WO2013162097A1 - Carbon nano-material, and preparation method thereof - Google Patents

Carbon nano-material, and preparation method thereof Download PDF

Info

Publication number
WO2013162097A1
WO2013162097A1 PCT/KR2012/003204 KR2012003204W WO2013162097A1 WO 2013162097 A1 WO2013162097 A1 WO 2013162097A1 KR 2012003204 W KR2012003204 W KR 2012003204W WO 2013162097 A1 WO2013162097 A1 WO 2013162097A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
nitrogen
catalyst
carbon nano
gas
Prior art date
Application number
PCT/KR2012/003204
Other languages
French (fr)
Korean (ko)
Inventor
정두환
김상경
임성엽
백동현
이병록
김지영
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to PCT/KR2012/003204 priority Critical patent/WO2013162097A1/en
Publication of WO2013162097A1 publication Critical patent/WO2013162097A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a carbon nanomaterial and a method for manufacturing the same, and more particularly, to a carbon nanomaterial and a method for producing the same, which are excellent in durability and capable of supporting a catalyst more efficiently.
  • the fuel cell is a power generation system that directly converts the chemical reaction energy of hydrogen and oxygen contained in a hydrocarbon-based material such as methanol, ethane, and natural gas into electrical energy.
  • Such a fuel cell is a clean energy source that can replace fossil energy, and has a merit that can produce a wide range of outputs by stacking a unit cell stack. It is attracting attention as a compact and mobile portable power source because it shows 10 times the energy density.
  • a typical example of a fuel cell is a polymer electrolyte fuel cell (PEMFC: Polymer).
  • Electrolyte Membrane Fuel Cell Electrolyte Membrane Fuel Cell
  • Direct Oxidation Fuel Cell When methanol is used as a fuel in the direct oxidation fuel cell, it is called a direct methanol fuel cell (DMFC).
  • DMFC direct methanol fuel cell
  • the present invention also aims to provide a method for producing the carbon nanomaterial.
  • a carbon nanomaterial including carbon nanofibers including nitrogen is provided.
  • the carbon nanomaterial according to the present invention has excellent durability and can support a catalyst more efficiently, and thus has excellent performance as a catalyst carrier.
  • the carbon nanomaterial of the present invention has an advantage of having excellent durability due to excellent crystallinity, carrying a catalyst more effectively, and improving dispersibility by introducing nitrogen into carbon nanofibers.
  • the carbon nanomaterial of the present invention is expected not only to be used as a support for a catalyst including an electrode catalyst of a fuel cell but also to be used for introduction and development in various fields.
  • FIG. 1 is a view schematically showing the structure of a half-unggi used in the present invention.
  • FIG. 2 is a view showing the temperature and feed gas composition profile of the reaction process performed in the embodiment of the present invention.
  • FIG. 3 is a graph showing N / C (atomic%) according to the synthesis yield and elemental analysis of the nitrogen-doped carbon nano-rubber prepared according to Examples 1 to 11.
  • FIG. 3 is a graph showing N / C (atomic%) according to the synthesis yield and elemental analysis of the nitrogen-doped carbon nano-rubber prepared according to Examples 1 to 11.
  • FIG. 4 is a cross-sectional view of nitrogen-doped carbon nanofibers prepared according to Examples 1 to 11.
  • FIG. 6 is an SEM photograph of carbon nanofibers prepared according to Examples 4 and 12.
  • FIG. 7 is a TG measurement graph of carbon nanofibers prepared according to Examples 2, 5, 7, 10, and 11.
  • FIG. 7 is a TG measurement graph of carbon nanofibers prepared according to Examples 2, 5, 7, 10, and 11.
  • FIG. 8 is a graph of measuring the specific surface area of carbon nanofibers prepared according to Examples 1-11.
  • FIG. 10 is an XPS (X-ray Photoelectron) for nitrogen of the carbon nanofibers of Example 7.
  • FIG. 10 is an XPS (X-ray Photoelectron) for nitrogen of the carbon nanofibers of Example 7.
  • FIG. 11 is a graph showing the total nitrogen content of the Hanso nanofibers prepared according to Examples 1 to 11 and the nitrogen content present on the surface of the carbon nanofibers.
  • FIG. 12 shows N / C atomic ratios and (B) component (graphite-like structure) / (A) component (pyridine-like structure) on the surface of carbon nanofibers prepared according to Examples 1 to 11. Graph showing the ratio.
  • FIG. 13 is an X-ray diffraction (XRD) measurement graph of carbon nanofibers prepared according to Examples 1 to 11.
  • FIG. 14 is a graph showing the distance between d002 plane and Lc (002) crystal size of carbon nanofibers prepared according to Examples 1 to 11.
  • FIG. 14 is a graph showing the distance between d002 plane and Lc (002) crystal size of carbon nanofibers prepared according to Examples 1 to 11.
  • FIG. 15 is a graph showing the results of cyclic voltametry experiments measured using working electrodes using the carbon materials of Examples 4, 7 and 10, and Comparative Examples 2 to 4.
  • FIG. 16 is a graph showing the results of oxygen reduction reaction experiments using the working electrode using the carbon material of Examples 4, 7 and 10, and Comparative Examples 2 to 4.
  • FIG. 17 is a graph showing the results of cyclic voltametry experiments measured using an operating electrode using a catalyst prepared according to Examples 16 to 18 and Comparative Examples 5 to 6.
  • FIG. 18 is a graph showing the results of an oxygen reduction reaction test measured using a working electrode using a catalyst prepared according to Examples 16 to 18 and Comparative Examples 5 to 6.
  • FIG. 18 is a graph showing the results of an oxygen reduction reaction test measured using a working electrode using a catalyst prepared according to Examples 16 to 18 and Comparative Examples 5 to 6.
  • the present invention relates to carbon nanomaterials.
  • This carbon material contains nitrogen Carbon nanofibers.
  • nitrogen may be present in a doped form and distributed throughout the crystal structure of the carbon nanofiber. As such, the presence of nitrogen in the doped form can prevent the outflow of nitrogen in the blackening condition, and the nitrogen forms a structure with carbon nanofibers, thereby improving durability.
  • Nitrogen included in the carbon nanofibers may exist in various chemical states. That is, nitrogen is inserted into the carbon structure constituting the carbon nanofiber, pyridine-like
  • the component ratio (B / A) of the B component and the A component is preferably 0.3 to 2.0. , 1.0 to 2.0 is more preferred.
  • the component ratio (B / A) is included in the above range, it is effective in maintaining the structure of the carbon nanofibers while improving the activity for the oxygen reduction reaction.
  • the content of nitrogen in the carbon nanofibers may be 0.5 to 10 atomic%. When the content of nitrogen is included in the above range, it is possible to impart sufficient functionality by nitrogen doping and at the same time eliminate the structural vulnerability of the carbon nanofibers by nitrogen doping.
  • the ratio (N / C) of nitrogen to carbon is preferably 1.0 to 5.0 atomic%.
  • nitrogen is present in the above range compared to carbon, it is possible to obtain a doping effect of nitrogen in a highly crystalline structure.
  • the carbon nanofibers preferably have a herringbone structure.
  • the herringbone structure refers to a state in which the arrangement of graphenes is arranged at a constant angle in a V-shape with respect to the fiber axis in carbon having an abyssal structure having a crystalline structure. That is, the carbon nanofibers exhibit crystallinity.
  • the edges of the graphite may be exposed to the surface in abundance.
  • Such carbon nanofibers have a (002) plane peak at 20 to 30 ° when 2 ⁇ is measured by X-ray diffraction measurement using CuKa.
  • the surface between the carbon nanofibers The distance d002 is 0.340 to 0.356 mm 3 and the crystal size Lc (002) may be 1 to 7 nm.
  • the average diameter of the carbon nanofibers may be 10 to 100 nm. When the average diameter of the carbon nanofibers falls within the above range, high specific surface area as a carrier can be obtained together with structural durability.
  • the carbon nanofibers preferably have a specific surface area of 50 to 500 m 2 / g, and more preferably 70 to 490 m 2 / g.
  • the carbon nano material may be manufactured by a manufacturing method according to another embodiment of the present invention.
  • the method includes the steps of introducing nitrogen gas in a reaction vessel, in the presence of a metal catalyst supported on a carrier; Heating the temperature while supplying a mixed gas of nitrogen gas and hydrogen gas to the reaction vessel; And supplying a nitrogen containing compound to the reactor.
  • nitrogen gas is introduced in the reaction vessel in the presence of a metal catalyst supported on a carrier.
  • the carrier may be selected from the group consisting of MgO, MgO, Si0 2l A1 2 0 3 , zeolite, aluminosilicate carbon-based materials, and combinations thereof.
  • the carbonaceous material may be natural alum, artificial alum, carbon black, activated carbon, activated carbon fiber, carbon nanotube, carbon nanofiber, or a combination thereof.
  • the metal catalyst may be a metal selected from the group consisting of Ni, Fe, Co, and combinations thereof or alloys thereof.
  • the metal catalyst may further include a metal selected from the group consisting of Mo, Cu, Cr, Pt, Ru, Pd, or a combination thereof.
  • the reactor is heated while supplying a mixed gas of nitrogen gas and hydrogen gas.
  • Hydrogen gas prevents catalyst poisoning in the catalytic chemical vapor deposition (CCVD) process and increases the synthesis yield.
  • CCVD catalytic chemical vapor deposition
  • reaction occurs under a simple mixture of hydrogen gas and a carbonizable compound, pyrolysis occurs excessively. Side reactions may occur due to the high reaction rate, and incorporation of an inert gas such as nitrogen gas may induce an appropriate reaction rate for the growth of carbon nanofibers by catalyst reaction.
  • the mixing ratio of nitrogen gas and hydrogen gas in the mixed gas is appropriately about 160: 40 cc, but is not limited thereto.
  • the temperature raising step is a temperature of 300 to 700 ° C. at a temperature increase rate of 5 to ire / min Until it reaches. If the temperature increase rate is slower than the above range, the synthesis time increases, which leads to a decrease in productivity. Too high a temperature causes difficulty in temperature control.
  • the nitrogen-containing compound may be selected from the group consisting of acetonitrile, acrylonitrile, pi, pyridine and combinations thereof.
  • Carbon nano material according to an embodiment of the present invention can be usefully used for the cathode electrode for fuel cells.
  • the cathode electrode for a fuel cell includes the carbon nanomaterial.
  • the cathode electrode includes a cathode catalyst layer and an electrode substrate, and the carbon nanomaterial may be included in the cathode catalyst charge.
  • the carbon nanomaterial serves as a carrier of a catalyst causing a reduction reaction by reaction of oxidant, hydrogen ion and electron supplied to the cathode electrode.
  • a platinum-based catalyst generally used as a cathode electrode catalyst of a fuel cell may be used.
  • the platinum-based catalyst may be platinum, ruthenium, osmium, platinum-ruthenium alloy, platinum-osmium alloy, platinum-palladium alloy or platinum-M alloy (M is Ga, Ti, V, Cr, Mn, Fe, Co, Ni). , At least one catalyst selected from the group consisting of Cu, Zn, Sn, Mo, W, Rh, and Ru).
  • platinum-based catalyst examples include Pt, Pt / Ru, Pt / W, Pt / Ni, Pt / Sn, Pt / Mo, Pt / Pd, Pt / Fe, Pt / Cr, Pt / Co, Pt / Ru / W , Pt / Ru / Mo, Pt / Ru / V, Pt / Fe / Co, Pt / Ru / Rh / Ni and Pt / Ru / Sn / W can be used.
  • the cathode catalyst layer may further include a binder resin to improve adhesion of the catalyst layer and transfer hydrogen ions.
  • a polymer resin having hydrogen ion conductivity as the binder resin, and more preferably, sulfonic acid group, carboxylic acid group, phosphoric acid group, or phosphate in the side chain.
  • Any polymer resin having a cation exchange group selected from the group consisting of a phonic acid group and derivatives thereof can be used.
  • a fluorine polymer, a benzimidazole polymer, a polyimide polymer, a polyetherimide polymer, a polyphenylene sulfide polymer, a polysulfone polymer, a polyether sulfone polymer, a polyether ketone polymer, a polyether- It may include one or more hydrogen ion conductive polymer selected from ether-based polymer or polyphenylquinoxaline-based polymer, more preferably poly (perfluorosulfonic acid), poly (perfluorocarboxylic acid), sulfonic acid Copolymers of tetrafluoroethylene and fluorovinyl ethers containing groups, sulfonated polyetherketone aryl ketones, poly (2,2'-m-phenylene) -5,5'-bibenzimidazoles [poly (2 , 2'—in—phenylene) —5,5'-bibenzimidazole] or
  • the hydrogen ion conducting polymer may contain H, Na, K,
  • the binder resin may be used in the form of a single substance or a mixture, and may also be optionally used with a nonconductive compound for the purpose of further improving adhesion to the polymer electrolyte membrane. It is preferable to adjust the usage-amount so that it may be suitable for a purpose of use.
  • nonconductive compound examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-nucleated fluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoro alkylvinyl ether copolymer (PFA), and ethylene.
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-nucleated fluoropropylene copolymer
  • PFA tetrafluoroethylene-perfluoro alkylvinyl ether copolymer
  • ethylene ethylene
  • EFE ethylene / tetrafluoroethylene
  • ECTFE ethylenechlorotrifluoro-ethylene copolymer
  • PVdF-HFP polyvinylidene fluoride
  • dodecyl More preferably one or more selected from the group consisting of benzenesulfonic acid and sorbbi (Sorbitol).
  • the electrode substrate plays a role of supporting the electrode and diffuses the fuel and the oxidant into the catalyst layer so that the oxidant can easily access the catalyst layer.
  • the electrode substrate is a conductive substrate, and representative examples thereof include carbon paper, carbon cloth, carbon felt, or metal cloth (metal in fiber state).
  • the metal film is formed on the surface of the cloth formed of a porous film or polymer fibers consisting of) may be used, but is not limited thereto.
  • a water-repellent treatment with a fluorine-based resin as the electrode base material, since it is possible to prevent the reactant diffusion efficiency from being lowered by water generated when the fuel cell is driven.
  • the fluorine resin include polytetrafluoroethylene, polyvinylidene fluoride, polynuclear fluoropropylene, polyperfluoroalkyl vinyl ether, polyperfluorosulfonyl fluoride alkoxy vinyl ether, and fluorinated compounds. Fluorinated ethylene propylene, polychlorotrifluoroethylene or copolymers thereof can be used.
  • microporous layer for enhancing the effect of the semi-aungmul diffusion in the electrode substrate.
  • micropores are generally conductive powders of small particle size, such as carbon powder, carbon black, acetylene black, activated carbon, carbon fiber, fullerene, carbon nanotubes, carbon nanowires, carbon nano scars. -horn) or it may include a carbon nano ring (carbon nano ring).
  • the microporous layer is prepared by coating a composition comprising a conductive powder, a binder resin, and a solvent on the electrode substrate.
  • the binder resin include polytetrafluoroethylene, polyvinylidene fluoride, polynuclear fluoropropylene, polyperfluoroalkyl vinyl ether, polyperfluorosulfonyl fluoride, alkoxy vinyl ether, polyvinyl alcohol, and cells. Loose acetate or copolymers thereof and the like can be preferably used.
  • alcohols such as ethane-isopropyl alcohol, n-propyl alcohol, butyl alcohol, etc., water, dimethylacetamide, dimethyl sulfoxide, N-methylpyridone, tetrahydrofuran, etc. may be preferably used.
  • the coating process may be used, such as screen printing, spray coating or coating using a doctor blade, but is not limited thereto.
  • the carbon nanomaterial of the present invention is used as a catalyst carrier of a cathode electrode of a fuel cell.
  • the carbon nanomaterial of the present invention can be used as a carrier of various other catalysts, and furthermore, to develop materials in various fields. It can be widely used.
  • the aqueous solutions and citric acid were added to a 100 ml beaker. At this time, the amount of citric acid was used to be 0.625 times the total moles of metal contained in the aqueous solution.
  • the phase was 150 over 1 hour at (25 ° C).
  • the semi-unggi shown in FIG. 1 was prepared.
  • a moisture trap was installed at the nitrogen gas outlet to remove moisture in the quartz tube and nitrogen gas.
  • nitrogen gas was supplied at 200 cc / min for 15 minutes.
