WO2013145658A1 - Charging/discharging control apparatus, power storage system, and charging/discharging control method - Google Patents

Charging/discharging control apparatus, power storage system, and charging/discharging control method Download PDF

Info

Publication number
WO2013145658A1
WO2013145658A1 PCT/JP2013/001930 JP2013001930W WO2013145658A1 WO 2013145658 A1 WO2013145658 A1 WO 2013145658A1 JP 2013001930 W JP2013001930 W JP 2013001930W WO 2013145658 A1 WO2013145658 A1 WO 2013145658A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
current
charge
target
discharge
Prior art date
Application number
PCT/JP2013/001930
Other languages
French (fr)
Japanese (ja)
Inventor
員史 西川
雄太 黒崎
飯田 崇
栄一郎 橋本
伊藤 和雄
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013145658A1 publication Critical patent/WO2013145658A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • H01M10/465Accumulators structurally combined with charging apparatus with solar battery as charging system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a charge / discharge control device for controlling charge / discharge of a plurality of storage batteries.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a charge / discharge control apparatus capable of efficiently controlling charge / discharge of a plurality of storage batteries.
  • a charge / discharge control device is a charge / discharge control device that controls charge / discharge of a plurality of storage batteries connected to a DC bus, and each of the plurality of storage batteries.
  • a target value changing unit that changes the control target value in a timely manner based on a charge ratio indicating a distribution ratio of charge to the storage battery or a discharge ratio indicating a distribution ratio of discharge from the storage battery, and a charge of each of the plurality of storage batteries
  • a control unit that controls the discharge based on the control target value changed in a timely manner.
  • charging / discharging in each storage battery can be appropriately distributed, charging / discharging of a plurality of storage batteries can be controlled efficiently. Moreover, electric power loss can also be suppressed by controlling charging / discharging of a some storage battery efficiently.
  • FIG. 1A is a schematic diagram illustrating a discharge in an example of a configuration of a conventional power storage system
  • FIG. 1B is a diagram illustrating an example of a change in a DC bus voltage when discharged. is there.
  • FIG. 2A is a schematic diagram illustrating charging in an example of a configuration of a conventional power storage system
  • FIG. 2B is a diagram illustrating an example of a change in DC bus voltage when charging. is there.
  • FIG. 3 is a schematic diagram illustrating a problem in the conventional power storage system.
  • FIG. 4 is a block diagram showing a schematic configuration of the charge / discharge control device and the power storage system according to Embodiment 1 of the present invention.
  • FIG. 4 is a block diagram showing a schematic configuration of the charge / discharge control device and the power storage system according to Embodiment 1 of the present invention.
  • FIG. 5 is a block diagram showing the configuration of the charge / discharge controller and the DC / DC converter according to Embodiment 1 of the present invention.
  • FIG. 6 is a block diagram illustrating a detailed configuration of the DC bus voltage control unit according to the first embodiment of the present invention.
  • FIG. 7 is a flowchart showing a flow of operations of the charge / discharge controller according to Embodiment 1 of the present invention.
  • FIG. 8 is a flowchart showing a flow of operation of the DC / DC converter according to Embodiment 1 of the present invention.
  • FIG. 9 is a diagram illustrating an example of the target current value and DC bus voltage current value acquired for each string, and the calculated DC bus voltage target value and current limit value.
  • FIG. 10 is a block diagram showing configurations of the charge / discharge controller and the DC / DC converter according to Embodiment 2 of the present invention.
  • FIG. 11 is a flowchart showing a flow of operation of the DC / DC converter according to Embodiment 2 of the present invention.
  • FIG. 12 is a block diagram showing configurations of the charge / discharge controller and the DC / DC converter according to Embodiment 3 of the present invention.
  • FIG. 13 is a diagram showing an example of the relationship between the target value of the battery remaining capacity and the current battery remaining capacity in the third embodiment of the present invention.
  • FIG. 14 is a flowchart showing a flow of operation of the DC / DC converter according to Embodiment 3 of the present invention.
  • FIG. 11 is a flowchart showing a flow of operation of the DC / DC converter according to Embodiment 2 of the present invention.
  • FIG. 12 is a block diagram showing configurations of the charge / discharge controller and the DC / DC converter according to Embod
  • FIG. 15 is a block diagram showing configurations of the charge / discharge controller and the DC / DC converter according to Embodiment 4 of the present invention.
  • FIG. 16 is a diagram illustrating an example of a relationship between a charge switching target value, a discharge switching target value, and a DC bus reference voltage value.
  • FIG. 17 is a schematic diagram illustrating an example of the configuration of a string.
  • FIG. 1A is a schematic diagram showing a discharge in an example of a configuration of a conventional power storage system
  • FIG. 1B is a diagram showing an example of a change in a DC bus voltage when discharged.
  • FIG. 2A is a schematic diagram illustrating charging in an example of a configuration of a conventional power storage system
  • FIG. 2B is a diagram illustrating an example of a change in DC bus voltage when being charged. .
  • a storage system including a plurality of storage battery units includes, for example, a PV 10 such as a solar battery, a DC / DC converter (DC / DC) 20, and a plurality of storage battery units (strings) 30 1 as shown in FIG. , 30 2 ,... 30 n , a DC / AC converter (DC / AC) 40, and a DC bus 50.
  • Each battery unit (strings) 30 n is provided with a DC / DC converter (DC / DC) 31 n and a plurality of battery packs 32 n, 33 n, and a ... 34 n.
  • surplus power supplied from the power system or power generated by PV is charged in the string 30 to supply power to a device (load) that operates on power.
  • the string 30 is discharged. That is, the string 30 is discharged when the electric power Pa output from the DC / AC converter 40 to the load side is larger than the electric power Pb input from the PV 10 to the DC / DC converter 20 side, and the electric power Pa is smaller than the electric power Pb. 30 is charged.
  • the DC / DC converter 31 of each string 30 includes a DC bus voltage sensor (not shown), and each detects a DC bus voltage.
  • Each DC / DC converter 31 controls charging / discharging of the string 30 so that the detected DC bus voltage becomes a preset DC bus reference voltage value (target value in FIGS. 1 and 2). .
  • the DC bus voltage decreases as shown in FIG. 1B, so the DC / DC converter 31 is controlled so as to approach the DC bus reference voltage value, and FIG.
  • FIG. As shown in FIG.
  • Pa ⁇ Pb the DC bus voltage rises as shown in FIG. 2B, so that the DC / DC converter 31 is controlled so as to approach the DC bus reference voltage value, as shown in FIG. You will charge as shown.
  • each string 30 As shown in FIG. 3, there is a problem in that the string to be discharged and the string to be charged are mixed in each string 30 as shown in FIG. As described above, when the charge / discharge directions of the strings 30 are different, there is a problem that electric power that is simply moved between the strings 30 is generated, resulting in a large power loss and a decrease in battery life.
  • the DC / DC converter 31 controls charging / discharging in each string 30, there is a problem that the amount of discharge and the amount of charge between the strings cannot be changed according to the state of the battery pack, for example. .
  • the discharge amount of a string having a battery with large deterioration cannot be made smaller than that of other strings.
  • a charge / discharge control device is a charge / discharge control device that controls charge / discharge of a plurality of storage batteries connected to a DC bus, and the plurality of storage batteries
  • a target value changing unit that changes the control target values of the plurality of storage batteries in a timely manner based on a charge ratio indicating a distribution ratio of charge to the storage battery or a discharge ratio indicating a distribution ratio of discharge from the storage battery,
  • a control unit that controls each charge / discharge based on the control target value changed in a timely manner.
  • charging / discharging in each storage battery can be controlled to be appropriately distributed to each storage battery according to the distribution ratio, charging / discharging of a plurality of storage batteries can be controlled efficiently. Moreover, electric power loss can also be suppressed by controlling charging / discharging of a some storage battery efficiently. Furthermore, for example, by changing the distribution ratio, the state of each storage battery can be reflected and the charge / discharge can be controlled.
  • the target value changing unit includes a power acquisition unit that acquires an input power value input to the DC bus and an output power value output from the DC bus, and a required overall power value as the input power value and the An overall power calculation unit for calculating based on the output power value; an overall current calculation unit for calculating an overall current value based on a preset DC bus reference voltage value and the overall power value; and a plurality of storage batteries.
  • a target current calculation unit that calculates a target current value at the time of charging / discharging based on the charging rate or the discharging rate of the storage battery from the total current value, and changes the control target value in a timely manner based on the target current value. You may provide a change part.
  • control target value is a current limit value at the time of charging / discharging in each of the plurality of storage batteries
  • the charge / discharge control device further acquires a current value of the DC bus voltage that is a current voltage value of the DC bus.
  • a current value acquisition unit for DC bus voltage, and the target value changing unit further determines a current limit value for each of the plurality of storage batteries as the DC bus reference voltage value, the target current value, and the DC bus voltage current value.
  • a current limit value calculation unit that calculates a current limit value based on the calculated current limit value, and the control unit uses the current limit value that is changed in a timely manner. You may control charging / discharging in each of these.
  • the current limit value calculating unit calculates a charging current limit value and a discharging current limit value in each of the plurality of storage batteries as the current limit value, and the control unit is equal to or more than the charging current limit value. You may control charging / discharging in each of these storage batteries in the range below the electric current limit value for discharge.
  • control target value is a DC bus voltage target value at the time of charging / discharging in each of the plurality of storage batteries
  • target value changing unit further includes a DC bus voltage at the time of charging / discharging in each of the plurality of storage batteries.
  • a target value is calculated based on the DC bus reference voltage value and the target current value, and includes a DC bus voltage target value calculation unit that changes a current DC bus voltage target value with the calculated DC bus voltage target value,
  • the control unit controls charging / discharging in each of the plurality of storage batteries by controlling the DC bus voltage at the time of charging / discharging in each of the plurality of storage batteries based on the DC bus voltage target value changed in a timely manner. May be.
  • the charge / discharge control device further includes a DC bus voltage current value acquisition unit that acquires a current value of the DC bus voltage that is a current voltage value of the DC bus, and the control unit includes the current value of the DC bus voltage during discharging.
  • a DC bus voltage current value acquisition unit that acquires a current value of the DC bus voltage that is a current voltage value of the DC bus
  • the control unit includes the current value of the DC bus voltage during discharging.
  • control target value is the target current value at the time of charging / discharging in each of the plurality of storage batteries
  • target value changing unit further calculates a DC bus voltage current value that is a current voltage value of the DC bus.
  • a DC bus voltage current value acquisition unit to acquire; and a target current correction unit that corrects the target current value based on the DC bus reference voltage value and the DC bus voltage current value, and the control unit is corrected.
  • the charging / discharging in each of the plurality of storage batteries may be controlled using the target current value.
  • control target value is a current limit value at the time of charging / discharging in each of the plurality of storage batteries
  • the target value changing unit acquires a remaining battery capacity of each of the plurality of storage batteries.
  • Current limit value is calculated based on the obtained battery remaining capacity and a preset target battery remaining capacity value, and the current limit value is changed by the calculated current limit value.
  • a calculation unit, and the control unit may control charging / discharging of each of the plurality of storage batteries using the current limit value changed in a timely manner.
  • the control unit may be provided in each of the plurality of storage batteries, and may control charging / discharging in the storage battery based on the control target value.
  • the charge / discharge control device is a charge / discharge control device that controls charging / discharging of a plurality of storage batteries connected to a DC bus, and each control target value of the plurality of storage batteries is determined by: A target value changing unit that changes timely based on a charge rate that indicates a distribution rate of charge to the storage battery or a discharge rate that indicates a distribution rate of discharge from the storage battery, and each charge and discharge of the plurality of storage batteries is changed timely
  • the control target value is a DC bus voltage target value at the time of charging / discharging in each of the plurality of storage batteries
  • the target value changing unit further includes: The DC bus voltage target value at the time of charging / discharging in each of the plurality of storage batteries is calculated based on the DC bus reference voltage value and the target current value, and the calculated DC bus voltage target value is A DC bus voltage target value calculation unit that changes a current DC bus voltage target value, and the control unit changes the DC bus voltage at the time of charging and discharging
  • FIG. 4 is a block diagram showing a schematic configuration of the charge / discharge control device and the power storage system according to Embodiment 1 of the present invention.
  • the power storage system including a plurality of storage battery units includes a PV 10, a DC / DC converter (DC / DC) 20, a plurality of storage battery units (strings) 60 1 , 60 2 ,... 60 n , DC / AC A converter (DC / AC) 40, a DC bus 50, and a charge / discharge controller 100 are provided.
  • Each string 60 n includes a DC / DC converter (DC / DC) 200 n and a plurality of battery packs 32 n , 33 n ,... 34 n .
  • the PV 10 is, for example, a solar cell that generates power by directly converting solar energy into electric energy.
  • the DC / DC converter 20 converts the DC power voltage supplied from the PV 10 into a predetermined voltage and outputs the voltage to the DC bus 50.
  • the DC / AC converter 40 converts the DC power supplied from the DC bus 50 into AC power and outputs the AC power to the load side.
  • the function of the charge / discharge control device is realized by the charge / discharge controller 100 and a plurality of DC / DC converters 200 1 , 200 2 ,... 200 n .
  • FIG. 5 is a block diagram showing the configuration of the charge / discharge controller and the DC / DC converter according to Embodiment 1 of the present invention.
  • FIG. 5 for simplicity of explanation, it is shown only for the DC / DC converter 200 i of the plurality of DC / DC converter 200 1, 200 2, ... 200 n.
  • I is an arbitrary natural number from 1 to n.
  • the charge / discharge controller 100 includes a power acquisition unit 101, an overall power calculation unit 102, an overall current calculation unit 103, a target current calculation unit 104, a target current setting unit 105, a battery information acquisition unit 106, and a battery state calculation.
  • Unit 107 and ratio determining unit 108 are components that determine the ratio of the charge / discharge controller 100.
  • the power acquisition unit 101 acquires the power value Pb input from the DC / DC converter 20 to the DC bus 50 and the power value Pa output from the DC bus to the DC / AC converter 40.
  • the overall power calculation unit 102 calculates the overall power value Ps required as a whole by subtracting the power value Pb from the power value Pa as shown in the following equation 1.
  • the total current calculation unit 103 calculates the string total current value (total current value) I based on a preset DC bus reference voltage value (for example, 500 V) and the total power value Ps as shown in the following Expression 2. To do.
  • the battery information acquisition unit 106 acquires battery information such as a battery voltage value and a current value of the battery packs 32 i , 33 i ,... 34 i of the string 60 i .
  • the battery state calculation unit 107 calculates the degree of battery deterioration and the remaining battery capacity of the string 60 i based on the battery information acquired by the battery information acquisition unit 106.
  • the ratio determination unit 108 calculates the charge ratio Rc i indicating the distribution ratio of charge to the string 60 i and the discharge ratio Rd i indicating the distribution ratio of discharge from each string 60 i by the string calculated by the battery state calculation unit 107. It is determined based on the deterioration degree of the battery of 60 i and the remaining battery capacity.
  • the target current calculation unit 104 sets the target current value I i at the time of charging / discharging in the string 60 i from the overall current value I according to the charging rate Rc i or the discharging rate Rd i as shown in the following formulas 3 to 5, respectively. calculate.
  • target current value I i total current value I ⁇ discharge ratio Rd i (Equation 3)
  • target current value I i total current value I ⁇ charge ratio Rc i (Expression 4)
  • I 0
  • Target current value I i 0 (Expression 5)
  • Target current setting unit 105 notifies the target current value I i to the corresponding string 60 i.
  • the DC / DC converter 200 i includes a target current acquisition unit 201 i , a DC bus voltage target value calculation unit 202 i , a DC bus voltage control unit 203 i , and a DC bus voltage current value acquisition unit 204 i. , And a current limit value calculation unit 205 i .
  • the target current acquisition unit 201 i acquires the target current value I i notified from the charge / discharge controller 100.
  • the DC bus voltage target value calculation unit 202 i calculates the DC bus voltage target value V i at the time of charging / discharging in the string 60 i based on the DC bus reference voltage value and the target current value I i as shown in the following Expression 6. To do.
  • k1 is an arbitrary fixed value.
  • the DC bus voltage current value acquisition unit 204 i acquires a DC bus voltage current value that is a current voltage value of the DC bus 50.
  • the current limit value calculation unit 205 represents the current limit value Il i at the time of charging / discharging in the string 60 i based on the target current value I i , the DC bus reference voltage value, and the DC bus voltage current value as shown in Equation 7 below. To calculate.
  • k2 is an arbitrary fixed value.
  • DC bus voltage controller 203 i by passing a current proportional to the deviation between the DC bus voltage target value V i and DC bus voltage current value, and controls the DC bus voltage.
  • FIG. 6 is a block diagram showing a detailed configuration of the DC bus voltage control unit according to the first embodiment of the present invention.
  • the DC bus voltage control unit 203 i includes a PID control unit 210 i , a current limit control unit 211 i , a PWM (Pulse Width Modulation) 212 i , and a power module 213 i .
  • PID control unit 210 i is, PID using DC bus voltage target value DC bus voltage current value obtained by the calculated DC bus voltage target value V i and DC bus voltage current value acquiring unit 204 i by the calculating unit 202 i Take control.
  • the current limit control unit 211 i controls the current so as not to exceed the current limit value Il i calculated by the current limit value calculation unit 205 i .
  • the PWM 212 i performs pulse width modulation and outputs a PWM waveform.
  • the power module 213 i is an IGBT (Insulated-Gate Bipolar Transistors), for example, and controls the output based on the PWM waveform output from the PWM 212 i .
  • FIG. 7 is a flowchart showing a flow of operations of the charge / discharge controller according to Embodiment 1 of the present invention.
  • the battery information acquisition unit 106 acquires battery information such as a battery voltage value and a current value of the battery packs 32 i , 33 i ,... 34 i of the string 60 i (step S101).
  • the battery state calculation unit 107 calculates the degree of battery degradation and the remaining battery capacity of the string 60 i based on the battery information acquired by the battery information acquisition unit 106 (step S102).
  • Ratio determining unit 108, the discharge rate Rd i indicating the distribution ratio of the discharge from the charging rate Rc i and string 60 i shows the distribution ratio of the charging of the string 60 i, string calculated by the battery state calculator 107 60 It is determined based on the degree of deterioration of the battery i and the remaining battery capacity (step S103).
  • the overall distribution ratio by making the distribution ratio smaller than the other strings 60 j so that the string 60 i having a large degree of battery degradation is not used as much as possible. Further, for example, as each of the remaining battery capacity of a plurality of strings 60 1 ⁇ n becomes uniform, for the remaining battery capacity is low string 60 l compared to other strings 60 k, the other strings 60 k In comparison with this, it is possible to determine a larger charge ratio (that is, Rc 1 > Rc k ) and a lower discharge ratio (that is, Rd 1 ⁇ Rd k ).
  • “j”, “k”, and “l” are arbitrary natural numbers between 1 and n different from each other and different from “i”.
  • the power acquisition unit 101 acquires a power value Pb input from the DC / DC converter 20 to the DC bus 50 and a power value Pa output from the DC bus to the DC / AC converter 40 using a sensor or the like (step) S104).
  • the total power calculation unit 102 calculates the total power value Ps required as a whole by subtracting the power value Pb from the power value Pa as described above (step S105).
  • the total current calculation unit 103 calculates the total current value I based on the DC bus reference voltage value and the total power value Ps as described above (step S106).
  • the target current calculation unit 104 calculates the target current value I i at the time of charging / discharging in the string 60 i from the overall current value I in accordance with the charging rate Rc i or the discharging rate Rd i as described above (step S107).
  • the target current setting unit 105 notifies the corresponding string 60 i of the target current value I i calculated by the target current calculation unit 104 (step S108). It is determined whether or not the fixed period A has elapsed (step S109). If the predetermined constant period A has not elapsed (No in step S109), the determination is repeated until the predetermined constant period A has elapsed.
  • step S110 it is determined whether or not the predetermined fixed period B has elapsed (step S110).
  • the process returns to the battery information acquisition process (step S101).
  • the predetermined fixed period B has not elapsed (No in step S110)
  • the process returns to the process of acquiring the power value Pb and the power value Pa (step S104).
  • the fixed period A and the fixed period B are set in advance, and the fixed period B (for example, 100 ms) is set longer than the fixed period A (for example, 5 ms). Moreover, the fixed period A and the fixed period B can be changed.
  • FIG. 8 is a flowchart showing a flow of operation of the DC / DC converter according to Embodiment 1 of the present invention.
  • the target current acquisition unit 201 i acquires the target current value I i notified from the charge / discharge controller 100 (step S201).
  • the DC bus voltage current value acquisition unit 204 i acquires a DC bus voltage current value that is a current voltage value of the DC bus 50 (step S202).
  • the DC bus voltage target value calculation unit 202 i calculates the DC bus voltage target value V i at the time of charging / discharging in the string 60 i as described above based on the DC bus reference voltage value and the target current value I i (step). S203).
  • the current limit value calculation unit 205 i calculates the current limit value Il i during charging / discharging in the string 60 i based on the target current value I i , the DC bus reference voltage value, and the DC bus voltage current value as described above. (Step S204).
  • the DC bus voltage control unit 203 i controls the DC bus voltage at the time of charging / discharging in the string 60 i based on the DC bus voltage target value V i , the DC bus voltage current value, and the current limit value Il i (step S205). ). It is determined whether or not the fixed period C has elapsed (step S206). If the predetermined constant period C has not elapsed (No in step S206), the determination is repeated until the predetermined constant period C has elapsed.
  • the process returns to the target current value I i acquisition process (step S201).
  • the fixed period C is also set in advance, and the fixed period C (for example, 1 ms) is set shorter than the fixed period A and the fixed period B, but is not limited thereto. Further, the fixed period C can be changed.
  • each step in the flowcharts of FIG. 7 and FIG. 8 described above is described as being performed only for the string 60 i for simplicity, but these steps are performed for a plurality of strings 60 1 , 60 2 ,. This is done for all 60 n .
  • the DC bus reference voltage value is 500 V
  • the constant k1 is “0.1”
  • the constant k2 is “1”.
  • the DC bus voltage target value V is calculated as an example when the ratio is determined to be 3: 2: 1: 0 and the power acquisition unit 101 acquires the power value Pb of 10 kW and the power value Pa of 40 kW. 1 to V 4 and current limit values Il 1 to Il 4 will be described.
  • FIG. 9 shows target current values I 1 to I 4 and DC bus voltage current values acquired for each of the four strings 60 1 to 60 4 , calculated DC bus voltage target values V 1 to V 4, and current limit values. is a diagram illustrating an example of the Il 1 ⁇ Il 4.
  • the total power calculation unit 102 calculates the total power value Ps as 30 kw. Further, since the DC bus reference voltage value is 500V and the total power value Ps is 30 kW, the total current calculation unit 103 calculates the total current value I as 60A. Also, the entire current I is 60A, the discharge ratio is 3: 2: 1: 0, and thus the target current calculating unit 104, each of the strings 60 1 to 60 4 of the target current value I 1 ⁇ I 4 is 30A, 20A 10A and 0A are calculated respectively.
  • DC bus reference voltage value is 500V
  • constant k1 is "0.1”
  • a target current value I 1 of the strings 60 1 because it is 30A
  • DC bus voltage desired value calculating unit 202 1 of the strings 60 1 DC becomes the bus voltage target value V 1 to be calculated and 503V.
  • the DC bus voltage target value calculation portion 202 2 of the strings 60 2 becomes the DC bus voltage target value V 2 to be calculated and 502V.
  • DC bus voltage target value calculation portion 202 3 of the string 60 consisting of DC bus voltage target value V 3 to be calculated and 501V.
  • DC bus voltage target value calculating section 202 fourth string 6O4 becomes a DC bus voltage target value V 4 to be calculated and 500V.
  • the current DC bus voltage value is acquired as 498.7V, 498.1V, 498.4V, 498.5V by the DC bus voltage current value acquisition units 204 1 to 204 4 , respectively.
  • the current limit value calculation unit 205 1 calculates the current limit value Il 1 as 31.3 A. Will do.
  • the current limit value calculation unit 205 and second strings 60 2 becomes the current limit value Il 2 to be calculated with 21.9A.
  • the current limit value calculation unit 205 3 of the string 60 3 calculates the current limit value Il 3 as 11.6A.
  • String 60 4 current limit value calculation unit 205 4 will be calculated the current limit value Il 4 and 0A.
  • DC bus voltage target values V 1 to V 4 and current limit values Il 1 to Il 4 are calculated from the target current values I 1 to I 4 in each of the four strings 60 1 to 60 4 .
  • a DC bus voltage target value calculated in a timely manner for each of a plurality of strings is used.
  • charge / discharge in each string can be appropriately distributed, so that charge / discharge of a plurality of storage batteries can be controlled efficiently.
  • a rapid change in the DC bus voltage can be suppressed by changing the current limit value in accordance with the deviation between the DC bus reference voltage value and the DC bus voltage current value.
  • the DC bus voltage target value V i and the current limit value Il i are calculated in the DC / DC converter 200 i of the string 60 i .
  • the present invention is not limited to this.
  • it may be configured to notify the string 60 i.
  • the charge / discharge controller 100 calculates the target current value I i .
  • the present invention is not limited to this.
  • the target current value I i is calculated based on the total current value I, the charge rate Rc i , and the discharge rate Rd i notified from the charge / discharge controller 100. You may comprise.
  • the target current value I i is calculated based on the total power value Ps, the charge rate Rc i , and the discharge rate Rd i notified from the charge / discharge controller 100. You may comprise so that it may do.
  • the DC / DC converter 200 i calculates the total current value I from the total power value Ps, the calculated total current value I, and the charge ratio Rc i and discharge ratio Rd i notified from the charge / discharge controller 100. Based on this, the target current value I i is calculated.
  • the DC bus voltage target value V i is calculated in the DC / DC converter 200 i of the string 60 i .
  • the DC bus voltage target value V i may not be calculated.
  • the current limit value Ild i (for discharge) and the current limit value Ilc i are calculated from the deviation between the target current and the DC bus reference voltage value and the DC bus voltage current value, as shown in the following equations 8 to 9. Calculate (for charging).
  • k2 is an arbitrary fixed value.
  • DC / DC converter 200 i the current limit value Ild i (for discharge) or less, and in a range equal to or more than the current limit value Ilc i (charging), and controlled so as to approach the DC bus reference voltage value.
  • the DC bus voltage target value and the current limit value are calculated in the DC / DC converter of each string, and the DC bus voltage is controlled using the DC bus voltage target value and the current limit value.
  • the target current is corrected, and the DC bus voltage is controlled using the corrected target current.
  • the schematic configurations of the charge / discharge control device and the power storage system in the second embodiment are the same as those in the first embodiment shown in FIG.
  • the DC / DC converter 300 according to the second embodiment is obtained by replacing the DC / DC converter 200 shown in FIG.
  • FIG. 10 is a block diagram showing configurations of the charge / discharge controller and the DC / DC converter according to Embodiment 2 of the present invention.
  • symbol is attached
  • the charge / discharge controller 100 is the same as that of the first embodiment shown in FIG. In FIG. 10, for simplicity of explanation, it is shown only for the DC / DC converter 300 i of the plurality of DC / DC converter 300 1, 300 2, ... 300 n. “I” is an arbitrary natural number from 1 to n.
  • the DC / DC converter 300 i includes a target current acquisition unit 201 i , a DC bus voltage current value acquisition unit 204 i , a target current correction unit 301 i , and a constant current control unit 302 i as shown in FIG. Yes.
  • Target current correcting unit 301 i the string 60 the target current value I i at i, corrected as shown by the following formula 10 based on the DC bus reference voltage, and the DC bus voltage current value, the corrected target current value I i 'calculate.
  • k2 is an arbitrary fixed value.
  • the constant current control unit 302 controls the DC bus voltage by flowing a current based on the corrected target current value I i ′.
  • FIG. 11 is a flowchart showing a flow of operation of the DC / DC converter according to Embodiment 2 of the present invention.
  • the operation of charge / discharge controller 100 is the same as that of the first embodiment.
  • the target current acquisition unit 201 i acquires the target current value I i notified from the charge / discharge controller 100 (step S201).
  • the DC bus voltage current value acquisition unit 204 acquires a DC bus voltage current value that is a current voltage value of the DC bus 50 (step S202).
  • Target current correcting unit 301 i is a target current value I i of the string 60 i, DC bus reference voltage, and DC based bus voltage on the current value is corrected as described above, the corrected target current value I i 'is calculated (Step S301).
  • the constant current control unit 302 i controls the DC bus voltage by flowing a current based on the corrected target current value I i ′ (step S302).
  • FIG. 12 is a block diagram showing configurations of the charge / discharge controller and the DC / DC converter according to Embodiment 3 of the present invention.
  • symbol is attached
  • the function of the charge / discharge control device is realized by the charge / discharge controller 100 and the plurality of DC / DC converters 400 1 , 400 2 ,... 400 n .
  • the charge / discharge controller 100 is the same as that of the first embodiment shown in FIG. In FIG. 12, for simplicity of explanation, it is shown only for the DC / DC converter 400 i of the plurality of DC / DC converter 400 1, 400 2, ... 400 n. “I” is an arbitrary natural number from 1 to n.
  • the DC / DC converter 400 i includes a target current acquisition unit 401 i , a DC bus voltage target value calculation unit 202 i , a DC bus voltage control unit 203 i , and a DC bus voltage current value acquisition unit 204 i. , A current limit value calculation unit 402 i , and a battery remaining capacity acquisition unit 403 i .
  • the target current acquisition unit 401 i acquires the target current value I i notified from the charge / discharge controller 100. Further, the target current acquisition unit 401 i notifies the current limit value calculation unit 402 i and the battery remaining capacity acquisition unit 403 i when the target current value I i cannot be acquired.
  • the battery remaining capacity acquisition unit 403 i acquires the battery remaining capacity (SOC: State of Charge) of the batteries (battery packs 32 i , 33 i ,... 34 i ) included in the DC / DC converter 400 i , and the current limit value Notify the calculation unit 402 i .
  • SOC State of Charge
  • the current limit value calculation unit 402 i uses the current limit value Il i at the time of charging / discharging in the string 60 i as the first embodiment based on the target current value I i , the DC bus reference voltage value, and the DC bus voltage current value. Calculate in the same way. Further, when the target current value I i cannot be acquired, the current limit value calculation unit 402 i uses a preset target battery remaining capacity value and a remaining battery capacity acquisition unit 403 i as shown in FIG. A current limit value Il i ′ is calculated from the acquired current remaining battery capacity.
  • FIG. 14 is a flowchart showing a flow of operation of the DC / DC converter according to Embodiment 3 of the present invention.
  • the target current acquisition unit 201 i acquires the target current value I i notified from the charge / discharge controller 100 (step S201).
  • the DC bus voltage current value acquisition unit 204 i acquires a DC bus voltage current value that is a current voltage value of the DC bus 50 (step S202).
  • the target current acquisition unit 201 i determines whether or not the target current value I i has been acquired (step S401).
  • the DC bus voltage target value calculation unit 202 i is configured to charge the DC bus voltage at the time of charging / discharging in the string 60 i as in the embodiment.
  • the target value V i is calculated as described above based on the DC bus reference voltage value and the target current value I i (step S203).
  • the current limit value calculation unit 205 i calculates the current limit value Il i during charging / discharging in the string 60 i based on the target current value I i , the DC bus reference voltage value, and the DC bus voltage current value as described above.
  • the DC bus voltage control unit 203 i controls the DC bus voltage at the time of charging / discharging in the string 60 i based on the DC bus voltage target value V i , the DC bus voltage current value, and the current limit value Il i (step S205). ). It is determined whether or not the fixed period C has elapsed (step S206).
  • step S206 If the predetermined constant period C has not elapsed (No in step S206), the determination is repeated until the predetermined constant period C has elapsed.
  • the process returns to the target current value I i acquisition process (step S201).
  • the current limit value calculation unit 402 i uses the preset target value of the battery remaining capacity and the battery remaining capacity acquisition unit 403 i .
  • a current limit value Il i ′ is calculated from the acquired current remaining battery capacity. For example, if the current battery remaining capacity is greater than the target value of the battery remaining capacity, the battery remaining capacity acquisition unit 403 i increases the current limit value Il i that has already been calculated, and the current battery remaining capacity is If less than the target value, and calculates the current limit value Il i 'to decrease the current limit value Il i (step S402).
  • the DC bus voltage control unit 203 i controls the DC bus voltage during charging / discharging in the string 60 i based on the DC bus reference voltage value, the DC bus voltage current value, and the current limit value Il i ′ (step S403). .
  • it is determined whether or not the fixed period C has passed step S206. If the predetermined constant period C has not elapsed (No in step S206), the determination is repeated until the predetermined constant period C has elapsed. When the predetermined fixed period C has elapsed (Yes in step S206), the process returns to the target current value I i acquisition process (step S201).
  • the current limit value can be changed even when the target current cannot be acquired. Therefore, charge / discharge of a plurality of storage batteries can be efficiently controlled using the DC bus reference voltage value and the current limit value.
  • the DC bus voltage is controlled using the DC bus voltage target value and the current limit value.
  • the present invention is not limited to this. Absent.
  • the DC bus voltage may be controlled using only the current limit value calculated from the target value of the battery remaining capacity and the current battery remaining capacity and the DC bus reference voltage value without using the DC bus voltage target value. I do not care. Thereby, charging / discharging of a some storage battery can be controlled efficiently easily.
  • FIG. 15 is a block diagram showing configurations of the charge / discharge controller and the DC / DC converter according to Embodiment 4 of the present invention.
  • symbol is attached
  • the function of the charge / discharge control device is realized by the charge / discharge controller 100 and the DC / DC converters 500 1 , 500 2 ,... 500 n .
  • the charge / discharge controller 100 is the same as that of the first embodiment shown in FIG. In FIG. 15, for simplicity of explanation, it is shown only for the DC / DC converter 500 i of the plurality of DC / DC converter 500 1, 500 2, ... 500 n. “I” is an arbitrary natural number from 1 to n.
  • the DC / DC converter 500 i includes a target current acquisition unit 201 i , a DC bus voltage target value calculation unit 202 i , a DC bus voltage current value acquisition unit 204 i , and a current limit value calculation unit 205 i. , A direction switching determination unit 501 i and a DC bus voltage control unit 502 i .
  • Direction switching determination unit 501 i when the DC bus voltage current value acquired by the DC bus voltage current value acquiring unit 204 i has exceeded the preset charge switching target value as shown in FIG. 16, from the discharge Instructs the DC bus voltage controller 203 i to switch to the charging direction.
  • the direction switching determination unit 501 i switches from charging to discharging direction when the DC bus voltage current value acquired by the DC bus voltage current value acquiring unit 204 i falls below a preset discharge switching target value.
  • To the DC bus voltage control unit 203 i To the DC bus voltage control unit 203 i .
  • the charge switching target value and the discharge switching target value are calculated as shown in the following equations 11-12.
  • the DC bus voltage control unit 502 i controls the DC bus voltage by flowing a current proportional to the deviation between the DC bus voltage target value V i and the current DC bus voltage value. Further, the DC bus voltage control unit 502 i switches the direction of the flowing current when instructed by the direction switching determination unit 501 i to switch from discharging to charging or from charging to discharging.
  • each embodiment demonstrates using the schematic structure of the charging / discharging control apparatus and electrical storage system shown in FIG. 4, and although the string 60 is set as the structure which connects a some battery pack in series, it is restricted to this. It is not a thing.
  • a configuration may be adopted in which a plurality of battery packs are connected in series as in a string 70 shown in FIG. 17 and connected in parallel, or a configuration in which a plurality of battery packs are connected in parallel as in a string 80 may be adopted. Absent.
  • the present invention can efficiently control charge / discharge of a plurality of storage batteries, and is useful for use in a charge / discharge control device, a power storage system, and the like.

