WO2012121038A1 - Filter - Google Patents

Filter Download PDF

Info

Publication number
WO2012121038A1
WO2012121038A1 PCT/JP2012/054717 JP2012054717W WO2012121038A1 WO 2012121038 A1 WO2012121038 A1 WO 2012121038A1 JP 2012054717 W JP2012054717 W JP 2012054717W WO 2012121038 A1 WO2012121038 A1 WO 2012121038A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductor
series
shunt
series inductor
capacitor
Prior art date
Application number
PCT/JP2012/054717
Other languages
French (fr)
Japanese (ja)
Inventor
岸本健
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201280006219.1A priority Critical patent/CN103329434B/en
Publication of WO2012121038A1 publication Critical patent/WO2012121038A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0092Inductor filters, i.e. inductors whose parasitic capacitance is of relevance to consider it as filter

Definitions

  • the present invention relates to a filter having a configuration including an inductor.
  • each inductor may be formed of an inner layer electrode pattern of the multilayer substrate.
  • the series inductor formation layer is different from the shunt inductor formation layer, and the series inductor and the shunt inductor are not electromagnetically coupled.
  • a ground electrode is formed between these formation layers.
  • An object of the present invention is to realize a filter that can reduce the thickness and thickness of a multilayer body without reducing the degree of freedom in design even in a configuration having a series inductor and a shunt inductor.
  • a first series inductor and a second series inductor connected in series between a first input / output terminal and a second input / output terminal, and a connection point between the first series inductor and the second series inductor are connected to a ground potential.
  • a shunt inductor connected to the filter is arranged to be electromagnetically coupled to both the first series inductor and the second series inductor.
  • the electromagnetic coupling amount of the shunt inductor with respect to both the first series inductor and the second series inductor can be adjusted, and the substantial inductance with respect to the transmission signal of the shunt inductor is adjusted according to the coupling amount.
  • the characteristics can be adjusted.
  • pattern design corresponding to a desired inductance and shape can be performed more easily than the conventional configuration.
  • the shunt inductor has an electromagnetic field coupling amount with respect to the first series inductor and an electromagnetic field coupling amount with respect to the second series inductor.
  • the filter of the present invention preferably has the following configuration.
  • a laminated body formed by laminating a plurality of dielectric layers, an electrode pattern of a first series inductor formed in the laminated body, an electrode pattern of a second series inductor, and an electrode pattern of a shunt inductor are provided.
  • the dielectric layer in which the electrode pattern of the first series inductor and the electrode pattern of the second series inductor are formed is different from the dielectric layer in which the electrode pattern of the shunt inductor is formed.
  • the electrode pattern of the shunt inductor is disposed so as to partially overlap the electrode pattern of the first series inductor and the electrode pattern of the second series inductor.
  • the filter of the present invention preferably has the following configuration.
  • the shunt inductor is electromagnetically coupled to the first series inductor and the second series inductor by electromagnetic coupling within the layer.
  • the current direction of the first series inductor and the second series inductor and the current direction of the shunt inductor can be made the same when viewed from the top surface side of the multilayer body.
  • the inductance of the shunt inductor is reduced. That is, without changing the shape of the shunt inductor, the inductance can be made smaller than the configuration in which each series inductor is not electromagnetically coupled.
  • the filter of the present invention can be configured such that the current direction of the first series inductor and the second series inductor and the current direction of the shunt inductor are reversed when viewed from the top surface side of the multilayer body.
  • the inductance of the shunt inductor is increased. That is, without changing the shape of the shunt inductor, the inductance can be made larger than the configuration in which each series inductor is not electromagnetically coupled. In other words, the shape for obtaining the same inductance as that of the configuration in which each series inductor is not electromagnetically coupled can be reduced. Alternatively, the electrode width can be widened as a shape for obtaining the same inductance as the configuration in which each series inductor is not electromagnetically coupled.
  • a capacitor with a first series inductor, a second series inductor, and a shunt inductor so as to have a band pass characteristic.
  • a bandpass filter can be realized using the above-described inductor connection configuration.
  • the filter of the present invention preferably has the following configuration.
  • a first capacitor connected in series between the first input / output terminal and the first series inductor, a second input / output terminal, and a second series inductor together with the first series inductor, the second series inductor, and the shunt inductor.
  • a second capacitor connected in series between the second capacitor, a third capacitor connected between the shunt inductor and the ground potential, a connection point between the first series inductor and the first capacitor, and a connection between the shunt inductor and the third capacitor.
  • a fourth capacitor for connecting the points a fifth capacitor for connecting a connection point between the second series inductor and the second capacitor, a connection point between the shunt inductor and the third capacitor, a first input / output terminal and a second input / output And a sixth capacitor connected in series with the terminal, and a filter having a bandpass characteristic.
  • the formation region of the first series inductor, the first capacitor, and the fourth capacitor does not overlap the formation region of the second series inductor, the second capacitor, and the fifth capacitor. Placed in.
  • This configuration shows a more specific configuration of the band-pass filter using the above-described inductor connection configuration. And by using the above-mentioned laminated structure, unnecessary coupling can be suppressed and a bandpass filter having excellent characteristics can be realized.
  • a filter having a high-pass characteristic by including a capacitor together with the first series inductor, the second series inductor, and the shunt inductor.
  • a bandpass filter can be realized using the above-described inductor connection configuration.
  • Realizes a filter that can reduce the thickness and thickness of the multilayer body without reducing the degree of freedom in design, even if it has a series inductor and shunt inductor.
  • FIG. 3 is an equivalent circuit diagram of a T-type inductor circuit according to an embodiment of the present invention and a circuit diagram for easily showing an electromagnetic field coupling relationship. It is a disassembled perspective view of the laminated body 101 which implement
  • FIG. 6 is a partial stacking diagram illustrating an example of a laminated structure in a case where two series inductors L1A and L1B are electromagnetically coupled to a shunt inductor L2 with a single dielectric layer.
  • FIG. 5 is a partial stacking diagram illustrating an example of a laminated structure in the case where two series inductors L1A and L1B are electromagnetically coupled to shunt inductors L2 in different dielectric layers.
  • FIG. 1A is an equivalent circuit diagram of a T-type inductor circuit used in the filter circuit of the present embodiment
  • FIG. 1B is a circuit diagram showing the electromagnetic field coupling relationship of the T-type inductor circuit in an easy-to-understand manner. .
  • the first series inductor L1A and the second series inductor L1B are connected to the signal line connecting the first input / output terminal Port1 and the second input / output terminal Port2. Are connected in series. More specifically, the first series inductor L1A and the second series inductor L1B are connected in series in this order from the first input / output terminal Port1 side to the second input / output terminal Port2 side.
  • connection point between the first series inductor L1A and the second series inductor L1B is connected to the ground potential by the shunt inductor L2.
  • the shunt inductor L2 is configured by a series circuit of a partial inductor L2A ′, a partial inductor L2 ′′, and a partial inductor L2B ′.
  • the partial inductor L2A ' is electromagnetically coupled to the first series inductor L1A.
  • the partial inductor L2 ′′ is not electromagnetically coupled to the first series inductor L1A and the second series inductor L1B.
  • the partial inductor L2B ′ is electromagnetically coupled to the second series inductor L1B.
  • the electromagnetic field coupling amount between the partial inductor L2A 'and the first series inductor L1A is the same as the electromagnetic field coupling amount between the partial inductor L2B' and the second series inductor L1B.
  • the first series inductor L1A, the second series inductor L1B, and the shunt inductor are electromagnetically coupled, and a mutual inductance M is generated in each.
  • the mutual inductance M generated in the first series inductor L1A connected in series with the signal line cancels out the mutual inductance M generated in the second series inductor L1B. Therefore, even if the first series inductor L1A and the second series inductor L1B generate the mutual inductance M with respect to the shunt inductor L2, the substantial inductance value of the composite inductor connected in series to the signal line does not change.
  • the shunt inductor L2 is an inductance L (L2) as an element in a state where the mutual inductance M does not occur, the substantial inductance becomes L (L2) -2M due to the mutual inductance M.
  • the shunt inductor L2 is electromagnetically coupled to the first and second series inductors L1A and L1B so that the mutual inductance M becomes a positive value, the substantial shape of the shunt inductor L2 is not changed without changing the shape. Inductance can be reduced.
  • the shunt inductor is electromagnetically coupled to the first and second series inductors L1A and L1B so that the mutual inductance M becomes a negative value, the substantial inductance of the shunt inductor L2 can be obtained without changing the shape. Can be bigger.
  • the inventor of the present invention uses the T-type inductor circuit having the circuit configuration of the present embodiment, and thus cannot be realized with the conventionally considered T-type inductor circuit without changing the shape of each inductor. It was found that only the inductance of the shunt inductor was changed without changing the inductance of the series inductor connected in series to the signal line. Thereby, the filter characteristic of the filter provided with the T-type inductor circuit can be adjusted without changing the shape of each inductor. Moreover, the shape can be changed even with filters having the same characteristics. For example, a filter having the same characteristics can be formed in a smaller size.
  • FIG. 2 is an exploded perspective view of the multilayer body 101 that realizes the T-type inductor circuit of the present embodiment.
  • FIG. 3 is a stack diagram of the multilayer body 101 that realizes the T-type inductor circuit of the present embodiment.
  • FIG. 3 is a view of each dielectric layer viewed in the stacking direction of the stacked body 101, that is, a view viewed from a direction orthogonal to the top surface or the bottom surface of the stacked body 101. 2 and 3, only the portion of the T-type inductor circuit is shown, and the other dielectric layers, other electrode patterns, and mounting electrodes constituting the multilayer body 101 are not shown.
  • the laminated body 100 is formed by laminating five dielectric layers PL1, PL2, PL3, PL4, and PL5.
  • dielectric layer PL1 which is the first layer
  • linear linear electrodes 101 are formed along the first direction (the direction from the left back to the right front in FIG. 2, the horizontal direction in FIG. 3).
  • the linear electrode 101 has a structure in which linear electrodes 101A and 101B are continuously formed.
  • the end of the linear electrode 101A opposite to the side connected to the linear electrode 101B is connected to a conductive via hole VH13A that penetrates the dielectric layers PL1 and PL2.
  • the end of the linear electrode 101B opposite to the side connected to the linear electrode 101A is connected to a conductive via hole VH13B that penetrates the dielectric layers PL1 and PL2.
  • connection point of the linear electrodes 101A and 101B is connected to the dielectric via a short-distance wiring electrode extending in a second direction perpendicular to these (in the direction from the left front to the right back in FIG. 2, the vertical direction in FIG. 3).
  • the conductive via hole VH12 that penetrates the layer PL1 is connected.
  • the wound linear electrode 102 constituting the shunt inductor L2 is formed.
  • the linear electrode 102 includes linear electrodes 121 and 122 parallel to the second direction, and a linear electrode 123 parallel to the first direction. These linear electrodes 121, 122, 123 correspond to each part of the shunt inductor L2 as follows from the structure below the dielectric layer PL3 described later.
  • the linear electrode 121 corresponds to the partial inductor L2A ′ of the above shunt inductor L2
  • the linear electrode 122 corresponds to the partial inductor L2B ′ of the above shunt inductor L2
  • the linear electrode 123 corresponds to the partial shunt inductor L2. This corresponds to the inductor L2 ′′.
  • One end of the linear electrode 121 is connected to the conductive via hole VH12.
  • the other end of the linear electrode 121 is connected to one end of the linear electrode 123.
  • One end of the linear electrode 122 is connected to the other end of the linear electrode 123, and the other end of the linear electrode 122 is connected to an electrode having a ground potential through a conductive via hole (not shown).
  • the third layer PL3 on the lower layer side of the second layer PL2 constitutes the wound linear electrode 103A constituting a part of the first series inductor L1A and a part of the second series inductor L1B.
  • a wound linear electrode 103B is formed.
  • the linear electrodes 103A and 103B are formed at a predetermined interval along the first direction.
  • the linear electrode 103A includes two linear portions 131A and 133A that are parallel to the second direction, and an intermediate linear portion 132A that connects the linear portions 131A and 133A and is parallel to the first direction.
  • the end of the linear portion 131A opposite to the side connected to the intermediate linear portion 132A is connected to a conductive via hole VH13A that penetrates the dielectric layers PL1 and PL2.
  • the end of the linear portion 133A opposite to the side connected to the intermediate linear portion 132A is connected to a conductive via hole VH34A that penetrates the dielectric layer PL3.
  • the linear portion 133A is viewed from the linear electrode 121 of the linear electrode 102 formed on the dielectric layer PL2 and the top surface side of the stacked body 100 (when viewing each dielectric layer in plan view), It is formed to overlap.
  • the linear portion 133A configuring the first series inductor L1A and the linear electrode 121 configuring the partial inductor L2A ′ of the shunt inductor L2 are electromagnetically coupled along the stacking direction. Thereby, the mutual inductance M can be generated between the first series inductor L1A 'and the shunt inductor L2A'.
  • the linear electrode 103B includes two linear portions 131B and 133B that are parallel to the second direction, and an intermediate linear portion 132B that connects the linear portions 131B and 133B and is parallel to the first direction.
  • the end of the linear portion 131B opposite to the side connected to the intermediate linear portion 132B is connected to a conductive via hole VH13B that penetrates the dielectric layers PL1 and PL2.
  • the end of the linear portion 133B opposite to the side connected to the intermediate linear portion 132B is connected to a conductive via hole VH34B that penetrates the dielectric layer PL3.
  • the linear portion 133B is viewed from the linear electrode 122 of the linear electrode 102 formed on the dielectric layer PL2 and the top surface side of the stacked body 100 (when viewing each dielectric layer in plan view), It is formed to overlap.
  • the linear portion 133B configuring the second series inductor L1B and the linear electrode 122 configuring the partial inductor L2B ′ of the shunt inductor L2 are electromagnetically coupled along the stacking direction. Thereby, the mutual inductance M can be generated between the second series inductor L1B 'and the shunt inductor L2B'.
  • a wound linear electrode 104A constituting a part of the first series inductor L1A and a part of the second series inductor L1B are constituted.
  • a wound linear electrode 104B is formed.
  • the linear electrodes 104A and 104B are formed at a predetermined interval along the first direction.
  • the linear electrode 104A is connected to the conductive via hole VH34A.
  • the other end of the linear electrode 104A is connected to a conductive via hole VH45A that penetrates the dielectric layer PL4.
  • the linear electrode 104A is formed in substantially the same region as the linear electrode 103A when viewed from the top surface side of the multilayer body 100, and is formed so as to partially overlap.
  • One end of the linear electrode 104B is connected to the conductive via hole VH34B.
  • the other end of the linear electrode 104B is connected to a conductive via hole VH45B that penetrates the dielectric layer PL4.
  • the fifth layer PL5 on the lower layer side of the fourth layer PL4 has a linear electrode 105A constituting a part of the first series inductor L1A and a linear electrode 105B constituting a part of the second series inductor L1B. And are formed.
  • the linear electrodes 105A and 105B are formed at a predetermined interval along the first direction.
  • One end of the linear electrode 105A is connected to the conductive via hole VH45A.
  • the other end of the linear electrode 105A is connected to the electrode constituting the first input / output terminal Port1 through a conductive via hole (not shown).
  • One end of the linear electrode 105B is connected to the conductive via hole VH45B.
  • the other end of the linear electrode 105B is connected to the electrode constituting the second input / output terminal Port2 through a conductive via hole (not shown).
  • the mutual inductance M becomes a positive value. If the first series inductor L1A, the second series inductor L1B, and the shunt inductor L2 are electromagnetically coupled so that the direction of current flow is reversed when viewed from the top side of the multilayer body, the mutual inductance M is negative. Value. Therefore, if each inductor is disposed so as to define the relationship between these current directions, characteristics corresponding to the respective shapes can be obtained.
  • the stacked body can be reduced in height. Further, since it is not necessary to separate the first and second series inductors L1A and L1B and the shunt inductor L2 from above and below the ground electrode layer, the wiring pattern of the routing electrode for connecting them in a T-type like an equivalent circuit Simple and easy pattern.
  • FIG. 4 is an equivalent circuit diagram of the bandpass filter of the present embodiment.
  • FIG. 5 is a stack diagram of the band-pass filter of this embodiment.
  • FIG. 5 also shows an electrode pattern constituting a circuit different from the bandpass filter of this embodiment, and only the portion related to the bandpass filter will be described below.
  • the circles described in the dielectric layers PL101 to PL112 indicate conductive via holes.
  • the illustration of the configuration other than the dielectric layer realizing the bandpass filter is omitted or the description is omitted.
  • the band-pass filter of the present embodiment includes a series circuit of the first series inductor L1A and the second series inductor L1B, and the connection point of the first series inductor L1A and the second series inductor L1B is determined by the shunt inductor L2. Connected to ground potential.
  • a first series capacitor C1A is connected between the first series inductor L1A and the first input / output terminal Port1.
  • a second series capacitor C1B is connected between the second series inductor L1B and the second input / output terminal Port2.
  • a first shunt capacitor C3 is connected between the shunt inductor L2 and the grant potential.
  • connection point between the first series inductor L1A and the first series capacitor C1A is connected to the connection point between the shunt inductor L2 and the first shunt capacitor C3 via the second shunt capacitor C2A.
  • connection point between the second series inductor L1B and the second series capacitor C1B is connected to the connection point between the shunt inductor L2 and the first shunt capacitor C3 via the third shunt capacitor C2B.
  • a third series capacitor C0 is connected between the first input / output terminal Port and the second input / output terminal Port2.
  • a plate electrode for the third series capacitor C0 is formed on the dielectric layer PL101, which is the first layer as a bandpass filter.
  • plate electrodes for the third series capacitor C0, the first series capacitor C1A, and the second series capacitor C1B are formed.
  • the dielectric layer PL103 corresponds to the above-described dielectric layer PL1, and is formed with a linear electrode for routing the T-type inductor circuit.
  • the dielectric layer PL104 corresponds to the above-described dielectric layer PL2, and a linear electrode for the shunt inductor L2 is formed.
  • the dielectric layer PL105 is formed with a routing electrode for connecting the shunt inductor L2 to the ground potential.
  • the dielectric layers PL106, PL107, and PL108 correspond to the above-described dielectric layers PL3, PL4, and PL5, respectively, and the linear electrodes for the first series inductor L1A and the second series inductor L1B have a spiral direction in the stacking direction. It is formed to become.
  • a common plate electrode is formed for the first series capacitor C1A and the second shunt capacitor C2A.
  • the dielectric layer PL109 is provided with a common plate electrode for the second series capacitor C1B and the third shunt capacitor C2B.
  • the dielectric layer PL110 is provided with a plate electrode for the second shunt capacitor C2A and a plate electrode for the third shunt capacitor C2B.
  • the dielectric layer PL111 is formed with a plate electrode for the first series capacitor C1A and a plate electrode for the second series capacitor C1B.
  • a flat plate electrode for the first shunt capacitor C3 is formed on the dielectric layer PL112.
  • the other plate electrode for the first shunt capacitor C3 is a ground electrode formed on a dielectric layer (not shown).
  • FIG. 6 is a pass characteristic diagram of the bandpass filter of the present embodiment and the bandpass filter of the conventional configuration.
  • 6A and 6D are pass characteristics diagrams of a bandpass filter having a conventional configuration.
  • FIG. 6B is a pass characteristic diagram when the series inductor and the shunt inductor are electromagnetically coupled so that the mutual inductance M has a positive value with the same circuit configuration as FIG. FIG.
  • FIG. 6C is a pass characteristic diagram when the series inductor and the shunt inductor are electromagnetically coupled so that the mutual inductance M has a negative value with the same circuit configuration as FIG.
  • FIG. 6D is a pass characteristic diagram when the inductance value of the shunt inductor is changed with respect to FIG.
  • the bandpass filter shown in FIG. 6 is a bandpass filter composed of the equivalent circuit shown in FIG. Further, the filter characteristics shown in FIG. 6 are obtained by simulation.
  • the specific element value of each circuit element is set as follows. In FIGS. 6A, 6B, 6C, and 6D, the inductance of the first series inductor L1A and the second series inductor L1B is 2.0 nH.
  • the capacitance of the first series capacitor C1A, the second series capacitor C1B, the second shunt capacitor C2A, and the third shunt capacitor C2B is 0.75 pF, and the capacitance of the third series capacitance Co is 0.24 pF.
  • the first shunt capacitor C3 is in a conductive state (capacitance is 0F).
  • the inductance of the shunt inductor L2 is 1.1 nH.
  • the inductances of the partial inductors L2A ′ and L2B ′ of the shunt inductor L2 are 0.5 nH, and the inductance of the partial inductor L2 ′′ is 0.1 nH.
  • the inductance of the shunt inductor L2 is 1.3 nH.
  • the coupling coefficient K between the first series inductor L1A and the second series inductor L1B and the shunt inductor L2 is set to 0.1.
  • the absolute value of the mutual inductance M is 0.1 nH.
  • the inductance between the two series inductors and the shunt inductor is determined, and the pass characteristic that prevents the electromagnetic coupling between the series inductor and the shunt inductor as shown in FIG.
  • the mutual inductance M is set to a positive value as shown in FIG. 6B
  • the inductance for the signal of the shunt inductor is reduced by twice the mutual inductance M, and a narrower band characteristic can be obtained.
  • the attenuation amount of the attenuation pole on the low frequency side can be increased.
  • the mutual inductance M is set to a positive value as shown in FIG. 6C
  • the inductance for the signal of the shunt inductor is increased by twice the mutual inductance M, so that the characteristics can be made wider. it can.
  • the band pass having the same pass characteristic is obtained.
  • the no-signal inductance of the shunt inductor L2 is 1.1 nH
  • the shunt inductor L2 shown in FIG. 6D has an inductance of 1.3 nH.
  • the same pass characteristics can be obtained. This is equivalent to an increase of 0.2 nH, which is twice that of the mutual inductance M of 0.1 nH.
  • the inductance can be increased even when the same wound wire electrode having the same electrode width and the same electrode length is used. Conversely, if the same inductance is realized, the electrode length can be shortened. Thereby, a laminated body can be reduced in size. If the same inductance is realized, the electrode width can be increased. Thereby, transmission loss can be reduced and the Q value of the filter can be improved.
  • the laminate can be thinned.
  • the region where the first series inductor L1A, the first series capacitor C1A, and the second shunt capacitor C2A are formed is configured to overlap when the multilayer body is viewed from the top surface side.
  • the region where the second series inductor L1B, the second series capacitor C1B, and the third shunt capacitor C2B are formed is configured to overlap when the multilayer body is viewed from the top surface side.
  • regions are comprised so that a laminated body may not overlap, seeing from a top
  • FIG. 7 is an equivalent circuit diagram of the high-pass filter according to the embodiment of the present invention.
  • FIG. 8 is a stacking diagram of the high-pass filter of the present embodiment shown in FIG. In FIG. 8 as well, only the necessary portions are described in the same manner as in FIG. 5, the illustration of other portions is partially omitted, and further description is omitted. Further, the circles described in the respective dielectric layers PL201 to PL208 in FIG. 8 indicate conductive via holes.
  • the high-pass filter includes series inductors L5A and L5B connected in series between the third input / output terminal Port3 and the fourth input / output terminal Port4.
  • a capacitor C5A is connected in parallel to the series inductor L5A.
  • a capacitor C5B is connected to the series inductor L5B.
  • a connection point between the series inductor L5A and the series inductor L5B is connected to the ground potential via a series circuit of the shunt inductor L6 and the capacitor C6.
  • Linear electrodes constituting the series inductors L5A and L5B are formed on the dielectric layer PL201 and the dielectric layer PL202, which are the first layers as high-pass filters.
  • Conductive via holes for wiring are formed in the dielectric layers PL203, PL204, and PL205.
  • linear electrodes constituting the shunt inductor L6 are formed.
  • the linear electrodes constituting the series inductors L5A and L5B and the linear electrodes constituting the shunt inductor L6 are formed so as to partially overlap each other when viewed from the top surface side of the multilayer body. With this structure, mutual inductance is generated between the series inductors L5A and L5B and the shunt inductor L6. And by setting it as such a structure, the effect similar to the above-mentioned band pass filter can be acquired.
  • FIG. 9 is a partial stack diagram showing an example of a laminated structure in the case where two series inductors L1A and L1B are electromagnetically coupled to the shunt inductor L2 with a single dielectric layer.
  • FIG. 10 is a partial stacking diagram showing an example of a laminated structure in the case where two series inductors L1A and L1B are electromagnetically coupled to the shunt inductor L2 in different dielectric layers.
  • the linear electrodes constituting the first series inductor L1A and the second series inductor L1B span the dielectric layers PL1A, PL2A, PL3A, and have the same windings as those in FIGS. It is formed in a round shape.
  • the linear electrode constituting the shunt inductor L2 is formed on the dielectric layer PL1A in the same winding shape as that in FIGS. At this time, the linear electrode constituting the shunt inductor L2 is disposed between the linear electrode constituting the first series inductor L1A and the linear electrode constituting the second series inductor L1B.
  • the linear electrodes constituting the shunt inductor L2 are arranged so that the distance to the linear electrodes constituting the first series inductor L1A is the same as the distance to the linear electrodes constituting the second series inductor L1B. It is installed. Furthermore, the length of the linear electrode that constitutes the shunt inductor L2 is the same as the length that faces the linear electrode that constitutes the first series inductor L1A, and the length that faces the linear electrode that constitutes the second series inductor L1B. It is arrange
  • the linear electrodes constituting the first series inductor L1A are formed in the same winding shape as in FIGS. 2 and 3 above over the dielectric layers PL2B, PL3B, and PL4B. Yes.
  • the linear electrode constituting the second series inductor L1B is formed in a winding shape similar to that of FIGS. 2 and 3 described above over the dielectric layers PL1B, PL2B, and PL3B.
  • the linear electrodes constituting the shunt inductor L2 are formed on the dielectric layers PL1B and PL2B in a winding shape similar to the above-described FIGS.
  • the linear electrode constituting the shunt inductor L2 is disposed between the linear electrode constituting the first series inductor L1A and the linear electrode constituting the second series inductor L1B. Furthermore, the linear electrodes constituting the shunt inductor L2 are spaced from the linear electrodes constituting the first series inductor L1A in the dielectric layer PL2B and to the linear electrodes constituting the second series inductor L1B in the dielectric layer PL1B. It arrange
  • the linear electrode constituting the shunt inductor L2 has a length facing the linear electrode constituting the first series inductor L1A in the dielectric layer PL2B, and a line constituting the second series inductor L1B in the dielectric layer PL1B. It arrange
  • 9 and 10 can provide the same effects as the configuration in which electromagnetic coupling is performed in the stacking direction.
  • 100 laminate, 101, 101A, 101B, 102, 121, 122, 123, 103A, 103B, 104A, 104B, 105A, 105B: linear electrodes, 131A, 131B, 133A, 133B: linear portions, 132A, 132B : Intermediate linear portion, L1A, L1B: Series inductor, L2: Shunt inductor, L2A ', L2B', L2 ": Partial inductor, PL1, PL2, PL3, PL4, PL5, PL101-PL112, PL201-PL208, PL1A- PL3A, PL1B-PL4B: Dielectric layer, VH12, VH13A, VH13B, VH34A, VH34B, VH45A, VH45B: Conductive via holes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Filters And Equalizers (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

First and second series inductors (L1A, L1B) are serially connected between first and second output terminals (Port1, Port2), forming a signal line. The connection point of the first and second series inductors (L1A, L1B) is connected to a ground potential via a shunt inductor (L2). The shunt inductor (L2) is positioned with respect to the first and second series inductors (L1A, L1B) such that the electromagnetic binding quantity of the first series inductor (L1A) to the shunt inductor (L2) and the electromagnetic binding quantity of the second series inductor (L1B) to the shunt inductor (L2) are the same.

Description

フィルタfilter
 本発明は、インダクタを含む構成からなるフィルタに関するものである。 The present invention relates to a filter having a configuration including an inductor.
 従来、インダクタを含む構成からなるフィルタが各種考案されている。その中で、二個のシリーズインダクタを信号ラインに直列接続し、これらシリーズインダクタの接続点とグランドとの間にシャントインダクタを接続した、所謂T型回路からなるフィルタが、例えば特許文献1に記載されている。 Conventionally, various filters having a configuration including an inductor have been devised. Among them, a filter composed of a so-called T-type circuit in which two series inductors are connected in series to a signal line and a shunt inductor is connected between the connection point of these series inductors and the ground is described in Patent Document 1, for example. Has been.
 このようなシリーズインダクタとシャントインダクタとを用いたT型回路を積層基板で実現する場合、特許文献1に示すように、各インダクタを積層基板の内層電極パターンで形成することがある。そして、内層電極パターンで各インダクタを形成する場合、従来では、特許文献1に示すように、シリーズインダクタの形成層をシャントインダクタの形成層と異ならせ、シリーズインダクタとシャントインダクタとが電磁界結合しないように、これら形成層間にグランド電極を形成している。 When a T-type circuit using such a series inductor and a shunt inductor is realized on a multilayer substrate, as shown in Patent Document 1, each inductor may be formed of an inner layer electrode pattern of the multilayer substrate. When each inductor is formed by the inner layer electrode pattern, conventionally, as shown in Patent Document 1, the series inductor formation layer is different from the shunt inductor formation layer, and the series inductor and the shunt inductor are not electromagnetically coupled. Thus, a ground electrode is formed between these formation layers.
特開2007-129565号公報JP 2007-129565 A
 しかしながら、上述の特許文献1に示す構成では、シャントインダクタの形成層とシリーズインダクタの形成層との間にグランド電極層を設けなければならないので、グランド電極層分だけ積層体が厚くなるとともに、シリーズインダクタとシャントインダクタとを接続する配線パターンや導電性ビアホールの位置も工夫しなければならない。したがって、積層体の低背化や小型化が実現しにくく、設計の自由度が低くなってしまっていた。 However, in the configuration shown in Patent Document 1 described above, since the ground electrode layer must be provided between the formation layer of the shunt inductor and the formation layer of the series inductor, the laminate becomes thicker by the ground electrode layer, and the series The wiring pattern connecting the inductor and the shunt inductor and the position of the conductive via hole must also be devised. Therefore, it is difficult to realize a low-profile and small-sized laminate, and the degree of design freedom is low.
 なお、グランド電極層を設けなくても、シリーズインダクタの形成層とシャントインダクタの形成層を離間すれば電磁界結合は抑制できるが、電磁界結合を十分に抑圧するためには、積層体を小型化、薄型化することができなくなってしまう。 Even if the ground electrode layer is not provided, electromagnetic coupling can be suppressed if the series inductor formation layer and the shunt inductor formation layer are separated from each other. It becomes impossible to make it thinner and thinner.
 本発明の目的は、シリーズインダクタとシャントインダクタを有する構成であっても、設計自由度を低下させることなく、積層体を小型化、薄型化できるフィルタを実現することにある。 An object of the present invention is to realize a filter that can reduce the thickness and thickness of a multilayer body without reducing the degree of freedom in design even in a configuration having a series inductor and a shunt inductor.
 この発明は、第1入出力端子と第2入出力端子との間に直列接続された第1シリーズインダクタおよび第2シリーズインダクタと、第1シリーズインダクタと第2シリーズインダクタとの接続点をグランド電位に接続するシャントインダクタと、を備えるフィルタに関する。このフィルタのシャントインダクタは、第1シリーズインダクタおよび第2シリーズインダクタの両方に電磁界結合するように配置されている。 According to the present invention, a first series inductor and a second series inductor connected in series between a first input / output terminal and a second input / output terminal, and a connection point between the first series inductor and the second series inductor are connected to a ground potential. And a shunt inductor connected to the filter. The shunt inductor of this filter is arranged to be electromagnetically coupled to both the first series inductor and the second series inductor.
 この構成では、第1シリーズインダクタと第2シリーズインダクタの双方に対するシャントインダクタの電磁界結合量を調整することができ、当該結合量によって、シャントインダクタの伝送信号に対する実質的なインダクタンスを調整してフィルタ特性を調整できる。この際、グランド電位を介在させる必要がないので、所望とするインダクタンスおよび形状に応じたパターン設計を従来構成よりも容易に行うことができる。 In this configuration, the electromagnetic coupling amount of the shunt inductor with respect to both the first series inductor and the second series inductor can be adjusted, and the substantial inductance with respect to the transmission signal of the shunt inductor is adjusted according to the coupling amount. The characteristics can be adjusted. At this time, since it is not necessary to interpose a ground potential, pattern design corresponding to a desired inductance and shape can be performed more easily than the conventional configuration.
 また、この発明のフィルタでは、シャントインダクタは、第1シリーズインダクタに対する電磁界結合量と第2シリーズインダクタに対する電磁界結合量とが一致することが好ましい。 In the filter of the present invention, it is preferable that the shunt inductor has an electromagnetic field coupling amount with respect to the first series inductor and an electromagnetic field coupling amount with respect to the second series inductor.
 このような構成とすることで、第1シリーズインダクタと第2シリーズインダクタのインダクタンスを変化させることなく、シャントインダクタのインダクタンスのみを調整できる。 With this configuration, only the inductance of the shunt inductor can be adjusted without changing the inductance of the first series inductor and the second series inductor.
 また、この発明のフィルタでは、次の構成であることが好ましい。複数の誘電体層を積層してなる積層体と、該積層体内に形成された第1シリーズインダクタの電極パターンと、第2シリーズインダクタの電極パターンと、シャントインダクタの電極パターンと、を備える。第1シリーズインダクタの電極パターンおよび第2シリーズインダクタの電極パターンが形成された誘電体層とシャントインダクタの電極パターンが形成された誘電体層は異なる。積層体の天面側から見て、シャントインダクタの電極パターンは、第1シリーズインダクタの電極パターンと第2シリーズインダクタの電極パターンのそれぞれに対して、部分的に重なり合うように配設されている。 Also, the filter of the present invention preferably has the following configuration. A laminated body formed by laminating a plurality of dielectric layers, an electrode pattern of a first series inductor formed in the laminated body, an electrode pattern of a second series inductor, and an electrode pattern of a shunt inductor are provided. The dielectric layer in which the electrode pattern of the first series inductor and the electrode pattern of the second series inductor are formed is different from the dielectric layer in which the electrode pattern of the shunt inductor is formed. When viewed from the top surface side of the multilayer body, the electrode pattern of the shunt inductor is disposed so as to partially overlap the electrode pattern of the first series inductor and the electrode pattern of the second series inductor.
 この構成では、第1シリーズインダクタおよび第2シリーズインダクタのそれぞれとシャントインダクタとの電磁界結合を積層方向に沿って実現している。 In this configuration, electromagnetic coupling between each of the first series inductor and the second series inductor and the shunt inductor is realized along the stacking direction.
 また、この発明のフィルタでは、次の構成であることが好ましい。複数の誘電体層を積層してなる積層体と、積層体内に形成された第1シリーズインダクタの電極パターンが形成される誘電体層と、シャントインダクタの電極パターンが形成された誘電体層は少なくとも部分的に一致する。さらに、第2シリーズインダクタの電極パターンが形成される誘電体層と、シャントインダクタの電極パターンが形成された誘電体層は少なくとも部分的に一致する。シャントインダクタは、層内の電磁界結合によって第1シリーズインダクタおよび第2シリーズインダクタと電磁界結合している。 Also, the filter of the present invention preferably has the following configuration. A laminate formed by laminating a plurality of dielectric layers, a dielectric layer formed with an electrode pattern of a first series inductor formed in the laminate, and a dielectric layer formed with an electrode pattern of a shunt inductor at least Partially match. Further, the dielectric layer on which the electrode pattern of the second series inductor is formed and the dielectric layer on which the electrode pattern of the shunt inductor is formed at least partially coincide. The shunt inductor is electromagnetically coupled to the first series inductor and the second series inductor by electromagnetic coupling within the layer.
 この構成では、第1シリーズインダクタおよび第2シリーズインダクタのそれぞれとシャントインダクタとの電磁界結合を誘電体層の平面内で実現している。 In this configuration, electromagnetic coupling between each of the first series inductor and the second series inductor and the shunt inductor is realized in the plane of the dielectric layer.
 また、この発明のフィルタでは、積層体の天面側から見て、第1シリーズインダクタと第2シリーズインダクタの電流方向とシャントインダクタの電流方向とを同じにする構成が可能である。 Further, in the filter of the present invention, the current direction of the first series inductor and the second series inductor and the current direction of the shunt inductor can be made the same when viewed from the top surface side of the multilayer body.
 この構成では、シャントインダクタのインダクタンスが小さくなる。すなわち、シャントインダクタの形状を変化させることなく、各シリーズインダクタに電磁界結合しない構成よりもインダクタンスを小さくできる。 In this configuration, the inductance of the shunt inductor is reduced. That is, without changing the shape of the shunt inductor, the inductance can be made smaller than the configuration in which each series inductor is not electromagnetically coupled.
 また、この発明のフィルタでは、積層体の天面側から見て、第1シリーズインダクタと第2シリーズインダクタの電流方向とシャントインダクタの電流方向とを逆にする構成が可能である。 Further, the filter of the present invention can be configured such that the current direction of the first series inductor and the second series inductor and the current direction of the shunt inductor are reversed when viewed from the top surface side of the multilayer body.
 この構成では、シャントインダクタのインダクタンスが大きくなる。すなわち、シャントインダクタの形状を変化させることなく、各シリーズインダクタに電磁界結合しない構成よりもインダクタンスを大きくできる。言い換えれば、各シリーズインダクタに電磁界結合しない構成と同じインダクタンスを得るための形状を小さくできる。または、各シリーズインダクタに電磁界結合しない構成と同じインダクタンスを得るための形状として、電極幅を広くできる。 In this configuration, the inductance of the shunt inductor is increased. That is, without changing the shape of the shunt inductor, the inductance can be made larger than the configuration in which each series inductor is not electromagnetically coupled. In other words, the shape for obtaining the same inductance as that of the configuration in which each series inductor is not electromagnetically coupled can be reduced. Alternatively, the electrode width can be widened as a shape for obtaining the same inductance as the configuration in which each series inductor is not electromagnetically coupled.
 また、この発明のフィルタでは、第1シリーズインダクタ、第2シリーズインダクタ、およびシャントインダクタとともにキャパシタを備え、帯域通過特性を有するフィルタにすることが好ましい。この構成では、上述のインダクタの接続構成を用いて、バンドパスフィルタを実現できる。 Further, in the filter of the present invention, it is preferable to provide a capacitor with a first series inductor, a second series inductor, and a shunt inductor so as to have a band pass characteristic. In this configuration, a bandpass filter can be realized using the above-described inductor connection configuration.
 また、この発明のフィルタでは、次の構成であることが好ましい。第1シリーズインダクタ、第2シリーズインダクタ、およびシャントインダクタとともに、第1入出力端子と第1シリーズインダクタとの間に直列接続された第1キャパシタと、第2入出力端子と第2シリーズインダクタとの間に直列接続された第2キャパシタと、シャントインダクタとグランド電位との間に接続された第3キャパシタと、第1シリーズインダクタと第1キャパシタとの接続点とシャントインダクタと第3キャパシタとの接続点を接続する第4キャパシタと、第2シリーズインダクタと第2キャパシタとの接続点とシャントインダクタと第3キャパシタとの接続点を接続する第5キャパシタと、第1入出力端子と第2入出力端子との間に直列接続された第6キャパシタと、を備えた帯域通過特性を有するフィルタを構成する。そして、積層体の天面側から見て、第1シリーズインダクタ、第1キャパシタ、第4キャパシタの形成領域と、第2シリーズインダクタ、第2キャパシタ、第5キャパシタの形成領域と、が重ならないように配置される。 Also, the filter of the present invention preferably has the following configuration. A first capacitor connected in series between the first input / output terminal and the first series inductor, a second input / output terminal, and a second series inductor together with the first series inductor, the second series inductor, and the shunt inductor. A second capacitor connected in series between the second capacitor, a third capacitor connected between the shunt inductor and the ground potential, a connection point between the first series inductor and the first capacitor, and a connection between the shunt inductor and the third capacitor. A fourth capacitor for connecting the points, a fifth capacitor for connecting a connection point between the second series inductor and the second capacitor, a connection point between the shunt inductor and the third capacitor, a first input / output terminal and a second input / output And a sixth capacitor connected in series with the terminal, and a filter having a bandpass characteristic.When viewed from the top surface side of the multilayer body, the formation region of the first series inductor, the first capacitor, and the fourth capacitor does not overlap the formation region of the second series inductor, the second capacitor, and the fifth capacitor. Placed in.
 この構成では、上述のインダクタの接続構成を用いたバンドパスフィルタのより具体的な構成を示している。そして、上述の積層構造とすることで、不要な結合を抑制でき、特性の優れるバンドパスフィルタを実現できる。 This configuration shows a more specific configuration of the band-pass filter using the above-described inductor connection configuration. And by using the above-mentioned laminated structure, unnecessary coupling can be suppressed and a bandpass filter having excellent characteristics can be realized.
 また、この発明のフィルタでは、第1シリーズインダクタ、第2シリーズインダクタ、およびシャントインダクタとともにキャパシタを備え、高域通過特性を有するフィルタを構成することもできる。この構成では、上述のインダクタの接続構成を用いて、バンドパスフィルタを実現できる。 In the filter of the present invention, it is also possible to form a filter having a high-pass characteristic by including a capacitor together with the first series inductor, the second series inductor, and the shunt inductor. In this configuration, a bandpass filter can be realized using the above-described inductor connection configuration.
 シリーズインダクタとシャントインダクタを有する構成であっても、設計自由度を低下させることなく、積層体を小型化、薄型化できるフィルタを実現する。 ∙ Realizes a filter that can reduce the thickness and thickness of the multilayer body without reducing the degree of freedom in design, even if it has a series inductor and shunt inductor.
本発明の実施形態に係るT型インダクタ回路の等価回路図および電磁界結合関係を分かりやすく示すための回路図である。FIG. 3 is an equivalent circuit diagram of a T-type inductor circuit according to an embodiment of the present invention and a circuit diagram for easily showing an electromagnetic field coupling relationship. 本実施形態のT型インダクタ回路を実現する積層体101の分解斜視図である。It is a disassembled perspective view of the laminated body 101 which implement | achieves the T type inductor circuit of this embodiment. 本実施形態のT型インダクタ回路を実現する積層体101の積み図である。It is a stacking figure of the laminated body 101 which implement | achieves the T type inductor circuit of this embodiment. 本実施形態のバンドパスフィルタの等価回路図である。It is an equivalent circuit diagram of the band pass filter of this embodiment. 本実施形態のバンドパスフィルタの積み図である。It is a stacking figure of the band pass filter of this embodiment. 本実施形態のT型インダクタ回路を含むバンドパスフィルタおよび従来構成のバンドパスフィルタの通過特性図である。It is a pass characteristic figure of the band pass filter containing the T type inductor circuit of this embodiment, and the band pass filter of the conventional structure. 本発明の実施形態に係るハイパスフィルタの等価回路図である。It is an equivalent circuit diagram of the high pass filter concerning the embodiment of the present invention. 本実施形態のハイパスフィルタの積み図である。It is a stacking figure of the high pass filter of this embodiment. 単一の誘電体層で、二個のシリーズインダクタL1A,L1BがシャントインダクタL2に電磁界結合する場合の積層構造例を示す部分積み図である。FIG. 6 is a partial stacking diagram illustrating an example of a laminated structure in a case where two series inductors L1A and L1B are electromagnetically coupled to a shunt inductor L2 with a single dielectric layer. 二個のシリーズインダクタL1A,L1BがシャントインダクタL2に、それぞれ異なる誘電体層内で電磁界結合する場合の積層構造例を示す部分積み図である。FIG. 5 is a partial stacking diagram illustrating an example of a laminated structure in the case where two series inductors L1A and L1B are electromagnetically coupled to shunt inductors L2 in different dielectric layers.
 本発明の実施形態に係るフィルタ回路について、図を参照して説明する。図1(A)は本実施形態のフィルタ回路に用いるT型インダクタ回路の等価回路図であり、図1(B)は、当該T型インダクタ回路の電磁界結合関係を分かりやすく示す回路図である。 A filter circuit according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1A is an equivalent circuit diagram of a T-type inductor circuit used in the filter circuit of the present embodiment, and FIG. 1B is a circuit diagram showing the electromagnetic field coupling relationship of the T-type inductor circuit in an easy-to-understand manner. .
 図1に示すように、本実施形態のT型インダクタ回路では、第1入出力端子Port1と第2入出力端子Port2を接続する信号ラインに対して、第1シリーズインダクタL1Aと第2シリーズインダクタL1Bとが直列接続されている。より具体的には、第1入出力端子Port1側から第2入出力端子Port2側へ向かって、第1シリーズインダクタL1A、第2シリーズインダクタL1Bの順に直列接続されている。 As shown in FIG. 1, in the T-type inductor circuit of the present embodiment, the first series inductor L1A and the second series inductor L1B are connected to the signal line connecting the first input / output terminal Port1 and the second input / output terminal Port2. Are connected in series. More specifically, the first series inductor L1A and the second series inductor L1B are connected in series in this order from the first input / output terminal Port1 side to the second input / output terminal Port2 side.
 第1シリーズインダクタL1Aと第2シリーズインダクタL1Bとの接続点は、シャントインダクタL2によってグランド電位へ接続されている。 The connection point between the first series inductor L1A and the second series inductor L1B is connected to the ground potential by the shunt inductor L2.
 このようなT型インダクタ回路において、図1(B)に示すように、シャントインダクタL2を、部分インダクタL2A’、部分インダクタL2”、部分インダクタL2B’の直列回路で構成する。 In such a T-type inductor circuit, as shown in FIG. 1B, the shunt inductor L2 is configured by a series circuit of a partial inductor L2A ′, a partial inductor L2 ″, and a partial inductor L2B ′.
 部分インダクタL2A’は、第1シリーズインダクタL1Aに電磁界結合する。部分インダクタL2”は、第1シリーズインダクタL1Aおよび第2シリーズインダクタL1Bに対して電磁界結合しない。部分インダクタL2B’は、第2シリーズインダクタL1Bに電磁界結合する。 The partial inductor L2A 'is electromagnetically coupled to the first series inductor L1A. The partial inductor L2 ″ is not electromagnetically coupled to the first series inductor L1A and the second series inductor L1B. The partial inductor L2B ′ is electromagnetically coupled to the second series inductor L1B.
 部分インダクタL2A’と第1シリーズインダクタL1Aとの電磁界結合量は、部分インダクタL2B’と第2シリーズインダクタL1Bとの電磁界結合量と同じである。 The electromagnetic field coupling amount between the partial inductor L2A 'and the first series inductor L1A is the same as the electromagnetic field coupling amount between the partial inductor L2B' and the second series inductor L1B.
 このようなT型インダクタ回路に構成することで、第1シリーズインダクタL1Aおよび第2シリーズインダクタL1Bとシャントインダクタとで電磁界結合し、それぞれに相互インダクタンスMが生じる。 By configuring in such a T-type inductor circuit, the first series inductor L1A, the second series inductor L1B, and the shunt inductor are electromagnetically coupled, and a mutual inductance M is generated in each.
 しかしながら、信号ラインに直列接続された第1シリーズインダクタL1Aに生じる相互インダクタンスMと第2シリーズインダクタL1Bに生じる相互インダクタンスMとは、相殺する。したがって、第1シリーズインダクタL1Aおよび第2シリーズインダクタL1Bは、シャントインダクタL2に対して相互インダクタンスMを発生しても、信号ラインに直列接続される合成インダクタの実質的なインダクタンス値は変化しない。 However, the mutual inductance M generated in the first series inductor L1A connected in series with the signal line cancels out the mutual inductance M generated in the second series inductor L1B. Therefore, even if the first series inductor L1A and the second series inductor L1B generate the mutual inductance M with respect to the shunt inductor L2, the substantial inductance value of the composite inductor connected in series to the signal line does not change.
 一方、シャントインダクタL2は、相互インダクタンスMが生じない状態での素子としてのインダクタンスL(L2)とすると、相互インダクタンスMにより、実質的なインダクタンスは、L(L2)-2Mとなる。 On the other hand, if the shunt inductor L2 is an inductance L (L2) as an element in a state where the mutual inductance M does not occur, the substantial inductance becomes L (L2) -2M due to the mutual inductance M.
 ここで、相互インダクタンスMが正値となるように、シャントインダクタL2を第1,第2シリーズインダクタL1A,L1Bに電磁界結合させれば、形状を変化させることなく、シャントインダクタL2の実質的なインダクタンスを低くすることができる。 Here, if the shunt inductor L2 is electromagnetically coupled to the first and second series inductors L1A and L1B so that the mutual inductance M becomes a positive value, the substantial shape of the shunt inductor L2 is not changed without changing the shape. Inductance can be reduced.
 また、相互インダクタンスMが負値となるように、シャントインダクタを第1,第2シリーズインダクタL1A,L1Bに電磁界結合させれば、形状を変化させることなく、シャントインダクタL2の実質的なインダクタンスを大きくすることができる。 Further, if the shunt inductor is electromagnetically coupled to the first and second series inductors L1A and L1B so that the mutual inductance M becomes a negative value, the substantial inductance of the shunt inductor L2 can be obtained without changing the shape. Can be bigger.
 このように、本願発明の発明者は、本実施形態の回路構成からなるT型インダクタ回路を用いることで、各インダクタの形状を変えることなく、従来考えられていたT型インダクタ回路では実現できなかった信号ラインに直列接続されるシリーズインダクタのインダクタンスを変化させることなく、シャントインダクタのインダクタンスのみを変化させることを見いだした。これにより、各インダクタの形状を変化させることなく、当該T型インダクタ回路を備えるフィルタのフィルタ特性を調整することができる。また、同じ特性のフィルタであっても、形状を変化させることができる。例えば、同じ特性のフィルタをより小型に形成することができる。 As described above, the inventor of the present invention uses the T-type inductor circuit having the circuit configuration of the present embodiment, and thus cannot be realized with the conventionally considered T-type inductor circuit without changing the shape of each inductor. It was found that only the inductance of the shunt inductor was changed without changing the inductance of the series inductor connected in series to the signal line. Thereby, the filter characteristic of the filter provided with the T-type inductor circuit can be adjusted without changing the shape of each inductor. Moreover, the shape can be changed even with filters having the same characteristics. For example, a filter having the same characteristics can be formed in a smaller size.
 このような構成のT型インダクタ回路は、積層体を用いて次に示す構造によって実現できる。図2は本実施形態のT型インダクタ回路を実現する積層体101の分解斜視図である。図3は本実施形態のT型インダクタ回路を実現する積層体101の積み図である。図3は積層体101の積層方向に各誘電体層を見た図、すなわち、積層体101の天面もしくは底面に直交する方向から見た図である。なお、図2,図3では、T型インダクタ回路の部分のみを記載し、積層体101を構成する他の誘電体層、他の電極パターン、実装用電極については図示を省略している。 The T-type inductor circuit having such a configuration can be realized by the following structure using a multilayer body. FIG. 2 is an exploded perspective view of the multilayer body 101 that realizes the T-type inductor circuit of the present embodiment. FIG. 3 is a stack diagram of the multilayer body 101 that realizes the T-type inductor circuit of the present embodiment. FIG. 3 is a view of each dielectric layer viewed in the stacking direction of the stacked body 101, that is, a view viewed from a direction orthogonal to the top surface or the bottom surface of the stacked body 101. 2 and 3, only the portion of the T-type inductor circuit is shown, and the other dielectric layers, other electrode patterns, and mounting electrodes constituting the multilayer body 101 are not shown.
 積層体100は、5層の誘電体層PL1,PL2,PL3,PL4,PL5を積層してなる。第1層である誘電体層PL1には、第1方向(図2における左奥から右手前に向かう方向、図3における横方向)に沿って、直線状の線状電極101が形成されている。線状電極101は、線状電極101A,101Bが連続的に形成された構造からなる。 The laminated body 100 is formed by laminating five dielectric layers PL1, PL2, PL3, PL4, and PL5. On the dielectric layer PL1, which is the first layer, linear linear electrodes 101 are formed along the first direction (the direction from the left back to the right front in FIG. 2, the horizontal direction in FIG. 3). . The linear electrode 101 has a structure in which linear electrodes 101A and 101B are continuously formed.
 線状電極101Aの線状電極101Bに接続する側と反対側の端部は、誘電体層PL1,PL2を貫通する導電性ビアホールVH13Aに接続されている。線状電極101Bの線状電極101Aに接続する側と反対側の端部には、誘電体層PL1,PL2を貫通する導電性ビアホールVH13Bに接続されている。 The end of the linear electrode 101A opposite to the side connected to the linear electrode 101B is connected to a conductive via hole VH13A that penetrates the dielectric layers PL1 and PL2. The end of the linear electrode 101B opposite to the side connected to the linear electrode 101A is connected to a conductive via hole VH13B that penetrates the dielectric layers PL1 and PL2.
 線状電極101A,101Bの接続点は、これらの直交する第2方向(図2における左手前から右奥に向かう方向、図3における縦方向)へ延びる短距離の配線電極を介して、誘電体層PL1を貫通する導電性ビアホールVH12に接続されている。 The connection point of the linear electrodes 101A and 101B is connected to the dielectric via a short-distance wiring electrode extending in a second direction perpendicular to these (in the direction from the left front to the right back in FIG. 2, the vertical direction in FIG. 3). The conductive via hole VH12 that penetrates the layer PL1 is connected.
 第1層PL1の下層側の第2層PL2には、上述のシャントインダクタL2を構成する巻回形の線状電極102が形成されている。線状電極102は、第2方向に平行な線状電極121,122と、第1方向に平行な線状電極123とを備える。これら線状電極121,122,123は、後述する誘電体層PL3以下の構造から、シャントインダクタL2の各部と次のように対応する。線状電極121は上述のシャントインダクタL2の部分インダクタL2A’に対応し、線状電極122は上述のシャントインダクタL2の部分インダクタL2B’に対応し、線状電極123は上述のシャントインダクタL2の部分インダクタL2”に対応する。 In the second layer PL2 on the lower layer side of the first layer PL1, the wound linear electrode 102 constituting the shunt inductor L2 is formed. The linear electrode 102 includes linear electrodes 121 and 122 parallel to the second direction, and a linear electrode 123 parallel to the first direction. These linear electrodes 121, 122, 123 correspond to each part of the shunt inductor L2 as follows from the structure below the dielectric layer PL3 described later. The linear electrode 121 corresponds to the partial inductor L2A ′ of the above shunt inductor L2, the linear electrode 122 corresponds to the partial inductor L2B ′ of the above shunt inductor L2, and the linear electrode 123 corresponds to the partial shunt inductor L2. This corresponds to the inductor L2 ″.
 線状電極121の一方端は、導電性ビアホールVH12に接続されている。線状電極121の他方端は、線状電極123の一方端に接続されている。線状電極122の一方端は、線状電極123の他方端に接続されており、線状電極122の他方端は、図示しない導電性ビアホールを介してグランド電位となる電極へ接続されている。 One end of the linear electrode 121 is connected to the conductive via hole VH12. The other end of the linear electrode 121 is connected to one end of the linear electrode 123. One end of the linear electrode 122 is connected to the other end of the linear electrode 123, and the other end of the linear electrode 122 is connected to an electrode having a ground potential through a conductive via hole (not shown).
 第2層PL2の下層側となる第3層PL3には、上述の第1シリーズインダクタL1Aの一部を構成する巻回形の線状電極103Aと、第2シリーズインダクタL1Bの一部を構成する巻回形の線状電極103Bとが形成されている。線状電極103A,103Bは、第1方向に沿って所定間隔をおいて形成されている。 The third layer PL3 on the lower layer side of the second layer PL2 constitutes the wound linear electrode 103A constituting a part of the first series inductor L1A and a part of the second series inductor L1B. A wound linear electrode 103B is formed. The linear electrodes 103A and 103B are formed at a predetermined interval along the first direction.
 線状電極103Aは、第2方向に平行な二本の線状部131A,133Aと、これら線状部131A,133Aを接続し第1方向に平行な中間線状部132Aとからなる。線状部131Aの中間線状部132Aに接続する側と反対側の端部は、誘電体層PL1,PL2を貫通する導電性ビアホールVH13Aに接続されている。線状部133Aの中間線状部132Aに接続する側と反対側の端部は、誘電体層PL3を貫通する導電性ビアホールVH34Aに接続されている。 The linear electrode 103A includes two linear portions 131A and 133A that are parallel to the second direction, and an intermediate linear portion 132A that connects the linear portions 131A and 133A and is parallel to the first direction. The end of the linear portion 131A opposite to the side connected to the intermediate linear portion 132A is connected to a conductive via hole VH13A that penetrates the dielectric layers PL1 and PL2. The end of the linear portion 133A opposite to the side connected to the intermediate linear portion 132A is connected to a conductive via hole VH34A that penetrates the dielectric layer PL3.
 ここで、線状部133Aは、誘電体層PL2に形成された線状電極102の線状電極121と、積層体100の天面側から見て(各誘電体層を平面視して)、重なり合うように形成されている。この構成により、第1シリーズインダクタL1Aを構成する線状部133Aと、シャントインダクタL2の部分インダクタL2A’を構成する線状電極121とが、積層方向に沿って電磁界結合する。これにより、第1シリーズインダクタL1A’とシャントインダクタL2A’との間に相互インダクタンスMを発生させることができる。 Here, the linear portion 133A is viewed from the linear electrode 121 of the linear electrode 102 formed on the dielectric layer PL2 and the top surface side of the stacked body 100 (when viewing each dielectric layer in plan view), It is formed to overlap. With this configuration, the linear portion 133A configuring the first series inductor L1A and the linear electrode 121 configuring the partial inductor L2A ′ of the shunt inductor L2 are electromagnetically coupled along the stacking direction. Thereby, the mutual inductance M can be generated between the first series inductor L1A 'and the shunt inductor L2A'.
 線状電極103Bは、第2方向に平行な二本の線状部131B,133Bと、これら線状部131B,133Bを接続し第1方向に平行な中間線状部132Bとからなる。線状部131Bの中間線状部132Bと接続する側の反対側の端部は、誘電体層PL1,PL2を貫通する導電性ビアホールVH13Bに接続されている。線状部133Bの中間線状部132Bと接続する側の反対側の端部は、誘電体層PL3を貫通する導電性ビアホールVH34Bに接続されている。 The linear electrode 103B includes two linear portions 131B and 133B that are parallel to the second direction, and an intermediate linear portion 132B that connects the linear portions 131B and 133B and is parallel to the first direction. The end of the linear portion 131B opposite to the side connected to the intermediate linear portion 132B is connected to a conductive via hole VH13B that penetrates the dielectric layers PL1 and PL2. The end of the linear portion 133B opposite to the side connected to the intermediate linear portion 132B is connected to a conductive via hole VH34B that penetrates the dielectric layer PL3.
 ここで、線状部133Bは、誘電体層PL2に形成された線状電極102の線状電極122と、積層体100の天面側から見て(各誘電体層を平面視して)、重なり合うように形成されている。この構成により、第2シリーズインダクタL1Bを構成する線状部133Bと、シャントインダクタL2の部分インダクタL2B’を構成する線状電極122とが、積層方向に沿って電磁界結合する。これにより、第2シリーズインダクタL1B’とシャントインダクタL2B’との間に相互インダクタンスMを発生させることができる。 Here, the linear portion 133B is viewed from the linear electrode 122 of the linear electrode 102 formed on the dielectric layer PL2 and the top surface side of the stacked body 100 (when viewing each dielectric layer in plan view), It is formed to overlap. With this configuration, the linear portion 133B configuring the second series inductor L1B and the linear electrode 122 configuring the partial inductor L2B ′ of the shunt inductor L2 are electromagnetically coupled along the stacking direction. Thereby, the mutual inductance M can be generated between the second series inductor L1B 'and the shunt inductor L2B'.
 第3層PL3の下層側となる第4層PL4には、上述の第1シリーズインダクタL1Aの一部を構成する巻回形の線状電極104Aと、第2シリーズインダクタL1Bの一部を構成する巻回形の線状電極104Bとが形成されている。線状電極104A,104Bは、第1方向に沿って所定間隔をおいて形成されている。 In the fourth layer PL4 on the lower layer side of the third layer PL3, a wound linear electrode 104A constituting a part of the first series inductor L1A and a part of the second series inductor L1B are constituted. A wound linear electrode 104B is formed. The linear electrodes 104A and 104B are formed at a predetermined interval along the first direction.
 線状電極104Aの一方端は、導電性ビアホールVH34Aに接続されている。線状電極104Aの他方端は、誘電体層PL4を貫通する導電性ビアホールVH45Aに接続されている。線状電極104Aは、積層体100の天面側から見て、線状電極103Aと略同じ領域に形成されており、部分的に重なり合うように形成されている。 One end of the linear electrode 104A is connected to the conductive via hole VH34A. The other end of the linear electrode 104A is connected to a conductive via hole VH45A that penetrates the dielectric layer PL4. The linear electrode 104A is formed in substantially the same region as the linear electrode 103A when viewed from the top surface side of the multilayer body 100, and is formed so as to partially overlap.
 線状電極104Bの一方端は、導電性ビアホールVH34Bに接続されている。線状電極104Bの他方端は、誘電体層PL4を貫通する導電性ビアホールVH45Bに接続されている。 One end of the linear electrode 104B is connected to the conductive via hole VH34B. The other end of the linear electrode 104B is connected to a conductive via hole VH45B that penetrates the dielectric layer PL4.
 第4層PL4の下層側となる第5層PL5には、上述の第1シリーズインダクタL1Aの一部を構成する線状電極105Aと、第2シリーズインダクタL1Bの一部を構成する線状電極105Bとが形成されている。線状電極105A,105Bは、第1方向に沿って所定間隔をおいて形成されている。 The fifth layer PL5 on the lower layer side of the fourth layer PL4 has a linear electrode 105A constituting a part of the first series inductor L1A and a linear electrode 105B constituting a part of the second series inductor L1B. And are formed. The linear electrodes 105A and 105B are formed at a predetermined interval along the first direction.
 線状電極105Aの一方端は、導電性ビアホールVH45Aに接続されている。線状電極105Aの他方端は、図示しない導電性ビアホールを介して、上述の第1入出力端子Port1を構成する電極に接続されている。 One end of the linear electrode 105A is connected to the conductive via hole VH45A. The other end of the linear electrode 105A is connected to the electrode constituting the first input / output terminal Port1 through a conductive via hole (not shown).
 線状電極105Bの一方端は、導電性ビアホールVH45Bに接続されている。線状電極105Bの他方端は、図示しない導電性ビアホールを介して、上述の第2入出力端子Port2を構成する電極に接続されている。 One end of the linear electrode 105B is connected to the conductive via hole VH45B. The other end of the linear electrode 105B is connected to the electrode constituting the second input / output terminal Port2 through a conductive via hole (not shown).
 このような構成において、積層体の天面側から見て、第1シリーズインダクタL1Aおよび第2シリーズインダクタL1BとシャントインダクタL2とで、電流の流れる方向が同じになるように電磁界結合させれば、相互インダクタンスMは正値となる。積層体の天面側から見て、第1シリーズインダクタL1Aおよび第2シリーズインダクタL1BとシャントインダクタL2とで、電流の流れる方向が逆になるように電磁界結合させれば、相互インダクタンスMは負値となる。したがって、これらの電流方向の関係を規定するように各インダクタを配設すれば、それぞれの形状に応じた特性を得ることができる。 In such a configuration, when the first series inductor L1A, the second series inductor L1B, and the shunt inductor L2 are electromagnetically coupled so that the direction of current flow is the same when viewed from the top surface side of the multilayer body. The mutual inductance M becomes a positive value. If the first series inductor L1A, the second series inductor L1B, and the shunt inductor L2 are electromagnetically coupled so that the direction of current flow is reversed when viewed from the top side of the multilayer body, the mutual inductance M is negative. Value. Therefore, if each inductor is disposed so as to define the relationship between these current directions, characteristics corresponding to the respective shapes can be obtained.
 以上のような構成を用いることで、上述の意図的に相互インダクタンスMを発生させて、特性を調整可能なT型インダクタ回路を実現することができる。 By using the configuration as described above, it is possible to realize a T-type inductor circuit capable of adjusting the characteristics by intentionally generating the mutual inductance M as described above.
 そして、この構造を用いることで、第1、第2シリーズインダクタL1A,L1BとシャントインダクタL2との電磁界結合を防止するグランド電極層を設けなくてもよいため、積層体を低背化できる。また、第1、第2シリーズインダクタL1A,L1BとシャントインダクタL2とをグランド電極層の上下に分離する必要がないので、これらを等価回路的にT型に接続するための引き回し電極の配線パターンを簡素で容易なパターンにできる。 And by using this structure, since it is not necessary to provide a ground electrode layer for preventing electromagnetic field coupling between the first and second series inductors L1A and L1B and the shunt inductor L2, the stacked body can be reduced in height. Further, since it is not necessary to separate the first and second series inductors L1A and L1B and the shunt inductor L2 from above and below the ground electrode layer, the wiring pattern of the routing electrode for connecting them in a T-type like an equivalent circuit Simple and easy pattern.
 このような回路構成および構造からなるT型インダクタ回路は、次に示すバンドパスフィルタに利用することができる。図4は、本実施形態のバンドパスフィルタの等価回路図である。図5は本実施形態のバンドパスフィルタの積み図である。なお、図5には、本実施形態のバンドパスフィルタとは別の回路を構成する電極パターンも記載されており、以下ではバンドパスフィルタに関連する部分のみを説明する。また、図5において、各誘電体層PL101-PL112に記載された丸印は、導電性ビアホールを示すものである。また、図5では、バンドパスフィルタに関連する誘電体層のみを記載し、バンドパスフィルタを実現する誘電体層以外の構成については図示を省略したり、説明を省略する。 The T-type inductor circuit having such a circuit configuration and structure can be used for the following bandpass filter. FIG. 4 is an equivalent circuit diagram of the bandpass filter of the present embodiment. FIG. 5 is a stack diagram of the band-pass filter of this embodiment. FIG. 5 also shows an electrode pattern constituting a circuit different from the bandpass filter of this embodiment, and only the portion related to the bandpass filter will be described below. In FIG. 5, the circles described in the dielectric layers PL101 to PL112 indicate conductive via holes. In FIG. 5, only the dielectric layer related to the bandpass filter is shown, and the illustration of the configuration other than the dielectric layer realizing the bandpass filter is omitted or the description is omitted.
 まず、図4を参照して回路構成を説明する。
 本実施形態のバンドパスフィルタは、上述のように第1シリーズインダクタL1Aと第2シリーズインダクタL1Bの直列回路を備え、第1シリーズインダクタL1Aと第2シリーズインダクタL1Bの接続点は、シャントインダクタL2によりグランド電位に接続されている。
First, the circuit configuration will be described with reference to FIG.
As described above, the band-pass filter of the present embodiment includes a series circuit of the first series inductor L1A and the second series inductor L1B, and the connection point of the first series inductor L1A and the second series inductor L1B is determined by the shunt inductor L2. Connected to ground potential.
 第1シリーズインダクタL1Aと第1入出力端子Port1との間には、第1シリーズキャパシタC1Aが接続されている。第2シリーズインダクタL1Bと第2入出力端子Port2との間には、第2シリーズキャパシタC1Bが接続されている。 A first series capacitor C1A is connected between the first series inductor L1A and the first input / output terminal Port1. A second series capacitor C1B is connected between the second series inductor L1B and the second input / output terminal Port2.
 シャントインダクタL2とグラント電位との間には、第1シャントキャパシタC3が接続されている。 A first shunt capacitor C3 is connected between the shunt inductor L2 and the grant potential.
 第1シリーズインダクタL1Aと第1シリーズキャパシタC1Aとの接続点は、第2シャントキャパシタC2Aを介して、シャントインダクタL2と第1シャントキャパシタC3との接続点へ接続されている。 The connection point between the first series inductor L1A and the first series capacitor C1A is connected to the connection point between the shunt inductor L2 and the first shunt capacitor C3 via the second shunt capacitor C2A.
 第2シリーズインダクタL1Bと第2シリーズキャパシタC1Bとの接続点は、第3シャントキャパシタC2Bを介して、シャントインダクタL2と第1シャントキャパシタC3との接続点へ接続されている。 The connection point between the second series inductor L1B and the second series capacitor C1B is connected to the connection point between the shunt inductor L2 and the first shunt capacitor C3 via the third shunt capacitor C2B.
 第1入出力端子Portと第2入出力端子Port2との間には、第3シリーズキャパシタC0が接続されている。 A third series capacitor C0 is connected between the first input / output terminal Port and the second input / output terminal Port2.
 次に、図5を参照して積層構造を説明する。
 バンドパスフィルタとしての第1層である誘電体層PL101には、第3シリーズキャパシタC0用の平板電極が形成されている。
Next, the laminated structure will be described with reference to FIG.
A plate electrode for the third series capacitor C0 is formed on the dielectric layer PL101, which is the first layer as a bandpass filter.
 誘電体層PL102には、第3シリーズキャパシタC0と第1シリーズキャパシタC1Aと第2シリーズキャパシタC1B用の平板電極が形成されている。 On the dielectric layer PL102, plate electrodes for the third series capacitor C0, the first series capacitor C1A, and the second series capacitor C1B are formed.
 誘電体層PL103は、上述の誘電体層PL1に対応し、T型インダクタ回路の引き回し用の線状電極が形成されている。 The dielectric layer PL103 corresponds to the above-described dielectric layer PL1, and is formed with a linear electrode for routing the T-type inductor circuit.
 誘電体層PL104は、上述の誘電体層PL2に対応し、シャントインダクタL2用の線状電極が形成されている。 The dielectric layer PL104 corresponds to the above-described dielectric layer PL2, and a linear electrode for the shunt inductor L2 is formed.
 誘電体層PL105には、シャントインダクタL2をグランド電位に接続させるための引き回し電極が形成されている。 The dielectric layer PL105 is formed with a routing electrode for connecting the shunt inductor L2 to the ground potential.
 誘電体層PL106,PL107,PL108は、それぞれ上述の誘電体層PL3,PL4,PL5に対応し、第1シリーズインダクタL1Aと第2シリーズインダクタL1B用の線状電極が、積層方向を螺旋の軸となるように形成されている。 The dielectric layers PL106, PL107, and PL108 correspond to the above-described dielectric layers PL3, PL4, and PL5, respectively, and the linear electrodes for the first series inductor L1A and the second series inductor L1B have a spiral direction in the stacking direction. It is formed to become.
 誘電体層PL109には、第1シリーズキャパシタC1Aと第2シャントキャパシタC2Aに対して共用の平板電極が形成されている。また、誘電体層PL109には、第2シリーズキャパシタC1Bと第3シャントキャパシタC2Bに対して共用の平板電極が形成されている。 In the dielectric layer PL109, a common plate electrode is formed for the first series capacitor C1A and the second shunt capacitor C2A. The dielectric layer PL109 is provided with a common plate electrode for the second series capacitor C1B and the third shunt capacitor C2B.
 誘電体層PL110には、第2シャントキャパシタC2A用の平板電極と、第3シャントキャパシタC2B用の平板電極とが形成されている。 The dielectric layer PL110 is provided with a plate electrode for the second shunt capacitor C2A and a plate electrode for the third shunt capacitor C2B.
 誘電体層PL111には、第1シリーズキャパシタC1A用の平板電極と、第2シリーズキャパシタC1B用の平板電極とが形成されている。 The dielectric layer PL111 is formed with a plate electrode for the first series capacitor C1A and a plate electrode for the second series capacitor C1B.
 誘電体層PL112には、第1シャントキャパシタC3用の平板電極が形成されている。なお、第1シャントキャパシタC3用のもう一方の平板電極は、図示しない誘電体層に形成されたグランド電極である。 A flat plate electrode for the first shunt capacitor C3 is formed on the dielectric layer PL112. The other plate electrode for the first shunt capacitor C3 is a ground electrode formed on a dielectric layer (not shown).
 このような構成のバンドパスフィルタとすることで、シリーズインダクタL1A,L1BとシャントインダクタL2間の電磁界結合を調整して、フィルタ特性を調整することができる。図6は、本実施形態のバンドパスフィルタおよび従来構成のバンドパスフィルタの通過特性図である。図6(A),(D)は従来構成のバンドパスフィルタの通過特性図である。図6(B)は図6(A)と同じ回路構成であって相互インダクタンスMが正値となるようにシリーズインダクタとシャントインダクタとを電磁界結合させた場合の通過特性図である。図6(C)は図6(A)と同じ回路構成であって相互インダクタンスMが負値となるようにシリーズインダクタとシャントインダクタとを電磁界結合させた場合の通過特性図である。図6(D)は図6(A)に対してシャントインダクタのインダクタンス値を変化させた場合の通過特性図である。なお、図6に示すバンドパスフィルタは、図4に示す等価回路からなるバンドパスフィルタである。また、図6に示すフィルタ特性は、シミュレーションによって得られたものである。具体的な各回路素子の素子値は次に示すように設定されている。図6(A)、(B),(C),(D)では、第1シリーズインダクタL1Aと第2シリーズインダクタL1Bのインダクタンスは2.0nHである。第1シリーズキャパシタC1A、第2シリーズキャパシタC1B、第2シャントキャパシタC2A、および第3シャントキャパシタC2Bのキャパシタンスは0.75pFであり、第3シリーズキャパシタンスCoのキャパシタンスは0.24pFである。なお、第1シャントキャパシタC3は導通状態(キャパシタンスは0F)としている。 By using the bandpass filter having such a configuration, the electromagnetic coupling between the series inductors L1A and L1B and the shunt inductor L2 can be adjusted to adjust the filter characteristics. FIG. 6 is a pass characteristic diagram of the bandpass filter of the present embodiment and the bandpass filter of the conventional configuration. 6A and 6D are pass characteristics diagrams of a bandpass filter having a conventional configuration. FIG. 6B is a pass characteristic diagram when the series inductor and the shunt inductor are electromagnetically coupled so that the mutual inductance M has a positive value with the same circuit configuration as FIG. FIG. 6C is a pass characteristic diagram when the series inductor and the shunt inductor are electromagnetically coupled so that the mutual inductance M has a negative value with the same circuit configuration as FIG. FIG. 6D is a pass characteristic diagram when the inductance value of the shunt inductor is changed with respect to FIG. The bandpass filter shown in FIG. 6 is a bandpass filter composed of the equivalent circuit shown in FIG. Further, the filter characteristics shown in FIG. 6 are obtained by simulation. The specific element value of each circuit element is set as follows. In FIGS. 6A, 6B, 6C, and 6D, the inductance of the first series inductor L1A and the second series inductor L1B is 2.0 nH. The capacitance of the first series capacitor C1A, the second series capacitor C1B, the second shunt capacitor C2A, and the third shunt capacitor C2B is 0.75 pF, and the capacitance of the third series capacitance Co is 0.24 pF. The first shunt capacitor C3 is in a conductive state (capacitance is 0F).
 一方、図6(A),(B),(C)では、シャントインダクタL2のインダクタンスは1.1nHである。図6(B),(C)では、シャントインダクタL2の部分インダクタL2A’,L2B’の各インダクタンスは0.5nHであり、部分インダクタL2”のインダクタンスは0.1nHである。図6(D)では、シャントインダクタL2のインダクタンスは1.3nHである。 On the other hand, in FIGS. 6A, 6B, and 6C, the inductance of the shunt inductor L2 is 1.1 nH. 6B and 6C, the inductances of the partial inductors L2A ′ and L2B ′ of the shunt inductor L2 are 0.5 nH, and the inductance of the partial inductor L2 ″ is 0.1 nH. Then, the inductance of the shunt inductor L2 is 1.3 nH.
 また、図6(B),(C)では、第1シリーズインダクタL1Aおよび第2シリーズインダクタL1BとシャントインダクタL2との結合係数Kを0.1としている。この場合、相互インダクタンスMの絶対値は0.1nHとなる。 In FIGS. 6B and 6C, the coupling coefficient K between the first series inductor L1A and the second series inductor L1B and the shunt inductor L2 is set to 0.1. In this case, the absolute value of the mutual inductance M is 0.1 nH.
 このようなシミュレーションを行った結果、図6(A),(B),(C)に示すように、同じ回路構成であってもシリーズインダクタとシャントインダクタとの電磁界結合を調整することで、異なる通過特性のバンドパスフィルタを構成できる。 As a result of performing such a simulation, as shown in FIGS. 6A, 6B, and 6C, by adjusting the electromagnetic coupling between the series inductor and the shunt inductor even in the same circuit configuration, Bandpass filters with different pass characteristics can be configured.
 具体的には、二個のシリーズインダクタとシャントインダクタとのインダクタンスを決定し、図6(A)のようにシリーズインダクタとシャントインダクタとの電磁界結合を生じさせないようにした通過特性に対して、図6(B)に示すように相互インダクタンスMが正値となるようにした場合、相互インダクタンスMの2倍分だけシャントインダクタの信号に対するインダクタンスが低下し、より狭帯域な特性にすることができるとともに、低周波数側の減衰極の減衰量を大きく取れる。また、図6(C)に示すように相互インダクタンスMが正値となるようにした場合、相互インダクタンスMの2倍分だけシャントインダクタの信号に対するインダクタンスが増加し、より広帯域な特性にすることができる。 Specifically, the inductance between the two series inductors and the shunt inductor is determined, and the pass characteristic that prevents the electromagnetic coupling between the series inductor and the shunt inductor as shown in FIG. When the mutual inductance M is set to a positive value as shown in FIG. 6B, the inductance for the signal of the shunt inductor is reduced by twice the mutual inductance M, and a narrower band characteristic can be obtained. In addition, the attenuation amount of the attenuation pole on the low frequency side can be increased. In addition, when the mutual inductance M is set to a positive value as shown in FIG. 6C, the inductance for the signal of the shunt inductor is increased by twice the mutual inductance M, so that the characteristics can be made wider. it can.
 また、図6(C),図6(D)に示すように、シリーズインダクタとシャントインダクタとを電磁界結合を調整することで、シャントインダクタのインダクタンスが異なっていても、同じ通過特性のバンドパスフィルタを構成できる。具体的に、図6(C)では、シャントインダクタL2の無信号時のインダクタンスが1.1nHであるにも係わらず、図6(D)に示すシャントインダクタL2のインダクタンスが1.3nHの場合と同じ通過特性を得られる。これは、相互インダクタンスMが0.1nHであるのに対して、その二倍である0.2nHが増加したことに等しい。このように、第1シリーズインダクタL1Aおよび第2シリーズインダクタL1BとシャントインダクタL2との電磁界結合量を調整することで、これらが電磁界結合せず、異なるシャントインダクタのインダクタンスからなるフィルタ特性を実現できる。 In addition, as shown in FIGS. 6C and 6D, by adjusting the electromagnetic coupling between the series inductor and the shunt inductor, even if the inductance of the shunt inductor is different, the band pass having the same pass characteristic is obtained. You can configure filters. Specifically, in FIG. 6C, although the no-signal inductance of the shunt inductor L2 is 1.1 nH, the shunt inductor L2 shown in FIG. 6D has an inductance of 1.3 nH. The same pass characteristics can be obtained. This is equivalent to an increase of 0.2 nH, which is twice that of the mutual inductance M of 0.1 nH. In this way, by adjusting the amount of electromagnetic coupling between the first series inductor L1A and second series inductor L1B and the shunt inductor L2, they are not electromagnetically coupled, and a filter characteristic consisting of inductances of different shunt inductors is realized. it can.
 特に、このように、シャントインダクタのインダクタンスが増加するように結合させることで、同じ電極幅で同じ電極長からなる同じ巻回形の線状電極を用いても、インダクタンスを増加させることができる。逆に、同じインダクタンスを実現するのであれば、電極長を短くすることができる。これにより、積層体を小型化することができる。また、同じインダクタンスを実現するのであれば、電極幅を広くすることができる。これにより、伝送損失を低減でき、フィルタのQ値を向上させることができる。 In particular, by coupling the shunt inductor so that the inductance of the shunt inductor is increased, the inductance can be increased even when the same wound wire electrode having the same electrode width and the same electrode length is used. Conversely, if the same inductance is realized, the electrode length can be shortened. Thereby, a laminated body can be reduced in size. If the same inductance is realized, the electrode width can be increased. Thereby, transmission loss can be reduced and the Q value of the filter can be improved.
 また、上述のように、シリーズインダクタの誘電体層とシャントインダクタの誘電体層との間に、グランド電極層を設けなくてよいので、積層体を薄型化することができる。 Also, as described above, since it is not necessary to provide a ground electrode layer between the dielectric layer of the series inductor and the dielectric layer of the shunt inductor, the laminate can be thinned.
 なお、上述のバンドパスフィルタの積層構成において、第1シリーズインダクタL1A、第1シリーズキャパシタC1A、第2シャントキャパシタC2Aの形成される領域は、積層体を天面側から見て重なるように構成する。一方、第2シリーズインダクタL1B、第2シリーズキャパシタC1B、第3シャントキャパシタC2Bの形成される領域は、積層体を天面側から見て重なるように構成する。そして、これら二つの領域が、積層体を天面側から見て重ならないように構成する。このような積層構成により、積層基板内での回路素子間の不要な電磁界結合を防止できる。これにより、上述の特性からなるバンドパスフィルタをより正確に実現できる。 In the laminated configuration of the bandpass filter described above, the region where the first series inductor L1A, the first series capacitor C1A, and the second shunt capacitor C2A are formed is configured to overlap when the multilayer body is viewed from the top surface side. . On the other hand, the region where the second series inductor L1B, the second series capacitor C1B, and the third shunt capacitor C2B are formed is configured to overlap when the multilayer body is viewed from the top surface side. And these two area | regions are comprised so that a laminated body may not overlap, seeing from a top | upper surface side. Such a stacked configuration can prevent unnecessary electromagnetic coupling between circuit elements in the stacked substrate. Thereby, the band pass filter which consists of the above-mentioned characteristic is realizable more correctly.
 また、上述の説明では、バンドパスフィルタを例に説明したが、T型インダクタ回路を備えるものであれば、例えば図7、図8に示すようなハイパスフィルタを実現することもできる。図7は本発明の実施形態に係るハイパスフィルタの等価回路図である。図8は図7に示す本実施形態のハイパスフィルタの積み図である。なお、図8においても、図5と同様に必要箇所のみを説明し、他の箇所の図示を部分的に省略し、さらに説明も省略する。また、図8の各誘電体層PL201-PL208に記載された丸印は、丸印は導電性ビアホールを示す。 In the above description, the band-pass filter has been described as an example. However, if a T-type inductor circuit is provided, for example, a high-pass filter as shown in FIGS. 7 and 8 can be realized. FIG. 7 is an equivalent circuit diagram of the high-pass filter according to the embodiment of the present invention. FIG. 8 is a stacking diagram of the high-pass filter of the present embodiment shown in FIG. In FIG. 8 as well, only the necessary portions are described in the same manner as in FIG. 5, the illustration of other portions is partially omitted, and further description is omitted. Further, the circles described in the respective dielectric layers PL201 to PL208 in FIG. 8 indicate conductive via holes.
 まず、図7を参照して回路構成を説明する。 First, the circuit configuration will be described with reference to FIG.
 ハイパスフィルタは、第3入出力端子Port3と第4入出力端子Port4との間に直列接続されたシリーズインダクタL5A,L5Bを備える。シリーズインダクタL5Aには、キャパシタC5Aが並列接続されている。シリーズインダクタL5Bには、キャパシタC5Bが接続されている。シリーズインダクタL5AとシリーズインダクタL5Bの接続点は、シャントインダクタL6とキャパシタC6の直列回路を介して、グランド電位へ接続されている。 The high-pass filter includes series inductors L5A and L5B connected in series between the third input / output terminal Port3 and the fourth input / output terminal Port4. A capacitor C5A is connected in parallel to the series inductor L5A. A capacitor C5B is connected to the series inductor L5B. A connection point between the series inductor L5A and the series inductor L5B is connected to the ground potential via a series circuit of the shunt inductor L6 and the capacitor C6.
 次に、図8を参照して積層構造を説明する。
 ハイパスフィルタとしての第1層である誘電体層PL201及び誘電体層PL202には、シリーズインダクタL5A,L5Bを構成する線状電極が形成されている。
Next, the laminated structure will be described with reference to FIG.
Linear electrodes constituting the series inductors L5A and L5B are formed on the dielectric layer PL201 and the dielectric layer PL202, which are the first layers as high-pass filters.
 誘電体層PL203,PL204,PL205には、配線用の導電性ビアホールが形成されている。 Conductive via holes for wiring are formed in the dielectric layers PL203, PL204, and PL205.
 誘電体層PL206,PL207,PL208には、シャントインダクタL6を構成する線状電極が形成されている。 In the dielectric layers PL206, PL207, and PL208, linear electrodes constituting the shunt inductor L6 are formed.
 シリーズインダクタL5A,L5Bを構成する線状電極と、シャントインダクタL6を構成する線状電極は、積層体の天面側から見て部分的にそれぞれ重なるように、形成されている。この構造により、シリーズインダクタL5A,L5BとシャントインダクタL6との間の相互インダクタンスを発生させている。そして、このような構成とすることで、上述のバンドパスフィルタと同様の作用効果を得ることができる。 The linear electrodes constituting the series inductors L5A and L5B and the linear electrodes constituting the shunt inductor L6 are formed so as to partially overlap each other when viewed from the top surface side of the multilayer body. With this structure, mutual inductance is generated between the series inductors L5A and L5B and the shunt inductor L6. And by setting it as such a structure, the effect similar to the above-mentioned band pass filter can be acquired.
 また、上述の説明では、信号ラインに直列接続された二個のシリーズインダクタと、これらの接続点とグランド電位との間に接続するシャントインダクタとの間の電磁界結合を積層方向に沿って発生させる例を示したが、誘電体層内で発生させることもできる。図9は単一の誘電体層で、二個のシリーズインダクタL1A,L1BがシャントインダクタL2に電磁界結合する場合の積層構造例を示す部分積み図である。図10は、二個のシリーズインダクタL1A,L1BがシャントインダクタL2に、それぞれ異なる誘電体層内で電磁界結合する場合の積層構造例を示す部分積み図である。 In the above description, electromagnetic field coupling is generated along the stacking direction between two series inductors connected in series to the signal line and a shunt inductor connected between these connection points and the ground potential. Although an example is shown, it can also be generated in the dielectric layer. FIG. 9 is a partial stack diagram showing an example of a laminated structure in the case where two series inductors L1A and L1B are electromagnetically coupled to the shunt inductor L2 with a single dielectric layer. FIG. 10 is a partial stacking diagram showing an example of a laminated structure in the case where two series inductors L1A and L1B are electromagnetically coupled to the shunt inductor L2 in different dielectric layers.
 図9に示す構成の場合、第1シリーズインダクタL1Aと第2シリーズインダクタL1Bを構成する線状電極は、誘電体層PL1A,PL2A,PL3Aに亘って、上述の図2、図3と同様の巻回形状で形成されている。シャントインダクタL2を構成する線状電極は、誘電体層PL1Aに、上述の図2、図3と同様の巻回形状で形成されている。この際、シャントインダクタL2を構成する線状電極は、第1シリーズインダクタL1Aを構成する線状電極と、第2シリーズインダクタL1Bを構成する線状電極との間に配設される。さらに、シャントインダクタL2を構成する線状電極は、第1シリーズインダクタL1Aを構成する線状電極に対する間隔と、第2シリーズインダクタL1Bを構成する線状電極に対する間隔とが同じになるように、配設されている。また、さらに、シャントインダクタL2を構成する線状電極は、第1シリーズインダクタL1Aを構成する線状電極に対向する長さと、第2シリーズインダクタL1Bを構成する線状電極に対向する長さとが同じになるように、配設されている。 In the case of the configuration shown in FIG. 9, the linear electrodes constituting the first series inductor L1A and the second series inductor L1B span the dielectric layers PL1A, PL2A, PL3A, and have the same windings as those in FIGS. It is formed in a round shape. The linear electrode constituting the shunt inductor L2 is formed on the dielectric layer PL1A in the same winding shape as that in FIGS. At this time, the linear electrode constituting the shunt inductor L2 is disposed between the linear electrode constituting the first series inductor L1A and the linear electrode constituting the second series inductor L1B. Further, the linear electrodes constituting the shunt inductor L2 are arranged so that the distance to the linear electrodes constituting the first series inductor L1A is the same as the distance to the linear electrodes constituting the second series inductor L1B. It is installed. Furthermore, the length of the linear electrode that constitutes the shunt inductor L2 is the same as the length that faces the linear electrode that constitutes the first series inductor L1A, and the length that faces the linear electrode that constitutes the second series inductor L1B. It is arrange | positioned so that it may become.
 図10に示す構成の場合、第1シリーズインダクタL1Aを構成する線状電極は、誘電体層PL2B,PL3B,PL4Bに亘って、上述の図2、図3と同様の巻回形状で形成されている。第2シリーズインダクタL1Bを構成する線状電極は、誘電体層PL1B,PL2B,PL3Bに亘って、上述の図2、図3と同様の巻回形状で形成されている。シャントインダクタL2を構成する線状電極は、誘電体層PL1B,PL2Bに、上述の図2、図3と類似する巻回形状で形成されている。この際、シャントインダクタL2を構成する線状電極は、第1シリーズインダクタL1Aを構成する線状電極と、第2シリーズインダクタL1Bを構成する線状電極との間に配設される。さらに、シャントインダクタL2を構成する線状電極は、誘電体層PL2Bにおける第1シリーズインダクタL1Aを構成する線状電極に対する間隔と、誘電体層PL1Bにおける第2シリーズインダクタL1Bを構成する線状電極に対する間隔とが同じになるように、配設されている。またさらに、シャントインダクタL2を構成する線状電極は、誘電体層PL2Bにおける第1シリーズインダクタL1Aを構成する線状電極に対向する長さと、誘電体層PL1Bにおける第2シリーズインダクタL1Bを構成する線状電極に対向する長さとが同じになるように、配設されている。 In the case of the configuration shown in FIG. 10, the linear electrodes constituting the first series inductor L1A are formed in the same winding shape as in FIGS. 2 and 3 above over the dielectric layers PL2B, PL3B, and PL4B. Yes. The linear electrode constituting the second series inductor L1B is formed in a winding shape similar to that of FIGS. 2 and 3 described above over the dielectric layers PL1B, PL2B, and PL3B. The linear electrodes constituting the shunt inductor L2 are formed on the dielectric layers PL1B and PL2B in a winding shape similar to the above-described FIGS. At this time, the linear electrode constituting the shunt inductor L2 is disposed between the linear electrode constituting the first series inductor L1A and the linear electrode constituting the second series inductor L1B. Furthermore, the linear electrodes constituting the shunt inductor L2 are spaced from the linear electrodes constituting the first series inductor L1A in the dielectric layer PL2B and to the linear electrodes constituting the second series inductor L1B in the dielectric layer PL1B. It arrange | positions so that a space | interval may become the same. Still further, the linear electrode constituting the shunt inductor L2 has a length facing the linear electrode constituting the first series inductor L1A in the dielectric layer PL2B, and a line constituting the second series inductor L1B in the dielectric layer PL1B. It arrange | positions so that the length which opposes an electrode may become the same.
 このような図9、図10に示す構成であっても、上述の積層方向に電磁界結合する構成と同様の作用効果を得ることができる。 9 and 10 can provide the same effects as the configuration in which electromagnetic coupling is performed in the stacking direction.
 なお、上述の説明では、信号ラインに直列接続された二個のシリーズインダクタのシャントインダクタに対する電磁界結合量を同じにする場合を示したが、異ならせることで、シリーズインダクタのインダクタンスを意図的に調整することも可能である。 In the above description, the case where two series inductors connected in series to the signal line have the same electromagnetic field coupling amount to the shunt inductor is shown. It is also possible to adjust.
100:積層体、101,101A,101B,102,121,122,123,103A,103B,104A,104B,105A,105B:線状電極、131A,131B,133A,133B:線状部、132A,132B:中間線状部、L1A,L1B:シリーズインダクタ、L2:シャントインダクタ、L2A’,L2B’,L2”:部分インダクタ、PL1,PL2,PL3,PL4,PL5,PL101-PL112,PL201-PL208,PL1A-PL3A,PL1B-PL4B:誘電体層、VH12,VH13A,VH13B,VH34A,VH34B,VH45A,VH45B:導電性ビアホール 100: laminate, 101, 101A, 101B, 102, 121, 122, 123, 103A, 103B, 104A, 104B, 105A, 105B: linear electrodes, 131A, 131B, 133A, 133B: linear portions, 132A, 132B : Intermediate linear portion, L1A, L1B: Series inductor, L2: Shunt inductor, L2A ', L2B', L2 ": Partial inductor, PL1, PL2, PL3, PL4, PL5, PL101-PL112, PL201-PL208, PL1A- PL3A, PL1B-PL4B: Dielectric layer, VH12, VH13A, VH13B, VH34A, VH34B, VH45A, VH45B: Conductive via holes

Claims (9)

  1.  第1入出力端子と第2入出力端子との間に、直列接続された第1シリーズインダクタおよび第2シリーズインダクタと、
     前記第1シリーズインダクタと前記第2シリーズインダクタとの接続点をグランド電位に接続するシャントインダクタと、を備えるフィルタであって、
     前記シャントインダクタは、前記第1シリーズインダクタおよび前記第2シリーズインダクタの両方に電磁界結合するように配置された、フィルタ。
    A first series inductor and a second series inductor connected in series between the first input / output terminal and the second input / output terminal;
    A shunt inductor for connecting a connection point between the first series inductor and the second series inductor to a ground potential,
    The shunt inductor is a filter arranged to be electromagnetically coupled to both the first series inductor and the second series inductor.
  2.  請求項1に記載のフィルタであって、
     前記シャントインダクタは、前記第1シリーズインダクタに対する電磁界結合量と、前記第2シリーズインダクタに対する電磁界結合量とが一致する、フィルタ。
    The filter of claim 1,
    The shunt inductor is a filter in which an electromagnetic coupling amount with respect to the first series inductor and an electromagnetic coupling amount with respect to the second series inductor coincide.
  3.  請求項1または請求項2に記載のフィルタであって、
     複数の誘電体層を積層してなる積層体と、
     該積層体内に形成された前記第1シリーズインダクタの電極パターンと、前記第2シリーズインダクタの電極パターンと、前記シャントインダクタの電極パターンと、を備え、
     前記第1シリーズインダクタの電極パターンおよび前記第2シリーズインダクタの電極パターンが形成された誘電体層と前記シャントインダクタの電極パターンが形成された誘電体層は異なり、
     前記積層体の天面側から見て、前記シャントインダクタの電極パターンは、前記第1シリーズインダクタの電極パターンと前記第2シリーズインダクタの電極パターンのそれぞれに対して、部分的に重なり合うように配設されている、フィルタ。
    A filter according to claim 1 or claim 2, wherein
    A laminate formed by laminating a plurality of dielectric layers;
    An electrode pattern of the first series inductor formed in the multilayer body, an electrode pattern of the second series inductor, and an electrode pattern of the shunt inductor,
    The dielectric layer in which the electrode pattern of the first series inductor and the electrode pattern of the second series inductor are formed is different from the dielectric layer in which the electrode pattern of the shunt inductor is formed.
    When viewed from the top side of the multilayer body, the electrode pattern of the shunt inductor is disposed so as to partially overlap the electrode pattern of the first series inductor and the electrode pattern of the second series inductor. Has been a filter.
  4.  請求項1または請求項2に記載のフィルタであって、
     複数の誘電体層を積層してなる積層体と、
     該積層体内に形成された前記第1シリーズインダクタの電極パターンと、前記第2シリーズインダクタの電極パターンと、前記シャントインダクタの電極パターンと、を備え、
     前記第1シリーズインダクタの電極パターンが形成される誘電体層と、前記シャントインダクタの電極パターンが形成された誘電体層は少なくとも部分的に一致し、
     前記第2シリーズインダクタの電極パターンが形成される誘電体層と、前記シャントインダクタの電極パターンが形成された誘電体層は少なくとも部分的に一致し、
     前記シャントインダクタは、層内の電磁界結合によって前記第1シリーズインダクタおよび前記第2シリーズインダクタと電磁界結合している、フィルタ。
    A filter according to claim 1 or claim 2, wherein
    A laminate formed by laminating a plurality of dielectric layers;
    An electrode pattern of the first series inductor formed in the multilayer body, an electrode pattern of the second series inductor, and an electrode pattern of the shunt inductor,
    The dielectric layer on which the electrode pattern of the first series inductor is formed and the dielectric layer on which the electrode pattern of the shunt inductor is formed at least partially coincide with each other,
    The dielectric layer on which the electrode pattern of the second series inductor is formed and the dielectric layer on which the electrode pattern of the shunt inductor is formed at least partially coincide with each other,
    The filter, wherein the shunt inductor is electromagnetically coupled to the first series inductor and the second series inductor by electromagnetic coupling in a layer.
  5.  請求項3または請求項4のいずれかに記載のフィルタであって、
     前記積層体の天面側から見て、
     前記第1シリーズインダクタと前記第2シリーズインダクタの電流方向と、前記シャントインダクタの電流方向とが同じである、フィルタ。
    A filter according to claim 3 or claim 4, wherein
    Seen from the top side of the laminate,
    The filter in which the current direction of the first series inductor and the second series inductor is the same as the current direction of the shunt inductor.
  6.  請求項3または請求項4のいずれかに記載のフィルタであって、
     前記積層体の天面側から見て、
     前記第1シリーズインダクタと前記第2シリーズインダクタの電流方向と、前記シャントインダクタの電流方向とが逆である、フィルタ。
    A filter according to claim 3 or claim 4, wherein
    Seen from the top side of the laminate,
    A filter in which a current direction of the first series inductor and the second series inductor is opposite to a current direction of the shunt inductor.
  7.  請求項1乃至請求項6のいずれかに記載のフィルタであって、
     前記第1シリーズインダクタ、前記第2シリーズインダクタ、および前記シャントインダクタとともにキャパシタを備え、帯域通過特性を有する、フィルタ。
    The filter according to any one of claims 1 to 6,
    A filter comprising a capacitor together with the first series inductor, the second series inductor, and the shunt inductor, and having a band pass characteristic.
  8.  請求項3乃至請求項6のいずれかに記載のフィルタであって、
     前記第1シリーズインダクタ、前記第2シリーズインダクタ、および前記シャントインダクタとともに、
     前記第1入出力端子と前記第1シリーズインダクタとの間に直列接続された第1キャパシタと、
     前記第2入出力端子と前記第2シリーズインダクタとの間に直列接続された第2キャパシタと、
     前記シャントインダクタと前記グランド電位との間に接続された第3キャパシタと、
     前記第1シリーズインダクタと前記第1キャパシタとの接続点と、前記シャントインダクタと前記第3キャパシタとの接続点を接続する第4キャパシタと、
     前記第2シリーズインダクタと前記第2キャパシタとの接続点と、前記シャントインダクタと前記第3キャパシタとの接続点を接続する第5キャパシタと、
     前記第1入出力端子と前記第2入出力端子との間に直列接続された第6キャパシタと、
     を備えた帯域通過特性を有し、
     前記積層体の天面側から見て、
     前記第1シリーズインダクタ、前記第1キャパシタ、前記第4キャパシタの形成領域と、前記第2シリーズインダクタ、前記第2キャパシタ、前記第5キャパシタの形成領域と、が重ならないように配置されている、フィルタ。
    A filter according to any one of claims 3 to 6,
    Along with the first series inductor, the second series inductor, and the shunt inductor,
    A first capacitor connected in series between the first input / output terminal and the first series inductor;
    A second capacitor connected in series between the second input / output terminal and the second series inductor;
    A third capacitor connected between the shunt inductor and the ground potential;
    A connection point between the first series inductor and the first capacitor; a fourth capacitor connecting a connection point between the shunt inductor and the third capacitor;
    A connection point between the second series inductor and the second capacitor; a fifth capacitor connecting a connection point between the shunt inductor and the third capacitor;
    A sixth capacitor connected in series between the first input / output terminal and the second input / output terminal;
    Has bandpass characteristics with
    Seen from the top side of the laminate,
    The formation region of the first series inductor, the first capacitor, and the fourth capacitor is disposed so as not to overlap the formation region of the second series inductor, the second capacitor, and the fifth capacitor. filter.
  9.  請求項1乃至請求項6のいずれかに記載のフィルタであって、
     前記第1シリーズインダクタ、前記第2シリーズインダクタ、および前記シャントインダクタとともにキャパシタを備え、高域通過特性を有する、フィルタ。
    The filter according to any one of claims 1 to 6,
    A filter comprising a capacitor together with the first series inductor, the second series inductor, and the shunt inductor, and having a high-pass characteristic.
PCT/JP2012/054717 2011-03-07 2012-02-27 Filter WO2012121038A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280006219.1A CN103329434B (en) 2011-03-07 2012-02-27 Wave filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-048815 2011-03-07
JP2011048815 2011-03-07

Publications (1)

Publication Number Publication Date
WO2012121038A1 true WO2012121038A1 (en) 2012-09-13

Family

ID=46798006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054717 WO2012121038A1 (en) 2011-03-07 2012-02-27 Filter

Country Status (3)

Country Link
CN (1) CN103329434B (en)
TW (1) TWI577131B (en)
WO (1) WO2012121038A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017199749A1 (en) * 2016-05-17 2017-11-23 株式会社村田製作所 Laminated lc filter
WO2022049927A1 (en) * 2020-09-04 2022-03-10 株式会社村田製作所 Filter, filter module, and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113114150B (en) * 2015-12-24 2024-01-16 株式会社村田制作所 Filter circuit and capacitive element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162939U (en) * 1988-04-28 1989-11-14
JP2001185972A (en) * 1999-12-27 2001-07-06 Kyocera Corp Laminated filter
JP2003298377A (en) * 2002-03-29 2003-10-17 Ngk Spark Plug Co Ltd Laminate type lc filter
JP2006203862A (en) * 2004-12-20 2006-08-03 Tdk Corp Noise suppression circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4919645B2 (en) * 2005-10-04 2012-04-18 株式会社ソニー・コンピュータエンタテインメント Electronic circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162939U (en) * 1988-04-28 1989-11-14
JP2001185972A (en) * 1999-12-27 2001-07-06 Kyocera Corp Laminated filter
JP2003298377A (en) * 2002-03-29 2003-10-17 Ngk Spark Plug Co Ltd Laminate type lc filter
JP2006203862A (en) * 2004-12-20 2006-08-03 Tdk Corp Noise suppression circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017199749A1 (en) * 2016-05-17 2017-11-23 株式会社村田製作所 Laminated lc filter
WO2022049927A1 (en) * 2020-09-04 2022-03-10 株式会社村田製作所 Filter, filter module, and electronic device

Also Published As

Publication number Publication date
CN103329434A (en) 2013-09-25
TWI577131B (en) 2017-04-01
TW201249102A (en) 2012-12-01
CN103329434B (en) 2016-06-08

Similar Documents

Publication Publication Date Title
JP5652542B2 (en) Directional coupler
JP4356803B2 (en) Multilayer bandpass filter
TWI729327B (en) Multilayer band pass filter
JP5821914B2 (en) High frequency components
JP5874718B2 (en) Frequency variable resonance circuit and frequency variable filter
JPWO2011114851A1 (en) High frequency multilayer component and multilayer high frequency filter
US9812245B2 (en) Laminated coil component and matching circuit
TW201820781A (en) LC filter
WO2016092903A1 (en) Electronic component
WO2012121038A1 (en) Filter
JP5804076B2 (en) LC filter circuit and high frequency module
WO2017199749A1 (en) Laminated lc filter
JP5585605B2 (en) Filter element
JPWO2019097774A1 (en) Bandpass filter
WO2017199734A1 (en) Laminated filter
WO2017014058A1 (en) Lc filter
JP6344482B2 (en) Flexible cable connection structure to printed circuit board
JP7322968B2 (en) Laminated LC filter
TWI820903B (en) Multilayer electronic component
TWI818720B (en) Multilayer electronic component
JP6773122B2 (en) Laminated LC filter
JP2023147860A (en) Bandpass filter
JP4485333B2 (en) Low-pass filter array
JP2023042197A (en) Multilayer electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12754799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP