voltage of an AC power supply 1 and outputs a DC voltage, a PFC / DC / DC converter 12 that converts a DC voltage into a battery voltage, and a PFC.
  • An output rectification unit 14 that rectifies and smoothes the output voltage of the DC / DC converter unit 12 and supplies it to the battery 2 and a control unit 15 that operates the switches SW1 to SW6 of the switching circuit unit 18.
  • the battery charging device 10 in FIG. 1 can be rephrased as an AC / DC converter that inputs an AC voltage and outputs a DC voltage.
  • the AC voltage of the AC power supply 1 is full-wave rectified by the four rectification diodes D1 to D4, and a sinusoidal half-wave voltage is repeated. It is converted into a DC voltage.
  • the output rectification unit 14 provided on the secondary side of the PFC / DC / DC converter unit 12, the output voltage of the PFC / DC / DC converter unit 12 is full-wave rectified by the four rectifier diodes D5 to D8, It is smoothed by the smoothing coil L1 and the smoothing capacitor C2 and converted into a DC voltage.
  • the circuit configurations of the power rectifier 11 and the output rectifier 14 are not limited to the illustrated example.
  • the PFC / DC / DC converter unit 12 includes a transformer 13 having a primary winding in which a plurality of windings are connected in series, a secondary winding, and a plurality of windings constituting the primary winding. And a switching circuit unit 18 for selectively applying a voltage to the terminals a to c.
  • the switches SW 1 to SW 6 are turned on and off by the drive signal output from the control unit 15 to switch the connection between the winding terminals a to c and change the turns ratio of the primary winding and the secondary winding. .
  • the number of winding turns between the winding terminals ac and the number of winding turns between the winding terminals ab are made equal.
  • the control unit 15 controls the on / off operation of the switches SW1 to SW6 based on the power supply voltage rectified by the power supply rectification unit 11, and when the power supply voltage is low in one cycle of the power supply voltage, the winding terminal a ⁇
  • the power supply voltage is applied between b and when the power supply voltage is high, the power supply voltage is applied between the winding terminals ac.
  • the connection of the winding terminals a to c of the primary winding of the transformer 13 is switched twice or more in one cycle of the power supply voltage.
  • control unit 15 performs phase control, PWM (Pulse Width Modulation) operation or PFM (Pulse) on the switches SW1 to SW6 based on the output voltage (or output current, power supply current) after rectification and smoothing by the output rectification unit 14.
  • PWM Pulse Width Modulation
  • PFM Pulse
  • the control unit 15 performs phase control, PWM (Pulse Width Modulation) operation or PFM (Pulse) on the switches SW1 to SW6 based on the output voltage (or output current, power supply current) after rectification and smoothing by the output rectification unit 14.
  • Frequency Modulation is operated to adjust the output voltage (or output current, power supply current).
  • the control unit 15 is configured to perform digital control using a microcomputer having a high-speed arithmetic function, analog control using an error amplifier circuit composed of an operational amplifier or the like, or digital-analog control combining a general-purpose microcomputer and an error amplifier circuit. Etc.
  • FIG. 2A shows the power supply voltage of the AC power supply 1
  • FIG. 2B shows the energization direction of the transformer 13
  • FIG. 2C shows the output voltage of the rectifier diodes D5 to D8, and
  • the voltage supplied to the PFC / DC / DC converter unit 12 and the behavior of the PFC / DC / DC converter unit 12 with respect to the voltage are equivalent to the half cycle of the alternating current. It substitutes by description of the operation
  • the switches SW1 and SW4 are repeatedly turned on and off at the same timing (for example, 50% duty), and a current flows between the winding terminals ac of the primary winding when turned on.
  • the switches SW2 and SW3 are repeatedly turned on and off by reversing the operation of the switches SW1 and SW4 at the same timing, and a current flows between the winding terminals ca of the primary winding when turned on. (When switch SW1 is on, switch SW4 is also on and switches SW2 and SW3 are off. Conversely, when switch SW1 is off, switch SW4 is also off and switches SW2 and SW3 are on.)
  • the output rectifier 14 outputs a voltage that is twice the turn ratio of the voltage applied to the primary winding, but the battery has constant voltage characteristics. Therefore, when the output voltage is less than or equal to the battery voltage, no current flows, and the current starts flowing after exceeding the battery voltage. Therefore, at the timing T L when the power supply voltage is low, the power at the timing T L is not used at all. That is, when the AC power source 1 that changes in a sine wave shape is used, the voltage range used in one cycle is narrow, that is, the period during which current flows is narrow. The power usage efficiency is low. In addition, since the period during which current flows in one cycle of the AC power supply is narrow and the power supply current to be received is close to a rectangular wave, there are many harmonic components, and there is concern about the effect on other devices connected to the same AC power supply.
  • the on / off of the switches SW1 to SW4 is set to 50% Duty for convenience.
  • the timing T H when the power supply voltage is a high voltage is used.
  • the duty of the voltage applied between the winding terminals a-c and the winding terminals c-a is narrowed by phase control or PWM / PFM operation. the efficiency is deteriorated in the most communicated likely those timing T H power.
  • the control unit 15 alternately turns on and off one of the switches SW1 and SW2 with a duty of about 50%, and turns on and off the other switches SW3 and SW4 alternately with a duty of about 50%.
  • the output voltage is adjusted by shifting the operation phase of SW1 and SW2 and the operation phase of switches SW3 and SW4 and changing the energization time for energizing the transformer 13.
  • the control unit 15 makes the ON / OFF repetition cycle of the switches SW1 to SW4 constant, and the ON time of the switch SW1 (that is, the OFF time of the switch SW2) and the ON time of the switch SW3 ( That is, the output voltage is adjusted by changing the ratio of the off time of the switch SW4.
  • control unit 15 repeats turning on the switches SW1 and SW3 while keeping the on time of the switch SW1 (at this time the switch SW2 is off) and the on time of the switch SW3 (at this time the switch SW4 is off).
  • the output voltage is adjusted by changing the period.
  • FIG. 3A is the power supply voltage of the AC power supply 1
  • FIG. 3B is the energization direction of the transformer 13
  • FIG. 3C is the output voltage of the rectifier diodes D5 to D8, and
  • the switches SW1 and SW6 are repeatedly turned on and off at the same timing (for example, 50% duty), and a current flows between the winding terminals a and b of the primary winding when turned on.
  • the switches SW2 and SW5 are repeatedly turned on and off by reversing the operation of the switches SW1 and SW6 at the same timing, and a current flows between the winding terminals ba of the primary winding when turned on.
  • the switches SW1 and SW6 and the switches SW2 and SW5 are alternately turned on and off.
  • the switches SW3 and SW4 are fixed off.
  • FIG. 3C at the timing TL when the power supply voltage is low, by increasing the turns ratio of the transformer 13, an appropriate voltage is generated from the low voltage and the charging current is supplied to the battery 2. It can flow.
  • the voltage range to be used in one cycle Expansion that is, the period during which current flows can be expanded.
  • the power source of the battery charging device 10 is alternating current
  • the energization current in the region indicated by hatching in FIG. that is, since the power factor can be improved by the PFC / DC / DC converter unit 12 of this configuration, there is no need to provide a PFC circuit such as the chopper circuit 10 shown in FIG.
  • the PFC circuit can be simplified, and the power supply device can be made smaller and less expensive.
  • the power supply current to be received can be approximated to a sine wave by expanding the period during which the current flows in one cycle of the AC power supply, harmonic components that affect the power supply side can also be suppressed.
  • the switches SW1 to SW6 can be operated with a wide duty at the respective timings T H and T L.
  • the efficiency can be increased at the respective timings T H and T L and further in the entire period.
  • FIG. 4 shows a circuit configuration of the battery charging device 10a when a field effect transistor (FET) is used for the switches SW1 to SW6.
  • FET field effect transistor
  • the switching circuit 18a uses the switching elements FET1 to FET6 as the switches SW1 to SW6, and includes backflow prevention diodes D9 and D10 for preventing current backflow to the switching elements FET3 and FET4. .
  • the operations of the switching elements FET1 to FET6 are the same as the operations of the switches SW1 to SW6 described with reference to FIG.
  • an overvoltage protection unit 16 and a snubber unit 17 are provided between the winding terminal a and the winding terminal c of the transformer 13.
  • the overvoltage protection unit 16 is a circuit in which, for example, the anodes or the cathodes of two Zener diodes are connected, and the surge voltage generated when the energization direction between the winding terminals of the primary winding is switched is increased. Suppresses the voltage section to a limited voltage.
  • the snubber portion 17 is an RC circuit including, for example, a resistor R1 and a capacitor C3, and absorbs this surge energy.
  • FIG. 5A shows the power supply voltage of the AC power supply 1
  • FIG. 5B shows the energization direction of the transformer 13
  • FIG. 5C shows the winding terminal of the transformer 13 when the overvoltage protection section 16 and the snubber section 17 are provided
  • FIG. 5D shows the voltage between winding terminals ac when no overvoltage protection unit 16 and snubber unit 17 are provided. Note that positive and negative voltages are generated between the winding terminals a and c in accordance with the voltage applied between the winding terminals a and b.
  • FIGS. 5 (c) and 5 (d) For convenience, the absolute value is converted from the minus side to the plus side.
  • FIG. 6 shows a circuit configuration of the battery charging device 10b when bidirectional switches are used for the switches SW1 to SW6.
  • bidirectional switching elements FET11 to FET16 are used as the switches SW1 to SW6.
  • the overvoltage protection part 16 and the snubber part 17 are provided similarly to FIG.
  • the switching elements FET3 and FET4 need to be bidirectional switches, and the other switching elements FET1, FET2, FET5 and FET6 do not necessarily need to be bidirectional switches.
  • FIG. 6 in order to unify the elements to be used, all are bidirectionally compatible.
  • the bidirectional switching element FET11 is composed of two switching elements FET11a and 11b connected in series.
  • the bidirectional switching element FET12 is switching elements FET12a and 12b
  • the bidirectional switching element FET13 is switching elements FET13a and 13b
  • the bidirectional switching element FET14 is switching elements FET14a and 14b
  • the bidirectional switching element FET15 is switching elements FET15a and 15b.
  • the bidirectional switching element FET16 is composed of switching elements FET16a and 16b. The operations of these bidirectional switching elements FET11 to FET16 are the same as the operations of the switches SW1 to SW6 described with reference to FIG.
  • the unidirectional switching elements FET3 and FET4 are used, it is necessary to connect the backflow prevention diodes D9 and D10 in series so that the current does not flow backward, but the bidirectional switching elements FET13 and FET14 Can be used to pass and stop the current in both forward and reverse directions, and since the series backflow prevention diodes D9 and D10 are not used, the loss due to the series backflow prevention diodes D9 and D10 can be reduced and the efficiency is improved. improves.
  • the battery charger 10 is configured by a plurality of windings connected in series (a winding between the winding terminals ab and a winding between the winding terminals bc).
  • a transformer 13 having a primary winding
  • a switching circuit unit 18 having a plurality of switches SW1 to SW6 individually connected to a plurality of winding terminals a to c constituting the primary winding, and switches SW1 to
  • a control unit 15 that controls the operation of the SW 6 to selectively apply a power supply voltage to a plurality of windings constituting the primary winding, and an output rectifying unit 14 that rectifies the output voltage of the transformer 13 is provided.
  • the unit 15 is configured to switch the winding for applying the power supply voltage among the primary windings two or more times corresponding to the voltage at that time in one cycle of the fluctuation of the varying power supply voltage. For this reason, for example, when using a DC power source whose voltage varies from moment to moment, such as the output of a DC power source that rectifies the output of an AC generator on which AC component ripple is superimposed, the momentarily changes.
  • a DC power source whose voltage varies from moment to moment, such as the output of a DC power source that rectifies the output of an AC generator on which AC component ripple is superimposed.
  • the efficiency can be increased by switching to the primary winding having a low turns ratio and performing an appropriate switching operation. Therefore, a highly efficient power supply device (DC / DC converter) with a wide usable power supply voltage range can be realized. Also, with this configuration, it is possible to reduce the number of smoothing capacitors and realize a power supply device using a simple PFC circuit. In addition, since the power supply current to be received can be made to flow almost continuously by expanding the period in which the current flows in one cycle of the changing power supply, harmonic components that affect the power supply side can be suppressed.
  • a power source rectifying unit 11 that rectifies the AC voltage of the AC power source 1 is added.
  • the voltage after rectification is applied to the primary winding of the transformer 13.
  • This configuration also has a characteristic of outputting a predetermined voltage even when the power supply voltage is low in the repetition cycle of the AC power supply, as described above, and this characteristic provides high power use efficiency and low harmonics.
  • a power unit having a high power factor an AC / DC converter including a power rectifier 11 and a PFC / DC / DC converter 12 can be configured.
  • the battery chargers 10, 10a, 10b according to the first embodiment may be used as a battery charger for charging a battery 2 for driving an electric vehicle, and directly plugged into a home or commercial AC power source 1. Can be connected to charge the battery 2 for power.
  • the switching circuit unit 18a has the backflow prevention diodes D9 and D10 that block the backflow of current through the switching elements FET3 and FET4. As a result, reverse current flow can be prevented, so that the DC / DC converter can be operated normally without destroying the switching element, and sufficient output can be obtained.
  • the bidirectional switching elements FET11 to FET16 are used as the switching elements of the switching circuit unit 18b.
  • the backflow prevention diodes D9 and D10 can be reduced, so that the loss caused by the backflow prevention diodes D9 and D10 can be reduced and the efficiency can be improved.
  • two FETs are used as the switching elements.
  • the present invention is not limited to this, and may be one switching element having equivalent characteristics, such as a transistor, IGBT (insulated gate type).
  • a bipolar transistor may be used.
  • GaN gallium
  • SiC silicon carbide, silicon carbide
  • the GaN-based or SiC-based semiconductor has a high withstand voltage and can operate at a high temperature. Therefore, as a switching element for a large-capacity power supply device (DC / DC converter, AC / DC converter). Is preferable.
  • a conversion circuit unit (for example, switches SW1, SW2, SW5, SW6 in FIG. 1) converts the secondary output to AC on the secondary side of the PFC / DC / DC converter unit 12. If the circuit) is added, the battery charger 10 can be configured as a DC / AC inverter, and a DC / AC inverter with a wide usable power supply voltage range and high efficiency can be realized.
  • a configuration is shown in which a plurality of primary windings are used and the windings are switched in response to a varying power supply voltage.
  • the same operation is performed with a plurality of secondary windings.
  • the winding is switched and adjusted to a predetermined output voltage in accordance with voltages generated in a plurality of windings constituting the secondary winding.
  • FIG. FIG. 7 is a circuit diagram showing a configuration of battery charging apparatus 10c according to the second embodiment.
  • the power supply rectifying unit 11 that rectifies the AC voltage of the AC power supply 1 is provided.
  • the switches SW1 to SW6 are all made bidirectionally compatible, as shown in FIG.
  • the AC voltage of the AC power supply 1 can be directly applied to the transformer 13 without providing the power supply rectifying unit 11.
  • the switching elements FET3 and FET4 it is necessary to add a backflow prevention diode or use a bidirectional switch for the switching elements FET3 and FET4 to which a voltage not lower than the power supply voltage or lower than the GND voltage is applied.
  • the other switching elements FET1, FET2, FET5 and FET6 do not necessarily have to be bidirectional switches.
  • all of the switches SW1 to SW6 need to be compatible with each other.
  • the power supply rectifying unit 11 is omitted, and an AC voltage is directly applied to the transformer 13 to obtain a DC output. Therefore, the PFC of the first embodiment is used.
  • the DC / DC converter unit can be rephrased as the PFC / AC / DC converter unit 12c. Since the internal configuration of the PFC / AC / DC converter unit 12c is the same as that of the PFC / DC / DC converter unit 12 of FIG. 1 except that the switches SW1 to SW6 are bidirectionally compatible, description thereof will be omitted. In the configuration of FIG. 7, each winding terminal constituting the primary winding of the transformer 13 is switched four times in one cycle of the sinusoidal fluctuation of the AC voltage.
  • FIG. 8 shows a circuit configuration of a battery charging device 10d using the bidirectional switching elements FET11 to FET16.
  • bidirectional switching elements FET11 to FET16 are used as the switches SW1 to SW6 as in FIG. 6, and an overvoltage protection unit 16 and a snubber unit 17 are further provided.
  • the bidirectional switching elements FET11 to FET16 the current in any direction can be turned on and off. Therefore, the current is arbitrarily supplied to the transformer 13 regardless of the polarity of the power supply voltage, that is, even with an AC voltage. Can be energized. Further, the backflow of current to the switching elements FET11a to FET16b can be prevented.
  • the battery charging device 10d includes a plurality of windings connected in series (a winding between the winding terminals ab and a winding between the winding terminals bc).
  • a switching circuit section 18 having switches SW1 to SW6 individually connected to terminals a to c of a plurality of windings constituting the primary winding, and switches SW1 to SW6
  • a control unit 15 that selectively applies the power supply voltage of the AC power supply 1 to a plurality of windings constituting the primary winding, and an output rectification unit 14 that rectifies the output voltage of the transformer 13.
  • the control unit 15 is configured to switch the winding for applying the power supply voltage among the primary windings two or more times corresponding to each voltage in one cycle of the fluctuation of the power supply voltage. For this reason, when using the AC power supply 1 whose voltage fluctuates in a sine wave shape, the power supply voltage is low by operating as a transformer having an appropriate turns ratio with respect to the power supply voltage that fluctuates every moment. By switching to the primary winding having a high turn ratio, a predetermined voltage can be output from the low power supply voltage. In a situation where the power supply voltage is high, the efficiency can be increased by switching to the primary winding having a low turns ratio and performing an appropriate switching operation.
  • the battery charging devices 10c and 10d according to the second embodiment may be used as a battery charging device for charging the battery 2 for driving an electric vehicle, and the plug is directly connected to the home or commercial AC power source 1. Thus, the power battery 2 can be charged.
  • FIG. 9 is a circuit diagram showing a configuration of battery charging device 10e according to the third embodiment.
  • FIG. 10 is a diagram illustrating the transformer 13e of the battery charging device 10e. 9 and 10, the same or corresponding parts as those in FIGS. 1 to 8 are designated by the same reference numerals and the description thereof is omitted.
  • the primary winding of the transformer 13e is configured by connecting in series.
  • the primary winding of the transformer 13e has 10 turns (T) of windings between the winding terminals ab and 10 turns (T) of windings between the winding terminals bc. 30T, and the number of windings between the winding terminals cd is 20T.
  • the number of turns of the secondary winding of the transformer 13e is 60T.
  • switches SW7 and SW8 are added to the switching circuit unit 18e.
  • FIG. 11 (a) shows the power supply voltage of the AC power supply 1
  • FIG. 11 (b) shows the winding terminal to which the power supply voltage is applied
  • FIG. 11 (c) shows the output voltage of the rectifier diodes D5 to D8.
  • FIG. 11C shows an envelope waveform of the output voltage for each winding switching, not the output voltage waveform for each switching of the energization direction of the transformer 13e.
  • the control unit 15 selects between the winding terminals ab as the primary winding of the transformer 13e to which the power supply voltage is applied (that is, the switches SW1, SW6 and the switches SW2, SW5 are alternately turned on / off), the turns ratio A 1: 6 transformer 13e can be configured, and a sufficient output voltage can be output even when the power supply voltage is low.
  • the control unit 15 next selects between the winding terminals cd of the primary winding to make the turns ratio 2: 6 (that is, the switches SW3 and SW8 and the switches SW4 and SW7). Are alternately turned on / off), and then the winding terminals bc are selected to have a turns ratio of 3: 6 (that is, the switches SW3 and SW6 and the switches SW4 and SW5 are turned on and off alternately) and the winding is continued.
  • the line terminals a-c are selected to have a turns ratio of 4: 6 (that is, the switches SW1, SW4 and the switches SW2, SW3 are turned on and off alternately), and then the winding terminals b-d are selected to turn the number of turns.
  • the ratio is set to 5: 6 (that is, the switches SW5 and SW8 and the switches SW6 and SW7 are turned on and off alternately).
  • the control unit 15 selects between the winding terminals ad of the primary winding (that is, the switches SW1 and SW8 and the switches SW2 and SW7 are turned on and off alternately). , A turns ratio 6: 6, that is, a 1: 1 transformer 13e is formed. Note that the above order is reversed in response to a decrease in the power supply voltage.
  • FIG. 11 (c) shows the output voltage when the duty of the switch that is turned on / off in each turn ratio period is fixed at 50%, but in actuality, in each period, phase control or PWM ⁇ PFM
  • the output voltage is finely controlled to output a more suitable battery charging current, and the power supply current to be received is further reduced in harmonics Can approximate a sine wave.
  • the number of windings constituting the primary winding of the transformer 13e, the number of turns of the primary winding and the secondary winding, and connection and selection of each winding constituting the primary winding are other than the above examples.
  • the winding may be separated from other windings.
  • the primary winding of the transformer 13e is composed of a plurality of windings having different numbers of turns, and the number of turns is arbitrary according to the combination of these windings. For this reason, by configuring a transformer with a high turns ratio, it is possible to output power even when the power supply voltage is low.
  • a transformer having a turn ratio suitable for the voltage at each timing of the varying power supply voltage can be configured, and further, by performing an appropriate duty switching operation at the power supply voltage at each timing, power utilization efficiency is high, A high-efficiency power supply (AC / DC converter) can be realized with a high rate, low harmonics.
  • this configuration reduces the number of smoothing capacitors, uses a simple PFC circuit, and does not use power supply rectifier diodes (D1 to D4 in FIG. 1) while realizing a simple power supply device. Furthermore, it is possible to realize a power supply device having a high power factor and few harmonics.
  • the power source device having the same effect as described above can be obtained by configuring the primary winding of the transformer as in the third embodiment. (DC / DC converter) can be realized.
  • Embodiment 4 FIG.
  • a configuration in which the control unit 15 drives the switches SW1 to SW6 via an insulated signal transmission circuit will be described.
  • Each of the switching elements constituting the switches SW1 to SW6 operates at a potential floating from the reference voltage. Therefore, as a drive signal transmission circuit for operating each switching element, for example, a pulse transformer 20 as shown in FIGS.
  • An insulated power source 22 and a photocoupler 24 as shown in FIGS. 13 and 15 are used as a pulse transformer 20 as shown in FIGS.
  • An insulated power source 22 and a photocoupler 24 as shown in FIGS. 13 and 15 are used.
  • FIGS. 12 to 15 are circuit diagrams showing the configuration of the signal transmission circuit of the battery charging apparatus 10 according to the fourth embodiment.
  • the same or corresponding parts as those in FIGS. 1 to 11 are denoted by the same reference numerals. Description is omitted.
  • the control units 15a to 15d show only portions related to transmission of drive signals.
  • bidirectional switching elements FET11 to FET16 are used as the switches SW1 to SW6, and the bidirectional switching element FET11 (switching element FET11a and switching element FET11b) is shown as a representative.
  • a switching element FET 21 that controls the pulse transformer 20 is connected to the primary side of the pulse transformer 20 in the control unit 15a.
  • the gate terminals of the switching elements FET11a and 11b are connected to the high potential side of the secondary winding of the pulse transformer 20, and the source terminals of the switching elements FET11a and 11b are commonly connected to the low potential side.
  • a drive signal (on / off signal) for driving the bidirectional switching element FET11 is input to the switching element FET21, and transmitted to the switching elements FET11a and 11b via the pulse transformer 20 in an insulated state.
  • the element FETs 11a and 11b perform an on / off operation at the same timing.
  • a switching element FET 25 for controlling the photocoupler 24 is connected to the light emitting side of the photocoupler 24.
  • the gate terminals of the switching elements FETs 11a and 11b are connected to the light receiving side of the photocoupler 24 through a gate driving unit 24a.
  • Each source terminal of the switching elements FET 11 a and 11 b is connected to the low potential side of the insulated power supply 22.
  • the insulated power supply 22 is composed of a transformer 22a, a rectifier diode D22, and a smoothing capacitor C22.
  • the insulating power supply 22 In response to the control of the switching element FET23, the insulating power supply 22 generates drive power for the switching elements FET11a and 11b and supplies it to the gate drive unit 24a.
  • the switching element FET 23 driven by the power source rectangular wave signal controls the insulated power source 22, and supplies the driving power for the bidirectional switching element FET 11 to the gate driving unit 24a.
  • a drive signal (ON / OFF signal) for controlling the operation of the bidirectional switching element FET11 is input to the switching element FET25, and is transmitted in an insulated state to the switching elements FET11a and 11b via the photocoupler 24 and the gate driving unit 24a. Then, the switching elements FET11a and 11b perform the on / off operation at the same timing.
  • the mutual source terminals of the switching elements FET11a and 11b are connected.
  • the present invention is not limited to this, and as shown in FIGS. 14 and 15, the mutual drains of the switching elements FET11a and 11b. Terminals may be connected.
  • the drain terminals are connected as shown in FIGS. 14 and 15, it is necessary to input drive signals having different potentials to the gate terminals of the switching elements FET11a and 11b.
  • two insulated power supplies 22 are provided so that the photocoupler 24 operates with each power supply.
  • an insulated signal transmission circuit may be configured using, for example, magnetic coupling means (magnetic isolator) or the like.
  • the battery charging device 10 receives the drive signals for controlling the operations of the bidirectional switching elements FET11 to FET16 from the control units 15a to 15d in the insulated state.
  • the signal transmission circuit for transmitting to the FET 16 is provided. Therefore, the signal transmission path from the control unit 15 to the bidirectional switching elements FET11 to FET16 can be insulated, the switching circuit unit can be operated favorably, and a power supply device (DC / DC converter or AC / DC converter) can be realized.
  • FIG. 16 is a circuit diagram showing a configuration of battery charging device 10f according to the fifth embodiment.
  • FIG. 17 is a diagram illustrating an installation example of the battery charging device 10f. 16 and 17, the same or corresponding parts as in FIGS. 1 to 15 are denoted by the same reference numerals and description thereof is omitted.
  • the primary side component 31 incorporating the primary winding of the transformer 13f and the secondary side component 32 incorporating the secondary winding are individually formed and separated from each other. To do. And one primary side structure part 31 is used as an external (ground installation) power supply device connected to the external alternating current power supply 1.
  • FIG. The other secondary side structural part 32 is mounted in an electric vehicle, and an output is connected to the battery 2 for power of the electric vehicle.
  • the vehicle When charging the vehicle-mounted battery 2, the vehicle is such that the core wound with the secondary winding of the secondary side component 32 faces the core wound with the primary winding of the primary side component 31. Is stopped (the vehicle is stopped at a position where the transformer 13f is formed by both cores, the primary winding and the secondary winding), and the primary winding and the secondary side configuration portion 32 of the primary side configuration portion 31.
  • the power is transmitted in a non-contact manner by a transformer 13f constituted by the secondary winding of the non-contact.
  • a resonance circuit in which the resonance winding 33 and the resonance capacitor C4 are connected in series is used, and a resonance current is applied to the resonance winding 33 and the resonance capacitor C4. It is desirable to cause the secondary side to resonate.
  • the bidirectional switching elements FET11 to FET16 are used as the switching elements of the switching circuit unit 18, but the present invention is not limited to this.
  • 16 illustrates the PFC / AC / DC converter in which the primary side configuration unit 31 can be directly connected to the AC power source 1.
  • the configuration includes the power rectification unit 11 and the PFC / DC / DC converter illustrated in FIG. It doesn't matter.
  • the primary side component 31 is disposed on the ground and the secondary component 32 is disposed below the electric vehicle.
  • other arrangements may be used.
  • the battery charging device 10f includes the power supply device including the primary winding 31 of the transformer 13f, the switching circuit unit 18, and the control unit 15 and the transformer.
  • the secondary side component 32 is separated from the secondary side component 32 having the 13f secondary winding and the output rectifying unit 14, and the primary side component 31 can be disposed outside the vehicle. Made the configuration. For this reason, the battery charger for electric vehicles which can charge a power battery from an external power supply device in a non-contact manner can be realized with a simple configuration using the power supply device.
  • FIG. 18 is a circuit diagram showing a configuration of battery charging device 10g according to the sixth embodiment.
  • FIG. 19 is a diagram illustrating an installation example of the battery charging device 10g. 18 and 19, the same or corresponding parts as those in FIGS. 1 to 17 are denoted by the same reference numerals and description thereof is omitted.
  • the power supply device described in the fifth embodiment is configured so that the battery 2 mounted on the electric vehicle can be charged by connecting a plug (not shown) directly to the household or commercial AC power supply 40.
  • the second primary side component 41 is provided on the vehicle-mounted side.
  • the second primary side configuration unit 41 includes a second primary winding 42, a switching circuit unit 18 that switches connection of the respective winding terminals a to c of the second primary winding 42, and an overvoltage protection unit. 16 and a snubber part 17.
  • FIG. 20 shows an external perspective view of the transformer 13g separated into the external power supply device side and the vehicle-mounted side.
  • a primary winding 35 is wound around the core 34 of the primary side component 31 which is one external power supply device.
  • the primary winding 35 is composed of two windings connected in series, and the winding terminals a to c are connected to the primary side component 31 (shown in FIG. 18).
  • the primary winding 42, the secondary winding 13g-1, and the resonance winding 33 are wound around the core 45 of the other in-vehicle secondary side component 32.
  • the second primary winding 42 is composed of two windings connected in series, and the winding terminals a to c are connected to the second primary side component 41 (shown in FIG. 18). ing.
  • the resonance winding 33 is connected in series with the resonance capacitor C4 as shown in FIG.
  • the core 45 of the in-vehicle secondary component 32 is replaced with the core 34 of the primary component 31.
  • the vehicle is stopped so as to face each other (the vehicle is stopped at a position where the transformer 13g is constituted by the cores 34, 45, the primary winding 35, and the secondary winding 13g-1). Electric power is transmitted by a transformer 13g composed of the primary winding 35 and the on-vehicle side secondary winding 13g-1.
  • control unit 15 turns on a switch of the resonance circuit (for example, the bidirectional switching element FET 36) to resonate the secondary side, and resonates with the resonance winding 33. It is desirable to apply a resonance current to the capacitor C4.
  • a switch of the resonance circuit for example, the bidirectional switching element FET 36
  • the control unit 15 turns off the bidirectional switching element FET 36 of the resonance circuit.
  • the secondary side component 32 mounted on the vehicle is mounted on the vehicle-mounted side separately from the primary winding 35 of the primary side component 31 disposed outside the vehicle.
  • the second primary winding 42 is provided.
  • a part of the transformer is shared by the external power supply device and the in-vehicle battery charging device, so that the power battery can be charged by directly connecting the plug, and the power battery can be connected from the external power supply device in a non-contact manner.
  • a battery charging device that can be charged can be realized by a simple configuration using the power supply device.
  • the battery charging device is configured using the PFC / AC / DC converter unit.
  • the battery charging device is configured by the power rectifier unit 11 and the PFC / DC / DC converter shown in FIG. It doesn't matter.
  • the power supply device (DC / DC converter or AC / DC converter) according to the present invention has the primary winding of the transformer twice or more corresponding to the voltage at that time in one cycle of the fluctuation of the power supply voltage. Since the wire turns ratio is switched, it is suitable for use in a battery charger for charging a power battery for an electric vehicle.