Abstract

Provided is a charging/discharging control apparatus that can efficiently control charging/discharging of a plurality of storage batteries. The charging/discharging control apparatus is provided with a charging/discharging controller (100) and a DC-DC converter (200i). The charging/discharging controller (100) is provided with an overall current calculation unit (103) that calculates the overall current value from a DC bus reference voltage value and the overall power value, and a target current calculation unit (104) that calculates target current values for each of a plurality of strings (60i) from the overall current value, in accordance with the ratio of charging and the ratio of discharging. The DC-DC converter (200i) is provided with a DC bus voltage target-value calculation unit (202i) that calculates a DC bus voltage target-value from the target current values and the DC bus reference voltage value, a current limit value calculation unit (205i) that calculates a current limit value from the target current values, etc., and a DC bus voltage control unit (203i) that controls the DC bus voltage using the DC bus voltage target-value.

Description

充放電制御装置、蓄電システム、および充放電制御方法Charge / discharge control device, power storage system, and charge / discharge control method
 本発明は、複数の蓄電池の充放電を制御する充放電制御装置に関する。 The present invention relates to a charge / discharge control device for controlling charge / discharge of a plurality of storage batteries.
 近年、一般家庭、オフィスビル、または、工場などの建物に蓄電池ユニットを設け、蓄電池ユニットに充電された電力を電気機器に供給する蓄電システムが検討されている。このシステムでは、例えば、電力系統から供給される余剰電力、または、太陽光などの自然エネルギーを利用した発電システムで生成された電力などが蓄電池ユニットに充電される。 In recent years, a storage system in which a storage battery unit is provided in a building such as a general household, an office building, or a factory and the electric power charged in the storage battery unit is supplied to an electric device has been studied. In this system, for example, surplus power supplied from the power system or power generated by a power generation system using natural energy such as sunlight is charged in the storage battery unit.
 このような蓄電システムにおいて、複数の蓄電池ユニットを設け、それぞれの蓄電池ユニットの劣化度や故障を診断し、この診断結果を基にして電流制御素子を用いて各蓄電池ユニットの充放電電流を制御する技術が提案されている(例えば、特許文献1参照)。 In such a power storage system, a plurality of storage battery units are provided, the degree of deterioration or failure of each storage battery unit is diagnosed, and the charge / discharge current of each storage battery unit is controlled using a current control element based on the diagnosis result. A technique has been proposed (see, for example, Patent Document 1).
国際公開第2011/132311号International Publication No. 2011-13211
 しかしながら、従来の技術では、蓄電池ユニットごとで充放電の制御が行われており、複数の蓄電池ユニット全体では充放電を効率よく制御することができないという課題がある。 However, in the conventional technology, charge / discharge control is performed for each storage battery unit, and there is a problem that charge / discharge cannot be controlled efficiently for the plurality of storage battery units as a whole.
 そこで、本発明は上記の事情に鑑みてなされたものであり、複数の蓄電池の充放電を効率よく制御することができる充放電制御装置を提供することを目的とする。 Therefore, the present invention has been made in view of the above circumstances, and an object thereof is to provide a charge / discharge control apparatus capable of efficiently controlling charge / discharge of a plurality of storage batteries.
 上記目的を達成するため、本発明の一態様に係る充放電制御装置は、DCバスに接続される複数の蓄電池の充放電を制御する充放電制御装置であって、前記複数の蓄電池のそれぞれの制御目標値を、当該蓄電池への充電の分配割合を示す充電割合または当該蓄電池からの放電の分配割合を示す放電割合に基づいて適時変更する目標値変更部と、前記複数の蓄電池のそれぞれの充放電を、適時変更された前記制御目標値に基づいて制御する制御部とを備える。 In order to achieve the above object, a charge / discharge control device according to one aspect of the present invention is a charge / discharge control device that controls charge / discharge of a plurality of storage batteries connected to a DC bus, and each of the plurality of storage batteries. A target value changing unit that changes the control target value in a timely manner based on a charge ratio indicating a distribution ratio of charge to the storage battery or a discharge ratio indicating a distribution ratio of discharge from the storage battery, and a charge of each of the plurality of storage batteries And a control unit that controls the discharge based on the control target value changed in a timely manner.
 本発明によれば、各蓄電池における充放電を、適切に分配することができるので、複数の蓄電池の充放電を効率よく制御することができる。また、複数の蓄電池の充放電を効率よく制御することで、電力ロスを抑制することもできる。 According to the present invention, since charging / discharging in each storage battery can be appropriately distributed, charging / discharging of a plurality of storage batteries can be controlled efficiently. Moreover, electric power loss can also be suppressed by controlling charging / discharging of a some storage battery efficiently.
図1の(a)は、従来の蓄電システムの構成の一例における放電時を示す概略図であり、図1の(b)は、放電されるときのDCバス電圧の変化の一例を示す図である。FIG. 1A is a schematic diagram illustrating a discharge in an example of a configuration of a conventional power storage system, and FIG. 1B is a diagram illustrating an example of a change in a DC bus voltage when discharged. is there. 図2の(a)は、従来の蓄電システムの構成の一例における充電時を示す概略図であり、図2の(b)は、充電されるときのDCバス電圧の変化の一例を示す図である。FIG. 2A is a schematic diagram illustrating charging in an example of a configuration of a conventional power storage system, and FIG. 2B is a diagram illustrating an example of a change in DC bus voltage when charging. is there. 図3は、従来の蓄電システムにおける問題点を説明する概略図である。FIG. 3 is a schematic diagram illustrating a problem in the conventional power storage system. 図4は、本発明の実施の形態1における充放電制御装置および蓄電システムの概略構成を示すブロック図である。FIG. 4 is a block diagram showing a schematic configuration of the charge / discharge control device and the power storage system according to Embodiment 1 of the present invention. 図5は、本発明の実施の形態1における充放電コントローラおよびDC/DCコンバータの構成を示すブロック図である。FIG. 5 is a block diagram showing the configuration of the charge / discharge controller and the DC / DC converter according to Embodiment 1 of the present invention. 図6は、本発明の実施の形態1におけるDCバス電圧制御部の詳細な構成を示すブロック図である。FIG. 6 is a block diagram illustrating a detailed configuration of the DC bus voltage control unit according to the first embodiment of the present invention. 図7は、本発明の実施の形態1における充放電コントローラの動作の流れを示すフローチャートである。FIG. 7 is a flowchart showing a flow of operations of the charge / discharge controller according to Embodiment 1 of the present invention. 図8は、本発明の実施の形態1におけるDC/DCコンバータの動作の流れを示すフローチャートである。FIG. 8 is a flowchart showing a flow of operation of the DC / DC converter according to Embodiment 1 of the present invention. 図9は、ストリングごとに取得された目標電流値およびDCバス電圧現在値と、算出されたDCバス電圧目標値および電流リミット値との一例を示す図である。FIG. 9 is a diagram illustrating an example of the target current value and DC bus voltage current value acquired for each string, and the calculated DC bus voltage target value and current limit value. 図10は、本発明の実施の形態2における充放電コントローラおよびDC/DCコンバータの構成を示すブロック図である。FIG. 10 is a block diagram showing configurations of the charge / discharge controller and the DC / DC converter according to Embodiment 2 of the present invention. 図11は、本発明の実施の形態2におけるDC/DCコンバータの動作の流れを示すフローチャートである。FIG. 11 is a flowchart showing a flow of operation of the DC / DC converter according to Embodiment 2 of the present invention. 図12は、本発明の実施の形態3における充放電コントローラおよびDC/DCコンバータの構成を示すブロック図である。FIG. 12 is a block diagram showing configurations of the charge / discharge controller and the DC / DC converter according to Embodiment 3 of the present invention. 図13は、本発明の実施の形態3における電池残存容量の目標値と現在の電池残存容量との関係の一例を示す図である。FIG. 13 is a diagram showing an example of the relationship between the target value of the battery remaining capacity and the current battery remaining capacity in the third embodiment of the present invention. 図14は、本発明の実施の形態3におけるDC/DCコンバータの動作の流れを示すフローチャートである。FIG. 14 is a flowchart showing a flow of operation of the DC / DC converter according to Embodiment 3 of the present invention. 図15は、本発明の実施の形態4における充放電コントローラおよびDC/DCコンバータの構成を示すブロック図である。FIG. 15 is a block diagram showing configurations of the charge / discharge controller and the DC / DC converter according to Embodiment 4 of the present invention. 図16は、充電切替目標値、放電切替目標値、およびDCバス基準電圧値との関係の一例を示す図である。FIG. 16 is a diagram illustrating an example of a relationship between a charge switching target value, a discharge switching target value, and a DC bus reference voltage value. 図17は、ストリングの構成の一例を示す概略図である。FIG. 17 is a schematic diagram illustrating an example of the configuration of a string.
 (本発明の基礎となった知見)
 本発明者は、「背景技術」の欄において記載した蓄電システムに関し、以下の問題が生じることを見出した。
(Knowledge that became the basis of the present invention)
The present inventor has found that the following problems occur with respect to the power storage system described in the “Background Art” column.
 図1の(a)は、従来の蓄電システムの構成の一例における放電時を示す概略図であり、図1の(b)は放電されるときのDCバス電圧の変化の一例を示す図である。図2の(a)は、従来の蓄電システムの構成の一例における充電時を示す概略図であり、図2の(b)は充電されるときのDCバス電圧の変化の一例を示す図である。 FIG. 1A is a schematic diagram showing a discharge in an example of a configuration of a conventional power storage system, and FIG. 1B is a diagram showing an example of a change in a DC bus voltage when discharged. . FIG. 2A is a schematic diagram illustrating charging in an example of a configuration of a conventional power storage system, and FIG. 2B is a diagram illustrating an example of a change in DC bus voltage when being charged. .
 従来、複数の蓄電池ユニットを備えた蓄電システムは、例えば図1の(a)に示すように太陽電池等のPV10、DC/DCコンバータ(DC/DC)20、複数の蓄電池ユニット(ストリング)30、30、…30、DC/ACコンバータ(DC/AC)40、およびDCバス50を備えている。また、各蓄電池ユニット(ストリング)30は、DC/DCコンバータ(DC/DC)31と複数の電池パック32、33、…34とを備えている。 Conventionally, a storage system including a plurality of storage battery units includes, for example, a PV 10 such as a solar battery, a DC / DC converter (DC / DC) 20, and a plurality of storage battery units (strings) 30 1 as shown in FIG. , 30 2 ,... 30 n , a DC / AC converter (DC / AC) 40, and a DC bus 50. Each battery unit (strings) 30 n is provided with a DC / DC converter (DC / DC) 31 n and a plurality of battery packs 32 n, 33 n, and a ... 34 n.
 このように構成された蓄電システムでは、例えば、電力系統から供給される余剰電力またはPVで生成された電力などがストリング30に充電され、電力で動作する機器(負荷)に電力を供給するためにストリング30から放電される。すなわち、DC/ACコンバータ40から負荷側に出力する電力PaがPV10からDC/DCコンバータ20側に入力される電力Pbより大きいときにストリング30から放電され、電力Paが電力Pbより小さいときにストリング30へ充電される。 In the power storage system configured as described above, for example, surplus power supplied from the power system or power generated by PV is charged in the string 30 to supply power to a device (load) that operates on power. The string 30 is discharged. That is, the string 30 is discharged when the electric power Pa output from the DC / AC converter 40 to the load side is larger than the electric power Pb input from the PV 10 to the DC / DC converter 20 side, and the electric power Pa is smaller than the electric power Pb. 30 is charged.
 各ストリング30のDC/DCコンバータ31は、DCバス電圧センサ(図示せず)を備えており、それぞれがDCバス電圧を検出している。そして、各DC/DCコンバータ31は、検出したDCバス電圧があらかじめ設定されているDCバス基準電圧値(図1及び2での目標値)になるようにストリング30の充放電を制御している。ここで、Pa>Pbのとき、図1の(b)に示すようにDCバス電圧が下がるため、DC/DCコンバータ31はDCバス基準電圧値に近づけるように制御し、図1の(a)に示すように放電することになる。一方、Pa<Pbのとき、図2の(b)に示すようにDCバス電圧が上がるため、DC/DCコンバータ31はDCバス基準電圧値に近づけるように制御し、図2の(a)に示すように充電することになる。 The DC / DC converter 31 of each string 30 includes a DC bus voltage sensor (not shown), and each detects a DC bus voltage. Each DC / DC converter 31 controls charging / discharging of the string 30 so that the detected DC bus voltage becomes a preset DC bus reference voltage value (target value in FIGS. 1 and 2). . Here, when Pa> Pb, the DC bus voltage decreases as shown in FIG. 1B, so the DC / DC converter 31 is controlled so as to approach the DC bus reference voltage value, and FIG. As shown in FIG. On the other hand, when Pa <Pb, the DC bus voltage rises as shown in FIG. 2B, so that the DC / DC converter 31 is controlled so as to approach the DC bus reference voltage value, as shown in FIG. You will charge as shown.
 しかしながら、Pa>PbからPa<Pbに切り替わる際、またはPa<PbからPa>Pbに切り替わる際などのPaとPbとの差が小さいときに、DCバス電圧センサの検出誤差等によって、各ストリング30で検出されるDCバス電圧がばらつき、図3に示すように各ストリング30の中で放電するストリングと充電するストリングとが混在するという問題が生じる。このように、各ストリング30の充放電方向がバラバラになると、単にストリング30間で移動するだけの電力が生じ、電力ロスが大きくなったり、電池寿命が低下したりするという問題がある。 However, when the difference between Pa and Pb is small, such as when switching from Pa> Pb to Pa <Pb, or when switching from Pa <Pb to Pa> Pb, etc., each string 30 As shown in FIG. 3, there is a problem in that the string to be discharged and the string to be charged are mixed in each string 30 as shown in FIG. As described above, when the charge / discharge directions of the strings 30 are different, there is a problem that electric power that is simply moved between the strings 30 is generated, resulting in a large power loss and a decrease in battery life.
 また、各ストリング30において、DC/DCコンバータ31がそれぞれ充放電の制御を行っているので、例えば電池パックの状態に応じて、ストリング間の放電量および充電量を変えることができないという問題がある。例えば、劣化の大きい電池を有するストリングの放電量を、その他のストリングに対して小さくすることができない。 In addition, since the DC / DC converter 31 controls charging / discharging in each string 30, there is a problem that the amount of discharge and the amount of charge between the strings cannot be changed according to the state of the battery pack, for example. . For example, the discharge amount of a string having a battery with large deterioration cannot be made smaller than that of other strings.
 このような問題を解決するために、本発明の一態様に係る充放電制御装置は、DCバスに接続される複数の蓄電池の充放電を制御する充放電制御装置であって、前記複数の蓄電池のそれぞれの制御目標値を、当該蓄電池への充電の分配割合を示す充電割合または当該蓄電池からの放電の分配割合を示す放電割合に基づいて適時変更する目標値変更部と、前記複数の蓄電池のそれぞれの充放電を、適時変更された前記制御目標値に基づいて制御する制御部とを備える。 In order to solve such a problem, a charge / discharge control device according to an aspect of the present invention is a charge / discharge control device that controls charge / discharge of a plurality of storage batteries connected to a DC bus, and the plurality of storage batteries A target value changing unit that changes the control target values of the plurality of storage batteries in a timely manner based on a charge ratio indicating a distribution ratio of charge to the storage battery or a discharge ratio indicating a distribution ratio of discharge from the storage battery, And a control unit that controls each charge / discharge based on the control target value changed in a timely manner.
 これにより、各蓄電池における充放電を分配割合に応じて、各蓄電池に適切に分配するように制御することができるので、複数の蓄電池の充放電を効率よく制御することができる。また、複数の蓄電池の充放電を効率よく制御することで、電力ロスを抑制することもできる。さらに、例えば分配割合を変えることで各蓄電池の状態についても反映させて充放電を制御することもできる。 Thereby, since charging / discharging in each storage battery can be controlled to be appropriately distributed to each storage battery according to the distribution ratio, charging / discharging of a plurality of storage batteries can be controlled efficiently. Moreover, electric power loss can also be suppressed by controlling charging / discharging of a some storage battery efficiently. Furthermore, for example, by changing the distribution ratio, the state of each storage battery can be reflected and the charge / discharge can be controlled.
 また、前記目標値変更部は、DCバスに入力される入力電力値およびDCバスから出力される出力電力値を取得する電力取得部と、必要とされる全体電力値を前記入力電力値および前記出力電力値に基づいて算出する全体電力算出部と、全体電流値をあらかじめ設定されるDCバス基準電圧値および前記全体電力値に基づいて算出する全体電流算出部と、前記複数の蓄電池のそれぞれの充放電時の目標電流値を、前記全体電流値から当該蓄電池の前記充電割合または前記放電割合に基づいて算出する目標電流算出部と、前記制御目標値を前記目標電流値に基づいて適時変更する変更部とを備えてもよい。 In addition, the target value changing unit includes a power acquisition unit that acquires an input power value input to the DC bus and an output power value output from the DC bus, and a required overall power value as the input power value and the An overall power calculation unit for calculating based on the output power value; an overall current calculation unit for calculating an overall current value based on a preset DC bus reference voltage value and the overall power value; and a plurality of storage batteries. A target current calculation unit that calculates a target current value at the time of charging / discharging based on the charging rate or the discharging rate of the storage battery from the total current value, and changes the control target value in a timely manner based on the target current value. You may provide a change part.
 また、前記制御目標値は、前記複数の蓄電池のそれぞれにおける充放電時の電流リミット値であり、前記充放電制御装置は、さらに、DCバスの現在の電圧値であるDCバス電圧現在値を取得するDCバス電圧現在値取得部を備え、前記目標値変更部は、さらに、前記複数の蓄電池のそれぞれにおける電流リミット値を、前記DCバス基準電圧値、前記目標電流値、および前記DCバス電圧現在値に基づいて算出し、算出した前記電流リミット値で現在の電流リミット値を変更する電流リミット値算出部を備え、前記制御部は、適時変更された前記電流リミット値を用いて前記複数の蓄電池のそれぞれにおける充放電を制御してもよい。 Further, the control target value is a current limit value at the time of charging / discharging in each of the plurality of storage batteries, and the charge / discharge control device further acquires a current value of the DC bus voltage that is a current voltage value of the DC bus. A current value acquisition unit for DC bus voltage, and the target value changing unit further determines a current limit value for each of the plurality of storage batteries as the DC bus reference voltage value, the target current value, and the DC bus voltage current value. A current limit value calculation unit that calculates a current limit value based on the calculated current limit value, and the control unit uses the current limit value that is changed in a timely manner. You may control charging / discharging in each of these.
 また、前記電流リミット値算出部は、前記電流リミット値として前記複数の蓄電池のそれぞれにおける充電用電流リミット値および放電用電流リミット値を算出し、前記制御部は、前記充電用電流リミット値以上前記放電用電流リミット値以下の範囲で前記複数の蓄電池のそれぞれにおける充放電を制御してもよい。 Further, the current limit value calculating unit calculates a charging current limit value and a discharging current limit value in each of the plurality of storage batteries as the current limit value, and the control unit is equal to or more than the charging current limit value. You may control charging / discharging in each of these storage batteries in the range below the electric current limit value for discharge.
 また、前記制御目標値は、前記複数の蓄電池のそれぞれにおける充放電時のDCバス電圧目標値であり、前記目標値変更部は、さらに、前記複数の蓄電池のそれぞれにおける充放電時のDCバス電圧目標値を、前記DCバス基準電圧値および前記目標電流値に基づいて算出し、算出した前記DCバス電圧目標値で現在のDCバス電圧目標値を変更するDCバス電圧目標値算出部を備え、前記制御部は、前記複数の蓄電池のそれぞれにおける充放電時のDCバス電圧を、適時変更された前記DCバス電圧目標値に基づいて制御することにより、前記複数の蓄電池のそれぞれにおける充放電を制御してもよい。 Further, the control target value is a DC bus voltage target value at the time of charging / discharging in each of the plurality of storage batteries, and the target value changing unit further includes a DC bus voltage at the time of charging / discharging in each of the plurality of storage batteries. A target value is calculated based on the DC bus reference voltage value and the target current value, and includes a DC bus voltage target value calculation unit that changes a current DC bus voltage target value with the calculated DC bus voltage target value, The control unit controls charging / discharging in each of the plurality of storage batteries by controlling the DC bus voltage at the time of charging / discharging in each of the plurality of storage batteries based on the DC bus voltage target value changed in a timely manner. May be.
