WO2014007432A1 - Single-phase full-bridge inverter for providing improved power quality - Google Patents

Single-phase full-bridge inverter for providing improved power quality Download PDF

Info

Publication number
WO2014007432A1
WO2014007432A1 PCT/KR2012/008506 KR2012008506W WO2014007432A1 WO 2014007432 A1 WO2014007432 A1 WO 2014007432A1 KR 2012008506 W KR2012008506 W KR 2012008506W WO 2014007432 A1 WO2014007432 A1 WO 2014007432A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
switch
terminal
terminal switch
load
Prior art date
Application number
PCT/KR2012/008506
Other languages
French (fr)
Korean (ko)
Inventor
박성준
최우석
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Publication of WO2014007432A1 publication Critical patent/WO2014007432A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels

Definitions

  • the present invention is an inverter having a function of generating a single-phase AC output voltage from a DC input power supply and supplying it to a load.
  • the multi-level such as four levels and five levels, is the same number of switches as a conventional full bridge inverter having a three-level AC output waveform.
  • the present invention relates to a single-phase full bridge inverter that generates power of an AC output waveform and achieves high power quality.
  • the inverter inputs a DC power supply (Vdc) and generates an output having a value of 0, ⁇ Vdc, and a power conversion that controls the magnitude, frequency, and harmonic components of the AC voltage by appropriately adjusting the width of the output voltage.
  • the inverter that outputs only 0, ⁇ Vdc is called a three-level inverter, and these inverters are used in many commercial areas, and in particular, they are widely used in AC motor driving and uninterruptible power supply (UPS).
  • UPS uninterruptible power supply
  • pulse width modulation In the three-level inverter, pulse width modulation (PWM) is widely used to control the output voltage, and this switching method uses a high switching frequency to obtain a high quality output voltage.
  • PWM pulse width modulation
  • the input DC power since the input DC power must be higher than the maximum value of the output AC, the high voltage is switched.
  • EMC electromagnetic magnetic compatibility
  • high switching power requires a high switching frequency, which increases switching losses.
  • multi-level inverters In order to complement these three-level inverters, multi-level inverters have been proposed.
  • the conventional multilevel inverter has a disadvantage of using a plurality of switches.
  • the voltage rating of each switch is lower than that of using a three-level inverter, there is no big difference in the cost of the switch itself in actual production.
  • an increase in the number of switches means an increase in driving circuits for driving the switches, which increases the complexity of the circuit and increases the cost.
  • the present invention for solving the above problems is a structure using the proposed topology of the three-level AC output waveform of the conventional single-phase full bridge inverter with the same number of switches and switching speed, the four-level, five-level AC, etc.
  • the main object of the present invention is to provide an inverter system that has an output waveform and improves total harmonic distortion (THD: Total Harmonic Distortion) to improve power quality.
  • TDD Total Harmonic Distortion
  • Another object of the present invention is to prevent the increase in cost according to the configuration by making it possible to use the device configuration used in the three-level inverter, while improving the output efficiency.
  • another object of the present invention is to configure a five-level inverter that can obtain a more stable output by adding a predetermined element to the configuration of the basic four-level inverter, so as to obtain a more efficient AC output in addition to some configuration It is.
  • the power supply unit to which power is applied A switch unit intermitting the power supplied from the power generation unit; And a load end to which power of the power generation unit is applied by the operation of the switch unit, wherein the power generation unit includes a first power generation unit, a second power generation unit, and a third power generation unit, and the first power generation unit and the second power source.
  • a first terminal switch having one side connected between the forming parts and the other side connected to the load terminal first pole;
  • a second terminal switch having one side connected between the second power generation unit and the third power generation unit and the other side connected to the load terminal first pole;
  • a reverse terminal switch having one side connected to the other side of the first power generation unit and the other side connected to the load second second pole;
  • a positive terminal switch having one side connected to the other side of the third power generation unit and the other side connected to the load-side second pole.
  • the first capacitor between the both ends of the first power source forming portion; Second capacitors between both ends of the second power generation unit; And a third capacitor between both ends of the third power source forming unit.
  • the power is applied between the first pole and the second pole on both sides of the load terminal, the amount of power that the power of the second power source and the third power source is combined is applied.
  • State a state in which positive power is applied to the third power generation unit, a state in which negative power is applied in the first power generation unit, and a negative power in which the power of the first power generation unit is combined with the power of the second power generation unit is applied. It is characterized by forming a state in which the four-level power to the state is applied.
  • the present invention configured as described above has the effect of producing an output voltage and a current having a higher power quality while having the same number of switching elements and the same switching frequency as a conventional single-phase full bridge inverter.
  • Another effect of the present invention is to enable the application of the device configuration used in the three-level inverter to prevent the increase in cost according to the configuration, the output efficiency is good.
  • Another effect of the present invention is to configure a five-level inverter that can obtain a stable output by adding a predetermined element to the basic four-level inverter configuration, it is possible to obtain a more efficient AC output in addition to some configuration as described above.
  • FIG. 1 is a basic circuit diagram of a single-phase full bridge inverter according to the present invention.
  • FIG. 2 is a basic circuit diagram of an embodiment of a single-phase full bridge inverter in which a plurality of capacitors are connected to a single power source in the embodiment power supply of FIG. 1 according to the present invention.
  • FIG. 3 is a circuit diagram of an exemplary embodiment in which a single-phase full bridge inverter according to the present invention is applied with a positive maximum value in a four-level embodiment.
  • FIG. 4 is an exemplary circuit diagram of a state in which a single-phase full bridge inverter according to the present invention is applied with a positive intermediate value in a four-level embodiment.
  • FIG. 5 is a circuit diagram of an exemplary embodiment in which a single-phase full bridge inverter according to the present invention is applied to a load with a negative intermediate value among four level embodiments.
  • FIG. 6 is an exemplary circuit diagram of a state in which a single negative full bridge inverter is applied to a load as a negative lowest value among four level embodiments.
  • FIG. 7 is a graph of the voltage waveform and the filtered waveform of the load stage detected by the four-level embodiment in the single-phase full bridge inverter according to the present invention.
  • FIG. 8 is a circuit diagram of an exemplary embodiment in which a single-phase full bridge inverter according to the present invention is applied with a positive maximum value in a five-level embodiment.
  • FIG. 9 is an exemplary circuit diagram of a state in which a single-phase full bridge inverter according to the present invention is applied to a load as a positive intermediate value among five level embodiments.
  • FIG. 10 is a circuit diagram of an exemplary embodiment in which a single-phase full bridge inverter according to the present invention forms a "0" voltage from both voltages by a switch connected between both terminals of a load in a five-level embodiment.
  • FIG. 11 is an exemplary circuit diagram of a state in which a zero voltage is formed from a negative voltage by a switch connected between both terminals of a load in a five-phase embodiment in the single-phase full bridge inverter according to the present invention.
  • FIG. 12 is a circuit diagram of an exemplary embodiment of a state in which a single intermediate full bridge inverter is applied to a load as a negative intermediate value among five level embodiments.
  • FIG. 12 is a circuit diagram of an exemplary embodiment of a state in which a single intermediate full bridge inverter is applied to a load as a negative intermediate value among five level embodiments.
  • FIG. 13 is an exemplary circuit diagram of a state in which a single negative full bridge inverter according to the present invention is applied to a load as a negative lowest value among five level embodiments.
  • FIG 14 is a graph of the voltage waveform and the filtered waveform of the load stage detected by the five-level embodiment in the single-phase full bridge inverter according to the present invention.
  • 15 is a control block diagram of a single-phase full bridge inverter according to the present invention.
  • 16 is an exemplary view for explaining a schematic function of a single-phase full bridge inverter according to the present invention.
  • 17 is an exemplary view of the operation of a typical single-phase full bridge inverter.
  • FIG. 18 is an exemplary diagram of a state table of the inverter formed of FIG. 17.
  • the single-phase full bridge inverter 10 which provides improved power quality according to the present invention may interrupt the power supply unit to which power is applied to the load, and the power supplied from the power supply unit, as shown in FIGS. 1 to 15.
  • a switch unit or the like is configured. Then, the power of the power generation unit is applied to the load end 11 by the operation of the switch unit.
  • the power generation unit includes a first power generation unit VDC_A, a second power generation unit VDC_B, a third power generation unit VDC_C, and the like, which are connected in series. It is.
  • the switch unit connected to the first power generator VDC_A, the second power generator VDC_B, the third power generator VDC_C, and the like, some powers of the power generators are combined and applied to the load. . Therefore, a plurality of levels of power are sequentially applied to the load stage.
  • the full bridge inverter of the present invention operates with a switching frequency to have a stable AC output. That is, a multi-level alternating current output including the first power generator VDC_A, the second power generator VDC_B, the third power generator VDC_C, and the like can be obtained.
  • the power generator of the present invention that is, the first power generator VDC_A, the second power generator VDC_B, the third power generator VDC_C, etc., as shown in FIG. It may be implemented by including a capacitor of, may be implemented by including a single voltage source and a plurality of capacitors as shown in FIG.
  • each power source forming unit refers to a voltage forming unit in a portion where a voltage is applied to the load, and thus will include a forming portion of a voltage formed by a plurality of capacitors.
  • the first power generation unit VDC_A refers to an output portion in a load side direction at both ends of the first capacitor
  • the second power generation unit VDC_B refers to an output portion in a load side direction at both ends of the second capacitor.
  • the third power generation unit VDC_C defines the output portion in the load side direction at both ends of the third capacitor.
  • the first power generation unit VDC_A is implemented by the first capacitor C1 connected in parallel with the first voltage source Vdc_1, and the second power generation unit ( VDC_B consists of a second capacitor C2 connected in parallel with the second voltage source Vdc_2, and furthermore, a third capacitor (VDC_C) connected in parallel with the third voltage source Vdc_2. It is made of C3). Therefore, in the power generator according to the embodiment of FIG. 1, the first power generator VDC_A is a power applied from both ends output from the first capacitor C1 connected in parallel with the first voltage source Vdc_1 to the load side.
  • the second power generator VDC_B is a power applied from both ends output from the second capacitor C2 connected in parallel with the second voltage source Vdc_2 to the load side
  • the third power generator VDC_C The third capacitor C3 connected in parallel with the three voltage sources Vdc_3 is a power source applied at both ends output to the load side.
  • the power generation unit includes a portion in which power is applied to the load side from the individual capacitors, and in the case where a plurality of voltage sources are formed, it is generally various means such as general power, solar, wind, tidal power, charging power, and the like. It will be suitable for the embodiment of the voltage source supplied by.
  • an example of the power generation unit may be implemented by a single voltage source and a plurality of capacitors in the embodiment of FIG. 2.
  • the first capacitor C1, the second capacitor C2, The third capacitor C3 and the like are connected in series with each other, and the three capacitors connected in series will be configured to be coupled in parallel with a single voltage source.
  • the first power generator VDC_A is a power applied from both ends output from the first capacitor C1 to the load side
  • the second power generator VDC_B is the second capacitor C2.
  • the third power generation unit (VDC_C) will be the power applied from both ends output to the load side from the third capacitor (C3).
  • VDC_C the third power generation unit
  • the power generation unit implemented in the present invention includes a plurality of capacitors for implementing a multi-level together with a voltage source (Vdc, or Vdc_1, Vdc_2, Vdc_3, etc.) in a single or plural number, and applied to both ends of individual capacitors.
  • a voltage source Vdc, or Vdc_1, Vdc_2, Vdc_3, etc.
  • a power source a plurality of power forming units are formed to be supplied to a load end.
  • a plurality of independent DC power sources or capacitors connected in series may be used to configure individual voltage generation units according to the installation situation.
  • the single-phase full bridge inverter has a function of generating a single-phase AC output voltage from a single DC input power supply and supplying it to a load as in the examples of FIGS. 16 and 17.
  • the AC output voltage waveform of the single-phase full bridge inverter is determined according to the method of controlling the bidirectional switching switch Sa and Sb. That is, in the example of FIGS. 16 and 17 as a single-phase full bridge inverter, four switches and two poles are included, and the output voltage Vo is equal to the difference between the two pole voltages Va and Vb. That is, the output voltage that can be supplied to the load according to the contact state of the switches Sa and Sb will be output as shown in FIG.
  • the single-phase full bridge inverter as shown in FIGS. 16 to 18 generates an AC waveform from a single DC input power source, where the AC output voltage has three output levels of + Vdc, 0, and -Vdc.
  • the inverter Unlike the single-phase full bridge inverter having three output levels, the inverter has multiple output levels.
  • the multi-level inverter has some advantages over the three-level inverter, and the summary is as follows.
  • 3 level inverter has only 0, ⁇ Vdc voltage level, but multi-level inverter is capable of 0 or ⁇ Vdc, ⁇ 2Vdc, ..., ⁇ mVdc. High quality output voltage can be obtained.
  • the configuration of the switch unit in the four-level single-phase full bridge inverter as shown in Figs. may be prepared as follows.
  • a first terminal switch SW1 having one side connected between the first power generator VDC_A and the second power generator VDC_B and the other side connected to the first pole 1 of the load terminal 11 is provided. do. Through this first terminal switch SW1, a single power source of the first power generator VDC_A, or a sum of powers of the second power generator VDC_B and the third power generator VDC_C is applied to the load terminal. .
  • a second terminal switch SW2 having one side connected between the second power generation unit VDC_B and the third power generation unit VDC_C and the other side connected to the load pole 11 and the first pole 1 is connected. Prepared. Through the second terminal switch SW2, the power of the sum of the first power generator VDC_A and the second power generator VDC_B or the single power of the third power generator VDC_C is applied to the load terminal. .
  • a reverse terminal switch SW3 having one side connected to the other side of the first power generation unit VDC_A and the other side connected to the second pole 2 of the load terminal 11 is provided. Through the reverse terminal switch SW3, a single power source of the first power generator VDC_A or a sum of powers of the first power generator VDC_A and the second power generator VDC_B is applied to the load terminal.
  • a positive terminal switch SW4 is connected to one side of the third power generation unit VDC_C, and the other side thereof is connected to the load pole 11 and the second pole 2. Through the positive terminal switch SW4, the power of the sum of the second power generator VDC_B and the third power generator VDC_C or the single power of the third power generator VDC_C is applied to the load terminal.
  • the inverter according to the present invention includes three power generation units in total, such as the first power generation unit VDC_A, the second power generation unit VDC_B, and the third power generation unit VDC_C.
  • Four switch members are basically connected between the four power supply units.
  • the voltage is applied to the load in a plurality of voltage state in which a total of three power source forming unit power supplies are combined. This results in an AC output having a stable form.
  • the 4-level single-phase full bridge inverter according to the present invention configured as described above is to generate a single-phase AC output voltage using four switches from a DC input power source having a level of 4EA and supply it to a load as in the accompanying drawings. .
  • the 4-level single-phase full bridge inverter according to the present invention has a 4EA input voltage level by the 3EA DC input of the input side, wherein the AC output voltage is (VDC_B + VDC_C), (VDC_C),-(VDC_A),- It has four output levels, such as (VDC_A + VDC_B).
  • the waveform for this is as shown in FIG.
  • the power of the second power generation unit (VDC_B)
  • the positive power of the third power generator VDC_C is applied
  • the positive power of the third power generator VDC_C is applied
  • the negative power of the first power generator VDC_A is applied.
  • an inverter control unit 21 for controlling the first terminal switch SW1, the second terminal switch SW2, the reverse terminal switch SW3, and the positive terminal switch SW4 of the switch unit is provided. Each switch member is operated by the control of 21).
  • an up-pulse control signal (for example, a switch "ON" signal) is transmitted from the inverter control unit 21 to the first terminal switch SW1 and the positive terminal switch SW4.
  • a switch "ON" signal for example, a switch "ON" signal
  • the first terminal switch SW1 and the positive terminal switch SW4 are operated.
  • the power of the second power generator VDC_B and the power of the third power generator VDC_C are added to the first pole 1 and the second pole 2 of the load terminal 11. Power is applied.
  • the first power generator VDC_A is 100V
  • the second power generator VDC_B is 200V
  • the third power generator VDC_C is set to 100V
  • the first terminal switch SW1, the positive terminal switch SW4, and the like are operated by the control, so that a second power supply is provided between the first pole 1 and the second pole 2 on both sides of the load terminal 11.
  • the power of 300V in which the power applied from the forming unit VDC_B and the third power forming unit VDC_C is combined will be applied. That is, it will be applied to both sides of the load stage with a positive maximum power supply.
  • the inverter controller 21 transmits a control signal of an up-pulse (for example, a switch "ON" signal) to the second terminal switch SW2 and the positive terminal switch SW4. Will be.
  • a control signal of an up-pulse for example, a switch "ON" signal
  • the second terminal switch SW2 and the positive terminal switch SW4 are operated. Therefore, as shown in FIG. 4, the positive power of the third power generation unit VDC_C is applied to the first pole 1 and the second pole 2 of the load terminal 11.
  • the third power generator VDC_C is set to 100V, as shown in FIG.
  • the terminal switch SW2, the positive terminal switch SW4, and the like are operated so that the power applied from the third power generation unit VDC_C between the first pole 1 and the second pole 2 on both sides of the load terminal 11.
  • a positive 100V supply will be applied. That is, it will be applied to both sides of the load stage with a positive medium value power supply.
  • an up-pulse control signal (for example, a switch “ON” signal) is transmitted from the inverter controller 21 to the first terminal switch SW1 and the reverse terminal switch SW3.
  • a switch “ON” signal is transmitted from the inverter controller 21 to the first terminal switch SW1 and the reverse terminal switch SW3.
  • the first terminal switch SW1 and the reverse terminal switch SW3 are operated. Therefore, as shown in FIG. 5, the negative power of the first power generator VDC_A is applied to the first pole 1 and the second pole 2 of the load terminal 11.
  • the first power generation unit VDC_A is 100V
  • the second power generation unit VDC_B is 200V
  • the third power generation unit VDC_C is set to 100V, as shown in FIG.
  • the terminal switch SW1, the reverse terminal switch SW3, and the like are operated so that the power applied from the first power generation unit VDC_A is provided between the first pole 1 and the second pole 2 on both sides of the load terminal 11.
  • a negative 100V supply will be applied. That is, they will be applied to both sides of the load with a negative median supply.
  • the uplink control signal (for example, a switch "ON" signal) is transmitted from the inverter control unit 21 to the second terminal switch SW2 and the reverse terminal switch SW3.
  • the second terminal switch SW2 and the reverse terminal switch SW3 are operated.
  • the power of the first power generator VDC_A and the power of the second power generator VDC_B are added to the first pole 1 and the second pole 2 of the load terminal 11. Power is applied.
  • the first power generator VDC_A is 100V
  • the second power generator VDC_B is 200V
  • the third power generator VDC_C is set to 100V, as shown in FIG.
  • the terminal switch SW2 and the reverse terminal switch SW3 are operated so that the first power source forming unit VDC_A and the second power source are disposed between the first pole 1 and the second pole 2 on both sides of the load terminal 11.
  • the negative power of 300V to which the power applied from the forming unit VDC_B is added will be applied. That is, it will be applied to both sides of the load stage with a negative maximum power supply.
  • an example of the circuit formation state according to each voltage formation state is as follows.
  • each switch will be operated by the inverter controller 21 controlling the first terminal switch SW1, the second terminal switch SW2, the reverse terminal switch SW3, and the positive terminal switch SW4 of the switch unit.
  • the state of applying the voltage applied to the load of the three power forming units can be made in various ways, in particular in FIG. Likewise it may be provided to have a stable output state of the alternating current.
  • the single-phase full bridge inverter providing improved power quality includes three power supply units and four basic switches of VDC_A, VDC_B, and VDC_C as shown in FIGS. 1 to 7. That is, in this single-phase full bridge inverter, two switches form one pole (node) centered on the VDC_B DC input, and the switches are located at the positive and negative poles of VDC_A and VDC_C. pole2) (node).
  • the inverter topology consists of two poles that switch independently, and the two switches of each pole perform complementary switching and the output voltage of the inverter according to these four basic switch states. Adjust
  • the basic configuration will be prepared as in the four-level embodiment described above. That is, it includes a power supply unit to which power is applied, a switch unit to control the power supplied from the power generation unit, and a load end 11 to which power is applied to the power generation unit by the operation of the switch unit.
  • the power generation unit is formed by connecting the first power generation unit VDC_A, the second power generation unit VDC_B, and the third power generation unit VDC_C.
  • a first terminal is connected between the first power source forming unit (VDC_A) and the second power source forming unit (VDC_B) and the other end is connected to the load terminal 11, the first pole (pole1)
  • a second terminal switch SW2 having one side connected between the switch SW1, the second power generation unit VDC_B, and the third power generation unit VDC_C and the other side connected to the load terminal 11 and the first pole 1.
  • One end of the first power generator VDC_A and the other end of the reverse terminal switch SW3 and the third power generator VDC_C are connected to the load terminal 11 and the second pole 2.
  • One end is connected to the other side and the other end is provided with a positive terminal switch (SW4) and the like connected to the load terminal 11, the second pole (pole2).
  • the reverse voltage switch SW5 and the net voltage switch SW6 are connected between the load pole 11 and the second pole 2.
  • the first terminal switch SW1 and the second terminal switch SW2 are connected to the first pole 1 at one side of the load terminal 11, and the reverse terminal switch SW3 and the positive terminal switch SW4 are connected to the load terminal ( 11) It is connected to the second pole (pole2) on the other side, the reverse voltage switch (SW5) and the net voltage switch (SW6) connected between the first pole (pole1) and the second pole (pole2) on both ends of the load (11) ) May be made in series connection or parallel connection according to the installation situation.
  • the five-level single-phase full bridge inverter 10 providing improved power quality according to the present invention uses single-phase alternating current using four switches from a DC input power source having a level of 3EA, as in the accompanying drawings. It has a function of generating an output voltage and supplying it to a load.
  • the output voltage level is 5 by (DC_B + VDC_C), (VDC_C), 0,-(VDC_A),-(VDC_A + VDC_B), etc. Has two output levels. And the waveform is made as shown in FIG.
  • the inverter control unit 21 controls each switch unit including the first terminal switch SW1, the second terminal switch SW2, the reverse terminal switch SW3, the positive terminal switch SW4, and the like as in the fourth level. Is provided and the respective switch members are operated by the control of the inverter control unit 21.
  • the uplink control signal (for example, the switch "ON signal) will be transmitted from the inverter control unit 21 to the first terminal switch SW1 and the positive terminal switch SW4.
  • the first terminal switch SW1 and the positive terminal switch SW4 are operated, so that the second power source is connected to the first pole 1 and the second pole 2 of the load terminal 11 as shown in FIG.
  • the amount of power in which the power of the forming unit VDC_B and the power of the third power forming unit VDC_C are combined is applied.
  • the first power generation unit VDC_A is 100V
  • the second power generation unit VDC_B is 200V
  • the third power generation unit VDC_C is set to 100V, as shown in FIG.
  • the terminal switch SW1 and the positive terminal switch SW4 are operated so that the second power generation part VDC_B and the third power supply are formed between the first pole 1 and the second pole 2 on both sides of the load terminal 11.
  • the power of the combined 300V power applied from the forming unit VDC_C may be applied. That is, it will be applied to both sides of the load stage with a positive maximum power supply.
  • the uplink control signal (for example, the switch "ON signal) is transmitted from the inverter control unit 21 to the second terminal switch SW2 and the positive terminal switch SW4.
  • the second terminal switch SW2 and the positive terminal switch SW4 are operated, and as a result, as shown in Fig. 9, the third end of the load pole 11 is connected to the first pole 1 and the second pole 2.
  • the positive power of the power generator VDC_C is applied.
  • the third power generator VDC_C is set to 100V, as shown in FIG.
  • the terminal switch SW1, the positive terminal switch SW4, and the like are operated so that the power applied from the third power generation unit VDC_C between the first pole 1 and the second pole 2 on both sides of the load terminal 11.
  • a positive 100V supply will be applied. That is, it will be applied to both sides of the load stage with a positive medium value power supply.
  • the inverter control unit 21 will be implemented to transmit the up-pulse control signal (for example, the switch "ON signal") to the net voltage switch SW6 side. ), And the first terminal switch SW1, the second terminal switch SW2, the reverse terminal switch SW3, and the positive terminal switch SW4 are cut off, so that the load terminal 11 is shown in FIG.
  • the first pole (pole1) and the second pole (pole2) have a voltage of "0", especially when the voltage "0" is applied to both sides of the load by the operation of the switch voltage SW6. This will apply when switching to a negative value.
  • the switch SW6 is operated to achieve a "0" voltage between the first pole 1 and the second pole 2 on both sides of the load terminal 11.
  • the inverter control unit 21 will transmit an up-pulse control signal (for example, a switch "ON signal") to the reverse voltage switch SW5 side.
  • SW5 is operated, and the first terminal switch SW1, the second terminal switch SW2, the reverse terminal switch SW3, and the forward terminal switch SW4 are cut off, and as shown in FIG. 11)
  • a voltage of "0" is formed at the first pole and the second pole 2.
  • the reverse voltage switch SW5 is operated to achieve a voltage of "0" at both sides of the load terminal, a negative value is obtained. Will be applied when converting from to a positive value.
  • the reverse voltage is controlled by the control as shown in FIG. 11.
  • the switch SW5 is operated to achieve a "0" voltage between the first pole 1 and the second pole 2 on both sides of the load terminal 11.
  • an up-pulse control signal (for example, a switch “ON signal”) will be transmitted from the inverter controller 21 to the first terminal switch SW1 and the reverse terminal switch SW3.
  • a switch “ON signal” for example, a switch “ON signal”
  • the first terminal switch SW1 and the reverse terminal switch SW3 are operated, so that the first power source is connected to the first pole 1 and the second pole 2 of the load terminal 11 as shown in FIG.
  • the negative power of the forming unit VDC_A is applied.
  • the first power generation unit VDC_A is 100V
  • the second power generation unit VDC_B is 200V
  • the third power generation unit VDC_C is set to 100V, as shown in FIG.
  • the terminal switch SW1, the reverse terminal switch SW3, and the like are operated so that the power applied from the first power generation unit VDC_A is provided between the first pole 1 and the second pole 2 on both sides of the load terminal 11.
  • a negative 100V supply will be applied. That is, it will be applied to both sides of the load stage with a negative median power supply.
  • the uplink control signal (for example, the switch "ON signal) will be transmitted from the inverter control unit 21 to the second terminal switch SW2 and the reverse terminal switch SW3.
  • the second terminal switch SW2 and the reverse terminal switch SW3 are operated, so that the first power source is connected to the first pole 1 and the second pole of the load terminal 11 as shown in FIG.
  • the negative power which is the sum of the power of the forming unit VDC_A and the power of the second power forming unit VDC_B, is applied.
  • the first power generation unit VDC_A is 100V
  • the second power generation unit VDC_B is 200V
  • the third power generation unit VDC_C is set to 100V, as shown in FIG.
  • the terminal switch SW2 and the reverse terminal switch SW3 are operated so that the first power source forming unit VDC_A and the second power source are disposed between the first pole 1 and the second pole 2 on both sides of the load terminal 11.
  • the negative power of 300V to which the power applied from the forming unit VDC_B is added will be applied. That is, it will be applied to both sides of the load stage with a negative maximum power supply.
  • the first power generator VDC_A is 100V
  • the second power generator VDC_B is 200V
  • the third power generator VDC_C is set to 100V, + 300V, + 100V, 0V, and -100V.
  • a five-level voltage application state such as -300V, thereby obtaining a stable AC output as shown in FIG. 14.
  • an example of the circuit formation state according to each voltage formation state is as follows.
  • the switches are operated by the inverter controller 21 controlling the first terminal switch SW1, the second terminal switch SW2, the reverse terminal switch SW3, and the positive terminal switch SW4 of the switch unit.
  • the second power generation unit VDC_B and the third power generation unit together with the first terminal switch SW1 on one side of the load terminal 11 and the positive terminal switch SW4 on the other side of the load terminal 11. It forms a circuit of current flow that includes (VDC_C). Therefore, the power of the second power generator VDC_B and the power of the third power generator VDC_C are applied to the first pole 1 and the second pole 2 of the load terminal 11. .
  • the current flow includes the third power supply unit VDC_C together with the second terminal switch SW2 on one side of the load terminal 11 and the positive terminal switch SW4 on the other side of the load terminal 11. Will form a circuit.
  • the positive power of the third power generation unit VDC_C is applied to the first pole 1 and the second pole 2 of the load terminal 11.
  • the net voltage switch SW6 connected between the first pole 1 and the second pole 2 of the load terminal 11 is operated to provide the load terminal 11 with the first pole 1.
  • the second pole pole2 has a voltage of "0".
  • the embodiment in which the voltage "0" is formed at the load terminal by the operation of the net voltage switch SW6 will be applied to the embodiment in which the voltage "0" is formed in the "+" voltage state.
  • the reverse voltage switch SW5 is connected between the first pole 1 and the second pole 2 of the load terminal 11 to operate the first pole 1 of the load terminal 11.
  • the second pole pole2 has a voltage of "0".
  • the current flow includes the first power switch VDC_A together with the first terminal switch SW1 on one side of the load terminal 11 and the reverse terminal switch SW3 on the other side of the load terminal 11. Will form a circuit.
  • the negative power of the first power generation unit VDC_A is applied to the first pole 1 and the second pole 2 of the load terminal 11.
  • the first power generator VDC_A and the second power generator together with the second terminal switch SW2 on one side of the load terminal 11 and the reverse terminal switch SW3 on the other side of the load terminal 11. It forms a circuit of current flow including (VDC_B).
  • VDC_B the negative power of the power of the first power generator VDC_A and the power of the second power generator VDC_B is applied to the first pole 1 and the second pole 2 of the load terminal 11. .
  • the application state of the voltage applied to the load terminals of the three power generation units may be variously varied according to the operation state of each switch. Likewise it may be provided to have a stable output state of the alternating current.
  • the five-level single-phase full bridge inverter providing improved power quality includes three DC power supplies and four basic switches of VDC_A, VDC_B, and VDC_C as shown in FIGS. 8 to 14. That is, it includes a basic power generation unit and a switching unit, such as the four-level single-phase full bridge inverter described above, with two switches forming one pole around the VDC_B DC input, and each of VDC_A and VDC_C ( The switches are located at +) and (-) to form another pole. In addition to this, switch members are further provided for forming a voltage of " 0 ".
  • the inverter topology consists of two poles that switch independently, and the two switches of each node perform complementary switching and adjust the output voltage of the inverter according to these four basic switch states. In addition, when switching to the "+" voltage and "-" voltage, it is to form a "0" voltage respectively.
  • the single-phase full bridge inverter of the present invention which forms a five-level power level, can obtain an AC output having a stable shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

