WO2012144534A1 - Capacitor-integrated solar cell having electricity storage function - Google Patents

Capacitor-integrated solar cell having electricity storage function Download PDF

Info

Publication number
WO2012144534A1
WO2012144534A1 PCT/JP2012/060498 JP2012060498W WO2012144534A1 WO 2012144534 A1 WO2012144534 A1 WO 2012144534A1 JP 2012060498 W JP2012060498 W JP 2012060498W WO 2012144534 A1 WO2012144534 A1 WO 2012144534A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
solar cell
electrode
light receiving
integrated solar
Prior art date
Application number
PCT/JP2012/060498
Other languages
French (fr)
Japanese (ja)
Inventor
尚起 吉本
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2012144534A1 publication Critical patent/WO2012144534A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/28Structural combinations of electrolytic capacitors, rectifiers, detectors, switching devices with other electric components not covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/02245Electrode arrangements specially adapted for back-contact solar cells for metallisation wrap-through [MWT] type solar cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a solar cell having a power storage function, and more particularly to a capacitor-integrated solar cell in which an electrode portion of a solar cell and an electrode portion of a capacitor are shared.
  • a solar battery cell used for photovoltaic power generation can be interpreted as a photodiode having a wide wavelength sensitivity, and the solar battery cell does not have a function of storing electricity. Therefore, in order to obtain an output that does not depend on light illuminance, it is necessary to use a power storage function together.
  • the power storage function is used in combination, by connecting the solar cell and the capacitor in parallel, the power generated by the solar cell can be directly stored in the capacitor.
  • a large-capacity electric double layer capacitor for power storage it is possible to obtain the same amount of power storage as a secondary battery, and there is an advantage that it is not necessary to provide a limiting circuit related to charging / discharging like a secondary battery. is there.
  • Patent Document 1 it is disclosed that a solar battery cell and a power storage function are separately installed to obtain a power storage function.
  • Patent Document 2 discloses that the load applied to the secondary battery is minimized by connecting the solar battery and the capacitor in parallel, and further connecting the solar battery and the secondary battery in series.
  • JP 2000-288883 A Japanese Patent Laid-Open No. 05-3628
  • Patent Document 1 separately installs the solar cell and the capacitor, there is a problem that the system volume increases.
  • patent document 2 is suppressing the load fluctuation concerning a secondary battery by absorbing the output fluctuation of a solar cell with a capacitor
  • the present invention has been made in view of such problems, and it is an object of the present invention to suppress the system volume of a solar cell and a capacitor, and to eliminate the complexity of wiring and the like in configuring the system.
  • a conventional solar cell body can be provided with a power storage function by integrally forming the solar cell and the capacitor and further connecting them in parallel. Therefore, the complexity of the system configuration can be eliminated, and an efficient and highly reliable system can be configured.
  • FIG. 3 is a plan view of an integrated solar cell for explaining an arrangement example of through holes 105.
  • FIG. 1 is an example of a configuration diagram of a capacitor-integrated solar cell in which the crystalline silicon solar cell according to the present embodiment is used as a light receiving part.
  • the capacitor-integrated solar cell 100 includes an electrode part 101, a light receiving part 102, a metal electrode part 103, a porous oxide film 104, a through hole 105, a dielectric 106, and a capacitor electrode 107.
  • the electromotive force of the solar cell 100 can be expressed by the electrode part 101, the light receiving part 102, and the metal electrode part 103.
  • the electrode portion 101 corresponds to the negative electrode side in a normal crystalline silicon solar cell, and is configured by sintering a silver paste or the like serving as an n-type dopant with respect to the crystalline silicon solar cell. Can be widely applied.
  • the light receiving portion 102 corresponds to a doped silicon wafer, and a single crystal or polycrystalline silicon wafer doped by a general method can be used.
  • the doping method is not particularly limited as long as it can generate power as a crystalline silicon solar cell, and a vapor phase thermal diffusion method or the like is used.
  • the metal electrode portion 103 is p-type doped by thermal diffusion in the crystalline silicon wafer when a metal material that becomes a p-type dopant is mainly applied to the crystalline silicon, such as aluminum paste, by printing. If there is, there is no restriction in particular.
  • a metal material that becomes a p-type dopant is mainly applied to the crystalline silicon, such as aluminum paste, by printing.
  • the aluminum paste is installed in the same manner as a normal crystalline silicon solar cell, a natural oxide film of aluminum is already formed, and the porous surface serves to increase the surface area in order to increase the capacity of the capacitor. Although it plays the same role as the oxide film 104, a sufficient capacitance is not obtained because the specific surface area of the porous oxide film is insufficient.
  • a metal oxide film processed into a porous shape by an anodic oxidation method or the like is formed.
  • a method for forming the porous oxide film there are methods such as geometric patterning and chemical etching in addition to the anodic oxidation method described above, but these methods are not particularly limited.
  • the specific surface area is required to be several hundred to several tens of thousands satisfying the general capacity of electrolytic capacitors.
  • a through hole 105 is provided to connect the photodiode, which is a solar cell portion, and the capacitor portion in parallel.
  • the through-hole 105 can be installed by a mechanical method using a drilling machine or the like, there are problems of accuracy and burrs, and therefore a formation method using a laser is more appropriate.
  • the laser source is suitably a high output type such as a carbonic acid laser or various excimer lasers, and the penetrating range can be selectively penetrated to the metal electrode portion 103 by controlling the wavelength and output.
  • a conductive substance for connecting the electrode part 101 and the metal electrode part 103 is injected into the through-hole 105.
  • any material having conductivity such as the same silver paste used for the electrode part 101, can function without any problem. To do.
  • the through-hole 105 is a bypass that connects the electric charge generated by the solar cell to the capacitor, a sufficiently low-resistance electrical connection is necessary.
  • the area occupied by the through holes with respect to the irradiated surface is required to be 0.1% or more and 10% or less. If the area of the through hole is 0.1% or less, a sufficient allowable current cannot be supplied to the capacitor. If the area is 10% or more, the light-shielding area of the light receiving surface increases, and the amount of power generated by the solar cell is increased. Will decrease.
  • FIG. 7 shows an example of a projected view of the through holes. For example, patterning along the electrode portion 101 and patterning at a portion that does not affect light reception can be mentioned, but the pattern is not limited to the pattern shown in FIG. In the case of FIG. 7, the area occupied by the through hole 105 is set to be 0.1% or more and 10% or less with respect to the surface irradiated with sunlight in the light receiving unit 102 below the antireflection film 108.
  • the dielectric 106 is placed in contact with the porous oxide film 104 and the capacitor electrode 107. Although it functions as an electrolytic capacitor even if the dielectric 106 is not present, it is desirable to install it because it can provide a function of preventing the metal electrode portion 103 and the capacitor electrode 107 from being short-circuited.
  • the film thickness may be very thin, but it is desirable to satisfy the thickness condition of 10 to 100 nm.
  • the material of the dielectric is not particularly limited, but a solid electrolyte such as PEDOT-PSS is desirable.
  • the capacitor electrode 107 is installed as an electrode of the capacitor portion of the capacitor-integrated solar cell 100.
  • the capacitor electrode 107 is composed of various electrodes such as aluminum and is not limited as long as it satisfies the function of the capacitor.
  • the capacitor-integrated solar cell 100 having a crystalline silicon solar cell in the light receiving part, there is no problem even if the antireflection film 108 generally provided in the crystalline silicon solar cell is provided.
  • the through hole 105 is also formed in the antireflection film 108 and is electrically connected to the electrode portion 101 on the antireflection film 108.
  • the antireflection film 108 is made of a silicon nitride thin film or the like, and can be installed by a method such as a chemical vapor deposition (CVD) method.
  • a configuration of 104, 106, 107 may be further added, and a plurality of capacitors may be connected in series.
  • a mesh-like conductive material such as a non-woven fabric for the capacitor electrode 107-2 that carries the electrodes of the two capacitors.
  • the present embodiment it is possible to store the electric power generated by the solar cell by the capacitor constituted by the metal electrode unit integrated with the solar cell. Therefore, a system using solar cells and capacitors can be configured in a compact manner. Furthermore, since the power storage function is a capacitor, it is possible to eliminate the complicated connection of the system, such as the need for a protection circuit that has been indispensable in the past. In addition, since there is no wiring for connecting the solar cell and the capacitor, there is an effect of increasing the driving reliability.
  • Example 2 describes a capacitor-integrated solar cell 200 using a compound solar cell as a light receiving part.
  • FIG. 3 is a configuration diagram of a capacitor-integrated solar cell in which the compound solar cell of this example is used as a light receiving part.
  • the thin-film solar cell can be reduced in weight as compared with the crystalline silicon solar cell 100 shown in Example 1, and can be made flexible by devising the manufacturing method. Is possible.
  • a bulk metal can be used for the metal substrate 113 constituting the metal electrode portion 103, a reduction in internal resistance can be expected. In the present embodiment, when it clearly overlaps with the first embodiment, it will be omitted in detail and described in detail.
  • a compound-based solar cell in the light receiving unit 102 of Example 2 uses a compound semiconductor layer (hereinafter referred to as a CIGS solar cell layer) 109 made of copper, indium, gallium, and selenium.
  • the CIGS solar cell is a solar cell with high efficiency and easy film formation, and exhibits excellent effects also in the present invention.
  • the metal electrode portion 103, the porous oxide film 104, the dielectric 106, and the capacitor electrode 107 are first manufactured, and the light receiving portion 102 and the electrode are started from the substrate.
  • the part 101 is formed in order.
  • it demonstrates according to a preparation procedure.
  • the metal electrode portion 103 requires a metal substrate 113 applicable as a CIGS solar cell, and examples thereof include an aluminum substrate and a stainless steel substrate.
  • a molybdenum thin film 112 is formed on one surface of the metal substrate 113 by sputtering or the like to a thickness of 100 to 500 nm.
  • a porous oxide film 104 is provided on the other surface of the metal substrate 113 by an anodic oxidation method or the like. The necessary conditions for the porous oxide film are the same as in Example 1.
  • a metal substrate 113 having a capacitor function including the metal electrode portion 103, the porous oxide film 104, the dielectric 106 and the capacitor electrode 107 can be obtained.
  • the light receiving unit 102 is formed on the metal substrate 113.
  • the CIGS solar cell layer 109 can be produced by an existing method such as vapor phase selenization, solid phase selenization, or a three-stage method.
  • a buffer layer 110 that forms a bonding interface in contact with the CIGS compound semiconductor layer 109 is formed.
  • a thin film with a thickness of about 10 to 100 nm can be formed by an existing method such as a solution growth method (Chemical Bath Deposition, CBD method).
  • a non-doped zinc oxide 111 is formed in contact with the buffer layer by means such as sputtering or CVD.
  • the non-doped zinc oxide 111 contributes to prevention of short circuit in the solar cell portion and improvement of the performance of the solar cell.
  • An oxide having the function of a transparent electrode is used for the electrode part 101.
  • ITO titanium oxide
  • ZnO non-doped zinc oxide
  • BZO boron-doped zinc oxide
  • AZO aluminum-doped zinc oxide
  • the buffer layer 110 plays a role as an n-type semiconductor.
  • the through-hole 105 is formed in order to store the electric power generated in the solar cell portion of the capacitor-integrated solar cell 200 using the compound solar cell manufactured in such a procedure as the light receiving portion in the capacitor portion.
  • the manufacturing method of the through hole 105 and the conductive material filled in the through hole 105 are formed in the same manner as in the first embodiment.
  • Example 3 describes a capacitor-integrated solar cell 300 having an organic thin-film solar cell as a light receiving part. Since the capacitor-integrated solar cell 300 having the organic thin film solar cell shown in FIG. 4 can be continuously manufactured from the window electrode side, it is superior to the first and second embodiments from the viewpoint of reducing the manufacturing cost. There is sex. In addition, by configuring as an organic thin film solar cell, the film thickness can be further reduced as compared with Examples 1 and 2, so that it is possible to form a capacitor integrated solar cell that is more compact and has a small system volume. It becomes possible. Note that, among the items constituting the third embodiment, a description of the case where the effect can be satisfied under the same necessary conditions as in the first or second embodiment will be omitted as appropriate.
  • a method for producing a capacitor-integrated solar cell 300 having an organic thin-film solar cell as a light receiving portion includes a portion including the electrode portion 101 and the light receiving portion 102, a metal electrode portion 103, a porous oxide film 104, a dielectric 106, and A capacitor portion having the capacitor electrode 107 is prepared separately, and the both are manufactured by a method in which both are adhered by lamination. After both are brought into close contact with each other, a through-hole 105 is formed, and a capacitor integrated solar cell 300 having an organic thin-film solar cell as a light receiving portion is completed. This will be described in detail below.
  • the electrode part 101 is composed of a transparent substrate 114 and a transparent electrode 115 necessary for holding the solar cell part of the capacitor integrated solar cell 300.
  • the transparent substrate 114 can be a glass substrate or a transparent resin substrate such as PET (polyethylene terephthalate) or PEN (polyethylene naphthalate), and is not particularly limited as long as it has transparency to enable light reception.
  • the transparent electrode 115 is not particularly limited as long as it has transparency and conductivity enabling light reception. Examples thereof include ITO (tin-doped indium oxide), ZnO (non-doped zinc oxide), BZO (boron-doped zinc oxide), and AZO.
  • a metal oxide such as (aluminum-doped zinc oxide) can be produced by an existing method such as sputtering or CVD.
  • the light receiving part 102 is composed of a hole transport layer 116 and an organic light receiving layer 117.
  • the hole transport layer 116 is in contact with the transparent electrode 115 and is formed by applying a polyethylenedioxythiophene / sodium polystyrene sulfonate (PEDOT-PSS) mixed dispersion by an existing method such as spin coating to a thickness of 10 to 100 nm. It consists of a thin film.
  • PEDOT-PSS polyethylenedioxythiophene / sodium polystyrene sulfonate
  • the organic light-receiving layer 117 is a layer in which a p-type organic semiconductor and an n-type organic semiconductor called a bulk heterojunction type form a junction state inside the thin film bulk.
  • a conjugated polymer is generally used for the p-type semiconductor, and for example, poly-3-hexylthiophene is applied.
  • an n-type organic semiconductor a fullerene derivative is generally available, and a typical example is C61-PCBM ([6,6] -Phenyl-C61-Butylic Acid Methyl Ester), which is a methanofullerene.
  • the p-type organic semiconductor and the n-type organic semiconductor are mixed and dissolved in a suitable solvent, and the organic light-receiving layer 117 can be formed by coating with an existing method such as spin coating in contact with the hole transport layer 116.
  • the organic light receiving layer 117 can also be formed by vapor deposition of a low molecular compound.
  • the organic light-receiving layer 117 can also be formed by first depositing a phthalocyanine derivative in contact with the hole transport layer 116, then co-depositing the phthalocyanine derivative and the fullerene derivative, and further co-depositing the fullerene derivative. .
  • the metal electrode part 103 having a capacitor function, the porous oxide film 104, the dielectric 106 and the capacitor electrode 107 are formed as follows.
  • a metal electrode such as aluminum can be used as appropriate, and the porous oxide film 104, the dielectric 106 and the capacitor electrode 107 are produced using the same material and conditions as in the first and second embodiments.
  • the electron transport layer 118 may be installed in contact with the metal electrode portion.
  • a titanium oxide thin film or the like can be used, and the electron transport layer 118 is provided with a film thickness of 10 nm or less by an existing method such as a sol-gel method.
  • a thin film made of the same material constituting the organic light receiving layer 117 is placed in contact with the electron transport layer 118, and then it can be adhered to the solar cell portion by lamination.
  • through-hole 105 is installed under the same conditions as in Example 1 or Example 2, and a capacitor-integrated solar cell 300 having an organic thin-film solar cell as a light-receiving part is completed. To do.
  • the capacitor-integrated solar cells shown in Examples 1 to 3 have the function of an electrolytic capacitor.
  • the electrolytic capacitor can secure electric capacity by the surface area of the porous oxide film, but has a short discharge time. According to the present invention, an increase in discharge time and further electric capacity can be easily realized by the structure of the electric double layer capacitor.
  • An integrated solar cell 400 having an electric double layer capacitor obtained by improving the capacitor integrated solar cell having the crystalline silicon solar cell shown in the first embodiment will be described.
  • the content which overlaps with Example 1 is abbreviate
  • FIG. 5 shows a cross-sectional structure diagram of an integrated solar cell 400 having an electric double layer capacitor.
  • the structure of the electric double layer capacitor can be realized by changing the structure of the electrode and the dielectric.
  • an activated carbon layer 119 containing an electrolyte is installed by an existing method such as screen printing.
  • the electrolyte is suitably a highly durable polymer electrolyte or ionic liquid, but there is no particular limitation.
  • a separator 120 is placed between the electrodes in order to separate the diffusion of ionic species in the electrolyte between the activated carbon layers 119 of both electrodes.
  • the electric double layer capacitor can improve the electric capacity and the discharge time.
  • Example 5 describes an integrated solar cell 500 having a parallel connection capacitor in which two or more capacitor parts are connected in parallel while having an integrated structure in order to increase the capacity of the capacitor, with reference to FIG.
  • FIG. 6 shows a structure in which the capacitor-integrated solar battery 100 having the crystalline silicon solar battery shown in the first embodiment is improved, and overlapping parts with the first embodiment are omitted as appropriate.
  • the first capacitor 121 and the second capacitor 122 are connected in parallel to form a parallel capacitor portion 124. Furthermore, the parallel capacitor unit 124 and the third capacitor 123 are connected in parallel to form a parallel capacitor unit 125.
  • a porous oxide film 104 is provided on both sides of a portion where the metal electrode portion 103 is built in the capacitor, and the metal electrode portion 103 and the capacitor electrode 107 are alternately arranged, and only the metal electrode portions 103 are connected by the through holes 105, and the electrode portions 101 and the two electrode portions 103 are connected by the filled conductive material.
  • the capacitor portions are connected in parallel, and the combined capacitance of the capacitance is the sum of the individual capacitor portions, so that the capacitance can be increased while maintaining a reduction in system volume.
  • the time constant at the time of discharge can be lowered and the discharge speed can be increased as compared with the case of being connected in series as shown in FIG.
  • SYMBOLS 100 Capacitor-integrated solar cell using crystalline silicon solar cell as light receiving portion 101 Electrode portion 102 Light receiving portion 103 Metal electrode portion 104 Porous oxide film 105 Through hole 106 Dielectric 107 Capacitor electrode 107-2 Capacitor electrode 108 Antireflection film 109 Compound semiconductor layer (CIGS solar cell layer) 110 Buffer layer 111 Non-doped zinc oxide 112 Molybdenum thin film 113 Metal substrate 114 Transparent substrate 115 Transparent electrode 116 Hole transport layer 117 Organic light receiving layer 118 Electron transport layer 119 Activated carbon layer 120 Separator 121 First capacitor 122 Second capacitor 123 Third capacitor 124 Parallel Capacitor 125 125 Parallel Capacitor 200 Capacitor-Integrated Solar Cell 300 Using Compound Solar Cell as Light Receiving Unit 300 Capacitor-Integrated Solar Cell Having Organic Thin Film Solar Cell as Light Receiving Unit 400 Integrated Solar Having Electric Double Layer Capacitor Battery 500 Integrated solar cell with parallel connection capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Photovoltaic Devices (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

According to the present invention, a capacitor-integrated solar cell (100) having an electricity storage function, in which an electrode part (101) and a backside metal electrode (103) are connected in parallel with each other via a through hole (105), can be obtained. A capacitor-integrated solar cell is configured to have a structure which comprises an electrode part (101), a light-receiving part (102) and a metal electrode part (107), in said structure the electrode part (101) and the metal electrode part (107) being connected via a through hole (105) that is filled with a conductive substance. The structure has a function of a capacitor by means of the metal electrode part and a capacitor electrode. The capacitor-integrated solar cell is characterized by having a function of a solar cell and a function of a capacitor that has an electricity storage function.

Description

蓄電機能を有するコンデンサ一体型太陽電池Capacitor-integrated solar cell with storage function
 本発明は、蓄電機能を有する太陽電池、とりわけ太陽電池の電極部分とコンデンサの電極部分が共有されたコンデンサ一体型太陽電池に関する。 The present invention relates to a solar cell having a power storage function, and more particularly to a capacitor-integrated solar cell in which an electrode portion of a solar cell and an electrode portion of a capacitor are shared.
 太陽光発電に用いる太陽電池セルは波長感度の広いフォトダイオードと解釈でき、太陽電池セルでは蓄電する機能を有していない。したがって、光照度に依存しない出力を得るためには蓄電機能を併用する必要がある。
 蓄電機能を併用するにあたり、太陽電池とコンデンサを並列に接続することによって、太陽電池で生じた電力を直接コンデンサに蓄電することが可能となる。蓄電には大容量の電気二重層コンデンサを用いることによって二次電池と同等の蓄電量を得ることができると共に、二次電池のような充放電に関わる制限回路を独自に設けなくて良い利点がある。特許文献1によれば、太陽電池セルと蓄電機能を別々に設置して蓄電機能を得ることが開示されている。
A solar battery cell used for photovoltaic power generation can be interpreted as a photodiode having a wide wavelength sensitivity, and the solar battery cell does not have a function of storing electricity. Therefore, in order to obtain an output that does not depend on light illuminance, it is necessary to use a power storage function together.
When the power storage function is used in combination, by connecting the solar cell and the capacitor in parallel, the power generated by the solar cell can be directly stored in the capacitor. By using a large-capacity electric double layer capacitor for power storage, it is possible to obtain the same amount of power storage as a secondary battery, and there is an advantage that it is not necessary to provide a limiting circuit related to charging / discharging like a secondary battery. is there. According to Patent Document 1, it is disclosed that a solar battery cell and a power storage function are separately installed to obtain a power storage function.
 特許文献2には、太陽電池とコンデンサを並列で接続し、さらに太陽電池と二次電池を直列に接続することによって、二次電池にかかる負荷を最小限にすることが開示されている。 Patent Document 2 discloses that the load applied to the secondary battery is minimized by connecting the solar battery and the capacitor in parallel, and further connecting the solar battery and the secondary battery in series.
特開2000-278883号公報JP 2000-288883 A 特開平05-3628号公報Japanese Patent Laid-Open No. 05-3628
 しかしながら、特許文献1は太陽電池とコンデンサはそれぞれ別個に設置するため、システム体積が増大するという課題があった。また特許文献2は太陽電池の出力変動をコンデンサで吸収することによって、二次電池にかかる負荷変動を抑制しているが、コンデンサ、二次電池とも別に用意する必要があり、さらには配線などの接続が煩雑になるといった課題があった。
 本発明はこのような課題に鑑みて、太陽電池とコンデンサによるシステム体積を抑制することと、上記システムを構成する上で配線などの煩雑さを解消することを目的とする。
However, since Patent Document 1 separately installs the solar cell and the capacitor, there is a problem that the system volume increases. Moreover, although patent document 2 is suppressing the load fluctuation concerning a secondary battery by absorbing the output fluctuation of a solar cell with a capacitor | condenser, it is necessary to prepare separately with a capacitor | condenser and a secondary battery, and also wiring etc. There was a problem that the connection was complicated.
The present invention has been made in view of such problems, and it is an object of the present invention to suppress the system volume of a solar cell and a capacitor, and to eliminate the complexity of wiring and the like in configuring the system.
 第一の電極部と第二の電極部との間に形成された光受光部と、前記第二の電極部と第三の電極部とを有する第一のコンデンサ部と、電極間を接続する導電物質と、を有し、前記光受光部は、前記導電物質を充填させる貫通孔を備え、前記導電物質は、前記貫通孔を介して前記第一の電極部と前記第二の電極部とを接続させることを有することを特徴とするコンデンサ一体型太陽電池である。 A light receiving part formed between the first electrode part and the second electrode part, a first capacitor part having the second electrode part and the third electrode part, and connecting the electrodes A conductive material, and the light receiving portion includes a through hole filled with the conductive material, and the conductive material includes the first electrode portion and the second electrode portion through the through hole. It is a capacitor | condenser integrated solar cell characterized by having to connect.
 本発明によると、太陽電池とコンデンサを一体型に形成させ、さらに並列に接続させることで、従来の太陽電池本体に蓄電機能を備えさせることができる。したがって、システム構成の煩雑さの解消することができ、効率的で信頼性の高いシステムを構成することができる。 According to the present invention, a conventional solar cell body can be provided with a power storage function by integrally forming the solar cell and the capacitor and further connecting them in parallel. Therefore, the complexity of the system configuration can be eliminated, and an efficient and highly reliable system can be configured.
結晶シリコン太陽電池を光受光部とするコンデンサ一体型太陽電池の一例。An example of a capacitor integrated solar cell using a crystalline silicon solar cell as a light receiving part. コンデンサを複数直列に接続されるよう構成したコンデンサ一体型太陽電池の一例。An example of a capacitor-integrated solar cell configured such that a plurality of capacitors are connected in series. 化合物系太陽電池を光受光部とするコンデンサ一体型太陽電池の一例。An example of a capacitor-integrated solar cell using a compound solar cell as a light receiving part. 有機薄膜太陽電池を光受光部に持つコンデンサ一体型太陽電池の一例。An example of a capacitor-integrated solar cell having an organic thin-film solar cell in a light receiving part. 電気二重層コンデンサを持つ一体型太陽電池の一例。An example of an integrated solar cell having an electric double layer capacitor. 並列接続コンデンサを持つ一体型太陽電池を構成する一例。An example of configuring an integrated solar cell having a parallel connection capacitor. 貫通孔105の配置例を説明する一体型太陽電池の平面投影図。FIG. 3 is a plan view of an integrated solar cell for explaining an arrangement example of through holes 105.
 以下、本発明を実施するための形態を実施例に沿って説明する。なお、以下の実施例は本発明を実施するための一例であって、実施例で述べている詳細な材料構成、寸法、実施条件等によって、本発明の効果が何ら制限されることは無い。 Hereinafter, modes for carrying out the present invention will be described according to examples. The following examples are examples for carrying out the present invention, and the effects of the present invention are not limited by the detailed material configuration, dimensions, working conditions, etc. described in the examples.
 本実施例では、結晶シリコン太陽電池を光受光部とするコンデンサ一体型太陽電池100について説明する。図1は、本実施例である結晶シリコン太陽電池を光受光部とするコンデンサ一体型太陽電池の構成図の一例である。本実施例によるとコンデンサ一体型太陽電池100は電極部101、光受光部102、金属電極部103、多孔質酸化膜104、貫通孔105、誘電体106、コンデンサ電極107から構成されている。 In this example, a capacitor-integrated solar cell 100 using a crystalline silicon solar cell as a light receiving part will be described. FIG. 1 is an example of a configuration diagram of a capacitor-integrated solar cell in which the crystalline silicon solar cell according to the present embodiment is used as a light receiving part. According to this embodiment, the capacitor-integrated solar cell 100 includes an electrode part 101, a light receiving part 102, a metal electrode part 103, a porous oxide film 104, a through hole 105, a dielectric 106, and a capacitor electrode 107.
 本実施例では電極部101、光受光部102および金属電極部103を以って太陽電池100の起電力を発現することが可能である。電極部101は通常結晶シリコン太陽電池では負極側に相当し、結晶シリコン太陽電池に対してn型ドーパントとなる銀ペーストなどを焼結して構成され、銀ペーストに限らず焼結してドーパントとなる材料が広く適用できる。光受光部102は本実施例ではドーピングされたシリコンウェハに相当し、一般的な方法でドーピングされた単結晶または多結晶シリコンウェハが使用できる。ドーピングの方法は結晶シリコン太陽電池として発電できる構成であれば特に制限は無く、気相熱拡散法などが用いられる。 In this embodiment, the electromotive force of the solar cell 100 can be expressed by the electrode part 101, the light receiving part 102, and the metal electrode part 103. The electrode portion 101 corresponds to the negative electrode side in a normal crystalline silicon solar cell, and is configured by sintering a silver paste or the like serving as an n-type dopant with respect to the crystalline silicon solar cell. Can be widely applied. In this embodiment, the light receiving portion 102 corresponds to a doped silicon wafer, and a single crystal or polycrystalline silicon wafer doped by a general method can be used. The doping method is not particularly limited as long as it can generate power as a crystalline silicon solar cell, and a vapor phase thermal diffusion method or the like is used.
 金属電極部103は本実施例の場合、アルミニウムペーストなど結晶シリコンに対してp型ドーパントとなる金属材料を主に印刷によって設置し、焼結する際に結晶シリコンウェハに熱拡散によってp型ドーピングされるであれば、特に制限は無い。本実施例にしたがい、アルミニウムペーストを通常の結晶シリコン太陽電池と同様の方法で設置すると、既にアルミニウムの自然酸化膜が形成されて、コンデンサの容量を増大させるべく、表面積を増やす役割をする多孔質酸化膜104と同様の役割を果たすが、多孔質酸化膜の比表面積が不足しているためにコンデンサ容量が十分に得られない。したがって、金属電極部103を通常の方法で設置後、陽極酸化法などによって多孔質形状に加工した金属酸化膜を形成する。多孔質酸化膜の形成方法は先に示した陽極酸化法以外にも幾何学パターニング、化学エッチングなどの方法があるが、これら方法に特に制限は無い。比表面積は電解コンデンサの一般的な容量を満たす数百~数万程度であることが求められる。
 太陽電池部分であるフォトダイオードとコンデンサ部分を並列に接続するために貫通孔105が設置される。貫通孔105はボール盤などを用いた機械的方法で設置できるが、精度やバリの問題もあるため、レーザを用いた形成法がより適切である。レーザ源は炭酸レーザや各種エキシマレーザなど高出力型が適当であり、波長と出力を制御することによって、貫通範囲を金属電極部103までに選択貫通させることが可能である。貫通孔105内部には電極部101と金属電極部103とを接続させる導電物質が注入されるが、電極部101で用いた材質と同じ銀ペーストなど、導電性を有する材料であれば問題なく機能する。
In the case of the present embodiment, the metal electrode portion 103 is p-type doped by thermal diffusion in the crystalline silicon wafer when a metal material that becomes a p-type dopant is mainly applied to the crystalline silicon, such as aluminum paste, by printing. If there is, there is no restriction in particular. According to the present embodiment, when the aluminum paste is installed in the same manner as a normal crystalline silicon solar cell, a natural oxide film of aluminum is already formed, and the porous surface serves to increase the surface area in order to increase the capacity of the capacitor. Although it plays the same role as the oxide film 104, a sufficient capacitance is not obtained because the specific surface area of the porous oxide film is insufficient. Therefore, after the metal electrode portion 103 is installed by a normal method, a metal oxide film processed into a porous shape by an anodic oxidation method or the like is formed. As a method for forming the porous oxide film, there are methods such as geometric patterning and chemical etching in addition to the anodic oxidation method described above, but these methods are not particularly limited. The specific surface area is required to be several hundred to several tens of thousands satisfying the general capacity of electrolytic capacitors.
A through hole 105 is provided to connect the photodiode, which is a solar cell portion, and the capacitor portion in parallel. Although the through-hole 105 can be installed by a mechanical method using a drilling machine or the like, there are problems of accuracy and burrs, and therefore a formation method using a laser is more appropriate. The laser source is suitably a high output type such as a carbonic acid laser or various excimer lasers, and the penetrating range can be selectively penetrated to the metal electrode portion 103 by controlling the wavelength and output. A conductive substance for connecting the electrode part 101 and the metal electrode part 103 is injected into the through-hole 105. However, any material having conductivity, such as the same silver paste used for the electrode part 101, can function without any problem. To do.
 貫通孔105は太陽電池で発電した電荷をコンデンサに接続するバイパスであるため、十分に低抵抗な電気接続が必要であるが、配線部分は光が遮断されるため、光受光部における太陽光が照射される面に対する貫通孔の占有面積は0.1%以上10%以下が求められる。貫通孔の面積が0.1%以下であれば十分な許容電流をコンデンサへ流すことができず、また当該面積が10%以上では、光受光面の遮光面積が増大し、太陽電池の発電量が減少してしまう。
 図7に貫通孔の投影図の一例を示す。たとえば電極部101に沿ったパターニングや、受光に影響しない部分でパターニングすることなどがあげられるが、図7のパターンに制限されるものではない。図7の場合、反射防止膜108下の光受光部102における太陽光が照射される面に対し、貫通孔105の占める面積は、0.1%以上10%以下となるようにする。
Since the through-hole 105 is a bypass that connects the electric charge generated by the solar cell to the capacitor, a sufficiently low-resistance electrical connection is necessary. The area occupied by the through holes with respect to the irradiated surface is required to be 0.1% or more and 10% or less. If the area of the through hole is 0.1% or less, a sufficient allowable current cannot be supplied to the capacitor. If the area is 10% or more, the light-shielding area of the light receiving surface increases, and the amount of power generated by the solar cell is increased. Will decrease.
FIG. 7 shows an example of a projected view of the through holes. For example, patterning along the electrode portion 101 and patterning at a portion that does not affect light reception can be mentioned, but the pattern is not limited to the pattern shown in FIG. In the case of FIG. 7, the area occupied by the through hole 105 is set to be 0.1% or more and 10% or less with respect to the surface irradiated with sunlight in the light receiving unit 102 below the antireflection film 108.
 コンデンサ一体型太陽電池100のコンデンサ部分の蓄電機能を付与するために誘電体106が多孔質酸化膜104とコンデンサ電極107に接して設置される。誘電体106が存在しなくても電解コンデンサとして機能するが、金属電極部103とコンデンサ電極107が短絡することを防止する機能を付与できるため、設置することが望ましい。膜厚はごく薄くてよいが、10~100nmの厚さ条件を満たすのが望ましい。誘電体の材質に特に制限は無いがPEDOT-PSSなどの固体電解質などが望ましい。 In order to provide the power storage function of the capacitor portion of the capacitor-integrated solar cell 100, the dielectric 106 is placed in contact with the porous oxide film 104 and the capacitor electrode 107. Although it functions as an electrolytic capacitor even if the dielectric 106 is not present, it is desirable to install it because it can provide a function of preventing the metal electrode portion 103 and the capacitor electrode 107 from being short-circuited. The film thickness may be very thin, but it is desirable to satisfy the thickness condition of 10 to 100 nm. The material of the dielectric is not particularly limited, but a solid electrolyte such as PEDOT-PSS is desirable.
 コンデンサ一体型太陽電池100のコンデンサ部分の電極としてコンデンサ電極107が設置される。コンデンサ電極107はアルミニウムなどの種々の電極によって構成され、コンデンサの機能を満たす限り制限は無い。 The capacitor electrode 107 is installed as an electrode of the capacitor portion of the capacitor-integrated solar cell 100. The capacitor electrode 107 is composed of various electrodes such as aluminum and is not limited as long as it satisfies the function of the capacitor.
 結晶シリコン太陽電池を光受光部に持つコンデンサ一体型太陽電池100の場合、結晶シリコン太陽電池に一般的に設けられている反射防止膜108を設けても何ら問題は無い。その際、貫通孔105は、反射防止膜108にも形成され、反射防止膜108上の電極部101と導通させる。反射防止膜108は窒化シリコン薄膜などが用いられ、化学堆積法(Chemical Vaper deposition,CVD)などの方法によって設置することができる。 In the case of the capacitor-integrated solar cell 100 having a crystalline silicon solar cell in the light receiving part, there is no problem even if the antireflection film 108 generally provided in the crystalline silicon solar cell is provided. At this time, the through hole 105 is also formed in the antireflection film 108 and is electrically connected to the electrode portion 101 on the antireflection film 108. The antireflection film 108 is made of a silicon nitride thin film or the like, and can be installed by a method such as a chemical vapor deposition (CVD) method.
 以上の構成によって、結晶シリコン太陽電池を光受光部に有するコンデンサ一体型太陽電池を構成することが可能である。 With the above configuration, it is possible to configure a capacitor-integrated solar cell having a crystalline silicon solar cell in the light receiving part.
 コンデンサの容量をさらに増大させるべく、図2に示すように、104,106,107の構成をさらに追加し、コンデンサを複数直列接続にしてもよい。この場合、二つのコンデンサの電極を担うコンデンサ電極107-2は、不織布などのメッシュ状の導電性物質を用いることが望ましい。 In order to further increase the capacity of the capacitor, as shown in FIG. 2, a configuration of 104, 106, 107 may be further added, and a plurality of capacitors may be connected in series. In this case, it is desirable to use a mesh-like conductive material such as a non-woven fabric for the capacitor electrode 107-2 that carries the electrodes of the two capacitors.
 本実施例により、太陽電池によって発電した電力を、当該太陽電池と一体化した金属電極部から構成されるコンデンサによって蓄電することが可能となる。したがって、太陽電池とコンデンサによるシステムをコンパクトに構成することができる。さらに、蓄電機能がコンデンサであるため、従来不可欠であった保護回路が不要となる等、システムの接続の煩雑さを解消することができる。また、太陽電池とコンデンサを接続するための配線を有しないため、駆動信頼性を高める効果もある。 According to the present embodiment, it is possible to store the electric power generated by the solar cell by the capacitor constituted by the metal electrode unit integrated with the solar cell. Therefore, a system using solar cells and capacitors can be configured in a compact manner. Furthermore, since the power storage function is a capacitor, it is possible to eliminate the complicated connection of the system, such as the need for a protection circuit that has been indispensable in the past. In addition, since there is no wiring for connecting the solar cell and the capacitor, there is an effect of increasing the driving reliability.
 実施例2では化合物系太陽電池を光受光部とするコンデンサ一体型太陽電池200について説明する。図3は本実施例である化合物系太陽電池を光受光部とするコンデンサ一体型太陽電池の構成図である。図3に示すコンデンサ一体型太陽電池200の場合、実施例1で示した結晶シリコン太陽電池100と比較して、薄膜太陽電池であるため軽量化が可能であり、製造方法の工夫によってフレキシブル化も可能である。また、金属電極部103を構成する金属基板113にバルク金属を用いることができるので、内部抵抗の低減が期待できる。本実施例では実施例1と明らかに重複する場合は適宜省略して詳細説明する。 Example 2 describes a capacitor-integrated solar cell 200 using a compound solar cell as a light receiving part. FIG. 3 is a configuration diagram of a capacitor-integrated solar cell in which the compound solar cell of this example is used as a light receiving part. In the case of the capacitor-integrated solar cell 200 shown in FIG. 3, the thin-film solar cell can be reduced in weight as compared with the crystalline silicon solar cell 100 shown in Example 1, and can be made flexible by devising the manufacturing method. Is possible. In addition, since a bulk metal can be used for the metal substrate 113 constituting the metal electrode portion 103, a reduction in internal resistance can be expected. In the present embodiment, when it clearly overlaps with the first embodiment, it will be omitted in detail and described in detail.
 実施例2の光受光部102中の化合物系太陽電池は銅、インジウム、ガリウム、セレンからなる化合物半導体層(以下CIGS太陽電池層)109を用いる。CIGS太陽電池は高効率、製膜容易な太陽電池であり、本発明にも優れた効果を発揮する。 A compound-based solar cell in the light receiving unit 102 of Example 2 uses a compound semiconductor layer (hereinafter referred to as a CIGS solar cell layer) 109 made of copper, indium, gallium, and selenium. The CIGS solar cell is a solar cell with high efficiency and easy film formation, and exhibits excellent effects also in the present invention.
 実施例2のコンデンサ一体型太陽電池200を作製する場合は、金属電極部103と多孔質酸化膜104、誘電体106およびコンデンサ電極107をまず作製し、その基板を出発として光受光部102および電極部101を順に製膜する。以下、作製手順に従って説明する。 When the capacitor-integrated solar cell 200 of Example 2 is manufactured, the metal electrode portion 103, the porous oxide film 104, the dielectric 106, and the capacitor electrode 107 are first manufactured, and the light receiving portion 102 and the electrode are started from the substrate. The part 101 is formed in order. Hereinafter, it demonstrates according to a preparation procedure.
 金属電極部103にはCIGS太陽電池として適用可能な金属基板113が必要であり、一例としてアルミニウム基板やステンレス基板があげられる。この金属基板113の一方の面に、モリブデン薄膜112をスパッタリング等の方法により、厚さ100~500nm製膜する。金属基板113の他方の面には多孔質酸化膜104を陽極酸化法などによって設置する。多孔質酸化膜の必要条件は実施例1と同様である。 The metal electrode portion 103 requires a metal substrate 113 applicable as a CIGS solar cell, and examples thereof include an aluminum substrate and a stainless steel substrate. A molybdenum thin film 112 is formed on one surface of the metal substrate 113 by sputtering or the like to a thickness of 100 to 500 nm. A porous oxide film 104 is provided on the other surface of the metal substrate 113 by an anodic oxidation method or the like. The necessary conditions for the porous oxide film are the same as in Example 1.
 このようにして金属電極部103、多孔質酸化膜104、誘電体106およびコンデンサ電極107を含むコンデンサ機能を有する金属基板113を得ることができる。この金属基板113上に、光受光部102を形成する。CIGS太陽電池層109は気相セレン化、固相セレン化、三段階法など既存の方法によって作製することができる。CIGS化合物半導体層109に接する形で接合界面を形成するバッファ層110を製膜する。バッファ層110は溶液成長法(Chemical Bath Deposition,CBD法)などの既存の方法で10~100nm程度の薄膜を作製することができる。このバッファ層に接する形でノンドープ酸化亜鉛111をスパッタリングやCVD法などの手段で製膜する。ノンドープ酸化亜鉛111は太陽電池部分の短絡防止と太陽電池の性能改善に寄与する。電極部101には透明電極の機能を有する酸化物が用いられ、一例としてITO(スズドープの酸化インジウム)、ZnO(ノンドープ酸化亜鉛)、BZO(ほう素ドープ酸化亜鉛)、AZO(アルミニウムドープ酸化亜鉛)などが適用可能である。本実施例に適用する場合、当該バッファ層110はn型半導体としての役割を担う。 Thus, a metal substrate 113 having a capacitor function including the metal electrode portion 103, the porous oxide film 104, the dielectric 106 and the capacitor electrode 107 can be obtained. The light receiving unit 102 is formed on the metal substrate 113. The CIGS solar cell layer 109 can be produced by an existing method such as vapor phase selenization, solid phase selenization, or a three-stage method. A buffer layer 110 that forms a bonding interface in contact with the CIGS compound semiconductor layer 109 is formed. As the buffer layer 110, a thin film with a thickness of about 10 to 100 nm can be formed by an existing method such as a solution growth method (Chemical Bath Deposition, CBD method). A non-doped zinc oxide 111 is formed in contact with the buffer layer by means such as sputtering or CVD. The non-doped zinc oxide 111 contributes to prevention of short circuit in the solar cell portion and improvement of the performance of the solar cell. An oxide having the function of a transparent electrode is used for the electrode part 101. As an example, ITO (tin-doped indium oxide), ZnO (non-doped zinc oxide), BZO (boron-doped zinc oxide), AZO (aluminum-doped zinc oxide) Etc. are applicable. When applied to this embodiment, the buffer layer 110 plays a role as an n-type semiconductor.
 このような手順で作製された化合物系太陽電池を光受光部とするコンデンサ一体型太陽電池200の太陽電池部分で発電した電力をコンデンサ部分に蓄電するために貫通孔105が作製される。貫通孔105の作製方法と貫通孔105に充填される導電材料は実施例1と同様に形成される。 The through-hole 105 is formed in order to store the electric power generated in the solar cell portion of the capacitor-integrated solar cell 200 using the compound solar cell manufactured in such a procedure as the light receiving portion in the capacitor portion. The manufacturing method of the through hole 105 and the conductive material filled in the through hole 105 are formed in the same manner as in the first embodiment.
 実施例3では有機薄膜太陽電池を光受光部に持つコンデンサ一体型太陽電池300について説明する。図4に示した有機薄膜太陽電池を有するコンデンサ一体型太陽電池300は窓電極側から連続して作製可能であるから、製造コストの低減の観点から実施例1および実施例2と比較して優位性がある。また、有機薄膜太陽電池として構成することにより、実施例1、2と比較して、膜厚を一層薄くすることができるため、よりコンパクトでシステム体積の小さいコンデンサ一体型太陽電池を形成することが可能となる。尚、実施例3を構成する項目のうち、実施例1または実施例2と同様の必要条件で効果を満たせる場合については適宜説明を省略する。 Example 3 describes a capacitor-integrated solar cell 300 having an organic thin-film solar cell as a light receiving part. Since the capacitor-integrated solar cell 300 having the organic thin film solar cell shown in FIG. 4 can be continuously manufactured from the window electrode side, it is superior to the first and second embodiments from the viewpoint of reducing the manufacturing cost. There is sex. In addition, by configuring as an organic thin film solar cell, the film thickness can be further reduced as compared with Examples 1 and 2, so that it is possible to form a capacitor integrated solar cell that is more compact and has a small system volume. It becomes possible. Note that, among the items constituting the third embodiment, a description of the case where the effect can be satisfied under the same necessary conditions as in the first or second embodiment will be omitted as appropriate.
 有機薄膜太陽電池を光受光部に持つコンデンサ一体型太陽電池300の作製方法は電極部101と光受光部102までを構成した部分と、金属電極部103、多孔質酸化膜104、誘電体106およびコンデンサ電極107を有するコンデンサ部分を別々に用意し、両者をラミネートで密着する方法で作製する。両者を密着後、貫通孔105を形成し、有機薄膜太陽電池を光受光部に持つコンデンサ一体型太陽電池300が完成する。以下詳細に説明する。 A method for producing a capacitor-integrated solar cell 300 having an organic thin-film solar cell as a light receiving portion includes a portion including the electrode portion 101 and the light receiving portion 102, a metal electrode portion 103, a porous oxide film 104, a dielectric 106, and A capacitor portion having the capacitor electrode 107 is prepared separately, and the both are manufactured by a method in which both are adhered by lamination. After both are brought into close contact with each other, a through-hole 105 is formed, and a capacitor integrated solar cell 300 having an organic thin-film solar cell as a light receiving portion is completed. This will be described in detail below.
 電極部101はコンデンサ一体型太陽電池300の太陽電池部分を保持するために必要な透明基板114と透明電極115によって構成されている。透明基板114はガラス基板やPET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)をはじめとする透明樹脂基板などを用いることができ、光受光を可能とするための透明性があれば特に制限は無い。透明電極115は光受光を可能とする透明性と導電性があれば特に制限は無く、一例としてITO(スズドープの酸化インジウム)、ZnO(ノンドープ酸化亜鉛)、BZO(ほう素ドープ酸化亜鉛)、AZO(アルミニウムドープ酸化亜鉛)などの金属酸化物をスパッタリング、CVD法などの既存の方法によって作製可能である。 The electrode part 101 is composed of a transparent substrate 114 and a transparent electrode 115 necessary for holding the solar cell part of the capacitor integrated solar cell 300. The transparent substrate 114 can be a glass substrate or a transparent resin substrate such as PET (polyethylene terephthalate) or PEN (polyethylene naphthalate), and is not particularly limited as long as it has transparency to enable light reception. . The transparent electrode 115 is not particularly limited as long as it has transparency and conductivity enabling light reception. Examples thereof include ITO (tin-doped indium oxide), ZnO (non-doped zinc oxide), BZO (boron-doped zinc oxide), and AZO. A metal oxide such as (aluminum-doped zinc oxide) can be produced by an existing method such as sputtering or CVD.
 光受光部102は、正孔輸送層116、有機光受光層117によって構成されている。正孔輸送層116は透明電極115に接しており、ポリエチレンジオキシチオフェン/ポリスチレンスルホン酸ナトリウム(PEDOT-PSS)混合分散液をスピンコートなど既存の方法で塗布することによって形成した10~100nmの厚さの薄膜からなる。有機光受光層117はバルクヘテロ接合型と呼ばれるp型有機半導体とn型有機半導体がそれぞれ薄膜バルク内部で接合状態を形成した層である。p型半導体には一般に共役高分子が用いられ、たとえばポリ-3ヘキシルチオフェンなどが適用される。n型有機半導体としてはフラーレン誘導体が一般的に利用でき、代表例としてメタノフラーレンであるC61-PCBM([6,6]-Phenyl-C61-Butyric Acid Methyl Ester)があげられる。p型有機半導体とn型有機半導体を適切な溶媒に混合溶解し、正孔輸送層116に接する形でスピンコート等の既存の方法によって有機光受光層117を塗布形成することができる。 The light receiving part 102 is composed of a hole transport layer 116 and an organic light receiving layer 117. The hole transport layer 116 is in contact with the transparent electrode 115 and is formed by applying a polyethylenedioxythiophene / sodium polystyrene sulfonate (PEDOT-PSS) mixed dispersion by an existing method such as spin coating to a thickness of 10 to 100 nm. It consists of a thin film. The organic light-receiving layer 117 is a layer in which a p-type organic semiconductor and an n-type organic semiconductor called a bulk heterojunction type form a junction state inside the thin film bulk. A conjugated polymer is generally used for the p-type semiconductor, and for example, poly-3-hexylthiophene is applied. As an n-type organic semiconductor, a fullerene derivative is generally available, and a typical example is C61-PCBM ([6,6] -Phenyl-C61-Butylic Acid Methyl Ester), which is a methanofullerene. The p-type organic semiconductor and the n-type organic semiconductor are mixed and dissolved in a suitable solvent, and the organic light-receiving layer 117 can be formed by coating with an existing method such as spin coating in contact with the hole transport layer 116.
 また、有機光受光層117は低分子化合物の蒸着によっても形成できる。たとえば、正孔輸送層116に接する形でまずフタロシアニン誘導体を蒸着し、ついでフタロシアニン誘導体とフラーレン誘導体とを共蒸着し、さらにフラーレン誘導体を共蒸着することによっても有機光受光層117を形成可能である。 The organic light receiving layer 117 can also be formed by vapor deposition of a low molecular compound. For example, the organic light-receiving layer 117 can also be formed by first depositing a phthalocyanine derivative in contact with the hole transport layer 116, then co-depositing the phthalocyanine derivative and the fullerene derivative, and further co-depositing the fullerene derivative. .
 コンデンサ機能を有する金属電極部103、多孔質酸化膜104、誘電体106およびコンデンサ電極107は以下のように形成する。金属電極部103はアルミニウム等の金属電極を適宜用いることができ、これに多孔質酸化膜104、誘電体106およびコンデンサ電極107を実施例1および実施例2と同様の材料および条件で作製する。金属電極部103と電極部101および光受光部102を含む太陽電池部分とをラミネートにより密着させるために、金属電極部の片面に上記バルクヘテロ接合型の有機光受光部を構成する同じ材料からなる薄膜を設置する。このようにして、共役高分子同士をラミネートすることに容易に密着性を確保することが可能となる。 The metal electrode part 103 having a capacitor function, the porous oxide film 104, the dielectric 106 and the capacitor electrode 107 are formed as follows. As the metal electrode portion 103, a metal electrode such as aluminum can be used as appropriate, and the porous oxide film 104, the dielectric 106 and the capacitor electrode 107 are produced using the same material and conditions as in the first and second embodiments. A thin film made of the same material constituting the bulk heterojunction organic light receiving portion on one surface of the metal electrode portion in order to adhere the metal electrode portion 103 and the solar cell portion including the electrode portion 101 and the light receiving portion 102 by lamination. Is installed. In this way, it is possible to easily ensure adhesion to the lamination of conjugated polymers.
 太陽電池部分の性能向上のために、金属電極部に接して、電子輸送層118を設置する場合もある。電子輸送層118としては、酸化チタン薄膜などを用いることができ、ゾルゲル法などの既存の方法で膜厚10nm以下で設置される。電子輸送層118を設置した場合、これに接して有機光受光層117を構成する同じ材料からなる薄膜を設置したのち、ラミネートによって太陽電池部分と密着することができる。 In order to improve the performance of the solar cell portion, the electron transport layer 118 may be installed in contact with the metal electrode portion. As the electron transport layer 118, a titanium oxide thin film or the like can be used, and the electron transport layer 118 is provided with a film thickness of 10 nm or less by an existing method such as a sol-gel method. When the electron transport layer 118 is provided, a thin film made of the same material constituting the organic light receiving layer 117 is placed in contact with the electron transport layer 118, and then it can be adhered to the solar cell portion by lamination.
 ラミネートで密着したのち、実施例1または実施例2と同様の条件で貫通孔105を設置し、導電物質が充填されて、有機薄膜太陽電池を光受光部に持つコンデンサ一体型太陽電池300が完成する。 After adhering with the laminate, through-hole 105 is installed under the same conditions as in Example 1 or Example 2, and a capacitor-integrated solar cell 300 having an organic thin-film solar cell as a light-receiving part is completed. To do.
 実施例1から実施例3で示したコンデンサ一体型太陽電池は電解コンデンサの機能を有する。電解コンデンサは多孔質酸化膜の表面積によって電気容量を確保できるが、放電時間が短い。本発明によれば、放電時間とさらなる電気容量の増大を電気二重層コンデンサの構造によって容易に実現できる。実施例1で示した結晶シリコン太陽電池を持つコンデンサ一体型太陽電池を改良した電気二重層コンデンサを持つ一体型太陽電池400について説明する。なお、実施例1と重複する内容は適宜省略する。 The capacitor-integrated solar cells shown in Examples 1 to 3 have the function of an electrolytic capacitor. The electrolytic capacitor can secure electric capacity by the surface area of the porous oxide film, but has a short discharge time. According to the present invention, an increase in discharge time and further electric capacity can be easily realized by the structure of the electric double layer capacitor. An integrated solar cell 400 having an electric double layer capacitor obtained by improving the capacitor integrated solar cell having the crystalline silicon solar cell shown in the first embodiment will be described. In addition, the content which overlaps with Example 1 is abbreviate | omitted suitably.
 図5に電気二重層コンデンサを持つ一体型太陽電池400の断面構造図を示す。電気二重層コンデンサの構造は電極および誘電体の構造を変えることによって実現できる。電気二重層を形成するため、電解質を含む活性炭層119をスクリーン印刷などの既存の方法で設置する。電解質は耐久性の高い高分子電解質やイオン液体などが適当であるが、特に制限は無い。両極の活性炭層119間において、電解質中のイオン種の拡散を分離するためにセパレータ120が電極間に設置される。電気二重層コンデンサによって、電気容量および放電時間の改善が可能となる。 FIG. 5 shows a cross-sectional structure diagram of an integrated solar cell 400 having an electric double layer capacitor. The structure of the electric double layer capacitor can be realized by changing the structure of the electrode and the dielectric. In order to form an electric double layer, an activated carbon layer 119 containing an electrolyte is installed by an existing method such as screen printing. The electrolyte is suitably a highly durable polymer electrolyte or ionic liquid, but there is no particular limitation. A separator 120 is placed between the electrodes in order to separate the diffusion of ionic species in the electrolyte between the activated carbon layers 119 of both electrodes. The electric double layer capacitor can improve the electric capacity and the discharge time.
 実施例5はコンデンサの容量を増大させるため、一体型の構造を持ちながら、コンデンサ部分を2つ以上並列に接続した並列接続コンデンサを持つ一体型太陽電池500について図6を用いて説明する。なお、図6は実施例1に示した結晶シリコン太陽電池を持つコンデンサ一体型太陽電池100を改良した構造であり、実施例1との重複部分は適宜省略する。 Example 5 describes an integrated solar cell 500 having a parallel connection capacitor in which two or more capacitor parts are connected in parallel while having an integrated structure in order to increase the capacity of the capacitor, with reference to FIG. FIG. 6 shows a structure in which the capacitor-integrated solar battery 100 having the crystalline silicon solar battery shown in the first embodiment is improved, and overlapping parts with the first embodiment are omitted as appropriate.
 図6に示すように、第一コンデンサ121と第二コンデンサ122は並列に接続され、並列コンデンサ部124を形成している。さらに、並列コンデンサ部124と第三コンデンサ123は並列に接続され、並列コンデンサ部125を形成している。
 このように2つ以上のコンデンサ構造を並列に接続するため、金属電極部103がコンデンサに内蔵されている部分については両面に多孔質酸化膜104が設置されており、金属電極部103とコンデンサ電極107が交互に設置され、金属電極部103のみ貫通孔105で接続された構造を有しており、充填された導電物質によって、電極部101と二つの電極部103とが接続されている。この構造によって、コンデンサ部分は並列に接続され、電気容量の合成容量は個別のコンデンサ部分の総和であることから、システム体積の小型化を維持して、電気容量の増大が可能である。
 また、本実施例のような並列接続の場合、図2のように直列に接続された場合と比較して、放電時の時定数を下げることができ、放電速度を速めることができる。
As shown in FIG. 6, the first capacitor 121 and the second capacitor 122 are connected in parallel to form a parallel capacitor portion 124. Furthermore, the parallel capacitor unit 124 and the third capacitor 123 are connected in parallel to form a parallel capacitor unit 125.
Thus, in order to connect two or more capacitor structures in parallel, a porous oxide film 104 is provided on both sides of a portion where the metal electrode portion 103 is built in the capacitor, and the metal electrode portion 103 and the capacitor electrode 107 are alternately arranged, and only the metal electrode portions 103 are connected by the through holes 105, and the electrode portions 101 and the two electrode portions 103 are connected by the filled conductive material. With this structure, the capacitor portions are connected in parallel, and the combined capacitance of the capacitance is the sum of the individual capacitor portions, so that the capacitance can be increased while maintaining a reduction in system volume.
Further, in the case of the parallel connection as in the present embodiment, the time constant at the time of discharge can be lowered and the discharge speed can be increased as compared with the case of being connected in series as shown in FIG.
100 結晶シリコン太陽電池を光受光部とするコンデンサ一体型太陽電池
101 電極部
102 光受光部
103 金属電極部
104 多孔質酸化膜
105 貫通孔
106 誘電体
107 コンデンサ電極
107-2 コンデンサ電極
108 反射防止膜
109 化合物半導体層(CIGS太陽電池層)
110 バッファ層
111 ノンドープ酸化亜鉛
112 モリブデン薄膜
113 金属基板
114 透明基板
115 透明電極
116 正孔輸送層
117 有機光受光層
118 電子輸送層
119 活性炭層
120 セパレータ
121 第一コンデンサ
122 第二コンデンサ
123 第三コンデンサ
124 並列コンデンサ部
125 並列コンデンサ部
200 化合物系太陽電池を光受光部とするコンデンサ一体型太陽電池
300 有機薄膜太陽電池を光受光部に持つコンデンサ一体型太陽電池
400 電気二重層コンデンサを持つ一体型太陽電池
500 並列接続コンデンサを持つ一体型太陽電池
DESCRIPTION OF SYMBOLS 100 Capacitor-integrated solar cell using crystalline silicon solar cell as light receiving portion 101 Electrode portion 102 Light receiving portion 103 Metal electrode portion 104 Porous oxide film 105 Through hole 106 Dielectric 107 Capacitor electrode 107-2 Capacitor electrode 108 Antireflection film 109 Compound semiconductor layer (CIGS solar cell layer)
110 Buffer layer 111 Non-doped zinc oxide 112 Molybdenum thin film 113 Metal substrate 114 Transparent substrate 115 Transparent electrode 116 Hole transport layer 117 Organic light receiving layer 118 Electron transport layer 119 Activated carbon layer 120 Separator 121 First capacitor 122 Second capacitor 123 Third capacitor 124 Parallel Capacitor 125 125 Parallel Capacitor 200 Capacitor-Integrated Solar Cell 300 Using Compound Solar Cell as Light Receiving Unit 300 Capacitor-Integrated Solar Cell Having Organic Thin Film Solar Cell as Light Receiving Unit 400 Integrated Solar Having Electric Double Layer Capacitor Battery 500 Integrated solar cell with parallel connection capacitor

Claims (12)

  1.  第一の電極部と第二の電極部との間に形成された光受光部と、
     前記第二の電極部と第三の電極部とを有するコンデンサ部と、
     電極間を接続させる導電物質と、を有し、
     前記光受光部には、前記第一の電極部と接する面から前記第二の電極部と接する面までを貫通させる貫通孔が形成されており、当該貫通孔は前記導電物質が充填されており、
     前記導電物質を介して前記第一の電極部と前記第二の電極部とが接続されることを特徴とするコンデンサ一体型太陽電池。
    A light receiving portion formed between the first electrode portion and the second electrode portion;
    A capacitor portion having the second electrode portion and a third electrode portion;
    And a conductive material that connects the electrodes,
    The light receiving part has a through hole penetrating from a surface in contact with the first electrode part to a surface in contact with the second electrode part, and the through hole is filled with the conductive material. ,
    The capacitor-integrated solar cell, wherein the first electrode portion and the second electrode portion are connected via the conductive material.
  2.  前記コンデンサ一体型太陽電池は、
     前記光受光部から取得された電力を前記コンデンサ部に蓄電させることを特徴とする請求項1記載のコンデンサ一体型太陽電池。
    The capacitor integrated solar cell is:
    The capacitor integrated solar cell according to claim 1, wherein electric power acquired from the light receiving unit is stored in the capacitor unit.
  3.  前記第二の電極部は、
     前記第三の電極部と対向する面に多孔質酸化膜を有することを特徴とする請求項1記載のコンデンサ一体型太陽電池。
    The second electrode part is
    The capacitor integrated solar cell according to claim 1, further comprising a porous oxide film on a surface facing the third electrode portion.
  4.  前記コンデンサ部は、
     前記第二の電極部と前記第三の電極部との間に誘電体を有することを特徴とする請求項1記載のコンデンサ一体型太陽電池。
    The capacitor section is
    The capacitor integrated solar cell according to claim 1, further comprising a dielectric between the second electrode portion and the third electrode portion.
  5.  前記貫通孔は、
     前記貫通孔の投影面積が、前記光受光部において光が照射される面積に対して0.1%以上10%以下となるように形成されていることを特徴とする請求項1記載のコンデンサ一体型太陽電池。
    The through hole is
    2. The capacitor according to claim 1, wherein a projected area of the through hole is formed to be 0.1% or more and 10% or less with respect to an area irradiated with light in the light receiving portion. Body type solar cell.
  6.  前記第一の電極部と前記受光部との間に前記光受光部に照射された光の反射を防止する反射防止膜をさらに有し、前記反射防止膜に前記貫通孔が形成されることを特徴とする請求項1記載のコンデンサ一体型太陽電池。 An antireflection film for preventing reflection of light applied to the light receiving portion between the first electrode portion and the light receiving portion; and the through hole is formed in the antireflection film. The capacitor-integrated solar cell according to claim 1, wherein
  7.  前記光受光部は、結晶シリコンによって形成されていることを特徴とする請求項1記載のコンデンサ一体型太陽電池。 2. The capacitor-integrated solar cell according to claim 1, wherein the light receiving portion is made of crystalline silicon.
  8.  前記光受光部は、p型半導体であって、
     前記光受光部と前記第一の電極部との間に、n型半導体によって形成されたバッファ層を有することを特徴とする請求項1記載のコンデンサ一体型太陽電池。
    The light receiving part is a p-type semiconductor,
    The capacitor-integrated solar cell according to claim 1, further comprising a buffer layer formed of an n-type semiconductor between the light receiving portion and the first electrode portion.
  9.  前記光受光部は有機物質からなり、
     前記光受光部と前記第一の電極部との間に形成される正孔輸送層と、
     前記光受光部と前記第二の電極部との間に形成される電子輸送層と、
    をさらに有することを特徴とする請求項1記載のコンデンサ一体型太陽電池。
    The light receiving part is made of an organic substance,
    A hole transport layer formed between the light receiving part and the first electrode part;
    An electron transport layer formed between the light receiving portion and the second electrode portion;
    The capacitor integrated solar cell according to claim 1, further comprising:
  10.  前記第二の電極部と前記第三の電極部との間に、電解質を有する活性炭層と、当該電解質を分離させるセパレータとさらにを有することを特徴とする請求項1記載のコンデンサ一体型太陽電池。 The capacitor integrated solar cell according to claim 1, further comprising an activated carbon layer having an electrolyte and a separator for separating the electrolyte between the second electrode portion and the third electrode portion. .
  11.  前記第三の電極部と前記第四の電極部とを有する第二のコンデンサ部をさらに有することを特徴とする請求項1記載のコンデンサ一体型太陽電池。 The capacitor-integrated solar cell according to claim 1, further comprising a second capacitor portion having the third electrode portion and the fourth electrode portion.
  12.  前記第四の電極部と前記第五の電極部とを有する第三のコンデンサ部をさらに有し、
     前記導電物質は、前記第一の電極部と、前記第二の電極部と、前記第四の電極部とを接続させることを特徴とする請求項11記載のコンデンサ一体型太陽電池。
    A third capacitor portion having the fourth electrode portion and the fifth electrode portion;
    12. The capacitor-integrated solar cell according to claim 11, wherein the conductive material connects the first electrode part, the second electrode part, and the fourth electrode part.
PCT/JP2012/060498 2011-04-19 2012-04-18 Capacitor-integrated solar cell having electricity storage function WO2012144534A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-092624 2011-04-19
JP2011092624A JP2012227305A (en) 2011-04-19 2011-04-19 Capacitor-integrated solar cell having electricity storage function

Publications (1)

Publication Number Publication Date
WO2012144534A1 true WO2012144534A1 (en) 2012-10-26

Family

ID=47041640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060498 WO2012144534A1 (en) 2011-04-19 2012-04-18 Capacitor-integrated solar cell having electricity storage function

Country Status (2)

Country Link
JP (1) JP2012227305A (en)
WO (1) WO2012144534A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014131059A1 (en) * 2013-02-22 2014-08-28 Intel Corporation Energy conversion and storage device and mobile electronic device containing same
US9812867B2 (en) 2015-06-12 2017-11-07 Black Night Enterprises, Inc. Capacitor enhanced multi-element photovoltaic cell
GB2555009A (en) * 2016-10-11 2018-04-18 Big Solar Ltd Capacitors in grooves
GB2560764A (en) * 2017-03-24 2018-09-26 Power Roll Ltd Optoelectronic device with reflective face

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5882598B2 (en) * 2011-04-22 2016-03-09 スリーエム イノベイティブ プロパティズ カンパニー Electrochemical capacitor
JP6213559B2 (en) * 2013-03-18 2017-10-18 富士通株式会社 Electronic device, manufacturing method thereof, and network system
FR3023067B1 (en) * 2014-06-26 2017-10-20 Commissariat Energie Atomique MULTIFILES TANDEM CELLS
KR102524489B1 (en) * 2018-03-21 2023-04-24 한국전자통신연구원 Integrated electric device
KR102190099B1 (en) * 2019-04-30 2020-12-14 재단법인대구경북과학기술원 Battery integrated thin film sola cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260272A (en) * 1985-09-10 1987-03-16 Casio Comput Co Ltd Solar battery
JPS6248761U (en) * 1985-09-06 1987-03-26
JPH10233522A (en) * 1997-02-21 1998-09-02 Fuji Electric Co Ltd Thin-film solar cell and its manufacturing method
JP2006332469A (en) * 2005-05-27 2006-12-07 Peccell Technologies Inc Optically chargeable laminated capacitor
JP2007525008A (en) * 2003-06-26 2007-08-30 アドベント ソーラー,インク. Back contact solar cell with built-in conductive via and method for manufacturing the same
WO2010054209A1 (en) * 2008-11-07 2010-05-14 Sakti3, Inc. A method for manufacture and structure of multiple electrochemistries and energy gathering components within a unified structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6248761U (en) * 1985-09-06 1987-03-26
JPS6260272A (en) * 1985-09-10 1987-03-16 Casio Comput Co Ltd Solar battery
JPH10233522A (en) * 1997-02-21 1998-09-02 Fuji Electric Co Ltd Thin-film solar cell and its manufacturing method
JP2007525008A (en) * 2003-06-26 2007-08-30 アドベント ソーラー,インク. Back contact solar cell with built-in conductive via and method for manufacturing the same
JP2006332469A (en) * 2005-05-27 2006-12-07 Peccell Technologies Inc Optically chargeable laminated capacitor
WO2010054209A1 (en) * 2008-11-07 2010-05-14 Sakti3, Inc. A method for manufacture and structure of multiple electrochemistries and energy gathering components within a unified structure

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014131059A1 (en) * 2013-02-22 2014-08-28 Intel Corporation Energy conversion and storage device and mobile electronic device containing same
US9812867B2 (en) 2015-06-12 2017-11-07 Black Night Enterprises, Inc. Capacitor enhanced multi-element photovoltaic cell
GB2555009B (en) * 2016-10-11 2019-10-02 Power Roll Ltd Capacitors in grooves
GB2555233A (en) * 2016-10-11 2018-04-25 Power Roll Ltd Energy storage
GB2555009A (en) * 2016-10-11 2018-04-18 Big Solar Ltd Capacitors in grooves
GB2555233B (en) * 2016-10-11 2019-10-02 Power Roll Ltd Energy storage
US10964832B2 (en) 2016-10-11 2021-03-30 Power Roll Limited Capacitors in grooves
US10978603B2 (en) 2016-10-11 2021-04-13 Power Roll Limited Energy storage
US11688817B2 (en) 2016-10-11 2023-06-27 Power Roll Limited Capacitors in grooves
US11777046B2 (en) 2016-10-11 2023-10-03 Power Roll Limited Energy storage
GB2560764A (en) * 2017-03-24 2018-09-26 Power Roll Ltd Optoelectronic device with reflective face
WO2018172773A1 (en) * 2017-03-24 2018-09-27 Power Roll Limited Optoelectronic device with reflective face
GB2560764B (en) * 2017-03-24 2020-08-05 Power Roll Ltd Optoelectronic device with reflective face
US11522093B2 (en) 2017-03-24 2022-12-06 Power Roll Limited Optoelectronic device with reflective face

Also Published As

Publication number Publication date
JP2012227305A (en) 2012-11-15

Similar Documents

Publication Publication Date Title
WO2012144534A1 (en) Capacitor-integrated solar cell having electricity storage function
KR102595057B1 (en) Mexine-strained hybrid photoconverter
Bailie et al. Semi-transparent perovskite solar cells for tandems with silicon and CIGS
TWI693722B (en) Integrated solar collectors using epitaxial lift off and cold weld bonded semiconductor solar cells
CN102498573B (en) Crystal solar cell, for the preparation of the method for crystal solar cell and the method for the preparation of solar cell module
NL2015987A (en) Tandem solar cell and method for manufacturing such a solar cell.
JP6360471B2 (en) Photoelectric conversion element, photoelectric conversion module, and photovoltaic power generation system
EP1724838A1 (en) Tandem photovoltaic conversion device
CN102522506A (en) Organic solar cell of suede light trapping electrode and manufacturing method thereof
CN111430384A (en) Solar cell module, laminated solar cell and manufacturing method thereof
JP5420109B2 (en) Multiple solar cell having PN junction and Schottky junction and manufacturing method thereof
CN102800726A (en) Flip solar battery chip and preparation method thereof
CN102214518B (en) Structure of array type tandem solar battery module and manufacturing method thereof
CN219628267U (en) Solar laminated battery, battery assembly and photovoltaic system
JP2001185743A (en) Photoelectric conversion element and solar cell
JP2008244258A (en) Photoelectric conversion device and photovoltaic generator
CN113764535A (en) Double-sided illuminated mechanical laminated solar cell, cell module and photovoltaic system
JP2002076397A (en) Manufacturing method of photovoltaic device
US10529882B2 (en) Method for manufacturing multijunction photoelectric conversion device
JP2009135395A (en) Photoelectric conversion device, photovoltaic generator, and photoelectric conversion module
JP2013518424A (en) Solar cell array, thin-film solar module, and method for manufacturing the same
KR101537223B1 (en) Organic-inorganic hybrid thin film solar cells
CN113611762B (en) Double-sided illuminated mechanical laminated solar cell, cell module and photovoltaic system
CN215869412U (en) Double-sided illuminated mechanical laminated solar cell, cell module and photovoltaic system
CN219352270U (en) Solar laminated battery, battery assembly and photovoltaic system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12774611

Country of ref document: EP

Kind code of ref document: A1