 また、前記充放電制御装置は、さらに、DCバスの現在の電圧値であるDCバス電圧現在値を取得するDCバス電圧現在値取得部を備え、前記制御部は、放電時に前記DCバス電圧現在値があらかじめ設定された充電切替目標値以上になった場合に、放電から充電に切り替え、充電時に前記DCバス電圧現在値があらかじめ設定された放電切替目標値以下になった場合に、充電から放電に切り替るように前記複数の蓄電池のそれぞれにおける充放電を制御してもよい。 The charge / discharge control device further includes a DC bus voltage current value acquisition unit that acquires a current value of the DC bus voltage that is a current voltage value of the DC bus, and the control unit includes the current value of the DC bus voltage during discharging. When the value is equal to or higher than a preset charge switching target value, switching from discharging to charging is performed. When the DC bus voltage current value is less than or equal to a preset discharge switching target value during charging, charging to discharging is performed. The charging / discharging in each of the plurality of storage batteries may be controlled so as to switch to
 また、前記制御目標値は、前記複数の蓄電池のそれぞれにおける充放電時の前記目標電流値であり、前記目標値変更部は、さらに、DCバスの現在の電圧値であるDCバス電圧現在値を取得するDCバス電圧現在値取得部と、前記目標電流値を、前記DCバス基準電圧値および前記DCバス電圧現在値に基づいて補正する目標電流補正部とを備え、前記制御部は、補正された前記目標電流値を用いて前記複数の蓄電池のそれぞれにおける充放電を制御してもよい。 Further, the control target value is the target current value at the time of charging / discharging in each of the plurality of storage batteries, and the target value changing unit further calculates a DC bus voltage current value that is a current voltage value of the DC bus. A DC bus voltage current value acquisition unit to acquire; and a target current correction unit that corrects the target current value based on the DC bus reference voltage value and the DC bus voltage current value, and the control unit is corrected. The charging / discharging in each of the plurality of storage batteries may be controlled using the target current value.
 また、前記制御目標値は、前記複数の蓄電池のそれぞれにおける充放電時の電流リミット値であり、前記目標値変更部は、前記複数の蓄電池のそれぞれの現在の電池残存容量を取得する残存容量取得部と、取得された前記電池残存容量およびあらかじめ設定される電池残存容量の目標値に基づいて前記電流リミット値を算出し、算出した前記電流リミット値で現在の電流リミット値を変更する電流リミット値算出部とを備え、前記制御部は、適時変更された前記電流リミット値を用いて前記複数の蓄電池のそれぞれにおける充放電を制御してもよい。 Further, the control target value is a current limit value at the time of charging / discharging in each of the plurality of storage batteries, and the target value changing unit acquires a remaining battery capacity of each of the plurality of storage batteries. Current limit value is calculated based on the obtained battery remaining capacity and a preset target battery remaining capacity value, and the current limit value is changed by the calculated current limit value. A calculation unit, and the control unit may control charging / discharging of each of the plurality of storage batteries using the current limit value changed in a timely manner.
 また、前記制御部は、前記複数の蓄電池のそれぞれに備えられ、当該蓄電池における充放電を前記制御目標値に基づいて制御してもよい。 The control unit may be provided in each of the plurality of storage batteries, and may control charging / discharging in the storage battery based on the control target value.
 また、本発明の一態様に係る充放電制御装置は、DCバスに接続される複数の蓄電池の充放電を制御する充放電制御装置であって、前記複数の蓄電池のそれぞれの制御目標値を、当該蓄電池への充電の分配割合を示す充電割合または当該蓄電池からの放電の分配割合を示す放電割合に基づいて適時変更する目標値変更部と、前記複数の蓄電池のそれぞれの充放電を、適時変更された前記制御目標値に基づいて制御する制御部とを備え、前記制御目標値は、前記複数の蓄電池のそれぞれにおける充放電時のDCバス電圧目標値であり、前記目標値変更部は、さらに、前記複数の蓄電池のそれぞれにおける充放電時のDCバス電圧目標値を、前記DCバス基準電圧値および前記目標電流値に基づいて算出し、算出した前記DCバス電圧目標値で現在のDCバス電圧目標値を変更するDCバス電圧目標値算出部を備え、前記制御部は、前記複数の蓄電池のそれぞれにおける充放電時のDCバス電圧を、適時変更された前記DCバス電圧目標値に基づいて制御することにより、前記複数の蓄電池のそれぞれにおける充放電を制御するとしてもよい。 Moreover, the charge / discharge control device according to one aspect of the present invention is a charge / discharge control device that controls charging / discharging of a plurality of storage batteries connected to a DC bus, and each control target value of the plurality of storage batteries is determined by: A target value changing unit that changes timely based on a charge rate that indicates a distribution rate of charge to the storage battery or a discharge rate that indicates a distribution rate of discharge from the storage battery, and each charge and discharge of the plurality of storage batteries is changed timely The control target value is a DC bus voltage target value at the time of charging / discharging in each of the plurality of storage batteries, and the target value changing unit further includes: The DC bus voltage target value at the time of charging / discharging in each of the plurality of storage batteries is calculated based on the DC bus reference voltage value and the target current value, and the calculated DC bus voltage target value is A DC bus voltage target value calculation unit that changes a current DC bus voltage target value, and the control unit changes the DC bus voltage at the time of charging and discharging in each of the plurality of storage batteries to the DC bus voltage target that is changed in a timely manner. By controlling based on the value, charging / discharging in each of the plurality of storage batteries may be controlled.
 なお、これらの全般的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたは記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。 These general or specific aspects may be realized by a system, a method, an integrated circuit, a computer program, or a recording medium, and are realized by any combination of the system, method, integrated circuit, computer program, and recording medium. May be.
 以下、本発明の一態様に係る充放電制御装置および蓄電システムについて、図面を参照しながら具体的に説明する。 Hereinafter, a charge / discharge control device and a power storage system according to one embodiment of the present invention will be specifically described with reference to the drawings.
 なお、以下で説明する実施の形態は、いずれも本発明の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Note that each of the embodiments described below shows a specific example of the present invention. The numerical values, shapes, materials, constituent elements, arrangement positions and connecting forms of the constituent elements, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. In addition, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept are described as optional constituent elements.
 (実施の形態1)
 図4は、本発明の実施の形態1における充放電制御装置および蓄電システムの概略構成を示すブロック図である。
(Embodiment 1)
FIG. 4 is a block diagram showing a schematic configuration of the charge / discharge control device and the power storage system according to Embodiment 1 of the present invention.
 複数の蓄電池ユニットを備えた蓄電システムは、図4に示すようにPV10、DC/DCコンバータ(DC/DC)20、複数の蓄電池ユニット(ストリング)60、60、…60、DC/ACコンバータ(DC/AC)40、DCバス50、および充放電コントローラ100を備えている。また、各ストリング60は、DC/DCコンバータ(DC/DC)200と複数の電池パック32、33、…34とを備えている。 As shown in FIG. 4, the power storage system including a plurality of storage battery units includes a PV 10, a DC / DC converter (DC / DC) 20, a plurality of storage battery units (strings) 60 1 , 60 2 ,... 60 n , DC / AC A converter (DC / AC) 40, a DC bus 50, and a charge / discharge controller 100 are provided. Each string 60 n includes a DC / DC converter (DC / DC) 200 n and a plurality of battery packs 32 n , 33 n ,... 34 n .
 PV10は、例えば太陽光エネルギーを直接的に電気エネルギーに変換することで発電する太陽電池等である。DC/DCコンバータ20は、PV10から供給される直流電力の電圧を所定の電圧に変換してDCバス50に出力する。DC/ACコンバータ40は、DCバス50から供給される直流電力を交流電力に変換し、負荷側に交流電力を出力する。なお、本実施の形態1では、充放電制御装置の機能は、充放電コントローラ100および複数のDC/DCコンバータ200、200、…200によって実現されている。 The PV 10 is, for example, a solar cell that generates power by directly converting solar energy into electric energy. The DC / DC converter 20 converts the DC power voltage supplied from the PV 10 into a predetermined voltage and outputs the voltage to the DC bus 50. The DC / AC converter 40 converts the DC power supplied from the DC bus 50 into AC power and outputs the AC power to the load side. In the first embodiment, the function of the charge / discharge control device is realized by the charge / discharge controller 100 and a plurality of DC / DC converters 200 1 , 200 2 ,... 200 n .
 図5は、本発明の実施の形態1における充放電コントローラおよびDC/DCコンバータの構成を示すブロック図である。なお、図5では、説明の簡単のため、複数のDC/DCコンバータ200、200、…200のうちのDC/DCコンバータ200のみについて図示している。なお、「i」は、1~nの任意の自然数である。 FIG. 5 is a block diagram showing the configuration of the charge / discharge controller and the DC / DC converter according to Embodiment 1 of the present invention. In FIG. 5, for simplicity of explanation, it is shown only for the DC / DC converter 200 i of the plurality of DC / DC converter 200 1, 200 2, ... 200 n. “I” is an arbitrary natural number from 1 to n.
 充放電コントローラ100は、図5に示すように電力取得部101、全体電力算出部102、全体電流算出部103、目標電流算出部104、目標電流設定部105、電池情報取得部106、電池状態算出部107、および割合決定部108を備えている。 As shown in FIG. 5, the charge / discharge controller 100 includes a power acquisition unit 101, an overall power calculation unit 102, an overall current calculation unit 103, a target current calculation unit 104, a target current setting unit 105, a battery information acquisition unit 106, and a battery state calculation. Unit 107 and ratio determining unit 108.
 電力取得部101は、DC/DCコンバータ20からDCバス50に入力される電力値Pb、およびDCバスからDC/ACコンバータ40へ出力される電力値Paを取得する。全体電力算出部102は、全体で必要とされる全体電力値Psを下記式1で示すように電力値Paから電力値Pbを減算することで算出する。 The power acquisition unit 101 acquires the power value Pb input from the DC / DC converter 20 to the DC bus 50 and the power value Pa output from the DC bus to the DC / AC converter 40. The overall power calculation unit 102 calculates the overall power value Ps required as a whole by subtracting the power value Pb from the power value Pa as shown in the following equation 1.
 全体電力値Ps=電力値Pa-電力値Pb …(式1) Total power value Ps = Power value Pa−Power value Pb (Equation 1)
 全体電流算出部103は、ストリング全体電流値(全体電流値)Iを、あらかじめ設定されるDCバス基準電圧値(例えば、500V)および全体電力値Psに基づいて、下記式2で示すように算出する。 The total current calculation unit 103 calculates the string total current value (total current value) I based on a preset DC bus reference voltage value (for example, 500 V) and the total power value Ps as shown in the following Expression 2. To do.
 全体電流値I=全体電力値Ps/DCバス基準電圧値 …(式2) Total current value I = Total power value Ps / DC bus reference voltage value (Equation 2)
 電池情報取得部106は、ストリング60の電池パック32、33、…34の例えば電池電圧値、電流値等の電池情報を取得する。電池状態算出部107は、ストリング60の電池の劣化度および電池残存容量を、電池情報取得部106によって取得された電池情報に基づいて算出する。割合決定部108は、ストリング60への充電の分配割合を示す充電割合Rcおよび各ストリング60からの放電の分配割合を示す放電割合Rdを、電池状態算出部107によって算出されたストリング60の電池の劣化度および電池残存容量に基づいて決定する。 The battery information acquisition unit 106 acquires battery information such as a battery voltage value and a current value of the battery packs 32 i , 33 i ,... 34 i of the string 60 i . The battery state calculation unit 107 calculates the degree of battery deterioration and the remaining battery capacity of the string 60 i based on the battery information acquired by the battery information acquisition unit 106. The ratio determination unit 108 calculates the charge ratio Rc i indicating the distribution ratio of charge to the string 60 i and the discharge ratio Rd i indicating the distribution ratio of discharge from each string 60 i by the string calculated by the battery state calculation unit 107. It is determined based on the deterioration degree of the battery of 60 i and the remaining battery capacity.
 目標電流算出部104は、ストリング60における充放電時の目標電流値Iを全体電流値Iから充電割合Rcまたは放電割合Rdに応じて、下記式3~式5で示すようにそれぞれ算出する。 The target current calculation unit 104 sets the target current value I i at the time of charging / discharging in the string 60 i from the overall current value I according to the charging rate Rc i or the discharging rate Rd i as shown in the following formulas 3 to 5, respectively. calculate.
 I>0のとき 目標電流値I=全体電流値I×放電割合Rd…(式3)
 I<0のとき 目標電流値I=全体電流値I×充電割合Rc…(式4)
 I=0のとき 目標電流値I=0            …(式5)
When I> 0, target current value I i = total current value I × discharge ratio Rd i (Equation 3)
When I <0, target current value I i = total current value I × charge ratio Rc i (Expression 4)
When I = 0 Target current value I i = 0 (Expression 5)
 目標電流設定部105は、目標電流値Iを対応するストリング60に通知する。 Target current setting unit 105 notifies the target current value I i to the corresponding string 60 i.
 一方、DC/DCコンバータ200は、図5に示すように目標電流取得部201、DCバス電圧目標値算出部202、DCバス電圧制御部203、DCバス電圧現在値取得部204、および電流リミット値算出部205を備えている。 On the other hand, as shown in FIG. 5, the DC / DC converter 200 i includes a target current acquisition unit 201 i , a DC bus voltage target value calculation unit 202 i , a DC bus voltage control unit 203 i , and a DC bus voltage current value acquisition unit 204 i. , And a current limit value calculation unit 205 i .
 目標電流取得部201は、充放電コントローラ100から通知される目標電流値Iを取得する。DCバス電圧目標値算出部202は、ストリング60における充放電時のDCバス電圧目標値Vを、DCバス基準電圧値および目標電流値Iに基づいて下記式6で示すように算出する。 The target current acquisition unit 201 i acquires the target current value I i notified from the charge / discharge controller 100. The DC bus voltage target value calculation unit 202 i calculates the DC bus voltage target value V i at the time of charging / discharging in the string 60 i based on the DC bus reference voltage value and the target current value I i as shown in the following Expression 6. To do.
 DCバス電圧目標値V=DCバス基準電圧値+k1×目標電流値I …(式6) DC bus voltage target value V i = DC bus reference voltage value + k1 × target current value I i (Expression 6)
 ここで、k1は任意の固定値である。 Here, k1 is an arbitrary fixed value.
 DCバス電圧現在値取得部204は、DCバス50の現在の電圧値であるDCバス電圧現在値を取得する。電流リミット値算出部205は、ストリング60における充放電時の電流リミット値Ilを、目標電流値I、DCバス基準電圧値、およびDCバス電圧現在値に基づいて下記式7で示すように算出する。 The DC bus voltage current value acquisition unit 204 i acquires a DC bus voltage current value that is a current voltage value of the DC bus 50. The current limit value calculation unit 205 represents the current limit value Il i at the time of charging / discharging in the string 60 i based on the target current value I i , the DC bus reference voltage value, and the DC bus voltage current value as shown in Equation 7 below. To calculate.
 電流リミット値Il=目標電流値I+k2×(DCバス基準電圧値-DCバス電圧現在値)…(式7) Current limit value Il i = target current value I i + k2 × (DC bus reference voltage value−DC bus voltage current value) (Expression 7)
 ここで、k2は任意の固定値である。このように偏差(DCバス基準電圧値-DCバス電圧現在値)に応じて電流リミット値Ilを変えることでDCバス電圧の急激な変動を抑えることができる。 Here, k2 is an arbitrary fixed value. Thus, by changing the current limit value Il i in accordance with the deviation (DC bus reference voltage value−DC bus voltage current value), it is possible to suppress rapid fluctuations in the DC bus voltage.
 DCバス電圧制御部203は、DCバス電圧目標値VとDCバス電圧現在値との偏差に比例した電流を流すことによって、DCバス電圧を制御する。 DC bus voltage controller 203 i, by passing a current proportional to the deviation between the DC bus voltage target value V i and DC bus voltage current value, and controls the DC bus voltage.
 図6は、本発明の実施の形態1におけるDCバス電圧制御部の詳細な構成を示すブロック図である。 FIG. 6 is a block diagram showing a detailed configuration of the DC bus voltage control unit according to the first embodiment of the present invention.
 DCバス電圧制御部203は、図6に示すようにPID制御部210、電流リミット制御部211、PWM(Pulse Width Modulation)212、およびパワーモジュール213を備えている。 As shown in FIG. 6, the DC bus voltage control unit 203 i includes a PID control unit 210 i , a current limit control unit 211 i , a PWM (Pulse Width Modulation) 212 i , and a power module 213 i .
 PID制御部210は、DCバス電圧目標値算出部202によって算出されたDCバス電圧目標値VおよびDCバス電圧現在値取得部204によって取得されたDCバス電圧現在値を用いてPID制御を行う。電流リミット制御部211は、電流リミット値算出部205によって算出された電流リミット値Ilを越えないように電流を制御する。PWM212は、パルス幅変調を行ってPWM波形を出力する。パワーモジュール213は、例えばIGBT(Insulated-Gate Bipolar Transistors)等であり、PWM212から出力されたPWM波形に基づいて出力を制御する。 PID control unit 210 i is, PID using DC bus voltage target value DC bus voltage current value obtained by the calculated DC bus voltage target value V i and DC bus voltage current value acquiring unit 204 i by the calculating unit 202 i Take control. The current limit control unit 211 i controls the current so as not to exceed the current limit value Il i calculated by the current limit value calculation unit 205 i . The PWM 212 i performs pulse width modulation and outputs a PWM waveform. The power module 213 i is an IGBT (Insulated-Gate Bipolar Transistors), for example, and controls the output based on the PWM waveform output from the PWM 212 i .
 次に、上記のように構成された充放電コントローラの動作について説明する。図7は、本発明の実施の形態1における充放電コントローラの動作の流れを示すフローチャートである。 Next, the operation of the charge / discharge controller configured as described above will be described. FIG. 7 is a flowchart showing a flow of operations of the charge / discharge controller according to Embodiment 1 of the present invention.
 電池情報取得部106は、ストリング60の電池パック32、33、…34の例えば電池電圧値および電流値等の電池情報を取得する(ステップS101)。電池状態算出部107は、ストリング60の電池の劣化度および電池残存容量を、電池情報取得部106によって取得された電池情報に基づいて算出する(ステップS102)。割合決定部108は、ストリング60への充電の分配割合を示す充電割合Rcおよびストリング60からの放電の分配割合を示す放電割合Rdを、電池状態算出部107によって算出されたストリング60の電池の劣化度および電池残存容量に基づいて決定する(ステップS103)。例えば、電池の劣化度が大きいストリング60については、できるだけ使用しないように、その他のストリング60より分配割合を小さくして全体の分配割合を決定することができる。また、例えば複数のストリング601~nのそれぞれの電池残存容量が均一になるように、他のストリング60に比べて電池残存容量が低いストリング60に対しては、他のストリング60に比べて充電割合を大きく(つまり、Rc>Rc)、また放電割合を小さく(つまり、Rd<Rd)決定することができる。なお、ここで、「j」、「k」、および「l」は、互いに異なり、かつ、それぞれが「i」と異なる1~nの間の任意の自然数である。 電力取得部101は、センサ等を用いて、DC/DCコンバータ20からDCバス50に入力される電力値Pb、およびDCバスからDC/ACコンバータ40へ出力される電力値Paを取得する(ステップS104)。全体電力算出部102は、全体で必要とされる全体電力値Psを上記のように電力値Paから電力値Pbを減算することで算出する(ステップS105)。全体電流算出部103は、全体電流値IをDCバス基準電圧値および全体電力値Psに基づいて上記のように算出する(ステップS106)。目標電流算出部104は、ストリング60における充放電時の目標電流値Iを全体電流値Iから充電割合Rcまたは放電割合Rdに応じて上記のようにそれぞれ算出する(ステップS107)。目標電流設定部105は、目標電流算出部104で算出された目標電流値Iを対応するストリング60に通知する(ステップS108)。定周期Aが経過したか否かを判定する(ステップS109)。所定の定周期Aが経過していない場合(ステップS109でNo)には所定の定周期Aが経過するまで、判定を繰り返す。そして、所定の定周期Aが経過した場合(ステップS109でYes)、所定の定周期Bが経過したか否かを判定する(ステップS110)。所定の定周期Bが経過した場合(ステップS110でYes)、電池情報の取得処理(ステップS101)に戻る。一方、所定の定周期Bが経過していない場合(ステップS110でNo)、電力値Pbおよび電力値Paの取得処理(ステップS104)に戻る。なお、定周期Aおよび定周期Bはあらかじめ設定され、定周期B(例えば100ms等)は、定周期A(例えば5ms等)より長く設定される。また、定周期Aおよび定周期Bは変更することも可能である。 The battery information acquisition unit 106 acquires battery information such as a battery voltage value and a current value of the battery packs 32 i , 33 i ,... 34 i of the string 60 i (step S101). The battery state calculation unit 107 calculates the degree of battery degradation and the remaining battery capacity of the string 60 i based on the battery information acquired by the battery information acquisition unit 106 (step S102). Ratio determining unit 108, the discharge rate Rd i indicating the distribution ratio of the discharge from the charging rate Rc i and string 60 i shows the distribution ratio of the charging of the string 60 i, string calculated by the battery state calculator 107 60 It is determined based on the degree of deterioration of the battery i and the remaining battery capacity (step S103). For example, it is possible to determine the overall distribution ratio by making the distribution ratio smaller than the other strings 60 j so that the string 60 i having a large degree of battery degradation is not used as much as possible. Further, for example, as each of the remaining battery capacity of a plurality of strings 60 1 ~ n becomes uniform, for the remaining battery capacity is low string 60 l compared to other strings 60 k, the other strings 60 k In comparison with this, it is possible to determine a larger charge ratio (that is, Rc 1 > Rc k ) and a lower discharge ratio (that is, Rd 1 <Rd k ). Here, “j”, “k”, and “l” are arbitrary natural numbers between 1 and n different from each other and different from “i”. The power acquisition unit 101 acquires a power value Pb input from the DC / DC converter 20 to the DC bus 50 and a power value Pa output from the DC bus to the DC / AC converter 40 using a sensor or the like (step) S104). The total power calculation unit 102 calculates the total power value Ps required as a whole by subtracting the power value Pb from the power value Pa as described above (step S105). The total current calculation unit 103 calculates the total current value I based on the DC bus reference voltage value and the total power value Ps as described above (step S106). The target current calculation unit 104 calculates the target current value I i at the time of charging / discharging in the string 60 i from the overall current value I in accordance with the charging rate Rc i or the discharging rate Rd i as described above (step S107). The target current setting unit 105 notifies the corresponding string 60 i of the target current value I i calculated by the target current calculation unit 104 (step S108). It is determined whether or not the fixed period A has elapsed (step S109). If the predetermined constant period A has not elapsed (No in step S109), the determination is repeated until the predetermined constant period A has elapsed. If the predetermined fixed period A has elapsed (Yes in step S109), it is determined whether or not the predetermined fixed period B has elapsed (step S110). When the predetermined fixed period B has elapsed (Yes in step S110), the process returns to the battery information acquisition process (step S101). On the other hand, when the predetermined fixed period B has not elapsed (No in step S110), the process returns to the process of acquiring the power value Pb and the power value Pa (step S104). The fixed period A and the fixed period B are set in advance, and the fixed period B (for example, 100 ms) is set longer than the fixed period A (for example, 5 ms). Moreover, the fixed period A and the fixed period B can be changed.
