WO2013062306A2 - High purity graphene synthesis melted in water through photocatalytic reaction - Google Patents

High purity graphene synthesis melted in water through photocatalytic reaction Download PDF

Info

Publication number
WO2013062306A2
WO2013062306A2 PCT/KR2012/008756 KR2012008756W WO2013062306A2 WO 2013062306 A2 WO2013062306 A2 WO 2013062306A2 KR 2012008756 W KR2012008756 W KR 2012008756W WO 2013062306 A2 WO2013062306 A2 WO 2013062306A2
Authority
WO
WIPO (PCT)
Prior art keywords
graphene oxide
solution
photocatalyst
rgo
graphene
Prior art date
Application number
PCT/KR2012/008756
Other languages
French (fr)
Korean (ko)
Other versions
WO2013062306A3 (en
Inventor
이재성
장지욱
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Publication of WO2013062306A2 publication Critical patent/WO2013062306A2/en
Publication of WO2013062306A3 publication Critical patent/WO2013062306A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • C01B32/192Preparation by exfoliation starting from graphitic oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/30Purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a method for synthesizing high purity graphene, and more particularly, to a method for synthesizing high purity graphene dissolved in water by reducing oxidized graphene through a photocatalytic reaction.
  • Graphene is a two-dimensional planar structure in which carbon is connected to each other in a hexagonal honeycomb shape, with excellent electromagnetic and optical properties, high thermal conductivity ( ⁇ 5,000 W / mK) and mechanical strength ( ⁇ 200 times stronger than steal). ) And has a large surface area (2,630 m 2 / g calculated).
  • graphene oxide can be synthesized in large quantities (more than tons), so that graphene can be obtained in cheaper quantities.
  • GO graphene oxide
  • RGO reduced graphene oxide
  • RGO can be utilized in many areas such as photocatalysts, fuel cells, cells, supercapacitors, hydrogen storage, etc., unlike CVD methods, RGO can be easily obtained in solution or powder state.
  • aggregation of graphenes is the biggest problem in solution synthesis because of van der Waals interactions between graphenes.
  • Li et al. ( Nat. Nanotech., 2008 , 3, 101-105) solve this problem by inducing negative charge of graphene by reducing GO through hydrazine in base solution and dissolving it in water.
  • the advantage of this method is that graphene can be dissolved in water without the use of any surfactants or stabilizers.
  • the disadvantage of this method is that hydrazine is very unhealthy, explosive and relatively expensive.
  • there is a limit in increasing conductivity due to nitrogen impurities, and the remaining hydrazine in the graphene solution makes it difficult to handle and process it.
  • Patent No. 1048490 issued to Sungkyunkwan University has been developed a method for reducing graphene oxide using a HI reducing agent containing a halogen element and a reducing agent containing a weaker acid.
  • graphene produced through this method is insoluble in water. Therefore, there is still a need for a method of obtaining a large amount of reduced graphene oxide more easily.
  • Another object of the present invention is to provide a novel graphene oxide reduction method.
  • the present invention provides a method for producing a reduced graphene oxide solution by producing a reduced graphene oxide by irradiating light to a solution containing an anionic photocatalyst and graphene oxide and separating the photocatalyst.
  • the present invention also provides a method of reducing the graphene oxide by mixing an anionic photocatalyst solution with the graphene oxide solution and irradiating light.
  • the graphene oxide is an oxide obtained by oxidizing graphene, and various oxidizing groups such as epoxy groups, carboxyl groups, and alcohol groups exist on the surface thereof.
  • Graphene oxide may be prepared by a method of oxidizing graphene, and commercially available for use.
  • solution means a liquid contained in a liquid in which a photocatalyst, graphene and / or graphene oxide are dissolved or dispersed.
  • the photocatalyst may reduce the graphene oxide by absorbing light, and is preferably a catalyst particle having an anion so as to have a repulsive force between the anion-containing graphene oxide and the ions.
  • a catalyst capable of absorbing infrared rays or visible light to reduce graphene oxide for example, WO 3 , Fe 2 O 3 , BiVO 4, and the like.
  • TiO 2 particles which form an isoelectric point at pH 6 and have an anion in a pH environment higher than pH 6 are used.
  • the photocatalyst has the same ions as graphene oxide or reduced graphene oxide, so that the repulsive force acts on each other, and can be reused through separation after the reaction.
  • the reduced graphene oxide may be separated from the catalyst by centrifugation, and may be separated into a higher purity photocatalyst and reduced graphene oxide depending on the speed of centrifugation.
  • the solution contains ammonia water to maintain basic pH so that TiO 2 and graphene oxide can be equally anionized. It is also possible to use known buffer solutions, but there is a fear that the metal ions contained in the buffer solution may aggregate the anions of the graphene to reduce the stability of the graphene solution.
  • the solution may further include a hole scavenger to help reduce the graphene oxide by the photocatalyst.
  • a hole scavenger various known organic compounds such as formic acid, acetic acid, sucrose, salicylic acid, methanol, ethanol and butanol may be used.
  • methanol which emits electrons having a high reduction voltage to form graphene of high conductivity, and formaldehyde decomposed during the reaction does not produce impurities.
  • light can be selected and used in a wavelength band in which reduction reaction of graphene oxide by a photocatalyst occurs, and preferably infrared to visible light.
  • the present invention provides a method for providing a photocatalyst and a graphene oxide reducer by irradiating light to a liquid containing graphene oxide and a photocatalyst in a state in which mutual repulsive force acts.
  • the present invention provides a liquid in which the reduced graphene oxide and the photocatalyst are separated from each other in a state of repulsive separation.
  • “is separable” means that the reduced graphene oxide and the photocatalyst are not combined, so that they can be separated through the separation process in the usual purity in the same manner as precipitation, centrifugation, filtration and extraction. This does not mean that the photocatalyst is completely separated so that it is not included at all.
  • the present invention provides a new graphene oxide reduction method and high purity reduced graphene oxide.
  • the reduction method according to the present invention is advantageous for commercialization in that the photocatalyst can be reused through a separation process, and the reduced graphene oxide can be dispersed in water, which is advantageous for storage and application.
  • a is TiO 2 state at pH 6 or higher
  • b is RGO UV state in basic solution
  • c is a basic solution of GO and TiO 2 (pH> 10).
  • D is the RGO UV and TiO 2 solution after 5 hours of UV irradiation
  • e is the RGO UV solution after supercentrifugation
  • the red laser shows the path through the RGO UV solution (10x diluted).
  • RGO UV is an AFM
  • a is the RGO UV UV-vis spectrum diluted 10-fold after supercentrifugation after each photocatalyst reduction time
  • b is the color change during photocatalytic reduction.
  • FIG. 4 is an analysis of RGO UV : a is a Carbon K-edge NEXAFS analysis of GO, RGO H2N-NH2 and RGO UV , b is Raman spectroscopy, c is XPS and d is IR spectroscopy.
  • TiO 2 Using photocatalyst and UV, TiO 2 Not a graphene conjugate, but a single layer of graphene was dissolved in high purity water. No stabilizer or surfactant was used. TiO 2
  • pH 6
  • RGO UV UV reduced graphene oxide
  • Fig. 1b carboxy group
  • FIG. 1C to 1E schematically show a process of synthesizing graphene dissolved in high purity water.
  • the pH is not maintained as a base, so the aggregation of the negative charges of RGO UV and TiO 2 disappears.
  • the solution is irradiated with a 500 W Hg arc lamp, the color of the solution changes from light brown to dark gray. This means that GO effectively turned to graphene (FIG. 1D).
  • Centrifugation at 7000 rpm to recover TiO 2 used in the reaction can recover relatively heavy TiO 2 .
  • centrifugation at 20000 rpm yields a high purity RGO UV solution. In this case more than 90% of the RGO UV can be recovered ( ⁇ 0.25 mg / 1 mL) (FIG. 1E).
  • the concentration of UV RGO in the solution may be filtered to RGO UV solution of constant volume and Al by measuring the weight of the filter paper. The highest concentration was above 1 mg / 1 mL.
  • the RGO UV solution melted stably without aggregation after a month. We can clearly see the way the laser passes by the tyndall effect of the RGO UV colloid (FIG. 1E). Likewise, since the RGO UV colloid is negatively charged, a small amount of NaCl is added to settle the particles.
  • the RGO UV colloid + TiO 2 and TiO 2 solutions are similarly negative because they are negatively charged.
  • Carbon K-edge (NEXAFS) analysis uses C 1s core electrons to excite an uncharged or partially filled graphene conduction.
  • NEXAFS Carbon K-edge
  • the I D / I G ratio is a good measure of the extent to which the sp 2 hybridization recovers. As shown in Table 1, graphene has similar values when reduced to UV and hydrazine (FIG. 4B).
  • X-ray photoemission spectroscopy X-ray photoemission spectroscopy
  • FT-IR Fourier-transform infrared spectroscopy
  • Example 1 Except for using ethanol instead of methanol in Example 1 it was carried out in the same manner. During the reaction, a small amount of acetaldehyde was formed. Conductivity was measured to a similar degree when using methanol.
  • Graphene was prepared according to Williams et al ( ACS Nano , 2008 , 2, 1487-1491) and the conductivity of the RGO hydrazine , Raman parameters were measured and listed in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a method for manufacturing reduced graphene oxide, and more specifically, to a method for manufacturing high purity graphene oxide by reducing graphene oxide with a photocatalyst. A method according to the present invention is capable of producing the reduced high purity graphene oxide in bulk.

Description

광촉매 반응을 통한 물에 녹는 고순도 그래핀 합성Synthesis of high purity graphene soluble in water through photocatalytic reaction
본 발명은 고순도의 그래핀을 합성하는 방법에 관한 것으로서, 보다 상세하게는 산화된 그래핀을 광촉매 반응을 통해 환원시켜 물에 녹는 고순도의 그래핀을 합성하는 방법에 관한 것이다.The present invention relates to a method for synthesizing high purity graphene, and more particularly, to a method for synthesizing high purity graphene dissolved in water by reducing oxidized graphene through a photocatalytic reaction.
그래핀은 탄소가 육각형의 벌집 모양으로 서로 연결된 2차원 평면 구조를 가진 물질로서, 월등한 전자기적 특성과 광학적 특성, 높은 열전도(~5,000 W/m.K)와 기계적인 강도(~200 times stronger than steal) 그리고 넓은 표면적(2,630 m2/g calculated)을 갖는다.Graphene is a two-dimensional planar structure in which carbon is connected to each other in a hexagonal honeycomb shape, with excellent electromagnetic and optical properties, high thermal conductivity (~ 5,000 W / mK) and mechanical strength (~ 200 times stronger than steal). ) And has a large surface area (2,630 m 2 / g calculated).
2004년 Novoselov et al.(Science, 2004 , 306, 666-669)이 스카치테이프 방법을 통해 하나의 층의 그래핀을 분리하면서부터 많은 연구 그룹이 그래핀에 대해서 연구해 오고 있다. 화학기상성장(CVD)은 그래핀을 합성하는 대표적인 방법들 중에 하나로서, 아주 질 높은 그래핀을 원하는 면적대로 얻을 수 있는 방법이다. 하지만 CVD 공정은 기본적으로 높은 온도가 필요하고 그래핀을 만들 때마다 Ni나 Cu 층을 에칭을 통해 깎아내야 하므로 제조비용이 여전히 높다. 그리고 이 합성법으로 만든 그래핀은 그 응용이 주로 ITO(indium tin oxide)나 FTO(fluorine-doped tin oxide) 전극을 대체하는 역할로서의 물질로 한정되어 있다.Since 2004, Novoselov et al. ( Science, 2004 , 306, 666-669) have separated graphene in one layer by using the scotch tape method, many research groups have been studying graphene. Chemical Vapor Growth (CVD) is one of the representative methods of synthesizing graphene, and is a method of obtaining very high quality graphene to a desired area. However, the CVD process still requires a high temperature, and the manufacturing cost is still high because the Ni or Cu layer must be scraped off every time graphene is made. Graphene made with this synthesis is limited to materials whose application is mainly to replace indium tin oxide (ITO) or fluorine-doped tin oxide (FTO) electrodes.
만약 효과적으로 그래핀을 용액 상에서 환원시킬 수 있다면 그래핀 옥사이드(GO)를 대량(ton 단위 이상)으로 합성할 수 있기 때문에 그래핀을 값싸게 대량으로 얻을 수 있을 것이다. 물론 용액 상에서 GO가 환원된 경우 흑연(graphite)이 한번 산화되었다가 환원되었기 때문에 일반 흑연과 비교해서 결점이 많아 품질은 다소 떨어진다. 그럼에도 환원된 그래핀 옥사이드(RGO)는 광촉매, 연료전지, 전지, 슈퍼커패시터, 수소저장 등 많은 영역에서 활용될 수 있는데, CVD 방법과 달리 RGO는 용액 상태나 파우더 상태로 쉽게 얻을 수 있기 때문이다. 그러나 용액 합성법에서는 그래핀들 사이에 반 데르 발스 상호작용 때문에 그래핀끼리의 응집(aggregation)이 가장 큰 문제이다.If graphene can be effectively reduced in solution, graphene oxide (GO) can be synthesized in large quantities (more than tons), so that graphene can be obtained in cheaper quantities. Of course, when GO is reduced in solution, since graphite is oxidized once and then reduced, the quality is somewhat lower than that of general graphite. Nevertheless, reduced graphene oxide (RGO) can be utilized in many areas such as photocatalysts, fuel cells, cells, supercapacitors, hydrogen storage, etc., unlike CVD methods, RGO can be easily obtained in solution or powder state. However, aggregation of graphenes is the biggest problem in solution synthesis because of van der Waals interactions between graphenes.
Li et al.(Nat. Nanotech., 2008, 3, 101-105)은 염기 용액에서 GO를 히드라진을 통해 환원시킴으로써 그래핀의 음전하를 유도하고 이를 통해 물에 녹게 하여 이 문제를 해결하였다. 이 방법의 장점은 어떤 계면활성제나 안정제를 쓰지 않고도 그래핀을 물에 녹일 수 있다는 것이다. 하지만 이 방법의 단점은 히드라진이 건강에 매우 좋지 않고 폭발성이 있으며 상대적으로 비싸다는데 있다. 게다가 질소 불순물로 인해 전도도를 높이는데 한계가 있고, 그래핀 용액에 남은 히드라진은 이를 다루고 처리하는 과정을 힘들게 한다.Li et al. ( Nat. Nanotech., 2008 , 3, 101-105) solve this problem by inducing negative charge of graphene by reducing GO through hydrazine in base solution and dissolving it in water. The advantage of this method is that graphene can be dissolved in water without the use of any surfactants or stabilizers. The disadvantage of this method, however, is that hydrazine is very unhealthy, explosive and relatively expensive. In addition, there is a limit in increasing conductivity due to nitrogen impurities, and the remaining hydrazine in the graphene solution makes it difficult to handle and process it.
한편, Williams et al.(Langmuir, 2009, 25, 13869-13873)은 TiO2와 그래핀 접합체를 자외선을 통해 광화학적으로 합성하였다. 여기선 에탄올이 홀 스캐빈저(hole scavenger)(홀을 제거하는 물질)로 쓰이고 GO는 TiO2의 전도대(conduction band)에서 환원된다. 이 방법은 항상 TiO2와 그래핀의 접합체를 형성한다.Meanwhile, Williams et al.Langmuir,2009, 25, 13869-13873) is a TiO2And graphene conjugates were photochemically synthesized through ultraviolet light. Ethanol is used here as a hole scavenger (hole removing material) and GO is TiO2Reduced in the conduction band of. This way is always TiO2And a conjugate of graphene.
국내에서는 성균관대학교에게 허여된 특허 제1048490호에서 할로겐 원소가 포함된 HI 환원제와 이보다 약한 산을 포함하는 환원제를 이용하여 그래핀 옥사이드를 환원시키는 방법이 개발되어 있다. 그러나 이 방법을 통해 만들어진 그래핀은 물에 녹지 않는다. 따라서 여전히 보다 쉽게 환원된 그래핀 옥사이드를 대량으로 얻을 수 있는 방법에 대한 요구가 계속되고 있다.In Korea, Patent No. 1048490 issued to Sungkyunkwan University has been developed a method for reducing graphene oxide using a HI reducing agent containing a halogen element and a reducing agent containing a weaker acid. However, graphene produced through this method is insoluble in water. Therefore, there is still a need for a method of obtaining a large amount of reduced graphene oxide more easily.
본 발명의 목적은 고순도의 환원된 그래핀 옥사이드를 대량으로 생산할 수 있는 방법을 제공하는 것이다.It is an object of the present invention to provide a process for producing high purity reduced graphene oxide in large quantities.
본 발명의 다른 목적은 새로운 그래핀 옥사이드 환원 방법을 제공하는 것이다.Another object of the present invention is to provide a novel graphene oxide reduction method.
본 발명의 또 다른 목적은 환원된 그래핀 옥사이드와 환원 촉매를 분리하는 방법을 제공하는 것이다.It is another object of the present invention to provide a method for separating reduced graphene oxide and a reduction catalyst.
본 발명은 음이온을 띤 광촉매와 그래핀 옥사이드를 포함하는 용액에 광을 조사하여 환원된 그래핀 옥사이드를 제조하고 광촉매를 분리시켜 고순도의 환원된 그래핀 옥사이드 용액을 제조하는 방법을 제공한다.The present invention provides a method for producing a reduced graphene oxide solution by producing a reduced graphene oxide by irradiating light to a solution containing an anionic photocatalyst and graphene oxide and separating the photocatalyst.
본 발명은 또한 그래핀 옥사이드 용액에 음이온을 띤 광촉매 용액을 혼합하고 광을 조사하여 그래핀 옥사이드를 환원시키는 방법을 제공한다.The present invention also provides a method of reducing the graphene oxide by mixing an anionic photocatalyst solution with the graphene oxide solution and irradiating light.
본 발명에 있어서, 상기 그래핀 옥사이드는 그래핀을 산화시킨 산화물로서 표면에 에폭시기, 카르복시기, 알코올기와 같은 다양한 산화기가 존재하며, pH가 7 이상인 염기성 용매에서는 카르복시기가 음이온을 띠게 된다. 그래핀 옥사이드는 그래핀을 산화시키는 방법에 의해서 제조될 수 있으며, 상업적으로 구입해서 사용하는 것도 가능하다.In the present invention, the graphene oxide is an oxide obtained by oxidizing graphene, and various oxidizing groups such as epoxy groups, carboxyl groups, and alcohol groups exist on the surface thereof. Graphene oxide may be prepared by a method of oxidizing graphene, and commercially available for use.
본 발명에서 “용액”이라 함은 광촉매, 그래핀 및/또는 그래핀 옥사이드가 용해 또는 분산된 상태로 액체 내에 포함된 액체를 의미한다.In the present invention, the term "solution" means a liquid contained in a liquid in which a photocatalyst, graphene and / or graphene oxide are dissolved or dispersed.
본 발명에 있어서, 상기 광촉매는 광을 흡수하여 그래핀 옥사이드를 환원시킬 수 있으며, 음이온을 띠는 그래핀 옥사이드와 이온간 반발력을 가질 수 있도록 음이온을 띠는 촉매 입자인 것이 바람직하다. 상기 광촉매로는 적외선이나 가시광선을 흡수하여 그래핀 옥사이드를 환원시킬 수 있는 촉매를 사용하는 것이 바람직하며, 예를 들어, WO3, Fe2O3, BiVO4 등이다. 발명의 바람직한 실시에 있어서, 상기 광촉매로는 pH 6에서 등전점을 형성하여 pH 6보다 높은 pH 환경에서 음이온을 띠는 TiO2 입자가 사용된다.In the present invention, the photocatalyst may reduce the graphene oxide by absorbing light, and is preferably a catalyst particle having an anion so as to have a repulsive force between the anion-containing graphene oxide and the ions. As the photocatalyst, it is preferable to use a catalyst capable of absorbing infrared rays or visible light to reduce graphene oxide, for example, WO 3 , Fe 2 O 3 , BiVO 4, and the like. In a preferred embodiment of the invention, as the photocatalyst, TiO 2 particles which form an isoelectric point at pH 6 and have an anion in a pH environment higher than pH 6 are used.
이론적으로 한정된 것은 아니지만, 상기 광촉매는 그래핀 옥사이드나 환원된 그래핀 옥사이드와 동일한 이온을 띠고 있어 상호간에 반발력이 작용하여, 반응 후 분리를 통해서 재사용될 수 있다. 본 발명에 있어서, 환원된 그래핀 옥사이드는 원심분리를 이용하여 촉매와 분리될 수 있으며, 원심분리의 속도에 따라서 보다 높은 순도의 광촉매와 환원된 그래핀 옥사이드로 분리될 수 있다.Although not limited in theory, the photocatalyst has the same ions as graphene oxide or reduced graphene oxide, so that the repulsive force acts on each other, and can be reused through separation after the reaction. In the present invention, the reduced graphene oxide may be separated from the catalyst by centrifugation, and may be separated into a higher purity photocatalyst and reduced graphene oxide depending on the speed of centrifugation.
본 발명의 실시에 있어서, 상기 용액은 염기성 pH를 유지하여 TiO2와 그래핀 옥사이드가 동일하게 음이온을 띨 수 있도록 암모니아수를 포함하는 것이 좋다. 공지된 버퍼 용액들을 사용하는 것도 가능하나, 버퍼 용액에 포함된 금속이온이 그래핀의 음이온을 응집시켜 그래핀 용액의 안정성을 저하시킬 우려가 있다.In the practice of the present invention, it is preferable that the solution contains ammonia water to maintain basic pH so that TiO 2 and graphene oxide can be equally anionized. It is also possible to use known buffer solutions, but there is a fear that the metal ions contained in the buffer solution may aggregate the anions of the graphene to reduce the stability of the graphene solution.
본 발명에 있어서, 상기 용액은 광촉매에 의한 그래핀 옥사이드의 환원을 돕기 위해서 홀 스캐빈저를 더 포함할 수 있다. 상기 홀 스캐빈저로는 포름산, 아세트산, 수크로스, 살리실산, 메탄올, 에탄올, 부탄올과 같은 공지된 다양한 유기화합물을 사용할 수 있다. 이론적으로 한정된 것은 아니지만, 높은 환원 전압을 가지는 전자를 방출하여 고전도도의 그래핀을 형성하고 반응 중 생성되는 포름알데히드가 분해되어 불순물이 생성되지 않는 메탄올을 사용하는 것이 특히 바람직하다.In the present invention, the solution may further include a hole scavenger to help reduce the graphene oxide by the photocatalyst. As the hole scavenger, various known organic compounds such as formic acid, acetic acid, sucrose, salicylic acid, methanol, ethanol and butanol may be used. Although not limited in theory, it is particularly preferable to use methanol which emits electrons having a high reduction voltage to form graphene of high conductivity, and formaldehyde decomposed during the reaction does not produce impurities.
본 발명에 있어서, 광은 광촉매에 의한 그래핀 옥사이드의 환원 반응이 일어나는 파장대에서 선택해서 사용할 수 있으며, 바람직하게는 적외선 내지 가시광선이다.In the present invention, light can be selected and used in a wavelength band in which reduction reaction of graphene oxide by a photocatalyst occurs, and preferably infrared to visible light.
본 발명은 다른 측면에 있어서, 그래핀 옥사이드와 광촉매가 상호 반발력이 작용하는 상태로 포함된 액체에 광을 조사하여 광촉매와 그래핀 옥사이드 환원체를 제공하는 방법을 제공한다.In another aspect, the present invention provides a method for providing a photocatalyst and a graphene oxide reducer by irradiating light to a liquid containing graphene oxide and a photocatalyst in a state in which mutual repulsive force acts.
본 발명은 또 다른 측면에 있어서, 환원된 그래핀 옥사이드와 광촉매가 분리 가능하게 상호 반발력이 있는 상태로 포함된 액체를 제공한다. 여기서 “분리 가능하다”란 환원된 그래핀 옥사이드와 광촉매가 결합되어 있지 않아, 침전, 원심분리, 여과, 추출과 같은 방식으로 통상적인 순도로 분리 공정을 통해서 분리될 수 있음을 의미하며, 분리 후 광촉매가 전혀 포함되지 않도록 완전히 분리된다는 것을 의미하지는 않는다.In yet another aspect, the present invention provides a liquid in which the reduced graphene oxide and the photocatalyst are separated from each other in a state of repulsive separation. Here, "is separable" means that the reduced graphene oxide and the photocatalyst are not combined, so that they can be separated through the separation process in the usual purity in the same manner as precipitation, centrifugation, filtration and extraction. This does not mean that the photocatalyst is completely separated so that it is not included at all.
본 발명에 의해서 새로운 그래핀 옥사이드 환원 방법과 고순도의 환원된 그래핀 옥사이드가 제공되었다. 본 발명에 따른 환원 방법은 광촉매를 분리 공정을 통해서 재사용할 수 있다는 점에서 상업화에 유리하고, 환원된 그래핀 옥사이드는 물에 분산될 수 있어 저장 및 응용이 유리하다.The present invention provides a new graphene oxide reduction method and high purity reduced graphene oxide. The reduction method according to the present invention is advantageous for commercialization in that the photocatalyst can be reused through a separation process, and the reduced graphene oxide can be dispersed in water, which is advantageous for storage and application.
도 1은 본 발명에 따른 수용성 그래핀의 광촉매 합성 개요이다: a는 pH 6 이상에서 TiO2 상태이고, b는 염기성 용액에서 RGOUV 상태이고, c는 GO와 TiO2의 염기성 용액(pH>10)에서 상태이고, d는 5시간 UV 조사 후 RGOUV과 TiO2 용액이고, e는 슈퍼원심분리 후 RGOUV 용액이며, 붉은색 레이저는 RGOUV 용액(10x diluted)을 통과하는 경로를 보여준다.1 is a schematic of photocatalytic synthesis of water-soluble graphene according to the present invention: a is TiO 2 state at pH 6 or higher, b is RGO UV state in basic solution, c is a basic solution of GO and TiO 2 (pH> 10). ), D is the RGO UV and TiO 2 solution after 5 hours of UV irradiation, e is the RGO UV solution after supercentrifugation, and the red laser shows the path through the RGO UV solution (10x diluted).
도 2는 RGOUV의 AFM 및 HRTEM 이미지이다: a는 RGOUV의 AFM 이미지이고, b는 Williams et al.(ACS Nano, 2008, 2, 1487-1491)의 방법으로 제조된 RGO의 AFM 이미지이고, c는 HRTEM 이미지와 대응되는 SAED 패턴이다.2 is an AFM, and HRTEM images of RGO UV: a is an AFM image of a UV RGO, b is an AFM image of the RGO prepared by the method of Williams et al (ACS Nano, 2008 , 2, 1487-1491),. c is the SAED pattern corresponding to the HRTEM image.
도 3은 RGOUV의 UV-vis 스펙트럼이다: a는 각각의 광촉매 환원 시간 후 슈퍼원심분리 후 10배로 희석된 RGOUV UV-vis 스펙트럼이고, b는 광촉매 환원 동안 색 변화이다.3 is the UV-vis spectrum of RGO UV : a is the RGO UV UV-vis spectrum diluted 10-fold after supercentrifugation after each photocatalyst reduction time, and b is the color change during photocatalytic reduction.
도 4는 RGOUV의 분석이다: a는 GO, RGOH2N-NH2 및 RGOUV의 Carbon K-edge NEXAFS 분석이고, b는 Raman spectroscopy이고, c는 XPS이고, d는 IR spectroscopy이다.FIG. 4 is an analysis of RGO UV : a is a Carbon K-edge NEXAFS analysis of GO, RGO H2N-NH2 and RGO UV , b is Raman spectroscopy, c is XPS and d is IR spectroscopy.
이하, 도면을 참조하면서 본 발명에 대해서 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail, referring drawings.
본 발명자들은 TiO2를 광촉매로 사용하고 UV를 이용해서, TiO2와 그래핀 접합체가 아닌, 고순도의 물에 녹는 한 겹의 그래핀을 합성하였다. 어떤 안정제나 계면활성제도 사용되지 않았다. TiO2 파우더는 산과 염기의 성질을 동시에 가지고 있고, 등전점인 pH=6을 넘어서면 음전하를 띤다 (도 1a). 마찬가지로 RGOUV(UV로 환원된 그래핀 옥사이드) 역시 카르복시기에 의해서 염기에서는 음전하를 띤다 (도 1b). 따라서 물 안에서 둘은 서로를 밀어내고, 서로 떨어진 상태로 TiO2와 RGOUV 존재한다.The inventors of the TiO2Using photocatalyst and UV, TiO2Not a graphene conjugate, but a single layer of graphene was dissolved in high purity water. No stabilizer or surfactant was used. TiO2 The powder has the properties of acid and base at the same time, and has a negative charge above the isoelectric point, pH = 6 (FIG. 1A). Like RGOUV(UV reduced graphene oxide) is also negatively charged at the base by the carboxy group (Fig. 1b). Therefore, in the water, the two push each other out and away from each other2And RGOUV exist.
도 1c 내지 1e는 고순도의 물에 녹는 그래핀을 합성하는 과정을 도식적으로 나타내고 있다. 먼저 GO 수용액과 미량의 NH4OH가 들어있는 P25(commercial TiO2)-메탄올/물 용액을 각각 슈퍼초음파분해(ultrasonication)를 시킨 후 두 용액을 광 반응기에서 섞어준다 (도 1c). 여기서 NH4OH가 없으면 pH가 염기로 유지되지 않아 RGOUV와 TiO2의 음전하가 사라지기 때문에 응집 현상이 생긴다. 이 용액에 500 W Hg 아크램프(arc lamp)로 빛을 조사하면 용액의 색깔이 밝은 갈색에서 어두운 회색으로 바뀐다. 이는 GO가 효과적으로 그래핀으로 바뀌었음을 의미한다 (도 1d).1C to 1E schematically show a process of synthesizing graphene dissolved in high purity water. First, supersonication of P25 (commercial TiO 2 ) -methanol / water solution containing a small amount of GO aqueous solution and a small amount of NH 4 OH is performed, followed by mixing the two solutions in an optical reactor (FIG. 1C). In the absence of NH 4 OH, the pH is not maintained as a base, so the aggregation of the negative charges of RGO UV and TiO 2 disappears. When the solution is irradiated with a 500 W Hg arc lamp, the color of the solution changes from light brown to dark gray. This means that GO effectively turned to graphene (FIG. 1D).
반응에 사용된 TiO2를 회수하기 위해 7000 rpm으로 원심분리를 해주면 상대적으로 무거운 TiO2를 회수할 수 있다. 추가적으로 20000 rpm으로 원심분리를 하여주면 고순도의 RGOUV 용액을 얻을 수 있다. 이 경우 RGOUV를 90% 이상 회수할 수 있다 (~0.25 mg/1 mL) (도 1e).Centrifugation at 7000 rpm to recover TiO 2 used in the reaction can recover relatively heavy TiO 2 . In addition, centrifugation at 20000 rpm yields a high purity RGO UV solution. In this case more than 90% of the RGO UV can be recovered (˜0.25 mg / 1 mL) (FIG. 1E).
용액 안에 RGOUV의 농도는 일정 부피의 RGOUV 용액을 여과하고 필터 페이퍼의 무게를 잼으로써 알 수 있다. 최고 농도는 1 mg/1 mL를 상회하였다. 이 RGOUV 용액은 한 달이 지나도 응집 없이 안정하게 녹아 있었다. 우리는 RGOUV 콜로이드의 틴들 현상(tyndall effect)에 의해 레이저가 지나가는 길을 명확히 볼 수 있다 (도 1e). 마찬가지로 RGOUV 콜로이드가 음전하를 띠고 있기 때문에, 소량의 NaCl을 넣어주면 침강한다, RGOUV 콜로이드+TiO2, TiO2 용액도 마찬가지로 음전하를 띠고 있기 때문에 같은 현상을 보인다.The concentration of UV RGO in the solution may be filtered to RGO UV solution of constant volume and Al by measuring the weight of the filter paper. The highest concentration was above 1 mg / 1 mL. The RGO UV solution melted stably without aggregation after a month. We can clearly see the way the laser passes by the tyndall effect of the RGO UV colloid (FIG. 1E). Likewise, since the RGO UV colloid is negatively charged, a small amount of NaCl is added to settle the particles. The RGO UV colloid + TiO 2 and TiO 2 solutions are similarly negative because they are negatively charged.
만들어진 RGOUV 용액을 원자력현미경(AFM)으로 분석해 보면, RGOUV의 높이는 ~0.64 nm로 일반적인 값을 얻었다 (도 2a). 이는 RGOUV에 붙은 환원되지 않은 에폭시기와 카르보닐기로 인해 이론적인 한 개의 층인 그래핀 두께인 0.334 nm 보다는 큰 값을 나타내었다. RGOUV가 순수한 상태의 그래핀으로 존재함을 알았고, 아주 극미량의 TiO2가 존재하나. 이는 X선의 측정 범위보다도 적었다. 원심분리의 속도를 올리거나, P25에서 작은 입자의 TiO2를 제거한 후 사용하게 되면 이 극미량의 TiO2도 거의 다 제거 할 수 있다. XPS 분석에서 Ti 2p3/2와 Ti 2p1/2을 가리키는 459.6 eV와 465.4 eV는 관찰되지 않았고, 마찬가지로 SEM-EDAX 분석으로도 티타늄은 검출되지 않았다.When the resulting RGO UV solution was analyzed by atomic force microscope (AFM), the height of the RGO UV was ~ 0.64 nm to obtain a general value (Fig. 2a). This is due to the unreduced epoxy and carbonyl groups attached to the RGO UV , which is greater than 0.334 nm, the theoretical graphene thickness. We found that RGO UV is present in pure graphene, but there is a very small amount of TiO 2 . This was less than the measurement range of X-rays. Increasing the speed of centrifugation or removing small particles of TiO 2 from P25 can remove most of the trace amounts of TiO 2 . In the XPS analysis, 459.6 eV and 465.4 eV indicating Ti 2p 3/2 and Ti 2p 1/2 were not observed. Similarly, titanium was not detected by SEM-EDAX analysis.
Williams et al. 방법대로 그래핀을 합성하였을 때, 거의 모든 그래핀은 TiO2(P25)와 composite를 이루고 있었다 (도 2b). TiO2 피크가 XRD 분석에서 관찰되었다. 반면 본 발명에 따른 RGOUV 샘플의 XRD 패턴에서는 TiO2 피크가 관찰되지 않았다. RGOUV 샘플의 XRD 패턴에서 2θ=~24.1°(d-spacing ~3.69Å)의 피크가 흑연의 (002)면 즉, 2θ=26.7° 또는 d-spacing ~3.34Å 위치와 비슷한 값이 나왔다.Williams et al. When graphene is synthesized according to the method, almost all graphene is TiO2It was composited with (P25) (FIG. 2B). TiO2 Peaks were observed in XRD analysis. Whereas RGO according to the present inventionUV TiO in the XRD pattern of the sample2 No peak was observed. RGOUV In the XRD pattern of the sample, the peak of 2θ = ˜24.1 ° (d-spacing ˜3.69 μs) showed a value similar to the (002) plane of graphite, that is, 2θ = 26.7 ° or d-spacing ˜3.34 μs.
RGOUV 용액을 묽게 한 후, holy carbon grid 위에 올려 80℃ 오븐에서 말려준 후 투과전자현미경(TEM) 사진을 찍었다 (도 2c). TEM 이미지에 두 곳의 선택된 영역에 대해 제한시야전자회절(SAED) 패턴을 얻었다. 두 부분 모두 [001] zone axis를 따라서 찍었다. 그 중 위의 부분에서 첫 번째 링에 12개의 강한 점이 보이는데 이는 (1100)면에 해당하는 반사평면에 해당하고 이는 [0001] 굴절 패턴의 6각형 대칭(hexagonal symmetry)을 보여준다. 12개의 밝은 점은 상대적으로 결정구조가 잘 발달한 두 장의 RGOUV 시트(sheet)가 30도로 틀어져서 겹쳐져 있음을 알려준다. 그 아래 부분에서는 24개의 점이 희미하게 관찰되는데 4개의 그래핀이 서로 겹쳐져 있음을 알 수 있다.After diluting the RGO UV solution, the resultant was placed on a holy carbon grid, dried in an oven at 80 ° C., and a transmission electron microscope (TEM) photograph was taken (FIG. 2C). Restriction field electron diffraction (SAED) patterns were obtained for two selected areas in the TEM image. Both parts were taken along the [001] zone axis. In the upper part of the first ring 12 strong points are visible, which corresponds to the reflection plane corresponding to the (1100) plane, which shows the hexagonal symmetry (hexagonal symmetry) of the refractive pattern. The twelve bright spots indicate that two relatively well-developed RGO UV sheets are overlapped at 30 degrees. In the lower part, 24 dots are faintly observed, indicating that four graphenes overlap each other.
RGOUV의 전도도를 알아보기 위해서 0.5 mL의 RGOUV 용액(~0.25 mg/1 mL)을 18 x 18 mm 커브 글래스 위에 떨어뜨린 후 100℃ 오븐에서 1시간 동안 건조시켜 RGOUV을 만들었다. 얻어진 필름의 두께는 300 nm 였다. 면저항과 전도도는 four point probe 방법을 사용하여 측정하였다. 후술하는 표 1에서 보여지는 것과 같이 RGOUV 필름의 전도도는 RGOH2N-NH2의 저항과 거의 비슷한 정도이다.To find out the UV RGO of the conductivity by a UV RGO solution (~ 0.25 mg / 1 mL) in 0.5 mL and then dropped over a 18 x 18 mm glass drying curve for one hour at 100 ℃ oven made RGO UV. The thickness of the obtained film was 300 nm. Sheet resistance and conductivity were measured using a four point probe method. As shown in Table 1 below, the conductivity of the RGO UV film is about the same as the resistance of RGO H2N-NH2 .
물에 녹는 RGOUV의 형성은 UV-vis spectroscopy를 통해서 관찰되었다. UV를 조사하는 동안 GO의 흡수 파장은 231 nm에서 red-shift되고 absorbance는 시간이 지날수록 더 커진다. 이는 sp2 혼성 카본 네트워크가 회복, 형성되었음을 보여주는 것이다. 5시간이 지나면 더 이상 red shift나 absorbance의 증가가 보이지 않는데 이는 반응이 끝났음을 의미한다. 더 이상의 반응은 RGOUV의 전도도의 변화에도 영향을 미치지 않는다. 여기서 측정된 모든 용액은 원심분리를 한 후 10배로 희석되었다. RGOUV와 TiO2가 음전하로 인하여 서로 떨어져 있기 때문에 일정 시간 조사 후에도 RGOUV의 분해가 일어나지는 않는다.Formation of RGO UV in water was observed through UV-vis spectroscopy. During UV irradiation, the absorption wavelength of GO is red-shifted at 231 nm and the absorbance becomes larger over time. This shows that the sp 2 hybrid carbon network was recovered and formed. After 5 hours, there is no longer any increase in red shift or absorbance, indicating that the reaction is complete. The further reaction does not affect the change in the conductivity of the RGO UV . All solutions measured here were diluted 10-fold after centrifugation. Since RGO UV and TiO 2 are separated from each other due to negative charges, decomposition of RGO UV does not occur even after a certain time of irradiation.
Carbon K-edge (NEXAFS) 분석은 C 1s 코어 전자(core electrons)가, 차지 않았거나 부분적으로 채워진 그래핀의 전도대로 여기함을 이용하는 것이다. GO가 RGOUV로 환원될 때 그래핀 Brillouin zone의 M과 L 점 주위에 π* symmetry 상태로의 전이로 인해 285.6 eV의 피크는 증가한다. 반면 π* C=O symmetry와 C-O 합쳐진 피크에 해당하는 288 eV 부근의 피크는 줄어들게 된다 (도 4a). NEXAFS 결과는 Raman spectroscopy와 경향과 같다. 방향족 탄소의 E2g mode로 비롯된 G 밴드(~1600 cm-1)의 피크 세기는, 그래핀 판들이 환원 반응 도중 쪼개어지기 때문에 6-fold 방향고리(aromatic rings)가 회복됨에도, 약해진다. 그리고 잔물결, 모서리, 결점 등의 무질서한 부분으로 기인되는 D 밴드(~1354 cm-1)의 피크는 환원이 일어남에 따라 강해진다. 따라서 ID/IG 비율은 sp2 혼성이 회복되는 정도를 말해주는 좋은 척도이다. 표 1에서 보여주듯이 그래핀이 UV와 히드라진으로 환원되었을 때 비슷한 값을 가진다 (도 4b).Carbon K-edge (NEXAFS) analysis uses C 1s core electrons to excite an uncharged or partially filled graphene conduction. When GO is reduced to RGO UV , the peak of 285.6 eV increases due to the transition to π * symmetry state around the M and L points of the graphene Brillouin zone. On the other hand, the peak near 288 eV corresponding to the peak combined with π * C = O symmetry is reduced (Fig. 4a). NEXAFS results are in line with Raman spectroscopy. The peak intensity of the G band (˜1600 cm −1 ) resulting from the E 2g mode of aromatic carbon is weakened, even though 6-fold aromatic rings are recovered because the graphene plates split during the reduction reaction. And the peak of the D band (~ 1354 cm -1 ) caused by disordered portions such as ripples, edges, and defects becomes stronger as the reduction occurs. Therefore, the I D / I G ratio is a good measure of the extent to which the sp 2 hybridization recovers. As shown in Table 1, graphene has similar values when reduced to UV and hydrazine (FIG. 4B).
X-ray photoemission spectroscopy(XPS)와 Fourier-transform infrared spectroscopy(FT-IR) 스펙트럼 역시 NEXAFS 및 Raman 결과와 비슷한 경향을 가진다. GO, RGOH2N-NH2 및 RGOUV의 XPS 분석에서 284.6, 286.5, 287.8, 289.1 eV의 피크 위치는 각각 C1s 피크의 C-C, C-O, C=O, C(O)O에 해당한다. 그 중에서 특히 286.5(C-O) eV 피크의 크기가 에폭시기와 히드록시기가 급격히 줄어듦에 따라 RGOH2N-NH2 및 RGOUV 경우에서 모두 줄어든다 (도 4c). FT-IR spectroscopy에서 GO의 스펙트럼을 살펴보면 C-O(vc-o. at 1064 cm-1), C-O-C(vc-o-c. at 1250 cm-1), C-OH(vc-o-c. at 1365 cm-1), C=O(vc=o. at 1728 cm-1)와 산화되지 않은 흑연 도메인의 skeletal vibrations(1616 cm-1)가 존재한다. RGOH2N-NH2 및 RGOUV 두 경우 모두 이 모든 피크가 급격하게 감소함을 알 수 있다. 이는 GO가 RGOUV가 되면서 그래픽 구조가 다시 회복되었음을 의미한다.X-ray photoemission spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) spectra also tend to be similar to NEXAFS and Raman results. GO, RGOH2N-NH2 And RGOUVIn the XPS analysis, the peak positions of 284.6, 286.5, 287.8, and 289.1 eV are C, respectively.1 s Corresponds to C-C, C-O, C = O, and C (O) O of the peak. Among them, RGO, as the size of 286.5 (C-O) eV peaks are rapidly reduced in epoxy group and hydroxyl group,H2N-NH2 And RGOUV In both cases it is reduced (Figure 4c). Looking at the spectrum of GO in FT-IR spectroscopy, C-O (vco. at 1064 cm-One), C-O-C (vcoc. at 1250 cm-One), C-OH (vcoc. at 1365 cm-One), C = O (vc = o. at 1728 cm-One) And skeletal vibrations of unoxidized graphite domain (1616 cm)-One) Exists. RGOH2N-NH2 And RGOUV In both cases it can be seen that all of these peaks are drastically reduced. This means GO is RGOUVThis means that the graphic structure has been restored.
모든 NEXAFS, Raman, XPS 및 FT-IR 결과는 GO가 광촉매에 의해서 효과적으로 그래핀으로 바뀌었으며, RGOUV는 히드라진으로부터 환원된 RGOH2N-NH2와 비슷한 성질을 가진다는 것을 보여주었다.All NEXAFS, Raman, XPS and FT-IR results showed that GO was effectively converted to graphene by photocatalysts, and RGO UV had properties similar to RGO H2N-NH2 reduced from hydrazine.
실시예 1Example 1
Hummers et al.(J. Am. Chem. Soc. 1958, 80, 1339) 방법에 따라 제조된 45 mg의 그래핀 옥사이드를 45 mL의 물에 넣고 high intensity ultrasonic processor(Autotune Series 750 Watt model)를 이용해서, 30분간 슈퍼초음파분해처리 한 후 MF 500(Hanil)으로 3000 rpm에서 30분간 원심분리 하였다. 이와는 독립적으로 500 mg의 P25(Agonics; TiO2)를 메탄올(anhydrous)과 물의 혼합물에 250 µL의 암모니아 용액(~30%)을 더한 후 30분간 슈퍼초음파분해처리를 하였다. 그리고 두 용액을 광 반응기에 섞고 이를 아이스 배쓰(ice bath) 안에서 시행하였다. N2 퍼징을 30분 한 후, 500-W Hg 아크램프(Oriel 61945)를 광원으로 사용하여 광 반응을 시행하였다. 광원은 IR 필터를 통한 후 광 반응기에 조사되었다. 5시간 이상의 반응 후 P25는 슈퍼원심분리기(Mega 21R)를 이용하여 7000 rpm 에서 30분 동안 원심분리를 통해 분리하고, 남은 그래핀 용액을 20000 rpm에서 원심분리 하여 RGOUV 용액의 순도를 높여 주었다. 제조된 RGOUV의 저항, 전도도, Raman 파라미터를 측정하여 표 1에 기재하였다.45 mg of graphene oxide prepared according to Hummers et al. ( J. Am. Chem. Soc. 1958 , 80, 1339) method was added to 45 mL of water using a high intensity ultrasonic processor (Autotune Series 750 Watt model). After 30 minutes of super sonication, MF 500 (Hanil) was centrifuged at 3000 rpm for 30 minutes. Independently, 500 mg of P25 (Agonics; TiO 2 ) was added to a mixture of methanol and water and 250 µL of ammonia solution (~ 30%), followed by supersonication for 30 minutes. The two solutions were mixed in a photoreactor and carried out in an ice bath. After 30 minutes of N 2 purging, photoreaction was performed using a 500-W Hg arc lamp (Oriel 61945) as a light source. The light source was irradiated to the photoreactor after passing through the IR filter. After more than 5 hours of reaction P25 was separated by centrifugation at 7000 rpm for 30 minutes using a super centrifuge (Mega 21R), and the remaining graphene solution was centrifuged at 20000 rpm to increase the purity of the RGO UV solution. The resistance, conductivity, and Raman parameters of the prepared RGO UV were measured and described in Table 1.
실시예 2Example 2
실시예 1에서 메탄올 대신 에탄올을 사용하는 것을 제외하고는 동일하게 실시하였다. 반응 중, 소량 아세트알데히드가 형성되었다. 전도도는 메탄올을 사용하는 경우에 유사한 정도로 측정되었다.Except for using ethanol instead of methanol in Example 1 it was carried out in the same manner. During the reaction, a small amount of acetaldehyde was formed. Conductivity was measured to a similar degree when using methanol.
비교실시예 1Comparative Example 1
Williams et al(ACS Nano, 2008, 2, 1487-1491)에 따라 그래핀을 제조하여 RGO히드라진의 전도도, Raman 파라미터를 측정하여 표 1에 기재하였다.Graphene was prepared according to Williams et al ( ACS Nano , 2008 , 2, 1487-1491) and the conductivity of the RGO hydrazine , Raman parameters were measured and listed in Table 1.
<표 1> 그래핀 옥사이드(GO) 및 환원된 그래핀 옥사이드(RGO)의 특성TABLE 1 Properties of graphene oxide (GO) and reduced graphene oxide (RGO)
Figure PCTKR2012008756-appb-I000001
Figure PCTKR2012008756-appb-I000001

Claims (14)

  1. 음이온을 띤 광촉매와 그래핀 옥사이드를 포함하는 용액에 광을 조사하여 그래핀 옥사이드를 환원시키고 광촉매를 분리시켜 고순도의 환원된 그래핀 옥사이드 용액을 제조하는 방법.A method of preparing a high purity reduced graphene oxide solution by irradiating a solution containing an anionic photocatalyst and graphene oxide with light to reduce graphene oxide and separating the photocatalyst.
  2. 제1항에 있어서, 상기 광촉매는 TiO2인 것을 특징으로 하는 방법.The method of claim 1 wherein the photocatalyst is TiO 2 .
  3. 제1항 또는 제2항에 있어서, 상기 광촉매는 원심분리기를 이용하여 분리되는 것을 특징으로 하는 방법.The method of claim 1 or 2, wherein the photocatalyst is separated using a centrifuge.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 용액은 pH가 7 이상인 것을 특징으로 하는 방법.The method of any one of claims 1 to 3, wherein the solution has a pH of at least 7.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 용액은 메탄올을 포함하는 것을 특징으로 하는 방법.The method of any one of claims 1 to 4, wherein the solution comprises methanol.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 용액은 암모니아수를 포함하는 것을 특징으로 하는 방법.The method of any one of claims 1 to 5, wherein the solution comprises ammonia water.
  7. 그래핀 옥사이드와 광촉매가 상호 반발력이 작용하는 상태로 포함된 액체에 광을 조사하여 그래핀 옥사이드 환원체를 제공하는 방법.A method of providing a graphene oxide reducer by irradiating light to a liquid contained in the state in which the graphene oxide and the photocatalyst react with each other.
  8. 제7항에 있어서, 상기 반발력은 이온간 척력인 것을 특징으로 하는 방법.8. The method of claim 7, wherein the repulsive force is inter-ion repulsive force.
  9. 제7항 또는 제8항에 있어서, 상기 용액은 광촉매와 그래핀옥사이드와 환원된 그래핀 옥사이드가 음이온을 띨 수 있도록 염기성인 것을 특징으로 하는 방법.The method of claim 7 or 8, wherein the solution is basic so that the photocatalyst, the graphene oxide and the reduced graphene oxide can carry anions.
  10. 제7항 내지 제9항 중 어느 한 항에 있어서, 상기 광촉매는 TiO2이고, 상기 액체는 암모니아수 및 메탄올을 포함하는 것을 특징으로 하는 방법.10. The method of any of claims 7-9, wherein the photocatalyst is TiO 2 and the liquid comprises ammonia water and methanol.
  11. 그래핀 옥사이드 용액에 음이온을 띤 광촉매 용액을 혼합하고 광을 조사하여 그래핀 옥사이드를 환원시키는 방법.A method of reducing graphene oxide by mixing an anion photocatalyst solution with a graphene oxide solution and irradiating with light.
  12. 제11항에 있어서, 상기 음이온을 띤 광촉매 용액은 염기성 용액에 TiO2를 분산시켜 제조한 것을 특징으로 하는 방법.The method of claim 11, wherein the anionic photocatalyst solution is prepared by dispersing TiO 2 in a basic solution.
  13. 제12항에 있어서, 상기 TiO2는 초음파로 분산시킨 것을 특징으로 하는 방법.The method of claim 12, wherein the TiO 2 is dispersed by ultrasonic waves.
  14. 제11항 내지 제13항 중 어느 한 항에 있어서, 상기 광은 적외선 또는 가시광선인 것을 특징으로 하는 방법.14. A method according to any one of claims 11 to 13, wherein said light is infrared or visible light.
PCT/KR2012/008756 2011-10-24 2012-10-24 High purity graphene synthesis melted in water through photocatalytic reaction WO2013062306A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110108999A KR101290690B1 (en) 2011-10-24 2011-10-24 Photocatalytic synthesis of pure and water soluble graphene nanosheets
KR10-2011-0108999 2011-10-24

Publications (2)

Publication Number Publication Date
WO2013062306A2 true WO2013062306A2 (en) 2013-05-02
WO2013062306A3 WO2013062306A3 (en) 2013-06-20

Family

ID=48168722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/008756 WO2013062306A2 (en) 2011-10-24 2012-10-24 High purity graphene synthesis melted in water through photocatalytic reaction

Country Status (2)

Country Link
KR (1) KR101290690B1 (en)
WO (1) WO2013062306A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104785235A (en) * 2015-03-25 2015-07-22 中南大学 Preparation method for modified graphene-loaded titanium dioxide composite photocatalyst
CN105478101A (en) * 2015-11-24 2016-04-13 华南理工大学 Reduced graphene oxide/titanium dioxide composite wastewater treatment agent, and preparation method and application thereof
CN108339542A (en) * 2018-03-07 2018-07-31 首都师范大学 A kind of preparation method of blue titanium dioxide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109906499A (en) 2016-08-30 2019-06-18 斯威本科技大学 Capacitor, electrode, redox graphene and the method and apparatus of manufacture

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110101668A (en) * 2010-03-09 2011-09-16 울산대학교 산학협력단 Manufacturing method of graphene compound with excellent dispersability in organic solvents

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110101668A (en) * 2010-03-09 2011-09-16 울산대학교 산학협력단 Manufacturing method of graphene compound with excellent dispersability in organic solvents

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AKHAVAN O. ET AL.: 'Photodegradation of graphene oxide sheets by Ti02 Nanoparticles after a photocatalytic reduction.' J. PHYS. CHEM. C. vol. 114, July 2010, pages 12955 - 12959 *
DING Y. H. ET AL.: 'A green approach to the synthesis of reduced graphene oxide nanosheets under UV irradiation' NANOTECHNOLOGY vol. 22, March 2011, page 215601 *
SEN LIU ET AL.: 'A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection.' CARBON. vol. 49, March 2011, pages 3158 - 3164 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104785235A (en) * 2015-03-25 2015-07-22 中南大学 Preparation method for modified graphene-loaded titanium dioxide composite photocatalyst
CN105478101A (en) * 2015-11-24 2016-04-13 华南理工大学 Reduced graphene oxide/titanium dioxide composite wastewater treatment agent, and preparation method and application thereof
CN108339542A (en) * 2018-03-07 2018-07-31 首都师范大学 A kind of preparation method of blue titanium dioxide
CN108339542B (en) * 2018-03-07 2020-08-14 首都师范大学 Preparation method of blue titanium dioxide

Also Published As

Publication number Publication date
KR20130044778A (en) 2013-05-03
KR101290690B1 (en) 2013-07-29
WO2013062306A3 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
Rajender et al. Interfacial charge transfer in oxygen deficient TiO2-graphene quantum dot hybrid and its influence on the enhanced visible light photocatalysis
Liu et al. Synthesis of Fe2O3 loaded porous g-C3N4 photocatalyst for photocatalytic reduction of dinitrogen to ammonia
Atchudan et al. Effective photocatalytic degradation of anthropogenic dyes using graphene oxide grafting titanium dioxide nanoparticles under UV-light irradiation
Chen et al. Facile fabrication of novel porous graphitic carbon nitride/copper sulfide nanocomposites with enhanced visible light driven photocatalytic performance
Yu et al. Preparation and visible light photocatalytic activity of carbon quantum dots/TiO2 nanosheet composites
Zhang et al. Advanced fabrication of chemically bonded graphene/TiO2 continuous fibers with enhanced broadband photocatalytic properties and involved mechanisms exploration
Chen et al. One-pot synthesis of Mn-doped TiO2 grown on graphene and the mechanism for removal of Cr (VI) and Cr (III)
Chen et al. In situ fabrication of novel Z-scheme Bi2WO6 quantum dots/g-C3N4 ultrathin nanosheets heterostructures with improved photocatalytic activity
Yi et al. Achieving concentrated graphene dispersions in water/acetone mixtures by the strategy of tailoring Hansen solubility parameters
Zhang et al. Photocatalytic and degradation mechanisms of anatase TiO 2: a HRTEM study
Bharathi et al. Graphene Quantum Dot Solid Sheets: Strong blue-light-emitting & photocurrent-producing band-gap-opened nanostructures
Liu et al. One-pot hydrothermal synthesis of ZnO-reduced graphene oxide composites using Zn powders for enhanced photocatalysis
Gu et al. Synthesis and photocatalytic activity of graphene based doped TiO2 nanocomposites
Shen et al. Ionic liquid-assisted one-step hydrothermal synthesis of TiO 2-reduced graphene oxide composites
Vadivel et al. Highly active novel CeTi2O6/g-C3N5 photocatalyst with extended spectral response towards removal of endocrine disruptor 2, 4-dichlorophenol in aqueous medium
Wu et al. Synthesis and photocatalytic properties of the graphene–La2Ti2O7 nanocomposites
Zhang et al. Graphene TiO2 nanocomposites with high photocatalytic activity for the degradation of sodium pentachlorophenol
Li et al. Flower-like direct Z-scheme WS2/Bi2O2CO3 photocatalyst with enhanced photocatalytic activity
Ruzicka et al. XPS and NEXAFS study of fluorine modified TiO 2 nano-ovoids reveals dependence of Ti 3+ surface population on the modifying agent
Kumarasinghe et al. Self-assembled multilayer graphene oxide membrane and carbon nanotubes synthesized using a rare form of natural graphite
Van Tuan et al. SnO2/reduced graphene oxide nanocomposites for highly efficient photocatalytic degradation of methylene blue
Kamalam et al. Enhanced photo catalytic activity of graphene oxide/MoO3 nanocomposites in the degradation of Victoria Blue Dye under visible light irradiation
Muthukrishnaraj et al. Sonochemical synthesis and visible light induced photocatalytic property of reduced graphene oxide@ ZnO hexagonal hollow rod nanocomposite
Gao et al. Revealing the role of oxygen-containing functional groups on graphene oxide for the highly efficient adsorption of thorium ions
Zulfiqar et al. Effect of organic solvents on the growth of TiO2 nanotubes: An insight into photocatalytic degradation and adsorption studies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843210

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 12843210

Country of ref document: EP

Kind code of ref document: A2