Abstract

The present invention is equipped with a transformer (13), which has a primary coil wherein a coil between coil terminals a-b and a coil between coil terminals b-c are connected in series; and switching circuit units (18), which select any of the coils of the primary coil and apply a power supply voltage. In addition, a control unit (15) switches the coil of the primary coil supplying the electricity two or more times during one cycle of voltage deviation of an alternating current power supply (1), thereby causing the alternating current power supply to operate as a power supply which uses the transformer (13) with an appropriate turn ratio corresponding to the changing power supply voltage. By lowering the turn ratio and performing an appropriate switching operation when the power supply voltage is high the efficiency can be increased, and by increasing the turn ratio when the power supply voltage is low, it is possible to output prescribed power even with a low power supply voltage.

Description

電源装置およびバッテリ充電装置Power supply device and battery charging device
 この発明は、変動する電源電圧から所定の電圧を出力するDC/DCコンバータあるいはAC/DCコンバータ等の電源装置、および、当電源装置を使用したバッテリ充電装置に関する。 The present invention relates to a power supply device such as a DC / DC converter or an AC / DC converter that outputs a predetermined voltage from a varying power supply voltage, and a battery charging device using the power supply device.
 地球温暖化を助長する二酸化炭素の排出量を削減する風潮の中で、当二酸化炭素排出量の少なさが受け入れられて、電気自動車の需要が増加し、普及が加速している。
 当電気自動車に搭載される動力用バッテリは、充電装置を使用して外部の交流電源によって充電され、当バッテリ充電装置には、交流電源から効率よく電力を取り込むためのコイル(リアクトル)、スイッチング素子等によって構成される力率改善(PFC;Power Factor Correction)回路、トランスおよびスイッチング素子等によって構成されるDC/DCコンバータが使用されている。また、当電気自動車には、動力用バッテリから補器用の12V電源を生成するDC/DCコンバータも搭載される。なお、上記交流電源から直流電圧を出力する一連の構成を、AC/DCコンバータと言い換えることもできる。
In the tide of reducing carbon dioxide emissions that promote global warming, the small amount of carbon dioxide emissions has been accepted, the demand for electric vehicles has increased, and the spread has been accelerated.
A power battery mounted on the electric vehicle is charged by an external AC power source using a charging device, and the battery charging device has a coil (reactor) and a switching element for efficiently taking in power from the AC power source. For example, a power factor correction (PFC) circuit configured by a DC / DC converter including a transformer, a switching element, and the like is used. The electric vehicle is also equipped with a DC / DC converter that generates a 12V power supply for auxiliary equipment from a power battery. Note that a series of configurations for outputting a DC voltage from the AC power supply can also be referred to as an AC / DC converter.
 上記のように交流電源から動力用バッテリを充電する充電装置のDC/DCコンバータの前段には、力率を改善しながら、概ね一定の直流電圧を供給するPFC回路が使用されている。換言すれば、DC/DCコンバータを好適に動作させるためには一定の直流電圧を供給するPFC回路が必要であり、仮に、簡素なPFC回路を使用してDC/DCコンバータへの供給電圧が変動することとなれば、当DC/DCコンバータは好適な動作ができない。
 また、補器用の12V電源を生成するDC/DCコンバータの電源となる上記動力用バッテリも、その充電状況によって電圧が変動するため、必ずしも安定した直流電源とは言えない。つまり、当DC/DCコンバータも常に好適な電源電圧のもとで動作しているとは言いがたい。
As described above, a PFC circuit that supplies a substantially constant DC voltage while improving the power factor is used in the front stage of the DC / DC converter of the charging device that charges the power battery from the AC power supply. In other words, in order to operate the DC / DC converter suitably, a PFC circuit that supplies a constant DC voltage is necessary, and the supply voltage to the DC / DC converter fluctuates using a simple PFC circuit. If this is the case, the DC / DC converter cannot perform a suitable operation.
Further, the power battery serving as the power source of the DC / DC converter that generates the 12V power source for the auxiliary device is not necessarily a stable DC power source because the voltage varies depending on the charging state. In other words, it is difficult to say that the DC / DC converter always operates under a suitable power supply voltage.
 上記のように最適な電圧が供給されない可能性がある電源環境において、バッテリ充電装置用および補器用に使用されるDC/DCコンバータとしては、電源電圧が変動することを見込んで、当電源電圧の変動に対応し、極限状態においても動作することを優先して、一部の状態においては特性の劣化を容認する設計をせざるを得なかった。
 例えば、PFC回路およびDC/DCコンバータによって構成される充電装置においては、接続する交流電源電圧は代表として100Vrms系と、200Vrms系の2種類あり、200Vrmsに重点をおいて設計すれば、100Vrms電源を使用したときの効率低下は否めない。
 また、補器用の12V電源を生成するDC/DCコンバータにおいては、動力用バッテリ電圧の最低電圧から12Vを出力する巻数比を備えたトランスと、動力用バッテリ電圧の最高電圧でも出力を12Vに制限できる狭幅のDutyで動作するスイッチング素子とが必要となるが、この狭幅Dutyによる動作においては、効率が低下することは否めない。
In the power supply environment where the optimum voltage may not be supplied as described above, the DC / DC converter used for the battery charger and the auxiliary device is expected to fluctuate the power supply voltage. In response to fluctuations, priority was given to the operation in the extreme state, and in some states, the design was admitted to allow the deterioration of the characteristics.
For example, in a charging device composed of a PFC circuit and a DC / DC converter, there are typically two types of AC power supply voltage to be connected: a 100 Vrms system and a 200 Vrms system. If designing with emphasis on 200 Vrms, a 100 Vrms power supply is used. There is no denying the decrease in efficiency when used.
In addition, in a DC / DC converter that generates a 12V power supply for auxiliary equipment, a transformer having a turn ratio that outputs 12V from the lowest voltage of the power battery voltage, and the output is limited to 12V even at the highest voltage of the power battery voltage. Although a switching element that operates with a narrow duty that can be used is required, the efficiency cannot be denied in the operation with the narrow duty.
 以下に、DC/DCコンバータに入力される電源電圧の変動に対応する技術と、当DC/DCコンバータを応用した装置とが記載された従来例を記す。 Hereinafter, a conventional example will be described in which a technique corresponding to fluctuations in the power supply voltage input to the DC / DC converter and a device to which the DC / DC converter is applied are described.
 特許文献1に係る電源装置は、交流の電源電圧の高低に対応して、トランスの1次巻線のタップを切換えるAC/DCコンバータ(即ち、電源電圧の交流を直流に変換する整流部および平滑部と、直流が供給されるDC/DCコンバータ)を備え、トランスの巻線比を適切に選択し切換えて、スイッチングトランジスタのオンDutyを50%程度に制御する。
 当特許文献1は、例えば実効値が100Vrmsから240Vrmsの交流電源に対応して、トランスのタップを選択し切換えるもので、正弦波状に変化する交流電源の1周期中の各タイミングの電圧に対応して逐次タップを切換えることを示す記載は無い。
The power supply device according to Patent Document 1 is an AC / DC converter that switches a tap of a primary winding of a transformer in correspondence with the level of an AC power supply voltage (that is, a rectifier and a smoothing unit that convert AC power supply voltage to DC). And a DC / DC converter to which a direct current is supplied), and appropriately selects and switches the winding ratio of the transformer to control the on-duty of the switching transistor to about 50%.
In this patent document 1, for example, a transformer tap is selected and switched corresponding to an AC power source having an effective value of 100 Vrms to 240 Vrms, and corresponds to a voltage at each timing in one cycle of the AC power source changing in a sine wave shape. There is no description indicating that the taps are sequentially switched.
 特許文献2に係る昇圧回路は、電気二重層キャパシタに貯えた蓄積電力を昇圧して取り出すための回路であって、当キャパシタの電圧を昇圧するDC/DCコンバータを備えている。キャパシタの電圧が低下すると、巻数低減手段(切り替え回路)がトランスの一次側の巻数を減じて当トランスの昇圧比を大きくして、出力電圧の低下を回避する。
 当特許文献2の段落[0025]には「切り替え回路19は、電磁リレーの接点19aを有しており」と記載されているように、巻数の切り替え操作には、動作が緩慢なリレーを使用していることから、当切り替え操作は交流電源の1周期のような短い周期の中で頻繁に行われるものではない。
The booster circuit according to Patent Document 2 is a circuit for boosting and taking out stored power stored in an electric double layer capacitor, and includes a DC / DC converter that boosts the voltage of the capacitor. When the voltage of the capacitor decreases, the winding number reduction means (switching circuit) reduces the number of turns on the primary side of the transformer to increase the step-up ratio of the transformer, thereby avoiding a decrease in output voltage.
As described in paragraph [0025] of Patent Document 2, “the switching circuit 19 has a contact point 19a of an electromagnetic relay”, a slow-operating relay is used for switching the number of turns. Therefore, the switching operation is not frequently performed in a short cycle such as one cycle of the AC power supply.
 特許文献3に係るDC/DCコンバータは、双方向のスイッチング素子を使用して、直流電源電圧の極性を逆転して接続しても使用可能としたものである。
 当特許文献3には、電源電圧に応じてトランスの巻数比を切換えることを示す記載は無く、電源として交流電源を使用することを示唆する記載も無い。
The DC / DC converter according to Patent Document 3 can be used even if the polarity of the DC power supply voltage is reversed using a bidirectional switching element.
In this patent document 3, there is no description indicating that the turns ratio of the transformer is switched according to the power supply voltage, and there is no description that suggests using an AC power supply as the power supply.
 特許文献4に係る無停電電力供給方式は、双方向半導体スイッチを使用して、交流電源電圧を直流に変換することなくそのまま変調し、2次側で復調するAC/ACコンバータと、蓄電池を充電するAC/DCコンバータと、蓄電池から交流を出力するDC/ACインバータとを備えている。
 当特許文献4の段落[0025]には、100Vrmsと200Vrmsの電源電圧に対応して、トランスの1次側の回路構成をフルブリッジ式とハーフブリッジ式のいずれかに切換える記載はあるが、正弦波状に変化する交流電源の1周期中の各タイミングの電圧に対応して、逐次トランスの巻数比を切換えることを示す記載は無い。
The uninterruptible power supply method according to Patent Document 4 uses a bi-directional semiconductor switch to charge an AC / AC converter that directly modulates an AC power supply voltage without converting it to DC and demodulates it on the secondary side, and a storage battery. And an AC / DC converter that outputs an alternating current from the storage battery.
Paragraph [0025] of this patent document 4 describes that the circuit configuration on the primary side of the transformer is switched between the full-bridge type and the half-bridge type in accordance with the power supply voltages of 100 Vrms and 200 Vrms. There is no description indicating that the turn ratio of the transformer is sequentially switched in accordance with the voltage at each timing in one cycle of the AC power supply that changes in a wave shape.
特開2000-209855号公報JP 2000-209855 A 特開2012-115112号公報JP 2012-115112 A 特開2012-65444号公報JP 2012-65444 A 特開平10-174437号公報Japanese Patent Laid-Open No. 10-174437
 従来のDC/DCコンバータは、例えば上記特許文献1に記載されるように、交流電源の1周期の変動を吸収して一定の直流電圧を生成し、DC/DCコンバータを好適に動作させるために、当交流電源の半周期分の変化を平滑する整流回路と平滑回路、平滑された電圧を出力するPFC回路が必要であった。当構成の平滑用のコンデンサは交流電源の半周期にわたってDC/DCコンバータの特性を確保するために、充分な容量を備えることが必要となる。従って、DC/DCコンバータの特性を確保するためには、当容量の削減はしたいが、当平滑用のコンデンサの低容量化もしくは削除は電源装置の小型化および低廉化を行うための課題であった。即ち、DC/DCコンバータに供給する電源電圧が変動しても、好適に動作するDC/DCコンバータ(交流電源から一連の回路を含めればAC/DCコンバータ)を構成することが、電源装置の小型化および低廉化の課題である。
 なお、上記特許文献1は、当DC/DCコンバータを好適に動作させる直流電圧の生成に平滑コンデンサを使用しながら、さらに当DC/DCコンバータの効率を高くするために、接続された電源電圧の実効値(例えば、100Vrmsと200Vrms)に対応して、一過的にトランスの巻数比を切換える構成である。したがって、正弦波状に時々刻々と変動する電圧が供給されたときに好適に動作するDC/DCコンバータの構成については記載がなく、上記平滑用のコンデンサを削減することを課題として考慮していない。
A conventional DC / DC converter, for example, as described in Patent Document 1 above, absorbs fluctuations in one cycle of an AC power supply to generate a constant DC voltage, and operates the DC / DC converter suitably. Therefore, a rectifier circuit and a smoothing circuit for smoothing a change corresponding to a half cycle of the AC power supply and a PFC circuit for outputting a smoothed voltage are required. The smoothing capacitor of this configuration needs to have a sufficient capacity in order to ensure the characteristics of the DC / DC converter over the half cycle of the AC power supply. Therefore, in order to secure the characteristics of the DC / DC converter, it is desired to reduce this capacity, but the reduction or elimination of the smoothing capacitor is an issue for reducing the size and cost of the power supply device. It was. That is, it is possible to configure a DC / DC converter (an AC / DC converter that includes a series of circuits from an AC power supply) that operates properly even when the power supply voltage supplied to the DC / DC converter fluctuates. It is a problem of making it cheaper and cheaper.
Note that the above-mentioned Patent Document 1 uses a smoothing capacitor to generate a direct-current voltage that favorably operates the DC / DC converter, and further increases the efficiency of the DC / DC converter. In accordance with the effective values (for example, 100 Vrms and 200 Vrms), the transformer turns ratio is temporarily switched. Therefore, there is no description of the configuration of a DC / DC converter that operates favorably when a voltage that varies from moment to moment in a sinusoidal form is supplied, and the reduction of the smoothing capacitor is not considered as an issue.
 この発明は、上記のような課題を解決するためになされたもので、電圧が時々刻々と変動する電源から所定の電圧を出力する電源装置(DC/DCコンバータ)、電圧が正弦波状に変動する交流電源から所定の電圧を出力する電源装置(AC/DCコンバータ)、および、当電源装置を使用したバッテリ充電装置を提供することを目的とする。 The present invention has been made in order to solve the above-described problems, and a power supply device (DC / DC converter) that outputs a predetermined voltage from a power supply whose voltage fluctuates from time to time. The voltage fluctuates in a sine wave shape. It is an object of the present invention to provide a power supply device (AC / DC converter) that outputs a predetermined voltage from an AC power supply and a battery charging device using the power supply device.
 この発明の電源装置(DC/DCコンバータおよびAC/DCコンバータ)は、直列に接続した複数の巻線によって構成される1次巻線を有するトランスと、1次巻線の複数の巻線に個々に接続された複数のスイッチング素子を有するスイッチング回路と、スイッチング素子の動作を制御して、1次巻線を構成する前記複数の巻線に選択的に電源電圧を印加する制御部とを備え、制御部は、スイッチング素子を制御することによって、1次巻線のうちの電源電圧を印加する巻線を、変動する電源電圧の1周期中のその時々の電圧に対応して、2回以上切換えるものである。 The power supply device (DC / DC converter and AC / DC converter) of the present invention includes a transformer having a primary winding constituted by a plurality of windings connected in series and a plurality of windings of the primary winding. A switching circuit having a plurality of switching elements connected to the control circuit, and a controller that controls operation of the switching elements and selectively applies a power supply voltage to the plurality of windings constituting a primary winding, The control unit controls the switching element to switch the winding to which the power supply voltage is applied among the primary windings twice or more corresponding to the voltage at that time in one cycle of the varying power supply voltage. Is.
 この発明のバッテリ充電装置は、上述の電源装置を使用して、車両に搭載されたバッテリを充電するものである。 The battery charging device of the present invention is for charging a battery mounted on a vehicle using the power supply device described above.
 この発明によれば、1次巻線のうちの電源電圧を印加する巻線を変動する電源電圧の変動の1周期中のその時々の電圧に対応して2回以上切換えて、変動するその時々の電源電圧に対して適切な巻数比のトランスとして動作させるようにしたので、電源電圧が低い状況においては、巻数比が高い1次巻線に切換えることで、当低電源電圧からも所定の電圧を出力することができる。また、電源電圧が高い状況においては、巻数比が低い1次巻線に切換え、適切なスイッチング動作を行うことにより、効率を高くすることができる。従って、電圧が時々刻々と変動する直流電源から所定の電圧を出力できる電源装置(DC/DCコンバータ)を提供することができる。 According to the present invention, the primary coil winding to which the power supply voltage is applied fluctuates and is switched twice or more corresponding to the current voltage during one cycle of the fluctuation of the power supply voltage. As a transformer having an appropriate turns ratio with respect to the power supply voltage of the power supply, in a situation where the power supply voltage is low, by switching to the primary winding having a high turn ratio, a predetermined voltage can be obtained from the low power supply voltage. Can be output. In a situation where the power supply voltage is high, the efficiency can be increased by switching to the primary winding having a low turns ratio and performing an appropriate switching operation. Therefore, it is possible to provide a power supply device (DC / DC converter) that can output a predetermined voltage from a direct current power supply whose voltage varies every moment.
 この発明によれば、電源として交流電源を使用するときには、上述の特性によって、交流電源の繰返し周期の中の電源電圧が低いタイミングにおいても所定の電圧を出力することができるため、電源利用効率が高く、高調波が少なく、力率の高い電源装置(AC/DCコンバータ)を提供することができる。 According to the present invention, when an AC power source is used as a power source, a predetermined voltage can be output even at a timing when the power source voltage in the repetition cycle of the AC power source is low due to the above-described characteristics. A power supply device (AC / DC converter) that is high, has low harmonics, and high power factor can be provided.
 この発明によれば、交流電源からバッテリを充電するときに、上述の特性によって、交流電源の繰返し周期の中の電源電圧が低いタイミングにおいても所定の電圧を出力することができるため、電源利用効率が高く、高周波が少なく、力率の高いバッテリ充電装置を提供することができる。 According to the present invention, when charging the battery from the AC power source, the above-described characteristics can output a predetermined voltage even when the power source voltage is low in the repetition cycle of the AC power source. It is possible to provide a battery charger having a high power factor, a low high frequency, and a high power factor.