The present invention relates to a single-phase full-bridge inverter for achieving high power quality through AC output waveforms of multiple levels, such as four levels, five levels, and the like by using the same number of switches as the existing full-bridge inverter having a three-level AC output waveform as an inverter having a function of generating a single-phase AC output voltage from DC input power and providing the single-phase AC output voltage to a load.

Description

향상된 전력품질을 제공하는 단상풀브릿지인버터Single Phase Full Bridge Inverter Delivers Improved Power Quality
본 발명은 직류 입력 전원으로부터 단상 교류 출력전압을 발생하여, 부하에 공급하는 기능을 가진 인버터로 3레벨의 교류출력 파형을 가지는 기존의 풀브릿지 인버터와 동일한 스위치 숫자로 4레벨, 5레벨 등 다중 레벨의 교류 출력파형의 전력을 발생하여 높은 전력품질을 달성하는 단상풀브릿지인버터에 관한 것이다.The present invention is an inverter having a function of generating a single-phase AC output voltage from a DC input power supply and supplying it to a load. The multi-level, such as four levels and five levels, is the same number of switches as a conventional full bridge inverter having a three-level AC output waveform. The present invention relates to a single-phase full bridge inverter that generates power of an AC output waveform and achieves high power quality.
일반적으로 인버터는 직류 전원(Vdc)을 입력하고, 0, ±Vdc의 값을 갖는 출력을 발생하며, 이러한 출력 전압의 폭을 적절히 조절하여 교류전압의 크기, 주파수, 고조파 성분 등을 제어하는 전력변환기기를 말한다.In general, the inverter inputs a DC power supply (Vdc) and generates an output having a value of 0, ± Vdc, and a power conversion that controls the magnitude, frequency, and harmonic components of the AC voltage by appropriately adjusting the width of the output voltage. Say the device.
이와 같이 0, ±Vdc 만을 출력하는 인버터를 3레벨 인버터라 하고 이러한 인버터는 상업적으로 많은 영역에서 사용되고 있으며 특히 AC 모터 구동, 무정전 공급장치(UPS) 등에서 널리 사용되고 있다.In this way, the inverter that outputs only 0, ± Vdc is called a three-level inverter, and these inverters are used in many commercial areas, and in particular, they are widely used in AC motor driving and uninterruptible power supply (UPS).
3레벨 인버터에서는 출력전압을 제어하기 위해 펄스폭 변조방식(PWM, Pulse Width Modulation)이 많이 사용되고 있으며, 이러한 스위칭 방식은 높은 스위칭 주파수를 사용하여 고품질의 출력전압을 얻는다. 그러나 입력 직류 전원이 출력하는 AC의 최고치보다 대부분 높아야 하므로 고압을 스위칭하게 되고, 이로인해 dv/dt에 의해 부하측의 스트레스 및 EMC(Electro Magnetic Compatibility)의 영향이 크다. 또한 고품질의 전력을 얻기 위해서는 스위칭 주파수가 높아야 하므로 스위칭 손실이 증가한다.In the three-level inverter, pulse width modulation (PWM) is widely used to control the output voltage, and this switching method uses a high switching frequency to obtain a high quality output voltage. However, since the input DC power must be higher than the maximum value of the output AC, the high voltage is switched. Thus, the stress on the load side and the electromagnetic magnetic compatibility (EMC) are largely affected by dv / dt. In addition, high switching power requires a high switching frequency, which increases switching losses.
이러한 3레벨 인버터를 보완하기 위해 다중레벨 인버터가 제안되고 있다. 하지만 종래의 다중레벨 인버터는 다수의 스위치를 사용해야 하는 단점을 가지고 있다. 그러나 각 스위치의 전압 정격이 3레벨 인버터를 사용하는 경우에 비해 낮아지므로 실제 제작하는 경우 스위치 자체의 비용면에서는 큰 차이가 없게 된다.In order to complement these three-level inverters, multi-level inverters have been proposed. However, the conventional multilevel inverter has a disadvantage of using a plurality of switches. However, since the voltage rating of each switch is lower than that of using a three-level inverter, there is no big difference in the cost of the switch itself in actual production.
하지만 스위치 수의 증가는 스위치를 구동시키기 위한 구동회로의 증가를 의미하므로 회로적으로 다소 복잡해지며 비용면에서도 증가하게 된다.However, an increase in the number of switches means an increase in driving circuits for driving the switches, which increases the complexity of the circuit and increases the cost.
이와 같은 다중 레벨 인버터의 단점을 요약하면 다음과 같다.The disadvantages of such a multi-level inverter are summarized as follows.
- 스위치 수 증가에 따른 비용 증가 : 스위치 소자, 다이오드, 구동회로의 증가 및 다른 수동소자의 증가에 따른 인버터 제작비용의 증가.-Increasing cost due to the increase in the number of switches: Increasing the cost of inverters due to the increase in the number of switch elements, diodes, driving circuits and other passive elements
- 복잡한 회로 구조 : 많은 수의 스위칭 소자 및 부가회로가 요구되므로 회로가 복잡함.-Complex circuit structure: The circuit is complicated because a large number of switching elements and additional circuits are required.
- 복잡한 구현 알고리즘 : 다수의 스위치 제어를 위한 복잡한 스위칭 구동 알고리즘 및 전압 불평형 제어를 위한 별도의 알고리즘이 필요.Complex implementation algorithms: complex switching drive algorithms for multiple switch control and separate algorithms for voltage unbalance control.
따라서 비용이 증가되지 않고 기존의 인버터 소자들의 안정적 구조를 응용할 수 있으면서 인버터 구동에 있어서도 안정적 작동으로 양호한 상태의 출력을 얻을 수 있는 인버터가 절실히 요구된다.Therefore, there is an urgent need for an inverter capable of applying a stable structure of existing inverter elements without increasing costs and obtaining a good output with stable operation even when driving an inverter.
상기와 같은 문제점을 해소하기 위한 본 발명은 기존의 단상 풀브릿지 인버터의 3레벨의 교류출력파형을 동일한 스위치 숫자와 스위칭 속도로 제안된 토폴로지를 이용한 구조로, 4레벨, 5레벨 등의 고레벨의 교류 출력 파형을 가지게 하여, 전고조파외율(THD : Total Harmonic Distortion)을 향상시켜 전력품질을 향상시키는 인버터 시스템을 제공하는 것을 주요 목적으로 한다.The present invention for solving the above problems is a structure using the proposed topology of the three-level AC output waveform of the conventional single-phase full bridge inverter with the same number of switches and switching speed, the four-level, five-level AC, etc. The main object of the present invention is to provide an inverter system that has an output waveform and improves total harmonic distortion (THD: Total Harmonic Distortion) to improve power quality.
그리고 본 발명의 다른 목적은, 3레벨 인버터에서 사용되는 소자 구성들을 응용하여 사용할 수 있도록 함으로써 구성에 따른 비용의 증가를 방지하며, 반면 출력효율을 양호하도록 하는 것이다.Another object of the present invention is to prevent the increase in cost according to the configuration by making it possible to use the device configuration used in the three-level inverter, while improving the output efficiency.
아울러 본 발명의 또 다른 목적은 기본적인 4레벨 인버터의 구성에 소정의 소자들이 부가됨으로써 보다 안정적 출력을 얻을 수 있는 5레벨 인버터를 구성함으로써, 일부 구성 추가로 더욱 효율이 양호한 교류의 출력을 얻을 수 있도록 하는 것이다.In addition, another object of the present invention is to configure a five-level inverter that can obtain a more stable output by adding a predetermined element to the configuration of the basic four-level inverter, so as to obtain a more efficient AC output in addition to some configuration It is.
상기와 같은 목적을 달성하기 위한 본 발명은, 전원이 인가되는 전원형성부; 전원형성부로부터 공급되는 전원을 단속하는 스위치부; 및 스위치부의 작동으로 전원형성부의 전원이 인가되는 부하단을 포함하고, 전원형성부는 제1전원형성부, 제2전원형성부, 제3전원형성부로 이루어지고, 제1전원형성부 및 제2전원형성부 사이에 일측이 연결되고 타측이 부하단 제1폴과 연결되는 제1단자스위치; 제2전원형성부 및 제3전원형성부 사이에 일측이 연결되고 타측이 부하단 제1폴과 연결되는 제2단자스위치; 제1전원형성부의 다른 쪽과 일측이 연결되고 타측이 부하단 제2폴과 연결되는 역단자스위치; 및 제3전원형성부의 다른 쪽과 일측이 연결되고 타측이 부하단 제2폴과 연결되는 정단자스위치를 포함하는 것을 특징으로 하는 단상 풀브릿지 인버터를 제공한다.The present invention for achieving the above object, the power supply unit to which power is applied; A switch unit intermitting the power supplied from the power generation unit; And a load end to which power of the power generation unit is applied by the operation of the switch unit, wherein the power generation unit includes a first power generation unit, a second power generation unit, and a third power generation unit, and the first power generation unit and the second power source. A first terminal switch having one side connected between the forming parts and the other side connected to the load terminal first pole; A second terminal switch having one side connected between the second power generation unit and the third power generation unit and the other side connected to the load terminal first pole; A reverse terminal switch having one side connected to the other side of the first power generation unit and the other side connected to the load second second pole; And a positive terminal switch having one side connected to the other side of the third power generation unit and the other side connected to the load-side second pole.
이에 본 발명의 바람직한 실시예에 있어서, 상기 제1전원형성부의 양단 사이의 제1커패시터; 상기 제2전원형성부의 양단 사이의 제2커패시터; 및 상기 제3전원형성부의 양단 사이의 제3커패시터를 포함하는 것을 특징으로 한다.Thus, in a preferred embodiment of the present invention, the first capacitor between the both ends of the first power source forming portion; Second capacitors between both ends of the second power generation unit; And a third capacitor between both ends of the third power source forming unit.
또한 본 발명의 바람직한 실시예에 있어서, 부하단 양측 제1폴과 제2폴 사이에 전원이 인가되는 상태는, 상기 제2전원형성부의 전원과 제3전원형성부의 전원이 합해진 양의 전원이 인가되는 상태, 제3전원형성부의 양의 전원이 인가되는 상태, 제1전원형성부의 음의 전원이 인가되는 상태, 제1전원형성부의 전원과 제2전원형성부의 전원이 합해진 음의 전원이 인가되는 상태로 하는 4레벨 전원이 인가되는 상태를 이루는 것을 특징으로 한다.In addition, in a preferred embodiment of the present invention, the power is applied between the first pole and the second pole on both sides of the load terminal, the amount of power that the power of the second power source and the third power source is combined is applied. State, a state in which positive power is applied to the third power generation unit, a state in which negative power is applied in the first power generation unit, and a negative power in which the power of the first power generation unit is combined with the power of the second power generation unit is applied. It is characterized by forming a state in which the four-level power to the state is applied.
상기와 같이 구성되는 본 발명은 기존의 단상 풀 브릿지 인버터와 동일한 스위치소자 수, 동일한 스위칭 주파수를 가지면서 더 높은 전력품질을 가지는 출력전압 및 전류를 생산할 수 있는 효과가 있다.The present invention configured as described above has the effect of producing an output voltage and a current having a higher power quality while having the same number of switching elements and the same switching frequency as a conventional single-phase full bridge inverter.
이에 본 발명의 또 다른 효과는 3레벨 인버터에서 사용되는 소자 구성들을 응용하여 사용할 수 있도록 함으로써 구성에 따른 비용의 증가를 방지하고, 출력효율을 양호하게 된다.Therefore, another effect of the present invention is to enable the application of the device configuration used in the three-level inverter to prevent the increase in cost according to the configuration, the output efficiency is good.
나아가 본 발명의 또 다른 효과는 기본적인 4레벨 인버터의 구성에 소정의 소자들을 부가하여 안정적 출력을 얻을 수 있는 5레벨 인버터를 구성하는 것으로, 이처럼 일부 구성 추가로 더욱 효율이 양호한 교류의 출력을 얻을 수 있도록 하는 것이다.Further, another effect of the present invention is to configure a five-level inverter that can obtain a stable output by adding a predetermined element to the basic four-level inverter configuration, it is possible to obtain a more efficient AC output in addition to some configuration as described above. To ensure that
도 1은 본 발명에 따른 단상풀브릿지인버터의 기본 회로도이다.1 is a basic circuit diagram of a single-phase full bridge inverter according to the present invention.
도 2는 본 발명에 따른 도 1의 실시예 전원에서 단일의 전원에 복수 개의 커패시터들이 연결되는 실시예의 단상풀브릿지인버터의 기본 회로도이다.2 is a basic circuit diagram of an embodiment of a single-phase full bridge inverter in which a plurality of capacitors are connected to a single power source in the embodiment power supply of FIG. 1 according to the present invention.
도 3은 본 발명에 따른 단상풀브릿지인버터에 있어서 4레벨실시예 중에서 부하에 양의 최대값으로 인가되는 상태에 대한 실시예시 회로도이다.FIG. 3 is a circuit diagram of an exemplary embodiment in which a single-phase full bridge inverter according to the present invention is applied with a positive maximum value in a four-level embodiment.
도 4는 본 발명에 따른 단상풀브릿지인버터에 있어서 4레벨실시예 중에서 부하에 양의 중간 값으로 인가되는 상태에 대한 실시예시 회로도이다.4 is an exemplary circuit diagram of a state in which a single-phase full bridge inverter according to the present invention is applied with a positive intermediate value in a four-level embodiment.
도 5는 본 발명에 따른 단상풀브릿지인버터에 있어서 4레벨실시예 중에서 부하에 음의 중간 값으로 인가되는 상태에 대한 실시예시 회로도이다.FIG. 5 is a circuit diagram of an exemplary embodiment in which a single-phase full bridge inverter according to the present invention is applied to a load with a negative intermediate value among four level embodiments.
도 6은 본 발명에 따른 단상풀브릿지인버터에 있어서 4레벨실시예 중에서 부하에 음의 최하값으로 인가되는 상태에 대한 실시예시 회로도이다.FIG. 6 is an exemplary circuit diagram of a state in which a single negative full bridge inverter is applied to a load as a negative lowest value among four level embodiments.
도 7은 본 발명에 따른 단상풀브릿지인버터에 있어서 4레벨실시예에 의해 검출되는 부하단의 전압파형과 필터링된 파형에 대한 그래프이다.7 is a graph of the voltage waveform and the filtered waveform of the load stage detected by the four-level embodiment in the single-phase full bridge inverter according to the present invention.
도 8은 본 발명에 따른 단상풀브릿지인버터에 있어서 5레벨실시예 중에서 부하에 양의 최대값으로 인가되는 상태에 대한 실시예시 회로도이다.FIG. 8 is a circuit diagram of an exemplary embodiment in which a single-phase full bridge inverter according to the present invention is applied with a positive maximum value in a five-level embodiment.
도 9는 본 발명에 따른 단상풀브릿지인버터에 있어서 5레벨실시예 중에서 부하에 양의 중간 값으로 인가되는 상태에 대한 실시예시 회로도이다.FIG. 9 is an exemplary circuit diagram of a state in which a single-phase full bridge inverter according to the present invention is applied to a load as a positive intermediate value among five level embodiments.
도 10은 본 발명에 따른 단상풀브릿지인버터에 있어서 5레벨실시예 중에서 부하 양단자 사이에 연결된 스위치에 의해 양 전압으로부터 "0" 전압을 이루는 상태에 대한 실시예시 회로도이다.FIG. 10 is a circuit diagram of an exemplary embodiment in which a single-phase full bridge inverter according to the present invention forms a "0" voltage from both voltages by a switch connected between both terminals of a load in a five-level embodiment.
도 11은 본 발명에 따른 단상풀브릿지인버터에 있어서 5레벨실시예 중에서 부하 양단자 사이에 연결된 스위치에 의해 음 전압으로부터 "0" 전압을 이루는 상태에 대한 실시예시 회로도이다.FIG. 11 is an exemplary circuit diagram of a state in which a zero voltage is formed from a negative voltage by a switch connected between both terminals of a load in a five-phase embodiment in the single-phase full bridge inverter according to the present invention.
도 12는 본 발명에 따른 단상풀브릿지인버터에 있어서 5레벨실시예 중에서 부하에 음의 중간 값으로 인가되는 상태에 대한 실시예시 회로도이다.FIG. 12 is a circuit diagram of an exemplary embodiment of a state in which a single intermediate full bridge inverter is applied to a load as a negative intermediate value among five level embodiments. FIG.
도 13은 본 발명에 따른 단상풀브릿지인버터에 있어서 5레벨실시예 중에서 부하에 음의 최하값으로 인가되는 상태에 대한 실시예시 회로도이다.FIG. 13 is an exemplary circuit diagram of a state in which a single negative full bridge inverter according to the present invention is applied to a load as a negative lowest value among five level embodiments.
도 14는 본 발명에 따른 단상풀브릿지인버터에 있어서 5레벨실시예에 의해 검출되는 부하단의 전압파형과 필터링된 파형에 대한 그래프이다.14 is a graph of the voltage waveform and the filtered waveform of the load stage detected by the five-level embodiment in the single-phase full bridge inverter according to the present invention.
도 15는 본 발명에 따른 단상풀브릿지인버터에 대한 제어 블럭도이다.15 is a control block diagram of a single-phase full bridge inverter according to the present invention.
도 16은 본 발명과 관련된 단상 풀브릿지 인버터의 개략적인 기능설명을 위한 예시도이다.16 is an exemplary view for explaining a schematic function of a single-phase full bridge inverter according to the present invention.
도 17은 일반적인 단상 풀브릿지 인버터의 동작에 대한 예시도이다.17 is an exemplary view of the operation of a typical single-phase full bridge inverter.
도 18은 도 17로 형성된 인버터의 상태표의 예시도이다.18 is an exemplary diagram of a state table of the inverter formed of FIG. 17.
이하 첨부되는 도면을 참조하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail.
즉 본 발명에 따른 향상된 전력품질을 제공하는 단상 풀브릿지 인버터(10)는 첨부된 도 1 내지 도 15 등에서와 같이, 전원이 부하에 인가되는 전원형성부와, 전원형성부로부터 공급되는 전원을 단속하는 스위치부 등이 구성된다. 그리고 스위치부의 작동으로 전원형성부의 전원이 부하단(11)에 인가되는 것이다.That is, the single-phase full bridge inverter 10 which provides improved power quality according to the present invention may interrupt the power supply unit to which power is applied to the load, and the power supplied from the power supply unit, as shown in FIGS. 1 to 15. A switch unit or the like is configured. Then, the power of the power generation unit is applied to the load end 11 by the operation of the switch unit.
특히 본 발명에 따른 단상 풀브릿지 인버터(10)에서는, 전원형성부는 직렬로 연결되는 제1전원형성부(VDC_A), 제2전원형성부(VDC_B), 제3전원형성부(VDC_C) 등을 포함하는 것이다. 이처럼 마련된 제1전원형성부(VDC_A), 제2전원형성부(VDC_B), 제3전원형성부(VDC_C) 등과 연결된 스위치부의 작동으로 각 전원형성부들의 일부 전원이 조합되어 부하단에 각각 인가된다. 따라서 부하단에는 다수 레벨의 전원이 순차적으로 인가되는 것이며, 이에 본 발명의 풀브릿지 인버터는 스위칭 주파수를 가지면서 작동되어 안정적인 교류의 출력을 갖도록 하는 것이다. 즉 제1전원형성부(VDC_A), 제2전원형성부(VDC_B), 제3전원형성부(VDC_C) 등을 포함하여, 다중 레벨의 교류 출력을 얻을 수 있는 것이다.In particular, in the single-phase full bridge inverter 10 according to the present invention, the power generation unit includes a first power generation unit VDC_A, a second power generation unit VDC_B, a third power generation unit VDC_C, and the like, which are connected in series. It is. As a result of the operation of the switch unit connected to the first power generator VDC_A, the second power generator VDC_B, the third power generator VDC_C, and the like, some powers of the power generators are combined and applied to the load. . Therefore, a plurality of levels of power are sequentially applied to the load stage. Accordingly, the full bridge inverter of the present invention operates with a switching frequency to have a stable AC output. That is, a multi-level alternating current output including the first power generator VDC_A, the second power generator VDC_B, the third power generator VDC_C, and the like can be obtained.
이에 본 발명에서의 전원형성부, 즉 제1전원형성부(VDC_A), 제2전원형성부(VDC_B), 제3전원형성부(VDC_C) 등은, 도 1에서와 같이 다수의 전압원들과 다수의 커패시터들을 포함하여 이루어져 실시될 수도 있고, 도 2에서와 같이 단일의 전압원과 다수의 커패시터들을 포함하여 이루어져 실시될 수도 있을 것이다.Accordingly, the power generator of the present invention, that is, the first power generator VDC_A, the second power generator VDC_B, the third power generator VDC_C, etc., as shown in FIG. It may be implemented by including a capacitor of, may be implemented by including a single voltage source and a plurality of capacitors as shown in FIG.
이처럼 각 전원형성부들은 부하에 대해 전압이 인가되는 부분에서의 전압형성부분을 지칭하게 되므로, 결국 다수 커패시터들에 의해 형성되는 전압의 형성부분을 포함하여 지칭하게 될 것이다. 예를 보면 제1전원형성부(VDC_A)는 제1커패시터의 양단에서 부하측방향의 출력부분을 말하고, 제2전원형성부(VDC_B)는 제2커패시터의 양단에서 부하측방향의 출력부분을 말하며, 제3전원형성부(VDC_C)는 제3커패시터의 양단에서 부하측방향의 출력부분을 말하게 되는 것으로 규정한다.As described above, each power source forming unit refers to a voltage forming unit in a portion where a voltage is applied to the load, and thus will include a forming portion of a voltage formed by a plurality of capacitors. For example, the first power generation unit VDC_A refers to an output portion in a load side direction at both ends of the first capacitor, and the second power generation unit VDC_B refers to an output portion in a load side direction at both ends of the second capacitor. The third power generation unit VDC_C defines the output portion in the load side direction at both ends of the third capacitor.
즉 전원형성부의 예를 보면, 도 1의 실시예에서는 제1전원형성부(VDC_A)가 제1전압원(Vdc_1)과 병렬로 연결된 제1커패시터(C1)로 이루어져 실시되고, 제2전원형성부(VDC_B)는 제2전압원(Vdc_2)과 병렬로 연결되는 제2커패시터(C2)로 이루어져 실시되며, 나아가 제3전원형성부(VDC_C)가 제3전압원(Vdc_2)과 병렬로 연결되는 제3커패시터(C3)로 이루어져 실시되는 것이다. 따라서 도 1의 실시예에 따른 전원형성부에서 제1전원형성부(VDC_A)는 제1전압원(Vdc_1)과 병렬로 연결되는 제1커패시터(C1)에서 부하측으로 출력되는 양단에서 인가되는 전원이 되고, 제2전원형성부(VDC_B)는 제2전압원(Vdc_2)과 병렬로 연결되는 제2커패시터(C2)에서 부하측으로 출력되는 양단에서 인가되는 전원이 되며, 제3전원형성부(VDC_C)는 제3전압원(Vdc_3)과 병렬로 연결되는 제3커패시터(C3)에서 부하측으로 출력되는 양단에서 인가되는 전원이 된다.That is, in the example of the power generation unit, in the embodiment of FIG. 1, the first power generation unit VDC_A is implemented by the first capacitor C1 connected in parallel with the first voltage source Vdc_1, and the second power generation unit ( VDC_B consists of a second capacitor C2 connected in parallel with the second voltage source Vdc_2, and furthermore, a third capacitor (VDC_C) connected in parallel with the third voltage source Vdc_2. It is made of C3). Therefore, in the power generator according to the embodiment of FIG. 1, the first power generator VDC_A is a power applied from both ends output from the first capacitor C1 connected in parallel with the first voltage source Vdc_1 to the load side. The second power generator VDC_B is a power applied from both ends output from the second capacitor C2 connected in parallel with the second voltage source Vdc_2 to the load side, and the third power generator VDC_C The third capacitor C3 connected in parallel with the three voltage sources Vdc_3 is a power source applied at both ends output to the load side.
이처럼 전원형성부는 개별 커패시터들에서 부하측으로 인가되는 전원이 형성되는 부분을 포함하고, 다수의 전압원이 형성될 경우의 실시예로, 대체로 일반전원, 태양광, 풍력, 조력, 충전전력 등과 같이 다양한 수단에 의해 공급되는 전압원의 실시예에 알맞을 것이다.As such, the power generation unit includes a portion in which power is applied to the load side from the individual capacitors, and in the case where a plurality of voltage sources are formed, it is generally various means such as general power, solar, wind, tidal power, charging power, and the like. It will be suitable for the embodiment of the voltage source supplied by.
다음으로 전원형성부의 예를 보면, 도 2의 실시예에서는 단일의 전압원과 다수의 커패시터들로 이루어져 실시될 수 있을 것이며, 도 2의 예에서는 제1커패시터(C1), 제2커패시터(C2), 제3커패시터(C3) 등이 서로 직렬로 연결되고, 이들 직렬로 연결되는 세 개의 커패시터들이 단일 전압원과 병렬결합되는 구성이 될 것이다.Next, an example of the power generation unit may be implemented by a single voltage source and a plurality of capacitors in the embodiment of FIG. 2. In the example of FIG. 2, the first capacitor C1, the second capacitor C2, The third capacitor C3 and the like are connected in series with each other, and the three capacitors connected in series will be configured to be coupled in parallel with a single voltage source.
즉 전원형성부의 구성예로 제1전원형성부(VDC_A)는 제1커패시터(C1)에서 부하측으로 출력되는 양단에서 인가되는 전원이 되고, 제2전원형성부(VDC_B)는 제2커패시터(C2)에서 부하측으로 출력되는 양단에서 인가되는 전원이 되며, 제3전원형성부(VDC_C)는 제3커패시터(C3)에서 부하측으로 출력되는 양단에서 인가되는 전원이 될 것이다. 이와 같은 단일 전원으로 된 경우는 일반적으로 공급되는 전원의 구성 또는 충전전력의 구성 등이 단일로 이루어지는 경우의 실시예일 것이다.That is, as an example of the configuration of the power generator, the first power generator VDC_A is a power applied from both ends output from the first capacitor C1 to the load side, and the second power generator VDC_B is the second capacitor C2. Is the power applied from both ends output to the load side, and the third power generation unit (VDC_C) will be the power applied from both ends output to the load side from the third capacitor (C3). In the case of such a single power source, it will be an embodiment of a case where a configuration of a power supply or a charging power is generally provided in a single configuration.
이처럼 본 발명에서 실시되는 전원형성부는 단일 또는 복수로 하여 전압원(Vdc, 또는 Vdc_1, Vdc_2, Vdc_3 등)과 함께 다중 레벨의 실시를 위한 복수 커패시터들이 포함되어 이루어지고, 이에 개별 커패시터들의 양단에서 인가되는 전원으로 하여 복수의 전원형성부들을 이루게 되어 부하단에 공급되도록 실시되는 것이다.As described above, the power generation unit implemented in the present invention includes a plurality of capacitors for implementing a multi-level together with a voltage source (Vdc, or Vdc_1, Vdc_2, Vdc_3, etc.) in a single or plural number, and applied to both ends of individual capacitors. As a power source, a plurality of power forming units are formed to be supplied to a load end.
이처럼 실시되는 전원형성부의 실시양태는 설치 상황에 따라 여러 개의 독립된 직류전원을 사용하거나 또는 직렬로 연결된 커패시터를 사용하도록 하여 개별 전압형성부를 구성하게 되는 것이다.According to the embodiment of the power generation unit implemented as described above, a plurality of independent DC power sources or capacitors connected in series may be used to configure individual voltage generation units according to the installation situation.
그리고 대체로 단상 풀브릿지 인버터는 도 16, 도 17 등의 예시에서와 같이 단일 직류입력전원으로부터 단상 교류 출력전압을 발생시켜 부하에 공급하는 기능을 갖는다.In general, the single-phase full bridge inverter has a function of generating a single-phase AC output voltage from a single DC input power supply and supplying it to a load as in the examples of FIGS. 16 and 17.
이러한 단상 풀브릿지 인버터의 동작을 살펴보면, 단상 풀브릿지 인버터의 교류 출력전압 파형은 양방향 전환스위치 Sa와 Sb를 제어하는 방법에 따라 정해진다. 즉 단상 풀브릿지 인버터로 도 16, 도 17 등의 예시를 보면 4개의 스위치와 두 개의 폴(pole)로 구성되며, 출력 전압 Vo는 두 폴(ploe) 전압 Va와 Vb의 차이와 같다. 즉 스위치 Sa와 Sb의 접점 상태에 따라 부하에 공급할 수 있는 출력전압은 도 18에서와 같이 출력될 것이다. 이처럼 도 16 내지 도 18 등에서와 같은 단상 풀브릿지 인버터는 단일 직류입력 전원으로부터 교류 파형을 만들어 내는데, 이때 교류 출력 전압은 +Vdc, 0, -Vdc의 3가지 출력 레벨을 가진다.Looking at the operation of such a single-phase full bridge inverter, the AC output voltage waveform of the single-phase full bridge inverter is determined according to the method of controlling the bidirectional switching switch Sa and Sb. That is, in the example of FIGS. 16 and 17 as a single-phase full bridge inverter, four switches and two poles are included, and the output voltage Vo is equal to the difference between the two pole voltages Va and Vb. That is, the output voltage that can be supplied to the load according to the contact state of the switches Sa and Sb will be output as shown in FIG. As described above, the single-phase full bridge inverter as shown in FIGS. 16 to 18 generates an AC waveform from a single DC input power source, where the AC output voltage has three output levels of + Vdc, 0, and -Vdc.
이러한 3가지 출력 레벨을 갖는 단상 풀브릿지 인버터와 달리 다중 출력 레벨을 갖는 인버터를 구성한 것이다. 이에 다중 레벨 인버터는 3레벨 인버터에 비해 몇 가지 장점을 가지고 있으며 이를 요약하면 다음과 같다.Unlike the single-phase full bridge inverter having three output levels, the inverter has multiple output levels. The multi-level inverter has some advantages over the three-level inverter, and the summary is as follows.
- 전압레벨 증가 : 3레벨 인버터는 0, ±Vdc의 전압 레벨만 가지지만 다중 레벨 인버터는 0 또는 ±Vdc, ±2Vdc, ..., ±mVdc가 가능함으로 출력 전압의 레벨수가 증가하여 낮은 스위칭 주파수로 고품질의 출력전압을 얻을 수 있다.-Increased voltage level: 3 level inverter has only 0, ± Vdc voltage level, but multi-level inverter is capable of 0 or ± Vdc, ± 2Vdc, ..., ± mVdc. High quality output voltage can be obtained.
- 낮은 전압정격의 스위치를 이용한 고전압 출력 가능 : 스위치들이 직렬로 연결되므로 각각의 스위치에 요구되는 전압정격이 낮아진다.-High voltage output with low voltage rating switch: Since the switches are connected in series, the voltage rating required for each switch is lowered.
- 스위치의 dv/dt가 낮아지므로 EMC의 발생이 적다.-The dv / dt of the switch is low, so there is little occurrence of EMC.
- 다양한 스위치 제어를 통한 다양한 제어기법이 사용가능하다.-Various control methods through various switch control are available.
이러한 본 발명에 따른 향상된 전력품질을 제공하는 단상풀브릿지인버터(10)의 스위치부에 대한 상세 구성을 보면, 우선 도 3 내지 도 7 등에서와 같이 4레벨 단상 풀브릿지 인버터에서의 스위치부 구성은 다음과 같이 마련될 수 있다.Referring to the detailed configuration of the switch unit of the single-phase full bridge inverter 10 that provides the improved power quality according to the present invention, first, the configuration of the switch unit in the four-level single-phase full bridge inverter as shown in Figs. It may be prepared as follows.
우선 제1전원형성부(VDC_A) 및 제2전원형성부(VDC_B)와의 사이에 일측이 연결되고 타측이 부하단(11) 제1폴(pole1)과 연결되는 제1단자스위치(SW1)가 마련된다. 이러한 제1단자스위치(SW1)를 통하여 제1전원형성부(VDC_A)의 단독 전원, 또는 제2전원형성부(VDC_B)와 제3전원형성부(VDC_C)의 합의 전원이 부하단에 인가되도록 한다.First, a first terminal switch SW1 having one side connected between the first power generator VDC_A and the second power generator VDC_B and the other side connected to the first pole 1 of the load terminal 11 is provided. do. Through this first terminal switch SW1, a single power source of the first power generator VDC_A, or a sum of powers of the second power generator VDC_B and the third power generator VDC_C is applied to the load terminal. .
다음으로 제2전원형성부(VDC_B) 및 제3전원형성부(VDC_C)와의 사이에 일측이 연결되고 타측이 부하단(11) 제1폴(pole1)과 연결되는 제2단자스위치(SW2)가 마련된다. 이러한 제2단자스위치(SW2)를 통하여 제1전원형성부(VDC_A)와 제2전원형성부(VDC_B)의 합의 전원, 또는 제3전원형성부(VDC_C)의 단독 전원이 부하단에 인가되도록 한다.Next, a second terminal switch SW2 having one side connected between the second power generation unit VDC_B and the third power generation unit VDC_C and the other side connected to the load pole 11 and the first pole 1 is connected. Prepared. Through the second terminal switch SW2, the power of the sum of the first power generator VDC_A and the second power generator VDC_B or the single power of the third power generator VDC_C is applied to the load terminal. .
그리고 제1전원형성부(VDC_A)의 다른 쪽과 일측이 연결되고 타측이 부하단(11) 제2폴(pole2)과 연결되는 역단자스위치(SW3)가 마련된다. 이러한 역단자스위치(SW3)를 통하여 제1전원형성부(VDC_A)의 단독 전원, 또는 제1전원형성부(VDC_A)와 제2전원형성부(VDC_B)의 합의 전원이 부하단에 인가되도록 한다.In addition, a reverse terminal switch SW3 having one side connected to the other side of the first power generation unit VDC_A and the other side connected to the second pole 2 of the load terminal 11 is provided. Through the reverse terminal switch SW3, a single power source of the first power generator VDC_A or a sum of powers of the first power generator VDC_A and the second power generator VDC_B is applied to the load terminal.
나아가 제3전원형성부(VDC_C)의 다른 쪽과 일측이 연결되고 타측이 부하단(11) 제2폴(pole2)과 연결되는 정단자스위치(SW4)가 마련된다. 이러한 정단자스위치(SW4)를 통하여 제2전원형성부(VDC_B)와 제3전원형성부(VDC_C)의 합의 전원, 또는 제3전원형성부(VDC_C)의 단독 전원이 부하단에 인가되도록 한다.Further, a positive terminal switch SW4 is connected to one side of the third power generation unit VDC_C, and the other side thereof is connected to the load pole 11 and the second pole 2. Through the positive terminal switch SW4, the power of the sum of the second power generator VDC_B and the third power generator VDC_C or the single power of the third power generator VDC_C is applied to the load terminal.
이와 같이 구비되는 본 발명에 따른 인버터는 제1전원형성부(VDC_A), 제2전원형성부(VDC_B), 제3전원형성부(VDC_C) 등과 같이 총 3개의 전원형성부가 구비되고, 이러한 총 3개의 전원형성부들 사이에 4개의 스위치부재가 기본적으로 연결되는 구성을 갖게 된다.As described above, the inverter according to the present invention includes three power generation units in total, such as the first power generation unit VDC_A, the second power generation unit VDC_B, and the third power generation unit VDC_C. Four switch members are basically connected between the four power supply units.
그리하여 스위치부재들의 제어 작동여부에 따라, 총 3개의 전원형성부 전원이 조합되는 여러 전압상태로 부하에 전압인가가 이루어지도록 하는 것이다. 이로 인하여 안정적 형태를 갖는 교류의 출력을 갖게 되는 것이다.Thus, depending on whether or not the control operation of the switch member, the voltage is applied to the load in a plurality of voltage state in which a total of three power source forming unit power supplies are combined. This results in an AC output having a stable form.
이를 위한 세부 구성으로 첨부된 도면에서와 같이, 상기 제1전원형성부(VDC_A)의 양단 사이의 제1커패시터(C1), 상기 제2전원형성부(VDC_B)의 양단 사이의 제2커패시터(C2) 및 상기 제3전원형성부(VDC_C)의 양단 사이의 제3커패시터(C3) 등이 함께 마련된다. 그리하여 이들 커패시터들에 의해 전원이 안정적으로 공급되어 교류발생 작동이 원활하게 된다. 아울러 필요한 경우 다양한 전자회로용 소재들이 더 부가되어 회로를 안정적으로 구성할 수도 있을 것이다.As shown in the accompanying drawings in a detailed configuration for this purpose, the first capacitor (C1) between the both ends of the first power source forming unit (VDC_A), the second capacitor (C2) between both ends of the second power source forming unit (VDC_B) ) And a third capacitor C3 and the like between both ends of the third power generation unit VDC_C. Thus, power is stably supplied by these capacitors, so that the AC generation operation is smooth. In addition, if necessary, various electronic circuit materials may be added to form a stable circuit.
이처럼 구성되는 본 발명에 따른 4-Level 단상 풀브릿지 인버터는 첨부된 도면의 예에서와 같이 4EA의 레벨을 가지는 직류입력전원으로부터 4개의 스위치를 이용하여 단상 교류 출력전압을 발생하여 부하에 공급하는 것이다.The 4-level single-phase full bridge inverter according to the present invention configured as described above is to generate a single-phase AC output voltage using four switches from a DC input power source having a level of 4EA and supply it to a load as in the accompanying drawings. .
이와 같은 본 발명에 따른 4-Level 단상 풀브릿지 인버터는 입력측의 3EA 직류입력에 의해 4EA 입력전압레벨을 가지는데, 이때 교류 출력 전압은 (VDC_B + VDC_C), (VDC_C), -(VDC_A), -(VDC_A + VDC_B)와 같은 4가지 출력 레벨을 가진다. 이에 대한 파형은 도 7과 같이 이루게 된다.The 4-level single-phase full bridge inverter according to the present invention has a 4EA input voltage level by the 3EA DC input of the input side, wherein the AC output voltage is (VDC_B + VDC_C), (VDC_C),-(VDC_A),- It has four output levels, such as (VDC_A + VDC_B). The waveform for this is as shown in FIG.
이에 본 발명에 따른 향상된 전력품질을 제공하는 단상 풀브릿지 인버터(10)에서 실시되는 양태로써, 전압의 상태가 총 4가지로 이루어지는 4레벨 단상 풀브릿지 인버터의 실시예를 먼저 살펴보기로 한다.Thus, as an embodiment implemented in the single-phase full bridge inverter 10 providing improved power quality according to the present invention, an embodiment of a four-level single-phase full bridge inverter having a total of four states of voltage will be described first.
특히 이와 같은 본 발명에 따른 인버터에 의하여 부하단(11) 양측 제1폴(pole1)과 제2폴(pole2) 사이에 전원이 인가되는 상태는, 상기 제2전원형성부(VDC_B)의 전원과 제3전원형성부(VDC_C)의 전원이 합해진 양의 전원이 인가되는 상태, 제3전원형성부(VDC_C)의 양의 전원이 인가되는 상태, 제1전원형성부(VDC_A)의 음의 전원이 인가되는 상태, 제1전원형성부(VDC_A)의 전원과 제2전원형성부(VDC_B)의 전원이 합해진 음의 전원이 인가되는 상태 등 총 4레벨로 전원이 인가되는 상태를 이루게 되는 것이다.In particular, the state in which the power is applied between the first pole (pole1) and the second pole (pole2) on both sides of the load stage 11 by the inverter according to the present invention, the power of the second power generation unit (VDC_B) The positive power of the third power generator VDC_C is applied, the positive power of the third power generator VDC_C is applied, and the negative power of the first power generator VDC_A The power is applied to a total of four levels, such as a state of being applied, a state of applying negative power in which the power of the first power generation unit VDC_A and the power of the second power generation unit VDC_B are combined.
이처럼 각 레벨별로 전원이 부하단에 인가되는 예를 살펴보면 다음과 같다.Looking at the example that the power is applied to the load for each level as follows.
우선 상기 스위치부의 제1단자스위치(SW1), 제2단자스위치(SW2), 역단자스위치(SW3), 정단자스위치(SW4)를 제어하는 인버터제어부(21)가 마련되는 것으로, 이러한 인버터제어부(21)의 제어에 의하여 각 스위치부재들이 작동하게 된다.First, an inverter control unit 21 for controlling the first terminal switch SW1, the second terminal switch SW2, the reverse terminal switch SW3, and the positive terminal switch SW4 of the switch unit is provided. Each switch member is operated by the control of 21).
그리하여 인버터제어부(21)의 제어에 의하여, 제1단자스위치(SW1)와 정단자스위치(SW4) 측으로 인버터제어부(21)에서 업펄스의 제어신호(예 : 스위치 "ON" 신호)를 전송하게 될 것이다. 그리하여 제1단자스위치(SW1)와 정단자스위치(SW4)가 동작되는 것이다. 이로 인하여 도 3에서와 같이 부하단(11) 제1폴(pole1)과 제2폴(pole2)에 제2전원형성부(VDC_B)의 전원과 제3전원형성부(VDC_C)의 전원이 합해진 양의 전원이 인가되는 것이다.Thus, under the control of the inverter control unit 21, an up-pulse control signal (for example, a switch "ON" signal) is transmitted from the inverter control unit 21 to the first terminal switch SW1 and the positive terminal switch SW4. will be. Thus, the first terminal switch SW1 and the positive terminal switch SW4 are operated. As a result, as shown in FIG. 3, the power of the second power generator VDC_B and the power of the third power generator VDC_C are added to the first pole 1 and the second pole 2 of the load terminal 11. Power is applied.
예를 들면 제1전원형성부(VDC_A)가 100V이고, 제2전원형성부(VDC_B)가 200V이며, 제3전원형성부(VDC_C)가 100V로 설정될 경우를 예로 설명하면 다음과 같이 실시 될 수 있을 것이다. For example, a case where the first power generator VDC_A is 100V, the second power generator VDC_B is 200V, and the third power generator VDC_C is set to 100V will be described as follows. Could be.
즉 도 3에서처럼 제어에 의해 제1단자스위치(SW1), 정단자스위치(SW4) 등이 작동되어 부하단(11) 양측의 제1폴(pole1)과 제2폴(pole2) 사이에는 제2전원형성부(VDC_B)와 제3전원형성부(VDC_C)로부터 인가되는 전원이 합해진 양의 300V의 전원이 인가될 것이다. 즉 양의 최대값 전원으로 부하단 양측에 인가될 것이다.That is, as shown in FIG. 3, the first terminal switch SW1, the positive terminal switch SW4, and the like are operated by the control, so that a second power supply is provided between the first pole 1 and the second pole 2 on both sides of the load terminal 11. The power of 300V in which the power applied from the forming unit VDC_B and the third power forming unit VDC_C is combined will be applied. That is, it will be applied to both sides of the load stage with a positive maximum power supply.
다음으로 인버터제어부(21)의 제어에 의하여, 제2단자스위치(SW2)와 정단자스위치(SW4) 측으로 인버터제어부(21)에서 업펄스의 제어신호(예 : 스위치 "ON" 신호)를 전송하게 될 것이다. 그리하여 제2단자스위치(SW2)와 정단자스위치(SW4)가 동작되는 것이다. 이로 인하여 도 4에서와 같이 부하단(11) 제1폴(pole1)과 제2폴(pole2)에 제3전원형성부(VDC_C)의 양의 전원이 인가되는 것이다.Next, under the control of the inverter controller 21, the inverter controller 21 transmits a control signal of an up-pulse (for example, a switch "ON" signal) to the second terminal switch SW2 and the positive terminal switch SW4. Will be. Thus, the second terminal switch SW2 and the positive terminal switch SW4 are operated. Therefore, as shown in FIG. 4, the positive power of the third power generation unit VDC_C is applied to the first pole 1 and the second pole 2 of the load terminal 11.
예를 들면 제1전원형성부(VDC_A)가 100V이고, 제2전원형성부(VDC_B)가 200V이며, 제3전원형성부(VDC_C)가 100V로 설정된 경우에, 도 4에서처럼 제어에 의해 제2단자스위치(SW2), 정단자스위치(SW4) 등이 작동되어 부하단(11) 양측의 제1폴(pole1)과 제2폴(pole2) 사이에는 제3전원형성부(VDC_C)로부터 인가되는 전원인 양의 100V의 전원이 인가될 것이다. 즉 양의 중간값 전원으로 부하단 양측에 인가될 것이다.For example, when the first power generator VDC_A is 100V, the second power generator VDC_B is 200V, and the third power generator VDC_C is set to 100V, as shown in FIG. The terminal switch SW2, the positive terminal switch SW4, and the like are operated so that the power applied from the third power generation unit VDC_C between the first pole 1 and the second pole 2 on both sides of the load terminal 11. A positive 100V supply will be applied. That is, it will be applied to both sides of the load stage with a positive medium value power supply.
그리고 인버터제어부(21)의 제어에 의하여, 제1단자스위치(SW1)와 역단자스위치(SW3) 측으로 인버터제어부(21)에서 업펄스의 제어신호(예 : 스위치 "ON" 신호)를 전송하게 될 것이다. 그리하여 제1단자스위치(SW1)와 역단자스위치(SW3)가 동작되는 것이다. 이로 인하여 도 5에서와 같이 부하단(11) 제1폴(pole1)과 제2폴(pole2)에 제1전원형성부(VDC_A)의 음의 전원이 인가되는 것이다.In addition, under the control of the inverter controller 21, an up-pulse control signal (for example, a switch “ON” signal) is transmitted from the inverter controller 21 to the first terminal switch SW1 and the reverse terminal switch SW3. will be. Thus, the first terminal switch SW1 and the reverse terminal switch SW3 are operated. Therefore, as shown in FIG. 5, the negative power of the first power generator VDC_A is applied to the first pole 1 and the second pole 2 of the load terminal 11.
예를 들면 제1전원형성부(VDC_A)가 100V이고, 제2전원형성부(VDC_B)가 200V이며, 제3전원형성부(VDC_C)가 100V로 설정된 경우에, 도 5에서처럼 제어에 의해 제1단자스위치(SW1), 역단자스위치(SW3) 등이 작동되어 부하단(11) 양측의 제1폴(pole1)과 제2폴(pole2) 사이에는 제1전원형성부(VDC_A)로부터 인가되는 전원인 음의 100V의 전원이 인가될 것이다. 즉 음의 중간값 전원으로 부하단 양측에 인가될 것이다.For example, when the first power generation unit VDC_A is 100V, the second power generation unit VDC_B is 200V, and the third power generation unit VDC_C is set to 100V, as shown in FIG. The terminal switch SW1, the reverse terminal switch SW3, and the like are operated so that the power applied from the first power generation unit VDC_A is provided between the first pole 1 and the second pole 2 on both sides of the load terminal 11. A negative 100V supply will be applied. That is, they will be applied to both sides of the load with a negative median supply.
아울러 인버터제어부(21)의 제어에 의하여, 제2단자스위치(SW2)와 역단자스위치(SW3) 측으로 인버터제어부(21)에서 업펄스의 제어신호(예 : 스위치 "ON" 신호)를 전송하게 될 것이다. 그리하여 제2단자스위치(SW2)와 역단자스위치(SW3)가 동작되는 것이다. 이로 인하여 도 6에서와 같이 부하단(11) 제1폴(pole1)과 제2폴(pole2)에 제1전원형성부(VDC_A)의 전원과 제2전원형성부(VDC_B)의 전원이 합해진 음의 전원이 인가되는 것이다.In addition, under the control of the inverter control unit 21, the uplink control signal (for example, a switch "ON" signal) is transmitted from the inverter control unit 21 to the second terminal switch SW2 and the reverse terminal switch SW3. will be. Thus, the second terminal switch SW2 and the reverse terminal switch SW3 are operated. As a result, as shown in FIG. 6, the power of the first power generator VDC_A and the power of the second power generator VDC_B are added to the first pole 1 and the second pole 2 of the load terminal 11. Power is applied.
예를 들면 제1전원형성부(VDC_A)가 100V이고, 제2전원형성부(VDC_B)가 200V이며, 제3전원형성부(VDC_C)가 100V로 설정된 경우에, 도 6에서처럼 제어에 의해 제2단자스위치(SW2), 역단자스위치(SW3) 등이 작동되어 부하단(11) 양측의 제1폴(pole1)과 제2폴(pole2) 사이에는 제1전원형성부(VDC_A)와 제2전원형성부(VDC_B)로부터 인가되는 전원이 합해진 음의 300V의 전원이 인가될 것이다. 즉 음의 최대값 전원으로 부하단 양측에 인가될 것이다.For example, when the first power generator VDC_A is 100V, the second power generator VDC_B is 200V, and the third power generator VDC_C is set to 100V, as shown in FIG. The terminal switch SW2 and the reverse terminal switch SW3 are operated so that the first power source forming unit VDC_A and the second power source are disposed between the first pole 1 and the second pole 2 on both sides of the load terminal 11. The negative power of 300V to which the power applied from the forming unit VDC_B is added will be applied. That is, it will be applied to both sides of the load stage with a negative maximum power supply.
이와 같은 전압의 4레벨 형성상태에 대한 실시예에 있어서, 각 전압형성상태에 따른 회로 형성상태의 예를 살펴보면 다음과 같다.In the embodiment of the four-level formation state of such a voltage, an example of the circuit formation state according to each voltage formation state is as follows.
즉 상기 스위치부의 제1단자스위치(SW1), 제2단자스위치(SW2), 역단자스위치(SW3), 정단자스위치(SW4)를 제어하는 인버터제어부(21)에 의하여 각 스위치들이 작동될 것이다.That is, each switch will be operated by the inverter controller 21 controlling the first terminal switch SW1, the second terminal switch SW2, the reverse terminal switch SW3, and the positive terminal switch SW4 of the switch unit.
이에 도 3에서와 같이 인버터제어부(21)의 제어로 제1단자스위치(SW1)와 정단자스위치(SW4)가 작동하면 부하단(11) 일측의 제1단자스위치(SW1)와 부하단(11) 타측의 정단자스위치(SW4)와 함께 제2전원형성부(VDC_B)와 제3전원형성부(VDC_C)가 포함된 전류흐름의 회로를 형성하게 된다. 따라서 부하단(11) 제1폴(pole1)과 제2폴(pole2)에 제2전원형성부(VDC_B)의 전원과 제3전원형성부(VDC_C)의 전원이 합해진 양의 전원이 인가되는 것이다.Accordingly, as shown in FIG. 3, when the first terminal switch SW1 and the positive terminal switch SW4 operate under the control of the inverter control unit 21, the first terminal switch SW1 and the load terminal 11 on one side of the load terminal 11 are operated. A current flow circuit including the second power generator VDC_B and the third power generator VDC_C together with the other terminal switch SW4 is formed. Therefore, the power of the second power generator VDC_B and the power of the third power generator VDC_C are applied to the first pole 1 and the second pole 2 of the load terminal 11. .
그리고 도 4에서와 같이 제2단자스위치(SW2)와 정단자스위치(SW4)가 작동하면 부하단(11) 일측의 제2단자스위치(SW2)와 부하단(11) 타측의 정단자스위치(SW4)와 함께 제3전원형성부(VDC_C)가 포함된 전류흐름의 회로를 형성하게 된다. 그리하여 부하단(11) 제1폴(pole1)과 제2폴(pole2)에 제3전원형성부(VDC_C)의 양의 전원이 인가되는 것이다.As shown in FIG. 4, when the second terminal switch SW2 and the positive terminal switch SW4 are operated, the second terminal switch SW2 on one side of the load terminal 11 and the positive terminal switch SW4 on the other side of the load terminal 11. ) And a circuit of the current flow including the third power generator VDC_C. Thus, the positive power of the third power generation unit VDC_C is applied to the first pole 1 and the second pole 2 of the load terminal 11.
또한 도 5에서와 같이 제1단자스위치(SW1)와 역단자스위치(SW3)가 작동하면 부하단(11) 일측의 제1단자스위치(SW1)와 부하단(11) 타측의 역단자스위치(SW3)와 함께 제1전원형성부(VDC_A)가 포함된 전류흐름의 회로를 형성하게 된다. 이로써 부하단(11) 제1폴(pole1)과 제2폴(pole2)에 제1전원형성부(VDC_A)의 음의 전원이 인가되는 것이다.In addition, as shown in FIG. 5, when the first terminal switch SW1 and the reverse terminal switch SW3 are operated, the first terminal switch SW1 on one side of the load terminal 11 and the reverse terminal switch SW3 on the other side of the load terminal 11. ) And a circuit of the current flow including the first power generator VDC_A. As a result, the negative power of the first power generator VDC_A is applied to the first pole 1 and the second pole 2 of the load terminal 11.
나아가 도 6에서와 같이 제2단자스위치(SW2)와 역단자스위치(SW3)가 작동하면 부하단(11) 일측의 제2단자스위치(SW2)와 부하단(11) 타측의 역단자스위치(SW3)와 함께 제1전원형성부(VDC_A)와 제2전원형성부(VDC_B)가 포함된 전류흐름의 회로를 형성하게 된다. 따라서 부하단(11) 제1폴(pole1)과 제2폴(pole2)에 제1전원형성부(VDC_A)의 전원과 제2전원형성부(VDC_B)의 전원이 합해진 음의 전원이 인가되는 것이다.6, when the second terminal switch SW2 and the reverse terminal switch SW3 operate, the second terminal switch SW2 on one side of the load terminal 11 and the reverse terminal switch SW3 on the other side of the load terminal 11 are operated. ) And a circuit of the current flow including the first power generator VDC_A and the second power generator VDC_B. Therefore, a negative power obtained by adding the power of the first power generator VDC_A and the power of the second power generator VDC_B to the first pole 1 and the second pole 2 of the load terminal 11 is applied. .
이상에서와 같이 4레벨의 단상 풀브릿지 인버터의 작동에 있어서, 각 스위치들의 작동상태에 따라 3개의 전원형성부들이 부하단에 인가되는 전압의 인가상태가 다양하게 이루어질 수 있으며, 특히 도 7에서와 같이 안정적인 교류의 출력상태를 갖도록 구비될 수 있을 것이다.As described above, in the operation of the four-level single-phase full bridge inverter, depending on the operation state of each switch, the state of applying the voltage applied to the load of the three power forming units can be made in various ways, in particular in FIG. Likewise it may be provided to have a stable output state of the alternating current.
이처럼 본 발명에 따른 향상된 전력품질을 제공하는 단상풀브릿지인버터는 도 1 내지 도 7 등에서와 같이 VDC_A, VDC_B, VDC_C의 세 전압형성부의 전원과 4개의 기본 스위치가 포함되어 이루어진다. 즉 이러한 단상 풀브릿지 인버터에서 VDC_B 직류입력을 중심으로 하여 두 개의 스위치가 한 폴(pole1)(node)을 이루고, VDC_A와 VDC_C의 각(+)와 (-)에 스위치가 위치해서 다른 한 폴(pole2)(node)을 이룬다.As described above, the single-phase full bridge inverter providing improved power quality according to the present invention includes three power supply units and four basic switches of VDC_A, VDC_B, and VDC_C as shown in FIGS. 1 to 7. That is, in this single-phase full bridge inverter, two switches form one pole (node) centered on the VDC_B DC input, and the switches are located at the positive and negative poles of VDC_A and VDC_C. pole2) (node).
이에 인버터 토폴로지는 독립적으로 스위칭하는 2개의 극(pole)(node)으로 이루어져 있고, 각 극(pole)(node)의 두 개의 스위치들은 상보 스위칭을 하면서 이들 4개의 기본 스위치 상태에 따라 인버터의 출력 전압을 조절한다.The inverter topology consists of two poles that switch independently, and the two switches of each pole perform complementary switching and the output voltage of the inverter according to these four basic switch states. Adjust
이처럼 제안된 인버터의 출력전압 레벨을 알아보기 위해 각 스위치의 On / Off에 따른 pole의 전압을 살펴 보면 SW1이 On되면 Pole의 전압은 VDC_B + VDC_C의 전압이 되고, SW2가 On이 되면 VDC_C의 전압이 된다.In order to check the output voltage level of the proposed inverter, look at the voltage of pole according to On / Off of each switch. When SW1 is on, the voltage of pole becomes the voltage of VDC_B + VDC_C, and when SW2 is on, the voltage of VDC_C Becomes
그리고 Pole2의 전압은 SW3가 ON이 되면 VDC_A + VDC_B + VDC_C의 전압이 되고, SW4가 On이 되면 영(Zero)의 전압이 나타난다. 각 스위치의 On, Off에 따라 인버터의 출력전압으로 형성할 수 있는 전압은 두 폴의 전압차가 된다. 따라서 각 VDC_A가 100V이고, VDC_B가 200V이며, VDC_C가 100V일 때, 제안된 인버터의 출력 전압은 도 3 내지 도 7 등처럼 +100V, +300V, -100V, -300V 등의 4레벨로 나타나게 된다.When SW3 is ON, the voltage of Pole2 becomes VDC_A + VDC_B + VDC_C. When SW4 is On, zero voltage appears. According to On / Off of each switch, the voltage that can be formed by the output voltage of the inverter becomes the voltage difference between the two poles. Therefore, when each VDC_A is 100V, VDC_B is 200V, and VDC_C is 100V, the output voltage of the proposed inverter is represented by 4 levels such as + 100V, + 300V, -100V, -300V as shown in FIGS. .
다음으로 본 발명에 따른 향상된 전력품질을 제공하는 단상 풀브릿지 인버터(10)에서 부하단 전압이 5레벨로 이루어지는 실시예를 첨부된 도 8 내지 도 14 등을 참조하여 설명하면 다음과 같다.Next, an embodiment in which the load stage voltage is 5 levels in the single-phase full bridge inverter 10 providing improved power quality according to the present invention will be described with reference to FIGS. 8 to 14.
이러한 5레벨 인버터의 실시예에서 기본 구성은 앞서 설명한 4레벨의 실시예에서와 같이 마련될 것이다. 즉 전원이 인가되는 전원형성부, 전원형성부로부터 공급되는 전원을 단속하는 스위치부, 그리고 스위치부의 작동으로 전원형성부의 전원이 인가되는 부하단(11)을 포함하여 구성된 것이다.In the embodiment of such a five-level inverter, the basic configuration will be prepared as in the four-level embodiment described above. That is, it includes a power supply unit to which power is applied, a switch unit to control the power supplied from the power generation unit, and a load end 11 to which power is applied to the power generation unit by the operation of the switch unit.
그리고 전원형성부는 제1전원형성부(VDC_A), 제2전원형성부(VDC_B), 제3전원형성부(VDC_C)가 연결되어 이루어지는 것이다. 또한 스위치부의 세부 구성예로, 제1전원형성부(VDC_A) 및 제2전원형성부(VDC_B) 사이에 일측이 연결되고 타측이 부하단(11) 제1폴(pole1)과 연결되는 제1단자스위치(SW1), 제2전원형성부(VDC_B) 및 제3전원형성부(VDC_C) 사이에 일측이 연결되고 타측이 부하단(11) 제1폴(pole1)과 연결되는 제2단자스위치(SW2), 제1전원형성부(VDC_A)의 다른 쪽과 일측이 연결되고 타측이 부하단(11) 제2폴(pole2)과 연결되는 역단자스위치(SW3) 및 제3전원형성부(VDC_C)의 다른 쪽과 일측이 연결되고 타측이 부하단(11) 제2폴(pole2)과 연결되는 정단자스위치(SW4) 등이 마련되는 것이다.The power generation unit is formed by connecting the first power generation unit VDC_A, the second power generation unit VDC_B, and the third power generation unit VDC_C. In addition, as a detailed configuration example of the switch unit, a first terminal is connected between the first power source forming unit (VDC_A) and the second power source forming unit (VDC_B) and the other end is connected to the load terminal 11, the first pole (pole1) A second terminal switch SW2 having one side connected between the switch SW1, the second power generation unit VDC_B, and the third power generation unit VDC_C and the other side connected to the load terminal 11 and the first pole 1. ), One end of the first power generator VDC_A and the other end of the reverse terminal switch SW3 and the third power generator VDC_C are connected to the load terminal 11 and the second pole 2. One end is connected to the other side and the other end is provided with a positive terminal switch (SW4) and the like connected to the load terminal 11, the second pole (pole2).
이에 더하여 상기 제1단자스위치(SW1)와 제2단자스위치(SW2)가 연결되는 부하단(11) 제1폴(pole1)과, 상기 역단자스위치(SW3)와 정단자스위치(SW4)가 연결되는 부하단(11) 제2폴(pole2)의 사이에는, 역영전압스위치(SW5)와 순영전압스위치(SW6)가 연결되는 것이다.In addition, a first pole 1 of the load terminal 11 to which the first terminal switch SW1 and the second terminal switch SW2 are connected, and the reverse terminal switch SW3 and the forward terminal switch SW4 are connected to each other. The reverse voltage switch SW5 and the net voltage switch SW6 are connected between the load pole 11 and the second pole 2.
이로써 부하단(11) 양측 제1폴(pole1)과 제2폴(pole2) 사이에 전원이 인가되는 상태는, 상기 제2전원형성부(VDC_B)의 전원과 제3전원형성부(VDC_C)의 전원이 합해진 양의 전원이 인가되는 상태, 제3전원형성부(VDC_C)의 양의 전원이 인가되는 상태, 제1전원형성부(VDC_A)의 음의 전원이 인가되는 상태, 제1전원형성부(VDC_A)의 전원과 제2전원형성부(VDC_B)의 전원이 합해진 음의 전원이 인가되는 상태를 갖게 될 것이다.As a result, power is applied between the first pole 1 and the second pole 2 of the load terminal 11 at both ends of the power source of the second power source forming unit VDC_B and the third power source forming unit VDC_C. The positive power of the sum of the powers is applied, the positive power of the third power generation unit VDC_C is applied, the negative power of the first power generation unit VDC_A is applied, and the first power generation unit. The power of VDC_A and the power of the second power generator VDC_B are combined to have a negative power applied thereto.
그리하여 상기 역영전압스위치(SW5), 순영전압스위치(SW6)에 의한 "0" 전압을 형성하는 상태를 이루어 5레벨 전원이 인가되는 상태를 이루는 것이다.Thus, a state of forming a "0" voltage by the backlight voltage switch SW5 and the net voltage switch SW6 is formed to achieve a state in which 5-level power is applied.
이에 상기 제1단자스위치(SW1)와 제2단자스위치(SW2)가 부하단(11) 일측 제1폴(pole1)과 연결되고, 역단자스위치(SW3) 정단자스위치(SW4)가 부하단(11) 타측 제2폴(pole2)과 연결되는 것이며, 이에 부하단(11) 양측 제1폴(pole1)과 제2폴(pole2) 사이에 연결되는 역영전압스위치(SW5)와 순영전압스위치(SW6)는, 설치되는 상황에 알맞게 하여 직렬연결 또는 병렬연결로 이루어질 수 있을 것이다.Accordingly, the first terminal switch SW1 and the second terminal switch SW2 are connected to the first pole 1 at one side of the load terminal 11, and the reverse terminal switch SW3 and the positive terminal switch SW4 are connected to the load terminal ( 11) It is connected to the second pole (pole2) on the other side, the reverse voltage switch (SW5) and the net voltage switch (SW6) connected between the first pole (pole1) and the second pole (pole2) on both ends of the load (11) ) May be made in series connection or parallel connection according to the installation situation.
이와 같이 제안된 본 발명에 따른 향상된 전력품질을 제공하는 5레벨의 단상 풀브릿지 인버터(10)는 첨부된 도면의 예에서와 같이 3EA의 레벨을 가지는 직류입력전원으로부터 4개의 스위치를 이용하여 단상 교류 출력전압을 발생하여 부하에 공급하는 기능을 갖는다.As described above, the five-level single-phase full bridge inverter 10 providing improved power quality according to the present invention uses single-phase alternating current using four switches from a DC input power source having a level of 3EA, as in the accompanying drawings. It has a function of generating an output voltage and supplying it to a load.
이처럼 제안된 5레벨 단상 풀브릿지 인버터는 입력측의 4레벨의 직류입력에 의해 출력 전압레벨은, (VDC_B + VDC_C), (VDC_C), 0, -(VDC_A), -(VDC_A + VDC_B) 등과 같은 5가지 출력 레벨을 가진다. 그리고 그 파형은 도 14와 같이 이루게 된다.In this proposed 5-level single-phase full bridge inverter, the output voltage level is 5 by (DC_B + VDC_C), (VDC_C), 0,-(VDC_A),-(VDC_A + VDC_B), etc. Has two output levels. And the waveform is made as shown in FIG.
이와 같이 5레벨에 대한 실시예에 있어서 각 레벨별로 전원이 부하단에 인가되는 예를 첨부된 도면을 참조하여 살펴보면 다음과 같다.As described above, with reference to the accompanying drawings, an example in which power is applied to a load stage in each level in an embodiment for five levels is as follows.
우선 4레벨에서처럼 상기 스위치부의 제1단자스위치(SW1), 제2단자스위치(SW2), 역단자스위치(SW3), 정단자스위치(SW4) 등을 포함한 각 스위치부들을 제어하는 인버터제어부(21)가 마련되고 이러한 인버터제어부(21)의 제어에 의해 각 스위치부재들이 작동하게 된다.First, the inverter control unit 21 controls each switch unit including the first terminal switch SW1, the second terminal switch SW2, the reverse terminal switch SW3, the positive terminal switch SW4, and the like as in the fourth level. Is provided and the respective switch members are operated by the control of the inverter control unit 21.
그리하여 인버터제어부(21)의 제어에 의하여, 제1단자스위치(SW1)와 정단자스위치(SW4) 측으로 인버터제어부(21)에서 업펄스의 제어신호(예 : 스위치 "ON 신호)를 전송하게 될 것이다. 그리하여 제1단자스위치(SW1)와 정단자스위치(SW4)가 동작되는 것이다. 이로 인하여 도 8에서와 같이 부하단(11) 제1폴(pole1)과 제2폴(pole2)에 제2전원형성부(VDC_B)의 전원과 제3전원형성부(VDC_C)의 전원이 합해진 양의 전원이 인가되는 것이다.Thus, under the control of the inverter control unit 21, the uplink control signal (for example, the switch "ON signal) will be transmitted from the inverter control unit 21 to the first terminal switch SW1 and the positive terminal switch SW4. Thus, the first terminal switch SW1 and the positive terminal switch SW4 are operated, so that the second power source is connected to the first pole 1 and the second pole 2 of the load terminal 11 as shown in FIG. The amount of power in which the power of the forming unit VDC_B and the power of the third power forming unit VDC_C are combined is applied.
예를 들면 제1전원형성부(VDC_A)가 100V이고, 제2전원형성부(VDC_B)가 200V이며, 제3전원형성부(VDC_C)가 100V로 설정된 경우에, 도 8에서처럼 제어에 의해 제1단자스위치(SW1), 정단자스위치(SW4) 등이 작동되어 부하단(11) 양측의 제1폴(pole1)과 제2폴(pole2) 사이에는 제2전원형성부(VDC_B)와 제3전원형성부(VDC_C)로부터 인가되는 전원이 합해진 양의 300V의 전원이 인가될 것이다. 즉 양의 최대값 전원으로 부하단 양측에 인가될 것이다.For example, when the first power generation unit VDC_A is 100V, the second power generation unit VDC_B is 200V, and the third power generation unit VDC_C is set to 100V, as shown in FIG. The terminal switch SW1 and the positive terminal switch SW4 are operated so that the second power generation part VDC_B and the third power supply are formed between the first pole 1 and the second pole 2 on both sides of the load terminal 11. The power of the combined 300V power applied from the forming unit VDC_C may be applied. That is, it will be applied to both sides of the load stage with a positive maximum power supply.
다음으로 인버터제어부(21)의 제어에 의하여, 제2단자스위치(SW2)와 정단자스위치(SW4) 측으로 인버터제어부(21)에서 업펄스의 제어신호(예 : 스위치 "ON 신호)를 전송하게 될 것이다. 그리하여 제2단자스위치(SW2)와 정단자스위치(SW4)가 동작되는 것이다. 이로 인하여 도 9에서와 같이 부하단(11) 제1폴(pole1)과 제2폴(pole2)에 제3전원형성부(VDC_C)의 양의 전원이 인가되는 것이다.Next, under the control of the inverter control unit 21, the uplink control signal (for example, the switch "ON signal") is transmitted from the inverter control unit 21 to the second terminal switch SW2 and the positive terminal switch SW4. Thus, the second terminal switch SW2 and the positive terminal switch SW4 are operated, and as a result, as shown in Fig. 9, the third end of the load pole 11 is connected to the first pole 1 and the second pole 2. The positive power of the power generator VDC_C is applied.
예를 들면 제1전원형성부(VDC_A)가 100V이고, 제2전원형성부(VDC_B)가 200V이며, 제3전원형성부(VDC_C)가 100V로 설정된 경우에, 도 9에서처럼 제어에 의해 제2단자스위치(SW1), 정단자스위치(SW4) 등이 작동되어 부하단(11) 양측의 제1폴(pole1)과 제2폴(pole2) 사이에는 제3전원형성부(VDC_C)로부터 인가되는 전원인 양의 100V의 전원이 인가될 것이다. 즉 양의 중간값 전원으로 부하단 양측에 인가될 것이다.For example, when the first power generator VDC_A is 100V, the second power generator VDC_B is 200V, and the third power generator VDC_C is set to 100V, as shown in FIG. The terminal switch SW1, the positive terminal switch SW4, and the like are operated so that the power applied from the third power generation unit VDC_C between the first pole 1 and the second pole 2 on both sides of the load terminal 11. A positive 100V supply will be applied. That is, it will be applied to both sides of the load stage with a positive medium value power supply.
특히 인버터제어부(21)의 제어에 의하여, 순영전압스위치(SW6) 측으로 인버터제어부(21)에서 업펄스의 제어신호(예 : 스위치 "ON 신호)를 전송하도록 실시될 것이다. 그리하여 순영전압스위치(SW6)가 동작되고, 제1단자스위치(SW1), 제2단자스위치(SW2), 역단자스위치(SW3), 정단자스위치(SW4)가 차단동작되는 것이다. 그리하여 도 10에서와 같이 부하단(11) 제1폴(pole1)과 제2폴(pole2)에 "0" 전압을 이루게 된다. 특히 순영전압스위치(SW6)의 동작으로 부하단 양측으로 "0" 전압이 이루는 경우는, 양의 값에서 음의 값으로 전환될 때 적용될 것이다.In particular, by the control of the inverter control unit 21, the inverter control unit 21 will be implemented to transmit the up-pulse control signal (for example, the switch "ON signal") to the net voltage switch SW6 side. ), And the first terminal switch SW1, the second terminal switch SW2, the reverse terminal switch SW3, and the positive terminal switch SW4 are cut off, so that the load terminal 11 is shown in FIG. The first pole (pole1) and the second pole (pole2) have a voltage of "0", especially when the voltage "0" is applied to both sides of the load by the operation of the switch voltage SW6. This will apply when switching to a negative value.
예를 들면 제1전원형성부(VDC_A)가 100V이고, 제2전원형성부(VDC_B)가 200V이며, 제3전원형성부(VDC_C)가 100V로 설정된 경우에, 도 10에서처럼 제어에 의해 순영전압스위치(SW6)가 작동되어 부하단(11) 양측의 제1폴(pole1)과 제2폴(pole2) 사이에 "0" 전압을 이루게 된다.For example, when the first power generator VDC_A is 100V, the second power generator VDC_B is 200V, and the third power generator VDC_C is set to 100V, the net voltage under control as shown in FIG. 10. The switch SW6 is operated to achieve a "0" voltage between the first pole 1 and the second pole 2 on both sides of the load terminal 11.