  • Nitrogen gas and hydrogen gas were supplied into the quartz tube at a supply amount of 160 cc / min and 40 cc / min, respectively.
  • the collected nitrogen-doped carbon nanotubes were mixed with 120 g of HCl and 300 g of distilled water, and the mixture was sealed and stirred for 24 hours.
  • HC1 and distilled water were removed from the stirred product, 10% by weight of HC1 was added again, followed by further stirring for 24 hours. Subsequently, the stirred product was sufficiently washed with distilled water and filtered to obtain a carbon nano-leube doped with nitrogen.
  • Carbon nanotubes doped with nitrogen were prepared in the same manner as in Example 1 above, except that the reaction temperature of the step of raising the temperature of the quartz rib was performed to 340 ° C.
  • Carbon nanotubes doped with nitrogen were prepared in the same manner as in Example 1, except that the reaction temperature of the quartz tube was raised to 380 ° C.
  • Nitrogen-doped carbon nanotubes were prepared in the same manner as in Example 1 except that the reaction temperature of the quartz tube sublimation process was performed up to 42 CTC.
  • Nitrogen-doped carbon nanotubes were prepared in the same manner as in Example 1, except that reaction temperature of the quartz tube was raised to 460 ° C.
  • Nitrogen-doped carbon nano-Lube was prepared in the same manner as in Example 1 except that the reaction temperature of the process of subliming the quartz tube was 5 (xrc). It was.
  • Carbon nanotubes doped with nitrogen were prepared in the same manner as in Example 1, except that reaction temperature of the process of subliming the quartz tube was performed up to 52 CTC.
  • Nitrogen-doped carbon nanotubes were prepared in the same manner as in Example 1 except that the reaction temperature of the process of raising the temperature of the quartz rib was performed up to 540 ° C.
  • Carbon nanotubes doped with nitrogen were prepared in the same manner as in Example 1 except that the reaction temperature of the process of heating the quartz tube was performed up to 600 ° C.
  • Nitrogen-doped carbon nano-Lube was prepared in the same manner as in Example 1, except that the reaction temperature of the process of raising the quartz tube was performed up to 640 ° C.
  • Carbon nanotubes doped with nitrogen were prepared in the same manner as in Example 1 except that the reaction temperature of the step of raising the temperature of the quartz tube was performed up to 680 ° C.
  • Nitrogen-doped carbon nanotubes were prepared in the same manner as in Example 4 except that the reaction was maintained at a reaction temperature (42C C) for 3 hours (reaction time).
  • Nitrogen-doped carbon nanotubes were prepared in the same manner as in Example 7, except that the reaction was maintained at a reaction temperature (52 CTC) for 3 hours (reaction time).
  • Carbon nanotubes doped with nitrogen were prepared in the same manner as in Example 10 except that the reaction was maintained at a reaction temperature (640 ° C.) for 3 hours (reaction time).
  • the semi-unggi shown in FIG. 1 was prepared.
  • the alumina plate prepared by spreading the catalyst evenly was placed in the center of the semi-ungung quartz tube shown in FIG. 1 and then sealed using Teflon tape.
  • a moisture tram was installed at the outlet of the helium gas to remove moisture in the quartz tube and helium gas.
  • helium gas was supplied at 200 cc / min for 15 minutes.
  • the quartz tube was then heated to the reaction temperature (30 (rC) for 1 hour while helium gas and hydrogen gas were supplied in a 4: 1 volume ratio into the quartz stream.
  • reaction temperature When the reaction temperature was reached, 0.035 ml / min of acetonitrile was supplied through the micropump and maintained at the reaction temperature for 1 hour (reaction time). At this time, carbon nanotubes doped with nitrogen were formed.
  • the collected nitrogen-doped carbon nanotubes were mixed with 120 g of HC1 and 300 g of distilled water, and the mixture was sealed and stirred for 24 hours.
  • HC1 and distilled water were removed from the stirred product, and HC1 at a concentration of 10% by weight was added again, followed by further stirring for 24 hours. Subsequently, the stirred product was sufficiently washed with distilled water and filtered to obtain a carbon nanotube doped with nitrogen.
  • Carbon nanotubes doped with nitrogen were prepared in the same manner as in Example 1 except that the reaction temperature of the step of raising the temperature of the quartz tube was performed up to 420 ° C.
  • the yield is extremely low at the reaction temperature of 300 ° C. (Example 1), whereas the production yield is rapidly increased at 340 ° C. (Example 2), and the reaction temperature is 420 °. Slightly increased to C.
  • the synthesis yield showed a marked decrease trend up to the reaction temperature of 520 ° C, showed almost the same yield in the range of 520 ° C to 650 ° C, and then rapidly decreased at 680 ° C.
  • the N / C (atomic%) is continuously increased from 300 ° C (Example 1) to 520 ° C (Example 7), and slowly decreases to 650 ° C, 680 At ° C, it showed a tendency to decrease rapidly.
  • reaction temperature is not yet equipped with the shape of the fiber at 340 ° C or less.
  • the carbon nanofibers prepared according to Example 3 having a reaction temperature of 380 ° C. are 30 to
  • TG was measured using a TG analyzer (device: STA 409 PC, NETZSCH) under an air atmosphere.
  • the temperature was measured at a temperature of 5 K / min from 100 ° C to 900 ° C.
  • Nitrogen isotherm adsorption and desorption experiments were performed on the carbon nanofibers prepared according to Examples 1 to 11 to measure specific surface areas. Nitrogen isothermal adsorption and desorption experiment
  • the sample was prepared by treating the prepared carbon nanofibers in a 10 wt% HC1 solution for 48 hours, washing with distilled water and drying for 3 hours in a drying oven at 80 ° C.
  • the measured specific surface area results are shown in FIG. 8.
  • the carbon nanofibers prepared according to Examples 1 to 11 obtained specific surface areas in the range of about 70 to 480 m 7 g.
  • the specific surface area tends to decrease slightly as the reaction temperature increases.
  • XPS X—ray Photoelectron Spectroscopy
  • the carbon, nitrogen, and oxygen components of each sample were analyzed at binding energy (C: 280 to 295 eV, N: 393 sowl 410 eV, 0: 520 to 540 eV).
  • FIGS. 9 and 10 XPS spectrum results for nitrogen of the carbon nanofibers of Examples 3 and 7 are shown in FIGS. 9 and 10.
  • (A), (B) and (C) shown in FIGS. 9 and 10 are pyridine-like structures or pyridine-like structures nitrogen components (A) and graphite-like, respectively.
  • the total nitrogen content measured from the measured XPS results and the nitrogen content present on the carbon nanofiber surface are shown in FIG. 11. .
  • the nitrogen content (about 1 to 9 atom 3 ⁇ 4) present on the surface is higher than the total nitrogen content (about 1 to 5 atom%), and the N / C atomic ratio at the surface is the total N / C source. It can be seen that about two times higher than mercy. Since the actual catalyst reaction is made on the surface of the catalyst and the carrier, the composition of the surface is important, and if there is more nitrogen on the surface of the total nitrogen content, the effect of nitrogen on the reaction can be seen more.
  • the ratio of N / C atomic ratio and the component (B) (graphite-like structure) / (A) component (pyridine-like structure) at the measured surface is shown in FIG. 12. As shown in FIG. 12, it can be seen that as the reaction temperature increases, the relative -nitrogen nitrogen component increases relatively.
  • X-ray scarcity (XRD) analysis was performed. XRD analysis was performed using RINT2000 (Rigaku) and scanning speed of 0.02 per minute from 10 degrees ( ° ) to 80 degrees ( ° ) in 2 ⁇ / ⁇ scanning mode. Among the measurement results, 2 ⁇ shows a peak corresponding to the (002) lattice plane near 26 degrees ⁇ ) in FIG. 13. As shown in FIG. 13, Examples 1 to 2. FIG. Carbon nanofibers prepared according to 11 can be seen that the peak of the (002) plane appears. In addition, it can be seen that as the reaction temperature increases, the peak central axis moves to a high angle, and the peak width narrows, thereby increasing the crystallinity. In addition, as the reaction temperature increases, the 10-band becomes apparent.
  • a catalyst slurry was prepared by mixing 20nig of carbon nanofibers prepared in Examples 4, 7 and 10, 10 wt% 3 ⁇ 4 concentration Napi silver solution (water solvent, Dupont) 40 ⁇ , distilled water 40kPa and ethanol lg. It was. The catalyst slurry was coated with 10, glass carbon having an IcHf area, and dried to prepare a working electrode.
  • a working electrode was prepared in the same manner as described above using Vulcan XC72R).
  • a working electrode was prepared in the same manner as described above using CNFCSsuntel RP-610: CNF1).
  • a working electrode was prepared in the same manner as described above using carbon nanofibers (CNF 2) synthesized at 52 CTC using ethylene as a carbon source instead of the carbon nanotubes prepared in Example 4 as a comparative example.
  • CNF 2 carbon nanofibers
  • ⁇ i6i> Working electrode manufactured, platinum mesh with counter electrode, Ag / AgCKALS as reference electrode. Electrochemical experiments were carried out with a three-electrode system using RE-IB, standard hydrogen electrode (denoted NHE).
  • HC10 4 in aqueous solution was conducted in the 0.0 to 1.2V with NHE reference electrode, an oxygen reduction reaction (Oxygen Reduction React ion: 0RR) experiment in 0.1M HC10 purged sufficiently with oxygen layer 4 aqueous solution as reference electrode NHE 1.2 to It was carried out at 0.2V. Also, the potential sweep rate was fixed at 2 () mV / sec.
  • Examples 4, 7 and 10, and Comparative Examples 2 to 4 all carbon materials exhibit a rectangular pattern by typical electric double layer formation.
  • Examples 4, 7 and 10 In the case of using carbon nanofibers, it can be seen that the inner area is large. As such, the large internal area indicates a large amount of ion adsorption, which means that the ion adsorption capacity is excellent, and as a result, it can be predicted that the catalyst supporting characteristics and the interaction between the catalyst and the carrier will be excellent when used as a catalyst carrier for fuel cells. have.
  • the carbon nanofibers of Examples 4, 7 and 10 has an oxygen reduction activity
  • the carbon material of Comparative Examples 2 to 4 does not have an oxygen reduction activity. From this result, the carbon nanofibers of Examples 4, 7 and 10 can It can be seen that it can also be used as a catalyst for the sword electrode.
  • a catalyst precursor solution was prepared by stirring a platinum precursor (Chloroplatinic acid hydride 99.9%, Aldrich), a carbon nanofiber carrier prepared according to Example 11, and 400 ml of distilled water for 48 hours.
  • NaBH 4 was prepared by dissolving it in 400 ml of distilled water in an amount of 15 times the molar ratio of the amount of metal to be supported. The mixture was stirred well for 30 minutes and then stirred for 48 hours to prepare a NaBH 4 solution. The catalyst precursor solution was added to NaBH 4 solution, and stirred for 1 hour to reduce the solution. The reduced product was washed with 1 L of distilled water and filtered, and dried for 2 hours in an oven at 80 ° C to prepare a Pt / carbon nanofiber catalyst (Pt / N640).
  • the platinum precursor (Chloroplatinic acid hydride 99.9%, Aldrich), except that the carbon nanofiber carrier prepared according to Example 13 and 400 ml of distilled water were stirred for 48 hours to prepare a catalyst precursor solution.
  • a Pt / carbon nanofiber catalyst (Pt / N523) was prepared.
  • Pt precursor Chloroplatinic acid hydride 99.9%, Aldrich
  • carbon black carrier 400 ml
  • the catalyst precursor solution was prepared in the same manner as in Example 16, Pt Carbon nanofiber catalysts (Pt / CB) were prepared.

Abstract

The present invention relates to a carbon nano-material, and a preparation method thereof. The carbon nano-material of the present invention comprises a carbon nanofiber containing nitrogen. The method for preparing the carbon nano-material of the present invention comprises the steps of: introducing nitrogen gas into a reactor in the presence of a metal catalyst supported in a support; increasing temperature while supplying a gas mixture of nitrogen gas and hydrogen gas into the reactor; and supplying a nitrogen-containing compound into the reactor. According to the present invention, the carbon nano-material has remarkable durability and can more effectively support a catalyst, and thus performs excellently as a catalyst support. The carbon nano-material of the present invention shows remarkable durability due to excellent crystallinity by introducing nitrogen into a carbon nanofiber, more effectively supports a catalyst, and can improve dispersibility. The carbon nano-material of the present invention is expected to be used as a support of a catalyst including an electrode catalyst of a fuel cell and to be applied to develop a material of various fields.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
탄소 나노 재료 및 이의 제조 방법  Carbon Nano Materials and Methods for Making the Same
【기술분야】  Technical Field
<1> 본 발명은 탄소 나노 재료 및 이의 제조 방법에 관한 것으로, 더욱 상세하게 는 내구성이 우수하고 촉매를 보다 효율적으로 담지시킬 수 있는 탄소 나노 재료 및 이의 제조 방법에 관한 것이다.  The present invention relates to a carbon nanomaterial and a method for manufacturing the same, and more particularly, to a carbon nanomaterial and a method for producing the same, which are excellent in durability and capable of supporting a catalyst more efficiently.
【배경기술】  Background Art
<2> 연료 전지 (Fuel cell)는 메탄올, 에탄을, 천연기체와 같은 탄화수소 계열의 물질 내에 함유되어 있는 수소와 산소의 화학 반웅 에너지를 직접 전기 에너지로 변환시키는 발전 시스템이다.  The fuel cell is a power generation system that directly converts the chemical reaction energy of hydrogen and oxygen contained in a hydrocarbon-based material such as methanol, ethane, and natural gas into electrical energy.
<3> 이러한 연료 전지는 화석 에너지를 대체할 수 있는 청정 에너지원으로서, 단 위 전지의 적층에 의한 스택 구성으로 다양한 범위의 출력을 낼 수 있는 장점을 갖 고 있으며, 소형 리튬 전지에 비하여 4-10배의 에너지 밀도를 나타내기 때문에 소 형 및 이동용 휴대전원으로 주목받고 있다.  <3> Such a fuel cell is a clean energy source that can replace fossil energy, and has a merit that can produce a wide range of outputs by stacking a unit cell stack. It is attracting attention as a compact and mobile portable power source because it shows 10 times the energy density.
<4> 연료 전지의 대표적인 예로는 고분자 전해질형 연료 전지 (PEMFC: Polymer<4> A typical example of a fuel cell is a polymer electrolyte fuel cell (PEMFC: Polymer).
Electrolyte Membrane Fuel Cell), 직접 산화형 연료 전지 (Direct Oxidation Fuel Cell)를 들 수 있다. 상기 직접 산화형 연료 전지에서 연료로 메탄올을 사용하는 경우는 직접 메탄올 연료 전지 (DMFC: Direct Methanol Fuel Cell)라 한다. Electrolyte Membrane Fuel Cell) and Direct Oxidation Fuel Cell. When methanol is used as a fuel in the direct oxidation fuel cell, it is called a direct methanol fuel cell (DMFC).
<5> 연료 전지의 전극 촉매는 다수의 연구 개발 사례가 보고되어 있으나 현재까 지의 추세는 촉매 활성의 향상에 초점이 맞추어져 있고, 최근에 실용화의 관점에서 내구성 향상에 많은 노력을 기울이고 있다.  Although a number of research and development examples of electrode catalysts for fuel cells have been reported, the trends up to now have focused on improving catalyst activity, and in recent years, many efforts have been made to improve durability in terms of practical use.
<6> 기존의 촉매는 비활성 (촉매 중량당 활성 )을 높이기 위하여 담지촉매를 사용 하였으나, 촉매 고분산을 위한 담지체의 증대 과정에서 담지체 구조 파괴를 초래하 여 촉매 내구성 확보에 어려움이 있었다. 이와 같은 이유로 탄소 담지체를 혹연화 하여 담지체 내구성의 강화를 시도한 사례도 있지만, 공정이 까다롭고 촉매 담지 자체의 어려움으로 인하여 촉매 활성 측면에서는 효과적이지 못한 문제가 있었다. In the conventional catalyst, a supported catalyst was used to increase the inertness (activity per catalyst weight), but it was difficult to secure the catalyst durability by causing the support structure destruction in the process of increasing the support for high dispersion of the catalyst. For this reason, there have been cases of attempting to strengthen the support durability by detonating the carbon support, but there is a problem in that it is not effective in terms of catalyst activity due to the difficult process and the difficulty of supporting the catalyst itself.
<7> . 한편, 메조기공탄소와 같은 물질이동 측면에서 유리한 다공질체의 경우 역시 구조의 취약성이 문제되었으며, 최근 이른바 open surf ace로 고비표면적을 낼 수 있는 나노 입자 또는 나노 섬유를 담지체로 활용하는 촉매 개발의 사례가 보고되고 있지만, 이 역시 촉매의 담지 및 분산의 곤란함으로 효과적인 결과를 얻지 못하고 있는 실정이다. 【발명의 상세한 설명】 <7> . On the other hand, porous materials that are advantageous in terms of mass transfer, such as mesoporous carbon, have also suffered from structural weakness. Recently, a case of developing a catalyst utilizing nanoparticles or nanofibers, which can give a high specific surface area as a so-called open surf ace, as a carrier Although has been reported, this is also a situation that does not obtain effective results due to the difficulty of supporting and dispersing the catalyst. [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
<8> 본 발명은 뛰어난 내구성을 갖고 촉매를 보다 효율적으로 담지시킬 수 있어 촉매 담지체로 우수한 성능을 갖는 탄소 나노 재료를 제공하는 것을 그 목적으로 한다.  It is an object of the present invention to provide a carbon nanomaterial having excellent durability and capable of supporting a catalyst more efficiently and having excellent performance as a catalyst carrier.
<9> 본 발명은 또한 상기 탄소 나노 재료를 제조하는 방법을 제공하는 것을 그 목적으로 한다.  The present invention also aims to provide a method for producing the carbon nanomaterial.
【기술적 해결방법】  Technical Solution
<10> 본 발명의 일 구현예에 따르면, 질소를 포함하는 탄소 나노 섬유를 포함하는 탄소 나노 재료를 제공한다.  According to an embodiment of the present invention, a carbon nanomaterial including carbon nanofibers including nitrogen is provided.
<π> 본 발명의 다른 일 구현예에 따르면, 반웅기 내에서, 담체에 담지된 금속 촉 매 존재 하에, 질소 가스를 도입하는 단계; 상기 반웅기에 질소 가스와 수소 가스 의 흔합 가스를 공급하면서, 승온하는 단계; 및 상기 반응기에 질소 함유 화합물을 공급하는 단계를 포함하는 탄소 나노 재료의 제조 방법을 제공한다. <π> According to another embodiment of the present invention, the step of introducing a nitrogen gas, in the presence of a metal catalyst supported on a carrier in a reaction vessel; Raising the temperature while supplying a mixed gas of nitrogen gas and hydrogen gas to the reaction vessel; And supplying a nitrogen-containing compound to the reactor.
【유리한 효과】  Advantageous Effects
<12> 본 발명에 따른 탄소 나노 재료는 뛰어난 내구성을 갖고 촉매를 보다 효율적 으로 담지시킬 수 있어 촉매 담지체로 우수한 성능을 갖는다. 본 발명의 탄소 나노 재료는 탄소 나노 섬유에 질소를 도입함으로써 우수한 결정성으로 인해 내구성이 우수하고, 촉매를 보다 효과적으로 담지하며, 분산성을 향상시킬 수 있는 장점이 있다.  The carbon nanomaterial according to the present invention has excellent durability and can support a catalyst more efficiently, and thus has excellent performance as a catalyst carrier. The carbon nanomaterial of the present invention has an advantage of having excellent durability due to excellent crystallinity, carrying a catalyst more effectively, and improving dispersibility by introducing nitrogen into carbon nanofibers.
<13> 본 발명의 탄소 나노 재료는 연료전지의 전극 촉매를 포함한 촉매의 담지체 로 활용될 수 있을 뿐만 아니라 다양한 분야의 소개 개발에 활용될 수 있을 것으로 기대된다.  The carbon nanomaterial of the present invention is expected not only to be used as a support for a catalyst including an electrode catalyst of a fuel cell but also to be used for introduction and development in various fields.
【도면의 간단한 설명】  [Brief Description of Drawings]
<14> 도 1은 본 발명에서 사용된 반웅기의 구조를 개략적으로 나타낸 도면.  1 is a view schematically showing the structure of a half-unggi used in the present invention.
<15> 도 2는 본 발명의 실시예에서 실시한 반웅 공정의 온도 및 공급 기체 조성 프로파일올 나타낸 도면.  2 is a view showing the temperature and feed gas composition profile of the reaction process performed in the embodiment of the present invention.
<16> 도 3은 실시예 1 내지 11에 따라 제조된 질소가 도핑된 탄소 나노 류브의 합 성 수율 및 원소 분석 결과에 의한 N/C (원자 %)를 나타낸 그래프.  FIG. 3 is a graph showing N / C (atomic%) according to the synthesis yield and elemental analysis of the nitrogen-doped carbon nano-rubber prepared according to Examples 1 to 11. FIG.
<17> 도 4는 실시예 1 내지 11에 따라 제조된 질소가 도핑된 탄소 나노 섬유의 4 is a cross-sectional view of nitrogen-doped carbon nanofibers prepared according to Examples 1 to 11.
SEM사진 . SEM picture.
<18> 도 5는 실시예 4, 7, 10 및 12 내지 15에 따라 제조된 탄소 나노 섬유의 합 성 수율을 나타낸 그래프. 5 is a sum of carbon nanofibers prepared according to Examples 4, 7, 10, and 12 to 15; Graph showing sexual yield.
<19> 도 6은 실시예 4 및 12에 따라 제조된 탄소 나노 섬유의 SEM 사진.  FIG. 6 is an SEM photograph of carbon nanofibers prepared according to Examples 4 and 12.
<20> 도 7은 실시예 2, 5, 7, 10 및 11에 따라 제조된 탄소 나노 섬유에 대한 TG 측정 그래프.  FIG. 7 is a TG measurement graph of carbon nanofibers prepared according to Examples 2, 5, 7, 10, and 11. FIG.
<2i> 도 8은 실시예 1 내지 11에 따라 제조된 탄소 나노 섬유의 비표면적 측정 그 래프.  FIG. 8 is a graph of measuring the specific surface area of carbon nanofibers prepared according to Examples 1-11.
<22> 도 9는 실시예 3의 탄소 나노 섬유의 질소에 대한 XPS(X-ray Photoelectron 9 is an XPS (X-ray Photoelectron) for nitrogen of the carbon nanofibers of Example 3
Spectroscopy) 스펙트럼 결과를 나타낸 그래프. Spectroscopy Graph showing spectral results.
<23> 도 10은 실시예 7의 탄소 나노 섬유의 질소에 대한 XPS(X-ray PhotoelectronFIG. 10 is an XPS (X-ray Photoelectron) for nitrogen of the carbon nanofibers of Example 7. FIG.
Spectroscopy) 스펙트럼 결과를 나타낸 그래프. Spectroscopy Graph showing spectral results.
<24> 도 11은 실시예 1 내지 11에 따라 제조된 한소 나노 섬유의 총 질소 함량과, 탄소 나노 섬유 표면에 존재하는 질소 함량 결과를 나타낸 그래프. FIG. 11 is a graph showing the total nitrogen content of the Hanso nanofibers prepared according to Examples 1 to 11 and the nitrogen content present on the surface of the carbon nanofibers.
<25> 도 12는 실시예 1 내지 11에 따라 제조된 탄소 나노 섬유의 표면에서 N/C 원 자비와 상기 (B) 성분 (흑연 -유사 구조) /(A) 성분 (피리딘 -유사 구조)의 비를 나타낸 그래프. FIG. 12 shows N / C atomic ratios and (B) component (graphite-like structure) / (A) component (pyridine-like structure) on the surface of carbon nanofibers prepared according to Examples 1 to 11. Graph showing the ratio.
<26> 도 13은 실시예 1 내지 11에 따라 제조된 탄소 나노 섬유의 X-선 회절 (XRD) 측정 그래프.  FIG. 13 is an X-ray diffraction (XRD) measurement graph of carbon nanofibers prepared according to Examples 1 to 11.
<27> 도 14는 실시예 1 내지 11에 따라 제조된 탄소 나노 섬유의 d002 면간 거리 와 Lc(002) 결정 크기 결과를 나타낸 그래프.  FIG. 14 is a graph showing the distance between d002 plane and Lc (002) crystal size of carbon nanofibers prepared according to Examples 1 to 11. FIG.
<28> 도 15는 실시예 4, 7 및 10, 그리고 비교예 2 내지 4의 탄소 물질을 사용한 작동 전극을 이용하여 측정된 사이클릭 볼타메트리 실험 결과를 나타낸 그래프. <29> 도 16은 실시예 4, 7 및 10, 그리고 비교예 2 내지 4의 탄소 물질을 사용한 작동 전극을 이용하여 측정된 산소 환원 반응 실험 결과를 나타낸 그래프. 15 is a graph showing the results of cyclic voltametry experiments measured using working electrodes using the carbon materials of Examples 4, 7 and 10, and Comparative Examples 2 to 4. FIG. 16 is a graph showing the results of oxygen reduction reaction experiments using the working electrode using the carbon material of Examples 4, 7 and 10, and Comparative Examples 2 to 4.
<30> 도 17은 실시예 16 내지 18 및 비교예 5 내지 6에 따라 제조된 촉매를 사용 한 작동 전극을 이용하여 측정된 사이클릭 볼타메트리 실험 결과를 나타낸 그래프. <3i> 도 18은 실시예 16 내지 18 및 비교예 5 내지 6에 따라 제조된 촉매를 사용 한 작동 전극을 이용하여 측정된 산소 환원 반웅 실험 결과를 나타낸 그래프. 17 is a graph showing the results of cyclic voltametry experiments measured using an operating electrode using a catalyst prepared according to Examples 16 to 18 and Comparative Examples 5 to 6. FIG. FIG. 18 is a graph showing the results of an oxygen reduction reaction test measured using a working electrode using a catalyst prepared according to Examples 16 to 18 and Comparative Examples 5 to 6. FIG.
【발명의 실시를 위한 최선의 형태】  Best Mode for Implementation of the Invention
<32> 이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구 항의 범주에 의해 정의될 뿐이다.  Hereinafter, embodiments of the present invention will be described in detail. However, this is presented as an example, by which the present invention is not limited and the present invention is defined only by the scope of the claims to be described later.
<33> 본 발명은 탄소 나노 재료에 관한 것이다. 이 탄소 재료는 질소를 포함하는 탄소 나노 섬유를 포함한다. 이 탄소 나노 섬유에서 질소는 도핑된 형태로 존재하 여, 탄소 나노 섬유의 결정 구조 전체에 분포할 수 있다. 이와 같이 질소가 도핑된 형태로 존재함에 따라 가흑조건에서 질소의 유출을 막을 수 있고, 질소가 탄소 나 노 섬유와 하나의 구조체를 이루고 있어 내구성을 향상시킬 수 있다. The present invention relates to carbon nanomaterials. This carbon material contains nitrogen Carbon nanofibers. In this carbon nanofiber, nitrogen may be present in a doped form and distributed throughout the crystal structure of the carbon nanofiber. As such, the presence of nitrogen in the doped form can prevent the outflow of nitrogen in the blackening condition, and the nitrogen forms a structure with carbon nanofibers, thereby improving durability.
<34> 상기 탄소 나노 섬유에 포함된 질소는 다양한 화학적 상태로 존재할 수 있 다. 즉, 질소가 탄소 나노 섬유를 구성하는 탄소 구조에 삽입되어, 피리딘 -유사Nitrogen included in the carbon nanofibers may exist in various chemical states. That is, nitrogen is inserted into the carbon structure constituting the carbon nanofiber, pyridine-like
(pyridine-like) 구조 또는 피리돈 -유사 (pyr idine-1 ike) 구조인 A 성분으로 존재할 수도 있고, 혹연 -유사 구조 또는 피를 -유사 구조인 B 성분으로 존재할 수도 있다. 또한, 산소와 결합한 상태로 존재할 수도 있다. 본 발명의 일 구현예에 따른 질소 를 포함하는 탄소 나노 섬유를 XPS(X-ray photoelectron spectroscopy)으로 측정하 는 경우, 상기 B 성분과 A 성분의 성분비 (B/A)는 0.3 내지 2.0이 바람직하며, 1.0 내지 2.0이 더욱 바람직하다. 상기 성분비 (B/A)가 상기 범위에 포함되는 경우 산 소환원반응에 대한 활성을 향상시킴과 동시에 탄소 나노 섬유의 구조체 유지에 효 과적이다. It may be present as an A component having a (pyridine-like) structure or a pyr idine-1 like structure, or may be present as a B component having a -like structure or blood-like structure. It may also be present in combination with oxygen. When measuring carbon nanofibers containing nitrogen according to an embodiment of the present invention by X-ray photoelectron spectroscopy (XPS), the component ratio (B / A) of the B component and the A component is preferably 0.3 to 2.0. , 1.0 to 2.0 is more preferred. When the component ratio (B / A) is included in the above range, it is effective in maintaining the structure of the carbon nanofibers while improving the activity for the oxygen reduction reaction.
<35> 상기 탄소 나노 섬유에서 질소의 함량은 0.5 내지 10 원자 %일 수 있다. 질 소의 함량이 상기 범위에 포함되는 경우, 질소 도핑에 의한 충분한 기능 부여를 할 수 있음과 동시에 질소가 도핑에 의한 탄소 나노 섬유의 구조적 취약성을 없앨 수 있다.  The content of nitrogen in the carbon nanofibers may be 0.5 to 10 atomic%. When the content of nitrogen is included in the above range, it is possible to impart sufficient functionality by nitrogen doping and at the same time eliminate the structural vulnerability of the carbon nanofibers by nitrogen doping.
<36>  <36>
<37> *상기 탄소 나노 섬유에서, 질소와 탄소의 비율 (N/C)은 1.0 내지 5.0 원자 % 가 바람직하다. 질소의 비율이 높을수록 질소에 의한 기능부여 효과가 커지지만, 지나치게 질소의 비율이 높아지면 탄소구조체내의 결함으로 작용하여 결정성이 취 약해진다. 질소가 탄소 대비 위와 같은 범위로 존재할 경우 고 결정성 구조 속에서 질소의 도핑 효과를 얻을 수 있다.  In the carbon nanofibers, the ratio (N / C) of nitrogen to carbon is preferably 1.0 to 5.0 atomic%. The higher the ratio of nitrogen, the greater the effect of imparting the effects of nitrogen, but too high the ratio of nitrogen acts as a defect in the carbon structure, weakening crystallinity. When nitrogen is present in the above range compared to carbon, it is possible to obtain a doping effect of nitrogen in a highly crystalline structure.
<38> 상기 탄소 나노 섬유는 헤링본 구조 (herringbone structure)를 갖는 것이 적 절하다. 상기 헤링본 구조란, 결정성 구조를 갖는 혹연 구조를 갖는 탄소에서, 그 라핀 (graphene)의 배열이 섬유축을 중심으로 V자 형태로 일정한 각으로 배열되어 있는 상태를 의미한다. 즉, 상기 탄소 나노 섬유는 결정성을 나타내는 것이다. 탄 소 나노 섬유가 헤링본 구조를 갖는 경우, 흑연의 에지 (edge)가 표면에 풍부하게 노출될 수 있다.  The carbon nanofibers preferably have a herringbone structure. The herringbone structure refers to a state in which the arrangement of graphenes is arranged at a constant angle in a V-shape with respect to the fiber axis in carbon having an abyssal structure having a crystalline structure. That is, the carbon nanofibers exhibit crystallinity. When the carbon nanofibers have a herringbone structure, the edges of the graphite may be exposed to the surface in abundance.
<3 > 이러한 상기 탄소 나노 섬유는 CuKa를 사용한 X-선 회절 측정시 2Θ가 20 내지 30° 에서 (002)면의 피크를 갖는 것이다. 또한, 상기 탄소 나노 섬유의 면간 거리 d002는 0.340 내지 0.356誦이고, 결정 크기 Lc(002)는 1 내지 7nm일 수 있다. <40> 상기 탄소 나노 섬유의 평균 직경은 10 내지 lOOnm일 수 있다. 상기 탄소 나노 섬유의 평균 직경이 상기 범위에 포함되는 경우, 구조적 내구성과 함께 담체 로서의 높은 비표면적을 얻을 수 있다. <3> Such carbon nanofibers have a (002) plane peak at 20 to 30 ° when 2Θ is measured by X-ray diffraction measurement using CuKa. In addition, the surface between the carbon nanofibers The distance d002 is 0.340 to 0.356 mm 3 and the crystal size Lc (002) may be 1 to 7 nm. The average diameter of the carbon nanofibers may be 10 to 100 nm. When the average diameter of the carbon nanofibers falls within the above range, high specific surface area as a carrier can be obtained together with structural durability.
<4i> 상기 탄소 나노 섬유는 50 내지 500m2/g의 비표면적을 갖는 것이 바람직하 며, 70 내지 490m2/g의 비표면적을 갖는 것이 더욱 바람직하다. <4i> The carbon nanofibers preferably have a specific surface area of 50 to 500 m 2 / g, and more preferably 70 to 490 m 2 / g.
<42> 상기 탄소 나노 재료는 본 발명의 다른 일 구현예에 따른 제조 방법에 의하 여 제조될 수 있다. 상기 제조 방법은 반웅기 내에서, 담체에 담지된 금속 촉매 존재 하에, 질소 가스를 도입하는 단계; 상기 반웅기에 질소 가스와 수소 가스의 흔합 가스를 공급하면서, 승온하는 단계; 및 상기 반응기에 질소 함유 화합물을 공 급하는 단계를 포함한다. The carbon nano material may be manufactured by a manufacturing method according to another embodiment of the present invention. The method includes the steps of introducing nitrogen gas in a reaction vessel, in the presence of a metal catalyst supported on a carrier; Heating the temperature while supplying a mixed gas of nitrogen gas and hydrogen gas to the reaction vessel; And supplying a nitrogen containing compound to the reactor.
<43> 이하, 상기 제조 방법에 대하여 자세하게 설명한다.  Hereinafter, the manufacturing method will be described in detail.
<44> 먼저, 반웅기 내에서, 담체에 담지된 금속 촉매 존재 하에, 질소 가스를 도 입한다 .  First, nitrogen gas is introduced in the reaction vessel in the presence of a metal catalyst supported on a carrier.
<45> 상기 담체는 MgO, MgO, Si02l A1203, 제올라이트, 알루미노 실리케이트 탄소 계 물질 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다. 상 기 탄소계 물질로는 천연 혹연, 인조 혹연, 카본 블랙, 활성탄, 활성 탄소 섬유, 탄소 나노 튜브, 탄소 나노 섬유 또는 이들의 조합일 수 있다. The carrier may be selected from the group consisting of MgO, MgO, Si0 2l A1 2 0 3 , zeolite, aluminosilicate carbon-based materials, and combinations thereof. The carbonaceous material may be natural alum, artificial alum, carbon black, activated carbon, activated carbon fiber, carbon nanotube, carbon nanofiber, or a combination thereof.
<46> 또한, 상기 금속 촉매는 Ni, Fe, Co 및 이들와 조합으로 이루어진 군에서 선 택되는 금속 또는 이들의 합금을 사용할 수 있다. 상기 금속 촉매는, Mo, Cu, Cr, Pt, Ru, Pd 또는 이들이 조합으로 이루어진 군에서 선택되는 금속을 더욱 포함할 수도 있다. In addition, the metal catalyst may be a metal selected from the group consisting of Ni, Fe, Co, and combinations thereof or alloys thereof. The metal catalyst may further include a metal selected from the group consisting of Mo, Cu, Cr, Pt, Ru, Pd, or a combination thereof.
<47> 이어서, 상기 반웅기에 질소 가스와 수소 가스의 흔합 가스를 공급하면서, 승온한다. 수소가스는 촉매 화학 증기 증착 (CCVD) 과정에서의 촉매 피독을 막아주 어 합성 수율을 높여 주는 역할을 하며, 수소가스와 탄화가능 화합물의 단순 흔합 물 하에서 반웅이 진행 될 경우, 열분해가 일어나는 등 지나치게 빠른 반웅 속도로 인한 부반응이 일어 날 수 있는데, 질소가스와 같은 비활성 가스를 흔합함으로 촉 매반웅에 의한 탄소 나노 섬유 성장에 적당한 반응속도를 유도할 수 있다.  Subsequently, the reactor is heated while supplying a mixed gas of nitrogen gas and hydrogen gas. Hydrogen gas prevents catalyst poisoning in the catalytic chemical vapor deposition (CCVD) process and increases the synthesis yield. When reaction occurs under a simple mixture of hydrogen gas and a carbonizable compound, pyrolysis occurs excessively. Side reactions may occur due to the high reaction rate, and incorporation of an inert gas such as nitrogen gas may induce an appropriate reaction rate for the growth of carbon nanofibers by catalyst reaction.
<48> 이때, 상기 흔합 가스에서 질소 가스와 수소 가스의 흔합비는 약 160 : 40cc 가 적절하나 이에 한정되는 것은 아니다. In this case, the mixing ratio of nitrogen gas and hydrogen gas in the mixed gas is appropriately about 160: 40 cc, but is not limited thereto.
<49> 상기 승온하는 단계는 5 내지 ire/분의 승온 속도로 300내지 700°C의 온도 에 도달할 때까지 실시한다 . 승온 속도가 위 범위보다 느리면 합성 시간이 증가하 여 생산성 저하를 불러일으키며, 지나치게 빠르면 온도 조절에 어려움이 생긴다.The temperature raising step is a temperature of 300 to 700 ° C. at a temperature increase rate of 5 to ire / min Until it reaches. If the temperature increase rate is slower than the above range, the synthesis time increases, which leads to a decrease in productivity. Too high a temperature causes difficulty in temperature control.
<50> 이어세 온도가 300 내지 700°C의 원하는 온도에 도달하면, 질소 함유 화합 물을 상기 반응기에 공급한다. Then, when the temperature reaches the desired temperature of 300 to 700 ° C., nitrogen-containing compound is fed to the reactor.
<51> 상기 질소 함유 화합물은 아세토니트릴, 아크릴로니트릴, 파이를, 피리딘 및 이들의 조합으로 이루어진 군에 선택되는 것을 사용할 수 있다.  The nitrogen-containing compound may be selected from the group consisting of acetonitrile, acrylonitrile, pi, pyridine and combinations thereof.
<52> 또한 상기 질소 함유 화합물의 공급 속도는 안정적인 촉매 반응을 위하여In addition, the feed rate of the nitrogen-containing compound for the stable catalytic reaction
0.01~0.05cc/분이 적절하다. 0.01 to 0.05 cc / min is appropriate.
<53> 본 발명의 일 구현예에 따른 탄소 나노 재료는 연료 전지용 캐소드 전극에 유용하게 사용할 수 있다.  Carbon nano material according to an embodiment of the present invention can be usefully used for the cathode electrode for fuel cells.
<54> 즉, 본 발명의 또 다른 일 구현예에 따른 연료 전지용 캐소드 전극은 상기 탄소 나노 재료를 포함한다. 일반적으로 캐소드 전극은 캐소드 촉매층과 전극 기 재를 포함하며 , 상기 탄소 나노 재료는 캐소드 촉매충에 포함될 수 있다. That is, the cathode electrode for a fuel cell according to another embodiment of the present invention includes the carbon nanomaterial. In general, the cathode electrode includes a cathode catalyst layer and an electrode substrate, and the carbon nanomaterial may be included in the cathode catalyst charge.
<55> 이때, 상기 탄소 나노 재료는 캐소드 전극으로 공급되는 산화제, 수소 이온 및 전자의 반웅에 의한 환원 반응을 야기하는 촉매의 담지체로서 역할을 한다 . In this case, the carbon nanomaterial serves as a carrier of a catalyst causing a reduction reaction by reaction of oxidant, hydrogen ion and electron supplied to the cathode electrode.
<56> 상기 촉매로는 예를 들어 일반적으로 연료 전지의 캐소드 전극 촉매로 사용 하는 백금계 촉매가 사용될 수 있다. As the catalyst, for example, a platinum-based catalyst generally used as a cathode electrode catalyst of a fuel cell may be used.
<57> . 상기 백금계 촉매로는 백금, 루테늄, 오스뮴, 백금-루테늄 합금, 백금 -오스 뮴 합금, 백금-팔라듐 합금 또는 백금 -M 합금 (M은 Ga, Ti , V, Cr, Mn, Fe, Co, Ni , Cu, Zn, Sn, Mo, W, Rh 및 Ru로 이루어진 군으로부터 선택되는 1종 이상의 전이 금 속) 중에서 선택되는 1종 이상의 촉매를 사용할 수 있다. 백금계 촉매의 구체적인 예로는 Pt, Pt/Ru, Pt/W, Pt/Ni, Pt/Sn, Pt/Mo, Pt/Pd, Pt/Fe, Pt/Cr, Pt/Co, Pt/Ru/W, Pt/Ru/Mo, Pt/Ru/V, Pt/Fe/Co, Pt/Ru/Rh/Ni 및 Pt/Ru/Sn/W으로 이루어진 군에서 선택되는 1종 이상의 것을 사용할 수 있다. <57>. The platinum-based catalyst may be platinum, ruthenium, osmium, platinum-ruthenium alloy, platinum-osmium alloy, platinum-palladium alloy or platinum-M alloy (M is Ga, Ti, V, Cr, Mn, Fe, Co, Ni). , At least one catalyst selected from the group consisting of Cu, Zn, Sn, Mo, W, Rh, and Ru). Specific examples of the platinum-based catalyst include Pt, Pt / Ru, Pt / W, Pt / Ni, Pt / Sn, Pt / Mo, Pt / Pd, Pt / Fe, Pt / Cr, Pt / Co, Pt / Ru / W , Pt / Ru / Mo, Pt / Ru / V, Pt / Fe / Co, Pt / Ru / Rh / Ni and Pt / Ru / Sn / W can be used.
<58> 본 발명의 일 구현예에 따른 탄소 나노 재료를 담체로 사용하고, 이 담체에 백금계 촉매를 담지시켜 사용하는 경우, 담지시키는 공정은 당해 분야에서 널리 알 려진 내용이므로 본 명세서에서 자세한 설명은 생략하여도, 당해 분야에 종사하는 사람들에게 쉽게 이해될 수 있는 내용이다.  When using a carbon nano material according to an embodiment of the present invention as a support, and using a platinum-based catalyst on the support, the supporting process is well known in the art and thus will be described in detail herein. Although omitted, the contents can be easily understood by those in the field.
<59> 상기 캐소드 촉매층은 또한 촉매층의 접착력 향상 및 수소 이온의 전달을 위 하여 바인더 수지를 더 포함할 수도 있다.  The cathode catalyst layer may further include a binder resin to improve adhesion of the catalyst layer and transfer hydrogen ions.
<60> 상기 바인더 수지로는 수소 이온 전도성을 갖는 고분자 수지를 사용하는 것 이 바람직하고, 보다 바람직하게는 측쇄에 술폰산기, 카르복실산기, 인산기, 포스 포닌산기 및 이들의 유도체로 이루어진 군에서 선택되는 양이온 교환기를 갖고 있 는 고분자 수지는 모두 사용할 수 있다. 바람직하게는 플루오르계 고분자, 벤즈이 미다졸계 고분자, 폴리이미드계 고분자, 폴리에테르이미드계 고분자, 폴리페닐렌술 파이드계 고분자, 폴리술폰계 고분자, 폴리에테르술폰계 고분자, 폴리에테르케톤계 고분자, 폴리에테르-에테르케른계 고분자 또는 폴리페닐퀴녹살린계 고분자 중에서 선택되는 1종 이상의 수소 이온 전도성 고분자를 포함할 수 있고, 보다 바람직하게 는 폴리 (퍼플루오로술폰산), 폴리 (퍼플루오로카르복실산), 술폰산기를 포함하는 테 트라플루오로에틸렌과 플루오로비닐에테르의 공중합체, 황화 폴리에테르케톤 아릴 케톤, 폴리 (2,2'-m-페닐렌 )-5,5'-바이벤즈이미다졸 [poly(2,2'— in— phenylene)— 5,5'- bibenzimidazole] 또는 폴리 (2,5—벤즈이미다졸) 중에서 선택되는 1종 이상의 수소 이온 전도성 고분자를 포함하는 것을 사용할 수 있다. It is preferable to use a polymer resin having hydrogen ion conductivity as the binder resin, and more preferably, sulfonic acid group, carboxylic acid group, phosphoric acid group, or phosphate in the side chain. Any polymer resin having a cation exchange group selected from the group consisting of a phonic acid group and derivatives thereof can be used. Preferably, a fluorine polymer, a benzimidazole polymer, a polyimide polymer, a polyetherimide polymer, a polyphenylene sulfide polymer, a polysulfone polymer, a polyether sulfone polymer, a polyether ketone polymer, a polyether- It may include one or more hydrogen ion conductive polymer selected from ether-based polymer or polyphenylquinoxaline-based polymer, more preferably poly (perfluorosulfonic acid), poly (perfluorocarboxylic acid), sulfonic acid Copolymers of tetrafluoroethylene and fluorovinyl ethers containing groups, sulfonated polyetherketone aryl ketones, poly (2,2'-m-phenylene) -5,5'-bibenzimidazoles [poly (2 , 2'—in—phenylene) —5,5'-bibenzimidazole] or poly (2,5—benzimidazole) comprising at least one hydrogen ion conductive polymer The can be used.
<6i> 상기 수소 이온 전도성 고분자는 측쇄 말단의 양이온 교환기에서 H를 Na, K,<6i> The hydrogen ion conducting polymer may contain H, Na, K,
Li, Cs 또는 테트라부틸암모늄으로 치환할 수도 있다. 측쇄 말단의 이온 교환기에 서 H를 Na으로 치환하는 경우에는 촉매 조성물 제조시 NaOH를, 테트라부틸암모늄으 로 치환하는 경우에는 테트라부틸암모늄 하이드록사이드를 사용하여 치환하며, K, Li 또는 Cs도 적절한 화합물을 사용하여 치환할 수 있다. 이 치환 방법은 당해 분 야에 널리 알려진 내용이므로 본 명세서에서 자세한 설명은 생략하기로 한다. It may also be substituted with Li, Cs or tetrabutylammonium. In case of substituting H with Na in the ion-exchange group of the side chain terminal, NaOH is substituted for the preparation of the catalyst composition, and tetrabutylammonium hydroxide is substituted with tetrabutylammonium, and K, Li or Cs is also appropriate. Substitutions may be used. Since this substitution method is well known in the art, detailed description thereof will be omitted.
<62> 상기 바인더 수지는 단일물 또는 흔합물 형태로 사용가능하며, 또한 선택적 으로 고분자 전해질 막과의 접착력을 보다 향상시킬 목적으로 비전도성 화합물과 함께 사용될 수도 있다. 그 사용량은 사용 목적에 적합하도록 조절하여 사용하는 것이 바람직하다.  The binder resin may be used in the form of a single substance or a mixture, and may also be optionally used with a nonconductive compound for the purpose of further improving adhesion to the polymer electrolyte membrane. It is preferable to adjust the usage-amount so that it may be suitable for a purpose of use.
<63> 상기 비전도성 화합물로는 폴리테트라플루오로에틸렌 (PTFE), 테트라 플루오 로에틸렌-핵사플루오르프로필렌 공중합체 (FEP), 테트라플루오로에틸렌- 퍼플루오로 알킬비닐에테르 공중합체 (PFA), 에틸렌 /테트라플루오로에틸렌 Examples of the nonconductive compound include polytetrafluoroethylene (PTFE), tetrafluoroethylene-nucleated fluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoro alkylvinyl ether copolymer (PFA), and ethylene. Tetrafluoroethylene
(ethylene/tetrafluoroethylene(ETFE)), 에틸렌클로로트리플루오로-에틸렌 공중합 체 (ECTFE), 폴리비닐리덴플루오라이드, 폴리비닐리덴플루오라이드-핵사플루오로프 로필렌의 코폴리머 (PVdF-HFP), 도데실벤젠술폰산 및 소르비를 (Sorbitol)로 이루어 진 군에서 선택된 1종 이상의 것이 보다 바람직하다. (ethylene / tetrafluoroethylene (ETFE)), ethylenechlorotrifluoro-ethylene copolymer (ECTFE), polyvinylidene fluoride, copolymer of polyvinylidene fluoride-nuclear fluoropropylene (PVdF-HFP), dodecyl More preferably one or more selected from the group consisting of benzenesulfonic acid and sorbbi (Sorbitol).
<64> 상기 전극 기재는 전극을 지지하는 역할을 하면서 촉매층으로 연료 및 산화 제를 확산시켜 촉매층으로 산화제가 쉽게 접근할 수 있는 역할을 한다. 상기 전극 기재로는 도전성 기재를 사용하며 그 대표적인 예로 탄소 페이퍼 (carbon paper), 탄소 천 (carbon cloth), 탄소 펠트 (carbon felt) 또는 금속천 (섬유 상태의 금속으 로 구성된 다공성의 필름 또는 고분자 섬유로 형성된 천의 표면에 금속 필름이 형 성된 것을 말함)이 사용될 수 있으나, 이에 한정되는 것은 아니다. The electrode substrate plays a role of supporting the electrode and diffuses the fuel and the oxidant into the catalyst layer so that the oxidant can easily access the catalyst layer. The electrode substrate is a conductive substrate, and representative examples thereof include carbon paper, carbon cloth, carbon felt, or metal cloth (metal in fiber state). The metal film is formed on the surface of the cloth formed of a porous film or polymer fibers consisting of) may be used, but is not limited thereto.
<65> 또한 상기 전극 기재는 불소 계열 수지로 발수 처리한 것을 사용하는 것이 연료 전지의 구동시 발생되는 물에 의하여 반응물 확산 효율이 저하되는 것을 방지 할 수 있어 바람직하다. 상기 불소 계열 수지로는 폴리테트라플루오로에틸렌, 폴 리비닐리덴 플루오라이드, 폴리핵사플루오로프로필렌, 폴리퍼플루오로알킬비닐에테 르, 폴리퍼플루오로술포닐플루오라이드알콕시비닐 에테르, 플루오리네이티드 에틸 렌 프로필렌 (Fluorinated ethylene propylene), 폴리클로로트리플루오로에틸렌 또 는 이들의 코폴리머를 사용할 수 있다. In addition, it is preferable to use a water-repellent treatment with a fluorine-based resin as the electrode base material, since it is possible to prevent the reactant diffusion efficiency from being lowered by water generated when the fuel cell is driven. Examples of the fluorine resin include polytetrafluoroethylene, polyvinylidene fluoride, polynuclear fluoropropylene, polyperfluoroalkyl vinyl ether, polyperfluorosulfonyl fluoride alkoxy vinyl ether, and fluorinated compounds. Fluorinated ethylene propylene, polychlorotrifluoroethylene or copolymers thereof can be used.
<66> 또한, 상기 전극 기재에서의 반웅물 확산 효과를 증진시키기 위한 미세 기공 층 (microporous layer)을 더욱 포함할 수도 있다. 이 미세 기공충은 일반적으로 입경이 작은 도전성 분말, 예를 들어 탄소 분말, 카본 블랙, 아세틸렌 블랙, 활성 탄소, 카본 파이버, 플러렌 (fullerene), 카본 나노 튜브, 카본 나노 와이어, 카본 나노 흔 (carbon nano—horn) 또는 카본 나노 '링 (carbon nano ring)을 포함할 수 있 다. In addition, it may further include a microporous layer for enhancing the effect of the semi-aungmul diffusion in the electrode substrate. These micropores are generally conductive powders of small particle size, such as carbon powder, carbon black, acetylene black, activated carbon, carbon fiber, fullerene, carbon nanotubes, carbon nanowires, carbon nano scars. -horn) or it may include a carbon nano ring (carbon nano ring).
<67> 상기 미세 기공층은 도전성 분말, 바인더 수지 및 용매를 포함하는 조성물을 상기 전극 기재에 코팅하여 제조된다. 상기 바인더 수지로는 폴리테트라플루오로 에틸렌, 폴리비닐리덴플루오라이드, 폴리핵사플루오로프로필렌, 폴리퍼플루오로알 킬비닐에테르, 폴리퍼플루오로술포닐플루오라이드, 알콕시비닐 에테르, 폴리비닐알 코올, 셀를로오스아세테이트 또는 이들의 코폴리머 등이 바람직하게 사용될 수 있 다. 상기 용매로는 에탄을ᅳ 이소프로필알코올, nᅳ프로필알코올, 부틸알코올 등과 같은 알코을, 물, 디메틸아세트아마이드, 디메틸술폭사이드, N-메틸피를리돈, 테트 라하이드로퓨란 등이 바람직하게 사용될 수 있다. 코팅 공정은 조성물의 점성에 따라 스크린 프린팅법, 스프레이 코팅법 또는 닥터 블레이드를 이용한 코팅법 등이 사용될 수 있으며, 이에 한정되는 것은 아니다.  The microporous layer is prepared by coating a composition comprising a conductive powder, a binder resin, and a solvent on the electrode substrate. Examples of the binder resin include polytetrafluoroethylene, polyvinylidene fluoride, polynuclear fluoropropylene, polyperfluoroalkyl vinyl ether, polyperfluorosulfonyl fluoride, alkoxy vinyl ether, polyvinyl alcohol, and cells. Loose acetate or copolymers thereof and the like can be preferably used. As the solvent, alcohols such as ethane-isopropyl alcohol, n-propyl alcohol, butyl alcohol, etc., water, dimethylacetamide, dimethyl sulfoxide, N-methylpyridone, tetrahydrofuran, etc. may be preferably used. . Depending on the viscosity of the composition, the coating process may be used, such as screen printing, spray coating or coating using a doctor blade, but is not limited thereto.
<68>  <68>
<69> 상기 설명에서 본 발명의 탄소 나노 재료가 연료전지의 캐소드 전극의 촉매 담지체로서 사용되는 경우에 대해 설명하였지만, 그 외 다양한 촉매의 담지체로 사 용될 수 있고, 나아가 다양한 분야의 소재 개발에 널리 활용될 수 있다.  In the above description, the case where the carbon nanomaterial of the present invention is used as a catalyst carrier of a cathode electrode of a fuel cell has been described. However, the carbon nanomaterial of the present invention can be used as a carrier of various other catalysts, and furthermore, to develop materials in various fields. It can be widely used.
<70>  <70>
<71> 이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기한 실 시예는 본 발명의 바람직한 일 실시예일뿐 본 발명이 하기한 실시예에 의해 한정되 는 것은 아니다. Hereinafter, preferred examples and comparative examples of the present invention are described. However, the following examples are only preferred embodiments of the present invention and the present invention is limited by the following examples. It is not.
<72> (실시예 1) (Example 1)
<73> * 탄소 나노 섬유용 촉매 제조  <73> * Preparation of catalyst for carbon nanofibers
<74> 철 질화물 (iron(II) nitrate, Sigma-Aldrich, Assay 98.0%) 8.426g을 증류수  <74> 8.426 g of iron nitride (iron (II) nitrate, Sigma-Aldrich, Assay 98.0%) was distilled water
14.857g에 용해하여 철 질화물 수용액을 제조하고, 니켈 질화물 (nickel nitrate, Sigma-Aldrich, Assay 99.0%) 7.342g을 증류수 13.272g에 용해하여 니켈 질화물 수 용액을 제조하고, 마그네슘 질화물 육수화물 (magnesium nitrate hexahydrate, Junsei Chemical, Assay 97.0%) 9.935g을 증류수 9.524g에 용해하여 마그네슘 질화 물 육수화물 수용액을 제조하였다.  It was dissolved in 14.857g to prepare an aqueous solution of iron nitride, 7.34g of nickel nitride (nickel nitrate, Sigma-Aldrich, Assay 99.0%) was dissolved in 13.272g of distilled water to prepare a nickel nitride aqueous solution, magnesium nitrate (magnesium nitrate) Hexahydrate, Junsei Chemical, Assay 97.0%) 9.935g was dissolved in 9.524g of distilled water to prepare an aqueous solution of magnesium nitride hexahydrate.
<75> 100ml 비이커에 상기 수용액들과, 시트린산을 첨가하였다. 이때, 시트린산 의 사용량은 상기 수용액들에 포함되어 있는 금속 전체 몰에 대하여 0.625배가 되 도록 사용하였다.  The aqueous solutions and citric acid were added to a 100 ml beaker. At this time, the amount of citric acid was used to be 0.625 times the total moles of metal contained in the aqueous solution.
<76> 이어서, 상기 흔합물을 로에 위치시킨 후, 상은 (25°C)에서 1시간에 걸쳐 150Subsequently, after placing the mixture in a furnace, the phase was 150 over 1 hour at (25 ° C).
°C까지 승온하여 10분간 온도를 유지하여 수분을 제거하였다. 얻어진 생성물을 넁 각하고, 잘게 분쇄한 뒤, 다시 18CTC까지 승온하였다. 180°C에서 2시간 동안 유지 한 후, 넁각하고 유발에서 곱게 분쇄하였다. 분쇄 생성물을 2시간에 걸쳐 350°C까 지 승온한 후, 350°C에서 1시간 동안 유지하고, 넁각하고 다시 유발에서 곱게 분쇄 하여 NiFe 촉매가 담지된 MgO 황토색의 촉매를 제조하였다. 이때, Ni : Fe : MgO 의 몰비는 4 : 1 : 5이었다. It heated up to ° C and maintained the temperature for 10 minutes to remove moisture. The obtained product was sharply crushed, pulverized finely, and then heated up to 18 CTC. After holding for 2 hours at 180 ° C, it was crushed and finely ground in a mortar. The milled product was heated to 350 ° C. over 2 hours, then maintained at 350 ° C. for 1 hour, finely ground and finely ground at the mortar to prepare a MgO ocher colored catalyst supported on NiFe catalyst. At this time, the molar ratio of Ni: Fe: MgO was 4: 1: 5.
<77> * 질소-도핑된 탄소 나노 섬유 제조  * Preparation of Nitrogen-doped Carbon Nanofibers
<78> 도 1에 나타낸 반웅기를 준비하였다.  The semi-unggi shown in FIG. 1 was prepared.
<79> 상기 제조돤 NiFe 촉매가 담지된 MgO 촉매 약 lOOmg을 알루미나 플레이트 위 에 3 X 3cu 넓이로 고르게 펴서 준비하였다. 상기 촉매를 고르게 펴서 준비한 알 루미나 플레이트를, 도 1에 나타낸 반응기의 석영 류브 중앙에 위치시킨 후, 테플 론 테이프를 이용하여 밀봉하였다.  About 100 mg of the MgO catalyst carrying the NiFe catalyst prepared above was evenly spread on the alumina plate to a width of 3 × 3cu. The alumina plate prepared by evenly spreading the catalyst was placed in the center of the quartz stream of the reactor shown in FIG. 1 and then sealed using Teflon tape.
<80> 이어서, 도 2에 나타낸 것과 같은 온도 및 공급 기체 조성 프로파일에 따른 다음과 같은 공정을 실시하였다.  Next, the following process was performed according to the temperature and feed gas composition profile as shown in FIG. 2.
<81> 질소 가스 출구에 수분 트랩을 설치하여 석영 튜브 및 질소 가스 내의 수분 이 제거되게 하였다.  A moisture trap was installed at the nitrogen gas outlet to remove moisture in the quartz tube and nitrogen gas.
<82> 상온에서 상기 석영 류브 내부를 질소로 충분히 퍼지 (purge)시키기 위하여, 질소 가스를 200cc/분으로 15분 동안 공급하였다.  In order to sufficiently purge the inside of the quartz stream with nitrogen at room temperature, nitrogen gas was supplied at 200 cc / min for 15 minutes.
<83> 이어서 상기 석영 튜브를 반응 온도 (300°C)까지 1시간 동안 승온시키면서, 석영 튜브 내부로 질소 가스와 수소 가스를 각각 160 cc/분 및 40 cc/분의 공급양 으로 공급하였다. Subsequently, while raising the quartz tube to the reaction temperature (300 ° C.) for 1 hour, Nitrogen gas and hydrogen gas were supplied into the quartz tube at a supply amount of 160 cc / min and 40 cc / min, respectively.
반웅 온도에 도달하면, 마이크로 펌프를 통하여 0.035ml/분의 아세토니트릴 을 공급하면서, 반웅시간 동안 유지하였다. 이때, 질소가 도핑된 탄소 나노 튜브 가 형성되었다.  When the reaction temperature was reached, 0.035 ml / min of acetonitrile was supplied through the micropump and maintained for reaction time. At this time, nitrogen-doped carbon nanotubes were formed.
이어서, 질소 가스를 160cc/분의 공급양으로 상기 석영 튜브에 공급하면서, 상온까지 자연 넁각하였다. 이어서, 형성된 질소가 도핑된 탄소 나노 류브를 수거 하였다.  Subsequently, natural gas was cooled down to room temperature while supplying nitrogen gas to the quartz tube in a supply amount of 160 cc / min. Subsequently, the formed nitrogen-doped carbon nano-lives were collected.
수거된 질소가 도핑된 탄소 나노 튜브와, HCl 120g과 증류수 300g을 흔합하 고, 이 흔합물을 밀봉한 뒤, 24시간 동안 교반하였다. 교반 생성물로부터 HC1 및 증류수를 제거하고, 10 중량 % 농도의 HC1을 다시 첨가한 후, 24시간 동안 추가로 교반하였다. 이어서, 교반 생성물을 증류수로 충분히 씻어 여과하여, 질소가 도핑 된 탄소 나노 류브를 얻었다.  The collected nitrogen-doped carbon nanotubes were mixed with 120 g of HCl and 300 g of distilled water, and the mixture was sealed and stirred for 24 hours. HC1 and distilled water were removed from the stirred product, 10% by weight of HC1 was added again, followed by further stirring for 24 hours. Subsequently, the stirred product was sufficiently washed with distilled water and filtered to obtain a carbon nano-leube doped with nitrogen.
(실시예 2)  (Example 2)
석영 류브를 승온시키는 공정의 반웅 온도를 340°C까지 실시한 것을 제외하 고는 상기: 실시예 1과 동일하게 실시하여 질소가 도핑된 탄소 나노 튜브를 제조하 였다. Carbon nanotubes doped with nitrogen were prepared in the same manner as in Example 1 above, except that the reaction temperature of the step of raising the temperature of the quartz rib was performed to 340 ° C.
(실시예 3)  (Example 3)
석영 튜브를 승온시키는 공정의 반웅 온도를 380°C까지 실시한 것을 제외하 고는 상기 실시예 1과 동일하게 실시하여 질소가 도핑된 탄소 나노 튜브를 제조하 였다. Carbon nanotubes doped with nitrogen were prepared in the same manner as in Example 1, except that the reaction temperature of the quartz tube was raised to 380 ° C.
(실시예 4)  (Example 4)
석영 튜브를 승은시키는 공정의 반웅 온도를 42CTC까지 실시한 것을 제외하 고는 상기 실시예 1과 동일하게 실시하여 질소가 도핑된 탄소 나노 튜브를 제조하 였다.  Nitrogen-doped carbon nanotubes were prepared in the same manner as in Example 1 except that the reaction temperature of the quartz tube sublimation process was performed up to 42 CTC.
(실시예 5)  (Example 5)
석영 튜브를 승온시키는 공정의 반웅 온도를 460°C까지 실시한 것을 제외하 고는 상기 실시예 1과 동일하게 실시하여 질소가 도핑된 탄소 나노 튜브를 제조하 였다. Nitrogen-doped carbon nanotubes were prepared in the same manner as in Example 1, except that reaction temperature of the quartz tube was raised to 460 ° C.
(실시예 6)  (Example 6)
석영 튜브를 승은시키는 공정의 반웅 온도를 5(xrc까지 실시한 것을 제외하 고는 상기 실시예 1과 동일하게 실시하여 질소가 도핑된 탄소 나노 류브를 제조하 였다. Nitrogen-doped carbon nano-Lube was prepared in the same manner as in Example 1 except that the reaction temperature of the process of subliming the quartz tube was 5 (xrc). It was.
<97> (실시예 7)  <97> (Example 7)
<98> 석영 튜브를 승은시키는 공정의 반웅 온도를 52CTC까지 실시한 것을 제외하 고는 상기 실시예 1과 동일하게 실시하여 질소가 도핑된 탄소 나노 튜브를 제조하 였다.  Carbon nanotubes doped with nitrogen were prepared in the same manner as in Example 1, except that reaction temperature of the process of subliming the quartz tube was performed up to 52 CTC.
<99> (실시예 8)  (Example 8)
<ιοο> 석영 류브를 승온시키는 공정의 반응 온도를 540°C까지 실시한 것을 제외하 고는 상기 실시예 1과 동일하게 실시하여 질소가 도핑된 탄소 나노 튜브를 제조하 였다. Nitrogen-doped carbon nanotubes were prepared in the same manner as in Example 1 except that the reaction temperature of the process of raising the temperature of the quartz rib was performed up to 540 ° C.
<ιοι> (실시예 9)  <ιοι> (Example 9)
<102> 석영 튜브를 숭온시키는 공정의 반응 온도를 600°C까지 실시한 것을 제외하 고는 상기 실시예 1과 동일하게 실시하여 질소가 도핑된 탄소 나노 튜브를 제조하 였다.  Carbon nanotubes doped with nitrogen were prepared in the same manner as in Example 1 except that the reaction temperature of the process of heating the quartz tube was performed up to 600 ° C.
<103> (실시예 10)  (Example 10)
<104> 석영 튜브를 승온시키는 공정의 반응 온도를 640°C까지 실시한 것을 제외하 고는 상기 실시예 1과 동일하게 실시하여 질소가 도핑된 탄소 나노 류브를 제조하 였다. Nitrogen-doped carbon nano-Lube was prepared in the same manner as in Example 1, except that the reaction temperature of the process of raising the quartz tube was performed up to 640 ° C.
<105> (실시예 11)  (Example 11)
<106> 석영 튜브를 승온시키는 공정의 반웅 온도를 680°C까지 실시한 것을 제외하 고는 상기 실시예 1과 동일하게 실시하여 질소가 도핑된 탄소 나노 튜브를 제조하 였다. Carbon nanotubes doped with nitrogen were prepared in the same manner as in Example 1 except that the reaction temperature of the step of raising the temperature of the quartz tube was performed up to 680 ° C.
<107> (실시예 12)  (Example 12)
<108> 반웅 온도 (42C C)에서 3시간 (반웅 시간) 동안 유지한 것을 제외하고는 상기 실시예 4와 동일하게 실시하여 질소가 도핑된 탄소 나노 튜브를 제조하였다.  Nitrogen-doped carbon nanotubes were prepared in the same manner as in Example 4 except that the reaction was maintained at a reaction temperature (42C C) for 3 hours (reaction time).
<109> (실시예 13) (Example 13)
<πο> 반웅 온도 (52CTC)에서 3시간 (반웅 시간) 동안 유지한 것을 제외하고는 상기 실시예 7과 동일하게 실시하여 질소가 도핑된 탄소 나노 튜브를 제조하였다.  <πο> Nitrogen-doped carbon nanotubes were prepared in the same manner as in Example 7, except that the reaction was maintained at a reaction temperature (52 CTC) for 3 hours (reaction time).
<ιπ> (실시예 14) <ιπ> (Example 14)
<ιΐ2> 반응 온도 (640°C)에서 3시간 (반웅 시간) 동안 유지한 것을 제외하고는 상기 실시예 10과 동일하게 실시하여 질소가 도핑된 탄소 나노 튜브를 제조하였다. Carbon nanotubes doped with nitrogen were prepared in the same manner as in Example 10 except that the reaction was maintained at a reaction temperature (640 ° C.) for 3 hours (reaction time).
<113> (실시예 15) (113) (Example 15)
<ιΐ4> 반웅 온도 (64CTC)에서 5시간 (반웅 시간) 동안 유지한 것을 제외하고는 상기 실시예 10과 동일하게 실시하여 질소가 도핑된 탄소 나노 튜브를 제조하였다. <ιΐ4> above, except that the reaction was maintained at a reaction temperature (64 CTC) for 5 hours (reaction time). Carbon nanotubes doped with nitrogen were prepared in the same manner as in Example 10.
<115> (비교예 1)  <115> (Comparative Example 1)
<116> 도 1에 나타낸 반웅기를 준비하였다.  The semi-unggi shown in FIG. 1 was prepared.
<117> 상기 제조된 NiFe 촉매가 담지된 MgO 촉매 약 lOOmg을 알루미나 플레이트 위 에 3 X 3cuf 넓이로 고르게 펴서 준비하였다.  About 100 mg of the MgO catalyst carrying the prepared NiFe catalyst was evenly spread on the alumina plate to a width of 3 × 3cuf.
<118> 이어서, 상기 촉매를 고르게 펴서 준비한 알루미나 플레이트를, 도 1에 나타 낸 반웅기의 석영 튜브 중앙에 위치시킨 후, 테플론 테이프를 이용하여 밀봉하였 다. Subsequently, the alumina plate prepared by spreading the catalyst evenly was placed in the center of the semi-ungung quartz tube shown in FIG. 1 and then sealed using Teflon tape.
<119> 헬륨 가스 출구에 수분 트램을 설치하여 석영 튜브 및 헬륨 가스 내의 수분 이 제거되게 하였다.  A moisture tram was installed at the outlet of the helium gas to remove moisture in the quartz tube and helium gas.
<120> 상온에서 상기 석영 튜브 내부를 헬륨 가스로 충분히 퍼지 (purge)시키기 위 하여 , 헬륨 가스를 200cc/분으로 15분 동안 공급하였다.  To sufficiently purge the inside of the quartz tube with helium gas at room temperature, helium gas was supplied at 200 cc / min for 15 minutes.
<121> 이어서 상기 석영 튜브를 반웅 온도 (30(rC)까지 1시간 동안 승온시키면서, 석영 류브 내부로 헬륨 가스와 수소 가스를 4 : 1 부피비로 공급하였다. The quartz tube was then heated to the reaction temperature (30 (rC) for 1 hour while helium gas and hydrogen gas were supplied in a 4: 1 volume ratio into the quartz stream.
<122> 반응 온도에 도달하면, 마이크로 펌프를 통하여 0.035ml/분의 아세토니트릴 을 공급하면서, 상기 반웅 온도에서 1시간 (반웅 시간) 동안 유지하였다. 이때, 질 소가 도핑된 탄소 나노 튜브가 형성되었다. When the reaction temperature was reached, 0.035 ml / min of acetonitrile was supplied through the micropump and maintained at the reaction temperature for 1 hour (reaction time). At this time, carbon nanotubes doped with nitrogen were formed.
<123> 이.어서, 질소 가스를 160cc/분의 공급양으로 상기 석영 류브에 공급하면서, 상온까지 자연 냉각하였다. 이어서, 형성된 질소가 도핑된 탄소 나노 튜브를 수거 하였다. Subsequently, natural gas was cooled to room temperature while supplying nitrogen gas to the quartz stream in a supply amount of 160 cc / min. Subsequently, the formed nitrogen-doped carbon nanotubes were collected.
<124> 수거된 질소가 도핑된 탄소 나노 튜브와, HC1 120g과 증류수 300g을 흔합하 고, 이 흔합물을 밀봉한 뒤, 24시간 동안 교반하였다. 교반 생성물로부터 HC1 및 증류수를 제거하고, 10 중량 % 농도의 HC1을 다시 첨가한 후, 24시간 동안 추가로 교반하였다. 이어서, 교반 생성물을 증류수로 충분히 씻어 여과하여, 질소가 도핑 된 탄소 나노 튜브를 얻었다.  The collected nitrogen-doped carbon nanotubes were mixed with 120 g of HC1 and 300 g of distilled water, and the mixture was sealed and stirred for 24 hours. HC1 and distilled water were removed from the stirred product, and HC1 at a concentration of 10% by weight was added again, followed by further stirring for 24 hours. Subsequently, the stirred product was sufficiently washed with distilled water and filtered to obtain a carbon nanotube doped with nitrogen.
<125> 석영 튜브를 승온시키는 공정의 반응 온도를 420°C까지 실시한 것을 제외하 고는 상기 실시예 1과 동일하게 실시하여 질소가 도핑된 탄소 나노 튜브를 제조하 였다. Carbon nanotubes doped with nitrogen were prepared in the same manner as in Example 1 except that the reaction temperature of the step of raising the temperature of the quartz tube was performed up to 420 ° C.
<126> * 합성 수율 및 N/C (원자 %)  * Synthetic yield and N / C (atomic%)
<127> 상기 실시예 1 내지 11에 따라 제조된 질소가 도핑된 탄소 나노 튜브의 합성 수율 및 원소 분석 결과에 의한 N/C (원자 «를 도 3에 나타내었다. 합성 수율은 1 시간 동안 반웅 공정에서, 사용된 촉매양 대비 생성된 탄소량을 TGCThermal Gravimetry) 측정 결과에 기초하여 계산하였다. 또한, 원소 분석은 연소시 발생하 는 기체를 정량하여 각 원소 구성비를 분석하는 연소법을 이용하여 측정하였다.Synthesis yield of N-doped carbon nanotubes prepared according to Examples 1 to 11 and N / C (atomic «are shown in Fig. 3) according to elemental analysis results. The amount of carbon produced compared to the amount of catalyst used in TGCThermal Gravimetry) was calculated based on the measurement results. In addition, elemental analysis was measured using a combustion method that analyzes the composition of each element by quantifying the gas generated during combustion.
<128> 도 3에 나타낸 것과 같이 합성 수율은 반웅 온도 300°C (실시예 1)에서는 생 성량이 극히 적은 반면, 340°C (실시예 2)에서 생성량이 급격히 증가한 후, 반웅 온 도 420°C까지 완만하게 증가하였다. 또한, 합성 수율은 반응 온도 520°C까지 뚜렷 한 감소 추세를 보이고, 520°C 내지 650°C 범위에서 거의 동일한 수율을 보인 후, 680°C에서 급격하게 감소하는 추세를 보였다. As shown in FIG. 3, the yield is extremely low at the reaction temperature of 300 ° C. (Example 1), whereas the production yield is rapidly increased at 340 ° C. (Example 2), and the reaction temperature is 420 °. Slightly increased to C. In addition, the synthesis yield showed a marked decrease trend up to the reaction temperature of 520 ° C, showed almost the same yield in the range of 520 ° C to 650 ° C, and then rapidly decreased at 680 ° C.
<129> 또한, N/C (원자 %)는 반응 온도가 300°C (실시예 1)에서 520°C (실시예 7)까지 는 지속적으로 증가하다가, 650°C까지는 완만하게 감소하고, 680°C에서는 급격하게 감소하는 경향을 나타내었다. In addition, the N / C (atomic%) is continuously increased from 300 ° C (Example 1) to 520 ° C (Example 7), and slowly decreases to 650 ° C, 680 At ° C, it showed a tendency to decrease rapidly.
<130>  <130>
<i3i> * SEM 사진  <i3i> * SEM photo
<132> 상기 실시예 1 내지 11에 따라 제조된 질소가 도핑된 탄소 나노 섬유의 SEM 사진을 측정하여 그 결과를 도 4에 나타내었다.  SEM pictures of the nitrogen-doped carbon nanofibers prepared according to Examples 1 to 11 were measured and the results are shown in FIG. 4.
<133> 도 4에 나타낸 것과 같이, 반응 온도가 340°C 이하에서는 섬유의 형상을 아 직 갖추지 못하고 있는 것을 알 수 있다. As shown in Figure 4, it can be seen that the reaction temperature is not yet equipped with the shape of the fiber at 340 ° C or less.
<134> 반응 온도가 380 °C인 실시예 3에 따라 제조된 탄소 나노 섬유는 30 내지 The carbon nanofibers prepared according to Example 3 having a reaction temperature of 380 ° C. are 30 to
40nm의 크기의 매우 균일한 평균 직경을 갖는 섬유가 형성되었음을 알 수 있다. 또한, 반응 온도가 높아질수록 섬유의 길이가 길어짐을 알 수 있다. 반응 온도가 540 °C 이상에서는 섬유 길이 분포가 유사하게 나타났으나, 반응 온도가 높아질수록 70 내지 lOOnm 평균 직경의 다소 굵은 섬유들이 나타나는 것을 알 수 있다. It can be seen that fibers with a very uniform average diameter of size 40 nm were formed. In addition, it can be seen that the higher the reaction temperature, the longer the length of the fiber. When the reaction temperature is 540 ° C or more, the fiber length distribution is similar, but as the reaction temperature increases, it can be seen that rather thick fibers of 70 to 100 nm average diameter appear.
<135>  <135>
<136> * 반응 시간에 따른 합성 수율  * Synthetic yield over reaction time
<137> 상기 실시예 4, 7, 10 및 12 내지 15에 따라 제조된 탄소 나노 섬유의 합성 수율을 측정하여 그 결과를 도 5에 나타내었다.  The synthetic yields of the carbon nanofibers prepared according to Examples 4, 7, 10 and 12 to 15 were measured and the results are shown in FIG. 5.
<138> 도 5에 나타낸 것과 같이, 각 반응 온도에서 반웅 시간이 증가할수록 합성양 이 증가함을 알 수 있다.  As shown in FIG. 5, it can be seen that the amount of synthesis increases as the reaction time increases at each reaction temperature.
<139>  <139>
<140> * SEM사진  <140> * SEM picture
<i4i> 상기 실시예 4 및 12에 따라 제조된 탄소 나노 섬유의 SEM사진을 도 6에 나 타내었다. 도 6에 나타낸 것과 같이, 반웅 시간이 1시간인 실시예 4에서 제조된 탄소 나노 섬유에 비하여, 반웅 시간이 3시간인 탄소 나노 섬유의 섬유 길이가 길 어졌음을 알 수 있다. <i4i> SEM photographs of the carbon nanofibers prepared according to Examples 4 and 12 are shown in FIG. 6. As shown in FIG. 6, the fiber length of the carbon nanofibers having a reaction time of 3 hours is longer than that of the carbon nanofibers prepared in Example 4 having a reaction time of 1 hour. You can see that it broke.
<142>  <142>
<143> * TG 측정  <143> * TG measurement
<144> 상기 실시예 2, 5, 7, 10 및 11에 따라 제조된 탄소 나노 섬유에 대하여, 공 기 분위기 하에서, TG 분석기 (기기 : STA 409 PC, NETZSCH)를 이용하여, TG를 측정 하였다. TG 측정은 건조 공기를 30cc/분으로 상기 TG 분석기에 공급하고, 시료 10mg을 사용하여 , 상온에서 100°C까지 5K/분으로 승온한 후, 100°C에서 30분간 등 은 (isothermal) 상태를 유지하여, 수분 제거 및 상태 안정화한 후, 100°C에서 900 °C까지 5K/분의 승온을 실시하여 측정하였다. For carbon nanofibers prepared according to Examples 2, 5, 7, 10, and 11, TG was measured using a TG analyzer (device: STA 409 PC, NETZSCH) under an air atmosphere. The TG measurement using the samples 10mg supplied to the TG analyzer, and the drying air to 30cc / min, and after heating to 5K / min from room temperature to 100 ° C, such as 30 minutes at 100 ° C is (isothermal) status After maintaining, removing moisture and stabilizing the state, the temperature was measured at a temperature of 5 K / min from 100 ° C to 900 ° C.
<145> 그 결과를 도 7에 나타내었다. 도 7에 나타낸 것과 같이, 반웅 온도가 높을 수록 내산화성이 우수함을 알 수 있다.  The results are shown in FIG. As shown in Figure 7, it can be seen that the higher the reaction temperature, the better the oxidation resistance.
<146>  <146>
<147> * BET 측정  <147> * BET measurement
<148> 상기 실시예 1 내지 11에 따라 제조된 탄소 나노 섬유에 대하여 질소 등온 흡탈착 실험을 실시하여, 비표면적을 측정하였다. 질소 등온 흡탈착 실험은 Nitrogen isotherm adsorption and desorption experiments were performed on the carbon nanofibers prepared according to Examples 1 to 11 to measure specific surface areas. Nitrogen isothermal adsorption and desorption experiment
Belsorp-II mini(Nihon Bell)을 사용하였고, 압력 범위 p/P0=0 내지 0.99, 흡착 /탈 착 범위에서 실시하였다. 또한 시료는 제조된 탄소 나노 섬유를 10 중량 % 농도의 HC1 용액에서 48시간 동안 처리한 후, 증류수로 세척하고 80°C의 건조 오븐에서 3 시간 동안 건조하여 준비하였다. 측정된 비표면적 결과를 도 8에 나타내었다. 도 8에 나타낸 것과 같이, 실시예 1 내지 11에 따라 제조된 탄소 나노 섬유는 약 70 내지 480m7g 범위의 비표면적이 얻어졌다. 또한 도 8에서 알 수 있듯이, 반응 온 도가 높아질수록 비표면적은 다소 감소하는 경향이 얻어졌음을 알 수 있다. Belsorp-II mini (Nihon Bell) was used and pressure range p / P 0 = 0 to 0.99, adsorption / desorption range. In addition, the sample was prepared by treating the prepared carbon nanofibers in a 10 wt% HC1 solution for 48 hours, washing with distilled water and drying for 3 hours in a drying oven at 80 ° C. The measured specific surface area results are shown in FIG. 8. As shown in FIG. 8, the carbon nanofibers prepared according to Examples 1 to 11 obtained specific surface areas in the range of about 70 to 480 m 7 g. In addition, as can be seen in Figure 8, it can be seen that the specific surface area tends to decrease slightly as the reaction temperature increases.
<149> * XPS 측정 <149> * XPS measurement
<150> 실시예 1 내지 11에 따라 제조된 탄소 나노 섬유의 표면 화학적 특성을 관찰 하기 위하여, XPS(X— ray Photoelectron Spectroscopy) 분석을 실시하였다. XPS 분 석 실험은 각 시료에 대하여 탄소, 질소 및 산소 성분을 결합 에너지 (C: 280 내지 295eV, N: 393 sowl 410eV, 0: 520 내지 540eV) 범위에서 분석하였다. 그 결과 중 , 실시예 3 및 7의 탄소 나노 섬유의 질소에 대한 XPS 스펙트럼 결과를 도 9 및 도 10에 나타내었다. 도 9 및 도 10에 나타낸 (A), (B) 및 (C)는 각각 피리딘 -유사 (pyridine-like) 구조 또는 피리돈 -유사 (pyridine-1 ike) 구조 질소 성분 (A), 흑연— 유사 구조 또는 피롤 -유사 구조 질소 성분 (B) 성분 및 산소와 결합한 질소 성분 (C) 에 각각 해당한다. 결과적으로, 제조된 탄소 나노 섬유에 질소는 세가지 형태로 존재함을 알 수 있다. In order to observe the surface chemical properties of the carbon nanofibers prepared according to Examples 1 to 11, XPS (X—ray Photoelectron Spectroscopy) analysis was performed. In the XPS analysis, the carbon, nitrogen, and oxygen components of each sample were analyzed at binding energy (C: 280 to 295 eV, N: 393 sowl 410 eV, 0: 520 to 540 eV). Among the results, XPS spectrum results for nitrogen of the carbon nanofibers of Examples 3 and 7 are shown in FIGS. 9 and 10. (A), (B) and (C) shown in FIGS. 9 and 10 are pyridine-like structures or pyridine-like structures nitrogen components (A) and graphite-like, respectively. Corresponding to the structure or pyrrole-like structure nitrogen component (B) component and nitrogen component (C) combined with oxygen, respectively. As a result, there are three forms of nitrogen in the manufactured carbon nanofibers. It can be seen that it exists.
<151> 아울러, 상기 실시예 1 내지 11에 따라 제조된 탄소 나노 섬유에 대하여, 측 정된 XPS 결과로부터 측정된 총 질소 함량과, 탄소 나노 섬유 표면에 존재하는 질 소 함량 결과를 도 11에 나타내었다. 도 11에 나타낸 것과 같이, 표면에 존재하는 질소 함량 (약 1 내지 9 원자 ¾)이 총 질소 함량 (약 1 내지 5 원자 %)보다 높고, 표면 에서의 N/C 원자비는 총 N/C 원자비보다 약 2배 이상 높게 나타났음을 알 수 있다. 실제 촉매 반웅은 촉매, 담체의 표면에서 이루어지기 때문에 표면의 성분 조성이 중요하며, 총 질소 함량 중의 표면에 더 많은 질소가 있다면 반웅에 있어서 질소의 효과를 더 크게 볼 수 있다.  In addition, for the carbon nanofibers prepared according to Examples 1 to 11, the total nitrogen content measured from the measured XPS results and the nitrogen content present on the carbon nanofiber surface are shown in FIG. 11. . As shown in FIG. 11, the nitrogen content (about 1 to 9 atom ¾) present on the surface is higher than the total nitrogen content (about 1 to 5 atom%), and the N / C atomic ratio at the surface is the total N / C source. It can be seen that about two times higher than mercy. Since the actual catalyst reaction is made on the surface of the catalyst and the carrier, the composition of the surface is important, and if there is more nitrogen on the surface of the total nitrogen content, the effect of nitrogen on the reaction can be seen more.
<152> 또한, 측정된 표면에서 N/C 원자비와 상기 (B) 성분 (흑연—유사 구조) /(A) 성 분 (피리딘 -유사 구조)의 비를 도 12에 나타내었다. 도 12에 나타낸 것과 같이, 반 웅 온도가 증가할수록, 혹연 -유사 구조 질소 성분이 상대적으로 증가함을 알 수 있 다.  In addition, the ratio of N / C atomic ratio and the component (B) (graphite-like structure) / (A) component (pyridine-like structure) at the measured surface is shown in FIG. 12. As shown in FIG. 12, it can be seen that as the reaction temperature increases, the relative -nitrogen nitrogen component increases relatively.
<153> * 혹연화도 분석  <153> * Degradation Analysis
<154> 상기 실시예 1 내지 11에 따라 제조된 탄소 나노 섬유의 혹연화도 (결정성)을 확인하기 위하여, X-선 희절 (XRD) 분석을 실시하였다. XRD 분석은 RINT2000(Rigaku)을 사용하였고, 2Θ/Θ 스캐닝 모드로 10도 (° )에서 80도 (° )까지 분당 0.02의 스캐닝 속도로 하였다. 측정 결과 중, 2Θ는 26도 Γ ) 부근의 (002) 격자면에 해당하는 피크를 도 13에 나타내었다. 도 13에 나타낸 것과 같이, 실시 예 1 내지. 11에 따라 제조된 탄소 나노 섬유는 (002)면의 피크가 나타남을 알 수 있다. 또한 반웅 온도가 증가할수록, 피크 중심축이 높은 각으로 이동하고, 피크 폭이 좁아지므로, 결정화도가 높아짐을 알 수 있다. 또한, 반웅 온도가 높아질수 록 10-밴드가 분명하게 나타남을 알 수 있다. In order to confirm the degree of crystallization (crystallinity) of the carbon nanofibers prepared according to Examples 1 to 11, X-ray scarcity (XRD) analysis was performed. XRD analysis was performed using RINT2000 (Rigaku) and scanning speed of 0.02 per minute from 10 degrees ( ° ) to 80 degrees ( ° ) in 2Θ / Θ scanning mode. Among the measurement results, 2Θ shows a peak corresponding to the (002) lattice plane near 26 degrees Γ) in FIG. 13. As shown in FIG. 13, Examples 1 to 2. FIG. Carbon nanofibers prepared according to 11 can be seen that the peak of the (002) plane appears. In addition, it can be seen that as the reaction temperature increases, the peak central axis moves to a high angle, and the peak width narrows, thereby increasing the crystallinity. In addition, as the reaction temperature increases, the 10-band becomes apparent.
<155> 또한 도 13에 나타낸 XRD 결과에서, (002)면의 피크에 대한 결정 파라미터를  In addition, in the XRD results shown in FIG. 13, the determination parameter for the peak of the (002) plane is
Bragg 's 수식 (면간거리 결정 )과 Scherrer 수식 (결정크기 결정)을 계산하여 , d002 면간 거리와 Lc(002) 결정 크기 결과를 도 14에 나타내었다. 도 14에 나타낸 것과 같이, 반웅 온도 50CTC 부근까자 반웅 온도가 증가할수록 d002는 급격하게 증가고, 그 이상의 온도에서는 0.341— 0.343nm 부근에서 유사하게 나타났으나, Lc(002)는 반 응 온도에 따라서, 거의 선형적으로 증가하여 반웅 온도 300°C에서는 약 2nm였으 며, 반웅 온도 680°C에서는 약 6nm로 증가하였다. 결과적으로 제조된 탄소 나노 섬유의 결정화도는 일반 카본 블렉에 비하여 매우 우수함을 알 수 있다. Bragg's equation (interface distance determination) and Scherrer equation (crystal size determination) were calculated, and the results of d002 interplanar distance and Lc (002) crystal size are shown in FIG. 14. As shown in FIG. 14, as the reaction temperature increases until the reaction temperature of 50 CTC increases, d002 increases rapidly and similarly appears above 0.341-0.43 nm at higher temperatures, but Lc (002) is dependent on the reaction temperature. The linear increase was about 2 nm at the reaction temperature of 300 ° C and about 6 nm at the reaction temperature of 680 ° C. As a result, it can be seen that the crystallinity of the prepared carbon nanofibers is very excellent compared to the general carbon block.
<156> * 전기화학 특성 분석 <157> 실시예 4, 7 및 10에 따라 제조된 탄소 나노 섬유 20nig, 10 중량? ¾농도 나피 은 용액 (물 용매, Dupont) 40≠, 증류수 40ᅳ및 에탄올 lg을 흔합하여 촉매 슬러 리를 제조하였다. 상기 촉매 슬러리를 IcHf 면적을 갖는 글래시 카본에 10, 도포 하고 건조하여, 작동 전극을 제조하였다. <156> * Electrochemical Characterization A catalyst slurry was prepared by mixing 20nig of carbon nanofibers prepared in Examples 4, 7 and 10, 10 wt% ¾ concentration Napi silver solution (water solvent, Dupont) 40 ≠, distilled water 40kPa and ethanol lg. It was. The catalyst slurry was coated with 10, glass carbon having an IcHf area, and dried to prepare a working electrode.
<158> 비교예 2로 실시예에서 제조된 탄소 나노 류브 대신, 카본 블랙 (Cabot  Carbon black (Cabot) in place of the carbon nano-leube prepared in Example 2 as Comparative Example 2
Vulcan XC72R)을 사용하여 상술한 것과 동일한 방법으로 작동 전극을 제조하였다. A working electrode was prepared in the same manner as described above using Vulcan XC72R).
<159> 비교예 3으로 실시예에서 제조된 탄소 나노 류브 대신 플레이트형 <159> Plate Type Instead Of Carbon Nano-Luv Prepared In Example As Comparative Example 3
CNFCSsuntel RP-610: CNF1)을 사용하여 상술한 것과 동일한 방법으로 작동 전극을 제조하였다.  A working electrode was prepared in the same manner as described above using CNFCSsuntel RP-610: CNF1).
<160> 비교예 4로 실시예에서 제조된 탄소 나노 튜브 대신 에틸렌을 카본 소스로 사용하여 52CTC에서 합성한 탄소 나노 섬유 (CNF2)을 사용하여 상술한 것과 동일한 방법으로 작동 전극을 제조하였다.  A working electrode was prepared in the same manner as described above using carbon nanofibers (CNF 2) synthesized at 52 CTC using ethylene as a carbon source instead of the carbon nanotubes prepared in Example 4 as a comparative example.
<i6i> 제조된 작동 전극, 대극으로 백금 메쉬, 참조 전극으로 Ag/AgCKALS. RE-IB, 표준 수소 전극: NHE로 표기)를 사용하는 3전극 시스템으로 전기화학적 실험을 실 시하였다. <i6i> Working electrode manufactured, platinum mesh with counter electrode, Ag / AgCKALS as reference electrode. Electrochemical experiments were carried out with a three-electrode system using RE-IB, standard hydrogen electrode (denoted NHE).
<162> 전기화학적 실험은 사이클릭 볼타메트리는 질소가스로 층분히 퍼징된 0.1M  Electrochemical experiments have shown that cyclic voltammetry is 0.1 M, which is thoroughly purged with nitrogen gas.
HC104 수용액에서, NHE 전극 기준으로 0.0 내지 1.2V에서 실시하였고, 산소 환원 반 응 (Oxygen Reduction React ion: 0RR) 실험은 산소로 층분히 퍼징된 0.1M HC104 수용 액에서 NHE 전극 기준으로 1.2 내지 0.2V에서 실시하였다. 또한 전위 스윕 속도 (potential sweep rate)는 2()mV/sec로 고정하여 실시하였다. HC10 4 in aqueous solution, was conducted in the 0.0 to 1.2V with NHE reference electrode, an oxygen reduction reaction (Oxygen Reduction React ion: 0RR) experiment in 0.1M HC10 purged sufficiently with oxygen layer 4 aqueous solution as reference electrode NHE 1.2 to It was carried out at 0.2V. Also, the potential sweep rate was fixed at 2 () mV / sec.
<163> 사이클릭 볼타메트리 실험 결과를 도 15에 나타내었고, 0RR 실험 결과는 도 The results of the cyclic voltametry experiment are shown in FIG. 15, and the results of the 0RR experiment are shown in FIG.
16에 나타내었다.  16 is shown.
<164> 도 15에 나타낸 것과 같이, 실시예 4, 7 및 10, 그리고 비교예 2 내지 4, 모 든 탄소 재료가 전형적인 전기 이중층 형성에 의한 직사각형 패턴을 나타내고 있으 나, 실시예 4, 7 및 10의 탄소 나노 섬유를 사용한 경우가 내부 면적이 넓음을 알 수 있다. 이와 같이, 내부 면적이 넓은 것은 이온 흡착량이 많은 것을 나타내며, 이는 이온 흡착력이 우수함을 의미하며, 결과적으로 연료 전지용 촉매 담체로 사용 하면 촉매 담지 특성 및 촉매와 담체간 상호 작용 특성이 우수할 것임을 예측할 수 있다.  As shown in FIG. 15, Examples 4, 7 and 10, and Comparative Examples 2 to 4, all carbon materials exhibit a rectangular pattern by typical electric double layer formation. Examples 4, 7 and 10 In the case of using carbon nanofibers, it can be seen that the inner area is large. As such, the large internal area indicates a large amount of ion adsorption, which means that the ion adsorption capacity is excellent, and as a result, it can be predicted that the catalyst supporting characteristics and the interaction between the catalyst and the carrier will be excellent when used as a catalyst carrier for fuel cells. have.
<165> 또한, 도 16에 나타낸 것과 같이 , 실시예 4, 7 및 10의 탄소 나노 섬유는 산 소 환원 활성이 있으나, 비교예 2 내지 4의 탄소 재료는 산소 환원 활성이 없음을 알 수 있다. 이 결과로부터 실시예 4, 7 및 10의 탄소 나노 섬유는 그 자체로 캐 소드 전극에 촉매로서 사용할 수도 있음을 알 수 있다. In addition, as shown in Figure 16, the carbon nanofibers of Examples 4, 7 and 10 has an oxygen reduction activity, it can be seen that the carbon material of Comparative Examples 2 to 4 does not have an oxygen reduction activity. From this result, the carbon nanofibers of Examples 4, 7 and 10 can It can be seen that it can also be used as a catalyst for the sword electrode.
<166> (실시예 16) (166) (Example 16)
<167> 백금 전구체 (Chloroplatinic acid hydride 99.9%, Aldrich), 실시예 11에 따 라 제조된 탄소 나노 섬유 담체 및 증류수 400ml를 48시간 동안 교반하여 촉매 전 구체 용액을 제조하였다.  A catalyst precursor solution was prepared by stirring a platinum precursor (Chloroplatinic acid hydride 99.9%, Aldrich), a carbon nanofiber carrier prepared according to Example 11, and 400 ml of distilled water for 48 hours.
<i68> NaBH4를 담지될 금속양 몰비의 15배의 양으로 증류수 400ml에 녹여 준비하 여, 30분에 걸쳐 층분히 교반한 후, 48시간 동안 교반하여 NaBH4 용액을 제조하였 다. NaBH4 용액에 상기 촉매 전구체 용액을 첨가하여 1시간 동안 교반하여 환원시 켰다. 환원 생성물을 1L의 증류수로 세척 및 여과한 후, 80°C의 오븐에서 2시간 가량 건조하여 Pt/탄소 나노 섬유 촉매 (Pt/N640)를 제조하였다. NaBH 4 was prepared by dissolving it in 400 ml of distilled water in an amount of 15 times the molar ratio of the amount of metal to be supported. The mixture was stirred well for 30 minutes and then stirred for 48 hours to prepare a NaBH 4 solution. The catalyst precursor solution was added to NaBH 4 solution, and stirred for 1 hour to reduce the solution. The reduced product was washed with 1 L of distilled water and filtered, and dried for 2 hours in an oven at 80 ° C to prepare a Pt / carbon nanofiber catalyst (Pt / N640).
<169> (실시예 17)  <169> (Example 17)
<170> 백금 전구체 (Chloroplatinic acid hydride 99.9%, Aldrich), 실시예 13에 따 라 제조된 탄소 나노 섬유 담체 및 증류수 400ml를 48시간 동안 교반하여 촉매 전 구체 용액을 제조한 것을 제외하고는, 상기 실시예 16과 동일하게 실시하여, Pt/탄 소 나노 섬유 촉매 (Pt/N523)를 제조하였다.  The platinum precursor (Chloroplatinic acid hydride 99.9%, Aldrich), except that the carbon nanofiber carrier prepared according to Example 13 and 400 ml of distilled water were stirred for 48 hours to prepare a catalyst precursor solution. In the same manner as in Example 16, a Pt / carbon nanofiber catalyst (Pt / N523) was prepared.
<i7i> (실시예 18)  <i7i> (Example 18)
<172> 백금 전구체 (Chloroplatinic acid hydride 99.9%, Aldrich), 팔라듬 전구체  Platinum precursor (Chloroplatinic acid hydride 99.9%, Aldrich)
(Palladium(II) chloride 99.9%, Sigma— Aldrich), 실시예 13에 따라 제조된 탄소 나노 섬유 담체 및 증류수 400ml를 48시간 동안 교반하여 촉매 전구체 용액을 제조 한 것을 제외하고는, 상기 실시예 16과 동일하게 실시하여, PtPd/탄소 나노 섬유 촉매 (PtPd/N523)를 제조하였다. 이때, 백금과 팔라듐의 무게비는 1 : 2이었다. (Palladium (II) chloride 99.9%, Sigma— Aldrich), except that the catalyst precursor solution was prepared by stirring the carbon nanofiber carrier prepared according to Example 13 and 400 ml of distilled water for 48 hours. In the same manner, a PtPd / carbon nanofiber catalyst (PtPd / N523) was prepared. At this time, the weight ratio of platinum and palladium was 1: 2.
<173> (비교예 5) <173> (Comparative Example 5)
<174> 백금 전구체 (Chloroplatinic acid hydride 99.9%, Aldrich),-카본 블랙 담체 및 증류수 400ml를 48시간 동안 교반하여 촉매 전구체 용액을 제조한 것을 제외하 고는, 상기 실시예 16과 동일하게 실시하여, Pt/탄소 나노 섬유 촉매 (Pt/CB)를 제 조하였다.  Pt precursor (Chloroplatinic acid hydride 99.9%, Aldrich), carbon black carrier and 400 ml of distilled water was stirred for 48 hours, except that the catalyst precursor solution was prepared in the same manner as in Example 16, Pt Carbon nanofiber catalysts (Pt / CB) were prepared.
<175> (비교예 6) '  <175> (Comparative Example 6) '
<176> 상용화된 백금-팔라듐 촉매 (JM9000, Johnson Mat they Fuel Cells-Hi pec  <176> Commercially available platinum-palladium catalysts (JM9000, Johnson Mat they Fuel Cells-Hi pec
Series)를 사용하였다. 이때, 백금과 팔라듐의 무게비는 1 : 2이었다.  Series) was used. At this time, the weight ratio of platinum and palladium was 1: 2.
<177> 상기 실시예 16 내지 18 및 비교예 5 내지 6에 따라 제조된 촉매 20mg, 10  20 mg, 10 catalyst prepared according to Examples 16 to 18 and Comparative Examples 5 to 6
중량 % 농도의 나피온 용액 (물 용매, Dupont) 0≠, 증류수 및 에탄을 lg을 흔 합하여 촉매 슬러리를 제조하였다. 이 촉매 슬러리를 글래시 카본에 10 도포하 고 층분히 건조하여 전극을 제조하였다. Nafion solution (water solvent, Dupont) in weight% concentration, ≠ 0, distilled water and ethane Combined to make catalyst slurry. The catalyst slurry was applied to glass carbon 10 and dried thoroughly to prepare an electrode.
<178> 제조된 전극을 사용하고, 전해질로 H2S04를 사용하여 상기 사이클릭 볼타메 트리 실험 및 산소 환원 반웅 실험과 동일하게 실시하여 사이클릭 볼타메트리 실험 및 산소 환원 반웅 실험 결과를 얻었다. 그 결과를 도 17 및 도 18에 각각 나타내 었다. 도 17에 '나타낸 사이클릭 볼타메트리 실험 결과는 5회 사이클때의 값이고, 수소 탈착양에 따른 촉매의 전기화학적 활성표면 (Electro Chemical Surface Area, ECSA)은 비교예 6이 가장 높은 값을 나타내었고, 실시예 18이 비교예 6과 유사한 결과를 나타내었다. Using the prepared electrode, using the H 2 S0 4 as the electrolyte was carried out in the same manner as the cyclic voltametry experiment and oxygen reduction reaction test to obtain a cyclic voltammetry experiment and oxygen reduction reaction test results . The results are shown in FIGS. 17 and 18, respectively. Cyclic voltammetry experiments shown 'in Figure 17 is the value at 5 cycles, the electrochemically active surface (Electro Chemical Surface Area, ECSA) of the catalyst according to the hydrogen desorption amount is the comparative example 6 is shown the highest value Example 18 showed similar results as in Comparative Example 6.
<179> 또한, 도 18에 나타낸 것과 같이, 비교예 5 및 실시예 16의 촉매가 활성이 우수함을 알 수 있다.  In addition, as shown in FIG. 18, it can be seen that the catalysts of Comparative Examples 5 and 16 are excellent in activity.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
질소를 포함하는 탄소 나노 섬유를 포함하는 탄소 나노 재료.  Carbon nanomaterials comprising carbon nanofibers comprising nitrogen.
【청구항 2】  [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 질소는 탄소 나노 섬유에 도핑되어 있는 탄소 나노 재료.  The nitrogen is a carbon nano material that is doped with carbon nano fibers.
【청구항 3】  [Claim 3]
제 1항에 있어세  Tax in Clause 1
상기 탄소 나노 섬유에서, 상기 질소의 함량은 0.5 내지 10 원자 %인 탄소 나 노 재료.  In the carbon nanofibers, the nitrogen content is 0.5 to 10 atomic% carbon nano material.
【청구항 4】  [Claim 4]
제 1항에 있어서,  The method of claim 1,
상기 탄소 나노 섬유에서 질소와 탄소의 비율 (N/C)은 1.0 내지 5.0 원자 %인 탄소 나노 재료.  The carbon nanomaterial has a ratio (N / C) of 1.0 to 5.0 atomic% of carbon and carbon in the carbon nanofibers.
【청구항 5]  [Claim 5]
제 1항에 있어서,  The method of claim 1,
상기 탄소 나노 섬유는 헤링본 구조를 갖는 것인 탄소 나노 재료.  Wherein the carbon nanofibers have a herringbone structure.
【청구항 6]  [Claim 6]
게 1항에 있어서,  According to claim 1,
상기 탄소 나노 섬유의 평균 직경은 30 내지 lOOnm인 탄소 나노 재료.  The carbon nanomaterial has an average diameter of 30 to 100 nm of carbon nanofibers.
【청구항 71  [Claim 71
제 1항에 있어서,  The method of claim 1,
상기 탄소 나노 섬유는 50 내지 500m2/g의 비표면적을 갖는 것인 탄소 나노 재료. Wherein the carbon nanofibers have a specific surface area of 50 to 500 m 2 / g.
【청구항 8】  [Claim 8]
게 1항에 있어서,  According to claim 1,
상기 탄소 나노 섬유는 CuKa를 사용한 X-선 회절 측정시 2Θ가 20 내지 30 ° 에서 (002)면의 피크를 갖는 것인 탄소 나노 재료. The carbon nanofibers are carbon nanomaterials having a (002) plane peak at 20 to 30 ° when 2Θ is measured by X-ray diffraction measurement using CuKa.
【청구항 9】  [Claim 9]
반응기 내에서, 담체에 담지된 금속 촉매 존재 하에, 질소 가스를 도입하는 단계;  Introducing nitrogen gas in the reactor in the presence of a metal catalyst supported on a carrier;
상기 반웅기에 질소 가스와 수소 가스의 흔합 가스를 공급하면서, 승온하는 단계; 및 The temperature is raised while supplying a mixed gas of nitrogen gas and hydrogen gas to the reaction vessel step; And
상기 반응기에 질소 함유 화합물을 공급하는 단계  Supplying a nitrogen-containing compound to the reactor
를 포함하는 탄소 나노 재료의 제조 방법 .  Method for producing a carbon nano material comprising a.
【청구항 10]  [Claim 10]
제 9항에 있어서,  The method of claim 9,
상기 담체는 MgO, Si02, Al203, 제올라이트, 알루미노 실리케이트, 탄소계 물 질 및 이들의 조합으로 이루어진 군에서 선택되는 것인 탄소 나노 재료의 제조 방 The carrier is selected from the group consisting of MgO, Si0 2 , Al 2 O 3 , zeolite, aluminosilicate, carbon-based materials and combinations thereof.
【청구항 11] [Claim 11]
제 9항에 있어서,  The method of claim 9,
상기 금속 촉매는 Ni, Fe, Co 및 이들의 조합으로 이루어진 군에서 선택되는 금속 또는 이들의 합금인 탄소 나노 재료의 제조 방법.  The metal catalyst is a method of producing a carbon nano material is a metal selected from the group consisting of Ni, Fe, Co and combinations thereof or alloys thereof.
【청구항 12]  [Claim 12]
제 9항에 있어서,  The method of claim 9,
상기 흔합 가스에서 질소 가스와 수소 가스의 흔합비는 160 : 40 cc인 탄소 나노 재료의 제조 방법 .  The mixing ratio of nitrogen gas and hydrogen gas in the said mixed gas is 160: 40 cc, The manufacturing method of the carbon nanomaterial.
【청구항 13】.  [Claim 13].
게 9항에 있어서,  According to claim 9,
상기 흔합 가스의 공급양은 200cc/분인 탄소 나노 재료의 제조 방법 .  The supply amount of the mixed gas is 200 cc / min.
【청구항 14】  [Claim 14]
제 9항에 있어서,  The method of claim 9,
상기 승온하는 단계는 5 내지 ire/분의 승온 속도로 300내지 700°C의 온도 에 도달할 때까지 실시하는 것인 탄소 나노 재료의 제조 방법. The step of raising the temperature is carried out until the temperature reaches a temperature of 300 to 700 ° C. at a temperature increase rate of 5 to ire / min.
【청구항 15】  [Claim 15]
제 9항에 있어서,  The method of claim 9,
상기 질소 함유 화합물은 아세토니트릴, 아크릴로니트릴, 파이를, 피리딘 및 이들의 조합으로 이루어진 군에서 선택되는 것인 탄소 나노 재료의 제조 방법.  The nitrogen-containing compound is selected from the group consisting of acetonitrile, acrylonitrile, pi, pyridine and combinations thereof.
【청구항 16] [Claim 16]
거 19항에 있어서,  The method of claim 19,
상기 질소 함유 화합물의 공급 속도는 0.035cc/분인 탄소 나노 재료의 제조 방법.  And a feed rate of the nitrogen-containing compound is 0.035 cc / min.
【청구항 17】 제 7항에 있어서, [Claim 17] The method of claim 7,
상기 질소 함유 화합물을 공급하는 단계는 300 내지 700°C의 온도에서 실시 하는 것 인 탄소 나노 재료의 제조 방법 . Supplying the nitrogen-containing compound is a method of producing a carbon nano material that is carried out at a temperature of 300 to 700 ° C.
【청구항 18】  [Claim 18]
제 1항 내지 제 8항 중에서 선택되는 어느 한 항에 따른 탄소 나노 재료를 담 지체로 포함하는 촉매 .  A catalyst comprising the carbon nanomaterial according to any one of claims 1 to 8 as a support.
PCT/KR2012/003204 2012-04-26 2012-04-26 Carbon nano-material, and preparation method thereof WO2013162097A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/003204 WO2013162097A1 (en) 2012-04-26 2012-04-26 Carbon nano-material, and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/003204 WO2013162097A1 (en) 2012-04-26 2012-04-26 Carbon nano-material, and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2013162097A1 true WO2013162097A1 (en) 2013-10-31

Family

ID=49483374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003204 WO2013162097A1 (en) 2012-04-26 2012-04-26 Carbon nano-material, and preparation method thereof

Country Status (1)

Country Link
WO (1) WO2013162097A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100100890A (en) * 2007-12-20 2010-09-15 바이엘 테크놀로지 서비시즈 게엠베하 Method for producing nitrogen-doped carbon nanotubes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100100890A (en) * 2007-12-20 2010-09-15 바이엘 테크놀로지 서비시즈 게엠베하 Method for producing nitrogen-doped carbon nanotubes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ISMAGILOV, ZINFER R. ET AL., CARBON, vol. 47, 24 March 2009 (2009-03-24), pages 1922 - 1929 *
KIM, CHAN ET AL., ADV. FUNCT. MATER., vol. 16, 27 October 2006 (2006-10-27), pages 2393 - 2397 *

Similar Documents

Publication Publication Date Title
US20200358106A1 (en) Fuel Cells Constructed From Self-Supporting Catalyst Layers and/or Self-Supporting Microporous Layers
JP5322110B2 (en) Manufacturing method of cathode electrode material for fuel cell, cathode electrode material for fuel cell, and fuel cell using the cathode electrode material
JP7221349B2 (en) Catalyst, method for producing same, electrode containing same, membrane-electrode assembly and fuel cell
JP4471174B2 (en) Mesoporous carbon body and production method thereof, supported catalyst and fuel cell
Vinayan et al. Synthesis and investigation of mechanism of platinum–graphene electrocatalysts by novel co-reduction techniques for proton exchange membrane fuel cell applications
Lázaro et al. Study and application of carbon black Vulcan XC-72R in polymeric electrolyte fuel cells
JP3655208B2 (en) FUEL CELL, ELECTRODE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME
KR101679809B1 (en) Preparation method of N-doped carbon-supported Pt catalyst and N-doped carbon-supported Pt catalyst using the same
US9947936B2 (en) Oxygen reduction catalyst and method for producing same
JP2007307554A (en) Supported catalyst, its manufacturing method, electrode using this, and fuel cell
Xu et al. Antimony doped tin oxide modified carbon nanotubes as catalyst supports for methanol oxidation and oxygen reduction reactions
EP3520892A1 (en) Carrier, electrode for fuel cell, membrane-electrode assembly, and fuel cell comprising same
JP2019505376A (en) catalyst
CN112041061A (en) Catalyst, liquid composition, electrode, catalyst electrode for electrochemical reaction, fuel cell, and air cell
JP2015195193A (en) Anode electrode material for fuel battery, method of manufacturing the same, electrode for fuel battery, membrane electrode assembly, and solid polymer type fuel battery
US20210057761A1 (en) Support for fuel cell, method of preparing the same, and electrode for fuel cell, membrane-electrode assemby for a fuel cell and fuel cell system including same
KR20110083940A (en) Electrode catalyst for fuel cell, manufacturing method thereof, membrane electrode assembly and fuel cell including the same
JP6603396B2 (en) Carbon powder for fuel cell and catalyst, electrode catalyst layer, membrane electrode assembly and fuel cell using carbon powder for fuel cell
Al‐Tememy et al. Development of effective bimetallic catalyst for high‐temperature PEM fuel cell to improve CO tolerance
Chen et al. PtCoN supported on TiN-modified carbon nanotubes (PtCoN/TiN–CNT) as efficient oxygen reduction reaction catalysts in acidic medium
US20140141354A1 (en) Fuel cell electrode, fuel cell membrane electrode assembly including the electrode, and fuel cell including the membrane electrode assembly
JP2018012626A (en) Porous carbon material, catalyst for solid polymer shaped fuel cell, solid polymer shaped fuel cell and manufacturing method of porous carbon material
WO2018047188A1 (en) A bimetallic catalyst and fuel for use in a direct dimethyl ether fuel cell
Wang et al. Carboxylated carbonized polyaniline nanofibers as Pt-catalyst conducting support for proton exchange membrane fuel cell
Bagheri et al. Introduction of a new active and stable cathode catalyst based on bimetal-organic frameworks/PPy-sheet for alkaline direct ethanol fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12875262

Country of ref document: EP

Kind code of ref document: A1