この発明の実施の形態1に係るバッテリ充電装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the battery charging device which concerns on Embodiment 1 of this invention. 実施の形態1に係るバッテリ充電装置において、スイッチSW1~SW4だけ使用する場合の動作波形を説明するグラフである。6 is a graph illustrating operation waveforms when only switches SW1 to SW4 are used in the battery charging apparatus according to Embodiment 1. 実施の形態1に係るバッテリ充電装置において、スイッチSW1~SW6全てを使用する場合の動作波形を説明するグラフである。6 is a graph for explaining operation waveforms when all of switches SW1 to SW6 are used in the battery charging apparatus according to the first embodiment. 実施の形態1に係るバッテリ充電装置の変形例を示す回路図である。6 is a circuit diagram showing a modification of the battery charging device according to Embodiment 1. FIG. 実施の形態1に係るバッテリ充電装置に過電圧保護部とスナバ部を追加した場合の動作波形を説明するグラフである。6 is a graph for explaining operation waveforms when an overvoltage protection unit and a snubber unit are added to the battery charging apparatus according to Embodiment 1; 実施の形態1に係るバッテリ充電装置の変形例を示す回路図である。6 is a circuit diagram showing a modification of the battery charging device according to Embodiment 1. FIG. この発明の実施の形態2に係るバッテリ充電装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the battery charging device which concerns on Embodiment 2 of this invention. 実施の形態2に係るバッテリ充電装置の変形例を示す回路図である。FIG. 6 is a circuit diagram showing a modification of the battery charging device according to Embodiment 2. この発明の実施の形態3に係るバッテリ充電装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the battery charging device which concerns on Embodiment 3 of this invention. 実施の形態3のトランスを説明する図である。FIG. 6 is a diagram illustrating a transformer according to a third embodiment. 実施の形態3に係るバッテリ充電装置において、スイッチSW1~SW8全てを使用する場合の動作波形を説明するグラフである。10 is a graph illustrating operation waveforms when all of switches SW1 to SW8 are used in the battery charging apparatus according to Embodiment 3. この発明の実施の形態4に係るバッテリ充電装置の信号伝達回路の一例を示す回路図である。It is a circuit diagram which shows an example of the signal transmission circuit of the battery charging device which concerns on Embodiment 4 of this invention. 実施の形態4に係るバッテリ充電装置の信号伝達回路の別の例を示す回路図である。FIG. 12 is a circuit diagram showing another example of a signal transmission circuit of a battery charging device according to Embodiment 4. 実施の形態4に係るバッテリ充電装置の信号伝達回路の別の例を示す回路図である。FIG. 12 is a circuit diagram showing another example of a signal transmission circuit of a battery charging device according to Embodiment 4. 実施の形態4に係るバッテリ充電装置の信号伝達回路の別の例を示す回路図である。FIG. 12 is a circuit diagram showing another example of a signal transmission circuit of a battery charging device according to Embodiment 4. この発明の実施の形態5に係るバッテリ充電装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the battery charging device which concerns on Embodiment 5 of this invention. 実施の形態5に係るバッテリ充電装置の設置例を説明する図である。It is a figure explaining the installation example of the battery charging device which concerns on Embodiment 5. FIG. この発明の実施の形態6に係るバッテリ充電装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the battery charging device which concerns on Embodiment 6 of this invention. 実施の形態6に係るバッテリ充電装置の設置例を説明する図である。It is a figure explaining the example of installation of the battery charging device which concerns on Embodiment 6. FIG. 実施の形態6のトランスを説明する外観斜視図である。FIG. 10 is an external perspective view illustrating a transformer according to a sixth embodiment.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1に示すバッテリ充電装置10は、例えば周期が20ms(50Hz)あるいは17ms(60Hz)の交流電源1を電源として、当時々刻々と変動する交流電源電圧を所定の電圧(バッテリ電圧)に変換して、バッテリ2を充電するものである。本発明はDC/DCコンバータを含む電源装置に関するものであるが、交流電圧を全波整流する電源整流部11のフィルタコンデンサC1はノイズフィルタ用の小容量のコンデンサでありほとんど平滑作用がないもので、電源整流部11によって整流した電圧は直流ながら正弦半波状の電圧が繰り返される電圧となる。したがって、PFC・DC/DCコンバータ部12に供給される電圧および当電圧に対するPFC・DC/DCコンバータ部12の挙動は交流の半周期分と同等となるため、以下においては、正弦波状の交流電圧を入力したときの挙動によって、動作を説明する。
Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
The battery charger 10 shown in FIG. 1 converts an alternating-current power supply voltage that changes every moment into a predetermined voltage (battery voltage) using, for example, an alternating-current power supply 1 having a period of 20 ms (50 Hz) or 17 ms (60 Hz) as a power supply. Thus, the battery 2 is charged. The present invention relates to a power supply device including a DC / DC converter, but the filter capacitor C1 of the power supply rectifier 11 for full-wave rectification of the AC voltage is a small-capacitance capacitor for noise filters and has almost no smoothing action. The voltage rectified by the power supply rectification unit 11 is a voltage in which a sinusoidal half-wave voltage is repeated while being DC. Accordingly, the behavior of the PFC / DC / DC converter 12 with respect to the voltage supplied to the PFC / DC / DC converter 12 and the voltage is equivalent to the half cycle of the alternating current. The operation will be described according to the behavior when.
 図1において、バッテリ充電装置10は、交流電源1の交流電圧を整流して直流電圧を出力する電源整流部11と、直流電圧をバッテリ電圧に変換するPFC・DC/DCコンバータ部12と、PFC・DC/DCコンバータ部12の出力電圧を整流および平滑してバッテリ2へ供給する出力整流部14と、スイッチング回路部18の各スイッチSW1~SW6を操作する制御部15とから構成されている。なお、図1のバッテリ充電装置10は、交流電圧を入力して直流電圧を出力するAC/DCコンバータと言い換えることができる。 In FIG. 1, a battery charger 10 includes a power rectifier 11 that rectifies an AC voltage of an AC power supply 1 and outputs a DC voltage, a PFC / DC / DC converter 12 that converts a DC voltage into a battery voltage, and a PFC. An output rectification unit 14 that rectifies and smoothes the output voltage of the DC / DC converter unit 12 and supplies it to the battery 2 and a control unit 15 that operates the switches SW1 to SW6 of the switching circuit unit 18. The battery charging device 10 in FIG. 1 can be rephrased as an AC / DC converter that inputs an AC voltage and outputs a DC voltage.
 PFC・DC/DCコンバータ部12の1次側に設けた電源整流部11において、交流電源1の交流電圧が、4個の整流ダイオードD1~D4によって全波整流され、正弦半波状の電圧が繰り返される直流電圧に変換される。他方、PFC・DC/DCコンバータ部12の2次側に設けた出力整流部14において、PFC・DC/DCコンバータ部12の出力電圧が、4個の整流ダイオードD5~D8によって全波整流され、平滑用のコイルL1と平滑コンデンサC2によって平滑されて、直流電圧に変換される。
 なお、電源整流部11および出力整流部14の回路構成は、図示例に限定されるものではない。
In the power supply rectification unit 11 provided on the primary side of the PFC / DC / DC converter unit 12, the AC voltage of the AC power supply 1 is full-wave rectified by the four rectification diodes D1 to D4, and a sinusoidal half-wave voltage is repeated. It is converted into a DC voltage. On the other hand, in the output rectification unit 14 provided on the secondary side of the PFC / DC / DC converter unit 12, the output voltage of the PFC / DC / DC converter unit 12 is full-wave rectified by the four rectifier diodes D5 to D8, It is smoothed by the smoothing coil L1 and the smoothing capacitor C2 and converted into a DC voltage.
The circuit configurations of the power rectifier 11 and the output rectifier 14 are not limited to the illustrated example.
 PFC・DC/DCコンバータ部12は、複数の巻線を直列に接続した1次巻線と、2次巻線とを有するトランス13と、1次巻線を構成する複数の巻線の各巻線端子a~cに選択的に電圧を印加するスイッチング回路部18とから構成される。スイッチング回路部18において、制御部15の出力する駆動信号によりスイッチSW1~SW6がオンオフ動作して各巻線端子a~cの接続を切換え、1次巻線と2次巻線の巻数比を変更する。図示例では、巻線端子a-c間の巻線巻回数と、巻線端子a-b間の巻線巻回数を同等にしている。 The PFC / DC / DC converter unit 12 includes a transformer 13 having a primary winding in which a plurality of windings are connected in series, a secondary winding, and a plurality of windings constituting the primary winding. And a switching circuit unit 18 for selectively applying a voltage to the terminals a to c. In the switching circuit unit 18, the switches SW 1 to SW 6 are turned on and off by the drive signal output from the control unit 15 to switch the connection between the winding terminals a to c and change the turns ratio of the primary winding and the secondary winding. . In the illustrated example, the number of winding turns between the winding terminals ac and the number of winding turns between the winding terminals ab are made equal.
 制御部15は、電源整流部11で整流した後の電源電圧に基づいてスイッチSW1~SW6のオンオフ動作を制御し、当電源電圧の1周期の中で電源電圧が低いときは巻線端子a-b間に当電源電圧を印加し、電源電圧が高いときは巻線端子a-c間に当電源電圧を印加する。都合当電源電圧の1周期に2回以上、トランス13の1次巻線の巻線端子a~cの接続を切換えることとなる。
 また、制御部15は、出力整流部14で整流および平滑した後の出力電圧(または出力電流、電源電流)に基づいてスイッチSW1~SW6を位相制御、PWM(Pulse Width Modulation)操作またはPFM(Pulse Frequency Modulation)操作し、出力電圧(または出力電流、電源電流)を調整する。
The control unit 15 controls the on / off operation of the switches SW1 to SW6 based on the power supply voltage rectified by the power supply rectification unit 11, and when the power supply voltage is low in one cycle of the power supply voltage, the winding terminal a− The power supply voltage is applied between b and when the power supply voltage is high, the power supply voltage is applied between the winding terminals ac. For convenience, the connection of the winding terminals a to c of the primary winding of the transformer 13 is switched twice or more in one cycle of the power supply voltage.
Further, the control unit 15 performs phase control, PWM (Pulse Width Modulation) operation or PFM (Pulse) on the switches SW1 to SW6 based on the output voltage (or output current, power supply current) after rectification and smoothing by the output rectification unit 14. (Frequency Modulation) is operated to adjust the output voltage (or output current, power supply current).
 この制御部15は、高速演算機能を有するマイクロコンピュータを用いたディジタル制御、オペアンプ等で構成される誤差増幅回路を用いたアナログ制御、または汎用のマイクロコンピュータと誤差増幅回路を組み合わせたディジタル-アナログ制御等で構成される。 The control unit 15 is configured to perform digital control using a microcomputer having a high-speed arithmetic function, analog control using an error amplifier circuit composed of an operational amplifier or the like, or digital-analog control combining a general-purpose microcomputer and an error amplifier circuit. Etc.
 先ず、図2を参照しながら、スイッチSW5,SW6を操作せずに(オフ状態で固定とする)、スイッチSW1~SW4だけ使用する場合を説明する。図2(a)は交流電源1の電源電圧、図2(b)はトランス13の通電方向、図2(c)は整流ダイオードD5~D8の出力電圧、図2(d)は出力整流部14の出力電流(即ち、バッテリ2の入力電流)を示すグラフである。
 なお、前述したように、PFC・DC/DCコンバータ部12に供給される電圧および当電圧に対するPFC・DC/DCコンバータ部12の挙動は交流の半周期分と同等となるため、交流電源1の電源電圧に対応した動作の説明によって代替する。
First, the case where only the switches SW1 to SW4 are used without operating the switches SW5 and SW6 (fixed in the off state) will be described with reference to FIG. 2A shows the power supply voltage of the AC power supply 1, FIG. 2B shows the energization direction of the transformer 13, FIG. 2C shows the output voltage of the rectifier diodes D5 to D8, and FIG. Is an output current (that is, an input current of the battery 2).
As described above, the voltage supplied to the PFC / DC / DC converter unit 12 and the behavior of the PFC / DC / DC converter unit 12 with respect to the voltage are equivalent to the half cycle of the alternating current. It substitutes by description of the operation | movement corresponding to a power supply voltage.
 スイッチSW1,SW4が同じタイミングでオンオフを繰り返し(例えば50%Dutyとする)、オン時に1次巻線の巻線端子a-c間に電流を流す。一方、スイッチSW2,SW3が同じタイミングでスイッチSW1,SW4の動作の反転でオンオフを繰り返し、オン時に1次巻線の巻線端子c-a間に電流を流す。(スイッチSW1がオンのときはスイッチSW4もオンし、スイッチSW2,SW3はオフする。逆にスイッチSW1がオフのときはスイッチSW4もオフし、スイッチSW2,SW3はオンする。) The switches SW1 and SW4 are repeatedly turned on and off at the same timing (for example, 50% duty), and a current flows between the winding terminals ac of the primary winding when turned on. On the other hand, the switches SW2 and SW3 are repeatedly turned on and off by reversing the operation of the switches SW1 and SW4 at the same timing, and a current flows between the winding terminals ca of the primary winding when turned on. (When switch SW1 is on, switch SW4 is also on and switches SW2 and SW3 are off. Conversely, when switch SW1 is off, switch SW4 is also off and switches SW2 and SW3 are on.)
 図2(c)および図2(d)のように、出力整流部14からは、1次巻線に印加される電圧の巻数比倍の電圧が出力されるが、バッテリが定電圧特性を有するために、当出力電圧がバッテリ電圧以下のときは電流が流れず、当バッテリ電圧を超えてから電流が流れ出す。従って、電源電圧が低いタイミングTにおいては、当タイミングTの電力がまったく使用されることが無い。つまり、正弦波状に変化する交流電源1を使用するときには1周期の中で使用される電圧範囲が狭い、即ち、電流が流れている期間が狭いので、バッテリ充電装置10の電源が交流の場合においては、電源利用効率が低い。また、交流電源の1周期の中で電流が流れる期間が狭く、受電する電源電流が矩形波に近いため、高調波成分が多く、同じ交流電源に接続される他の機器への影響も懸念される。 As shown in FIGS. 2 (c) and 2 (d), the output rectifier 14 outputs a voltage that is twice the turn ratio of the voltage applied to the primary winding, but the battery has constant voltage characteristics. Therefore, when the output voltage is less than or equal to the battery voltage, no current flows, and the current starts flowing after exceeding the battery voltage. Therefore, at the timing T L when the power supply voltage is low, the power at the timing T L is not used at all. That is, when the AC power source 1 that changes in a sine wave shape is used, the voltage range used in one cycle is narrow, that is, the period during which current flows is narrow. The power usage efficiency is low. In addition, since the period during which current flows in one cycle of the AC power supply is narrow and the power supply current to be received is close to a rectangular wave, there are many harmonic components, and there is concern about the effect on other devices connected to the same AC power supply. The
 なお、上記の図2の説明においては便宜的にスイッチSW1~SW4のオンオフを50%Dutyとしたが、定電圧特性を有するバッテリを充電する電源装置としては、電源電圧が高電圧のタイミングTにおいて、過大な出力電流が流れないように、位相制御またはPWM・PFM操作によって巻線端子a-c間と巻線端子c-a間に印加する電圧のDutyを狭幅にすることになるので、電力を最も伝えやすい当タイミングTにおいて効率が悪化する。 In the description of FIG. 2 above, the on / off of the switches SW1 to SW4 is set to 50% Duty for convenience. However, as a power supply device for charging a battery having a constant voltage characteristic, the timing T H when the power supply voltage is a high voltage is used. In order to prevent an excessive output current from flowing, the duty of the voltage applied between the winding terminals a-c and the winding terminals c-a is narrowed by phase control or PWM / PFM operation. the efficiency is deteriorated in the most communicated likely those timing T H power.
 なお、位相制御の場合、制御部15は、一方のスイッチSW1,SW2を約50%のDutyで交互にオンオフし、他方のスイッチSW3,SW4も約50%のDutyで交互にオンオフしながら、スイッチSW1,SW2の動作位相とスイッチSW3,SW4の動作位相をずらして、トランス13に通電する通電時間を変化させることにより、出力電圧を調整する。PWM操作の場合、制御部15は、スイッチSW1~SW4のオンオフの繰り返し周期を一定にし、当1周期の中のスイッチSW1のオン時間(即ち、スイッチSW2のオフ時間)、スイッチSW3のオン時間(即ち、スイッチSW4のオフ時間)の比率を変化させることにより、出力電圧を調整する。PFM操作の場合、制御部15は、スイッチSW1のオン時間(このときスイッチSW2はオフ)、スイッチSW3のオン時間(このときスイッチSW4はオフ)を一定にして、スイッチSW1,SW3のオンの繰り返し周期を変化させることにより、出力電圧を調整する。 In the case of phase control, the control unit 15 alternately turns on and off one of the switches SW1 and SW2 with a duty of about 50%, and turns on and off the other switches SW3 and SW4 alternately with a duty of about 50%. The output voltage is adjusted by shifting the operation phase of SW1 and SW2 and the operation phase of switches SW3 and SW4 and changing the energization time for energizing the transformer 13. In the case of PWM operation, the control unit 15 makes the ON / OFF repetition cycle of the switches SW1 to SW4 constant, and the ON time of the switch SW1 (that is, the OFF time of the switch SW2) and the ON time of the switch SW3 ( That is, the output voltage is adjusted by changing the ratio of the off time of the switch SW4. In the case of PFM operation, the control unit 15 repeats turning on the switches SW1 and SW3 while keeping the on time of the switch SW1 (at this time the switch SW2 is off) and the on time of the switch SW3 (at this time the switch SW4 is off). The output voltage is adjusted by changing the period.
 次に、図3を参照しながら、スイッチSW1~SW6全てを使用する場合を説明する。図3(a)は交流電源1の電源電圧、図3(b)はトランス13の通電方向、図3(c)は整流ダイオードD5~D8の出力電圧、図3(d)は出力整流部14の出力電流(即ち、バッテリ2の入力電流)を示すグラフである。 Next, a case where all the switches SW1 to SW6 are used will be described with reference to FIG. 3A is the power supply voltage of the AC power supply 1, FIG. 3B is the energization direction of the transformer 13, FIG. 3C is the output voltage of the rectifier diodes D5 to D8, and FIG. Is an output current (that is, an input current of the battery 2).
 電源電圧が低いタイミングTにおいては、スイッチSW1,SW6が同じタイミングでオンオフを繰り返し(例えば50%Dutyとする)、オン時に1次巻線の巻線端子a-b間に電流を流す。一方、スイッチSW2,SW5が同じタイミングでスイッチSW1,SW6の動作の反転でオンオフを繰り返し、オン時に1次巻線の巻線端子b-a間に電流を流す。スイッチSW1,SW6とスイッチSW2,SW5とは交互にオンオフを繰り返す。この間、スイッチSW3,SW4はオフ固定とする。
 上記により、図3(c)のように、電源電圧が低いタイミングTにおいては、トランス13の巻数比を高くすることにより、当低電圧から適切な電圧を生成してバッテリ2に充電電流を流すことができる。
At the timing TL when the power supply voltage is low, the switches SW1 and SW6 are repeatedly turned on and off at the same timing (for example, 50% duty), and a current flows between the winding terminals a and b of the primary winding when turned on. On the other hand, the switches SW2 and SW5 are repeatedly turned on and off by reversing the operation of the switches SW1 and SW6 at the same timing, and a current flows between the winding terminals ba of the primary winding when turned on. The switches SW1 and SW6 and the switches SW2 and SW5 are alternately turned on and off. During this time, the switches SW3 and SW4 are fixed off.
As described above, as shown in FIG. 3C, at the timing TL when the power supply voltage is low, by increasing the turns ratio of the transformer 13, an appropriate voltage is generated from the low voltage and the charging current is supplied to the battery 2. It can flow.
 他方、電源電圧が高いタイミングTにおいては、図2の場合と同様に、スイッチSW1,SW4とスイッチSW2,SW3とが交互にオンオフを繰り返し、巻線端子a-c間と巻線端子c-a間とに交互に電流を流す。この間、スイッチSW5,SW6はオフ固定とする。
 電源電圧が高いタイミングTにおいてトランス13の巻数比を低くすることにより、当高電圧から適切な電圧を生成してバッテリ2に充電電流を流すことができる。
On the other hand, in the power supply voltage higher timing T H, as in the case of FIG. 2, a switch SW1, SW4 and the switch SW2, SW3 are repeatedly turned on and off alternately between the winding terminals a-c and the winding terminal c- An electric current is passed alternately between a. During this time, the switches SW5 and SW6 are fixed off.
By lowering the turns ratio of the transformer 13 in the power supply voltage is high timing T H, can generate an appropriate voltage from this high voltage supplying the charging current to the battery 2.
 以上のように、スイッチSW1~SW6全てを使用することにより、電源電圧が低いタイミングTにおいても、当タイミングTの電力が使用されるために、1周期の中で使用される電圧範囲が拡大、即ち、電流が流れている期間を拡大できる。
 バッテリ充電装置10の電源が交流の場合においては、図3(d)に斜線で示した領域の通電電流が増加し、電源利用効率向上および力率向上が可能となる。
 つまり、当構成によるPFC・DC/DCコンバータ部12によって力率を向上することが可能であるため、上記特許文献1の図2に示されるチョッパ回路10のようなPFC回路を備える必要がなく、平滑用コンデンサの削減もさることながら、PFC回路も簡素化できて、電源装置を小型に、廉価にすることができる。
 なお、交流電源の1周期の中で電流が流れる期間を拡大することで、受電する電源電流を正弦波に近づけることができるため、電源側に影響する高調波成分を抑制することもできる。
As described above, by using all switches SW1 ~ SW6, also in the power supply voltage is low timing T L, in order to power those timing T L is used, the voltage range to be used in one cycle Expansion, that is, the period during which current flows can be expanded.
When the power source of the battery charging device 10 is alternating current, the energization current in the region indicated by hatching in FIG.
That is, since the power factor can be improved by the PFC / DC / DC converter unit 12 of this configuration, there is no need to provide a PFC circuit such as the chopper circuit 10 shown in FIG. In addition to reducing the number of smoothing capacitors, the PFC circuit can be simplified, and the power supply device can be made smaller and less expensive.
In addition, since the power supply current to be received can be approximated to a sine wave by expanding the period during which the current flows in one cycle of the AC power supply, harmonic components that affect the power supply side can also be suppressed.
 また、交流電源1のその時々の電源電圧に応じて、トランス13の巻数比を適切に切換えることにより、それぞれのタイミングT,Tにおいて広幅のDutyでスイッチSW1~SW6を動作させることができるようになるため、それぞれのタイミングT,T、さらには全周期において、効率を高くすることができる。 Further, by appropriately switching the turns ratio of the transformer 13 in accordance with the power supply voltage of the AC power supply 1 at that time, the switches SW1 to SW6 can be operated with a wide duty at the respective timings T H and T L. As a result, the efficiency can be increased at the respective timings T H and T L and further in the entire period.
 次に、スイッチSW1~SW6の具体例を説明する。 Next, a specific example of the switches SW1 to SW6 will be described.
 図4は、スイッチSW1~SW6に電界効果トランジスタ(FET)を使用した場合のバッテリ充電装置10aの回路構成を示す。PFC・DC/DCコンバータ部12aにおいて、スイッチング回路18aは、スイッチSW1~SW6としてスイッチング素子FET1~FET6を使用すると共に、スイッチング素子FET3,FET4への電流逆流を阻止する逆流防止ダイオードD9,D10を備える。なお、スイッチング素子FET1~FET6の動作は、図3で説明したスイッチSW1~SW6の動作と同じであるため、説明は省略する。 FIG. 4 shows a circuit configuration of the battery charging device 10a when a field effect transistor (FET) is used for the switches SW1 to SW6. In the PFC / DC / DC converter section 12a, the switching circuit 18a uses the switching elements FET1 to FET6 as the switches SW1 to SW6, and includes backflow prevention diodes D9 and D10 for preventing current backflow to the switching elements FET3 and FET4. . The operations of the switching elements FET1 to FET6 are the same as the operations of the switches SW1 to SW6 described with reference to FIG.
 上記構成において、制御部15がスイッチング素子FET1,FET2,FET5,FET6を操作して巻線端子a-b間あるいは巻線端子b-a間を通電しているときには、トランス構成の巻線端子cにも電圧が発生するため、スイッチング素子FET3,FET4の端子には、電源電圧以上、あるいは、GND電圧以下の電圧が印加されるために、スイッチング素子FET3,FET4内の寄生ダイオード(不図示)に電流が流れ、スイッチング素子FET3,FET4に電流が逆流する(図4の矢印)。そこで、当電流の逆流を阻止するために、直列に逆流防止ダイオードD9,D10を接続する。当逆流防止ダイオードD9,D10を設置することにより当電流の逆流が阻止でき、スイッチング素子FET3,FET4を破壊することなく、DC/DCコンバータを正常に動作させることができ、十分な出力が得られる。 In the above configuration, when the control unit 15 operates the switching elements FET1, FET2, FET5, and FET6 to energize between the winding terminals ab and between the winding terminals ba, the winding terminal c of the transformer configuration. Since a voltage is also generated, a voltage not lower than the power supply voltage or not higher than the GND voltage is applied to the terminals of the switching elements FET3 and FET4, so that parasitic diodes (not shown) in the switching elements FET3 and FET4 are applied. A current flows, and a current flows backward through the switching elements FET3 and FET4 (arrows in FIG. 4). Therefore, in order to prevent backflow of the current, backflow prevention diodes D9 and D10 are connected in series. By installing the backflow prevention diodes D9 and D10, backflow of the current can be prevented, the DC / DC converter can be operated normally without destroying the switching elements FET3 and FET4, and sufficient output can be obtained. .
 また、図4においては、トランス13の巻線端子aと巻線端子cの間に、過電圧保護部16およびスナバ部17を設けている。過電圧保護部16は、例えば2個のツェナダイオードのそれぞれのアノードあるいはそれぞれのカソードを接続した回路であり、1次巻線の巻線端子間の通電方向を切換えたときに発生するサージ電圧の高電圧部を制限された電圧に抑圧する。スナバ部17は、例えば抵抗R1とコンデンサC3からなるRC回路であり、当サージエネルギを吸収する。 In FIG. 4, an overvoltage protection unit 16 and a snubber unit 17 are provided between the winding terminal a and the winding terminal c of the transformer 13. The overvoltage protection unit 16 is a circuit in which, for example, the anodes or the cathodes of two Zener diodes are connected, and the surge voltage generated when the energization direction between the winding terminals of the primary winding is switched is increased. Suppresses the voltage section to a limited voltage. The snubber portion 17 is an RC circuit including, for example, a resistor R1 and a capacitor C3, and absorbs this surge energy.
 図5(a)は交流電源1の電源電圧、図5(b)はトランス13の通電方向、図5(c)は過電圧保護部16およびスナバ部17を設けた場合のトランス13の巻線端子a-c間の電圧、図5(d)は過電圧保護部16およびスナバ部17を設けない場合の巻線端子a-c間の電圧を示す。なお、当巻線端子a-c間には巻線端子a-b間に印加する電圧に対応してプラスとマイナスの両極性の電圧が発生するが、当図5(c),(d)においては便宜的にマイナス側をプラス側に変換した絶対値にて示す。
 当1次巻線の巻線端子a-b間に通電しているとき、巻線端子a-c間にも電圧が発生し、スイッチング素子の切換え動作時には、図5(d)のようにサージが生じるが、過電圧保護部16およびスナバ部17を備えることによって、図5(c)のように当サージを抑制できる。
5A shows the power supply voltage of the AC power supply 1, FIG. 5B shows the energization direction of the transformer 13, and FIG. 5C shows the winding terminal of the transformer 13 when the overvoltage protection section 16 and the snubber section 17 are provided. FIG. 5D shows the voltage between winding terminals ac when no overvoltage protection unit 16 and snubber unit 17 are provided. Note that positive and negative voltages are generated between the winding terminals a and c in accordance with the voltage applied between the winding terminals a and b. FIGS. 5 (c) and 5 (d) For convenience, the absolute value is converted from the minus side to the plus side.
When a current is applied between the winding terminals a and b of the primary winding, a voltage is also generated between the winding terminals a and c, and a surge is generated as shown in FIG. However, this surge can be suppressed as shown in FIG. 5C by providing the overvoltage protection unit 16 and the snubber unit 17.
 図6は、スイッチSW1~SW6に双方向スイッチング素子を使用した場合のバッテリ充電装置10bの回路構成を示す。PFC・DC/DCコンバータ部12bでは、スイッチSW1~SW6として双方向スイッチング素子FET11~FET16を使用する。また、図4と同様に過電圧保護部16およびスナバ部17を設けている。
 なお、上記構成において、双方向スイッチにする必要があるのはスイッチング素子FET3,FET4だけであり、他のスイッチング素子FET1,FET2,FET5,FET6に関しては必ずしも双方向スイッチにする必要は無いが、当図6においては、使用する素子を統一するためにすべてを双方向対応にしている。
FIG. 6 shows a circuit configuration of the battery charging device 10b when bidirectional switches are used for the switches SW1 to SW6. In the PFC / DC / DC converter section 12b, bidirectional switching elements FET11 to FET16 are used as the switches SW1 to SW6. Moreover, the overvoltage protection part 16 and the snubber part 17 are provided similarly to FIG.
In the above configuration, only the switching elements FET3 and FET4 need to be bidirectional switches, and the other switching elements FET1, FET2, FET5 and FET6 do not necessarily need to be bidirectional switches. In FIG. 6, in order to unify the elements to be used, all are bidirectionally compatible.
 双方向スイッチング素子FET11は、直列に接続した2個のスイッチング素子FET11a,11bによって構成される。同様に、双方向スイッチング素子FET12はスイッチング素子FET12a,12b、双方向スイッチング素子FET13はスイッチング素子FET13a,13b、双方向スイッチング素子FET14はスイッチング素子FET14a,14b、双方向スイッチング素子FET15はスイッチング素子FET15a,15b、双方向スイッチング素子FET16はスイッチング素子FET16a,16bによって構成される。これら双方向スイッチング素子FET11~FET16の動作は、図3で説明したスイッチSW1~SW6の動作と同じであるため、説明は省略する。 The bidirectional switching element FET11 is composed of two switching elements FET11a and 11b connected in series. Similarly, the bidirectional switching element FET12 is switching elements FET12a and 12b, the bidirectional switching element FET13 is switching elements FET13a and 13b, the bidirectional switching element FET14 is switching elements FET14a and 14b, and the bidirectional switching element FET15 is switching elements FET15a and 15b. The bidirectional switching element FET16 is composed of switching elements FET16a and 16b. The operations of these bidirectional switching elements FET11 to FET16 are the same as the operations of the switches SW1 to SW6 described with reference to FIG.
 上記説明のように、片方向のスイッチング素子FET3,FET4を使用する場合には電流が逆流しないように直列に逆流防止ダイオードD9,D10を接続する必要があったが、双方向スイッチング素子FET13,FET14を使用することにより正逆双方向ともに電流を流し、また止めることができ、直列の逆流防止ダイオードD9,D10を使用しないため、当直列の逆流防止ダイオードD9,D10による損失を削減できて効率が向上する。 As described above, when the unidirectional switching elements FET3 and FET4 are used, it is necessary to connect the backflow prevention diodes D9 and D10 in series so that the current does not flow backward, but the bidirectional switching elements FET13 and FET14 Can be used to pass and stop the current in both forward and reverse directions, and since the series backflow prevention diodes D9 and D10 are not used, the loss due to the series backflow prevention diodes D9 and D10 can be reduced and the efficiency is improved. improves.
 以上より、実施の形態1によれば、バッテリ充電装置10は、直列に接続した複数の巻線(巻線端子a-b間の巻線と巻線端子b-c間の巻線)によって構成される1次巻線を有するトランス13と、1次巻線を構成する複数の巻線端子a~cに個々に接続された複数のスイッチSW1~SW6を有するスイッチング回路部18と、スイッチSW1~SW6の動作を制御して、1次巻線を構成する複数の巻線に選択的に電源電圧を印加する制御部15と、トランス13の出力電圧を整流する出力整流部14とを備え、制御部15は、1次巻線のうちの電源電圧を印加する巻線を、変動する電源電圧の変動の1周期中のその時々の電圧に対応して2回以上切換えるように構成した。
 このため、例えば、交流成分のリプルが重畳する交流発電機の出力を整流して直流とする直流電源の出力のように、電圧が時々刻々と変動する直流電源を使用する場合に、時々刻々と変動するその時々の電源電圧に対して適切な巻数比のトランスとして動作させることにより、電源電圧が低い状況においては、巻数比が高い1次巻線に切換えることで、当低電源電圧からも所定の電圧を出力することができる。また、電源電圧が高い状況においては、巻数比が低い1次巻線に切換え、適切なスイッチング動作を行うことにより、効率を高くすることができる。従って、使用可能な電源電圧範囲の広い、効率の高い電源装置(DC/DCコンバータ)を実現できる。
 また、当構成によって、平滑用コンデンサの削減と、簡素なPFC回路による電源装置を実現できる。
 なお、変動する電源の1周期の中で電流が流れる期間を拡大することで、受電する電源電流を概ね連続的に流せるため、電源側に影響する高調波成分を抑制することもできる。
As described above, according to the first embodiment, the battery charger 10 is configured by a plurality of windings connected in series (a winding between the winding terminals ab and a winding between the winding terminals bc). A transformer 13 having a primary winding, a switching circuit unit 18 having a plurality of switches SW1 to SW6 individually connected to a plurality of winding terminals a to c constituting the primary winding, and switches SW1 to A control unit 15 that controls the operation of the SW 6 to selectively apply a power supply voltage to a plurality of windings constituting the primary winding, and an output rectifying unit 14 that rectifies the output voltage of the transformer 13 is provided. The unit 15 is configured to switch the winding for applying the power supply voltage among the primary windings two or more times corresponding to the voltage at that time in one cycle of the fluctuation of the varying power supply voltage.
For this reason, for example, when using a DC power source whose voltage varies from moment to moment, such as the output of a DC power source that rectifies the output of an AC generator on which AC component ripple is superimposed, the momentarily changes. By operating as a transformer with an appropriate turns ratio with respect to the changing power supply voltage at that time, in a situation where the power supply voltage is low, switching to the primary winding with a high turn ratio allows the low power supply voltage to be predetermined. Can be output. In a situation where the power supply voltage is high, the efficiency can be increased by switching to the primary winding having a low turns ratio and performing an appropriate switching operation. Therefore, a highly efficient power supply device (DC / DC converter) with a wide usable power supply voltage range can be realized.
Also, with this configuration, it is possible to reduce the number of smoothing capacitors and realize a power supply device using a simple PFC circuit.
In addition, since the power supply current to be received can be made to flow almost continuously by expanding the period in which the current flows in one cycle of the changing power supply, harmonic components that affect the power supply side can be suppressed.
 なお、直流電源用のPFC・DC/DCコンバータ部12を用いて、交流電源1を電源とするバッテリ充電装置10を構成するときには、交流電源1の交流電圧を整流する電源整流部11を追加し、整流後の電圧をトランス13の1次巻線に印加するように構成する。この構成の場合にも、上記同様に交流電源の繰返し周期の中の電源電圧が低いタイミングにおいても所定の電圧を出力する特性を有し、この特性によって、電源利用効率が高く、高調波が少なく、力率の高い電源装置(電源整流部11とPFC・DC/DCコンバータ部12から成るAC/DCコンバータ)を構成することができる。 When the battery charging device 10 using the AC power source 1 as a power source is configured using the PFC / DC / DC converter unit 12 for the DC power source, a power source rectifying unit 11 that rectifies the AC voltage of the AC power source 1 is added. The voltage after rectification is applied to the primary winding of the transformer 13. This configuration also has a characteristic of outputting a predetermined voltage even when the power supply voltage is low in the repetition cycle of the AC power supply, as described above, and this characteristic provides high power use efficiency and low harmonics. In addition, a power unit having a high power factor (an AC / DC converter including a power rectifier 11 and a PFC / DC / DC converter 12) can be configured.
 さらに、実施の形態1に係るバッテリ充電装置10,10a,10bを、電気自動車の動力用のバッテリ2を充電するバッテリ充電装置として使用してもよく、家庭用または商用の交流電源1に直接プラグを接続して、動力用のバッテリ2を充電することができる。 Furthermore, the battery chargers 10, 10a, 10b according to the first embodiment may be used as a battery charger for charging a battery 2 for driving an electric vehicle, and directly plugged into a home or commercial AC power source 1. Can be connected to charge the battery 2 for power.
 また、実施の形態1によれば、スイッチング回路部18aは、スイッチング素子FET3,FET4の電流逆流を阻止する逆流防止ダイオードD9,D10を有する構成にした。これにより、電流の逆流を阻止できるので、スイッチング素子を破壊することなく、DC/DCコンバータを正常に動作させることができ、充分な出力が得られる。 In addition, according to the first embodiment, the switching circuit unit 18a has the backflow prevention diodes D9 and D10 that block the backflow of current through the switching elements FET3 and FET4. As a result, reverse current flow can be prevented, so that the DC / DC converter can be operated normally without destroying the switching element, and sufficient output can be obtained.
 また、実施の形態1によれば、スイッチング回路部18bのスイッチング素子として、双方向スイッチング素子FET11~FET16を使用する構成にした。これにより上記逆流防止ダイオードD9,D10を削減できるため、当逆流防止ダイオードD9,D10による損失を削減できて効率を向上することができる。 Further, according to the first embodiment, the bidirectional switching elements FET11 to FET16 are used as the switching elements of the switching circuit unit 18b. As a result, the backflow prevention diodes D9 and D10 can be reduced, so that the loss caused by the backflow prevention diodes D9 and D10 can be reduced and the efficiency can be improved.
 なお、上記説明では、スイッチング素子としてそれぞれ2個のFETを用いたが、これに限定されるものではなく、同等な特性の1個のスイッチング素子であってもよく、トランジスタ、IGBT(絶縁ゲート型バイポーラトランジスタ)等を用いてもよい。また、これらスイッチング素子を構成する半導体としては、従来のSi(シリコン、珪素)系半導体の他に、電流密度を高くできてオン抵抗が低く、スイッチング時間が短く高周波動作が可能な、GaN(ガリウム・ナイトライド、窒化ガリウム)系、あるいはSiC(シリコン・カーバイド、炭化珪素)系の半導体も使用できる。なお、当GaN系、あるいはSiC系の半導体は、耐圧が高く、また高温での動作が可能なために、大容量の電源装置(DC/DCコンバータ、AC/DCコンバータ)用のスイッチング素子としては、好適である。 In the above description, two FETs are used as the switching elements. However, the present invention is not limited to this, and may be one switching element having equivalent characteristics, such as a transistor, IGBT (insulated gate type). A bipolar transistor) may be used. In addition to conventional Si (silicon) semiconductors, GaN (gallium), which can increase current density, has low on-resistance, has a short switching time, and can operate at high frequencies, is included as a semiconductor constituting these switching elements. A nitride (gallium nitride) based semiconductor or SiC (silicon carbide, silicon carbide) based semiconductor can also be used. The GaN-based or SiC-based semiconductor has a high withstand voltage and can operate at a high temperature. Therefore, as a switching element for a large-capacity power supply device (DC / DC converter, AC / DC converter). Is preferable.
 また、図示は省略するが、PFC・DC/DCコンバータ部12の2次側に、当2次側出力を交流に変換する変換回路部(例えば、図1のスイッチSW1,SW2,SW5,SW6から構成される回路)を加えれば、バッテリ充電装置10をDC/ACインバータとして構成でき、使用可能な電源電圧範囲の広い、効率の高いDC/ACインバータを実現できる。 Although not shown, a conversion circuit unit (for example, switches SW1, SW2, SW5, SW6 in FIG. 1) converts the secondary output to AC on the secondary side of the PFC / DC / DC converter unit 12. If the circuit) is added, the battery charger 10 can be configured as a DC / AC inverter, and a DC / AC inverter with a wide usable power supply voltage range and high efficiency can be realized.
 また、上記説明においては、1次巻線を複数にして、変動する電源電圧に対応して巻線を切換える構成を示したが、同様な操作を、2次巻線を複数にして実施することも可能である。この場合、2次巻線を構成する複数の巻線に発生する電圧に対応して、当巻線を切換えて、所定の出力電圧に調整する構成となる。 In the above description, a configuration is shown in which a plurality of primary windings are used and the windings are switched in response to a varying power supply voltage. However, the same operation is performed with a plurality of secondary windings. Is also possible. In this case, the winding is switched and adjusted to a predetermined output voltage in accordance with voltages generated in a plurality of windings constituting the secondary winding.
実施の形態2.
 図7は、本実施の形態2に係るバッテリ充電装置10cの構成を示す回路図である。図7において、図1~図6と同一または相当の部分については同一の符号を付し説明を省略する。
 上記実施の形態1では交流電源1の交流電圧を整流する電源整流部11を設けたが、本実施の形態2では、スイッチSW1~SW6をすべて双方向対応にすることによって、図7に示すように、電源整流部11を設けず、交流電源1の交流電圧を直接トランス13に印加することができる。ちなみに、上記実施の形態1においては、電源電圧以上、あるいは、GND電圧以下の電圧が印加されるスイッチング素子FET3,FET4には、逆流防止ダイオードの追加、または、双方向スイッチを使用する必要があるが、他のスイッチング素子FET1,FET2,FET5,FET6は必ずしも双方向スイッチにする必要は無かった。これに対し、電源整流部11を削除するためには、スイッチSW1~SW6をすべて双方向対応にする必要がある。
 上記のように本実施の形態2においては、電源整流部11を削除し、交流電圧を直接トランス13に印加して、直流出力を得ることができる構成となるため、上記実施の形態1のPFC・DC/DCコンバータ部をPFC・AC/DCコンバータ部12cと言い換えることができる。PFC・AC/DCコンバータ部12cの内部構成は、スイッチSW1~SW6が双方向対応であること以外は、図1のPFC・DC/DCコンバータ部12と同一のため、説明は省略する。なお、図7の構成では、交流電圧の正弦波状の変動の1周期に4回、トランス13の1次巻線を構成する各巻線端子を切換えることになる。
Embodiment 2. FIG.
FIG. 7 is a circuit diagram showing a configuration of battery charging apparatus 10c according to the second embodiment. In FIG. 7, parts that are the same as or equivalent to those in FIGS. 1 to 6 are given the same reference numerals, and descriptions thereof are omitted.
In the first embodiment, the power supply rectifying unit 11 that rectifies the AC voltage of the AC power supply 1 is provided. However, in the second embodiment, the switches SW1 to SW6 are all made bidirectionally compatible, as shown in FIG. In addition, the AC voltage of the AC power supply 1 can be directly applied to the transformer 13 without providing the power supply rectifying unit 11. Incidentally, in the first embodiment, it is necessary to add a backflow prevention diode or use a bidirectional switch for the switching elements FET3 and FET4 to which a voltage not lower than the power supply voltage or lower than the GND voltage is applied. However, the other switching elements FET1, FET2, FET5 and FET6 do not necessarily have to be bidirectional switches. On the other hand, in order to delete the power supply rectification unit 11, all of the switches SW1 to SW6 need to be compatible with each other.
As described above, in the second embodiment, the power supply rectifying unit 11 is omitted, and an AC voltage is directly applied to the transformer 13 to obtain a DC output. Therefore, the PFC of the first embodiment is used. The DC / DC converter unit can be rephrased as the PFC / AC / DC converter unit 12c. Since the internal configuration of the PFC / AC / DC converter unit 12c is the same as that of the PFC / DC / DC converter unit 12 of FIG. 1 except that the switches SW1 to SW6 are bidirectionally compatible, description thereof will be omitted. In the configuration of FIG. 7, each winding terminal constituting the primary winding of the transformer 13 is switched four times in one cycle of the sinusoidal fluctuation of the AC voltage.
 次に、PFC・AC/DCコンバータ部12cに使用されているスイッチSW1~SW6の具体例を説明する。
 図8は、双方向スイッチング素子FET11~FET16を使用したバッテリ充電装置10dの回路構成を示す。図8のPFC・AC/DCコンバータ部12dでは、図6と同様にスイッチSW1~SW6として双方向スイッチング素子FET11~FET16を使用し、さらに過電圧保護部16およびスナバ部17を設けている。双方向スイッチング素子FET11~FET16を使用することにより、いずれの方向の電流も通電と停止が可能なため、電源電圧の極性によらず、即ち、交流電圧であっても、任意にトランス13に電流を通電することができる。また、各スイッチング素子FET11a~FET16bへの電流の逆流も阻止することができる。
Next, specific examples of the switches SW1 to SW6 used in the PFC / AC / DC converter unit 12c will be described.
FIG. 8 shows a circuit configuration of a battery charging device 10d using the bidirectional switching elements FET11 to FET16. In the PFC / AC / DC converter unit 12d of FIG. 8, bidirectional switching elements FET11 to FET16 are used as the switches SW1 to SW6 as in FIG. 6, and an overvoltage protection unit 16 and a snubber unit 17 are further provided. By using the bidirectional switching elements FET11 to FET16, the current in any direction can be turned on and off. Therefore, the current is arbitrarily supplied to the transformer 13 regardless of the polarity of the power supply voltage, that is, even with an AC voltage. Can be energized. Further, the backflow of current to the switching elements FET11a to FET16b can be prevented.
 以上より、実施の形態2によれば、バッテリ充電装置10dは、直列に接続した複数の巻線(巻線端子a-b間の巻線と巻線端子b-c間の巻線)によって構成される1次巻線を有するトランス13と、1次巻線を構成する複数の巻線の端子a~cに個々に接続されたスイッチSW1~SW6を有するスイッチング回路部18と、スイッチSW1~SW6の動作を制御して、1次巻線を構成する複数の巻線に選択的に交流電源1の電源電圧を印加する制御部15と、トランス13の出力電圧を整流する出力整流部14とを備え、制御部15は、1次巻線のうちの電源電圧を印加する巻線を、電源電圧の変動の1周期中のそれぞれの電圧に対応して2回以上切換えるように構成した。このため、電圧が正弦波状に変動する交流電源1を使用する場合に、時々刻々と変動するその時々の電源電圧に対して適切な巻数比のトランスとして動作させることにより、電源電圧が低い状況においては、巻数比が高い1次巻線に切換えることで、当低電源電圧からも所定の電圧を出力することができる。また、電源電圧が高い状況においては、巻数比が低い1次巻線に切換え、適切なスイッチング動作を行うことにより、効率を高くすることができる。従って、電源利用効率が高く、高調波が少なく、力率の高い電源装置(AC/DCコンバータ)を構成することができる。
 また、当構成によって、平滑用コンデンサを削減すること、簡素なPFC回路を使用すること、電源用整流ダイオード(図1のD1~D4)を使用しないことにより、さらに簡素な電源装置を実現できる。
As described above, according to the second embodiment, the battery charging device 10d includes a plurality of windings connected in series (a winding between the winding terminals ab and a winding between the winding terminals bc). A switching circuit section 18 having switches SW1 to SW6 individually connected to terminals a to c of a plurality of windings constituting the primary winding, and switches SW1 to SW6 A control unit 15 that selectively applies the power supply voltage of the AC power supply 1 to a plurality of windings constituting the primary winding, and an output rectification unit 14 that rectifies the output voltage of the transformer 13. The control unit 15 is configured to switch the winding for applying the power supply voltage among the primary windings two or more times corresponding to each voltage in one cycle of the fluctuation of the power supply voltage. For this reason, when using the AC power supply 1 whose voltage fluctuates in a sine wave shape, the power supply voltage is low by operating as a transformer having an appropriate turns ratio with respect to the power supply voltage that fluctuates every moment. By switching to the primary winding having a high turn ratio, a predetermined voltage can be output from the low power supply voltage. In a situation where the power supply voltage is high, the efficiency can be increased by switching to the primary winding having a low turns ratio and performing an appropriate switching operation. Therefore, it is possible to configure a power supply device (AC / DC converter) with high power utilization efficiency, low harmonics, and high power factor.
Further, with this configuration, a simpler power supply device can be realized by reducing the number of smoothing capacitors, using a simple PFC circuit, and not using the power supply rectifier diodes (D1 to D4 in FIG. 1).
 さらに、実施の形態2に係るバッテリ充電装置10c,10dを、電気自動車の動力用のバッテリ2を充電するバッテリ充電装置として使用してもよく、家庭用または商用の交流電源1に直接プラグを接続して、動力用のバッテリ2を充電することができる。 Furthermore, the battery charging devices 10c and 10d according to the second embodiment may be used as a battery charging device for charging the battery 2 for driving an electric vehicle, and the plug is directly connected to the home or commercial AC power source 1. Thus, the power battery 2 can be charged.
実施の形態3.
 図9は、本実施の形態3に係るバッテリ充電装置10eの構成を示す回路図である。図10は、バッテリ充電装置10eのトランス13eを説明する図である。なお、図9および図10において、図1~図8と同一または相当の部分については同一の符号を付し説明を省略する。
Embodiment 3 FIG.
FIG. 9 is a circuit diagram showing a configuration of battery charging device 10e according to the third embodiment. FIG. 10 is a diagram illustrating the transformer 13e of the battery charging device 10e. 9 and 10, the same or corresponding parts as those in FIGS. 1 to 8 are designated by the same reference numerals and the description thereof is omitted.
 上記実施の形態1,2では、2個の巻線を直列に接続して、トランス13の1次巻線を構成したが、本実施の形態3では、互いに巻数の異なる3個の巻線を直列に接続して、トランス13eの1次巻線を構成している。例えば、図10に示すように、トランス13eの1次巻線は、巻線端子a-b間の巻線の巻数を10ターン(T)、巻線端子b-c間の巻線の巻数を30T、巻線端子c-d間の巻線の巻数を20Tとする。トランス13eの2次巻線の巻数は60Tとする。
 また、巻線の追加に伴い、スイッチング回路部18eにスイッチSW7,SW8を追加している。
In the first and second embodiments, two windings are connected in series to form the primary winding of the transformer 13. However, in the third embodiment, three windings having different numbers of turns are used. The primary winding of the transformer 13e is configured by connecting in series. For example, as shown in FIG. 10, the primary winding of the transformer 13e has 10 turns (T) of windings between the winding terminals ab and 10 turns (T) of windings between the winding terminals bc. 30T, and the number of windings between the winding terminals cd is 20T. The number of turns of the secondary winding of the transformer 13e is 60T.
Further, with the addition of the windings, switches SW7 and SW8 are added to the switching circuit unit 18e.
 図11(a)は交流電源1の電源電圧、図11(b)は電源電圧を印加する巻線端子、図11(c)は整流ダイオードD5~D8の出力電圧を示す。なお、図11(c)では、トランス13eの通電方向の切換え毎の出力電圧波形ではなく、巻線切換え毎の出力電圧の包絡波形を示している。 11 (a) shows the power supply voltage of the AC power supply 1, FIG. 11 (b) shows the winding terminal to which the power supply voltage is applied, and FIG. 11 (c) shows the output voltage of the rectifier diodes D5 to D8. FIG. 11C shows an envelope waveform of the output voltage for each winding switching, not the output voltage waveform for each switching of the energization direction of the transformer 13e.
 制御部15が電源電圧を印加するトランス13eの1次巻線として巻線端子a-b間を選択した場合(即ち、スイッチSW1,SW6とスイッチSW2,SW5とを交互にオンオフ操作)、巻数比1:6のトランス13eを構成でき、電源電圧が低電圧であっても、充分な出力電圧を出力できる。 When the control unit 15 selects between the winding terminals ab as the primary winding of the transformer 13e to which the power supply voltage is applied (that is, the switches SW1, SW6 and the switches SW2, SW5 are alternately turned on / off), the turns ratio A 1: 6 transformer 13e can be configured, and a sufficient output voltage can be output even when the power supply voltage is low.
 電源電圧の上昇に対応して、制御部15は、次に1次巻線の巻線端子c-d間を選択して巻数比2:6にし(即ち、スイッチSW3,SW8とスイッチSW4,SW7とを交互にオンオフ操作)、続けて巻線端子b-c間を選択して巻数比3:6にし(即ち、スイッチSW3,SW6とスイッチSW4,SW5とを交互にオンオフ操作)、続けて巻線端子a-c間を選択して巻数比4:6にし(即ち、スイッチSW1,SW4とスイッチSW2,SW3とを交互にオンオフ操作)、続けて巻線端子b-d間を選択して巻数比5:6にする(即ち、スイッチSW5,SW8とスイッチSW6,SW7とを交互にオンオフ操作)。 In response to the rise of the power supply voltage, the control unit 15 next selects between the winding terminals cd of the primary winding to make the turns ratio 2: 6 (that is, the switches SW3 and SW8 and the switches SW4 and SW7). Are alternately turned on / off), and then the winding terminals bc are selected to have a turns ratio of 3: 6 (that is, the switches SW3 and SW6 and the switches SW4 and SW5 are turned on and off alternately) and the winding is continued. The line terminals a-c are selected to have a turns ratio of 4: 6 (that is, the switches SW1, SW4 and the switches SW2, SW3 are turned on and off alternately), and then the winding terminals b-d are selected to turn the number of turns. The ratio is set to 5: 6 (that is, the switches SW5 and SW8 and the switches SW6 and SW7 are turned on and off alternately).
 そして、電源電圧が最高電圧に近づけば、制御部15は1次巻線の巻線端子a-d間を選択して(即ち、スイッチSW1,SW8とスイッチSW2,SW7とを交互にオンオフ操作)、巻数比6:6つまりは1:1のトランス13eを構成する。
 なお、電源電圧の下降に対応しては、上記の順序を逆行する。
When the power supply voltage approaches the maximum voltage, the control unit 15 selects between the winding terminals ad of the primary winding (that is, the switches SW1 and SW8 and the switches SW2 and SW7 are turned on and off alternately). , A turns ratio 6: 6, that is, a 1: 1 transformer 13e is formed.
Note that the above order is reversed in response to a decrease in the power supply voltage.
 また、図11(c)では、各巻数比の期間においてオンオフ操作するスイッチのDutyを50%一定とした場合の出力電圧を示したが、実際には、各期間において、位相制御またはPWM・PFM操作を実施して各巻線端子に印加する電圧のDutyを制御することにより、出力電圧を細かく制御してさらに好適なバッテリ充電電流を出力すること、および、受電する電源電流をさらに高調波の少ない正弦波に近づけることができる。 FIG. 11 (c) shows the output voltage when the duty of the switch that is turned on / off in each turn ratio period is fixed at 50%, but in actuality, in each period, phase control or PWM · PFM By controlling the duty of the voltage applied to each winding terminal by performing the operation, the output voltage is finely controlled to output a more suitable battery charging current, and the power supply current to be received is further reduced in harmonics Can approximate a sine wave.
 なお、トランス13eの1次巻線を構成する巻線の数、1次巻線と2次巻線の巻回数、1次巻線を構成する各巻線の接続および選択に関しては、上記例以外の構成でも構わないし、1次巻線を構成する巻線を他の巻線から分離しても構わない。 The number of windings constituting the primary winding of the transformer 13e, the number of turns of the primary winding and the secondary winding, and connection and selection of each winding constituting the primary winding are other than the above examples. The winding may be separated from other windings.
 以上より、実施の形態3によれば、トランス13eの1次巻線は、巻数の異なる複数の巻線によって構成されており、これら巻線の組み合わせに応じて任意の巻数になるようにした。このため、巻数比が高いトランスを構成することによって、電源電圧が低いときにも電力を出力することができる。また、変動する電源電圧の各タイミングの電圧に適した巻数比のトランスを構成することができ、さらに各タイミングの電源電圧において適切なDutyのスイッチング動作を行うことにより、電源利用効率が高く、力率が高く、高調波が少なく、高い効率の電源装置(AC/DCコンバータ)を実現できる。
 また、当構成によって、平滑用コンデンサを削減すること、簡素なPFC回路を使用すること、電源用整流ダイオード(図1のD1~D4)を使用しないことによって、簡素な電源装置を実現しながら、さらに力率が高く、高調波の少ない電源装置を実現できる。
As described above, according to the third embodiment, the primary winding of the transformer 13e is composed of a plurality of windings having different numbers of turns, and the number of turns is arbitrary according to the combination of these windings. For this reason, by configuring a transformer with a high turns ratio, it is possible to output power even when the power supply voltage is low. In addition, a transformer having a turn ratio suitable for the voltage at each timing of the varying power supply voltage can be configured, and further, by performing an appropriate duty switching operation at the power supply voltage at each timing, power utilization efficiency is high, A high-efficiency power supply (AC / DC converter) can be realized with a high rate, low harmonics.
In addition, this configuration reduces the number of smoothing capacitors, uses a simple PFC circuit, and does not use power supply rectifier diodes (D1 to D4 in FIG. 1) while realizing a simple power supply device. Furthermore, it is possible to realize a power supply device having a high power factor and few harmonics.
 なお、上記実施の形態1に記載する直流電源を電源として使用するときにおいても、トランスの1次巻線を本実施の形態3のように構成することで、上記と同様の効果を有する電源装置(DC/DCコンバータ)を実現できる。 Even when the DC power source described in the first embodiment is used as a power source, the power source device having the same effect as described above can be obtained by configuring the primary winding of the transformer as in the third embodiment. (DC / DC converter) can be realized.
実施の形態4.
 本実施の形態4では、制御部15が、絶縁した信号伝達回路を経由してスイッチSW1~SW6を駆動する構成を説明する。スイッチSW1~SW6を構成する各スイッチング素子は、基準電圧から浮いた電位で動作するため、各スイッチング素子を動作させる駆動信号の伝達回路として、例えば図12および図14のようなパルストランス20、あるいは図13および図15のような絶縁電源22とフォトカプラ24を使用する。
Embodiment 4 FIG.
In the fourth embodiment, a configuration in which the control unit 15 drives the switches SW1 to SW6 via an insulated signal transmission circuit will be described. Each of the switching elements constituting the switches SW1 to SW6 operates at a potential floating from the reference voltage. Therefore, as a drive signal transmission circuit for operating each switching element, for example, a pulse transformer 20 as shown in FIGS. An insulated power source 22 and a photocoupler 24 as shown in FIGS. 13 and 15 are used.
 図12~図15は、本実施の形態4に係るバッテリ充電装置10の信号伝達回路の構成を示す回路図であり、図1~図11と同一または相当の部分については同一の符号を付し説明を省略する。なお、制御部15a~15dは駆動信号の伝達に関わる部分のみを図示している。
 また、スイッチSW1~SW6として双方向スイッチング素子FET11~FET16を使用し、代表して双方向スイッチング素子FET11(スイッチング素子FET11aおよびスイッチング素子FET11b)を図示している。
12 to 15 are circuit diagrams showing the configuration of the signal transmission circuit of the battery charging apparatus 10 according to the fourth embodiment. The same or corresponding parts as those in FIGS. 1 to 11 are denoted by the same reference numerals. Description is omitted. It should be noted that the control units 15a to 15d show only portions related to transmission of drive signals.
Further, bidirectional switching elements FET11 to FET16 are used as the switches SW1 to SW6, and the bidirectional switching element FET11 (switching element FET11a and switching element FET11b) is shown as a representative.
 図12に示す制御部15aにおいて、パルストランス20の1次側には当パルストランス20を制御するスイッチング素子FET21が接続されている。また、パルストランス20の2次巻線の高電位側にスイッチング素子FET11a,11bの各ゲート端子が接続され、低電位側にスイッチング素子FET11a,11bの各ソース端子が共通に接続されている。 12, a switching element FET 21 that controls the pulse transformer 20 is connected to the primary side of the pulse transformer 20 in the control unit 15a. The gate terminals of the switching elements FET11a and 11b are connected to the high potential side of the secondary winding of the pulse transformer 20, and the source terminals of the switching elements FET11a and 11b are commonly connected to the low potential side.
 この制御部15aにおいて、双方向スイッチング素子FET11を駆動する駆動信号(オンオフ信号)がスイッチング素子FET21に入力され、パルストランス20を介してスイッチング素子FET11a,11bそれぞれに絶縁された状態で伝達され、スイッチング素子FET11a,11bが同じタイミングでオンオフ動作を行う。 In this control unit 15a, a drive signal (on / off signal) for driving the bidirectional switching element FET11 is input to the switching element FET21, and transmitted to the switching elements FET11a and 11b via the pulse transformer 20 in an insulated state. The element FETs 11a and 11b perform an on / off operation at the same timing.
 図13に示す制御部15bにおいて、フォトカプラ24の発光側には当フォトカプラ24を制御するスイッチング素子FET25が接続されている。フォトカプラ24の受光側には、ゲート駆動部24aを介して、スイッチング素子FET11a,11bの各ゲート端子が接続されている。スイッチング素子FET11a,11bの各ソース端子は、絶縁電源22の低電位側に接続されている。絶縁電源22は、トランス22a、整流ダイオードD22および平滑コンデンサC22から構成され、スイッチング素子FET23の制御に応じて、スイッチング素子FET11a,11bの駆動電源を生成してゲート駆動部24aへ供給する。 In the control unit 15b shown in FIG. 13, a switching element FET 25 for controlling the photocoupler 24 is connected to the light emitting side of the photocoupler 24. The gate terminals of the switching elements FETs 11a and 11b are connected to the light receiving side of the photocoupler 24 through a gate driving unit 24a. Each source terminal of the switching elements FET 11 a and 11 b is connected to the low potential side of the insulated power supply 22. The insulated power supply 22 is composed of a transformer 22a, a rectifier diode D22, and a smoothing capacitor C22. In response to the control of the switching element FET23, the insulating power supply 22 generates drive power for the switching elements FET11a and 11b and supplies it to the gate drive unit 24a.
 この制御部15bにおいて、電源用矩形波信号により駆動するスイッチング素子FET23が絶縁電源22を制御して、双方向スイッチング素子FET11の駆動電源をゲート駆動部24aへ供給する。また、双方向スイッチング素子FET11の動作を制御する駆動信号(オンオフ信号)がスイッチング素子FET25に入力され、フォトカプラ24およびゲート駆動部24aを介してスイッチング素子FET11a,11bそれぞれに絶縁された状態で伝達され、スイッチング素子FET11a,11bが同じタイミングでオンオフ動作を行う。 In this control unit 15b, the switching element FET 23 driven by the power source rectangular wave signal controls the insulated power source 22, and supplies the driving power for the bidirectional switching element FET 11 to the gate driving unit 24a. In addition, a drive signal (ON / OFF signal) for controlling the operation of the bidirectional switching element FET11 is input to the switching element FET25, and is transmitted in an insulated state to the switching elements FET11a and 11b via the photocoupler 24 and the gate driving unit 24a. Then, the switching elements FET11a and 11b perform the on / off operation at the same timing.
 図12および図13では、スイッチング素子FET11a,11bの互いのソース端子を接続したが、これに限定されるものではなく、図14および図15に示すように、スイッチング素子FET11a,11bの互いのドレイン端子を接続してもよい。なお、図14および図15のように互いのドレイン端子を接続した場合、スイッチング素子FET11a,11bの各ゲート端子に電位の異なる駆動信号を入力する必要があるため、パルストランス20に2次巻線を2個設け、絶縁電源22を2個にして、それぞれの電源でフォトカプラ24が動作するように構成している。 12 and 13, the mutual source terminals of the switching elements FET11a and 11b are connected. However, the present invention is not limited to this, and as shown in FIGS. 14 and 15, the mutual drains of the switching elements FET11a and 11b. Terminals may be connected. When the drain terminals are connected as shown in FIGS. 14 and 15, it is necessary to input drive signals having different potentials to the gate terminals of the switching elements FET11a and 11b. Are provided, and two insulated power supplies 22 are provided so that the photocoupler 24 operates with each power supply.
 また、パルストランス20およびフォトカプラ24の他にも、例えば磁気結合による手段(磁気アイソレータ)等を使用して絶縁された信号伝達回路を構成してもよい。 Further, in addition to the pulse transformer 20 and the photocoupler 24, an insulated signal transmission circuit may be configured using, for example, magnetic coupling means (magnetic isolator) or the like.
 以上より、実施の形態4によれば、バッテリ充電装置10は、双方向スイッチング素子FET11~FET16の動作を制御する駆動信号を、絶縁した状態で、制御部15a~15dから双方向スイッチング素子FET11~FET16へ伝達する信号伝達回路を備える構成にした。このため、制御部15から双方向スイッチング素子FET11~FET16への信号伝達経路を絶縁することができ、スイッチング回路部を好適に動作させることができて、充分な性能が得られる電源装置(DC/DCコンバータまたはAC/DCコンバータ)を実現できる。 As described above, according to the fourth embodiment, the battery charging device 10 receives the drive signals for controlling the operations of the bidirectional switching elements FET11 to FET16 from the control units 15a to 15d in the insulated state. The signal transmission circuit for transmitting to the FET 16 is provided. Therefore, the signal transmission path from the control unit 15 to the bidirectional switching elements FET11 to FET16 can be insulated, the switching circuit unit can be operated favorably, and a power supply device (DC / DC converter or AC / DC converter) can be realized.
実施の形態5.
 図16は、本実施の形態5に係るバッテリ充電装置10fの構成を示す回路図である。図17は、当バッテリ充電装置10fの設置例を説明する図である。なお、図16および図17において図1~図15と同一または相当の部分については同一の符号を付し説明を省略する。
Embodiment 5 FIG.
FIG. 16 is a circuit diagram showing a configuration of battery charging device 10f according to the fifth embodiment. FIG. 17 is a diagram illustrating an installation example of the battery charging device 10f. 16 and 17, the same or corresponding parts as in FIGS. 1 to 15 are denoted by the same reference numerals and description thereof is omitted.
 本実施の形態5では、トランス13fの1次巻線を内蔵した1次側構成部31と、2次巻線を内蔵した2次側構成部32とを個々に形成して、それぞれを分離にする。そして、一方の1次側構成部31を、外部の交流電源1に接続した外部(地上設置)電源装置として使用する。他方の2次側構成部32は、電気自動車に搭載して、出力を当電気自動車の動力用のバッテリ2に接続する。 In the fifth embodiment, the primary side component 31 incorporating the primary winding of the transformer 13f and the secondary side component 32 incorporating the secondary winding are individually formed and separated from each other. To do. And one primary side structure part 31 is used as an external (ground installation) power supply device connected to the external alternating current power supply 1. FIG. The other secondary side structural part 32 is mounted in an electric vehicle, and an output is connected to the battery 2 for power of the electric vehicle.
 車載のバッテリ2を充電するときは、2次側構成部32の2次巻線を巻回したコアが、1次側構成部31の1次巻線を巻回したコアに対向するように車両を停車させて(両コア、1次巻線および2次巻線によってトランス13fを構成する位置に車両を停車させて)、1次側構成部31の1次巻線と2次側構成部32の2次巻線とにより構成されるトランス13fによって非接触で電力を伝達する。 When charging the vehicle-mounted battery 2, the vehicle is such that the core wound with the secondary winding of the secondary side component 32 faces the core wound with the primary winding of the primary side component 31. Is stopped (the vehicle is stopped at a position where the transformer 13f is formed by both cores, the primary winding and the secondary winding), and the primary winding and the secondary side configuration portion 32 of the primary side configuration portion 31. The power is transmitted in a non-contact manner by a transformer 13f constituted by the secondary winding of the non-contact.
 なお、非接触による充電の場合には、共振用巻線33と共振用コンデンサC4とを直列に接続した共振回路を使用し、共振用巻線33と共振用コンデンサC4に共振電流を通電して2次側を共振動作させることが望ましい。 In the case of non-contact charging, a resonance circuit in which the resonance winding 33 and the resonance capacitor C4 are connected in series is used, and a resonance current is applied to the resonance winding 33 and the resonance capacitor C4. It is desirable to cause the secondary side to resonate.
 図16では、スイッチング回路部18のスイッチング素子として双方向スイッチング素子FET11~FET16を使用したが、これに限定されるものではない。また、図16では1次側構成部31を直接交流電源1に接続可能なPFC・AC/DCコンバータを例示したが、図1等に示した電源整流部11とPFC・DC/DCコンバータによって構成しても構わない。
 また、図17では、地上に1次側構成部31を配置し、電気自動車の下部に2次側構成部32を配置したが、これ以外の配置であっても構わない。
In FIG. 16, the bidirectional switching elements FET11 to FET16 are used as the switching elements of the switching circuit unit 18, but the present invention is not limited to this. 16 illustrates the PFC / AC / DC converter in which the primary side configuration unit 31 can be directly connected to the AC power source 1. However, the configuration includes the power rectification unit 11 and the PFC / DC / DC converter illustrated in FIG. It doesn't matter.
In FIG. 17, the primary side component 31 is disposed on the ground and the secondary component 32 is disposed below the electric vehicle. However, other arrangements may be used.
 以上より、実施の形態5によれば、バッテリ充電装置10fは、上記電源装置を、トランス13fの1次巻線、スイッチング回路部18、および制御部15を有する1次側構成部31と、トランス13fの2次巻線および出力整流部14を有する2次側構成部32とに分離して、2次側構成部32を車両に搭載し、1次側構成部31を車両の外部に配置できる構成にした。このため、外部電源装置から非接触で動力用バッテリを充電できる電気自動車用のバッテリ充電装置を、上記電源装置による簡素な構成によって実現できる。 As described above, according to the fifth embodiment, the battery charging device 10f includes the power supply device including the primary winding 31 of the transformer 13f, the switching circuit unit 18, and the control unit 15 and the transformer. The secondary side component 32 is separated from the secondary side component 32 having the 13f secondary winding and the output rectifying unit 14, and the primary side component 31 can be disposed outside the vehicle. Made the configuration. For this reason, the battery charger for electric vehicles which can charge a power battery from an external power supply device in a non-contact manner can be realized with a simple configuration using the power supply device.
実施の形態6.
 図18は、本実施の形態6に係るバッテリ充電装置10gの構成を示す回路図である。図19は、バッテリ充電装置10gの設置例を説明する図である。なお、図18および図19において図1~図17と同一または相当の部分については同一の符号を付し説明を省略する。
Embodiment 6 FIG.
FIG. 18 is a circuit diagram showing a configuration of battery charging device 10g according to the sixth embodiment. FIG. 19 is a diagram illustrating an installation example of the battery charging device 10g. 18 and 19, the same or corresponding parts as those in FIGS. 1 to 17 are denoted by the same reference numerals and description thereof is omitted.
 本実施の形態6において、家庭用または商用の交流電源40に直接プラグ(不図示)を接続して、電気自動車に搭載したバッテリ2を充電できるように、上記実施の形態5に記載した電源装置の車載側に第2の1次側構成部41を備える。第2の1次側構成部41は、第2の1次巻線42と、当第2の1次巻線42の各巻線端子a~cの接続を切換えるスイッチング回路部18と、過電圧保護部16と、スナバ部17とから構成されている。 In the sixth embodiment, the power supply device described in the fifth embodiment is configured so that the battery 2 mounted on the electric vehicle can be charged by connecting a plug (not shown) directly to the household or commercial AC power supply 40. The second primary side component 41 is provided on the vehicle-mounted side. The second primary side configuration unit 41 includes a second primary winding 42, a switching circuit unit 18 that switches connection of the respective winding terminals a to c of the second primary winding 42, and an overvoltage protection unit. 16 and a snubber part 17.
 図20に、外部電源装置側と車載側に分離したトランス13gの外観斜視図を示す。一方の外部電源装置である1次側構成部31のコア34には、1次巻線35が巻回されている。当1次巻線35は、直列に接続された2個の巻線から構成され、巻線端子a~cは1次側構成部31(図18に示す)に接続されている。 FIG. 20 shows an external perspective view of the transformer 13g separated into the external power supply device side and the vehicle-mounted side. A primary winding 35 is wound around the core 34 of the primary side component 31 which is one external power supply device. The primary winding 35 is composed of two windings connected in series, and the winding terminals a to c are connected to the primary side component 31 (shown in FIG. 18).
 他方の車載の2次側構成部32のコア45には、1次巻線42と、2次巻線13g-1と、共振用巻線33とが巻回されている。当第2の1次巻線42は、直列に接続された2個の巻線から構成され、巻線端子a~cは第2の1次側構成部41(図18に示す)に接続されている。共振用巻線33は、図18に示すように、共振用コンデンサC4と直列に接続されている。 The primary winding 42, the secondary winding 13g-1, and the resonance winding 33 are wound around the core 45 of the other in-vehicle secondary side component 32. The second primary winding 42 is composed of two windings connected in series, and the winding terminals a to c are connected to the second primary side component 41 (shown in FIG. 18). ing. The resonance winding 33 is connected in series with the resonance capacitor C4 as shown in FIG.
 外部電源装置(1次側構成部31)を使用して、非接触でバッテリ2を充電するときは、車載の2次側構成部32のコア45が、1次側構成部31のコア34に対向するように車両を停車させて(コア34,45、1次巻線35、2次巻線13g-1によってトランス13gを構成する位置に車両を停車させて)、1次側構成部31の1次巻線35と車載側の2次巻線13g-1とにより構成されるトランス13gによって電力を伝達する。 When the battery 2 is charged in a non-contact manner using the external power supply device (primary side component 31), the core 45 of the in-vehicle secondary component 32 is replaced with the core 34 of the primary component 31. The vehicle is stopped so as to face each other (the vehicle is stopped at a position where the transformer 13g is constituted by the cores 34, 45, the primary winding 35, and the secondary winding 13g-1). Electric power is transmitted by a transformer 13g composed of the primary winding 35 and the on-vehicle side secondary winding 13g-1.
 なお、非接触で充電する場合には、2次側を共振動作させるために、制御部15が共振回路のスイッチ(例えば、双方向スイッチング素子FET36)をオンして、共振用巻線33と共振用コンデンサC4に共振電流を通電することが望ましい。 In the case of charging in a non-contact manner, the control unit 15 turns on a switch of the resonance circuit (for example, the bidirectional switching element FET 36) to resonate the secondary side, and resonates with the resonance winding 33. It is desirable to apply a resonance current to the capacitor C4.
 他方、交流電源40に直接プラグを接続して、車載のバッテリ2を充電するときは、第2の1次側構成部41の第2の1次巻線42と2次巻線13g-1とにより構成されるトランス13gによって電力を伝達する。
 なお、直接プラグを接続して充電する場合には、制御部15は共振回路の双方向スイッチング素子FET36をオフする。
On the other hand, when charging the in-vehicle battery 2 by directly connecting a plug to the AC power source 40, the second primary winding 42 and the secondary winding 13g-1 of the second primary side component 41 are Electric power is transmitted by a transformer 13g constituted by
Note that when charging is performed by directly connecting a plug, the control unit 15 turns off the bidirectional switching element FET 36 of the resonance circuit.
 以上より、実施の形態6によれば、車両に搭載された2次側構成部32は、車両の外部に配置された1次側構成部31の1次巻線35とは別に、車載側に第2の1次巻線42を有する構成にした。このため、トランスの一部を外部電源装置と車載のバッテリ充電装置とで共用することによって、直接プラグを接続して動力用バッテリを充電することと、非接触で外部電源装置から動力用バッテリを充電することができるバッテリ充電装置を、上記電源装置による簡素な構成によって実現できる。 As described above, according to the sixth embodiment, the secondary side component 32 mounted on the vehicle is mounted on the vehicle-mounted side separately from the primary winding 35 of the primary side component 31 disposed outside the vehicle. The second primary winding 42 is provided. For this reason, a part of the transformer is shared by the external power supply device and the in-vehicle battery charging device, so that the power battery can be charged by directly connecting the plug, and the power battery can be connected from the external power supply device in a non-contact manner. A battery charging device that can be charged can be realized by a simple configuration using the power supply device.
 なお、上記実施の形態5,6では、バッテリ充電装置を、PFC・AC/DCコンバータ部を使用して構成したが、図1等に示した電源整流部11とPFC・DC/DCコンバータによって構成しても構わない。 In the fifth and sixth embodiments, the battery charging device is configured using the PFC / AC / DC converter unit. However, the battery charging device is configured by the power rectifier unit 11 and the PFC / DC / DC converter shown in FIG. It doesn't matter.
 上記以外にも、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In addition to the above, within the scope of the invention, the invention of the present application can be freely combined with each embodiment, modified any component of each embodiment, or omitted any component in each embodiment. Is possible.
 以上のように、この発明に係る電源装置(DC/DCコンバータあるいはAC/DCコンバータ)は、電源電圧の変動の1周期中のその時々の電圧に対応して、2回以上トランスの1次巻線の巻線比を切換えるようにしたので、電気自動車の動力用バッテリを充電するバッテリ充電装置などに用いるのに適している。 As described above, the power supply device (DC / DC converter or AC / DC converter) according to the present invention has the primary winding of the transformer twice or more corresponding to the voltage at that time in one cycle of the fluctuation of the power supply voltage. Since the wire turns ratio is switched, it is suitable for use in a battery charger for charging a power battery for an electric vehicle.
 1,40 交流電源、2 バッテリ、10,10a~10g バッテリ充電装置、11 電源整流部、12,12a,12b PFC・DC/DCコンバータ部、12c~12e PFC・AC/DCコンバータ部、13,13e~13g トランス、13g-1 2次巻線、14 出力整流部、15,15a~15d 制御部、16 過電圧保護部、17 スナバ部、18,18a,18b,18e スイッチング回路部、20 パルストランス、22 絶縁電源、22a トランス、24 フォトカプラ、24a ゲート駆動部、31 1次側構成部、32 2次側構成部、33 共振用巻線、34,45 コア、35 1次巻線、41 第2の1次側構成部、42 第2の1次巻線、C1 フィルタコンデンサ、C2,C22 平滑コンデンサ、C3 コンデンサ、C4 共振用コンデンサ、D1~D8,D22 整流ダイオード、FET1~FET6,FET21,FET23 スイッチング素子、FET11~FET16,FET36 双方向スイッチング素子、L1 コイル、R1 抵抗、SW1~SW8 スイッチ。 1,40 AC power supply, 2 battery, 10, 10a-10g battery charger, 11 power rectifier, 12, 12a, 12b PFC / DC / DC converter, 12c-12e PFC / AC / DC converter, 13, 13e ~ 13g transformer, 13g-1 secondary winding, 14 output rectifier, 15, 15a ~ 15d controller, 16 overvoltage protector, 17 snubber, 18, 18a, 18b, 18e switching circuit, 20 pulse transformer, 22 Insulated power supply, 22a transformer, 24 photocoupler, 24a gate drive unit, 31 primary side configuration unit, 32 secondary side configuration unit, 33 resonance winding, 34, 45 core, 35 primary winding, 41 second Primary side component, 42 2nd primary winding, C1 filter capacitor, C2, C22 smooth Capacitor, C3 capacitor, C4 resonance capacitor, D1 ~ D8, D22 rectifier diodes, FET1 ~ FET6, FET21, FET23 switching elements, FET11 ~ FET16, FET36 bidirectional switching element, L1 coil, R1 resistors, SW1 ~ SW8 switch.

Claims (10)

  1.  電圧が変動する直流電源電圧、あるいは、正弦波状に変動する交流電源電圧から、所定の電圧を出力する電源装置であって、
     直列に接続した複数の巻線によって構成される1次巻線を有するトランスと、
     前記1次巻線の前記複数の巻線に個々に接続された複数のスイッチング素子を有するスイッチング回路と、
     前記スイッチング素子の動作を制御して、前記1次巻線を構成する前記複数の巻線に選択的に前記電源電圧を印加する制御部とを備え、
     前記制御部は、前記スイッチング素子を制御することによって、前記1次巻線のうちの前記電源電圧を印加する前記巻線を、変動する前記電源電圧の1周期中のその時々の電圧に対応して、2回以上切換えることを特徴とする電源装置。
    A power supply device that outputs a predetermined voltage from a DC power supply voltage that fluctuates in voltage or an AC power supply voltage that fluctuates in a sine wave,
    A transformer having a primary winding constituted by a plurality of windings connected in series;
    A switching circuit having a plurality of switching elements individually connected to the plurality of windings of the primary winding;
    A control unit for controlling the operation of the switching element and selectively applying the power supply voltage to the plurality of windings constituting the primary winding;
    The control unit controls the switching element so that the winding to which the power supply voltage is applied among the primary windings corresponds to the voltage at that time in one cycle of the fluctuating power supply voltage. A power supply device that is switched twice or more.
  2.  前記スイッチング回路には、前記スイッチング素子に流れる逆方向の電流を阻止するダイオードを有することを特徴とする請求項1記載の電源装置。 The power supply apparatus according to claim 1, wherein the switching circuit includes a diode that blocks a reverse current flowing in the switching element.
  3.  前記スイッチング回路に使用するスイッチング素子は、双方向スイッチング素子あるいは双方向対応のスイッチング素子であることを特徴とする請求項1記載の電源装置。 The power supply device according to claim 1, wherein the switching element used in the switching circuit is a bidirectional switching element or a bidirectional switching element.
  4.  前記1次巻線は、巻数の異なる複数の巻線によって構成されており、当複数の巻線の組み合わせによって前記トランスの巻数比を任意に切換えることを特徴とする請求項1記載の電源装置。 The power supply device according to claim 1, wherein the primary winding is constituted by a plurality of windings having different numbers of turns, and the turn ratio of the transformer is arbitrarily switched by a combination of the plurality of windings.
  5.  前記スイッチング素子の動作を制御する信号を前記制御部から前記スイッチング素子へ伝達する、絶縁式の信号伝達回路を備えることを特徴とする請求項1記載の電源装置。 The power supply apparatus according to claim 1, further comprising an insulating signal transmission circuit that transmits a signal for controlling an operation of the switching element from the control unit to the switching element.
  6.  前記スイッチング素子は、Si系、GaN系、またはSiC系の素子であることを特徴とする請求項1記載の電源装置。 The power supply apparatus according to claim 1, wherein the switching element is a Si-based, GaN-based, or SiC-based element.
  7.  前記制御部は、前記スイッチング素子を位相制御、PWM(Pulse Width Modulation)操作、またはPFM(Pulse Frequency Modulation)操作して、出力電圧、出力電流あるいは電源電流を調整することを特徴とする請求項1記載の電源装置。 The control unit adjusts an output voltage, an output current, or a power supply current by performing phase control, PWM (Pulse Width Modulation) operation, or PFM (Pulse Frequency Modulation) operation on the switching element. The power supply described.
  8.  請求項1記載の電源装置を使用して、車両に搭載されたバッテリを充電するバッテリ充電装置。 A battery charger for charging a battery mounted on a vehicle using the power supply device according to claim 1.
  9.  前記電源装置の前記トランスの1次巻線とコア、前記スイッチング回路、および前記制御部を有する1次側構成部と、前記トランスの2次巻線とコアを有する2次側構成部とを分離して、前記2次側構成部は前記車両に搭載され、前記1次側構成部は前記車両の外部に配置されていることを特徴とする請求項8記載のバッテリ充電装置。 The primary winding and core of the transformer of the power supply device, the switching circuit, and the primary side component having the control unit are separated from the secondary side component having the secondary winding and core of the transformer. The battery charging device according to claim 8, wherein the secondary side component is mounted on the vehicle, and the primary component is disposed outside the vehicle.
  10.  前記2次側構成部の前記コアには、分離された前記1次側構成部の1次巻線とは別に、第2の1次巻線を有することを特徴とする請求項9記載のバッテリ充電装置。 10. The battery according to claim 9, wherein the core of the secondary side component includes a second primary winding separately from the separated primary winding of the primary component. Charging device.
PCT/JP2012/076469 2012-10-12 2012-10-12 Power supply device and battery charging device WO2014057577A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014540706A JP5911591B2 (en) 2012-10-12 2012-10-12 Power supply device and battery charging device
PCT/JP2012/076469 WO2014057577A1 (en) 2012-10-12 2012-10-12 Power supply device and battery charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/076469 WO2014057577A1 (en) 2012-10-12 2012-10-12 Power supply device and battery charging device

Publications (1)

Publication Number Publication Date
WO2014057577A1 true WO2014057577A1 (en) 2014-04-17

Family

ID=50477064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076469 WO2014057577A1 (en) 2012-10-12 2012-10-12 Power supply device and battery charging device

Country Status (2)

Country Link
JP (1) JP5911591B2 (en)
WO (1) WO2014057577A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015195012A1 (en) * 2014-06-18 2015-12-23 Telefonaktiebolaget L M Ericsson (Publ) Switched mode power supply and method of operating a switched mode power supply
CN107785987A (en) * 2016-08-25 2018-03-09 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 On-Line UPS
JP2018126060A (en) * 2018-05-17 2018-08-09 三菱電機株式会社 Emergency lighting device
WO2021100872A1 (en) * 2019-11-22 2021-05-27 株式会社アパード Power converter and method for controlling power converter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2620108A (en) * 2022-06-07 2024-01-03 Karno Sound Ltd An audio signal processing system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316069A (en) * 1994-12-02 1996-11-29 Delco Electron Corp Magnetic field molding by induction type charger using non-magnetic metal conductor
JP2008109754A (en) * 2006-10-24 2008-05-08 Tdk Corp Switching power supply device
JP2010110069A (en) * 2008-10-29 2010-05-13 Toyota Industries Corp Dc/dc converter
JP2010166692A (en) * 2009-01-15 2010-07-29 Nissan Motor Co Ltd Power conversion apparatus
JP2012085447A (en) * 2010-10-12 2012-04-26 Diamond Electric Mfg Co Ltd Ac-dc converter
WO2012099169A1 (en) * 2011-01-19 2012-07-26 株式会社 テクノバ Contactless power transfer system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316069A (en) * 1994-12-02 1996-11-29 Delco Electron Corp Magnetic field molding by induction type charger using non-magnetic metal conductor
JP2008109754A (en) * 2006-10-24 2008-05-08 Tdk Corp Switching power supply device
JP2010110069A (en) * 2008-10-29 2010-05-13 Toyota Industries Corp Dc/dc converter
JP2010166692A (en) * 2009-01-15 2010-07-29 Nissan Motor Co Ltd Power conversion apparatus
JP2012085447A (en) * 2010-10-12 2012-04-26 Diamond Electric Mfg Co Ltd Ac-dc converter
WO2012099169A1 (en) * 2011-01-19 2012-07-26 株式会社 テクノバ Contactless power transfer system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015195012A1 (en) * 2014-06-18 2015-12-23 Telefonaktiebolaget L M Ericsson (Publ) Switched mode power supply and method of operating a switched mode power supply
CN107785987A (en) * 2016-08-25 2018-03-09 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 On-Line UPS
JP2018126060A (en) * 2018-05-17 2018-08-09 三菱電機株式会社 Emergency lighting device
WO2021100872A1 (en) * 2019-11-22 2021-05-27 株式会社アパード Power converter and method for controlling power converter

Also Published As

Publication number Publication date
JP5911591B2 (en) 2016-04-27
JPWO2014057577A1 (en) 2016-08-25

Similar Documents

Publication Publication Date Title
US10461553B2 (en) Power source device
JP4910078B1 (en) DC / DC converter and AC / DC converter
US8884564B2 (en) Voltage converter and voltage converter system including voltage converter
US9762127B2 (en) Power converter and power conditioner
US6989655B2 (en) Engine generator
JP5855133B2 (en) Charger
JP6554323B2 (en) Power supply
EP1033804A2 (en) Dual voltage automotive electrical system with sub-resonant DC-DC converter
JP2010166692A (en) Power conversion apparatus
JP5911591B2 (en) Power supply device and battery charging device
WO2012168983A1 (en) Charging device
JP6089282B2 (en) Power converter
WO2013186996A1 (en) Electric power conversion device
JP6742145B2 (en) Bidirectional DC-DC converter, power supply system using the same, and automobile using the power supply system
JP2007124879A (en) Power supply device
KR20160122441A (en) Charging device of vehicle
JP6709965B2 (en) Snubber circuit and power conversion system using the same
JP5412515B2 (en) Power supply
US20140361619A1 (en) Power device
US20220041075A1 (en) Vehicle-Side Charging Device
JP6270753B2 (en) Power converter
KR101548528B1 (en) DC/DC converter
JP2022069834A (en) Power supply controller
JP2002209302A (en) Power supply for electric vehicle and dc voltage conversion circuit used for the power supply
JP2013005642A (en) Power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886505

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540706

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12886505

Country of ref document: EP

Kind code of ref document: A1