다음으로 인버터제어부(21)의 제어에 의하여, 역영전압스위치(SW5) 측으로 인버터제어부(21)에서 업펄스의 제어신호(예 : 스위치 "ON 신호)를 전송하도록 실시될 것이다. 그리하여 역영전압스위치(SW5)가 동작되고, 제1단자스위치(SW1), 제2단자스위치(SW2), 역단자스위치(SW3), 정단자스위치(SW4)가 차단동작되는 것이다. 그리하여 도 11에서와 같이 부하단(11) 제1폴(pole1)과 제2폴(pole2)에 "0" 전압을 이루게 된다. 이처럼 역영전압스위치(SW5)가 동작되어 부하단 양측으로 "0" 전압을 이루는 경우는, 음의 값에서 양의 값으로 전환될 때 적용될 것이다.Next, under the control of the inverter control unit 21, the inverter control unit 21 will transmit an up-pulse control signal (for example, a switch "ON signal") to the reverse voltage switch SW5 side. SW5 is operated, and the first terminal switch SW1, the second terminal switch SW2, the reverse terminal switch SW3, and the forward terminal switch SW4 are cut off, and as shown in FIG. 11) A voltage of "0" is formed at the first pole and the second pole 2. When the reverse voltage switch SW5 is operated to achieve a voltage of "0" at both sides of the load terminal, a negative value is obtained. Will be applied when converting from to a positive value.
예를 들면 제1전원형성부(VDC_A)가 100V이고, 제2전원형성부(VDC_B)가 200V이며, 제3전원형성부(VDC_C)가 100V로 설정된 경우에, 도 11에서처럼 제어에 의해 역영전압스위치(SW5)가 작동되어 부하단(11) 양측의 제1폴(pole1)과 제2폴(pole2) 사이에 "0" 전압을 이루게 된다.For example, when the first power source forming unit VDC_A is 100V, the second power source forming unit VDC_B is 200V, and the third power source forming unit VDC_C is set to 100V, the reverse voltage is controlled by the control as shown in FIG. 11. The switch SW5 is operated to achieve a "0" voltage between the first pole 1 and the second pole 2 on both sides of the load terminal 11.
그리고 인버터제어부(21)의 제어에 의하여, 제1단자스위치(SW1)와 역단자스위치(SW3) 측으로 인버터제어부(21)에서 업펄스의 제어신호(예 : 스위치 "ON 신호)를 전송하게 될 것이다. 그리하여 제1단자스위치(SW1)와 역단자스위치(SW3)가 동작되는 것이다. 이로 인하여 도 12에서와 같이 부하단(11) 제1폴(pole1)과 제2폴(pole2)에 제1전원형성부(VDC_A)의 음의 전원이 인가되는 것이다.In addition, under the control of the inverter controller 21, an up-pulse control signal (for example, a switch “ON signal”) will be transmitted from the inverter controller 21 to the first terminal switch SW1 and the reverse terminal switch SW3. Thus, the first terminal switch SW1 and the reverse terminal switch SW3 are operated, so that the first power source is connected to the first pole 1 and the second pole 2 of the load terminal 11 as shown in FIG. The negative power of the forming unit VDC_A is applied.
예를 들면 제1전원형성부(VDC_A)가 100V이고, 제2전원형성부(VDC_B)가 200V이며, 제3전원형성부(VDC_C)가 100V로 설정된 경우에, 도 12에서처럼 제어에 의해 제1단자스위치(SW1), 역단자스위치(SW3) 등이 작동되어 부하단(11) 양측의 제1폴(pole1)과 제2폴(pole2) 사이에는 제1전원형성부(VDC_A)로부터 인가되는 전원인 음의 100V의 전원이 인가될 것이다. 즉 음의 중간값 전원으로 부하단 양측에 인가될 것이다.For example, when the first power generation unit VDC_A is 100V, the second power generation unit VDC_B is 200V, and the third power generation unit VDC_C is set to 100V, as shown in FIG. The terminal switch SW1, the reverse terminal switch SW3, and the like are operated so that the power applied from the first power generation unit VDC_A is provided between the first pole 1 and the second pole 2 on both sides of the load terminal 11. A negative 100V supply will be applied. That is, it will be applied to both sides of the load stage with a negative median power supply.
또한 인버터제어부(21)의 제어에 의하여, 제2단자스위치(SW2)와 역단자스위치(SW3) 측으로 인버터제어부(21)에서 업펄스의 제어신호(예 : 스위치 "ON 신호)를 전송하게 될 것이다. 그리하여 제2단자스위치(SW2)와 역단자스위치(SW3)가 동작되는 것이다. 이로 인하여 도 13에서와 같이 부하단(11) 제1폴(pole1)과 제2폴(pole2)에 제1전원형성부(VDC_A)의 전원과 제2전원형성부(VDC_B)의 전원이 합해진 음의 전원이 인가되는 것이다.In addition, under the control of the inverter control unit 21, the uplink control signal (for example, the switch "ON signal") will be transmitted from the inverter control unit 21 to the second terminal switch SW2 and the reverse terminal switch SW3. Thus, the second terminal switch SW2 and the reverse terminal switch SW3 are operated, so that the first power source is connected to the first pole 1 and the second pole of the load terminal 11 as shown in FIG. The negative power, which is the sum of the power of the forming unit VDC_A and the power of the second power forming unit VDC_B, is applied.
예를 들면 제1전원형성부(VDC_A)가 100V이고, 제2전원형성부(VDC_B)가 200V이며, 제3전원형성부(VDC_C)가 100V로 설정된 경우에, 도 13에서처럼 제어에 의해 제2단자스위치(SW2), 역단자스위치(SW3) 등이 작동되어 부하단(11) 양측의 제1폴(pole1)과 제2폴(pole2) 사이에는 제1전원형성부(VDC_A)와 제2전원형성부(VDC_B)로부터 인가되는 전원이 합해진 음의 300V의 전원이 인가될 것이다. 즉 음의 최대값 전원으로 부하단 양측에 인가될 것이다.For example, when the first power generation unit VDC_A is 100V, the second power generation unit VDC_B is 200V, and the third power generation unit VDC_C is set to 100V, as shown in FIG. The terminal switch SW2 and the reverse terminal switch SW3 are operated so that the first power source forming unit VDC_A and the second power source are disposed between the first pole 1 and the second pole 2 on both sides of the load terminal 11. The negative power of 300V to which the power applied from the forming unit VDC_B is added will be applied. That is, it will be applied to both sides of the load stage with a negative maximum power supply.
이처럼 제1전원형성부(VDC_A)가 100V이고, 제2전원형성부(VDC_B)가 200V이며, 제3전원형성부(VDC_C)가 100V로 설정된 경우에, +300V, +100V, 0V, -100V, -300V 등의 5레벨 전압 인가상태를 갖게 되는 것이며, 이로써 도 14에서와 같은 안정적 형태의 교류 출력을 얻을 수 있을 것이다.As such, when the first power generator VDC_A is 100V, the second power generator VDC_B is 200V, and the third power generator VDC_C is set to 100V, + 300V, + 100V, 0V, and -100V. And a five-level voltage application state, such as -300V, thereby obtaining a stable AC output as shown in FIG. 14.
이와 같이 전압의 5레벨 형성상태에 대한 실시예에 있어서, 각 전압형성상태에 따른 회로 형성상태의 예를 살펴보면 다음과 같다.As described above, in the embodiment of the five-level formation state of the voltage, an example of the circuit formation state according to each voltage formation state is as follows.
즉 상기 스위치부의 제1단자스위치(SW1), 제2단자스위치(SW2), 역단자스위치(SW3), 정단자스위치(SW4)를 제어하는 인버터제어부(21)에 의하여 각 스위치들이 작동되는 것이다.That is, the switches are operated by the inverter controller 21 controlling the first terminal switch SW1, the second terminal switch SW2, the reverse terminal switch SW3, and the positive terminal switch SW4 of the switch unit.
이에 도 8에서와 같이 부하단(11) 일측의 제1단자스위치(SW1)와 부하단(11) 타측의 정단자스위치(SW4)와 함께 제2전원형성부(VDC_B)와 제3전원형성부(VDC_C)가 포함된 전류흐름의 회로를 형성하게 된다. 따라서 부하단(11) 제1폴(pole1)과 제2폴(pole2)에 제2전원형성부(VDC_B)의 전원과 제3전원형성부(VDC_C)의 전원이 합해진 양의 전원이 인가되는 것이다.Accordingly, as shown in FIG. 8, the second power generation unit VDC_B and the third power generation unit together with the first terminal switch SW1 on one side of the load terminal 11 and the positive terminal switch SW4 on the other side of the load terminal 11. It forms a circuit of current flow that includes (VDC_C). Therefore, the power of the second power generator VDC_B and the power of the third power generator VDC_C are applied to the first pole 1 and the second pole 2 of the load terminal 11. .
다음으로 도 9에서와 같이 부하단(11) 일측의 제2단자스위치(SW2)와 부하단(11) 타측의 정단자스위치(SW4)와 함께 제3전원형성부(VDC_C)가 포함된 전류흐름의 회로를 형성하게 된다. 그리하여 부하단(11) 제1폴(pole1)과 제2폴(pole2)에 제3전원형성부(VDC_C)의 양의 전원이 인가되는 것이다.Next, as shown in FIG. 9, the current flow includes the third power supply unit VDC_C together with the second terminal switch SW2 on one side of the load terminal 11 and the positive terminal switch SW4 on the other side of the load terminal 11. Will form a circuit. Thus, the positive power of the third power generation unit VDC_C is applied to the first pole 1 and the second pole 2 of the load terminal 11.
그리고 도 10에서와 같이 부하단(11) 양측 제1폴(pole1)과 제2폴(pole2) 사이에 연결되는 순영전압스위치(SW6)가 작동되어 부하단(11) 제1폴(pole1)과 제2폴(pole2)에 "0" 전압을 이루게 된다. 이처럼 순영전압스위치(SW6)의 작동으로 부하단에 "0" 전압이 형성되는 실시예는 "+" 전압 상태에서 "0" 전압을 형성하는 실시예에 적용될 것이다.As shown in FIG. 10, the net voltage switch SW6 connected between the first pole 1 and the second pole 2 of the load terminal 11 is operated to provide the load terminal 11 with the first pole 1. The second pole pole2 has a voltage of "0". As described above, the embodiment in which the voltage "0" is formed at the load terminal by the operation of the net voltage switch SW6 will be applied to the embodiment in which the voltage "0" is formed in the "+" voltage state.
또한 도 11에서와 같이 부하단(11) 양측 제1폴(pole1)과 제2폴(pole2) 사이에 연결되는 역영전압스위치(SW5)가 작동되어 부하단(11) 제1폴(pole1)과 제2폴(pole2)에 "0" 전압을 이루게 된다. 이처럼 역영전압스위치(SW5)의 작동으로 부하단에 "0" 전압이 형성되는 실시예는 "-" 전압 상태에서 "0" 전압을 형성하는 실시예에 적용될 것이다.In addition, as shown in FIG. 11, the reverse voltage switch SW5 is connected between the first pole 1 and the second pole 2 of the load terminal 11 to operate the first pole 1 of the load terminal 11. The second pole pole2 has a voltage of "0". As described above, the embodiment in which the zero voltage is formed at the load terminal by the operation of the reverse voltage switch SW5 will be applied to the embodiment in which the zero voltage is formed in the "-" voltage state.
다음으로 도 12에서와 같이 부하단(11) 일측의 제1단자스위치(SW1)와 부하단(11) 타측의 역단자스위치(SW3)와 함께 제1전원형성부(VDC_A)가 포함된 전류흐름의 회로를 형성하게 된다. 그리하여 부하단(11) 제1폴(pole1)과 제2폴(pole2)에 제1전원형성부(VDC_A)의 음의 전원이 인가되는 것이다.Next, as shown in FIG. 12, the current flow includes the first power switch VDC_A together with the first terminal switch SW1 on one side of the load terminal 11 and the reverse terminal switch SW3 on the other side of the load terminal 11. Will form a circuit. Thus, the negative power of the first power generation unit VDC_A is applied to the first pole 1 and the second pole 2 of the load terminal 11.
나아가 도 13에서와 같이 부하단(11) 일측의 제2단자스위치(SW2)와 부하단(11) 타측의 역단자스위치(SW3)와 함께 제1전원형성부(VDC_A)와 제2전원형성부(VDC_B)가 포함된 전류흐름의 회로를 형성하게 된다. 그리하여 부하단(11) 제1폴(pole1)과 제2폴(pole2)에 제1전원형성부(VDC_A)의 전원과 제2전원형성부(VDC_B)의 전원이 합해진 음의 전원이 인가되는 것이다.Further, as shown in FIG. 13, the first power generator VDC_A and the second power generator together with the second terminal switch SW2 on one side of the load terminal 11 and the reverse terminal switch SW3 on the other side of the load terminal 11. It forms a circuit of current flow including (VDC_B). Thus, the negative power of the power of the first power generator VDC_A and the power of the second power generator VDC_B is applied to the first pole 1 and the second pole 2 of the load terminal 11. .
이상에서와 같이 5레벨의 단상 풀브릿지 인버터의 작동에 있어서, 각 스위치들의 작동상태에 따라 3개의 전원형성부들이 부하단에 인가되는 전압의 인가상태가 다양하게 이루어질 수 있으며, 특히 도 14에서와 같이 안정적인 교류의 출력상태를 갖도록 구비될 수 있을 것이다.As described above, in the operation of the five-level single-phase full bridge inverter, the application state of the voltage applied to the load terminals of the three power generation units may be variously varied according to the operation state of each switch. Likewise it may be provided to have a stable output state of the alternating current.
이처럼 본 발명에 따른 향상된 전력품질을 제공하는 5레벨의 단상풀브릿지인버터는 도 8 내지 도 14 등에서와 같이 VDC_A, VDC_B, VDC_C의 세 직류 전원과 4개의 기본 스위치가 포함되어 이루어진다. 즉 앞서 설명한 4레벨의 단상 풀브릿지 인버터와 같은 기본적인 전원형성부 및 스위칭부를 포함하는 것으로, VDC_B 직류입력을 중심으로 하여 두 개의 스위치가 한 폴(pole, node)을 이루고, VDC_A와 VDC_C의 각(+)와 (-)에 스위치가 위치해서 다른 한 폴(pole, node)을 이룬다. 이에 더하여 "0" 전압형성을 위한 스위치부재들을 더 구비한 것이다.As described above, the five-level single-phase full bridge inverter providing improved power quality according to the present invention includes three DC power supplies and four basic switches of VDC_A, VDC_B, and VDC_C as shown in FIGS. 8 to 14. That is, it includes a basic power generation unit and a switching unit, such as the four-level single-phase full bridge inverter described above, with two switches forming one pole around the VDC_B DC input, and each of VDC_A and VDC_C ( The switches are located at +) and (-) to form another pole. In addition to this, switch members are further provided for forming a voltage of " 0 ".
이에 인버터 토폴로지는 독립적으로 스위칭하는 2개의 극(pole)(node)으로 이루어져 있고, 각 극(node)의 두 스위치는 상보 스위칭을 하면서 이들 4개의 기본 스위치 상태에 따라 인버터의 출력 전압을 조절한다. 또한 "+" 전압과 "-" 전압으로 전환되는 경우에 각각 "0" 전압을 형성하도록 한 것이다.The inverter topology consists of two poles that switch independently, and the two switches of each node perform complementary switching and adjust the output voltage of the inverter according to these four basic switch states. In addition, when switching to the "+" voltage and "-" voltage, it is to form a "0" voltage respectively.
이처럼 제안된 인버터의 출력전압 레벨을 알아보기 위해 각 스위치의 On / Off에 따른 pole의 전압을 살펴보면 SW1이 On되면 Pole의 전압은 VDC_B + VDC_C의 전압이 되고, SW2가 On이 되면 VDC_C의 전압이 된다.In order to check the output voltage level of the proposed inverter, the voltage of pole according to On / Off of each switch is examined. When SW1 is on, the voltage of pole becomes the voltage of VDC_B + VDC_C, and when SW2 is on, the voltage of VDC_C is do.
그리고 Pole2의 전압은 SW3가 ON이 되면 VDC_A + VDC_B + VDC_C의 전압이 되고, SW4가 On이 되면 영(Zero)의 전압이 나타난다. 각 스위치의 On, Off에 따라 인버터의 출력전압으로 형성할 수 있는 전압은 두 폴의 전압차가 된다. 따라서 각 VDC_A가 100V이고, VDC_B가 200V이며, VDC_C가 100V일 때, 제안된 인버터의 출력 전압 Vac는 +100V, +300V, -100V, -300V 등의 4레벨로 나타나게 된다.When SW3 is ON, the voltage of Pole2 becomes VDC_A + VDC_B + VDC_C. When SW4 is On, zero voltage appears. According to On / Off of each switch, the voltage that can be formed by the output voltage of the inverter becomes the voltage difference between the two poles. Therefore, when each VDC_A is 100V, VDC_B is 200V, and VDC_C is 100V, the output voltage Vac of the proposed inverter is represented by 4 levels of + 100V, + 300V, -100V, -300V.
이에 더하여 양 극(pole) 사이에 연결된 SW5, SW6의 작동으로 "0" 전압을 형성하는 총 5레벨을 이루게 되는 것이다.In addition, the operation of SW5 and SW6 connected between the poles achieves a total of five levels forming a "0" voltage.
이처럼 본 발명에 의하여 5레벨의 전력레벨을 형성하는 본 발명의 단상풀브릿지인버터에 의하여 안정적인 형태의 교류출력을 얻을 수 있는 것이다.As described above, the single-phase full bridge inverter of the present invention, which forms a five-level power level, can obtain an AC output having a stable shape.
이상으로 본 발명의 실시예에 대하여 상세히 설명하였으나, 이는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 일실시예를 기재한 것이므로, 상기 실시예의 기재에 의하여 본 발명의 기술적 사상이 제한적으로 해석되어서는 아니 된다.The embodiments of the present invention have been described in detail above, but since the embodiments have been described so that those skilled in the art to which the present invention pertains can easily carry out the present invention, The technical spirit of the present invention should not be interpreted limitedly.

Claims (9)

  1. 전원이 인가되는 전원형성부;A power supply unit to which power is applied;
    전원형성부로부터 공급되는 전원을 단속하는 스위치부; 및A switch unit intermitting the power supplied from the power generation unit; And
    스위치부의 작동으로 전원형성부의 전원이 인가되는 부하단을 포함하고,A load end to which power is applied to the power generation unit by the operation of the switch unit;
    전원형성부는 제1전원형성부, 제2전원형성부, 제3전원형성부로 이루어지고,The power generator includes a first power generator, a second power generator, and a third power generator,
    제1전원형성부 및 제2전원형성부 사이에 일측이 연결되고 타측이 부하단 제1폴과 연결되는 제1단자스위치;A first terminal switch having one side connected between the first power generation unit and the second power generation unit and the other side connected to the load terminal first pole;
    제2전원형성부 및 제3전원형성부 사이에 일측이 연결되고 타측이 부하단 제1폴과 연결되는 제2단자스위치;A second terminal switch having one side connected between the second power generation unit and the third power generation unit and the other side connected to the load terminal first pole;
    제1전원형성부의 다른 쪽과 일측이 연결되고 타측이 부하단 제2폴과 연결되는 역단자스위치; 및A reverse terminal switch having one side connected to the other side of the first power generation unit and the other side connected to the load second second pole; And
    제3전원형성부의 다른 쪽과 일측이 연결되고 타측이 부하단 제2폴과 연결되는 정단자스위치;A positive terminal switch having one side connected to the other side of the third power generation unit and the other side connected to the load-side second pole;
    를 포함하는 것을 특징으로 하는 단상 풀브릿지 인버터.Single-phase full bridge inverter comprising a.
  2. 제 1항에 있어서,The method of claim 1,
    상기 제1전원형성부의 양단 사이의 제1커패시터;First capacitors between both ends of the first power generation unit;
    상기 제2전원형성부의 양단 사이의 제2커패시터; 및Second capacitors between both ends of the second power generation unit; And
    상기 제3전원형성부의 양단 사이의 제3커패시터;Third capacitors between both ends of the third power source forming unit;
    를 포함하는 것을 특징으로 하는 단상 풀브릿지 인버터.Single-phase full bridge inverter comprising a.
  3. 제 1항에 있어서,The method of claim 1,
    부하단 양측 제1폴과 제2폴 사이에 전원이 인가되는 상태는,The state where the power is applied between the first pole and the second pole on both sides of the load end,
    상기 제2전원형성부의 전원과 제3전원형성부의 전원이 합해진 양의 전원이 인가되는 상태, 제3전원형성부의 양의 전원이 인가되는 상태, 제1전원형성부의 음의 전원이 인가되는 상태, 제1전원형성부의 전원과 제2전원형성부의 전원이 합해진 음의 전원이 인가되는 상태로 하는 4레벨 전원이 인가되는 상태를 이루는 것을 특징으로 하는 단상 풀브릿지 인버터.A state in which a positive power of the sum of the power of the second power generation unit and the power of the third power generation unit is applied, a state in which a positive power of the third power generation unit is applied, a state in which a negative power of the first power generation unit is applied, The single-phase full bridge inverter of claim 1, wherein the power supply of the first power generating portion and the power supply of the second power generating portion is applied to the four-level power to the state that the negative power is applied.
  4. 제 1항에 있어서,The method of claim 1,
    상기 스위치부의 제1단자스위치, 제2단자스위치, 역단자스위치, 정단자스위치를 제어하는 인버터제어부의 제어에 의하여,By the control of the inverter control unit for controlling the first terminal switch, the second terminal switch, the reverse terminal switch, the positive terminal switch of the switch unit,
    제1단자스위치와 정단자스위치 측으로 인버터제어부에서 제어신호를 전송하여 제1단자스위치와 정단자스위치가 동작되어, 부하단 제1폴과 제2폴에 제2전원형성부의 전원과 제3전원형성부의 전원이 합해진 양의 전원이 인가되고,The first terminal switch and the positive terminal switch are operated by transmitting a control signal from the inverter control unit to the first terminal switch and the positive terminal switch to form a power source and a third power source of the second power generator in the load terminals of the first and second poles. Positive power is applied to which negative power is added,
    제2단자스위치와 정단자스위치 측으로 인버터제어부에서 제어신호를 전송하여 제2단자스위치와 정단자스위치가 동작되어, 부하단 제1폴과 제2폴에 제3전원형성부의 양의 전원이 인가되며,The second terminal switch and the positive terminal switch are operated by transmitting a control signal from the inverter control unit to the second terminal switch and the positive terminal switch, and the positive power of the third power generating unit is applied to the first pole and the second pole of the load terminal. ,
    제1단자스위치와 역단자스위치 측으로 인버터제어부에서 제어신호를 전송하여 제1단자스위치와 역단자스위치가 동작되어, 부하단 제1폴과 제2폴에 제1전원형성부의 음의 전원이 인가되고,The first terminal switch and the reverse terminal switch are operated by transmitting a control signal from the inverter control unit to the first terminal switch and the reverse terminal switch, so that negative power is applied to the first and second poles of the load terminal. ,
    제2단자스위치와 역단자스위치 측으로 인버터제어부에서 제어신호를 전송하여 제2단자스위치와 역단자스위치가 동작되어, 부하단 제1폴과 제2폴에 제1전원형성부의 전원과 제2전원형성부의 전원이 합해진 음의 전원이 인가되는 것을 특징으로 하는 단상 풀브릿지 인버터.The second terminal switch and the reverse terminal switch are operated by transmitting a control signal from the inverter control unit to the second terminal switch and the reverse terminal switch to form a power source and a second power source of the first power generator in the first and second poles of the load terminal. The single-phase full bridge inverter, characterized in that the negative power is applied to the negative power.
  5. 제 1항에 있어서,The method of claim 1,
    상기 스위치부의 제1단자스위치, 제2단자스위치, 역단자스위치, 정단자스위치를 제어하는 인버터제어부의 제어에 의하여,By the control of the inverter control unit for controlling the first terminal switch, the second terminal switch, the reverse terminal switch, the positive terminal switch of the switch unit,
    부하단 일측의 제1단자스위치와 부하단 타측의 정단자스위치와 함께 제2전원형성부와 제3전원형성부가 포함된 전류흐름의 회로를 형성하여, 부하단 제1폴과 제2폴에 제2전원형성부의 전원과 제3전원형성부의 전원이 합해진 양의 전원이 인가되고,Together with the first terminal switch on one side of the load terminal and the positive terminal switch on the other side of the load terminal, a current flow circuit including a second power generation portion and a third power generation portion is formed, The amount of power in which the power of the second power generating unit and the power of the third power generating unit is combined is applied,
    부하단 일측의 제2단자스위치와 부하단 타측의 정단자스위치와 함께 제3전원형성부가 포함된 전류흐름의 회로를 형성하여, 부하단 제1폴과 제2폴에 제3전원형성부의 양의 전원이 인가되며,Together with the second terminal switch on one side of the load terminal and the positive terminal switch on the other side of the load terminal, a circuit of current flow including the third power generation portion is formed, so that the amount of the third power generation portion in the first and second poles of the load Power is applied,
    부하단 일측의 제1단자스위치와 부하단 타측의 역단자스위치와 함께 제1전원형성부가 포함된 전류흐름의 회로를 형성하여, 부하단 제1폴과 제2폴에 제1전원형성부의 음의 전원이 인가되고,Together with the first terminal switch on one side of the load terminal and the reverse terminal switch on the other side of the load terminal, a circuit of current flow including the first power generation portion is formed, so that the negative pole of the first power generation portion is formed on the first pole and the second pole of the load stage. Power is applied,
    부하단 일측의 제2단자스위치와 부하단 타측의 역단자스위치와 함께 제1전원형성부와 제2전원형성부가 포함된 전류흐름의 회로를 형성하여, 부하단 제1폴과 제2폴에 제1전원형성부의 전원과 제2전원형성부의 전원이 합해진 음의 전원이 인가되는 것을 특징으로 하는 단상 풀브릿지 인버터.Together with the second terminal switch on one side of the load terminal and the reverse terminal switch on the other side of the load terminal, a current flow circuit including the first power generation portion and the second power generation portion is formed, and the first pole and the second pole of the load stage are formed. A single-phase full bridge inverter, characterized in that the negative power of the sum of the power supply of the first power supply and the second power supply is applied.
  6. 제 1항에 있어서,The method of claim 1,
    상기 제1단자스위치와 제2단자스위치가 연결되는 부하단 제1폴과, 상기 역단자스위치와 정단자스위치가 연결되는 부하단 제2폴의 사이에는, 역영전압스위치와 순영전압스위치가 연결되고,A reverse voltage switch and a net voltage switch are connected between a first pole of a load terminal to which the first terminal switch and a second terminal switch are connected, and a second pole of a load terminal to which the reverse terminal switch and the positive terminal switch are connected. ,
    부하단 양측 제1폴과 제2폴 사이에 전원이 인가되는 상태는,The state where the power is applied between the first pole and the second pole on both sides of the load end,
    상기 제2전원형성부의 전원과 제3전원형성부의 전원이 합해진 양의 전원이 인가되는 상태, 제3전원형성부의 양의 전원이 인가되는 상태, 제1전원형성부의 음의 전원이 인가되는 상태, 제1전원형성부의 전원과 제2전원형성부의 전원이 합해진 음의 전원이 인가되는 상태에 더하여,A state in which a positive power of the sum of the power of the second power generation unit and the power of the third power generation unit is applied, a state in which a positive power of the third power generation unit is applied, a state in which a negative power of the first power generation unit is applied, In addition to the state in which the negative power of the sum of the power of the first power generation unit and the power of the second power generation unit is applied,
    상기 역영전압스위치, 순영전압스위치에 의한 "0" 전압을 형성하는 상태를 이루어 5레벨 전원이 인가되는 상태를 이루는 것을 특징으로 하는 단상 풀브릿지 인버터.Single-phase full bridge inverter, characterized in that to form a state in which a five-level power is applied to form a state of forming a "0" voltage by the reverse voltage switch, the net voltage switch.
  7. 제 6항에 있어서,The method of claim 6,
    부하단 양측 제1폴과 제2폴 사이에 연결되는 역영전압스위치와 순영전압스위치는, 직렬연결 또는 병렬연결로 이루어지는 것을 특징으로 하는 단상 풀브릿지 인버터.Single phase full bridge inverter, characterized in that the reverse voltage switch and the net voltage switch connected between the first pole and the second pole on both sides of the load end are connected in series or in parallel.
  8. 제 6항에 있어서,The method of claim 6,
    상기 스위치부의 제1단자스위치, 제2단자스위치, 역단자스위치, 정단자스위치, 순영전압스위치, 역영전압스위치를 제어하는 인버터제어부의 제어에 의하여,By the control of the inverter control unit for controlling the first terminal switch, the second terminal switch, the reverse terminal switch, the positive terminal switch, the net voltage switch, the reverse voltage switch of the switch unit,
    제1단자스위치와 정단자스위치 측으로 인버터제어부에서 제어신호를 전송하여 제1단자스위치와 정단자스위치가 동작되어, 부하단 제1폴과 제2폴에 제2전원형성부의 전원과 제3전원형성부의 전원이 합해진 양의 전원이 인가되고,The first terminal switch and the positive terminal switch are operated by transmitting a control signal from the inverter control unit to the first terminal switch and the positive terminal switch to form a power source and a third power source of the second power generator in the load terminals of the first and second poles. Positive power is applied to which negative power is added,
    제2단자스위치와 정단자스위치 측으로 인버터제어부에서 제어신호를 전송하여 제2단자스위치와 정단자스위치가 동작되어, 부하단 제1폴과 제2폴에 제3전원형성부의 양의 전원이 인가되며,The second terminal switch and the positive terminal switch are operated by transmitting a control signal from the inverter control unit to the second terminal switch and the positive terminal switch, and the positive power of the third power generating unit is applied to the first pole and the second pole of the load terminal. ,
    제1단자스위치와 역단자스위치 측으로 인버터제어부에서 제어신호를 전송하여 제1단자스위치와 역단자스위치가 동작되어, 부하단 제1폴과 제2폴에 제1전원형성부의 음의 전원이 인가되고,The first terminal switch and the reverse terminal switch are operated by transmitting a control signal from the inverter control unit to the first terminal switch and the reverse terminal switch, so that negative power is applied to the first and second poles of the load terminal. ,
    제2단자스위치와 역단자스위치 측으로 인버터제어부에서 제어신호를 전송하여 제2단자스위치와 역단자스위치가 동작되어, 부하단 제1폴과 제2폴에 제1전원형성부의 전원과 제2전원형성부의 전원이 합해진 음의 전원이 인가되며,The second terminal switch and the reverse terminal switch are operated by transmitting a control signal from the inverter control unit to the second terminal switch and the reverse terminal switch to form a power source and a second power source of the first power generator in the first and second poles of the load terminal. Negative power with negative power applied is applied,
    순영전압스위치 측으로 인버터제어부에서 제어신호를 전송하여 순영전압스위치가 동작되고, 제1단자스위치, 제2단자스위치, 역단자스위치, 정단자스위치가 차단동작되어, 부하단 제1폴과 제2폴에 "0" 전압을 이루고,The net voltage switch is operated by transmitting a control signal from the inverter control unit to the net voltage switch side, and the first terminal switch, the second terminal switch, the reverse terminal switch, and the positive terminal switch are blocked to operate. At zero voltage,
    역영전압스위치 측으로 인버터제어부에서 제어신호를 전송하여 역영전압스위치가 동작되고, 제1단자스위치, 제2단자스위치, 역단자스위치, 정단자스위치가 차단동작되어, 부하단 제1폴과 제2폴에 "0" 전압을 이루는 것을 특징으로 하는 단상 풀브릿지 인버터.The reverse voltage switch is operated by transmitting a control signal from the inverter control unit to the reverse voltage switch side, and the first terminal switch, the second terminal switch, the reverse terminal switch, and the positive terminal switch are blocked to operate. Single-phase full bridge inverter, characterized in that to form a "0" voltage.
  9. 제 6항 또는 제 7항에 있어서,The method according to claim 6 or 7,
    상기 스위치부의 제1단자스위치, 제2단자스위치, 역단자스위치, 정단자스위치, 순영전압스위치, 역영전압스위치를 제어하는 인버터제어부의 제어에 의하여,By the control of the inverter control unit for controlling the first terminal switch, the second terminal switch, the reverse terminal switch, the positive terminal switch, the net voltage switch, the reverse voltage switch of the switch unit,
    부하단 일측의 제1단자스위치와 부하단 타측의 정단자스위치와 함께 제2전원형성부와 제3전원형성부가 포함된 전류흐름의 회로를 형성하여, 부하단 제1폴과 제2폴에 제2전원형성부의 전원과 제3전원형성부의 전원이 합해진 양의 전원이 인가되고,Together with the first terminal switch on one side of the load terminal and the positive terminal switch on the other side of the load terminal, a current flow circuit including a second power generation portion and a third power generation portion is formed, The amount of power in which the power of the second power generating unit and the power of the third power generating unit is combined is applied,
    부하단 일측의 제2단자스위치와 부하단 타측의 정단자스위치와 함께 제3전원형성부가 포함된 전류흐름의 회로를 형성하여, 부하단 제1폴과 제2폴에 제3전원형성부의 양의 전원이 인가되며,Together with the second terminal switch on one side of the load terminal and the positive terminal switch on the other side of the load terminal, a circuit of current flow including the third power generation portion is formed, so that the amount of the third power generation portion in the first and second poles of the load Power is applied,
    부하단 일측의 제1단자스위치와 부하단 타측의 역단자스위치와 함께 제1전원형성부가 포함된 전류흐름의 회로를 형성하여, 부하단 제1폴과 제2폴에 제1전원형성부의 음의 전원이 인가되고,Together with the first terminal switch on one side of the load terminal and the reverse terminal switch on the other side of the load terminal, a circuit of current flow including the first power generation portion is formed, so that the negative pole of the first power generation portion is formed on the first pole and the second pole of the load stage. Power is applied,
    부하단 일측의 제2단자스위치와 부하단 타측의 역단자스위치와 함께 제1전원형성부와 제2전원형성부가 포함된 전류흐름의 회로를 형성하여, 부하단 제1폴과 제2폴에 제1전원형성부의 전원과 제2전원형성부의 전원이 합해진 음의 전원이 인가되며,Together with the second terminal switch on one side of the load terminal and the reverse terminal switch on the other side of the load terminal, a current flow circuit including the first power generation portion and the second power generation portion is formed, and the first pole and the second pole of the load stage are formed. The negative power, which is the sum of the power of the first power generation unit and the power of the second power generation unit, is applied.
    부하단 양측 제1폴과 제2폴 사이에 연결되는 순영전압스위치가 작동되어 부하단 제1폴과 제2폴에 "0" 전압을 이루고,The net voltage switch connected between the first pole and the second pole on both sides of the load stage is operated to achieve a voltage of "0" at the first pole and the second pole of the load stage.
    부하단 양측 제1폴과 제2폴 사이에 연결되는 역영전압스위치가 작동되어 부하단 제1폴과 제2폴에 "0" 전압을 이루는 것을 특징으로 하는 단상 풀브릿지 인버터.A single-phase full bridge inverter, wherein a reverse voltage switch connected between first and second poles of both ends of the load stage is operated to form a "0" voltage on the first and second poles of the load stage.
PCT/KR2012/008506 2012-07-02 2012-10-18 Single-phase full-bridge inverter for providing improved power quality WO2014007432A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120071857A KR101297320B1 (en) 2012-07-02 2012-07-02 Single phase full-bridge inverter for providing enhanced power quality
KR10-2012-0071857 2012-07-02

Publications (1)

Publication Number Publication Date
WO2014007432A1 true WO2014007432A1 (en) 2014-01-09

Family

ID=49220688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/008506 WO2014007432A1 (en) 2012-07-02 2012-10-18 Single-phase full-bridge inverter for providing improved power quality

Country Status (2)

Country Link
KR (1) KR101297320B1 (en)
WO (1) WO2014007432A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015131763A1 (en) * 2014-03-06 2015-09-11 Huawei Technologies Co., Ltd. Multilevel hybrid inverter and operating method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US20160218637A1 (en) * 2013-09-23 2016-07-28 Siemens Aktiengesellschaft . A new four-level converter cell topology for cascaded modular multilevel converters
CN105827129A (en) * 2015-01-04 2016-08-03 华为技术有限公司 Circuit with multilevel topology and power converter
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
WO2023103811A1 (en) * 2021-12-08 2023-06-15 周衍 Multi-level soft switching inverter circuit, and balancing method for voltage at intermediate level therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4117364A (en) * 1976-05-14 1978-09-26 Massachusetts Institute Of Technology Voltage waveform synthesizer and a system that includes the same
US4203151A (en) * 1978-09-21 1980-05-13 Exxon Research & Engineering Co. High-voltage converter circuit
US6072707A (en) * 1998-10-23 2000-06-06 Siemens Power Transmission & Distribution, Inc. High voltage modular inverter
US6556461B1 (en) * 2001-11-19 2003-04-29 Power Paragon, Inc. Step switched PWM sine generator
US7126409B2 (en) * 2003-10-07 2006-10-24 American Power Conversion Corporation Three level inverter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4117364A (en) * 1976-05-14 1978-09-26 Massachusetts Institute Of Technology Voltage waveform synthesizer and a system that includes the same
US4203151A (en) * 1978-09-21 1980-05-13 Exxon Research & Engineering Co. High-voltage converter circuit
US6072707A (en) * 1998-10-23 2000-06-06 Siemens Power Transmission & Distribution, Inc. High voltage modular inverter
US6556461B1 (en) * 2001-11-19 2003-04-29 Power Paragon, Inc. Step switched PWM sine generator
US7126409B2 (en) * 2003-10-07 2006-10-24 American Power Conversion Corporation Three level inverter

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US20160218637A1 (en) * 2013-09-23 2016-07-28 Siemens Aktiengesellschaft . A new four-level converter cell topology for cascaded modular multilevel converters
US9190934B2 (en) 2014-03-06 2015-11-17 Futurewei Technologies, Inc. Multilevel hybrid inverter and operating method
WO2015131763A1 (en) * 2014-03-06 2015-09-11 Huawei Technologies Co., Ltd. Multilevel hybrid inverter and operating method
US10680506B2 (en) 2014-03-26 2020-06-09 Solaredge Technologies Ltd. Multi-level inverter
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
US10404154B2 (en) 2014-03-26 2019-09-03 Solaredge Technologies Ltd Multi-level inverter with flying capacitor topology
US10680505B2 (en) 2014-03-26 2020-06-09 Solaredge Technologies Ltd. Multi-level inverter
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
US10700588B2 (en) 2014-03-26 2020-06-30 Solaredge Technologies Ltd. Multi-level inverter
US10886831B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US10153685B2 (en) 2014-03-26 2018-12-11 Solaredge Technologies Ltd. Power ripple compensation
CN105827129A (en) * 2015-01-04 2016-08-03 华为技术有限公司 Circuit with multilevel topology and power converter
US20170302195A1 (en) * 2015-01-04 2017-10-19 Huawei Technologies Co., Ltd. Circuit of multi-level topology and power converter
WO2023103811A1 (en) * 2021-12-08 2023-06-15 周衍 Multi-level soft switching inverter circuit, and balancing method for voltage at intermediate level therefor

Also Published As

Publication number Publication date
KR101297320B1 (en) 2013-08-16

Similar Documents

Publication Publication Date Title
WO2014007432A1 (en) Single-phase full-bridge inverter for providing improved power quality
CN102055355B (en) Power conversion apparatus
WO2019045395A2 (en) Alternating current power generator capable of adjusting frequency and voltage
WO2014126392A1 (en) Power supply circuit for altering flickering frequency of light-emitting diode
WO2019103296A1 (en) System for inspecting submodule of modular multilevel converter and method for measuring capacity of capacitor of submodule of modular multilevel converter
WO2016076517A1 (en) Power conversion unit
CN107078661A (en) The T-shaped NPC power converters of three-level
WO2010058923A2 (en) Ac light emitting device, driving device thereof, and driving method thereby
WO2021010570A1 (en) Dc-dc converter of power conversion system
WO2018105808A1 (en) Dc-dc converter
WO2019059510A1 (en) Inverter system
WO2012161393A1 (en) Device for recovering power in a wound-rotor induction motor
WO2019009629A1 (en) Energy collecting device capable of reusing residual charges using piezoelectric element
WO2016159517A1 (en) H-bridge multilevel inverter
WO2013027949A2 (en) Power conversion device
WO2009145458A9 (en) Parallel connected switching converter using charge sharing
WO2021095967A1 (en) Method for controlling submodule current and voltage of modular multilevel converter, and control module performing same
WO2013141452A1 (en) Control system of pcs for h-bridge 2-string single-phase power system interconnection
WO2021112451A1 (en) Ac/dc converter
WO2017116083A1 (en) Npc conversion device and npc conversion method
WO2016108597A1 (en) Power control apparatus for sub-module of mmc converter
WO2017069333A1 (en) Dc/dc converter using multi-topology
WO2014069835A1 (en) Load current regenerating circuit and electrical device having load current regenerating circuit
WO2019212107A1 (en) Llc resonant converter and method of operating same
WO2023182662A1 (en) Power supply device using dc link voltage of high-voltage unit of semiconductor transformer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12880361

Country of ref document: EP

Kind code of ref document: A1