WO2013031673A1 - Cut-off detection circuit and power generation system provided with same - Google Patents

Cut-off detection circuit and power generation system provided with same Download PDF

Info

Publication number
WO2013031673A1
WO2013031673A1 PCT/JP2012/071404 JP2012071404W WO2013031673A1 WO 2013031673 A1 WO2013031673 A1 WO 2013031673A1 JP 2012071404 W JP2012071404 W JP 2012071404W WO 2013031673 A1 WO2013031673 A1 WO 2013031673A1
Authority
WO
WIPO (PCT)
Prior art keywords
interruption
detection circuit
state
shut
breaker
Prior art date
Application number
PCT/JP2012/071404
Other languages
French (fr)
Japanese (ja)
Inventor
廣瀬 貴司
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2013531276A priority Critical patent/JP5652898B2/en
Publication of WO2013031673A1 publication Critical patent/WO2013031673A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02021Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells

Definitions

  • the present invention relates to a shut-off detection circuit that detects whether or not the shut-off means is in a shut-off state, and a power generation system including the same.
  • solar cells photoelectric conversion elements that directly convert solar energy into electrical energy
  • next-generation energy sources particularly from the viewpoint of global environmental problems and the danger of nuclear power generation.
  • single crystal silicon, polycrystalline silicon, amorphous silicon, or the like is used for the solar cell, but the present invention is not limited to this, and a compound semiconductor or an organic material may be used.
  • the number of solar panels 100 included in each solar string 110 in the solar array 120 is different, but this is for convenience of illustration.
  • the number of solar panels 100 included in the string 110 may be the same.
  • the conventional solar cell system has a configuration in which disconnection means such as a fuse, a breaker, and a switch for safety and maintenance are connected in series at each node.
  • disconnection means such as a fuse, a breaker, and a switch for safety and maintenance are connected in series at each node.
  • a shut-off detection circuit for detecting whether or not the shut-off means is in a shut-off state is provided.
  • FIG. 13 is a diagram showing a conventional interruption detection circuit.
  • the input side and the output side are connected by high resistances 920 and 920 of about several M ⁇ , and the interruption means 910 is connected by the connection voltage of the high resistances 920 and 920. It was detected whether or not it was in a cut-off state. Specifically, if the shut-off means 910 is in the shut-off state, there is no potential difference between the input voltage and the voltage at the bus bar 930 (very small), whereas if the shut-off means 910 is not in the shut-off state, the input voltage and the bus bar 930 A potential difference from the voltage at (1) is generated (increased). Using this characteristic, it is detected whether or not the blocking means 910 is in the blocking state.
  • insulation resistance measurement is performed to check whether the positive electrode and the negative electrode are grounded for each solar cell string.
  • the string blocking means for measuring the insulation resistance is blocked and the measurement is performed separately from the other strings.
  • the interruption means is provided for each node.
  • each input is connected via a resistance of several M ⁇ even when the path is interrupted by the interruption means. It will be connected in parallel.
  • the insulation resistance measurement of the surrounding input lines has a great influence on the results, it is not particularly desirable to measure the insulation resistance. There is a problem in that a normal characteristic cannot be measured in the interruption detection circuit.
  • the present invention provides an interruption detection circuit capable of determining whether or not an interruption means is in an interruption state without affecting other circuits connected in parallel, and an electric power generation including the same.
  • the purpose is to provide a system.
  • a shutoff detection circuit comprises a shutoff means for shutting off power supply from a power generator to a bus bar, and is connected to at least one of the shutoff means on the power generator side and the bus bar side.
  • a shut-off state detection circuit is provided for detecting a shut-off state of the shut-off means, and a shut-off state detection circuit that does not flow a direct current from the power generation device side to the bus bar side when the shut-off means enters the shut-off state is provided. .
  • the interruption detection circuit of the present invention is configured such that the interruption state detection circuit is connected to the power generation device and the bus bar and blocks a DC component on a path connecting the power generation device and the bus bar. It is desirable to include an element.
  • the element that cuts off the direct current component is included on the path connecting the power generation device and the buster. Therefore, the direct current from the power generator does not flow to the bus bar via the cutoff state detection circuit.
  • the interruption state detection circuit is preferably connected in series with the interruption means.
  • the interruption state detection circuit is not provided between the interruption means and the bus bar, it is possible to prevent a voltage drop from occurring when the interruption means is not in the interruption state.
  • the interruption detection circuit of the present invention is characterized in that the interruption state detection circuit flows between a first terminal, a second terminal, and the first terminal and the second terminal.
  • a transistor having a control terminal for controlling a current wherein the first terminal is connected to the bus bar, and the control terminal is connected to one end to which the DC voltage from the power generator is supplied in the blocking means.
  • the interruption detection circuit of the present invention is characterized in that the interruption state detection circuit includes a capacitor, and one end of the capacitor is connected to one end to which the DC voltage from the power generator is supplied in the interruption means. It is desirable to detect the cutoff state of the cutoff means based on the voltage at the other end of the capacitor.
  • the control terminal of the transistor is preferably connected to the shutoff means via a capacitor.
  • the control terminal of the transistor or the one end of the capacitor is connected to the shutoff means via a resistor.
  • the interruption detection circuit according to the present invention is characterized in that the interruption state detection circuit is battery-coupled to a primary coil provided between the power generation device and the interruption means, and to the primary coil. It is desirable to detect the interruption
  • the interruption detection circuit of the present invention is characterized in that the interruption state detection circuit has a current detection means for detecting a current between the interruption means and the bus bar, and the current detection means It is desirable to detect the blocking state of the blocking means based on whether or not it is detected.
  • the power generation system of the present invention includes the power generation device and any one of the interruption detection circuits described above.
  • the present invention it is possible to detect whether or not the blocking means is in a blocking state.
  • the direct current from the power generator does not flow to the bus bar via the cutoff state detection circuit when the cutoff means is in the cutoff state, the maintainability and insulation of other circuits connected in parallel are reduced. The accuracy of resistance measurement is not impaired.
  • the present invention is provided with a blocking means in a path for supplying an output voltage (DC voltage) from a power generator to a bus bar, and further includes a blocking state detection circuit for detecting (monitoring) a blocking state of the blocking means.
  • the present invention relates to an interruption detection circuit.
  • the interruption state detection circuit detects that the interruption means is in the interruption state when the interruption means is in the interruption state.
  • the shut-off state of the shut-off means is detected in such a manner that direct current is not supplied to the bus bar from the power generator via itself (shut-off state detection circuit).
  • shut-off state detection circuit In other words, when the shut-off means is in the shut-off state, there is a direct current path (path through which direct current flows) from the power generator to the bus bar via the shut-off state detection circuit between the power generator and the bus bar. do not do.
  • the bus bar is a connection conductor (wiring material) that connects a plurality of input terminals and output terminals. More specifically, the bus bar is connected to, for example, current collecting electrodes of a plurality of sunlight strings, collects the outputs of the plurality of sunlight strings, and outputs them with a number smaller than the number of inputs.
  • the shape of the bus bar is not particularly limited, but is generally formed in a flat plate shape, and it is desirable to increase the cross-sectional area in order to suppress a voltage drop due to the bus bar.
  • blocking means is an operation
  • the shut-off means is not in the shut-off state (the shut-off means is not shutting off (conducting) the DC voltage from the power generator to the bus bar), and the shut-off means is not in the operating state (not working).
  • FIG. 1 is a diagram illustrating a configuration of a cutoff detection circuit according to a first embodiment of the present invention.
  • the interruption detection circuit 200 includes a breaker 210 as an interruption means, resistors 220 and 220, and an enhancement type NMOS transistor (hereinafter, “enhancement type NMOS transistor” is referred to as “E type NMOS”) 230.
  • the breaker 210 is supplied at one end with an output voltage (DC voltage) from a power generator (hereinafter, a solar panel shown in FIG. 10 as an example of the power generator), and the other end is electrically connected to the bus bar 240.
  • DC voltage output voltage
  • the source terminal (first terminal) of the E-type NMOS 230 is electrically connected to the bus bar 240, the gate terminal (control terminal) is connected to the breaker 210, and the drain terminal (second terminal) is connected via the resistors 220 and 220. Connected to ground.
  • blocking detection circuit shown to this embodiment and the following embodiment is good also as providing in any position if it is a position which can detect the interruption
  • it may be provided in the junction box 130 and / or the power conditioner 140 shown in FIG.
  • the power conditioner 140 performs maximum power point tracking control (MPPT control) in order to maximize the generated power of the solar cell panel.
  • MPPT control maximum power point tracking control
  • the shut-off means is in the shut-off state when the power conditioner 140 is operating, the bus bar voltage is input in parallel and becomes the maximum power point voltage in the MPPT control of the string that is not in the shut-off state. This maximum power point voltage is lower than the open-circuit voltage that is the voltage across the string in the cut-off state.
  • a breaker is described as an example of a breaker, but the breaker is not limited to a breaker, but a short circuit such as a fuse, a switch, an electromagnetic switch, or an electromagnetic contactor, an overcurrent It is possible to use a circuit breaker that breaks the circuit when an accident occurs.
  • FIG. 2 is a diagram showing an output signal waveform of the interruption detection circuit of the present embodiment. From time t 0 to t 1 , the breaker 210 is not in the cut-off state, and after time t 1 , the breaker 210 is in the cut-off state. As shown in FIG.
  • the output signal of the drain of the E-type NMOS 230 divided by the resistors 220 and 220 is at a low level (L level).
  • the source potential at this time is higher than the common potential (ground potential), but the potential difference between the source potential and the common potential is such that the E-type NMOS 230 is not broken (that is, between the source potential and the common potential).
  • the potential difference is less than the source-drain breakdown voltage).
  • the gate voltage of the E-type NMOS 230 becomes equal to the open-circuit voltage of the solar panel. Therefore, since the potential difference between the gate and source of the E-type NMOS 230 exceeds the absolute value of the threshold voltage, a current flows between the drain and source of the E-type NMOS 230. As a result, as shown in FIG. 2, when the breaker 210 is in the cut-off state, the output signal of the drain of the E-type NMOS 230 divided by the resistors 220 and 220 becomes a high level (H level).
  • the output signal of the drain of the E-type NMOS 230 divided by the resistors 220 and 220 is detected (monitored), and the level of the output signal changes from the L level to the H level.
  • the breaker 210 is in an interrupted state.
  • the output signal is converted into digital data by a power converter (not shown) (for example, an A / D converter) and output to a microcomputer (not shown).
  • the microcomputer can detect whether or not the blocking means is in a blocking state based on the digital data (the same applies to the following embodiments).
  • the direct current from the power generator does not flow to the bus bar via the cutoff state detection circuit when the cutoff means is in the cutoff state, the maintainability and insulation of other circuits connected in parallel are reduced. The accuracy of resistance measurement is not impaired.
  • FIG. 3 is a diagram showing the configuration of the interruption detection circuit according to the second embodiment of the present invention.
  • the interruption detection circuit 300 includes a breaker 310 as an interruption means, resistors 320 and 320, and a depletion type PMOS transistor (hereinafter, “depletion type PMOS transistor” is referred to as “D type PMOS”) 330.
  • the breaker 310 is supplied with an output voltage (DC voltage) from the solar panel at one end and is electrically connected to the bus bar 340 at the other end.
  • the source terminal of the D-type PMOS 330 is electrically connected to the bus bar 340, the gate terminal is electrically connected to the breaker 310, and the drain terminal is connected to the ground via the resistors 320 and 320.
  • the D-type PMOS 330 has a potential difference between the gate and the source of the D-type PMOS 330 that is equal to or less than the absolute value of the threshold voltage during normal operation, that is, when the breaker 310 is not in the cutoff state. . Therefore, the conduction state between the gate and the source of the D-type PMOS 330 is maintained, and a current flows between the drain and the source of the D-type PMOS 230.
  • FIG. 4 is a diagram showing an output signal waveform of the interruption detection circuit of the present embodiment.
  • the breaker 310 is not in the cut-off state, and after time t 1 , the breaker 310 is in the cut-off state.
  • the output signal of the drain of the D-type PMOS 330 divided by the resistors 320 and 320 is at the H level.
  • the potential difference between the source potential and the common potential is not more than the source-drain breakdown voltage.
  • the gate voltage of the D-type PMOS 330 becomes equal to the open-circuit voltage of the solar panel. Therefore, since the potential difference between the gate potential and the source potential of the D-type PMOS 330 exceeds the absolute value of the threshold voltage, no current flows between the drain and the source of the D-type PMOS 330. Therefore, as shown in FIG. 4, when the breaker 310 is in the cut-off state, the output signal of the drain of the D-type PMOS 330 divided by the resistors 320 and 320 becomes L level.
  • the interruption detection circuit 300 of this embodiment the output signal of the drain of the D-type PMOS 330 is detected (monitored), and the breaker 310 is in the interruption state when the level of the output signal changes from the H level to the L level. Can be detected.
  • the direct current from the power generation device does not flow to the bus bar via the interruption state detection circuit when the interruption means is not in the interruption state, the maintainability of other circuits connected in parallel and the insulation resistance measurement are reduced. There is no loss of accuracy.
  • the voltage required for the operation can be reduced and low voltage operation can be realized.
  • FIG. 5 is a diagram showing the configuration of the interruption detection circuit according to the third embodiment of the present invention.
  • the interruption detection circuit 400 includes a breaker 410 as an interruption means, resistors 420a and 420b, and a capacitor 430.
  • the breaker 410 has one end supplied with an output voltage from the solar panel and the other end electrically connected to the bus bar 440.
  • Capacitor 430 has one end electrically connected to breaker 410 and the other end connected to a bus bar via resistor 420a and to ground via 420b.
  • FIG. 6 is a diagram showing an output signal waveform of the interruption detection circuit of the present embodiment. From time t 0 to t 1 , the breaker 410 is not in the cut-off state, and after time t 1 , the breaker 410 is in the cut-off state.
  • the output signal from the capacitor 430 is a constant output signal as shown in FIG. 6 because there is no voltage fluctuation during normal operation, that is, when the breaker 410 is not in the interruption state.
  • the input voltage to the capacitor 430 becomes equal to the open-circuit voltage of the solar panel, so that a voltage fluctuation of about several tens to several hundreds V occurs, and FIG. As shown, the output signal changes temporarily.
  • the interruption detection circuit 400 of this embodiment detects (monitors) the output signal of the capacitor 430, and can detect that the breaker 410 is in the interruption state when the output signal that has been constant fluctuates. .
  • the path through which the direct current flows when the interrupting means is in the interrupted state is closed, the maintainability of other circuits connected in parallel and the accuracy of the insulation resistance measurement are not impaired.
  • a common parallel output voltage may be used as the voltage used for the output signal in the third embodiment, or a separately created voltage may be used.
  • FIG. 7 is a diagram showing the configuration of the interruption detection circuit according to the fourth embodiment of the present invention.
  • the interruption detection circuit 500 includes a breaker 510 as an interruption means and an ammeter 520 as an electric current detection means.
  • the ammeter 520 is connected in series with the breaker 510. That is, the breaker 510 is supplied with an output voltage from the solar panel at one end and is electrically connected to the bus bar 540 through the ammeter 520 at the other end.
  • FIG. 9 is a diagram showing an output signal waveform of the interruption detection circuit of the present embodiment.
  • the breaker 510 is not in the interruption state from time t 0 to t 1 , and the breaker 510 is in the interruption state after time t 1 . Since the interruption detection circuit 500 is in a normal operation, that is, when the breaker 510 is not in the interruption state, an electric current flows, so the ammeter 520 detects a constant current value as shown in FIG. On the other hand, when the breaker 510 is in the cut-off state, current does not flow to the ammeter 520, so that the current value cannot be detected as shown in FIG.
  • the current value detected by the ammeter 520 can be monitored, and when the current cannot be detected, it can be detected that the breaker 520 is in the interruption state. .
  • the direct current from the power generator does not flow to the bus bar via the interruption state detection circuit when the interruption means is in the interruption state, the maintainability of other circuits connected in parallel and the insulation resistance are reduced. There is no loss of measurement accuracy.
  • the ammeter 520 is used as the current detection means.
  • current detection means current detection circuit
  • FIG. 8 is a diagram showing a configuration of a shutoff detection circuit of another example of the fourth embodiment.
  • the interruption detection circuit 500 includes a breaker 510 as an interruption means, a shunt resistor 530, and an operational amplifier 550.
  • the breaker 510 and the shunt resistor 530 are connected in series.
  • the breaker 510 has one end supplied with an output voltage from the solar panel, and the other end electrically connected to the bus bar 540 via the shunt resistor 530.
  • the operational amplifier 550 inputs a potential difference between both ends of the shunt resistor 530.
  • the interruption detection circuit 500 has a voltage drop at both ends of the shunt resistor 530 connected in series with the breaker 510 because current flows when the breaker 510 is not in an interruption state during normal operation. appear.
  • the breaker 510 is in the cut-off state, no current flows through the shunt resistor 530, so that the potentials at both ends of the shunt resistor 530 are the same.
  • the voltages at both ends of the shunt resistor 530 can be compared to detect that the breaker 510 is in the interruption state when the same potential is reached.
  • the direct current from the power generator does not flow to the bus bar via the interruption state detection circuit when the interruption means is in the interruption state, the maintainability of other circuits connected in parallel and the insulation resistance are reduced. There is no loss of measurement accuracy.
  • FIG. 10 is a diagram showing the configuration of the interruption detection circuit according to the fifth embodiment of the present invention.
  • Breakage detection circuit 600 includes a breaker 610 as a breaker, resistors 620 and 620, a primary coil 630, and a secondary coil 640.
  • the breaker 610 is supplied at one end with an output current from the solar panel via the primary coil 630, and the other end is electrically connected to the bus bar 650.
  • the primary coil 630 and the secondary coil 640 are disposed to face each other (in addition, they may not be disposed to face each other as long as they are battery-coupled).
  • An electromotive force is induced in the secondary coil 640 by the inductive action, and a current due to the electromotive force flows through the resistors 620 and 620.
  • FIG. 11 is a diagram illustrating an output signal waveform of the interruption detection circuit according to the present embodiment.
  • the breaker 610 is not in the interruption state from time t 0 to t 1 , and the breaker 610 is in the interruption state after time t 1 .
  • the current flows, but the rate of change of the current is almost constant, so the electromotive force generated in the primary coil 630 is not large. Therefore, since the influence on the electromotive force induced by the primary coil 630 and generated in the secondary coil 640 is small, the output signal of the secondary coil 640 is constant as shown in FIG.
  • the interruption detection circuit 600 of the present embodiment detects (monitors) the output signal of the secondary coil 640 and detects that the breaker 610 is in the interruption state when the constant output signal fluctuates. Can do.
  • the direct current from the power generator does not flow to the bus bar via the interruption state detection circuit when the interruption means is in the interruption state, the maintainability of other circuits connected in parallel and the insulation resistance are reduced. There is no loss of measurement accuracy.
  • the input voltage is directly received by the gate of the E-type NMOS or the gate of the D-type PMOS.
  • each gate receives the input voltage via a resistor, a capacitor, or the like. Also good.
  • the input voltage is directly received by the capacitor.
  • the capacitor may receive the input voltage via a resistor or the like.
  • an E-type NMOS or D-type PMOS is used as a transistor
  • the present invention is not limited to this.
  • a bipolar transistor may be used.
  • the input voltage may be received at the base of the bipolar transistor, or as described above, the input voltage may be received at the base of the bipolar transistor via a resistor or a capacitor.
  • the present invention can be used for a shut-off detection circuit that detects whether or not the shut-off means is in a shut-off state and a power generation system including the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Keying Circuit Devices (AREA)

Abstract

Provided is a cut-off detection circuit equipped with: a cut-off means for cutting off power supply from a power generation device to a busbar; and a cut-off state detection circuit which is connected to at least one of the power generation device side and the busbar side of the cut-off means to detect the cut-off state of the cut-off means, and which does not pass direct current from the power generation device side to the busbar side when the cut-off means is in a cut-off state.

Description

遮断検出回路及びこれを備える発電システムInterrupt detection circuit and power generation system including the same
 本発明は、遮断手段が遮断状態であるか否かを検出する遮断検出回路及びこれを備える発電システムに関する。 The present invention relates to a shut-off detection circuit that detects whether or not the shut-off means is in a shut-off state, and a power generation system including the same.
 太陽光エネルギーを直接電気エネルギーに変換する光電変換素子、いわゆる太陽光電池は、近年、特に地球環境問題や原子力発電の危険性の観点から、次世代のエネルギー源としての期待が急激に高まっている。太陽光電池は、例えば、単結晶シリコン、多結晶シリコン、非結晶シリコンなどが使用されるが、これに限られるものではなく、化合物半導体や有機材料を使用してもよい。 In recent years, photoelectric conversion elements that directly convert solar energy into electrical energy, so-called solar cells, have been rapidly expected as next-generation energy sources, particularly from the viewpoint of global environmental problems and the danger of nuclear power generation. For example, single crystal silicon, polycrystalline silicon, amorphous silicon, or the like is used for the solar cell, but the present invention is not limited to this, and a compound semiconductor or an organic material may be used.
 従来の太陽光電池システムでは、図12に示すように、複数の太陽光電池セルを集積した複数の太陽光電池パネル100を直列接続した複数の太陽光ストリング110を並列接続した太陽光アレイ120から出力された電力が、それぞれ接続箱130を介してパワーコンディショナ(電力変換装置)140に出力され、また、パワーコンディショナ140から系統(不図示)に対して所定の電力が供給される(例えば特許文献1参照)。 In the conventional solar cell system, as shown in FIG. 12, it was output from a solar array 120 in which a plurality of solar strings 110 in which a plurality of solar cell panels 100 in which a plurality of solar cells were integrated were connected in series were connected in parallel. Electric power is output to the power conditioner (power converter) 140 via the connection box 130, and predetermined power is supplied from the power conditioner 140 to the system (not shown) (for example, Patent Document 1). reference).
 なお、図10では、太陽光アレイ120内の各太陽光ストリング110に含まれる太陽光パネル100の数が異なるようになっているが、これは図示の都合上のものであって、各太陽光ストリング110に含まれる太陽光パネル100の数は同一であってもよい。 In FIG. 10, the number of solar panels 100 included in each solar string 110 in the solar array 120 is different, but this is for convenience of illustration. The number of solar panels 100 included in the string 110 may be the same.
 ところで、従来の太陽光電池システムは、各節点に、安全性やメンテナンスのためのヒューズ、ブレーカ、スイッチ等の遮断手段が直列に入った構成となっている。これに併せて遮断手段が遮断状態であるか否かを検出する遮断検出回路が備えられている。図13は従来の遮断検出回路を示す図である。 By the way, the conventional solar cell system has a configuration in which disconnection means such as a fuse, a breaker, and a switch for safety and maintenance are connected in series at each node. In addition to this, a shut-off detection circuit for detecting whether or not the shut-off means is in a shut-off state is provided. FIG. 13 is a diagram showing a conventional interruption detection circuit.
 図13に示すように、従来の遮断検出回路900では、入力側と出力側とを数MΩ程度の高抵抗920,920で接続し、高抵抗920,920の接続点電圧によって、遮断手段910が遮断状態であるか否かを検出していた。具体的には、遮断手段910が遮断状態であれば、入力電圧とバスバー930における電圧との電位差がない(極めて小さい)のに対し、遮断手段910が遮断状態でなければ、入力電圧とバスバー930における電圧との電位差が発生することになる(大きくなる)。この特性を利用して遮断手段910が遮断状態であるか否かを検出する。 As shown in FIG. 13, in the conventional interruption detection circuit 900, the input side and the output side are connected by high resistances 920 and 920 of about several MΩ, and the interruption means 910 is connected by the connection voltage of the high resistances 920 and 920. It was detected whether or not it was in a cut-off state. Specifically, if the shut-off means 910 is in the shut-off state, there is no potential difference between the input voltage and the voltage at the bus bar 930 (very small), whereas if the shut-off means 910 is not in the shut-off state, the input voltage and the bus bar 930 A potential difference from the voltage at (1) is generated (increased). Using this characteristic, it is detected whether or not the blocking means 910 is in the blocking state.
 また、太陽電池システムの構築時や定期的なメンテナンス時には、太陽電池ストリング毎に正極および負極が地絡していないかどうかを確認する絶縁抵抗測定が行われる。この際、絶縁抵抗測定を行うストリングの遮断手段を遮断させ、他のストリングから切り離して測定が行われる。 In addition, during the construction of the solar cell system or during regular maintenance, insulation resistance measurement is performed to check whether the positive electrode and the negative electrode are grounded for each solar cell string. At this time, the string blocking means for measuring the insulation resistance is blocked and the measurement is performed separately from the other strings.
特開2011-129702号公報JP 2011-129702 A
 上述したように遮断手段は節点毎に備えられているが、上記遮断検出回路によれば、遮断手段によって経路が遮断されている場合であっても、数MΩの抵抗を介して、各入力が並列に接続されることになる。一方、メンテナンス等の際には各入力が並列に接続されていることは望ましくなく、特に、絶縁抵抗測定は、周囲の入力線の絶縁抵抗の状況がその結果に大きな影響を与えるので、従来の遮断検出回路では正常な特性を測定することができないという問題があった。 As described above, the interruption means is provided for each node. However, according to the interruption detection circuit, each input is connected via a resistance of several MΩ even when the path is interrupted by the interruption means. It will be connected in parallel. On the other hand, it is not desirable that the inputs are connected in parallel during maintenance, etc. In particular, since the insulation resistance measurement of the surrounding input lines has a great influence on the results, it is not particularly desirable to measure the insulation resistance. There is a problem in that a normal characteristic cannot be measured in the interruption detection circuit.
 本発明は、上述した問題点に鑑み、並列接続されている他の回路に影響を与えることなく、遮断手段が遮断状態であるか否かを判断することができる遮断検出回路及びこれを備える発電システムを提供することを目的とする。 In view of the above-described problems, the present invention provides an interruption detection circuit capable of determining whether or not an interruption means is in an interruption state without affecting other circuits connected in parallel, and an electric power generation including the same. The purpose is to provide a system.
 上記目的を達成するために本発明の遮断検出回路は、発電装置からバスバーへの電力供給を遮断する遮断手段と、前記遮断手段の前記発電装置側及び前記バスバー側の少なくとも一方に接続されて前記遮断手段の遮断状態を検出するものであって、前記遮断手段が遮断状態となったときに、前記発電装置側から前記バスバー側に直流電流を流さない遮断状態検出回路を備えることを特徴としている。 In order to achieve the above object, a shutoff detection circuit according to the present invention comprises a shutoff means for shutting off power supply from a power generator to a bus bar, and is connected to at least one of the shutoff means on the power generator side and the bus bar side. A shut-off state detection circuit is provided for detecting a shut-off state of the shut-off means, and a shut-off state detection circuit that does not flow a direct current from the power generation device side to the bus bar side when the shut-off means enters the shut-off state is provided. .
 この構成によれば、遮断手段が遮断状態であるか否かを検出することができる。また、遮断手段が遮断状態となったときに、発電装置からの直流電流が遮断状態検出回路を介してバスバーに流れることがないので、並列接続されている他の回路のメンテナンス性の低下や絶縁抵抗測定の正確性を損なうことがない。 According to this configuration, it is possible to detect whether or not the blocking means is in a blocking state. In addition, since the direct current from the power generator does not flow to the bus bar via the cutoff state detection circuit when the cutoff means is in the cutoff state, the maintainability and insulation of other circuits connected in parallel are reduced. The accuracy of resistance measurement is not impaired.
 上記目的を達成するために本発明の遮断検出回路は、前記遮断状態検出回路は、前記発電装置と前記バスバーとに接続され、前記発電装置と前記バスバーとをつなぐ経路上に直流成分を遮断する素子を含むことが望ましい。 In order to achieve the above object, the interruption detection circuit of the present invention is configured such that the interruption state detection circuit is connected to the power generation device and the bus bar and blocks a DC component on a path connecting the power generation device and the bus bar. It is desirable to include an element.
 この構成によれば、発電装置とバスターとをつなぐ経路上に直流成分を遮断する素子が含まれる。従って、発電装置からの直流電流が遮断状態検出回路を介してバスバーに流れることがない。 According to this configuration, the element that cuts off the direct current component is included on the path connecting the power generation device and the buster. Therefore, the direct current from the power generator does not flow to the bus bar via the cutoff state detection circuit.
 上記目的を達成するために本発明の遮断検出回路は、前記遮断状態検出回路は、前記遮断手段と直列に接続されることが望ましい。 In order to achieve the above object, in the interruption detection circuit of the present invention, the interruption state detection circuit is preferably connected in series with the interruption means.
 この構成によれば、遮断手段とバスバーとの間に遮断状態検出回路が設けられないので、遮断手段が遮断状態でないときに電圧降下が発生するのを防ぐことができる。 According to this configuration, since the interruption state detection circuit is not provided between the interruption means and the bus bar, it is possible to prevent a voltage drop from occurring when the interruption means is not in the interruption state.
 上記目的を達成するために本発明の遮断検出回路は、前記遮断状態検出回路は、第1の端子と、第2の端子と、前記第1の端子と前記第2の端子との間に流れる電流を制御する制御端子と、を有するトランジスタを含み、前記第1の端子は前記バスバーに接続され、前記制御端子は前記遮断手段において前記発電装置からの直流電圧が供給される一端に接続されており、前記第2の端子の電圧に基づいて前記遮断手段の遮断状態を検出することが望ましい。 In order to achieve the above object, the interruption detection circuit of the present invention is characterized in that the interruption state detection circuit flows between a first terminal, a second terminal, and the first terminal and the second terminal. A transistor having a control terminal for controlling a current, wherein the first terminal is connected to the bus bar, and the control terminal is connected to one end to which the DC voltage from the power generator is supplied in the blocking means. In addition, it is desirable to detect the shut-off state of the shut-off means based on the voltage at the second terminal.
 上記目的を達成するために本発明の遮断検出回路は、前記遮断状態検出回路は、コンデンサを含み、前記コンデンサの一端は前記遮断手段において前記発電装置からの直流電圧が供給される一端に接続され、前記コンデンサの他端の電圧に基づいて前記遮断手段の遮断状態を検出することが望ましい。 In order to achieve the above object, the interruption detection circuit of the present invention is characterized in that the interruption state detection circuit includes a capacitor, and one end of the capacitor is connected to one end to which the DC voltage from the power generator is supplied in the interruption means. It is desirable to detect the cutoff state of the cutoff means based on the voltage at the other end of the capacitor.
 上記目的を達成するために本発明の遮断検出回路は、前記トランジスタの前記制御端子は、コンデンサを介して前記遮断手段に接続されていることが望ましい。 In order to achieve the above object, in the shutoff detection circuit of the present invention, the control terminal of the transistor is preferably connected to the shutoff means via a capacitor.
 上記目的を達成するために本発明の遮断検出回路は、前記トランジスタの前記制御端子又は前記コンデンサの前記一端は、抵抗を介して前記遮断手段に接続されていることが望ましい。 In order to achieve the above object, in the shutoff detection circuit of the present invention, it is preferable that the control terminal of the transistor or the one end of the capacitor is connected to the shutoff means via a resistor.
 上記目的を達成するために本発明の遮断検出回路は、前記遮断状態検出回路は、前記発電装置と前記遮断手段との間に設けられる1次コイルと、前記1次コイルに電池結合される2次コイルと、を含み、前記2次コイルを流れる電流に基づいて前記遮断手段の遮断状態を検出することが望ましい。 In order to achieve the above object, the interruption detection circuit according to the present invention is characterized in that the interruption state detection circuit is battery-coupled to a primary coil provided between the power generation device and the interruption means, and to the primary coil. It is desirable to detect the interruption | blocking state of the said interruption | blocking means based on the electric current which flows through the said secondary coil.
 上記目的を達成するために本発明の遮断検出回路は、前記遮断状態検出回路は、前記遮断手段と前記バスバーとの間の電流を検出する電流検出手段を有し、前記電流検出手段によって電流が検出されるか否かに基づいて前記遮断手段の遮断状態を検出することが望ましい。 In order to achieve the above object, the interruption detection circuit of the present invention is characterized in that the interruption state detection circuit has a current detection means for detecting a current between the interruption means and the bus bar, and the current detection means It is desirable to detect the blocking state of the blocking means based on whether or not it is detected.
 上記目的を達成するために本発明の発電システムは、前記発電装置と、上記したいずれか一つの遮断検出回路とを備えることが望ましい。 In order to achieve the above object, it is preferable that the power generation system of the present invention includes the power generation device and any one of the interruption detection circuits described above.
 本発明によれば、遮断手段が遮断状態であるか否かを検出することができる。また、遮断手段が遮断状態となったときに、発電装置からの直流電流が遮断状態検出回路を介してバスバーに流れることがないので、並列接続されている他の回路のメンテナンス性の低下や絶縁抵抗測定の正確性を損なうことがない。 According to the present invention, it is possible to detect whether or not the blocking means is in a blocking state. In addition, since the direct current from the power generator does not flow to the bus bar via the cutoff state detection circuit when the cutoff means is in the cutoff state, the maintainability and insulation of other circuits connected in parallel are reduced. The accuracy of resistance measurement is not impaired.
は、本発明の第1実施形態の遮断検出回路の構成を示す図である。These are figures which show the structure of the interruption | blocking detection circuit of 1st Embodiment of this invention. は、本発明の第1実施形態の遮断検出回路の出力信号波形を示す図である。These are figures which show the output signal waveform of the interruption | blocking detection circuit of 1st Embodiment of this invention. は、本発明の第2実施形態の遮断検出回路の構成を示す図である。These are figures which show the structure of the interruption | blocking detection circuit of 2nd Embodiment of this invention. は、本発明の第2実施形態の遮断検出回路の出力信号波形を示す図である。These are figures which show the output signal waveform of the interruption | blocking detection circuit of 2nd Embodiment of this invention. は、本発明の第3実施形態の遮断検出回路の構成を示す図である。These are figures which show the structure of the interruption | blocking detection circuit of 3rd Embodiment of this invention. は、本発明の第3実施形態の遮断検出回路の出力信号波形を示す図である。These are figures which show the output signal waveform of the interruption | blocking detection circuit of 3rd Embodiment of this invention. は、本発明の第4実施形態の遮断検出回路の構成を示す図である。These are figures which show the structure of the interruption | blocking detection circuit of 4th Embodiment of this invention. は、本発明の第4実施形態の別の例の遮断検出回路の構成を示す図である。These are figures which show the structure of the interruption | blocking detection circuit of another example of 4th Embodiment of this invention. は、本発明の第4実施形態の遮断検出回路の出力信号波形を示す図である。These are figures which show the output signal waveform of the interruption | blocking detection circuit of 4th Embodiment of this invention. は、本発明の第5実施形態の遮断検出回路の構成を示す図である。These are figures which show the structure of the interruption | blocking detection circuit of 5th Embodiment of this invention. は、本発明の第5実施形態の遮断検出回路の出力信号波形を示す図である。These are figures which show the output signal waveform of the interruption | blocking detection circuit of 5th Embodiment of this invention. は、従来の太陽光電池システムを示す図である。These are figures which show the conventional solar cell system. は、従来の遮断検出回路の構成を示す図である。These are figures which show the structure of the conventional interruption | blocking detection circuit.
 以下に本発明の実施形態について図面を参照して説明する。但し、以下に示す実施形態は、本発明の技術的思想を具体化するために本発明の遮断検出回路を示すものであって、本発明をこの遮断検出回路に特定することを意図するものではなく、特許請求の範囲に含まれるその他の実施形態の回路にも等しく適応し得るものである。 Embodiments of the present invention will be described below with reference to the drawings. However, the embodiment shown below shows the interruption detection circuit of the present invention in order to embody the technical idea of the present invention, and is not intended to specify the present invention as this interruption detection circuit. Rather, it is equally applicable to circuits of other embodiments within the scope of the claims.
 本発明の実施形態を説明する前に、本発明の概要について説明する。本発明は、発電装置からの出力電圧(直流電圧)をバスバー(Bus Bar)に供給する経路に遮断手段を設け、さらに、当該遮断手段の遮断状態を検出(監視する)遮断状態検出回路を備える遮断検出回路に関するものである。遮断状態検出回路は、遮断手段が遮断状態であるときに、遮断手段が遮断状態であることを検出する。その時に、発電装置から自身(遮断状態検出回路)を介して直流電流がバスバーに供給されないような態様で、遮断手段の遮断状態を検出する。言い換えれば、遮断手段が遮断状態であるときは、発電装置とバスバーとの間には当該発電装置から遮断状態検出回路を介して当該バスバーに向かう直流電流の経路(直流電流が流れる経路)が存在しない。 Before describing embodiments of the present invention, an outline of the present invention will be described. The present invention is provided with a blocking means in a path for supplying an output voltage (DC voltage) from a power generator to a bus bar, and further includes a blocking state detection circuit for detecting (monitoring) a blocking state of the blocking means. The present invention relates to an interruption detection circuit. The interruption state detection circuit detects that the interruption means is in the interruption state when the interruption means is in the interruption state. At that time, the shut-off state of the shut-off means is detected in such a manner that direct current is not supplied to the bus bar from the power generator via itself (shut-off state detection circuit). In other words, when the shut-off means is in the shut-off state, there is a direct current path (path through which direct current flows) from the power generator to the bus bar via the shut-off state detection circuit between the power generator and the bus bar. do not do.
 なお、バスバーは複数の入力端子と出力端子とを接続する接続導体(配線材)である。より詳説すればバスバーは、例えば複数の太陽光ストリングの集電電極に接続されて複数の太陽光ストリングの出力を集電して入力数よりも少ない数で出力する。バスバーの形状は特に限られるものではないが一般に平板状に形成され、バスバーによる電圧降下を抑えるために断面積を大きく形成することが望ましい。 The bus bar is a connection conductor (wiring material) that connects a plurality of input terminals and output terminals. More specifically, the bus bar is connected to, for example, current collecting electrodes of a plurality of sunlight strings, collects the outputs of the plurality of sunlight strings, and outputs them with a number smaller than the number of inputs. The shape of the bus bar is not particularly limited, but is generally formed in a flat plate shape, and it is desirable to increase the cross-sectional area in order to suppress a voltage drop due to the bus bar.
 また、遮断手段が遮断状態である(遮断手段が発電装置からバスバーへの直流電圧を遮断している状態である)ことを、遮断手段が動作状態である(動作している)と言い換えることができ、遮断手段が遮断状態でない(遮断手段が発電装置からバスバーへの直流電圧を遮断していない(導通している)状態である)ことを、遮断手段が動作状態でない(動作していない)と言い換えることができる。以下、本発明の具体的な態様について説明する。 Moreover, it can be paraphrased that the interruption | blocking means is an operation | movement state (it is operating) that the interruption | blocking means is an interruption | blocking state (the interruption | blocking means is the state which is interrupting | blocking the DC voltage from a generator to a bus bar). The shut-off means is not in the shut-off state (the shut-off means is not shutting off (conducting) the DC voltage from the power generator to the bus bar), and the shut-off means is not in the operating state (not working). In other words. Hereinafter, specific embodiments of the present invention will be described.
[第1実施形態]
 図1は、本発明の第1実施形態の遮断検出回路の構成を示す図である。遮断検出回路200は、遮断手段としてのブレーカ210と、抵抗220,220と、エンハンスメントタイプのNMOSトランジスタ(以下において「エンハンスメントタイプのNMOSトランジスタ」を「E型NMOS」という。)230とを含む。ブレーカ210は一端に発電装置(以下、発電装置として図10に示す太陽光パネルを例に説明する)からの出力電圧(直流電圧)が供給され、他端がバスバー240に電気接続されている。また、E型NMOS230のソース端子(第1の端子)はバスバー240に電気接続され、ゲート端子(制御端子)はブレーカ210に接続され、ドレイン端子(第2の端子)は抵抗220,220を介してグラウンドに接続されている。
[First embodiment]
FIG. 1 is a diagram illustrating a configuration of a cutoff detection circuit according to a first embodiment of the present invention. The interruption detection circuit 200 includes a breaker 210 as an interruption means, resistors 220 and 220, and an enhancement type NMOS transistor (hereinafter, “enhancement type NMOS transistor” is referred to as “E type NMOS”) 230. The breaker 210 is supplied at one end with an output voltage (DC voltage) from a power generator (hereinafter, a solar panel shown in FIG. 10 as an example of the power generator), and the other end is electrically connected to the bus bar 240. The source terminal (first terminal) of the E-type NMOS 230 is electrically connected to the bus bar 240, the gate terminal (control terminal) is connected to the breaker 210, and the drain terminal (second terminal) is connected via the resistors 220 and 220. Connected to ground.
 なお、本実施形態及び以下の実施形態に示す遮断検出回路はブレーカの遮断状態を検出可能な位置であればどの位置に設けられることとしてもよい。例えば図12に示す接続箱130内及び/又はパワーコンディショナ140内に設けられていることとしてもよい。また、パワーコンディショナ140は太陽電池パネルの発電電力を最大化するために最大電力点追従制御(MPPT制御)を行う。パワーコンディショナ140が動作しているときに遮断手段が遮断状態になると、バスバーの電圧は並列に入力されていて、且つ遮断状態ではないストリングのMPPT制御における最大電力点電圧になる。この最大電力点電圧は遮断状態となっているストリングの両端電圧である開放電圧よりも低電圧である。 In addition, the interruption | blocking detection circuit shown to this embodiment and the following embodiment is good also as providing in any position if it is a position which can detect the interruption | blocking state of a breaker. For example, it may be provided in the junction box 130 and / or the power conditioner 140 shown in FIG. The power conditioner 140 performs maximum power point tracking control (MPPT control) in order to maximize the generated power of the solar cell panel. When the shut-off means is in the shut-off state when the power conditioner 140 is operating, the bus bar voltage is input in parallel and becomes the maximum power point voltage in the MPPT control of the string that is not in the shut-off state. This maximum power point voltage is lower than the open-circuit voltage that is the voltage across the string in the cut-off state.
 また、本実施形態及び以下の実施形態において、遮断手段としてブレーカを例に説明しているが、ブレーカに限られるものではなく、ヒューズ、スイッチ、電磁開閉器、電磁接触器等の短絡、過電流による事故発生時に回路を遮断する遮断器を使用することができる。 Further, in this embodiment and the following embodiments, a breaker is described as an example of a breaker, but the breaker is not limited to a breaker, but a short circuit such as a fuse, a switch, an electromagnetic switch, or an electromagnetic contactor, an overcurrent It is possible to use a circuit breaker that breaks the circuit when an accident occurs.
 遮断検出回路200は、正常動作時、すなわちブレーカ210が遮断状態でないときは、E型NMOS230のゲートとソースとの電位差が閾値電圧の絶対値以下となる。従って、E型NMOS230のゲートとソースの非導通状態が維持され、E型NMOS230のドレインとソースとの間には電流が流れない。図2は本実施形態の遮断検出回路の出力信号波形を示す図である。時間t~tにおいて、ブレーカ210は遮断状態ではなく、時間t以降においてブレーカ210は遮断状態である。図2に示すように、ブレーカ210が遮断状態でないときは、抵抗220,220によって分圧されたE型NMOS230のドレインの出力信号はローレベル(Lレベル)となる。なお、この時のソース電位は、共通電位(グラウンド電位)よりも高くなるが、ソース電位と共通電位との電位差は、E型NMOS230が壊れない程度である(すなわち、ソース電位と共通電位との電位差がソース‐ドレイン間耐圧以下になっている)。 When the break detection circuit 200 is operating normally, that is, when the breaker 210 is not in a break state, the potential difference between the gate and the source of the E-type NMOS 230 becomes equal to or less than the absolute value of the threshold voltage. Accordingly, the non-conducting state between the gate and source of the E-type NMOS 230 is maintained, and no current flows between the drain and source of the E-type NMOS 230. FIG. 2 is a diagram showing an output signal waveform of the interruption detection circuit of the present embodiment. From time t 0 to t 1 , the breaker 210 is not in the cut-off state, and after time t 1 , the breaker 210 is in the cut-off state. As shown in FIG. 2, when the breaker 210 is not cut off, the output signal of the drain of the E-type NMOS 230 divided by the resistors 220 and 220 is at a low level (L level). Note that the source potential at this time is higher than the common potential (ground potential), but the potential difference between the source potential and the common potential is such that the E-type NMOS 230 is not broken (that is, between the source potential and the common potential). The potential difference is less than the source-drain breakdown voltage).
 一方、パワーコンディショナ140が動作状態であってブレーカ210が遮断状態であるときは、E型NMOS230のゲート電圧が太陽光パネルの開放電圧と等しくなる。従ってE型NMOS230のゲートとソースとの電位差が閾値電圧の絶対値を超えるため、E型NMOS230のドレインとソースとの間には電流が流れる。これによって図2に示すように、ブレーカ210が遮断状態であるときは、抵抗220,220によって分圧されたE型NMOS230のドレインの出力信号がハイレベル(Hレベル)になる。 On the other hand, when the power conditioner 140 is in the operating state and the breaker 210 is in the cutoff state, the gate voltage of the E-type NMOS 230 becomes equal to the open-circuit voltage of the solar panel. Therefore, since the potential difference between the gate and source of the E-type NMOS 230 exceeds the absolute value of the threshold voltage, a current flows between the drain and source of the E-type NMOS 230. As a result, as shown in FIG. 2, when the breaker 210 is in the cut-off state, the output signal of the drain of the E-type NMOS 230 divided by the resistors 220 and 220 becomes a high level (H level).
 従って、本実施形態の遮断検出回路200においては、抵抗220,220によって分圧されたE型NMOS230のドレインの出力信号を検出(監視)し、出力信号のレベルがLレベルからHレベルに変わった時に、ブレーカ210が遮断状態であることを検出することができる。具体的には、出力信号を図示しない電力変換装置(例えばA/D変換器)でデジタルデータに変換して図示しないマイコンに出力する。マイコンはそのデジタルデータに基づいて遮断手段が遮断状態であるか否かを検出することができる(以下の実施形態においても同様である)。また、遮断手段が遮断状態となったときに、発電装置からの直流電流が遮断状態検出回路を介してバスバーに流れることがないので、並列接続されている他の回路のメンテナンス性の低下や絶縁抵抗測定の正確性を損なうことがない。 Therefore, in the interruption detection circuit 200 of the present embodiment, the output signal of the drain of the E-type NMOS 230 divided by the resistors 220 and 220 is detected (monitored), and the level of the output signal changes from the L level to the H level. Sometimes it can be detected that the breaker 210 is in an interrupted state. Specifically, the output signal is converted into digital data by a power converter (not shown) (for example, an A / D converter) and output to a microcomputer (not shown). The microcomputer can detect whether or not the blocking means is in a blocking state based on the digital data (the same applies to the following embodiments). In addition, since the direct current from the power generator does not flow to the bus bar via the cutoff state detection circuit when the cutoff means is in the cutoff state, the maintainability and insulation of other circuits connected in parallel are reduced. The accuracy of resistance measurement is not impaired.
[第2実施形態]
 図3は、本発明の第2実施形態の遮断検出回路の構成を示す図である。遮断検出回路300は、遮断手段としてのブレーカ310と、抵抗320,320と、ディプレションタイプのPMOSトランジスタ(以下において「ディプレションタイプのPMOSトランジスタ」を「D型PMOS」という。)330とを含む。ブレーカ310は一端に太陽光パネルからの出力電圧(直流電圧)が供給され、他端がバスバー340に電気接続されている。また、D型PMOS330のソース端子はバスバー340に電気接続され、ゲート端子はブレーカ310に電気接続され、ドレイン端子は抵抗320,320を介してグラウンドに接続されている。
[Second Embodiment]
FIG. 3 is a diagram showing the configuration of the interruption detection circuit according to the second embodiment of the present invention. The interruption detection circuit 300 includes a breaker 310 as an interruption means, resistors 320 and 320, and a depletion type PMOS transistor (hereinafter, “depletion type PMOS transistor” is referred to as “D type PMOS”) 330. including. The breaker 310 is supplied with an output voltage (DC voltage) from the solar panel at one end and is electrically connected to the bus bar 340 at the other end. The source terminal of the D-type PMOS 330 is electrically connected to the bus bar 340, the gate terminal is electrically connected to the breaker 310, and the drain terminal is connected to the ground via the resistors 320 and 320.
 D型PMOS330は、第1実施形態におけるE型NMOS230とは異なり、正常動作時、すなわちブレーカ310が遮断状態でないときは、D型PMOS330のゲートとソースとの電位差が閾値電圧の絶対値以下となる。従って、D型PMOS330のゲートとソースの導通状態が維持され、D型PMOS230のドレインとソースとの間には電流が流れる。図4は本実施形態の遮断検出回路の出力信号波形を示す図である。時間t~tにおいて、ブレーカ310は遮断状態ではなく、時間t以降においてブレーカ310は遮断状態である。図4に示すように、ブレーカ310が遮断状態でないときは、抵抗320,320によって分圧されたD型PMOS330のドレインの出力信号はHレベルとなる。なお、第1実施形態と同様に、ソース電位と共通電位との電位差がソース‐ドレイン間耐圧以下になっている。 Unlike the E-type NMOS 230 in the first embodiment, the D-type PMOS 330 has a potential difference between the gate and the source of the D-type PMOS 330 that is equal to or less than the absolute value of the threshold voltage during normal operation, that is, when the breaker 310 is not in the cutoff state. . Therefore, the conduction state between the gate and the source of the D-type PMOS 330 is maintained, and a current flows between the drain and the source of the D-type PMOS 230. FIG. 4 is a diagram showing an output signal waveform of the interruption detection circuit of the present embodiment. From time t 0 to t 1 , the breaker 310 is not in the cut-off state, and after time t 1 , the breaker 310 is in the cut-off state. As shown in FIG. 4, when the breaker 310 is not in the cutoff state, the output signal of the drain of the D-type PMOS 330 divided by the resistors 320 and 320 is at the H level. As in the first embodiment, the potential difference between the source potential and the common potential is not more than the source-drain breakdown voltage.
 一方、パワーコンディショナ140が動作状態であってブレーカ310が遮断状態であるときは、D型PMOS330のゲート電圧が太陽光パネルの開放電圧と等しくなる。従ってD型PMOS330のゲート電位とソース電位との電位差が閾値電圧の絶対値を超えるため、D型PMOS330のドレインとソースとの間に電流が流れない。従って、図4に示すように、ブレーカ310が遮断状態であるときは、抵抗320,320によって分圧されたD型PMOS330のドレインの出力信号はLレベルとなる。 On the other hand, when the power conditioner 140 is in the operating state and the breaker 310 is in the cutoff state, the gate voltage of the D-type PMOS 330 becomes equal to the open-circuit voltage of the solar panel. Therefore, since the potential difference between the gate potential and the source potential of the D-type PMOS 330 exceeds the absolute value of the threshold voltage, no current flows between the drain and the source of the D-type PMOS 330. Therefore, as shown in FIG. 4, when the breaker 310 is in the cut-off state, the output signal of the drain of the D-type PMOS 330 divided by the resistors 320 and 320 becomes L level.
 従って、本実施形態の遮断検出回路300においては、D型PMOS330のドレインの出力信号を検出(監視)し、出力信号のレベルがHレベルからLレベルに変わった時に、ブレーカ310が遮断状態であることを検出することができる。また、遮断手段が遮断状態でないときに、発電装置からの直流電流が遮断状態検出回路を介してバスバーに流れることがないので、並列接続されている他の回路のメンテナンス性の低下や絶縁抵抗測定の正確性を損なうことがない。加えて、動作に必要な電圧を低減し、低電圧動作を実現することができる。 Therefore, in the interruption detection circuit 300 of this embodiment, the output signal of the drain of the D-type PMOS 330 is detected (monitored), and the breaker 310 is in the interruption state when the level of the output signal changes from the H level to the L level. Can be detected. In addition, since the direct current from the power generation device does not flow to the bus bar via the interruption state detection circuit when the interruption means is not in the interruption state, the maintainability of other circuits connected in parallel and the insulation resistance measurement are reduced. There is no loss of accuracy. In addition, the voltage required for the operation can be reduced and low voltage operation can be realized.
[第3実施形態]
 図5は、本発明の第3実施形態の遮断検出回路の構成を示す図である。遮断検出回路400は、遮断手段としてのブレーカ410と、抵抗420a,420bと、コンデンサ430とを含む。ブレーカ410は一端に太陽光パネルからの出力電圧が供給され、他端がバスバー440に電気接続されている。また、コンデンサ430は一端はブレーカ410に電気接続され、他端は抵抗420aを介してバスバーに接続されると共に、420bを介してグラウンドに接続されている。
[Third embodiment]
FIG. 5 is a diagram showing the configuration of the interruption detection circuit according to the third embodiment of the present invention. The interruption detection circuit 400 includes a breaker 410 as an interruption means, resistors 420a and 420b, and a capacitor 430. The breaker 410 has one end supplied with an output voltage from the solar panel and the other end electrically connected to the bus bar 440. Capacitor 430 has one end electrically connected to breaker 410 and the other end connected to a bus bar via resistor 420a and to ground via 420b.
 図6は本実施形態の遮断検出回路の出力信号波形を示す図である。時間t~tにおいて、ブレーカ410は遮断状態ではなく、時間t以降においてブレーカ410は遮断状態である。遮断検出回路400においてコンデンサ430からの出力信号は、正常動作時、すなわちブレーカ410が遮断状態でないときは、電圧変動がないので、図6に示すように、一定の出力信号である。これに対して、ブレーカ410が遮断状態であるときは、コンデンサ430への入力電圧が太陽光パネルの開放電圧と等しくなるので、数十V~数百V程度の電圧変動が起こり、図6に示すように、出力信号が一時的に変化する。 FIG. 6 is a diagram showing an output signal waveform of the interruption detection circuit of the present embodiment. From time t 0 to t 1 , the breaker 410 is not in the cut-off state, and after time t 1 , the breaker 410 is in the cut-off state. In the interruption detection circuit 400, the output signal from the capacitor 430 is a constant output signal as shown in FIG. 6 because there is no voltage fluctuation during normal operation, that is, when the breaker 410 is not in the interruption state. On the other hand, when the breaker 410 is in the cut-off state, the input voltage to the capacitor 430 becomes equal to the open-circuit voltage of the solar panel, so that a voltage fluctuation of about several tens to several hundreds V occurs, and FIG. As shown, the output signal changes temporarily.
 また、コンデンサ430により直流電流が流れる経路が閉路されているため、ブレーカ410が遮断状態であるときは、太陽光パネルからの出力電圧がコンデンサ430を介してバスバーに入力されることがない。 In addition, since the path through which the direct current flows is closed by the capacitor 430, when the breaker 410 is in the cut-off state, the output voltage from the solar panel is not input to the bus bar via the capacitor 430.
 従って、本実施形態の遮断検出回路400においては、コンデンサ430の出力信号を検出(監視)し、一定であった出力信号が変動した時に、ブレーカ410が遮断状態であることを検出することができる。また、遮断手段が遮断状態であるときに直流電流が流れる経路を閉路しているので並列接続されている他の回路のメンテナンス性の低下や絶縁抵抗測定の正確性を損なうことがない。 Therefore, the interruption detection circuit 400 of this embodiment detects (monitors) the output signal of the capacitor 430, and can detect that the breaker 410 is in the interruption state when the output signal that has been constant fluctuates. . In addition, since the path through which the direct current flows when the interrupting means is in the interrupted state is closed, the maintainability of other circuits connected in parallel and the accuracy of the insulation resistance measurement are not impaired.
 なお、第3実施形態において出力信号に用いる電圧として、共通の並列出力電圧を用いてもよいし、別途作成した電圧を用いてもよい。 In addition, a common parallel output voltage may be used as the voltage used for the output signal in the third embodiment, or a separately created voltage may be used.
[第4実施形態]
 図7は、本発明の第4実施形態の遮断検出回路の構成を示す図である。遮断検出回路500は、遮断手段としてのブレーカ510と、電流検出手段としての電流計520とを含む。また、電流計520はブレーカ510と直列に接続されている。すなわち、ブレーカ510は一端に太陽光パネルからの出力電圧が供給され、他端が電流計520を介してバスバー540に電気接続されている。
[Fourth embodiment]
FIG. 7 is a diagram showing the configuration of the interruption detection circuit according to the fourth embodiment of the present invention. The interruption detection circuit 500 includes a breaker 510 as an interruption means and an ammeter 520 as an electric current detection means. The ammeter 520 is connected in series with the breaker 510. That is, the breaker 510 is supplied with an output voltage from the solar panel at one end and is electrically connected to the bus bar 540 through the ammeter 520 at the other end.
 図9は本実施形態の遮断検出回路の出力信号波形を示す図であり、時間t~tにおいて、ブレーカ510は遮断状態ではなく、時間t以降においてブレーカ510は遮断状態である。遮断検出回路500は、正常動作時、すなわちブレーカ510が遮断状態でないときは、電流が流れているため、電流計520は図9に示すように、一定の電流値を検出する。一方、ブレーカ510が遮断状態であるときは、電流が電流計520に流れないため、図9に示すように、電流値を検出することができない。 FIG. 9 is a diagram showing an output signal waveform of the interruption detection circuit of the present embodiment. The breaker 510 is not in the interruption state from time t 0 to t 1 , and the breaker 510 is in the interruption state after time t 1 . Since the interruption detection circuit 500 is in a normal operation, that is, when the breaker 510 is not in the interruption state, an electric current flows, so the ammeter 520 detects a constant current value as shown in FIG. On the other hand, when the breaker 510 is in the cut-off state, current does not flow to the ammeter 520, so that the current value cannot be detected as shown in FIG.
 従って、本実施形態の遮断検出回路500においては、電流計520が検出する電流値を監視し、電流を検出することができなくなった時に、ブレーカ520が遮断状態であることを検出することができる。また、遮断手段が遮断状態であるときに、発電装置からの直流電流が遮断状態検出回路を介してバスバーに流れることがないので、並列接続されている他の回路のメンテナンス性の低下や絶縁抵抗測定の正確性を損なうことがない。 Therefore, in the interruption detection circuit 500 of this embodiment, the current value detected by the ammeter 520 can be monitored, and when the current cannot be detected, it can be detected that the breaker 520 is in the interruption state. . In addition, since the direct current from the power generator does not flow to the bus bar via the interruption state detection circuit when the interruption means is in the interruption state, the maintainability of other circuits connected in parallel and the insulation resistance are reduced. There is no loss of measurement accuracy.
[第4実施形態の別の例]
 上記第4実施形態では、電流検出手段として電流計520を使用したが、これに限られるものではなく、例えばオペアンプとシャント抵抗(電流検出用の抵抗)とからなる電流検出手段(電流検出回路)を使用するものであってもよい。図8は第4実施形態の別の例の遮断検出回路の構成を示す図である。遮断検出回路500は、遮断手段としてのブレーカ510と、シャント抵抗530と、オペアンプ550とを含む。ブレーカ510とシャント抵抗530とは直列に接続されており、ブレーカ510は一端に太陽光パネルからの出力電圧が供給され、他端がシャント抵抗530を介してバスバー540に電気接続されている。また、オペアンプ550はシャント抵抗530の両端の電位差を入力する。
[Another example of the fourth embodiment]
In the fourth embodiment, the ammeter 520 is used as the current detection means. However, the present invention is not limited to this. For example, current detection means (current detection circuit) including an operational amplifier and a shunt resistor (current detection resistor). May be used. FIG. 8 is a diagram showing a configuration of a shutoff detection circuit of another example of the fourth embodiment. The interruption detection circuit 500 includes a breaker 510 as an interruption means, a shunt resistor 530, and an operational amplifier 550. The breaker 510 and the shunt resistor 530 are connected in series. The breaker 510 has one end supplied with an output voltage from the solar panel, and the other end electrically connected to the bus bar 540 via the shunt resistor 530. The operational amplifier 550 inputs a potential difference between both ends of the shunt resistor 530.
 そして、当該構成において遮断検出回路500は、正常動作時、すなわちブレーカ510が遮断状態でないときは、電流が流れているため、ブレーカ510と直列に接続されているシャント抵抗530の両端で電圧降下が発生する。一方、ブレーカ510が遮断状態であるときは、電流がシャント抵抗530に流れないため、シャント抵抗530の両端の電位は同電位となる。 In this configuration, the interruption detection circuit 500 has a voltage drop at both ends of the shunt resistor 530 connected in series with the breaker 510 because current flows when the breaker 510 is not in an interruption state during normal operation. appear. On the other hand, when the breaker 510 is in the cut-off state, no current flows through the shunt resistor 530, so that the potentials at both ends of the shunt resistor 530 are the same.
 従って、本別の例の遮断検出回路500においては、シャント抵抗530の両端の電圧を比較し、同電位となったときにブレーカ510が遮断状態であることを検出することができる。また、遮断手段が遮断状態であるときに、発電装置からの直流電流が遮断状態検出回路を介してバスバーに流れることがないので、並列接続されている他の回路のメンテナンス性の低下や絶縁抵抗測定の正確性を損なうことがない。 Therefore, in the interruption detection circuit 500 of this other example, the voltages at both ends of the shunt resistor 530 can be compared to detect that the breaker 510 is in the interruption state when the same potential is reached. In addition, since the direct current from the power generator does not flow to the bus bar via the interruption state detection circuit when the interruption means is in the interruption state, the maintainability of other circuits connected in parallel and the insulation resistance are reduced. There is no loss of measurement accuracy.
[第5実施形態]
 図10は、本発明の第5実施形態の遮断検出回路の構成を示す図である。遮断検出回路600は、遮断手段としてのブレーカ610と、抵抗620,620と、1次コイル630と、2次コイル640とを含む。ブレーカ610は一端に1次コイル630を介して太陽光パネルからの出力電流が供給され、他端がバスバー650に電気接続されている。また、1次コイル630と2次コイル640とは対向して配置されており(なお、電池結合されていれば対向配置されてなくてもよい)、第1コイル630に電流を流すと、相互誘導作用により2次コイル640に起電力が誘起され、当該起電力による電流が抵抗620,620に流れる。
[Fifth Embodiment]
FIG. 10 is a diagram showing the configuration of the interruption detection circuit according to the fifth embodiment of the present invention. Breakage detection circuit 600 includes a breaker 610 as a breaker, resistors 620 and 620, a primary coil 630, and a secondary coil 640. The breaker 610 is supplied at one end with an output current from the solar panel via the primary coil 630, and the other end is electrically connected to the bus bar 650. In addition, the primary coil 630 and the secondary coil 640 are disposed to face each other (in addition, they may not be disposed to face each other as long as they are battery-coupled). An electromotive force is induced in the secondary coil 640 by the inductive action, and a current due to the electromotive force flows through the resistors 620 and 620.
 図11は本実施形態の遮断検出回路の出力信号波形を示す図であり、時間t~tにおいて、ブレーカ610は遮断状態ではなく、時間t以降においてブレーカ610は遮断状態である。遮断検出回路600は、正常動作時、すなわちブレーカ610がが遮断状態でないときは、電流は流れてるが、電流の変化率はほぼ一定であるため、1次コイル630に発生する起電力は大きくなく、よって、1次コイル630によって誘起され、2次コイル640に発生する起電力に与える影響は小さいので、2次コイル640の出力信号は、図11に示すように一定である。これに対して、ブレーカ610が遮断状態であるときは、ブレーカ610が遮断状態になるほどに大きな電流が流れていた状態から、電流が流れない状態に変化する、すなわち電流の変化率が極めて大きくなるため、1次コイル630に発生する起電力は大きく、よって、1次コイル630によって誘起され、2次コイル640に発生する起電力に与える影響は大きく、2次コイル640の出力信号は、図11に示すように、一時的に変化する。 FIG. 11 is a diagram illustrating an output signal waveform of the interruption detection circuit according to the present embodiment. The breaker 610 is not in the interruption state from time t 0 to t 1 , and the breaker 610 is in the interruption state after time t 1 . During the normal operation, that is, when the breaker 610 is not in the cut-off state, the current flows, but the rate of change of the current is almost constant, so the electromotive force generated in the primary coil 630 is not large. Therefore, since the influence on the electromotive force induced by the primary coil 630 and generated in the secondary coil 640 is small, the output signal of the secondary coil 640 is constant as shown in FIG. On the other hand, when the breaker 610 is in a cut-off state, a state in which a large current flows so that the breaker 610 enters a cut-off state changes to a state in which no current flows, that is, the rate of change in current becomes extremely large. Therefore, the electromotive force generated in the primary coil 630 is large. Therefore, the influence on the electromotive force induced by the primary coil 630 and generated in the secondary coil 640 is large, and the output signal of the secondary coil 640 is as shown in FIG. As shown in FIG.
 従って、本実施形態の遮断検出回路600においては、2次コイル640の出力信号を検出(監視)し、一定であった出力信号が変動した時に、ブレーカ610が遮断状態であることを検出することができる。また、遮断手段が遮断状態であるときに、発電装置からの直流電流が遮断状態検出回路を介してバスバーに流れることがないので、並列接続されている他の回路のメンテナンス性の低下や絶縁抵抗測定の正確性を損なうことがない。 Therefore, the interruption detection circuit 600 of the present embodiment detects (monitors) the output signal of the secondary coil 640 and detects that the breaker 610 is in the interruption state when the constant output signal fluctuates. Can do. In addition, since the direct current from the power generator does not flow to the bus bar via the interruption state detection circuit when the interruption means is in the interruption state, the maintainability of other circuits connected in parallel and the insulation resistance are reduced. There is no loss of measurement accuracy.
[その他]
 上記第1実施形態及び第2実施形態において、入力電圧をE型NMOSのゲート又はD型PMOSのゲートで直接受けることとしているが、抵抗やコンデンサ等を介して各ゲートが入力電圧を受けることとしてもよい。また、上記第3実施形態において、入力電圧をコンデンサで直接受けることとしているが、抵抗等を介してコンデンサが入力電圧を受けることとしてもよい。
[Other]
In the first and second embodiments, the input voltage is directly received by the gate of the E-type NMOS or the gate of the D-type PMOS. However, each gate receives the input voltage via a resistor, a capacitor, or the like. Also good. In the third embodiment, the input voltage is directly received by the capacitor. However, the capacitor may receive the input voltage via a resistor or the like.
 上記第1実施形態及び第2実施形態において、トランジスタとしてE型NMOS又はD型PMOSを使用したらこれに限られるものではなく、例えばバイポーラトランジスタを使用することとしてもよい。バイボーラトランジスタを使用する場合にはバイポーラトランジスタのベースで入力電圧を受けるか、又は上述したように抵抗やコンデンサ等を介してバイポーラトランジスタのベースで入力電圧を受けることとしてもよい。 In the first and second embodiments, if an E-type NMOS or D-type PMOS is used as a transistor, the present invention is not limited to this. For example, a bipolar transistor may be used. When a bipolar transistor is used, the input voltage may be received at the base of the bipolar transistor, or as described above, the input voltage may be received at the base of the bipolar transistor via a resistor or a capacitor.
 本発明は、遮断手段が遮断状態であるか否かを検出する遮断検出回路及びこれを備える発電システムに利用できる。 The present invention can be used for a shut-off detection circuit that detects whether or not the shut-off means is in a shut-off state and a power generation system including the same.
100 太陽光パネル
110 太陽光ストリング
120 太陽光アレイ
130 接続箱
140 パワーコンディショナ(電力変換装置)
200 遮断検出回路
210 ブレーカ(遮断手段)
230 E型NMOS
300 遮断検出回路
310 ブレーカ(遮断手段)
330 D型PMOS
400 遮断検出回路
410 ブレーカ(遮断手段)
430 コンデンサ
500 遮断検出回路
510 ブレーカ(遮断手段)
520 電流計
550 オペアンプ
600 遮断検出回路
610 ブレーカ(遮断手段)
630 1次コイル
640 2次コイル
100 Solar Panel 110 Solar String 120 Solar Array 130 Junction Box 140 Power Conditioner (Power Converter)
200 break detection circuit 210 breaker (break means)
230 E-type NMOS
300 Break detection circuit 310 Breaker (shut off means)
330 D-type PMOS
400 break detection circuit 410 breaker (break means)
430 Capacitor 500 Break detection circuit 510 Breaker (shut off means)
520 Ammeter 550 Operational amplifier 600 Break detection circuit 610 Breaker (shut off means)
630 Primary coil 640 Secondary coil

Claims (10)

  1.  発電装置からバスバーへの電力供給を遮断する遮断手段と、
     前記遮断手段の前記発電装置側及び前記バスバー側の少なくとも一方に接続されて前記遮断手段の遮断状態を検出するものであって、前記遮断手段が遮断状態となったときに、前記発電装置側から前記バスバー側に直流電流を流さない遮断状態検出回路を備える遮断検出回路。
    A blocking means for blocking power supply from the power generation device to the bus bar;
    Connected to at least one of the shut-off means on the power generator side and the bus bar side to detect the shut-off state of the shut-off means, and when the shut-off means enters the shut-off state, from the power generator side The interruption | blocking detection circuit provided with the interruption | blocking state detection circuit which does not flow a direct current on the said bus-bar side.
  2.  前記遮断状態検出回路は、前記発電装置と前記バスバーとに接続され、
     前記発電装置と前記バスバーとをつなぐ経路上に直流成分を遮断する素子を含むことを特徴とする請求項1に記載の遮断検出回路。
    The shut-off state detection circuit is connected to the power generation device and the bus bar,
    The interruption detection circuit according to claim 1, further comprising an element that interrupts a direct current component on a path connecting the power generation device and the bus bar.
  3.  前記遮断状態検出回路は、前記遮断手段と直列に接続されることを特徴とする請求項1又は請求項2に記載の遮断検出回路。 The interruption detection circuit according to claim 1 or 2, wherein the interruption state detection circuit is connected in series with the interruption means.
  4.  前記遮断状態検出回路は、第1の端子と、第2の端子と、前記第1の端子と前記第2の端子との間に流れる電流を制御する制御端子と、を有するトランジスタを含み、
     前記第1の端子は前記バスバーに接続され、前記制御端子は前記遮断手段において前記発電装置からの直流電圧が供給される一端に接続されており、
     前記第2の端子の電圧に基づいて前記遮断手段の遮断状態を検出することを特徴とする請求項1~請求項3のいずれか1項に記載の遮断検出回路。
    The interruption state detection circuit includes a transistor having a first terminal, a second terminal, and a control terminal for controlling a current flowing between the first terminal and the second terminal,
    The first terminal is connected to the bus bar, and the control terminal is connected to one end to which the DC voltage from the power generator is supplied in the blocking means,
    The interruption detection circuit according to any one of claims 1 to 3, wherein an interruption state of the interruption means is detected based on a voltage of the second terminal.
  5.  前記遮断状態検出回路は、コンデンサを含み、
     前記コンデンサの一端は前記遮断手段において前記発電装置からの直流電圧が供給される一端に接続され、
     前記コンデンサの他端の電圧に基づいて前記遮断手段の遮断状態を検出することを特徴とする請求項1~請求項3のいずれか1項に記載の遮断検出回路。
    The interruption state detection circuit includes a capacitor,
    One end of the capacitor is connected to one end to which the DC voltage from the power generator is supplied in the shut-off means,
    The interruption detection circuit according to any one of claims 1 to 3, wherein the interruption state of the interruption means is detected based on a voltage at the other end of the capacitor.
  6.  前記トランジスタの前記制御端子は、コンデンサを介して前記遮断手段に接続されていることを特徴とする請求項4に記載の遮断検出回路。 The interruption detection circuit according to claim 4, wherein the control terminal of the transistor is connected to the interruption means via a capacitor.
  7.  前記トランジスタの前記制御端子又は前記コンデンサの前記一端は、抵抗を介して前記遮断手段に接続されていることを特徴とする請求項4又は請求項5に記載の遮断検出回路。 6. The interruption detection circuit according to claim 4, wherein the control terminal of the transistor or the one end of the capacitor is connected to the interruption means via a resistor.
  8.  前記遮断状態検出回路は、前記発電装置と前記遮断手段との間に設けられる1次コイルと、前記1次コイルに電池結合される2次コイルと、を含み、
     前記2次コイルを流れる電流に基づいて前記遮断手段の遮断状態を検出することを特徴とする請求項1~請求項3のいずれか1項に記載の遮断検出回路。
    The cutoff state detection circuit includes a primary coil provided between the power generation device and the cutoff unit, and a secondary coil battery-coupled to the primary coil,
    The interruption detection circuit according to any one of claims 1 to 3, wherein the interruption state of the interruption means is detected based on a current flowing through the secondary coil.
  9.  前記遮断状態検出回路は、前記遮断手段と前記バスバーとの間の電流を検出する電流検出手段を有し、
     前記電流検出手段によって電流が検出されるか否かに基づいて前記遮断手段の遮断状態を検出することを特徴とする請求項1に記載の遮断検出回路。
    The interruption state detection circuit has a current detection means for detecting a current between the interruption means and the bus bar,
    The interruption detection circuit according to claim 1, wherein the interruption state of the interruption means is detected based on whether or not a current is detected by the current detection means.
  10.  前記発電装置と、
     請求項1~請求項9のいずれか1項に記載の遮断検出回路と、
     を備える発電システム。
    The power generation device;
    The interruption detection circuit according to any one of claims 1 to 9,
    A power generation system comprising:
PCT/JP2012/071404 2011-08-26 2012-08-24 Cut-off detection circuit and power generation system provided with same WO2013031673A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013531276A JP5652898B2 (en) 2011-08-26 2012-08-24 Interrupt detection circuit and power generation system including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011184630 2011-08-26
JP2011-184630 2011-08-26

Publications (1)

Publication Number Publication Date
WO2013031673A1 true WO2013031673A1 (en) 2013-03-07

Family

ID=47756163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071404 WO2013031673A1 (en) 2011-08-26 2012-08-24 Cut-off detection circuit and power generation system provided with same

Country Status (2)

Country Link
JP (1) JP5652898B2 (en)
WO (1) WO2013031673A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002091586A (en) * 2000-09-19 2002-03-29 Canon Inc Solar light power generating device and its controlling method
JP2006012632A (en) * 2004-06-25 2006-01-12 Matsushita Electric Works Ltd Lighting circuit for switch with display
WO2007125867A1 (en) * 2006-04-24 2007-11-08 Sharp Kabushiki Kaisha Photovoltaic power generation system and photovoltaic power generation system control method
JP2011119579A (en) * 2009-12-07 2011-06-16 Toshiba Corp Photovoltaic power generation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002091586A (en) * 2000-09-19 2002-03-29 Canon Inc Solar light power generating device and its controlling method
JP2006012632A (en) * 2004-06-25 2006-01-12 Matsushita Electric Works Ltd Lighting circuit for switch with display
WO2007125867A1 (en) * 2006-04-24 2007-11-08 Sharp Kabushiki Kaisha Photovoltaic power generation system and photovoltaic power generation system control method
JP2011119579A (en) * 2009-12-07 2011-06-16 Toshiba Corp Photovoltaic power generation system

Also Published As

Publication number Publication date
JP5652898B2 (en) 2015-01-14
JPWO2013031673A1 (en) 2015-03-23

Similar Documents

Publication Publication Date Title
KR101367860B1 (en) Battery assembly and method for controlling battery assembly
US8502416B2 (en) Method and circuit arrangement for connecting at least one string of a photovoltaic system to an inverter
US8610425B2 (en) Solar monitor for solar device
US20140239968A1 (en) Ground fault detection device, ground fault detection method, solar energy system, and ground fault detection program
CN103475271A (en) Photovoltaic power generation system and control method
US20130077204A1 (en) Breaker failure protection of hvdc circuit breakers
JP2005312287A (en) Power supply
WO2012023209A1 (en) Grounding device
CN102270867B (en) Battery state monitoring circuit and battery device
US8493697B2 (en) Arrangement for ground-fault detection in an AC circuit and power supply arrangement with ground-fault detection
CN104904114B (en) Method and apparatus for monitoring photovoltaic apparatus
JP2016506227A (en) Method and apparatus for protecting multiple strings of photovoltaic generators from return current
CN102983556B (en) There is the battery protecting circuit of self-recovering function after electric discharge overcurrent protection
KR102128442B1 (en) Apparatus for protecting OLTC of main transformer
WO2015015835A1 (en) Solar power generation system
US8729444B2 (en) Photovoltaic system with potential reduction
CN104037466A (en) Battery device
US10707809B2 (en) Ground fault detection device
WO2016199445A1 (en) Method and device for testing photovoltaic generation system
JP5828396B2 (en) DC power supply and its ground fault detection method
EP2960945A2 (en) Generator connection cabinet connected with a central inverter for arc free switching of PV-modules
JP5652898B2 (en) Interrupt detection circuit and power generation system including the same
EP2963760A1 (en) Ground potential equalization for photovoltaic power generation system
JP7384224B2 (en) Solar power generation system and protection method for solar power generation system
US20220014015A1 (en) Abnormality detecting system for a solar power grid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827048

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531276

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12827048

Country of ref document: EP

Kind code of ref document: A1