 次に、上記のように構成されたDC/DCコンバータの動作について説明する。図8は、本発明の実施の形態1におけるDC/DCコンバータの動作の流れを示すフローチャートである。 Next, the operation of the DC / DC converter configured as described above will be described. FIG. 8 is a flowchart showing a flow of operation of the DC / DC converter according to Embodiment 1 of the present invention.
 目標電流取得部201は、充放電コントローラ100から通知される目標電流値Iを取得する(ステップS201)。DCバス電圧現在値取得部204は、DCバス50の現在の電圧値であるDCバス電圧現在値を取得する(ステップS202)。DCバス電圧目標値算出部202は、ストリング60における充放電時のDCバス電圧目標値Vを、DCバス基準電圧値および目標電流値Iに基づいて上記のように算出する(ステップS203)。電流リミット値算出部205は、ストリング60における充放電時の電流リミット値Ilを、目標電流値I、DCバス基準電圧値、およびDCバス電圧現在値に基づいて上記のように算出する(ステップS204)。DCバス電圧制御部203は、ストリング60における充放電時のDCバス電圧を、DCバス電圧目標値V、DCバス電圧現在値、および電流リミット値Ilに基づいて制御する(ステップS205)。定周期Cが経過したか否かを判定する(ステップS206)。所定の定周期Cが経過していない場合(ステップS206でNo)には所定の定周期Cが経過するまで、判定を繰り返す。そして、所定の定周期Cが経過した場合(ステップS206でYes)、目標電流値Iの取得処理(ステップS201)に戻る。なお、定周期Cもあらかじめ設定され、定周期C(例えば1ms等)は、定周期Aおよび定周期Bより短く設定されるが、これに限られるものではない。また、定周期Cは変更することも可能である。 The target current acquisition unit 201 i acquires the target current value I i notified from the charge / discharge controller 100 (step S201). The DC bus voltage current value acquisition unit 204 i acquires a DC bus voltage current value that is a current voltage value of the DC bus 50 (step S202). The DC bus voltage target value calculation unit 202 i calculates the DC bus voltage target value V i at the time of charging / discharging in the string 60 i as described above based on the DC bus reference voltage value and the target current value I i (step). S203). The current limit value calculation unit 205 i calculates the current limit value Il i during charging / discharging in the string 60 i based on the target current value I i , the DC bus reference voltage value, and the DC bus voltage current value as described above. (Step S204). The DC bus voltage control unit 203 i controls the DC bus voltage at the time of charging / discharging in the string 60 i based on the DC bus voltage target value V i , the DC bus voltage current value, and the current limit value Il i (step S205). ). It is determined whether or not the fixed period C has elapsed (step S206). If the predetermined constant period C has not elapsed (No in step S206), the determination is repeated until the predetermined constant period C has elapsed. When the predetermined fixed period C has elapsed (Yes in step S206), the process returns to the target current value I i acquisition process (step S201). The fixed period C is also set in advance, and the fixed period C (for example, 1 ms) is set shorter than the fixed period A and the fixed period B, but is not limited thereto. Further, the fixed period C can be changed.
 なお、上述で説明した図7および図8のフローチャートにおける各ステップは、簡単ため、ストリング60のみについて行われるように説明しているが、これらのステップは複数のストリング60、60、…60の全てについてそれぞれ行われる。 Note that each step in the flowcharts of FIG. 7 and FIG. 8 described above is described as being performed only for the string 60 i for simplicity, but these steps are performed for a plurality of strings 60 1 , 60 2 ,. This is done for all 60 n .
 次に、具体的に4つのストリング60~60で構成され、DCバス基準電圧値が500V、定数k1が「0.1」、定数k2が「1」であり、割合決定部108よって放電割合が3:2:1:0と決定され、電力取得部101によって、電力値Pbが10kwと、電力値Paが40kwと取得された場合を例に、それぞれ算出されるDCバス電圧目標値V~Vおよび電流リミット値Il~Ilについて説明する。 Next, it is specifically composed of four strings 60 1 to 60 4 , the DC bus reference voltage value is 500 V, the constant k1 is “0.1”, and the constant k2 is “1”. The DC bus voltage target value V is calculated as an example when the ratio is determined to be 3: 2: 1: 0 and the power acquisition unit 101 acquires the power value Pb of 10 kW and the power value Pa of 40 kW. 1 to V 4 and current limit values Il 1 to Il 4 will be described.
 図9は、4つのストリング60~60ごとに取得された目標電流値I~IおよびDCバス電圧現在値と、算出されたDCバス電圧目標値V~Vおよび電流リミット値Il~Ilとの一例を示す図である。 FIG. 9 shows target current values I 1 to I 4 and DC bus voltage current values acquired for each of the four strings 60 1 to 60 4 , calculated DC bus voltage target values V 1 to V 4, and current limit values. is a diagram illustrating an example of the Il 1 ~ Il 4.
 この場合、電力値Pbが10kw、電力値Paが40kwであるので、全体電力算出部102は、全体電力値Psを30kwと算出することになる。また、DCバス基準電圧値が500V、全体電力値Psが30kwであるので、全体電流算出部103は、全体電流値Iを60Aと算出することになる。また、全体電流値Iが60A、放電割合が3:2:1:0であるので、目標電流算出部104は、各ストリング60~60の目標電流値I~Iが30A、20A、10A、0Aとそれぞれ算出することになる。 In this case, since the power value Pb is 10 kw and the power value Pa is 40 kw, the total power calculation unit 102 calculates the total power value Ps as 30 kw. Further, since the DC bus reference voltage value is 500V and the total power value Ps is 30 kW, the total current calculation unit 103 calculates the total current value I as 60A. Also, the entire current I is 60A, the discharge ratio is 3: 2: 1: 0, and thus the target current calculating unit 104, each of the strings 60 1 to 60 4 of the target current value I 1 ~ I 4 is 30A, 20A 10A and 0A are calculated respectively.
 次に、DCバス基準電圧値が500V、定数k1が「0.1」、ストリング60の目標電流値Iは30Aであるので、ストリング60のDCバス電圧目標値算出部202は、DCバス電圧目標値Vを503Vと算出することになる。同様に、ストリング60のDCバス電圧目標値算出部202は、DCバス電圧目標値Vを502Vと算出することになる。ストリング60のDCバス電圧目標値算出部202は、DCバス電圧目標値Vを501Vと算出することになる。ストリング60のDCバス電圧目標値算出部202は、DCバス電圧目標値Vを500Vと算出することになる。 Then, DC bus reference voltage value is 500V, constant k1 is "0.1", a target current value I 1 of the strings 60 1 because it is 30A, DC bus voltage desired value calculating unit 202 1 of the strings 60 1, DC becomes the bus voltage target value V 1 to be calculated and 503V. Similarly, the DC bus voltage target value calculation portion 202 2 of the strings 60 2 becomes the DC bus voltage target value V 2 to be calculated and 502V. DC bus voltage target value calculation portion 202 3 of the string 60 3, consisting of DC bus voltage target value V 3 to be calculated and 501V. DC bus voltage target value calculating section 202 fourth string 6O4 becomes a DC bus voltage target value V 4 to be calculated and 500V.
 ここで、さらに、DCバス電圧現在値取得部204~204によって、DCバス電圧現在値がそれぞれ498.7V、498.1V、498.4V、498.5Vと取得されたとする。ここ場合、ストリング60においては、目標電流値Iは30A、DCバス電圧現在値が498.7Vであるので、電流リミット値算出部205は、電流リミット値Ilを31.3Aと算出することになる。同様に、ストリング60の電流リミット値算出部205は、電流リミット値Ilを21.9Aと算出することになる。ストリング60の電流リミット値算出部205は、電流リミット値Ilを11.6Aと算出することになる。ストリング60の電流リミット値算出部205は、電流リミット値Ilを0Aと算出することになる。 Here, it is further assumed that the current DC bus voltage value is acquired as 498.7V, 498.1V, 498.4V, 498.5V by the DC bus voltage current value acquisition units 204 1 to 204 4 , respectively. In this case, since the target current value I 1 is 30 A and the DC bus voltage current value is 498.7 V in the string 60 1 , the current limit value calculation unit 205 1 calculates the current limit value Il 1 as 31.3 A. Will do. Similarly, the current limit value calculation unit 205 and second strings 60 2 becomes the current limit value Il 2 to be calculated with 21.9A. The current limit value calculation unit 205 3 of the string 60 3 calculates the current limit value Il 3 as 11.6A. String 60 4 current limit value calculation unit 205 4 will be calculated the current limit value Il 4 and 0A.
 以上のように、4つのストリング60~60のそれぞれに対する充電割合または放電割合に基づいて、4つのストリング60~60のそれぞれにおける充放電時の目標電流値I~Iを決定し、この目標電流値I~Iから4つのストリング60~60のそれぞれにおいてDCバス電圧目標値V~Vおよび電流リミット値Il~Ilを算出している。このように、共通のDCバス基準電圧値(つまり、1つのDCバス基準電圧値)を用いてDCバス電圧制御を行うのではなく、複数のストリングごとに適時算出したDCバス電圧目標値を用いてDCバス電圧の制御を行うことにより、各ストリングにおける充放電を適切に分配することができるので、複数の蓄電池の充放電を効率よく制御することができる。また、DCバス基準電圧値とDCバス電圧現在値との偏差に応じて電流リミット値を変えることでDCバス電圧の急激な変動を抑えることができる。 As described above, based on the charging rate or discharging rate for each of the four strings 60 1 to 60 4, determines a target current value I 1 ~ I 4 during charging and discharging in each of the four strings 60 1 to 60 4 Then, DC bus voltage target values V 1 to V 4 and current limit values Il 1 to Il 4 are calculated from the target current values I 1 to I 4 in each of the four strings 60 1 to 60 4 . Thus, instead of performing DC bus voltage control using a common DC bus reference voltage value (that is, one DC bus reference voltage value), a DC bus voltage target value calculated in a timely manner for each of a plurality of strings is used. By controlling the DC bus voltage, charge / discharge in each string can be appropriately distributed, so that charge / discharge of a plurality of storage batteries can be controlled efficiently. In addition, a rapid change in the DC bus voltage can be suppressed by changing the current limit value in accordance with the deviation between the DC bus reference voltage value and the DC bus voltage current value.
 なお、本実施の形態では、ストリング60のDC/DCコンバータ200においてDCバス電圧目標値Vおよび電流リミット値Ilを算出する構成としているが、これに限られるものではない。例えば、充放電コントローラ100においてストリング60に対するDCバス電圧目標値Vおよび電流リミット値Ilを算出し、ストリング60に通知するように構成しても構わない。 In the present embodiment, the DC bus voltage target value V i and the current limit value Il i are calculated in the DC / DC converter 200 i of the string 60 i . However, the present invention is not limited to this. For example, to calculate the DC bus voltage target value V i and the current limit value Il i for the string 60 i in the charge and discharge controller 100, it may be configured to notify the string 60 i.
 また、本実施の形態では、充放電コントローラ100において目標電流値Iを算出する構成としているが、これに限られるものではない。例えば、ストリング60のDC/DCコンバータ200において、充放電コントローラ100から通知された全体電流値I、充電割合Rc、および放電割合Rdに基づいて、目標電流値Iを算出するように構成しても構わない。さらに、例えば、ストリング60のDC/DCコンバータ200において、充放電コントローラ100から通知された全体電力値Ps、充電割合Rc、および放電割合Rdに基づいて、目標電流値Iを算出するように構成しても構わない。この場合、DC/DCコンバータ200は、全体電力値Psから全体電流値Iを算出し、算出した全体電流値Iと、充放電コントローラ100から通知された充電割合Rcおよび放電割合Rdとに基づいて、目標電流値Iを算出することになる。 In the present embodiment, the charge / discharge controller 100 calculates the target current value I i . However, the present invention is not limited to this. For example, in the DC / DC converter 200 i of the string 60 i , the target current value I i is calculated based on the total current value I, the charge rate Rc i , and the discharge rate Rd i notified from the charge / discharge controller 100. You may comprise. Further, for example, in the DC / DC converter 200 i of the string 60 i , the target current value I i is calculated based on the total power value Ps, the charge rate Rc i , and the discharge rate Rd i notified from the charge / discharge controller 100. You may comprise so that it may do. In this case, the DC / DC converter 200 i calculates the total current value I from the total power value Ps, the calculated total current value I, and the charge ratio Rc i and discharge ratio Rd i notified from the charge / discharge controller 100. Based on this, the target current value I i is calculated.
 また、本実施の形態では、図4示すように充放電コントローラ100を設ける構成としているが、これに限られるものではない。例えば、充放電コントローラ100が有する図5に示すような構成要素をストリング60のDC/DCコンバータ200、およびDC/ACコンバータ40等に分散して配置しても構わない。 Moreover, in this Embodiment, although it is set as the structure which provides the charging / discharging controller 100 as shown in FIG. 4, it is not restricted to this. For example, it may be arranged to distribute the components as shown in FIG. 5 having the charge and discharge controller 100 string 60 i of the DC / DC converter 200 i, and a DC / AC converter 40 and the like.
 また、本実施の形態では、ストリング60のDC/DCコンバータ200においてDCバス電圧目標値Vを算出する構成としているが、DCバス電圧目標値Vを算出しなくても構わない。この場合、下記式8~式9で示すように、目標電流、および、DCバス基準電圧値とDCバス電圧現在値との偏差から、電流リミット値Ild(放電用)および電流リミット値Ilc(充電用)をそれぞれ算出する。 In the present embodiment, the DC bus voltage target value V i is calculated in the DC / DC converter 200 i of the string 60 i . However, the DC bus voltage target value V i may not be calculated. In this case, the current limit value Ild i (for discharge) and the current limit value Ilc i are calculated from the deviation between the target current and the DC bus reference voltage value and the DC bus voltage current value, as shown in the following equations 8 to 9. Calculate (for charging).
 I>0のとき、
 電流リミット値Ild(放電用)=目標電流値I+k2×(DCバス基準電圧値-DCバス電圧現在値)…(式8)
 I<0のとき、
 電流リミット値Ilc(充電用)=目標電流値I+k2×(DCバス基準電圧値-DCバス電圧現在値)…(式9)
When I n > 0,
Current limit value Ild i (for discharge) = target current value I i + k2 × (DC bus reference voltage value−DC bus voltage current value) (Equation 8)
When I n <0,
Current limit value Ilc i (for charging) = target current value I i + k2 × (DC bus reference voltage value−DC bus voltage current value) (Equation 9)
 ここで、k2は任意の固定値である。 Here, k2 is an arbitrary fixed value.
 そして、DC/DCコンバータ200は、電流リミット値Ild(放電用)以下、かつ電流リミット値Ilc(充電用)以上の範囲で、DCバス基準電圧値に近づくように制御する。 Then, DC / DC converter 200 i, the current limit value Ild i (for discharge) or less, and in a range equal to or more than the current limit value Ilc i (charging), and controlled so as to approach the DC bus reference voltage value.
 このように、電流リミット値のみを変更するだけで、DCバス電圧目標値としてあらかじめ設定されている固定値であるDCバス基準電圧値を用いて、各ストリングにおける充放電を適切に分配することができるので、複数の蓄電池の充放電を効率よく制御することができる。 Thus, by changing only the current limit value, it is possible to appropriately distribute charge / discharge in each string using a DC bus reference voltage value which is a fixed value preset as a DC bus voltage target value. Since it can do, charging / discharging of a some storage battery can be controlled efficiently.
 (実施の形態2)
 実施の形態1では、各ストリングのDC/DCコンバータにおいてDCバス電圧目標値および電流リミット値を算出し、DCバス電圧目標値および電流リミット値を用いてDCバス電圧の制御を行っているのに対して、本実施の形態2では、目標電流を補正し、補正した目標電流を用いてDCバス電圧の制御を行っている。ここで、本実施の形態2における充放電制御装置および蓄電システムの概略構成は図4に示す実施の形態1と同様である。なお、本実施の形態2におけるDC/DCコンバータ300は、図4に示すDC/DCコンバータ200を置き換えたものである。
(Embodiment 2)
In the first embodiment, the DC bus voltage target value and the current limit value are calculated in the DC / DC converter of each string, and the DC bus voltage is controlled using the DC bus voltage target value and the current limit value. In contrast, in the second embodiment, the target current is corrected, and the DC bus voltage is controlled using the corrected target current. Here, the schematic configurations of the charge / discharge control device and the power storage system in the second embodiment are the same as those in the first embodiment shown in FIG. The DC / DC converter 300 according to the second embodiment is obtained by replacing the DC / DC converter 200 shown in FIG.
 図10は、本発明の実施の形態2における充放電コントローラおよびDC/DCコンバータの構成を示すブロック図である。なお、実施の形態1と同様の構成については、同じ符号を付し、説明を省略する。また、本実施の形態2でも、充放電制御装置の機能は、充放電コントローラ100および複数のDC/DCコンバータ300、300、…300によって実現されている。 FIG. 10 is a block diagram showing configurations of the charge / discharge controller and the DC / DC converter according to Embodiment 2 of the present invention. In addition, about the structure similar to Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted. Further, also in the second embodiment, the function of the charge-discharge control device, charge and discharge controller 100 and a plurality of DC / DC converter 300 1, 300 2, it is implemented by ... 300 n.
 充放電コントローラ100は、図5で示す実施の形態1と同様である。なお、図10では、説明の簡単のため、複数のDC/DCコンバータ300、300、…300のうちのDC/DCコンバータ300のみについて図示している。なお、「i」は、1~nの任意の自然数である。 The charge / discharge controller 100 is the same as that of the first embodiment shown in FIG. In FIG. 10, for simplicity of explanation, it is shown only for the DC / DC converter 300 i of the plurality of DC / DC converter 300 1, 300 2, ... 300 n. “I” is an arbitrary natural number from 1 to n.
 一方、DC/DCコンバータ300は、図10に示すように目標電流取得部201、DCバス電圧現在値取得部204、目標電流補正部301、および定電流制御部302を備えている。 On the other hand, the DC / DC converter 300 i includes a target current acquisition unit 201 i , a DC bus voltage current value acquisition unit 204 i , a target current correction unit 301 i , and a constant current control unit 302 i as shown in FIG. Yes.
 目標電流補正部301は、ストリング60における目標電流値Iを、DCバス基準電圧値、およびDCバス電圧現在値に基づいて下記式10で示すように補正し、補正目標電流値I’算出する。 Target current correcting unit 301 i the string 60 the target current value I i at i, corrected as shown by the following formula 10 based on the DC bus reference voltage, and the DC bus voltage current value, the corrected target current value I i 'calculate.
 補正目標電流値I’=目標電流値I+k2×(DCバス基準電圧値-DCバス電圧現在値)…(式10) Correction target current value I i ′ = target current value I i + k2 × (DC bus reference voltage value−DC bus voltage current value) (Equation 10)
 ここで、k2は任意の固定値である。 Here, k2 is an arbitrary fixed value.
 定電流制御部302は、補正目標電流値I’に基づいた電流を流すことによって、DCバス電圧を制御する。 The constant current control unit 302 controls the DC bus voltage by flowing a current based on the corrected target current value I i ′.
 次に、上記のように構成されたDC/DCコンバータ300の動作について説明する。図11は、本発明の実施の形態2におけるDC/DCコンバータの動作の流れを示すフローチャートである。なお、充放電コントローラ100の動作については、実施の形態1と同様である。 Next, the operation of the DC / DC converter 300 i configured as described above will be described. FIG. 11 is a flowchart showing a flow of operation of the DC / DC converter according to Embodiment 2 of the present invention. The operation of charge / discharge controller 100 is the same as that of the first embodiment.
 目標電流取得部201は、充放電コントローラ100から通知される目標電流値Iを取得する(ステップS201)。DCバス電圧現在値取得部204は、DCバス50の現在の電圧値であるDCバス電圧現在値を取得する(ステップS202)。 The target current acquisition unit 201 i acquires the target current value I i notified from the charge / discharge controller 100 (step S201). The DC bus voltage current value acquisition unit 204 acquires a DC bus voltage current value that is a current voltage value of the DC bus 50 (step S202).
 目標電流補正部301は、ストリング60における目標電流値Iを、DCバス基準電圧値、およびDCバス電圧現在値に基づいて上記のように補正し、補正目標電流値I’算出する(ステップS301)。定電流制御部302は、補正目標電流値I’に基づいた電流を流すことによって、DCバス電圧を制御する(ステップS302)。 Target current correcting unit 301 i is a target current value I i of the string 60 i, DC bus reference voltage, and DC based bus voltage on the current value is corrected as described above, the corrected target current value I i 'is calculated (Step S301). The constant current control unit 302 i controls the DC bus voltage by flowing a current based on the corrected target current value I i ′ (step S302).
 以上のように、ストリング60に対する充電割合Rcまたは放電割合Rdに基づいて、ストリング60におけるそれぞれの充放電時の目標電流値Iを決定し、この目標電流値Iを補正している。このように、補正した補正目標電流値I’を用いてDCバス電圧の制御を行うことにより、各ストリングにおける充放電を適切に分配することができるので、複数の蓄電池の充放電を効率よく制御することができる。 As described above, based on the charging rate Rc i or discharge rate Rd i for string 60 i, determines a target current value I i at each charge and discharge in the string 60 i, and correcting the target current value I i ing. Thus, by controlling the DC bus voltage using the corrected corrected target current value I i ′, charging / discharging in each string can be appropriately distributed, so charging / discharging of a plurality of storage batteries can be performed efficiently. Can be controlled.
 (実施の形態3)
 本実施の形態3では、実施の形態1と同様にDCバス電圧目標値および電流リミット値を用いてDCバス電圧の制御を行っている際に、目標電流が取得できなくなった場合の制御が実施の形態1と相違する。ここで、本実施の形態3における充放電制御装置および蓄電システムの概略構成は図4に示す実施の形態1と同様である。なお、本実施の形態3におけるDC/DCコンバータ400は、図4に示すDC/DCコンバータ200を置き換えたものである。
(Embodiment 3)
In the third embodiment, when the DC bus voltage is controlled using the DC bus voltage target value and the current limit value as in the first embodiment, the control when the target current cannot be acquired is performed. This is different from the first embodiment. Here, the schematic configurations of the charge / discharge control device and the power storage system in the third embodiment are the same as those in the first embodiment shown in FIG. The DC / DC converter 400 in the third embodiment is obtained by replacing the DC / DC converter 200 shown in FIG.
 図12は、本発明の実施の形態3における充放電コントローラおよびDC/DCコンバータの構成を示すブロック図である。なお、実施の形態1と同様の構成については、同じ符号を付し、説明を省略する。また、本実施の形態3でも、充放電制御装置の機能は、充放電コントローラ100および複数のDC/DCコンバータ400、400、…400によって実現されている。 FIG. 12 is a block diagram showing configurations of the charge / discharge controller and the DC / DC converter according to Embodiment 3 of the present invention. In addition, about the structure similar to Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted. Also in the third embodiment, the function of the charge / discharge control device is realized by the charge / discharge controller 100 and the plurality of DC / DC converters 400 1 , 400 2 ,... 400 n .
 充放電コントローラ100は、図5で示す実施の形態1と同様である。なお、図12では、説明の簡単のため、複数のDC/DCコンバータ400、400、…400のうちのDC/DCコンバータ400のみについて図示している。なお、「i」は、1~nの任意の自然数である。 The charge / discharge controller 100 is the same as that of the first embodiment shown in FIG. In FIG. 12, for simplicity of explanation, it is shown only for the DC / DC converter 400 i of the plurality of DC / DC converter 400 1, 400 2, ... 400 n. “I” is an arbitrary natural number from 1 to n.
 一方、DC/DCコンバータ400は、図12に示すように目標電流取得部401、DCバス電圧目標値算出部202、DCバス電圧制御部203、DCバス電圧現在値取得部204、電流リミット値算出部402、および電池残存容量取得部403を備えている。 On the other hand, as shown in FIG. 12, the DC / DC converter 400 i includes a target current acquisition unit 401 i , a DC bus voltage target value calculation unit 202 i , a DC bus voltage control unit 203 i , and a DC bus voltage current value acquisition unit 204 i. , A current limit value calculation unit 402 i , and a battery remaining capacity acquisition unit 403 i .
 目標電流取得部401は、充放電コントローラ100から通知される目標電流値Iを取得する。また、目標電流取得部401は、目標電流値Iを取得できなくなった場合に、電流リミット値算出部402および電池残存容量取得部403に通知する。 The target current acquisition unit 401 i acquires the target current value I i notified from the charge / discharge controller 100. Further, the target current acquisition unit 401 i notifies the current limit value calculation unit 402 i and the battery remaining capacity acquisition unit 403 i when the target current value I i cannot be acquired.
 電池残存容量取得部403は、当該DC/DCコンバータ400が備える電池(電池パック32、33、…34)の電池残存容量(SOC:State of Charge)を取得し、電流リミット値算出部402に通知する。 The battery remaining capacity acquisition unit 403 i acquires the battery remaining capacity (SOC: State of Charge) of the batteries (battery packs 32 i , 33 i ,... 34 i ) included in the DC / DC converter 400 i , and the current limit value Notify the calculation unit 402 i .
 電流リミット値算出部402は、ストリング60における充放電時の電流リミット値Ilを、目標電流値I、DCバス基準電圧値、およびDCバス電圧現在値に基づいて実施の形態1と同様に算出する。また、電流リミット値算出部402は、目標電流値Iが取得できていない場合、図13に示すようにあらかじめ設定されている電池残存容量の目標値と、電池残存容量取得部403によって取得された現在の電池残存容量とから電流リミット値Il’を算出する。 The current limit value calculation unit 402 i uses the current limit value Il i at the time of charging / discharging in the string 60 i as the first embodiment based on the target current value I i , the DC bus reference voltage value, and the DC bus voltage current value. Calculate in the same way. Further, when the target current value I i cannot be acquired, the current limit value calculation unit 402 i uses a preset target battery remaining capacity value and a remaining battery capacity acquisition unit 403 i as shown in FIG. A current limit value Il i ′ is calculated from the acquired current remaining battery capacity.
 次に、上記のように構成されたDC/DCコンバータの動作について説明する。図14は、本発明の実施の形態3におけるDC/DCコンバータの動作の流れを示すフローチャートである。 Next, the operation of the DC / DC converter configured as described above will be described. FIG. 14 is a flowchart showing a flow of operation of the DC / DC converter according to Embodiment 3 of the present invention.
 目標電流取得部201は、充放電コントローラ100から通知される目標電流値Iを取得する(ステップS201)。DCバス電圧現在値取得部204は、DCバス50の現在の電圧値であるDCバス電圧現在値を取得する(ステップS202)。目標電流取得部201は、目標電流値Iが取得できているか否かを判定する(ステップS401)。ここで、目標電流値Iが取得できている場合(ステップS401でYes)、実施の形態と同様に、DCバス電圧目標値算出部202は、ストリング60における充放電時のDCバス電圧目標値Vを、DCバス基準電圧値および目標電流値Iに基づいて上記のように算出する(ステップS203)。電流リミット値算出部205は、ストリング60における充放電時の電流リミット値Ilを、目標電流値I、DCバス基準電圧値、およびDCバス電圧現在値に基づいて上記のように算出する(ステップS204)。DCバス電圧制御部203は、ストリング60における充放電時のDCバス電圧を、DCバス電圧目標値V、DCバス電圧現在値、および電流リミット値Ilに基づいて制御する(ステップS205)。定周期Cが経過したか否かを判定する(ステップS206)。所定の定周期Cが経過していない場合(ステップS206でNo)には所定の定周期Cが経過するまで、判定を繰り返す。そして、所定の定周期Cが経過した場合(ステップS206でYes)、目標電流値Iの取得処理(ステップS201)に戻る。 The target current acquisition unit 201 i acquires the target current value I i notified from the charge / discharge controller 100 (step S201). The DC bus voltage current value acquisition unit 204 i acquires a DC bus voltage current value that is a current voltage value of the DC bus 50 (step S202). The target current acquisition unit 201 i determines whether or not the target current value I i has been acquired (step S401). Here, when the target current value I i can be obtained (Yes in step S401), the DC bus voltage target value calculation unit 202 i is configured to charge the DC bus voltage at the time of charging / discharging in the string 60 i as in the embodiment. The target value V i is calculated as described above based on the DC bus reference voltage value and the target current value I i (step S203). The current limit value calculation unit 205 i calculates the current limit value Il i during charging / discharging in the string 60 i based on the target current value I i , the DC bus reference voltage value, and the DC bus voltage current value as described above. (Step S204). The DC bus voltage control unit 203 i controls the DC bus voltage at the time of charging / discharging in the string 60 i based on the DC bus voltage target value V i , the DC bus voltage current value, and the current limit value Il i (step S205). ). It is determined whether or not the fixed period C has elapsed (step S206). If the predetermined constant period C has not elapsed (No in step S206), the determination is repeated until the predetermined constant period C has elapsed. When the predetermined fixed period C has elapsed (Yes in step S206), the process returns to the target current value I i acquisition process (step S201).
 一方、目標電流値Iが取得できていない場合(ステップS401でNo)、電流リミット値算出部402は、あらかじめ設定されている電池残存容量の目標値と、電池残存容量取得部403によって取得された現在の電池残存容量とから電流リミット値Il’を算出する。例えば、電池残存容量取得部403は、現在の電池残存容量が電池残存容量の目標値より大きい場合、既に算出されている電流リミット値Ilを上げ、現在の電池残存容量が電池残存容量の目標値より小さい場合、当該電流リミット値Ilを下げるように電流リミット値Il’を算出する(ステップS402)。DCバス電圧制御部203は、ストリング60における充放電時のDCバス電圧を、DCバス基準電圧値、DCバス電圧現在値、および電流リミット値Il’に基づいて制御する(ステップS403)。次に、上記同様に定周期Cが経過したか否かを判定する(ステップS206)。所定の定周期Cが経過していない場合(ステップS206でNo)には所定の定周期Cが経過するまで、判定を繰り返す。そして、所定の定周期Cが経過した場合(ステップS206でYes)、目標電流値Iの取得処理(ステップS201)に戻る。 On the other hand, when the target current value I i cannot be acquired (No in step S401), the current limit value calculation unit 402 i uses the preset target value of the battery remaining capacity and the battery remaining capacity acquisition unit 403 i . A current limit value Il i ′ is calculated from the acquired current remaining battery capacity. For example, if the current battery remaining capacity is greater than the target value of the battery remaining capacity, the battery remaining capacity acquisition unit 403 i increases the current limit value Il i that has already been calculated, and the current battery remaining capacity is If less than the target value, and calculates the current limit value Il i 'to decrease the current limit value Il i (step S402). The DC bus voltage control unit 203 i controls the DC bus voltage during charging / discharging in the string 60 i based on the DC bus reference voltage value, the DC bus voltage current value, and the current limit value Il i ′ (step S403). . Next, similarly to the above, it is determined whether or not the fixed period C has passed (step S206). If the predetermined constant period C has not elapsed (No in step S206), the determination is repeated until the predetermined constant period C has elapsed. When the predetermined fixed period C has elapsed (Yes in step S206), the process returns to the target current value I i acquisition process (step S201).
 このようにすることにより、目標電流が取得できなくなった場合であっても、電流リミット値を変更することができる。よって、DCバス基準電圧値および電流リミット値を用いて、複数の蓄電池の充放電を効率よく制御することができる。 By doing this, the current limit value can be changed even when the target current cannot be acquired. Therefore, charge / discharge of a plurality of storage batteries can be efficiently controlled using the DC bus reference voltage value and the current limit value.
 なお、本実施の形態3では、実施の形態1と同様にDCバス電圧目標値および電流リミット値を用いてDCバス電圧の制御を行っていることを前提としているが、これに限られるものではない。例えば、DCバス電圧目標値を用いず、電池残存容量の目標値と現在の電池残存容量とから算出した電流リミット値およびDCバス基準電圧値だけを用いて、DCバス電圧の制御を行っても構わない。これにより、簡単に複数の蓄電池の充放電を効率よく制御することができる。 In the third embodiment, as in the first embodiment, it is assumed that the DC bus voltage is controlled using the DC bus voltage target value and the current limit value. However, the present invention is not limited to this. Absent. For example, the DC bus voltage may be controlled using only the current limit value calculated from the target value of the battery remaining capacity and the current battery remaining capacity and the DC bus reference voltage value without using the DC bus voltage target value. I do not care. Thereby, charging / discharging of a some storage battery can be controlled efficiently easily.
 (実施の形態4)
 本実施の形態4では、実施の形態1と同様にDCバス電圧目標値および電流リミット値を用いてDCバス電圧の制御を行っている際に、急激にDCバス電圧現在値が変化した場合の制御が実施の形態1と相違する。ここで、本実施の形態4における充放電制御装置および蓄電システムの概略構成は図4で示す実施の形態1と同様である。なお、本実施の形態4におけるDC/DCコンバータ500は、図4に示すDC/DCコンバータ200を置き換えたものである。
(Embodiment 4)
In the fourth embodiment, when the DC bus voltage is controlled using the DC bus voltage target value and the current limit value as in the first embodiment, the current value of the DC bus voltage changes suddenly. The control is different from that of the first embodiment. Here, schematic configurations of the charge / discharge control device and the power storage system in the fourth embodiment are the same as those in the first embodiment shown in FIG. The DC / DC converter 500 in the fourth embodiment is obtained by replacing the DC / DC converter 200 shown in FIG.
 図15は、本発明の実施の形態4における充放電コントローラおよびDC/DCコンバータの構成を示すブロック図である。なお、実施の形態1と同様の構成については、同じ符号を付し、説明を省略する。また、本実施の形態4でも、充放電制御装置の機能は、充放電コントローラ100およびDC/DCコンバータ500、500、…500によって実現されている。 FIG. 15 is a block diagram showing configurations of the charge / discharge controller and the DC / DC converter according to Embodiment 4 of the present invention. In addition, about the structure similar to Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted. Also in the fourth embodiment, the function of the charge / discharge control device is realized by the charge / discharge controller 100 and the DC / DC converters 500 1 , 500 2 ,... 500 n .
 充放電コントローラ100は、図5に示す実施の形態1と同様である。なお、図15では、説明の簡単のため、複数のDC/DCコンバータ500、500、…500のうちのDC/DCコンバータ500のみについて図示している。なお、「i」は、1~nの任意の自然数である。 The charge / discharge controller 100 is the same as that of the first embodiment shown in FIG. In FIG. 15, for simplicity of explanation, it is shown only for the DC / DC converter 500 i of the plurality of DC / DC converter 500 1, 500 2, ... 500 n. “I” is an arbitrary natural number from 1 to n.
 一方、DC/DCコンバータ500は、図15に示すように目標電流取得部201、DCバス電圧目標値算出部202、DCバス電圧現在値取得部204、電流リミット値算出部205、方向切替判断部501、およびDCバス電圧制御部502を備えている。 On the other hand, as shown in FIG. 15, the DC / DC converter 500 i includes a target current acquisition unit 201 i , a DC bus voltage target value calculation unit 202 i , a DC bus voltage current value acquisition unit 204 i , and a current limit value calculation unit 205 i. , A direction switching determination unit 501 i and a DC bus voltage control unit 502 i .
 方向切替判断部501は、DCバス電圧現在値取得部204によって取得されたDCバス電圧現在値が、図16に示すようなあらかじめ設定された充電切替目標値を超えたときに、放電から充電方向へ切り替えるようにDCバス電圧制御部203に指示する。また、方向切替判断部501は、DCバス電圧現在値取得部204によって取得されたDCバス電圧現在値があらかじめ設定された放電切替目標値を下回ったときに、充電から放電方向へ切り替えるようにDCバス電圧制御部203に指示する。 Direction switching determination unit 501 i, when the DC bus voltage current value acquired by the DC bus voltage current value acquiring unit 204 i has exceeded the preset charge switching target value as shown in FIG. 16, from the discharge Instructs the DC bus voltage controller 203 i to switch to the charging direction. The direction switching determination unit 501 i switches from charging to discharging direction when the DC bus voltage current value acquired by the DC bus voltage current value acquiring unit 204 i falls below a preset discharge switching target value. To the DC bus voltage control unit 203 i .
 ここで、充電切替目標値および放電切替目標値は、下記式11~12で示すように算出する。 Here, the charge switching target value and the discharge switching target value are calculated as shown in the following equations 11-12.
 充電切替目標値=DCバス電圧基準値+α …(式11)
 放電切替目標値=DCバス電圧基準値-β …(式12)
Charge switching target value = DC bus voltage reference value + α (Expression 11)
Discharge switching target value = DC bus voltage reference value−β (Expression 12)
 DCバス電圧制御部502は、DCバス電圧目標値VとDCバス電圧現在値との偏差に比例した電流を流すことによって、DCバス電圧を制御する。また、DCバス電圧制御部502は、方向切替判断部501から放電から充電方向へ、または充電から放電方向へ切り替えるように指示があった場合、流す電流の方向を切り替える。 The DC bus voltage control unit 502 i controls the DC bus voltage by flowing a current proportional to the deviation between the DC bus voltage target value V i and the current DC bus voltage value. Further, the DC bus voltage control unit 502 i switches the direction of the flowing current when instructed by the direction switching determination unit 501 i to switch from discharging to charging or from charging to discharging.
 このように充電切替目標値および放電切替目標値を設けて充放電方向を切り替えることによって、急に負荷がかかる機器が動作して急激にDCバス電圧現在値が変化した場合にも対応して、複数の蓄電池の充放電を効率よく制御することができる。 In this way, by setting the charge switching target value and the discharge switching target value and switching the charge / discharge direction, it corresponds to the case where the device that is suddenly loaded operates and the DC bus voltage current value suddenly changes, Charge / discharge of a plurality of storage batteries can be controlled efficiently.
 なお、各実施の形態を通して、図4に示す充放電制御装置および蓄電システムの概略構成を用いて説明し、ストリング60は、複数の電池パックを直列に接続する構成としているが、これに限られるものではない。例えば、図17に示すストリング70のように複数の電池パックを直列に接続した上で並列に接続する構成としても構わないし、ストリング80のように複数の電池パックを並列に接続する構成としても構わない。 In addition, through each embodiment, it demonstrates using the schematic structure of the charging / discharging control apparatus and electrical storage system shown in FIG. 4, and although the string 60 is set as the structure which connects a some battery pack in series, it is restricted to this. It is not a thing. For example, a configuration may be adopted in which a plurality of battery packs are connected in series as in a string 70 shown in FIG. 17 and connected in parallel, or a configuration in which a plurality of battery packs are connected in parallel as in a string 80 may be adopted. Absent.
 本発明は、複数の蓄電池の充放電を効率よく制御することができ、充放電制御装置および蓄電システム等に用いるのに有用である。 The present invention can efficiently control charge / discharge of a plurality of storage batteries, and is useful for use in a charge / discharge control device, a power storage system, and the like.
 10  PV
 20  DC/DCコンバータ(DC/DC)
 32、33、34 電池パック
 40  DC/ACコンバータ(DC/AC)
 50  DCバス
 60  ストリング
 100 充放電コントローラ
 101 電力取得部
 102 全体電力算出部
 103 全体電流算出部
 104 目標電流算出部
 105 目標電流設定部
 106 電池情報取得部
 107 電池状態算出部
 108 割合決定部
 200、300、400、500 DC/DCコンバータ(DC/DC)
 201 目標電流取得部
 202 DCバス電圧目標値算出部
 203、502 DCバス電圧制御部
 204 DCバス電圧現在値取得部
 205、402 電流リミット値算出部
 210 PID制御部
 211 電流リミット制御部
 212 PWM
 213 パワーモジュール
 301 目標電流補正部
 302 定電流制御部
 403 電池残存容量取得部
 501 方向切替判断部
10 PV
20 DC / DC converter (DC / DC)
32, 33, 34 Battery pack 40 DC / AC converter (DC / AC)
50 DC bus 60 i string 100 charge / discharge controller 101 power acquisition unit 102 total power calculation unit 103 total current calculation unit 104 target current calculation unit 105 target current setting unit 106 battery information acquisition unit 107 battery state calculation unit 108 ratio determination unit 200 i , 300 i , 400 i , 500 i DC / DC converter (DC / DC)
201 i target current acquisition unit 202 i DC bus voltage target value calculation unit 203 i , 502 i DC bus voltage control unit 204 i DC bus voltage current value acquisition unit 205 i , 402 i current limit value calculation unit 210 i PID control unit 211 i current limit controller 212 i PWM
213 i power module 301 i target current correction unit 302 i constant current control unit 403 i battery remaining capacity acquisition unit 501 i direction switching determination unit

Claims (11)

  1.  DCバスに接続される複数の蓄電池の充放電を制御する充放電制御装置であって、
     前記複数の蓄電池のそれぞれの制御目標値を、当該蓄電池への充電の分配割合を示す充電割合または当該蓄電池からの放電の分配割合を示す放電割合に基づいて適時変更する目標値変更部と、
     前記複数の蓄電池のそれぞれの充放電を、適時変更された前記制御目標値に基づいて制御する制御部と
     を備える充放電制御装置。
    A charge / discharge control apparatus for controlling charge / discharge of a plurality of storage batteries connected to a DC bus,
    A target value changing unit that changes each control target value of the plurality of storage batteries in a timely manner based on a charge ratio indicating a distribution ratio of charge to the storage battery or a discharge ratio indicating a distribution ratio of discharge from the storage battery;
    A control part which controls each charge and discharge of a plurality of above-mentioned storage batteries based on the control target value changed timely.
  2.  前記目標値変更部は、
     DCバスに入力される入力電力値およびDCバスから出力される出力電力値を取得する電力取得部と、
     必要とされる全体電力値を前記入力電力値および前記出力電力値に基づいて算出する全体電力算出部と、
     全体電流値をあらかじめ設定されるDCバス基準電圧値および前記全体電力値に基づいて算出する全体電流算出部と、
     前記複数の蓄電池のそれぞれの充放電時の目標電流値を、前記全体電流値から当該蓄電池の前記充電割合または前記放電割合に基づいて算出する目標電流算出部と、
     前記制御目標値を前記目標電流値に基づいて適時変更する変更部とを備える
     請求項1記載の充放電制御装置。
    The target value changing unit
    A power acquisition unit for acquiring an input power value input to the DC bus and an output power value output from the DC bus;
    A total power calculation unit that calculates a required total power value based on the input power value and the output power value;
    An overall current calculation unit for calculating an overall current value based on a preset DC bus reference voltage value and the overall power value;
    A target current calculation unit that calculates a target current value at the time of charging and discharging of each of the plurality of storage batteries based on the charge rate or the discharge rate of the storage battery from the overall current value;
    The charge / discharge control apparatus according to claim 1, further comprising: a changing unit that changes the control target value in a timely manner based on the target current value.
  3.  前記制御目標値は、前記複数の蓄電池のそれぞれにおける充放電時の電流リミット値であり、
     前記充放電制御装置は、さらに、
     DCバスの現在の電圧値であるDCバス電圧現在値を取得するDCバス電圧現在値取得部を備え、
     前記目標値変更部は、さらに、
     前記複数の蓄電池のそれぞれにおける電流リミット値を、前記DCバス基準電圧値、前記目標電流値、および前記DCバス電圧現在値に基づいて算出し、算出した前記電流リミット値で現在の電流リミット値を変更する電流リミット値算出部を備え、
     前記制御部は、適時変更された前記電流リミット値を用いて前記複数の蓄電池のそれぞれにおける充放電を制御する
     請求項2記載の充放電制御装置。
    The control target value is a current limit value during charging / discharging in each of the plurality of storage batteries,
    The charge / discharge control device further includes:
    A DC bus voltage current value acquisition unit for acquiring a DC bus voltage current value which is a current voltage value of the DC bus;
    The target value changing unit further includes:
    A current limit value in each of the plurality of storage batteries is calculated based on the DC bus reference voltage value, the target current value, and the DC bus voltage current value, and the current limit value is calculated based on the calculated current limit value. It has a current limit value calculator to change,
    The charge / discharge control apparatus according to claim 2, wherein the control unit controls charge / discharge in each of the plurality of storage batteries using the current limit value changed in a timely manner.
  4.  前記電流リミット値算出部は、前記電流リミット値として前記複数の蓄電池のそれぞれにおける充電用電流リミット値および放電用電流リミット値を算出し、
     前記制御部は、前記充電用電流リミット値以上前記放電用電流リミット値以下の範囲で前記複数の蓄電池のそれぞれにおける充放電を制御する
     請求項3記載の充放電制御装置。
    The current limit value calculating unit calculates a current limit value for charging and a current limit value for discharging in each of the plurality of storage batteries as the current limit value,
    The charge / discharge control apparatus according to claim 3, wherein the control unit controls charge / discharge in each of the plurality of storage batteries within a range of the charge current limit value to the discharge current limit value.
  5.  前記制御目標値は、前記複数の蓄電池のそれぞれにおける充放電時のDCバス電圧目標値であり、
     前記目標値変更部は、さらに、
     前記複数の蓄電池のそれぞれにおける充放電時のDCバス電圧目標値を、前記DCバス基準電圧値および前記目標電流値に基づいて算出し、算出した前記DCバス電圧目標値で現在のDCバス電圧目標値を変更するDCバス電圧目標値算出部を備え、
     前記制御部は、前記複数の蓄電池のそれぞれにおける充放電時のDCバス電圧を、適時変更された前記DCバス電圧目標値に基づいて制御することにより、前記複数の蓄電池のそれぞれにおける充放電を制御する
     請求項2記載の充放電制御装置。
    The control target value is a DC bus voltage target value at the time of charging / discharging in each of the plurality of storage batteries,
    The target value changing unit further includes:
    A DC bus voltage target value at the time of charging / discharging in each of the plurality of storage batteries is calculated based on the DC bus reference voltage value and the target current value, and the current DC bus voltage target is calculated based on the calculated DC bus voltage target value. A DC bus voltage target value calculator for changing the value;
    The control unit controls charging / discharging in each of the plurality of storage batteries by controlling the DC bus voltage at the time of charging / discharging in each of the plurality of storage batteries based on the DC bus voltage target value changed in a timely manner. The charge / discharge control device according to claim 2.
  6.  前記充放電制御装置は、さらに、
     DCバスの現在の電圧値であるDCバス電圧現在値を取得するDCバス電圧現在値取得部を備え、
     前記制御部は、放電時に前記DCバス電圧現在値があらかじめ設定された充電切替目標値以上になった場合に、放電から充電に切り替え、充電時に前記DCバス電圧現在値があらかじめ設定された放電切替目標値以下になった場合に、充電から放電に切り替るように前記複数の蓄電池のそれぞれにおける充放電を制御する
     請求項5記載の充放電制御装置。
    The charge / discharge control device further includes:
    A DC bus voltage current value acquisition unit for acquiring a DC bus voltage current value which is a current voltage value of the DC bus;
    The control unit switches from discharging to charging when the DC bus voltage current value is equal to or higher than a preset charge switching target value at the time of discharging, and discharging switching at which the DC bus voltage current value is set at the time of charging. The charge / discharge control device according to claim 5, wherein charge / discharge of each of the plurality of storage batteries is controlled so as to switch from charge to discharge when the target value is not more than a target value.
  7.  前記制御目標値は、前記複数の蓄電池のそれぞれにおける充放電時の前記目標電流値であり、
     前記目標値変更部は、さらに、
     DCバスの現在の電圧値であるDCバス電圧現在値を取得するDCバス電圧現在値取得部と、
     前記目標電流値を、前記DCバス基準電圧値および前記DCバス電圧現在値に基づいて補正する目標電流補正部とを備え、
     前記制御部は、補正された前記目標電流値を用いて前記複数の蓄電池のそれぞれにおける充放電を制御する
     請求項2記載の充放電制御装置。
    The control target value is the target current value at the time of charging / discharging in each of the plurality of storage batteries,
    The target value changing unit further includes:
    A DC bus voltage current value acquisition unit for acquiring a DC bus voltage current value which is a current voltage value of the DC bus;
    A target current correction unit that corrects the target current value based on the DC bus reference voltage value and the DC bus voltage current value;
    The charge / discharge control apparatus according to claim 2, wherein the control unit controls charge / discharge in each of the plurality of storage batteries using the corrected target current value.
  8.  前記制御目標値は、前記複数の蓄電池のそれぞれにおける充放電時の電流リミット値であり、
     前記目標値変更部は、
     前記複数の蓄電池のそれぞれの現在の電池残存容量を取得する残存容量取得部と、
     取得された前記電池残存容量およびあらかじめ設定される電池残存容量の目標値に基づいて前記電流リミット値を算出し、算出した前記電流リミット値で現在の電流リミット値を変更する電流リミット値算出部とを備え、
     前記制御部は、適時変更された前記電流リミット値を用いて前記複数の蓄電池のそれぞれにおける充放電を制御する
     請求項1記載の充放電制御装置。
    The control target value is a current limit value during charging / discharging in each of the plurality of storage batteries,
    The target value changing unit
    A remaining capacity acquisition unit for acquiring a current battery remaining capacity of each of the plurality of storage batteries;
    A current limit value calculating unit that calculates the current limit value based on the acquired battery remaining capacity and a preset target value of the battery remaining capacity, and changes the current current limit value with the calculated current limit value; With
    The charge / discharge control apparatus according to claim 1, wherein the control unit controls charge / discharge in each of the plurality of storage batteries using the current limit value changed in a timely manner.
  9.  前記制御部は、前記複数の蓄電池のそれぞれに備えられ、当該蓄電池における充放電を前記制御目標値に基づいて制御する
     請求項1記載の充放電制御装置。
    The charge / discharge control apparatus according to claim 1, wherein the control unit is provided in each of the plurality of storage batteries and controls charge / discharge of the storage batteries based on the control target value.
  10.  請求項1~請求項9のいずれか1項に記載の充放電制御装置と、
     複数の蓄電池と
     を備える蓄電システム。
    The charge / discharge control device according to any one of claims 1 to 9,
    A power storage system comprising a plurality of storage batteries.
  11.  DCバスに接続される複数の蓄電池の充放電を制御する充放電制御方法であって、
     前記複数の蓄電池のそれぞれの制御目標値を、当該蓄電池への充電の分配割合を示す充電割合または当該蓄電池からの放電の分配割合を示す放電割合に基づいて適時変更し、
     前記複数の蓄電池のそれぞれの充放電を、適時変更された前記制御目標値に基づいて制御する
     充放電制御方法。
    A charge / discharge control method for controlling charge / discharge of a plurality of storage batteries connected to a DC bus,
    Each control target value of the plurality of storage batteries is changed in a timely manner based on a charge ratio indicating a distribution ratio of charge to the storage battery or a discharge ratio indicating a distribution ratio of discharge from the storage battery,
    A charge / discharge control method for controlling charge / discharge of each of the plurality of storage batteries based on the control target value changed in a timely manner.
PCT/JP2013/001930 2012-03-26 2013-03-21 Charging/discharging control apparatus, power storage system, and charging/discharging control method WO2013145658A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-070361 2012-03-26
JP2012070361 2012-03-26

Publications (1)

Publication Number Publication Date
WO2013145658A1 true WO2013145658A1 (en) 2013-10-03

Family

ID=49258970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001930 WO2013145658A1 (en) 2012-03-26 2013-03-21 Charging/discharging control apparatus, power storage system, and charging/discharging control method

Country Status (1)

Country Link
WO (1) WO2013145658A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130113437A1 (en) * 2011-11-07 2013-05-09 Sony Corporation Control apparatus, control method and control system
JP2016063717A (en) * 2014-09-22 2016-04-25 住友電気工業株式会社 Power storage system
JP2017505098A (en) * 2014-01-17 2017-02-09 ブルー ソリューションズ Method and system for managing a plurality of energy storage assemblies
WO2018225417A1 (en) * 2017-06-08 2018-12-13 パナソニックIpマネジメント株式会社 Power storage system and control device
WO2019103059A1 (en) * 2017-11-21 2019-05-31 国立研究開発法人理化学研究所 Direct-current bus control system
JP2021010227A (en) * 2019-06-28 2021-01-28 パナソニックIpマネジメント株式会社 Storage battery system, control method, and program
WO2021200902A1 (en) * 2020-03-31 2021-10-07 国立研究開発法人理化学研究所 Direct-current bus control system
CN113872258A (en) * 2020-06-30 2021-12-31 比亚迪股份有限公司 Battery current-sharing control method and battery current-sharing control system
EP4300754A4 (en) * 2021-03-26 2024-04-17 Huawei Digital Power Tech Co Ltd Energy storage system and control method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290845A (en) * 2006-04-27 2007-11-08 Hitachi Ltd Elevator system and battery unit
JP2008154302A (en) * 2006-12-14 2008-07-03 Toyota Motor Corp Power supply system, vehicle equipped with the same, and control method thereof
JP2010124634A (en) * 2008-11-20 2010-06-03 Sumitomo Heavy Ind Ltd Charge/discharge controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290845A (en) * 2006-04-27 2007-11-08 Hitachi Ltd Elevator system and battery unit
JP2008154302A (en) * 2006-12-14 2008-07-03 Toyota Motor Corp Power supply system, vehicle equipped with the same, and control method thereof
JP2010124634A (en) * 2008-11-20 2010-06-03 Sumitomo Heavy Ind Ltd Charge/discharge controller

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130113437A1 (en) * 2011-11-07 2013-05-09 Sony Corporation Control apparatus, control method and control system
US9929570B2 (en) * 2011-11-07 2018-03-27 Sony Corporation Control apparatus to control discharge from battery units
JP2017505098A (en) * 2014-01-17 2017-02-09 ブルー ソリューションズ Method and system for managing a plurality of energy storage assemblies
CN106461729A (en) * 2014-01-17 2017-02-22 布鲁技术公司 Method and system for managing a plurality of energy storage assemblies
JP2016063717A (en) * 2014-09-22 2016-04-25 住友電気工業株式会社 Power storage system
WO2018225417A1 (en) * 2017-06-08 2018-12-13 パナソニックIpマネジメント株式会社 Power storage system and control device
CN110710050B (en) * 2017-06-08 2023-02-17 松下知识产权经营株式会社 Power storage system and management device
CN110710050A (en) * 2017-06-08 2020-01-17 松下知识产权经营株式会社 Power storage system and management device
JPWO2018225417A1 (en) * 2017-06-08 2020-04-09 パナソニックIpマネジメント株式会社 Power storage system, management device
JPWO2019103059A1 (en) * 2017-11-21 2020-11-19 国立研究開発法人理化学研究所 DC bus control system
CN111448733A (en) * 2017-11-21 2020-07-24 国立研究开发法人理化学研究所 Direct current bus control system
EP3716435A4 (en) * 2017-11-21 2021-04-07 Riken Direct-current bus control system
US11133673B2 (en) 2017-11-21 2021-09-28 Riken Direct current bus control system
AU2018373453B2 (en) * 2017-11-21 2021-12-09 Riken Direct-current bus control system
WO2019103059A1 (en) * 2017-11-21 2019-05-31 国立研究開発法人理化学研究所 Direct-current bus control system
JP2021010227A (en) * 2019-06-28 2021-01-28 パナソニックIpマネジメント株式会社 Storage battery system, control method, and program
JP7390545B2 (en) 2019-06-28 2023-12-04 パナソニックIpマネジメント株式会社 Storage battery system, control method, and program
WO2021200902A1 (en) * 2020-03-31 2021-10-07 国立研究開発法人理化学研究所 Direct-current bus control system
CN113872258A (en) * 2020-06-30 2021-12-31 比亚迪股份有限公司 Battery current-sharing control method and battery current-sharing control system
EP4300754A4 (en) * 2021-03-26 2024-04-17 Huawei Digital Power Tech Co Ltd Energy storage system and control method therefor

Similar Documents

Publication Publication Date Title
WO2013145658A1 (en) Charging/discharging control apparatus, power storage system, and charging/discharging control method
US8716891B2 (en) Energy storage system connected to a grid and multiple power generation modules and method of controlling the same
JP6945949B2 (en) Storage battery system control device and control method
JP4838017B2 (en) Hybrid power supply and power management system and method applied to the hybrid power supply
US9337682B2 (en) Charging control device, solar power generation system and charging control method
KR102308628B1 (en) Hybrid Power Conversion System and Method for Determining Maximum Efficiency Using the Same
JP6198034B2 (en) Power control apparatus, power control method, program, and energy management system
JP2010148242A (en) Power conversion device, method for controlling charge and discharge of power conversion device, program for controlling power conversion device, and recording medium recorded with program for controlling power conversion device
JP2008099527A (en) Storage battery system in non-utility generation equipment connected to electric power system and driving method therefor
JP5656154B2 (en) Power system
JP2008131736A (en) Distributed power system and step-up/step-down chopper device
JP2010142040A (en) Power accumulation device having current balance function
JP2014106935A (en) Power generation system
US10063090B2 (en) Solar power generation device and control method of solar power generation device
KR101752888B1 (en) Battery system
KR20150135843A (en) Hybrid energy storage system and method of contolling the same
CN112204804A (en) Battery management architecture for flow batteries
JP2016116435A (en) Power conversion system
JP6172868B2 (en) Power supply
JP2009213299A (en) Power storage device
KR20160087034A (en) Vanadium redox flow battery for photovoltaic power generating system
KR102133558B1 (en) Cell balancing apparatus and method using fan
KR20160007739A (en) Tray balancing apparatus, tray balancing method, and rack balancing apparatus using fan
JP2002315224A (en) Fuel battery power source system and method for charging secondary cell in the fuel battery power source system
JP2018191380A (en) Residual quantity management device of storage battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13768377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP