WO2012117587A1 - Method for producing lipid structure - Google Patents

Method for producing lipid structure Download PDF

Info

Publication number
WO2012117587A1
WO2012117587A1 PCT/JP2011/069337 JP2011069337W WO2012117587A1 WO 2012117587 A1 WO2012117587 A1 WO 2012117587A1 JP 2011069337 W JP2011069337 W JP 2011069337W WO 2012117587 A1 WO2012117587 A1 WO 2012117587A1
Authority
WO
WIPO (PCT)
Prior art keywords
lipid
liposome
nanoparticle
particles
nanoparticles
Prior art date
Application number
PCT/JP2011/069337
Other languages
French (fr)
Japanese (ja)
Inventor
善浩 佐々木
一成 秋吉
Original Assignee
国立大学法人東京医科歯科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京医科歯科大学 filed Critical 国立大学法人東京医科歯科大学
Publication of WO2012117587A1 publication Critical patent/WO2012117587A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1274Non-vesicle bilayer structures, e.g. liquid crystals, tubules, cubic phases, cochleates; Sponge phases

Definitions

  • the present invention relates to a method for producing a lipid structure.
  • Liposomes self-assemble to form stable molecular aggregates and are used as basic materials in basic biology, medicine, pharmacy and engineering. Liposomes are known as lipid molecule aggregates formed from lipids including naturally derived phospholipids. Liposomes are prepared by an ultrasonic irradiation method, a stationary hydration method, or the like. However, since liposomes are spherical, their fields of use are limited.
  • lipid nanotubes which are aggregates of lipid molecules in the form of nanotubes
  • they can be applied to 3D artificial cell arrays, biochips, microreactors, drug carriers, templates for producing inorganic nanostructures, nerve cells, immune cells, etc.
  • studies have been actively conducted because of expectations for elucidating the mechanism of intercellular communication such as the above.
  • lipid nanotubes nanotubes
  • a method of producing a lipid nanotube by self-assembling a synthetic lipid having a specific structure is known (see, for example, Chemistry of Materials 2008, 20, 625 and Nature Communications 2010, 1, 20).
  • a method is known in which a part of a lipid membrane of a liposome is sucked with a micropipette using a micropipette suction technique, and the part is physically stretched to form a lipid nanotube part one by one ( For example, see Japanese translations of PCT publication No. 2004-509778 and Langmuir 2001, 17, 6754).
  • a specific biomolecule is added to the liposome, and the movement of the biomolecule is used to grow part of the lipid membrane into a lipid nanotube structure (see, for example, The EMBO Journal 2005, 24, 1537).
  • a technique for adding a specific substance such as ganglioside to grow a part of a lipid membrane into a lipid nanotube structure is known.
  • an object of the present invention is to produce a lipid structure having a lipid tube part such as a lipid nanotube part by a simple method with high efficiency and controllability, and having a wide range of choice of lipid to be used. Is to provide a method.
  • ⁇ 1> preparing a particle-encapsulating liposome comprising a liposome and particles encapsulated in the liposome; By moving particles in the particle-encapsulating liposomes by an external field, by extending a part of the lipid membrane of the liposomes by the particles, and forming a lipid tube part; Have When the lipid tube part is formed by extending a part of the lipid membrane of the liposome, the liposome is restricted from moving in the external field, so that the particle pushes out the lipid membrane of the liposome.
  • a method for producing a lipid structure that acts on the skin is
  • ⁇ 2> The method for producing a lipid structure according to ⁇ 1>, wherein the external field is an electric field, a magnetic field, or an inertial force.
  • the lipid tube part is formed by extending a part of the lipid membrane of the liposome, the liposome is held on a substrate or in a gel according to ⁇ 1> or ⁇ 2>.
  • ⁇ 4> The method for producing a lipid structure according to any one of ⁇ 1> to ⁇ 3>, wherein the particles have a volume average particle diameter of 10 nm to 500 nm.
  • ⁇ 5> The method for producing a lipid structure according to any one of ⁇ 1> to ⁇ 4>, wherein the particle-encapsulating liposome has a volume average particle diameter of 2 ⁇ m to 100 ⁇ m.
  • ⁇ 6> The method for producing a lipid structure according to any one of ⁇ 1> to ⁇ 5>, wherein the external field is an electric field having a strength of 2.0 kV / m to 10.0 kV / m.
  • ⁇ 8> preparing liposomes; Forming a lipid tube part by extending a part of the lipid membrane of the liposome by deforming the liposome by an external fluid force; and Have When the lipid tube part is formed by extending a part of the lipid membrane of the liposome, the liposome is restricted from moving in the fluid, and a shear flow acts on the lipid membrane of the liposome.
  • a method for producing a lipid structure that is adapted to: ⁇ 9> The method for producing a lipid structure according to ⁇ 8>, wherein when the lipid tube part is formed by extending a part of the lipid membrane of the liposome, the liposome is held on a base material.
  • the lipid structure which has a lipid tube part can be produced with sufficient efficiency and controllability by a simple method, and the manufacturing method of a lipid structure with a wide selection range of the lipid to be used can be provided. .
  • the method for producing a lipid structure of the present invention comprises preparing a particle-encapsulated liposome containing a liposome and particles encapsulated in the liposome (hereinafter also referred to as “preparation step”), and particles in the particle-encapsulated liposome.
  • Preparation step a particle-encapsulated liposome containing a liposome and particles encapsulated in the liposome
  • particles in the particle-encapsulated liposome is formed by extending a part of the lipid membrane of the liposome by the particles by moving by an external field.
  • Another method for producing the lipid structure of the present invention is to prepare liposomes (hereinafter also referred to as “preparing a liposome”), and deforming the liposomes by external fluid force, Extending a part of the lipid membrane of the liposome to form a lipid tube part (hereinafter also referred to as a “lipid tube part forming step”).
  • the liposome comprises the Movement in the fluid is restricted, and a shear flow acts on the lipid membrane of the liposome.
  • the “lipid tube” includes not only a lipid tube having both ends opened, but also a lipid tube having at least one end closed. Liposomes may be supported on both ends or one end of the lipid tube.
  • nanoparticles are a preferred example of particles
  • nanoparticle-encapsulated liposomes are preferred examples of particle-encapsulated liposomes
  • lipid nanotube portions are preferred examples of lipid tube portions.
  • the same members may be denoted by the same reference numerals and description thereof may be omitted.
  • FIG. 1 is a schematic cross-sectional view schematically showing an example of a nanoparticle-encapsulating liposome prepared in the preparation step of the present invention.
  • the nanoparticle-encapsulating liposome 10 includes a liposome having a capsule-like lipid membrane 14 and nanoparticles 12 encapsulated in the liposome.
  • the lipid membrane 14 is a phospholipid bimolecular membrane.
  • the inside of the capsule-like lipid membrane 14 is filled with an inner aqueous phase (an aqueous medium such as water or a buffer solution).
  • the structure of the liposome excluding the nanoparticles 12 from the nanoparticle-encapsulating liposome 10 is the same as the structure of a known liposome.
  • the following method can be used. That is, a solution in which phospholipid is dissolved in an organic solvent is prepared, and the organic solvent is evaporated from the solution to produce a phospholipid membrane. By bringing the prepared phospholipid membrane into contact with a liquid containing nanoparticles and water, a nanoparticle-encapsulating liposome having a structure in which the nanoparticles are incorporated into the liposome can be obtained by self-organization of the phospholipid. .
  • the preparation step in the present invention may be a step of preparing a nanoparticle-encapsulating liposome prepared in advance, or a step of manufacturing a nanoparticle-encapsulating liposome.
  • the process of preparing a liposome is performed.
  • FIG. 2 is a schematic cross-sectional view schematically showing a lipid nanotube part forming step as an example of the lipid tube part forming step in the present invention.
  • the nanoparticle-encapsulating liposome 10 (FIG. 1) is arranged in the external field F
  • the nanoparticles 12 in the nanoparticle-encapsulating liposome 10 are directed from the inside of the liposome to the outside of the liposome by the external field F. Move in the direction.
  • a part of the lipid membrane 14 is pushed out by the nanoparticles 12 to form the lipid nanotube portion 20.
  • 10 A of lipid structures which have the lipid nanotube part 20 are obtained.
  • the lipid membrane (lipid membrane 14 in FIG. 1) after the formation of the lipid nanotube portion is defined as a lipid membrane 14A.
  • the external field F that moves the particles (for example, the nanoparticles 12) is, for example, an electric field, a magnetic field, or an inertial force. However, when the external field F is a fluid force, the particles (for example, the nanoparticles 12) are moved.
  • a part other than the lipid tube part (for example, the lipid nanotube part 20) in the lipid structure (for example, the lipid structure 10A) may be referred to as a liposome part. That is, the lipid structure in the present invention has a structure including a lipid tube part and a liposome part.
  • the inside of a lipid tube part and the inside of a liposome part are connected, and these insides are satisfy
  • the production method of the present invention utilizes the movement of particles (for example, nanoparticles) by an external field, the extrusion of lipid membranes by the movement of particles (for example, nanoparticles), and the elasticity of the lipid membrane.
  • a part of the lipid membrane is extruded to form a lipid tube part (for example, a lipid nanotube part).
  • it is a method of forming a lipid tube part (for example, a lipid nanotube part) by extending a part of the lipid membrane by an external fluid force.
  • the production method of the present invention is simpler and more efficient than a conventional method in which a part of liposome is sucked with a micropipette and physically stretched to form lipid nanotube parts one by one ( This is a manufacturing method with excellent productivity.
  • the size (length) of the lipid tube part (for example, lipid nanotube part) can be easily controlled by controlling the strength of the external field, the time for applying the external field, and the like.
  • the type of lipid used is not limited, and the range of lipid selection is wide. wide.
  • the flexibility required as the lipid nanotube may be impaired. Compared with the method, flexibility is not easily lost.
  • the lipid structure produced by the production method of the present invention is contained in a gel (eg, agarose gel), the obtained lipid structure-containing gel is frozen, and the lipid structure-containing gel is frozen to a lipid tube.
  • a lipid tube (for example, a lipid nanotube) can be easily obtained by cutting out a portion including a portion (for example, a lipid nanotube portion).
  • a part of the lipid membrane of the particle-encapsulated liposome for example, nanoparticle-encapsulated liposome
  • the two liposomes are lipid tubes (for example, lipid nanotubes).
  • a lipid structure having a structure in which the insides of the two liposomes are connected to each other can also be produced. Furthermore, a lipid structure having a structure in which two or more liposomes are bound in a three-dimensional network by lipid tubes (for example, lipid nanotubes) can be prepared.
  • the three-dimensional network lipid structure produced in this way can be used as a three-dimensional artificial cell array or a biochip.
  • FIG. 1 and 2 schematically show an example in which the nanoparticle-encapsulating liposome 10 and the lipid structure 10A encapsulate five nanoparticles 12, and one of these nanoparticles moves.
  • the number of particles (for example, nanoparticles) encapsulated in particle-encapsulated liposomes (for example, nanoparticle-encapsulated liposomes) and the number of moving particles (for example, nanoparticles) are not particularly limited.
  • a plurality of particles (for example, nanoparticles) are included in the particle-encapsulated liposome (for example, nanoparticle-encapsulated liposome), at least a part of the plurality of particles (for example, nanoparticles) may be moved.
  • symbol "12" is attached
  • lipid tube part for example, a lipid nanotube part
  • particles for example, nanoparticles
  • lipid tube part for example, a lipid nanotube part
  • fluid force for a lipid membrane
  • particles for example, nanoparticles
  • a part of the lipid membrane is elongated, so that the lipid A tube part (for example, a lipid nanotube part) can be formed.
  • the particle-encapsulated liposome for example, the nanoparticle-encapsulated liposome
  • the particle-encapsulated liposome is retained on a substrate or in a gel. Is mentioned. These more specific forms will be described later as first to fourth embodiments.
  • a specific form in which the movement of liposomes not encapsulating particles (for example, nanoparticles) is restricted includes a form in which liposomes are held on a substrate. This more specific form will be described later as a fifth embodiment.
  • the structure of the liposome in the present invention (that is, the portion excluding the particles (for example, nanoparticles) in the particle-encapsulated liposomes (for example, nanoparticle-encapsulated liposomes) in the present invention) is not particularly limited, and known liposomes can be used. .
  • known liposomes having a capsule-like lipid membrane mainly composed of a phospholipid bilayer membrane and an inner aqueous phase present in the capsule-like lipid membrane can be used without particular limitation.
  • the liposome in the present invention may be a monolayer liposome as shown in FIGS. 1 and 2, or a multilamellar liposome.
  • the volume average particle diameter of the liposome is preferably 2 ⁇ m to 100 ⁇ m, more preferably 2 ⁇ m to 50 ⁇ m, and particularly preferably 5 ⁇ m to 20 ⁇ m from the viewpoint of the formation of the lipid nanotube portion.
  • the phospholipid is not particularly limited, and may be glycerophospholipid or sphingophospholipid.
  • Specific examples of the phospholipid include lecithin (phosphatidylcholine), cephalin (phosphatidylethanolamine), phosphatidylserine, sphingomyelin and the like.
  • one or more other substances such as biotin and rhodamine may be bound to the phospholipid.
  • the internal aqueous phase and the external aqueous phase of the liposome are water, various buffer solutions (4- (2-hydroxyethyl) -1-piperazineethanesulfonic acid (“HEPES”), trishydroxymethylaminomethane (“TRIS”).
  • HEPES 4- (2-hydroxyethyl) -1-piperazineethanesulfonic acid
  • TMS trishydroxymethylaminomethane
  • An aqueous medium such as “), a buffered aqueous solution of boric acid, phosphoric acid, etc.” can be used without particular limitation.
  • the “external field” is not particularly limited as long as it can move particles (nanoparticles), but is preferably an electric field, a magnetic field, or an inertial force, for example.
  • the “external field” is not particularly limited as long as it can move particles (nanoparticles), but is preferably an electric field, a magnetic field, or an inertial force, for example.
  • a part of the lipid membrane of the liposome is elongated instead of moving the particles (for example, nanoparticles), fluid force is used.
  • the strength of the electric field is preferably 2.0 kV / m to 10.0 kV / m, more preferably 4.0 kV / m to 7.0 kV / m, from the viewpoint of the formation of the lipid nanotube portion. That is, when the intensity of the electric field is 2.0 kV / m or more, the pushability of the lipid membrane by the movement of the nanoparticles can be further improved. In addition, when the electric field strength is 10.0 kV / m or less, in addition to being able to further suppress the temperature rise, the phenomenon that the nanoparticles break through the lipid membrane (that is, the phenomenon in which the formation of the lipid nanotube portion is impaired). It can be suppressed more.
  • the strength of the magnetic field is preferably from 100 KA / m to 1000 KA / m, more preferably from 200 KA / m to 500 KA / m, from the viewpoint of the formability of the lipid nanotube portion. That is, when the strength of the magnetic field is 100 KA / m or more, the pushability of the lipid membrane due to the movement of the nanoparticles can be further improved. Moreover, when the electric field strength is 1000 KA / m or less, the phenomenon that nanoparticles break through the lipid membrane (that is, the phenomenon in which the formation of the lipid nanotube portion is impaired) can be further suppressed.
  • the inertia force can be obtained by, for example, centrifugal force.
  • Strength of the inertial force from the viewpoint of formation of the lipid nanotube portion, preferably 10km / s 2 ⁇ 100km / s 2, and more preferably 30km / s 2 ⁇ 100km / s 2. That is, when the strength of the inertial force is 10 km / s 2 or more, the pushability of the lipid membrane due to the movement of the nanoparticles can be further improved.
  • the intensity of the inertial force is 100 km / s 2 or less, a phenomenon that nanoparticles break through the lipid membrane (that is, a phenomenon in which the formation of the lipid nanotube portion is impaired) can be further suppressed.
  • the fluid force can be obtained, for example, by circulating an aqueous medium or gas such as the above-described water or various buffer solutions as an external aqueous phase of the liposome using a syringe pump or the like.
  • the strength of the fluid force is preferably a high flow rate within a range in which the movement of the liposome in the fluid can be restricted (the liposome can be retained on the base material) from the viewpoint of the formation of the lipid nanotube portion. That is, by making the flow rate as fast as possible, the extensibility of the lipid membrane by fluid force can be further improved.
  • the particles refer to particles having a volume average particle diameter of 5 ⁇ m or less, for example.
  • the volume average particle diameter of the particles is, for example, from 10 nm to 500 nm, preferably from 10 nm to 300 nm, more preferably from 10 nm to 90 nm, and particularly preferably from 20 nm to 80 nm, from the viewpoint of the formability of the lipid nanotube portion. It is.
  • the particles may be organic particles (resin particles, etc.) or inorganic particles (metal particles, metal oxide particles, semiconductor particles, etc.).
  • the particles may be surface-modified with an anionic group or a cationic group described later.
  • silica nanoparticles As the inorganic particles, silica nanoparticles, alumina nanoparticles, and magnetic nanoparticles (iron oxide nanoparticles, etc.) are preferable.
  • the resin particles are preferably polystyrene nanoparticles, SBR (styrene-butadiene rubber) nanoparticles, and hydrogel nanoparticles.
  • the resin particles are preferably used in the form of a suspension.
  • the particles When an electric field is used as the external field, the particles preferably have a charge.
  • the charge may be a positive charge or a negative charge.
  • Specific forms of the charged particles include a form modified with an anionic group (or cationic group) and a form in which charged particles are charged positively or negatively.
  • the resin particles having an anionic group for example, (1) a monomer having an anionic group (or cationic group) is homopolymerized or copolymerized with other monomers. Resin obtained by addition polymerization of a monomer having an anionic group (or cationic group) to the obtained resin nanoparticle or (2) a resin nanoparticle having no anionic group (or cationic group) Nanoparticles, (3) nanoparticles obtained by surface-modifying nanoparticles not having an anionic group (or cationic group) with a polymer compound having an anionic group (or cationic group), and the like. .
  • anionic group carboxylate group (-COO - group), a sulfonate group (-SO 3 - group), a phosphate group (-PO 4 2-group), such as silanol groups.
  • cationic group include an unsubstituted ammonium group, an ammonium group substituted with an alkyl group (preferably an alkyl group having 1 to 6 carbon atoms), and a guanidinium group.
  • the particles having an anionic group, carboxylate group (COO - groups) at modified polystyrene nanoparticles include silica nanoparticles having a silanol group. Among them, polystyrene nanoparticles modified with a carboxylate group are preferable from the viewpoint of availability.
  • the particles having a cationic group include polystyrene nanoparticles modified with an ammonium group.
  • the charged particles have a zeta potential at pH 7.4 of ⁇ 60 mV to ⁇ 5 mV (more preferably ⁇ 50 mV to ⁇ ) in the case of particles having an anionic group from the viewpoint of the formation of the lipid nanotube portion by an electric field.
  • a cationic group it is preferably +60 mV to +5 mV (more preferably +50 mV to +10 mV).
  • a commercial item can also be used as particle
  • particles having a charge examples include particles made by Polysciences, particles made by Thermo Fisher, and particles made by Micromod.
  • the particles When a magnetic field is used as the external field, the particles preferably have magnetism (magnetism).
  • magnetism magnetism
  • Examples of a method for imparting magnetism (magnetism) to particles include using particles containing iron oxide (for example, iron oxide particles).
  • grains which have magnetism a commercial item can also be used.
  • examples of commercially available particles having magnetism include Merck particles and Micromod particles.
  • the lipid tube part in the present invention is a part obtained by deforming a part of the lipid membrane into a tube shape.
  • the inner diameter of the lipid tube portion is about the same as the volume average particle diameter of the particles (that is, preferably 10 nm to 5 ⁇ m, more preferably 10 nm to 1 ⁇ m, particularly preferably 20 nm to 100 nm).
  • FIG. 3 is a schematic perspective view schematically showing a lipid structure production apparatus 30 suitable for the production method of the present invention as the first embodiment of the present invention.
  • the lipid structure production apparatus 30 includes a cover glass 32 (base material), a gel 34 (for example, agarose gel, polyacrylamide gel, etc.) disposed on the cover glass 32, and the gel 34.
  • a voltage applying means power source
  • the nanoparticle-encapsulating liposome 31 has a configuration in which charged nanoparticles are encapsulated in the liposome. Preferred forms of the nanoparticles and liposomes are as described above.
  • symbol (31) is attached
  • the nanoparticle-encapsulating liposome 31 is held by the gel 34 and disposed in the electric field generated by the anode 36 ⁇ / b> A and the cathode 36 ⁇ / b> B. Since the nanoparticle-encapsulating liposome 31 is held by the gel 34, movement of the nanoparticle-encapsulating liposome 31 excluding a part that becomes the lipid nanotube portion is restricted by the electric field. On the other hand, part of the lipid nanotube part is pushed out by the movement of the nanoparticles by the electric field to become the lipid nanotube part.
  • FIG. 4 is a schematic perspective view schematically showing a lipid structure production apparatus 40 suitable for the production method of the present invention as the second embodiment of the present invention.
  • the lipid structure manufacturing apparatus 40 includes a cover glass chamber 42 (first base material), a cover glass 49 (second base material), a cover glass chamber 42, and a cover glass 49.
  • the cover glass chamber 42 and the cover glass 49 are fixed by a sealant 48 (for example, a silicone seal).
  • the nanoparticle-encapsulating liposome-containing gel 44 is a gel containing the nanoparticle-encapsulating liposome in the present invention.
  • the gel the same gel as the gel exemplified as the gel 34 in the first embodiment can be used.
  • inner_cover liposome the thing similar to the nanoparticle inclusion
  • the nanoparticle-encapsulating liposome is held by a gel and is disposed in an electric field generated by the anode 46A and the cathode 46B.
  • a portion excluding a portion that becomes a lipid nanotube portion is restricted from moving by an electric field, while a portion that becomes a lipid nanotube portion is pushed out by the movement of the nanoparticle and becomes a lipid. It becomes a nanotube part.
  • FIG. 5 is a schematic perspective view which shows typically the lipid structure manufacturing apparatus 50 suitable for the manufacturing method of this invention as the 3rd Embodiment of this invention.
  • the lipid structure production apparatus 50 includes a cell 52 having an anode tank and a cathode tank that are in communication with each other, and a gel 54 that is disposed in a communication portion between the anode tank and the cathode tank of the cell 52.
  • anolyte 55A for example, an aqueous medium such as water or buffer
  • a catholyte 55B for example, an aqueous medium such as water or buffer
  • the nanoparticle-encapsulating liposome 51 present (for example, dispersed) in the catholyte 55B, the anode 56A immersed in the anolyte 55A, the cathode 56B immersed in the catholyte 55B, and the anode 56A-cathode Voltage applying means (power supply) for applying a DC voltage between 56B.
  • the gel 54 the thing similar to the gel 34 in 1st Embodiment can be used.
  • the nanoparticle-encapsulating liposome 51 a nanoparticle-encapsulating liposome having a structure in which nanoparticles having a negative charge are encapsulated in the liposome is used.
  • the nanoparticle-encapsulating liposome 51 can freely move in the catholyte 55B, but cannot move in the gel 54.
  • the nanoparticle-encapsulating liposome 51 moves in the catholyte 55B and moves to the interface with the gel 54 by the electric field.
  • a part of the lipid membrane of the nanoparticle-encapsulating liposome 51 reaching the interface is pushed out into the gel 54 by the nanoparticles, and a lipid nanotube portion is formed in the gel 54.
  • nanoparticle-encapsulating liposomes having a structure in which positively charged nanoparticles are encapsulated are added to the anolyte 55A. Even in this case, a part of the lipid membrane of the nanoparticle-encapsulating liposome that has reached the interface between the anolyte 55A and the gel 54 is pushed out into the gel 54 by the nanoparticles based on the same principle as that of the lipid structure production apparatus 50. The lipid nanotube portion is formed in the gel 54.
  • FIG. 6 is a schematic perspective view which shows typically the lipid structure manufacturing apparatus 60 suitable for the manufacturing method of this invention as the 4th Embodiment of this invention.
  • the lipid structure production apparatus 60 includes a slide glass 62 (base material), nanoparticle-encapsulated liposomes 61 held on the slide glass 62 via a linker 65, and an electric field applied to the nanoparticle-encapsulated liposomes 61.
  • FIG. 6 is the surface of the slide glass 62 that holds the nanoparticle-encapsulating liposome 61 and the aqueous medium (water, buffer solution, etc.) in which the nanoparticle-encapsulating liposome 61 is immersed.
  • the aqueous medium is indicated by a broken line in order to make it easier to see the surface holding the nanoparticle-encapsulating liposome 61.
  • charged nanoparticles are encapsulated in the liposome.
  • the nanoparticle-encapsulating liposome 61 those similar to the nanoparticle-encapsulating liposome 31 in the first embodiment can be used.
  • the nanoparticle-encapsulating liposome 61 is held on the slide glass 62 (base material) by the linker 65, and is disposed in the electric field generated by the anode 66A and the cathode 66B.
  • a portion excluding a portion that becomes the lipid nanotube portion is restricted from moving by the electric field, while a portion that becomes the lipid nanotube portion is in the aqueous medium due to the movement of the nanoparticle. Extruded into the lipid nanotube part.
  • FIG. 7 is a conceptual diagram showing an example of a nanoparticle-encapsulating liposome held on a glass substrate via a linker.
  • DSPE-biotin of nanoparticle-encapsulating liposome 10 modified with DSPE-biotin (DSPE-Biotin) and BSA of glass substrate modified with BSA-biotin (BSA-Biotin) -Biotin is bound via streptavidin.
  • the nanoparticle-encapsulating liposome 10 is held on the glass substrate via a linker composed of DSPE-biotin, streptavidin, and BSA-biotin.
  • linker in the present invention a linker containing biotin and avidin (for example, DSPE-biotin, streptavidin, BSA-biotin, DOPE-biotin, etc.) can be used.
  • the linker in the present invention is not limited to biotin and avidin, and a known linker (for example, linker DNA, disulfide bond, etc.) for connecting a biomolecule and a substrate can be used without particular limitation.
  • FIG. 8 is a schematic perspective view which shows typically the lipid structure manufacturing apparatus 70 suitable for the manufacturing method of this invention as one example of the 5th Embodiment of this invention.
  • one example of the fifth embodiment is a lipid structure manufacturing apparatus 70 in which an inlet 76 ⁇ / b> A and an outlet 76 ⁇ / b> B are provided at both ends in order to control the fluid force (shear flow) applied to the liposome 71.
  • a flow chamber m-Slides VI, ibidi-GmbH, Kunststoff, Germany
  • a lower slide glass 72 base material
  • an upper slide glass 73 is used.
  • the lipid structure production apparatus 70 includes a lower slide glass 72 (base material), liposomes 71 held on the lower slide glass 72 via a linker 75, and an aqueous medium provided on the upper slide glass 73.
  • An inlet 76A and an outlet 76B for (water, buffer solution, etc.) and a syringe pump (not shown) for flowing an aqueous medium between the inlet 76A and the outlet 76B are provided.
  • the liposome 71 of 5th Embodiment becomes a structure by which the nanoparticle in the nanoparticle inclusion
  • the liposome 71 is held on the lower slide glass 72 (base material) via a streptavidin-biotin bond, similarly to the nanoparticle-encapsulating liposome 10 shown in FIG.
  • Such liposomes can be prepared by the following method. That is, 1,2-disolearoyl-sn-glycero-3-phosphoethanolamine- [biotinyl (poly-ethylene glycol) -2000] (DSPE-Biotin) against 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) ) was added in an amount of 1 mol% to 4 mol%, and giant liposomes were prepared by the stationary hydration method.
  • HEPES buffer (10 mM, pH 7.4) was used for hydration.
  • Injected in order of albumin bovine biotinamidocaproyl (BSA-Biotin) solution (2 mg / mL) and streptavidin solution (1 mg / ml) into a flow chamber washed with HEPES buffer, and fixed streptavidin on the surface of lower slide glass 72 Obtained Next, the chamber was filled with the previously prepared giant liposome solution, and the liposome 71 was immobilized on the lower slide glass 72.
  • BSA-Biotin albumin bovine biotinamidocaproyl
  • the fluid force is increased by injecting the HEPES buffer at a flow rate of 0.05 mL / min to 1.0 mL / min into the liposome 71 held on the lower slide glass 72 by the streptavidin-biotin interaction.
  • a shear flow By acting and applying a shear flow, a lipid nanotube portion 71A whose elongation direction was controlled was obtained.
  • most of the liposomes 71 are restricted from moving by fluid force, but a part of the lipid membrane is deformed by the shear flow and is elongated along with the flow of the HEPES buffer solution to obtain the lipid nanotube portion 71A.
  • FIG. 9 is a graph showing the relationship between the retention of liposomes and the number of lipid nanotubes formed in the fifth embodiment of the present invention. That is, the tube formation behavior when the concentration of DSPE-Biotin for immobilizing liposomes was varied was quantitatively evaluated by counting the number of tubes in a specific region in the chamber. As shown in FIG. 9, the tube formation behavior was examined by changing the concentration of DSPE-Biotin contained in the lipid from 0 ⁇ M to 40 ⁇ M. When the concentration was 2 ⁇ M to 10 ⁇ M, the number of lipid nanotubes formed dramatically increased. is increasing. In addition, the number of tubes formed decreased with increasing DSPE-Biotin concentration, and almost no tubes were formed when the concentration was 40 ⁇ M.
  • the liposome is strongly immobilized on the substrate due to the increase in the DSPE-Biotin concentration, so that it is less susceptible to shear flow. Therefore, the liposome is held on the substrate in such a range that the movement in the fluid is limited and a shear flow acts on the lipid membrane of the liposome.
  • the relationship between the flow rate and the number of formations is preferable.
  • a particle-encapsulating liposome for example, a nanoparticle-encapsulating liposome
  • magnetic particles for example, a nanoparticle
  • a lipid structure using a magnetic field can be produced by applying a magnetic field to particle-encapsulated liposomes (for example, nanoparticle-encapsulated liposomes) using a magnetic field-applying means such as.
  • the inertial force was used by applying an inertial force (centrifugal force) to the lipid structure production apparatus according to the first, second, and fourth embodiments by a centrifuge.
  • Lipid structures can be produced.
  • a lipid structure can be produced by causing a fluid force to act on the liposome by flowing a liquid or gas other than the aqueous medium.
  • room temperature refers to 25 ° C.
  • HEPES buffer is a 10 mM, pH 7.4 HEPES buffer unless otherwise specified.
  • Example 1 ⁇ Formation of lipid nanotube part 1 using electric field> A lipid structure production apparatus having the same configuration as the lipid structure production apparatus 30 shown in FIG. 3 was used to form a lipid nanotube portion using an electric field. Specific operations are shown below.
  • nanoparticle-containing liposome dispersion A First, 1,2-dioleoyl-sn-glycero-3-phosphocholine (phospholipid) and Rhodamine-DMPE (fluorescent dye) were dissolved in chloroform to prepare a solution A. Next, chloroform was dried and removed from the solution A to obtain a fluorescent dye-containing phospholipid thin film. Next, polystyrene nanoparticles modified with a carboxylate group (Fluoresbrite Carboxylate Microspheres manufactured by Polysciences; volume average particle size 50 nm) were added to a HEPES buffer to prepare a nanoparticle-containing solution B.
  • carboxylate group Frute particle size 50 nm
  • the zeta potential of the polystyrene nanoparticles at pH 7.4 is ⁇ 40 mV.
  • the obtained nanoparticle-containing liquid B was added to the phospholipid thin film, allowed to stand at 27 ° C. for 1 hour or longer, and the thin film was hydrated, whereby the nanoparticle-containing liposome dispersion A (concentration of nanoparticle-containing liposomes was 1). 0.0 mM).
  • liposomes containing nanoparticles having a particle size of about 10 ⁇ m to 20 ⁇ m were formed.
  • agarose gel A preparation of agarose gel A
  • the dispersion A and an agarose aqueous solution are mixed at 45 ° C., and cooled to room temperature and gelled to prepare an agarose gel containing nanoparticle-containing liposomes (herein referred to as “agarose gel A”).
  • the amount of each component is such that the composition in agarose gel A is 2.0 mass% agarose gel, liposome 0.05 mM, Rhodamine-DMPE 0.25 ⁇ M, and nanoparticles 0.32 mg / mL (4.62 ⁇ 10 12 pieces / mL).
  • lipid structure production apparatus having the same configuration as that of the lipid structure production apparatus 30 shown in FIG. 3 was produced. The following were used as each member.
  • the distance between the anode 36A and the cathode 36B was 10 mm.
  • -Components of lipid structure manufacturing equipment- Cover glass 32 Cover glass of 24 mm ⁇ 60 mm ⁇ 0.12 mmt Gel 34 and nanoparticle-encapsulating liposome 31: Agarose gel A (5.0 g)
  • Anode 36A and cathode 36B 1 mm ⁇ platinum (Pt) electrode
  • the nanoparticle-containing liposome itself (the liposome part) itself maintained a spherical shape and was retained in the gel even when voltage was applied. It was done. Since the outer shape of the lipid nanotube is smaller than the resolution of the optical microscope, the lipid nanotube is not observed in the optical micrograph.
  • Example 2 ⁇ Formation of lipid nanotube part 2 using electric field> A lipid structure production apparatus having the same configuration as the lipid structure production apparatus 40 shown in FIG. 4 was used to form a lipid nanotube portion using an electric field. Specific operations are shown below.
  • a lipid structure production apparatus having the same configuration as the lipid structure production apparatus 40 shown in FIG. 4 was produced. The following were used as each member.
  • -Components of lipid structure manufacturing equipment- Cover glass chamber 42 A cover glass chamber having a slide glass of 20 mm ⁇ 45 mm ⁇ 0.12 mmt on the bottom (made by IWAKI Glass, 5202-001)
  • Cover glass 49 10 mm ⁇ 10 mm ⁇ 0.12 mmt cover glass
  • Nanoparticle-encapsulating liposome-containing gel 44 The agarose gel B (0.01 g)
  • Anode 46A and cathode 46B 1 mm ⁇ platinum (Pt) electrode
  • the nanoparticle-encapsulating liposome-containing gel 44 is immersed in a HEPES buffer, the temperature is adjusted to 25 ° C., and the electric field strength is 3.0 kV / m between the anode 46A and the cathode 46B. Observation with a fluorescence microscope was performed in a state where a voltage of (current 2 to 3 mA) was applied. A fluorescence micrograph (60 seconds after the start of voltage application) is shown in FIG. As shown in FIG. 12, in Example 2, as in Example 1, it was confirmed that a lipid nanotube portion was formed by applying a voltage.
  • Example 3 ⁇ Formation of lipid nanotube part 3 using electric field> A lipid structure production apparatus having the same configuration as the lipid structure production apparatus 50 shown in FIG. 5 was used to form a lipid nanotube portion using an electric field. Specific operations are shown below.
  • agarose gel C (Preparation of agarose gel C) In the preparation of agarose gel A in Example 1, agarose gel C, which is a 2.0% by mass agarose gel, was obtained in the same manner as the preparation of agarose gel A except that the nanoparticle-containing liposome dispersion liquid A was not used. .
  • lipid structure production apparatus having the same configuration as that of the lipid structure production apparatus 50 shown in FIG. 5 was produced. The following were used as each member.
  • -Components of lipid structure manufacturing equipment- -Cell 52 It has an anode tank with a volume of 0.1 mL and a cathode tank with a volume of 0.1 mL, and the size of the communicating part between the anode tank and the cathode tank is 17 mm long ⁇ 4.8 mm wide ⁇ 0.4 mm high
  • a plastic cell was used.
  • the length of the communication portion corresponds to the closest distance between the anode tank and the cathode tank.
  • Gel 54 The agarose gel C accommodated in the communication part -Anolyte 55A-0.06 mL HEPES buffer-Catholyte 55B-0.06 mL catholyte
  • Anode 56A and cathode 56B 1 mm ⁇ platinum (Pt) electrode
  • Example 3 a device was prepared in which the nanoparticles containing liposomes were replaced with nanoparticles obtained by coloring nanoparticles modified with carboxylate groups, and the same as described above. A voltage was applied to. Then, it was confirmed by visual observation that the colored nanoparticles advance into the gel. From this result and the formation of the lipid nanotube part, it was confirmed that the micro-sized liposome part cannot move in the gel, but the nano-sized substance can move in the gel. Was proved.
  • Example 4 ⁇ Formation of lipid nanotube part using electric field 4> A lipid structure production apparatus having the same configuration as the lipid structure production apparatus 60 shown in FIG. 6 was used to form a lipid nanotube portion using an electric field.
  • the liposome dispersion liquid A-1 containing nanoparticles introduced with DSPE-biotin prepared as described below was dropped and the operation of standing for 10 minutes was repeated twice, followed by washing with a HEPES buffer solution. Substrate (slide glass holding nanoparticle-containing liposomes) was obtained.
  • polystyrene nanoparticles modified with a carboxylate group (Fluoresbrite Carboxylate Microspheres manufactured by Polysciences; volume average particle diameter 50 nm) were added to a HEPES buffer to prepare a nanoparticle-containing solution B.
  • the zeta potential of the polystyrene nanoparticles at pH 7.4 is ⁇ 40 mV.
  • the obtained nanoparticle-containing liquid B was added to the phospholipid thin film, allowed to stand at 27 ° C. for 1 hour or longer, and the thin film was hydrated, whereby the nanoparticle-containing liposome dispersion A-1 (nanoparticle-containing liposome A concentration of 1.0 mM) was obtained.
  • the nanoparticle-containing liposome dispersion A-1 nanoparticle-containing liposome A concentration of 1.0 mM
  • a lipid structure production apparatus having the same configuration as that of the lipid structure production apparatus 60 shown in FIG. 6 was produced. The following were used as each member. -Components of lipid structure manufacturing equipment- -Slide glass 62, linker 65, and nanoparticle-encapsulating liposome 61 ... The slide glass holding the nanoparticle-containing liposome prepared above was used.
  • Anode 66A and cathode 66B 1 mm ⁇ platinum (Pt) electrode. The distance between the electrodes was 10 mm.
  • Aqueous medium (broken line in FIG. 6): HEPES buffer
  • the shooting order is (b), (c), (d), (e), (f), (g), (h).
  • FIG. 14 it was confirmed that the lipid nanotube portion grew as time elapsed from the start of voltage application. From this result, it was suggested that the length of the lipid nanotube part can be controlled by changing the voltage application time. Furthermore, since the lipid nanotube part maintained its structure even after the voltage application was stopped, it was shown that the liposome and the lipid nanotube part were connected via fusion between lipid membranes.
  • Example 5 ⁇ Formation of lipid nanotube part using magnetic field>
  • the DSPE-biotin-introduced magnetic nanoparticle-containing liposome dispersion A-2 was prepared as follows.
  • a slide glass holding liposomes was prepared in the same manner as in Example 4 except that was used.
  • a magnetic field of 200 KA / m to 500 KA / m was applied to the prepared slide glass nanoparticle-containing liposomes holding the magnetic nanoparticle-containing liposomes using an electromagnet (manufactured by Gigateco, Inc., TMN electromagnet).
  • magnetic nanoparticles modified with a carboxylate group (Nanomag D COOH manufactured by Funakoshi Co., Ltd .; volume average particle size 130 nm) were added to a HEPES buffer to prepare a magnetic nanoparticle-containing solution B-1.
  • the obtained magnetic nanoparticle-containing liquid B-1 was added to the phospholipid thin film, and allowed to stand at 27 ° C. for 1 hour or longer to hydrate the thin film, whereby the magnetic nanoparticle-containing liposome dispersion A-2 (magnetic Nanoparticle-containing liposome concentration 1.0 mM) was obtained.
  • the magnetic nanoparticle-containing liposome dispersion A-2 magnetic Nanoparticle-containing liposome concentration 1.0 mM
  • Pictures (a) to (d) of FIG. 15 show the state 60 seconds after the start of application of the magnetic field. As shown in the parts surrounded by the broken lines in the photographs (a) to (d) in FIG. 15, the lipid nanotube part was formed by the application of the magnetic field as in the case of applying the electric field.
  • Example 6 ⁇ Formation of lipid nanotube part using inertial force>
  • the inertial force (centrifugal force) of 20 km / s 2 was applied to the nanoparticle-containing liposome of the slide glass holding the nanoparticle-containing liposome prepared in Example 4 using a centrifuge (GS-15R manufactured by Beckman). Applied.
  • FIG. 16 shows a state after 3 minutes from the start of application of inertial force (centrifugal force). As shown in a portion surrounded by a broken line in FIG. 16, a lipid nanotube portion was formed by applying an inertial force (centrifugal force) as in the case of applying an electric field.
  • Example 7 ⁇ Formation of lipid nanotube part using fluid force>
  • DSPE-biotin was introduced as described below, but it did not contain nanoparticles.
  • a slide glass holding liposomes was prepared in the same manner as in Example 4 except that the liposome dispersion A-3 was used.
  • the slide glass liposomes thus prepared (liposome not containing nanoparticles) were subjected to 4- (2-hydroxy) in a flow chamber having a length of 17 mm ⁇ width of 3.8 mm ⁇ height of 0.4 mm.
  • Ethyl) -1-piperazineethanesulfonic acid (“HEPES”) was allowed to flow at a rate of 300 ⁇ l / min to apply fluid force to the liposomes.
  • the liposome can be deformed by shear flow to extend a part of the lipid membrane, and the same lipid nanotube part as in the other examples Formed.
  • dextran labeled with rhodamine is encapsulated in giant liposomes that are fluorescently labeled with NBD (appearing green in the color photograph; white portions in the upper and lower parts in the monochrome photograph of FIG. 17).
  • NBD fluorescently labeled with NBD
  • an external field for example, an electric field, a magnetic field, or an inertial force
  • applying an external field for example, an electric field, a magnetic field, or an inertial force
  • applying a fluid force to the liposome As a result, a lipid structure having a lipid nanotube portion could be produced easily, efficiently and with good controllability.

Abstract

Disclosed is a method that is for producing a lipid structure and that includes: preparing a particle-encapsulating liposome containing a liposome and a particle encapsulated by the liposome: and forming a lipid tube section by elongating a portion of the lipid membrane of the liposome by means of the particle by causing the motion of the particle in the particle-encapsulating liposome by means of an external field. Further disclosed is a method that is for producing a lipid structure and that includes: preparing a liposome; and forming a lipid tube section by elongating a portion of the lipid membrane of the liposome by deforming the liposome by means of external fluid force.

Description

脂質構造体の製造方法Method for producing lipid structure
 本発明は、脂質構造体の製造方法に関する。 The present invention relates to a method for producing a lipid structure.
 脂質は、自己集合して安定な分子集合体を形成し、基礎生物学、医学、薬学、工学分野における基盤材料として用いられている。
 天然由来のリン脂質をはじめとする脂質から形成される脂質分子集合体として、リポソームが知られている。リポソームは、超音波照射法、静置水和法等により調製される。
 しかしながら、リポソームは球状であるため、その利用分野が制限される。
Lipids self-assemble to form stable molecular aggregates and are used as basic materials in basic biology, medicine, pharmacy and engineering.
Liposomes are known as lipid molecule aggregates formed from lipids including naturally derived phospholipids. Liposomes are prepared by an ultrasonic irradiation method, a stationary hydration method, or the like.
However, since liposomes are spherical, their fields of use are limited.
 一方、ナノチューブ状の脂質分子集合体である脂質ナノチューブについては、三次元人工細胞アレイ、バイオチップ、マイクロリアクター、ドラッグキャリアー、無機ナノ構造作製のためのテンプレート等への応用や、神経細胞、免疫細胞等の細胞間コミュニケーションのメカニズム解明に期待が持てることから、近年、盛んに検討が行われている。 On the other hand, for lipid nanotubes, which are aggregates of lipid molecules in the form of nanotubes, they can be applied to 3D artificial cell arrays, biochips, microreactors, drug carriers, templates for producing inorganic nanostructures, nerve cells, immune cells, etc. In recent years, studies have been actively conducted because of expectations for elucidating the mechanism of intercellular communication such as the above.
 そこで、リポソームからナノチューブ状の脂質分子集合体(脂質ナノチューブ)を作製する方法について、種々の検討が行われている。
 例えば、特定の構造を有する合成脂質を自己集合させて、脂質ナノチューブを作製する方法が知られている(例えば、Chemistry of Materials 2008, 20, 625及びNature Communications 2010, 1, 20参照)。
 また、マイクロピペット吸引技術を利用して、リポソームの脂質膜の一部をマイクロピペットにて吸引し該一部を物理的に引き伸ばして一本ずつ脂質ナノチューブ部を形成する方法が知られている(例えば、特表2004-509778号公報及びLangmuir 2001, 17, 6754参照)。
 また、リポソームに特定の生体分子を添加し、生体分子の動きを利用して脂質膜の一部を脂質ナノチューブ構造に成長させる技術(例えば、The EMBO Journal 2005, 24, 1537参照)や、リポソームにガングリオシド等の特定物質を添加して脂質膜の一部を脂質ナノチューブ構造に成長させる技術(例えば、FEBS Letters 2003, 534, 33及びPNAS 2010, 107, 7781参照)が知られている。
Thus, various studies have been conducted on methods for producing nanotube-like lipid molecular aggregates (lipid nanotubes) from liposomes.
For example, a method of producing a lipid nanotube by self-assembling a synthetic lipid having a specific structure is known (see, for example, Chemistry of Materials 2008, 20, 625 and Nature Communications 2010, 1, 20).
Further, a method is known in which a part of a lipid membrane of a liposome is sucked with a micropipette using a micropipette suction technique, and the part is physically stretched to form a lipid nanotube part one by one ( For example, see Japanese translations of PCT publication No. 2004-509778 and Langmuir 2001, 17, 6754).
In addition, a specific biomolecule is added to the liposome, and the movement of the biomolecule is used to grow part of the lipid membrane into a lipid nanotube structure (see, for example, The EMBO Journal 2005, 24, 1537). A technique for adding a specific substance such as ganglioside to grow a part of a lipid membrane into a lipid nanotube structure (see, for example, FEBS Letters 2003, 534, 33 and PNAS 2010, 107, 7781) is known.
 しかしながら、Chemistry of Materials 2008, 20, 625及びNature Communications 2010, 1, 20のそれぞれに記載の方法では、脂質ナノチューブの作製に用いる脂質の種類が限定される。
 また、特表2004-509778号公報及びLangmuir 2001, 17, 6754のそれぞれに記載の方法は、熟練が要求される複雑な方法であり、しかも、一本ずつ脂質ナノチューブ部を作製するため、作製効率に乏しい。
 また、The EMBO Journal 2005, 24, 1537、FEBS Letters 2003, 534, 33、及びPNAS 2010, 107, 7781のそれぞれに記載の方法では、脂質ナノチューブ構造作製の制御性に乏しい。
However, in the methods described in Chemistry of Materials 2008, 20, 625 and Nature Communications 2010, 1, 20, respectively, the types of lipids used for the production of lipid nanotubes are limited.
In addition, the methods described in JP-T-2004-509778 and Langmuir 2001, 17, 6754 are complex methods that require skill, and in addition, since the lipid nanotube parts are produced one by one, the production efficiency It is scarce.
The methods described in The EMBO Journal 2005, 24, 1537, FEBS Letters 2003, 534, 33, and PNAS 2010, 107, 7781 have poor controllability of lipid nanotube structure production.
 本発明は上記に鑑みなされたものであり、以下の目的を達成することを課題とする。
 即ち、本発明の目的は、脂質ナノチューブ部のような脂質チューブ部を有する脂質構造体を、簡易な方法で、効率及び制御性良く作製でき、用いる脂質の選択の幅が広い脂質構造体の製造方法を提供することである。
This invention is made | formed in view of the above, and makes it a subject to achieve the following objectives.
That is, an object of the present invention is to produce a lipid structure having a lipid tube part such as a lipid nanotube part by a simple method with high efficiency and controllability, and having a wide range of choice of lipid to be used. Is to provide a method.
 前記課題を達成するための具体的手段は以下の通りである。
<1> リポソームと、前記リポソームに内包された粒子と、を含む粒子内包リポソームを準備することと、
 前記粒子内包リポソーム中の粒子を外部場によって移動させることにより、前記粒子によって前記リポソームの脂質膜の一部を伸長させて脂質チューブ部を形成することと、
 を有し、
 前記リポソームの前記脂質膜の一部を伸長させて前記脂質チューブ部を形成するとき、前記リポソームは、前記外部場中での移動が制限されており、前記粒子が前記リポソームの脂質膜を押し出すように作用する脂質構造体の製造方法。
Specific means for achieving the above object are as follows.
<1> preparing a particle-encapsulating liposome comprising a liposome and particles encapsulated in the liposome;
By moving particles in the particle-encapsulating liposomes by an external field, by extending a part of the lipid membrane of the liposomes by the particles, and forming a lipid tube part;
Have
When the lipid tube part is formed by extending a part of the lipid membrane of the liposome, the liposome is restricted from moving in the external field, so that the particle pushes out the lipid membrane of the liposome. A method for producing a lipid structure that acts on the skin.
<2> 前記外部場が、電場、磁場、又は慣性力である<1>に記載の脂質構造体の製造方法。
<3> 前記リポソームの前記脂質膜の一部を伸長させて前記脂質チューブ部を形成するとき、前記リポソームは、基材上又はゲル中に保持されている<1>又は<2>に記載の脂質構造体の製造方法。
<2> The method for producing a lipid structure according to <1>, wherein the external field is an electric field, a magnetic field, or an inertial force.
<3> When the lipid tube part is formed by extending a part of the lipid membrane of the liposome, the liposome is held on a substrate or in a gel according to <1> or <2>. A method for producing a lipid structure.
<4> 前記粒子の体積平均粒子径が10nm~500nmである<1>~<3>のいずれか1項に記載の脂質構造体の製造方法。
<5> 前記粒子内包リポソームの体積平均粒子径が2μm~100μmである<1>~<4>のいずれか1項に記載の脂質構造体の製造方法。
<4> The method for producing a lipid structure according to any one of <1> to <3>, wherein the particles have a volume average particle diameter of 10 nm to 500 nm.
<5> The method for producing a lipid structure according to any one of <1> to <4>, wherein the particle-encapsulating liposome has a volume average particle diameter of 2 μm to 100 μm.
<6> 前記外部場が、2.0kV/m~10.0kV/mの強さの電場である<1>~<5>のいずれか1項に記載の脂質構造体の製造方法。
<7> 前記粒子がカルボキシレート基で修飾されたポリスチレンナノ粒子である<1>~<6>のいずれか1項に記載の脂質構造体の製造方法。
<8> リポソームを準備することと、
 前記リポソームを外部からの流体力によって変形させることにより、前記リポソームの脂質膜の一部を伸長させて脂質チューブ部を形成することと、
を有し、
 前記リポソームの前記脂質膜の一部を伸長させて前記脂質チューブ部を形成するとき、前記リポソームは、前記流体中での移動が制限されており、前記リポソームの脂質膜に対してせん断流が作用するようになされている脂質構造体の製造方法。
<9>
 前記リポソームの前記脂質膜の一部を伸長させて前記脂質チューブ部を形成するとき、前記リポソームは、基材上に保持されている<8>に記載の脂質構造体の製造方法。
<6> The method for producing a lipid structure according to any one of <1> to <5>, wherein the external field is an electric field having a strength of 2.0 kV / m to 10.0 kV / m.
<7> The method for producing a lipid structure according to any one of <1> to <6>, wherein the particles are polystyrene nanoparticles modified with a carboxylate group.
<8> preparing liposomes;
Forming a lipid tube part by extending a part of the lipid membrane of the liposome by deforming the liposome by an external fluid force; and
Have
When the lipid tube part is formed by extending a part of the lipid membrane of the liposome, the liposome is restricted from moving in the fluid, and a shear flow acts on the lipid membrane of the liposome. A method for producing a lipid structure that is adapted to:
<9>
The method for producing a lipid structure according to <8>, wherein when the lipid tube part is formed by extending a part of the lipid membrane of the liposome, the liposome is held on a base material.
 本発明によれば、脂質チューブ部を有する脂質構造体を、簡易な方法で、効率及び制御性よく作製でき、しかも用いる脂質の選択の幅が広い脂質構造体の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the lipid structure which has a lipid tube part can be produced with sufficient efficiency and controllability by a simple method, and the manufacturing method of a lipid structure with a wide selection range of the lipid to be used can be provided. .
本発明に用いられるナノ粒子内包リポソームの一例を模式的に示す模式断面図である。It is a schematic cross section which shows typically an example of the nanoparticle inclusion | inner_cover liposome used for this invention. 本発明における脂質チューブ部形成工程の一例を模式的に示す模式断面図である。It is a schematic cross section which shows typically an example of the lipid tube part formation process in this invention. 本発明の第1の実施形態の1例を模式的に示す概略斜視図である。It is a schematic perspective view which shows typically an example of the 1st Embodiment of this invention. 本発明の第2の実施形態の1例を模式的に示す概略斜視図である。It is a schematic perspective view which shows typically an example of the 2nd Embodiment of this invention. 本発明の第3の実施形態の1例を模式的に示す概略斜視図である。It is a schematic perspective view which shows typically an example of the 3rd Embodiment of this invention. 本発明の第4の実施形態の1例を模式的に示す概略斜視図である。It is a schematic perspective view which shows typically an example of the 4th Embodiment of this invention. ガラス基板上にリンカーを介して保持されたナノ粒子内包リポソームの一例を示す概念図である。It is a conceptual diagram which shows an example of the nanoparticle inclusion | inner_cover liposome hold | maintained through the linker on the glass substrate. 本発明の第5の実施形態の1例を模式的に示す概略斜視図である。It is a schematic perspective view which shows typically an example of the 5th Embodiment of this invention. 本発明の第5の実施形態におけるリポソームの保持力と脂質ナノチューブ部の形成本数との関係を示すグラフである。It is a graph which shows the relationship between the retention strength of the liposome in 5th Embodiment of this invention, and the number of formation of a lipid nanotube part. 本実施例1(電場による脂質ナノチューブ部の形成1)の結果を示す蛍光顕微鏡写真である。It is a fluorescence micrograph which shows the result of this Example 1 (formation 1 of a lipid nanotube part by an electric field). 本実施例1(電場による脂質ナノチューブ部の形成1)の結果を示す光学顕微鏡写真である。It is an optical microscope photograph which shows the result of this Example 1 (formation 1 of the lipid nanotube part by an electric field). 本実施例2(電場による脂質ナノチューブ部の形成2)の結果を示す蛍光顕微鏡写真である。It is a fluorescence micrograph which shows the result of this Example 2 (formation 2 of a lipid nanotube part by an electric field). 本実施例3(電場による脂質ナノチューブ部の形成3)の結果を示す蛍光顕微鏡写真である。It is a fluorescence micrograph which shows the result of this Example 3 (formation 3 of the lipid nanotube part by an electric field). 本実施例4(電場による脂質ナノチューブ部の形成4)の結果を示す蛍光顕微鏡写真である。It is a fluorescence micrograph which shows the result of this Example 4 (formation 4 of the lipid nanotube part by an electric field). 本実施例5(磁場による脂質ナノチューブ部の形成)の結果を示す蛍光顕微鏡写真である。It is a fluorescence micrograph which shows the result of this Example 5 (formation of the lipid nanotube part by a magnetic field). 本実施例6(慣性力による脂質ナノチューブ部の形成)の結果を示す蛍光顕微鏡写真である。It is a fluorescence micrograph which shows the result of this Example 6 (formation of the lipid nanotube part by an inertia force). 本実施例7(流体力による脂質ナノチューブ部の形成)の結果を示す蛍光顕微鏡写真である。It is a fluorescence micrograph which shows the result of this Example 7 (formation of the lipid nanotube part by fluid force).
 以下、本発明について具体的に説明する。
 本発明の脂質構造体の製造方法は、リポソームと前記リポソームに内包された粒子とを含む粒子内包リポソームを準備すること(以下、「準備工程」ともいう)と、前記粒子内包リポソーム中の粒子を外部場によって移動させることにより、前記粒子によって前記リポソームの脂質膜の一部を伸長させて脂質チューブ部を形成すること(以下、「脂質チューブ部形成工程」ともいう)と、を有し、前記脂質チューブ部形成工程において、前記リポソームは、前記外部場中での移動が制限されており、前記粒子が前記リポソームの脂質膜を押し出すように作用する。
 また、本発明の脂質構造体の他の製造方法は、リポソームを準備すること(以下、「リポソームを準備する工程」ともいう)と、前記リポソームを外部からの流体力によって変形させることにより、前記リポソームの脂質膜の一部を伸長させて脂質チューブ部を形成すること(以下、「脂質チューブ部形成工程」ともいう)と、を有し、前記脂質チューブ部形成工程において、前記リポソームは、前記流体中での移動が制限されており、前記リポソームの脂質膜に対してせん断流が作用するようになされている。
 本発明において、「脂質チューブ」には、両端が開口されている脂質チューブのみならず、少なくとも一端が閉塞されている脂質チューブも含まれるものとする。脂質チューブの両端もしくは一端にリポソームが担持されていてもよい。
Hereinafter, the present invention will be specifically described.
The method for producing a lipid structure of the present invention comprises preparing a particle-encapsulated liposome containing a liposome and particles encapsulated in the liposome (hereinafter also referred to as “preparation step”), and particles in the particle-encapsulated liposome. Forming a lipid tube part by extending a part of the lipid membrane of the liposome by the particles by moving by an external field (hereinafter also referred to as “lipid tube part forming step”), In the lipid tube part forming step, the liposome is restricted from moving in the external field, and acts to push the lipid membrane of the liposome.
Another method for producing the lipid structure of the present invention is to prepare liposomes (hereinafter also referred to as “preparing a liposome”), and deforming the liposomes by external fluid force, Extending a part of the lipid membrane of the liposome to form a lipid tube part (hereinafter also referred to as a “lipid tube part forming step”). In the lipid tube part forming step, the liposome comprises the Movement in the fluid is restricted, and a shear flow acts on the lipid membrane of the liposome.
In the present invention, the “lipid tube” includes not only a lipid tube having both ends opened, but also a lipid tube having at least one end closed. Liposomes may be supported on both ends or one end of the lipid tube.
 以下、本発明の製造方法の一例について、図1及び図2を参照しながら説明する。
 なお、以下の図面等において、ナノ粒子は粒子の好適な一例であり、ナノ粒子内包リポソームは粒子内包リポソームの好適な一例であり、脂質ナノチューブ部は脂質チューブ部の好適な一例である。また、同一の部材については同一の符号を付して説明を省略することがある。
Hereinafter, an example of the manufacturing method of the present invention will be described with reference to FIGS.
In the following drawings and the like, nanoparticles are a preferred example of particles, nanoparticle-encapsulated liposomes are preferred examples of particle-encapsulated liposomes, and lipid nanotube portions are preferred examples of lipid tube portions. In addition, the same members may be denoted by the same reference numerals and description thereof may be omitted.
 図1は、本発明の準備工程で準備するナノ粒子内包リポソームの一例を模式的に示す模式断面図である。
 図1に示すように、ナノ粒子内包リポソーム10は、カプセル状の脂質膜14を備えたリポソームと、該リポソームに内包されたナノ粒子12と、を含む。
 脂質膜14はリン脂質の2分子膜である。
 カプセル状の脂質膜14の内部は、内水相(水や緩衝液等の水系媒体)で満たされている。
 ナノ粒子内包リポソーム10からナノ粒子12を除いたリポソームの構成は、公知のリポソームの構成と同様である。
FIG. 1 is a schematic cross-sectional view schematically showing an example of a nanoparticle-encapsulating liposome prepared in the preparation step of the present invention.
As shown in FIG. 1, the nanoparticle-encapsulating liposome 10 includes a liposome having a capsule-like lipid membrane 14 and nanoparticles 12 encapsulated in the liposome.
The lipid membrane 14 is a phospholipid bimolecular membrane.
The inside of the capsule-like lipid membrane 14 is filled with an inner aqueous phase (an aqueous medium such as water or a buffer solution).
The structure of the liposome excluding the nanoparticles 12 from the nanoparticle-encapsulating liposome 10 is the same as the structure of a known liposome.
 本発明に用いられる粒子内包リポソーム(例えば、ナノ粒子内包リポソーム10)を製造する方法としては、例えば、以下に示す方法を用いることができる。
 即ち、リン脂質を有機溶媒に溶解させた溶液を準備し、該溶液から有機溶媒を蒸発させてリン脂質膜を作製する。作製されたリン脂質膜と、ナノ粒子及び水を含む液と、を接触させることにより、リン脂質の自己組織化により、リポソームにナノ粒子が取り込まれた構造のナノ粒子内包リポソームを得ることができる。
 本発明における準備工程は、予め製造しておいたナノ粒子内包リポソームを準備する工程であってもよいし、ナノ粒子内包リポソームを製造する工程であってもよい。なお、粒子(例えばナノ粒子)を内包していないリポソームを用いる場合には、リポソームを準備する工程が行われる。
As a method for producing the particle-encapsulated liposome (for example, nanoparticle-encapsulated liposome 10) used in the present invention, for example, the following method can be used.
That is, a solution in which phospholipid is dissolved in an organic solvent is prepared, and the organic solvent is evaporated from the solution to produce a phospholipid membrane. By bringing the prepared phospholipid membrane into contact with a liquid containing nanoparticles and water, a nanoparticle-encapsulating liposome having a structure in which the nanoparticles are incorporated into the liposome can be obtained by self-organization of the phospholipid. .
The preparation step in the present invention may be a step of preparing a nanoparticle-encapsulating liposome prepared in advance, or a step of manufacturing a nanoparticle-encapsulating liposome. In addition, when using the liposome which does not include particle | grains (for example, nanoparticle), the process of preparing a liposome is performed.
 図2は、本発明における脂質チューブ部形成工程の一例として、脂質ナノチューブ部形成工程を模式的に示す模式断面図である。
 図2に示すように、上記ナノ粒子内包リポソーム10(図1)を外部場Fに配置すると、該外部場Fによってナノ粒子内包リポソーム10内のナノ粒子12が前記リポソーム内から前記リポソーム外に向かう方向に移動する。
 すると、図2中の実線の矢印で示すように、ナノ粒子12によって脂質膜14の一部が押し出されて脂質ナノチューブ部20が形成される。これにより、脂質ナノチューブ部20を有する脂質構造体10Aが得られる。図2では、脂質ナノチューブ部が形成された後の脂質膜(図1中の脂質膜14)を、脂質膜14Aとした。
 なお、粒子(例えばナノ粒子12)を移動させる外部場Fは、例えば、電場、磁場、又は慣性力であるが、外部場Fを流体力とした場合には、粒子(例えばナノ粒子12)を内包していないリポソームであっても流体力によってリポソームの脂質膜の一部が伸長し、図2と同様の脂質チューブ部(例えば脂質ナノチューブ部20)を有する脂質構造体(例えば脂質構造体10A)が得られる。
FIG. 2 is a schematic cross-sectional view schematically showing a lipid nanotube part forming step as an example of the lipid tube part forming step in the present invention.
As shown in FIG. 2, when the nanoparticle-encapsulating liposome 10 (FIG. 1) is arranged in the external field F, the nanoparticles 12 in the nanoparticle-encapsulating liposome 10 are directed from the inside of the liposome to the outside of the liposome by the external field F. Move in the direction.
Then, as indicated by the solid line arrow in FIG. 2, a part of the lipid membrane 14 is pushed out by the nanoparticles 12 to form the lipid nanotube portion 20. Thereby, 10 A of lipid structures which have the lipid nanotube part 20 are obtained. In FIG. 2, the lipid membrane (lipid membrane 14 in FIG. 1) after the formation of the lipid nanotube portion is defined as a lipid membrane 14A.
The external field F that moves the particles (for example, the nanoparticles 12) is, for example, an electric field, a magnetic field, or an inertial force. However, when the external field F is a fluid force, the particles (for example, the nanoparticles 12) are moved. A lipid structure (eg, lipid structure 10A) having a lipid tube portion (eg, lipid nanotube portion 20) similar to that shown in FIG. Is obtained.
 本発明では、脂質構造体(例えば脂質構造体10A)のうち、脂質チューブ部(例えば脂質ナノチューブ部20)以外の部分をリポソーム部ということがある。
 即ち、本発明における脂質構造体は、脂質チューブ部とリポソーム部とを含む構造を有している。ここで、脂質チューブ部の内部とリポソーム部の内部とは連通されており、これらの内部は内水相で満たされている。
In the present invention, a part other than the lipid tube part (for example, the lipid nanotube part 20) in the lipid structure (for example, the lipid structure 10A) may be referred to as a liposome part.
That is, the lipid structure in the present invention has a structure including a lipid tube part and a liposome part. Here, the inside of a lipid tube part and the inside of a liposome part are connected, and these insides are satisfy | filled with the inner water phase.
 図2に示すように、本発明の製造方法は、外部場による粒子(例えばナノ粒子)の移動、粒子(例えばナノ粒子)の移動による脂質膜の押し出し、及び脂質膜の伸縮性を利用して、脂質膜の一部を押し出して脂質チューブ部(例えば脂質ナノチューブ部)を形成する方法である。また、外部からの流体力によって脂質膜の一部を伸長させて脂質チューブ部(例えば脂質ナノチューブ部)を形成する方法である。
 本発明の製造方法は、リポソームの一部をマイクロピペットにて吸引し物理的に引き延ばして一本ずつ脂質ナノチューブ部を形成する従来の方法と比較して、簡易であり、かつ、効率の良い(生産性に優れた)製造方法である。
As shown in FIG. 2, the production method of the present invention utilizes the movement of particles (for example, nanoparticles) by an external field, the extrusion of lipid membranes by the movement of particles (for example, nanoparticles), and the elasticity of the lipid membrane. In this method, a part of the lipid membrane is extruded to form a lipid tube part (for example, a lipid nanotube part). Further, it is a method of forming a lipid tube part (for example, a lipid nanotube part) by extending a part of the lipid membrane by an external fluid force.
The production method of the present invention is simpler and more efficient than a conventional method in which a part of liposome is sucked with a micropipette and physically stretched to form lipid nanotube parts one by one ( This is a manufacturing method with excellent productivity.
 また、本製造方法では、外部場の強さや外部場を与える時間などを制御することにより、脂質チューブ部(例えば脂質ナノチューブ部)のサイズ(長さ)を容易に制御できる。
 更に、本製造方法では、Chemistry of Materials 2008, 20, 625やNature Communications 2010, 1, 20に記載された方法とは異なり、用いる脂質の種類が限定されることもなく、脂質の選択の幅が広い。また、上記文献に記載された、特定の脂質を用いて作製された脂質ナノチューブ部では、脂質ナノチューブとして要求される柔軟性が損なわれる場合があるが、本製造方法では、上記文献に記載された方法と比較して、柔軟性が損なわれにくい。
Moreover, in this manufacturing method, the size (length) of the lipid tube part (for example, lipid nanotube part) can be easily controlled by controlling the strength of the external field, the time for applying the external field, and the like.
Furthermore, in this production method, unlike the methods described in Chemistry of Materials 2008, 20, 625 and Nature Communications 2010, 1, 20, the type of lipid used is not limited, and the range of lipid selection is wide. wide. Moreover, in the lipid nanotube part produced using the specific lipid described in the above document, the flexibility required as the lipid nanotube may be impaired. Compared with the method, flexibility is not easily lost.
 更に、本発明の製造方法により製造された脂質構造体をゲル(アガロースゲル等)中に含ませ、得られた脂質構造体含有ゲルを凍結させ、凍結された脂質構造体含有ゲルから、脂質チューブ部(例えば脂質ナノチューブ部)を含む部分を切り出すことにより、容易に脂質チューブ(例えば脂質ナノチューブ)を得ることができる。
 また、本発明の製造方法により、粒子内包リポソーム(例えばナノ粒子内包リポソーム)の脂質膜の一部を、別のリポソームに到達するまで押し出すことにより、2つのリポソームが脂質チューブ(例えば脂質ナノチューブ)で結合され、該2つのリポソームの内部が連通された構造の脂質構造体を作製することもできる。
 さらには、2つ以上のリポソームが、脂質チューブ(例えば脂質ナノチューブ)によって三次元ネットワーク状に結合された構造の脂質構造体を作製することもできる。
 このようにして作製された三次元ネットワーク状の脂質構造体は、三次元人工細胞アレイやバイオチップとして利用することができる。
Furthermore, the lipid structure produced by the production method of the present invention is contained in a gel (eg, agarose gel), the obtained lipid structure-containing gel is frozen, and the lipid structure-containing gel is frozen to a lipid tube. A lipid tube (for example, a lipid nanotube) can be easily obtained by cutting out a portion including a portion (for example, a lipid nanotube portion).
In addition, by the production method of the present invention, a part of the lipid membrane of the particle-encapsulated liposome (for example, nanoparticle-encapsulated liposome) is extruded until it reaches another liposome, so that the two liposomes are lipid tubes (for example, lipid nanotubes). A lipid structure having a structure in which the insides of the two liposomes are connected to each other can also be produced.
Furthermore, a lipid structure having a structure in which two or more liposomes are bound in a three-dimensional network by lipid tubes (for example, lipid nanotubes) can be prepared.
The three-dimensional network lipid structure produced in this way can be used as a three-dimensional artificial cell array or a biochip.
 なお、図1及び図2では、模式的に、ナノ粒子内包リポソーム10及び脂質構造体10Aが5個のナノ粒子12を内包し、このうちの1個のナノ粒子が移動する例を示しているが、本発明においては粒子内包リポソーム(例えばナノ粒子内包リポソーム)に内包される粒子(例えばナノ粒子)の個数及び移動する粒子(例えばナノ粒子)の個数には特に限定はない。粒子内包リポソーム(例えばナノ粒子内包リポソーム)に複数の粒子(例えばナノ粒子)が含まれている場合には、該複数の粒子(例えばナノ粒子)のうちの少なくとも一部が移動すればよい。
 また、図1及び図2では、一部のナノ粒子のみに符号「12」を付している。
1 and 2 schematically show an example in which the nanoparticle-encapsulating liposome 10 and the lipid structure 10A encapsulate five nanoparticles 12, and one of these nanoparticles moves. However, in the present invention, the number of particles (for example, nanoparticles) encapsulated in particle-encapsulated liposomes (for example, nanoparticle-encapsulated liposomes) and the number of moving particles (for example, nanoparticles) are not particularly limited. When a plurality of particles (for example, nanoparticles) are included in the particle-encapsulated liposome (for example, nanoparticle-encapsulated liposome), at least a part of the plurality of particles (for example, nanoparticles) may be moved.
Moreover, in FIG.1 and FIG.2, the code | symbol "12" is attached | subjected only to some nanoparticles.
 また、本発明において、粒子(例えばナノ粒子)の移動による脂質チューブ部(例えば脂質ナノチューブ部)の形成の観点、および、流体力による脂質チューブ部(例えば脂質ナノチューブ部)の形成性(脂質膜の伸長性)の観点から、前記脂質チューブ部(例えば脂質ナノチューブ部)形成工程において、前記リポソームは、前記外部場中での移動が制限されている。
 これにより、リポソームの移動が制限された状態で、粒子内包リポソーム(例えばナノ粒子内包リポソーム)の内部の粒子(例えばナノ粒子)が移動したり、脂質膜の一部が伸長したりするので、脂質チューブ部(例えば脂質ナノチューブ部)を形成することができる。
 前記粒子内包リポソーム(例えばナノ粒子内包リポソーム)の移動が制限されている具体的な形態としては、前記粒子内包リポソーム(例えばナノ粒子内包リポソーム)が、基材上又はゲル中に保持されている形態が挙げられる。これらのより具体的な形態については、第1~第4の実施形態として後述する。一方、粒子(例えばナノ粒子)を内包していないリポソームの移動が制限されている具体的な形態としては、リポソームが、基材上に保持されている形態が挙げられる。このより具体的な形態については、第5の実施形態として後述する。
Further, in the present invention, from the viewpoint of formation of a lipid tube part (for example, a lipid nanotube part) by movement of particles (for example, nanoparticles), and formation of a lipid tube part (for example, a lipid nanotube part) by fluid force (for a lipid membrane) From the viewpoint of extensibility), in the lipid tube portion (for example, lipid nanotube portion) forming step, the liposome is restricted from moving in the external field.
As a result, in a state where movement of the liposome is restricted, particles (for example, nanoparticles) inside the particle-encapsulated liposome (for example, nanoparticle-encapsulated liposome) move or a part of the lipid membrane is elongated, so that the lipid A tube part (for example, a lipid nanotube part) can be formed.
As a specific form in which the movement of the particle-encapsulated liposome (for example, the nanoparticle-encapsulated liposome) is limited, the particle-encapsulated liposome (for example, the nanoparticle-encapsulated liposome) is retained on a substrate or in a gel. Is mentioned. These more specific forms will be described later as first to fourth embodiments. On the other hand, a specific form in which the movement of liposomes not encapsulating particles (for example, nanoparticles) is restricted includes a form in which liposomes are held on a substrate. This more specific form will be described later as a fifth embodiment.
<リポソーム>
 本発明におけるリポソーム(即ち、本発明における粒子内包リポソーム(例えばナノ粒子内包リポソーム)のうち粒子(例えばナノ粒子)を除いた部分)の構成には特に限定はなく、公知のリポソームを用いることができる。
 例えば、リン脂質の2分子膜を主体として用いたカプセル状の脂質膜と、該カプセル状の脂質膜内に存在する内水相と、を有する公知のリポソームを特に制限無く用いることができる。
 本発明におけるリポソームは、図1及び図2に示したような一枚膜のリポソームであってもよいし、多重層リポソームであってもよい。
 リポソームの体積平均粒子径としては、脂質ナノチューブ部の形成性の観点からは、2μm~100μmが好ましく、2μm~50μmがより好ましく、5μm~20μmが特に好ましい。
<Liposome>
The structure of the liposome in the present invention (that is, the portion excluding the particles (for example, nanoparticles) in the particle-encapsulated liposomes (for example, nanoparticle-encapsulated liposomes) in the present invention) is not particularly limited, and known liposomes can be used. .
For example, known liposomes having a capsule-like lipid membrane mainly composed of a phospholipid bilayer membrane and an inner aqueous phase present in the capsule-like lipid membrane can be used without particular limitation.
The liposome in the present invention may be a monolayer liposome as shown in FIGS. 1 and 2, or a multilamellar liposome.
The volume average particle diameter of the liposome is preferably 2 μm to 100 μm, more preferably 2 μm to 50 μm, and particularly preferably 5 μm to 20 μm from the viewpoint of the formation of the lipid nanotube portion.
 前記リン脂質としては特に限定はなく、グリセロリン脂質であってもスフィンゴリン脂質であってもよい。
 前記リン脂質の具体例としては、レシチン(ホスファチジルコリン)、セファリン(ホスファチジルエタノールアミン)、ホスファチジルセリン、スフィンゴミエリン等が挙げられる。
 また、リン脂質には、ビオチン、ローダミン等の、1以上のその他の物質が結合されていてもよい。
The phospholipid is not particularly limited, and may be glycerophospholipid or sphingophospholipid.
Specific examples of the phospholipid include lecithin (phosphatidylcholine), cephalin (phosphatidylethanolamine), phosphatidylserine, sphingomyelin and the like.
In addition, one or more other substances such as biotin and rhodamine may be bound to the phospholipid.
 本発明におけるリポソームの内水相及び外水相については、水や各種緩衝液(4-(2-ヒドロキシエチル)-1-ピペラジンエタンスルホン酸(「HEPES」)、トリスヒドロキシメチルアミノメタン(「TRIS」)、ホウ酸、リン酸等の緩衝水溶液)等の水系媒体を特に制限なく用いることができる。 In the present invention, the internal aqueous phase and the external aqueous phase of the liposome are water, various buffer solutions (4- (2-hydroxyethyl) -1-piperazineethanesulfonic acid (“HEPES”), trishydroxymethylaminomethane (“TRIS”). An aqueous medium such as “), a buffered aqueous solution of boric acid, phosphoric acid, etc.” can be used without particular limitation.
<外部場>
 本発明において「外部場」は、粒子(ナノ粒子)を移動させることができる場であれば特に限定はないが、例えば、電場、磁場、又は慣性力であることが好ましい。
 また、粒子(例えばナノ粒子)を移動させるのではなく、リポソームの脂質膜の一部を伸長させる場合には、流体力が用いられる。
<External field>
In the present invention, the “external field” is not particularly limited as long as it can move particles (nanoparticles), but is preferably an electric field, a magnetic field, or an inertial force, for example.
In addition, when a part of the lipid membrane of the liposome is elongated instead of moving the particles (for example, nanoparticles), fluid force is used.
 前記電場の強さは、脂質ナノチューブ部の形成性の観点から、2.0kV/m~10.0kV/mが好ましく、4.0kV/m~7.0kV/mがより好ましい。
 即ち、前記電場の強さが2.0kV/m以上である場合、ナノ粒子の移動による脂質膜の押し出し性をより向上させることができる。
 また、前記電場の強さが10.0kV/m以下である場合、温度上昇をより抑制できることに加え、ナノ粒子が脂質膜を突き破る現象(即ち、脂質ナノチューブ部の形成性が損なわれる現象)をより抑制できる。
The strength of the electric field is preferably 2.0 kV / m to 10.0 kV / m, more preferably 4.0 kV / m to 7.0 kV / m, from the viewpoint of the formation of the lipid nanotube portion.
That is, when the intensity of the electric field is 2.0 kV / m or more, the pushability of the lipid membrane by the movement of the nanoparticles can be further improved.
In addition, when the electric field strength is 10.0 kV / m or less, in addition to being able to further suppress the temperature rise, the phenomenon that the nanoparticles break through the lipid membrane (that is, the phenomenon in which the formation of the lipid nanotube portion is impaired). It can be suppressed more.
 前記磁場の強さは、脂質ナノチューブ部の形成性の観点から、100KA/m~1000KA/mが好ましく、200KA/m~500KA/mがより好ましい。
 即ち、前記磁場の強さが100KA/m以上であることにより、ナノ粒子の移動による脂質膜の押し出し性をより向上させることができる。
 また、前記電場の強さが1000KA/m以下であることにより、ナノ粒子が脂質膜を突き破る現象(即ち、脂質ナノチューブ部の形成性が損なわれる現象)をより抑制できる。
The strength of the magnetic field is preferably from 100 KA / m to 1000 KA / m, more preferably from 200 KA / m to 500 KA / m, from the viewpoint of the formability of the lipid nanotube portion.
That is, when the strength of the magnetic field is 100 KA / m or more, the pushability of the lipid membrane due to the movement of the nanoparticles can be further improved.
Moreover, when the electric field strength is 1000 KA / m or less, the phenomenon that nanoparticles break through the lipid membrane (that is, the phenomenon in which the formation of the lipid nanotube portion is impaired) can be further suppressed.
 前記慣性力は、例えば、遠心力によって得ることができる。
 前記慣性力の強さは、脂質ナノチューブ部の形成性の観点から、10km/s~100km/sが好ましく、30km/s~100km/sがより好ましい。
 即ち、前記慣性力の強さが10km/s以上であることにより、ナノ粒子の移動による脂質膜の押し出し性をより向上させることができる。
 また、前記慣性力の強さが100km/s以下であることにより、ナノ粒子が脂質膜を突き破る現象(即ち、脂質ナノチューブ部の形成性が損なわれる現象)をより抑制できる。
The inertia force can be obtained by, for example, centrifugal force.
Strength of the inertial force, from the viewpoint of formation of the lipid nanotube portion, preferably 10km / s 2 ~ 100km / s 2, and more preferably 30km / s 2 ~ 100km / s 2.
That is, when the strength of the inertial force is 10 km / s 2 or more, the pushability of the lipid membrane due to the movement of the nanoparticles can be further improved.
Moreover, when the intensity of the inertial force is 100 km / s 2 or less, a phenomenon that nanoparticles break through the lipid membrane (that is, a phenomenon in which the formation of the lipid nanotube portion is impaired) can be further suppressed.
 前記流体力は、例えば、シリンジポンプ等により、リポソームの外水相として上述した水や各種緩衝液等の水系媒体または気体等を流通させることによって得ることができる。
 前記流体力の強さは、脂質ナノチューブ部の形成性の観点から、流体中でのリポソームの移動を制限できる(基材上にリポソームを保持できる)範囲内で速い流速とすることが好ましい。
 即ち、最大限に流速を速くすることにより、流体力による脂質膜の伸長性をより向上させることができる。
The fluid force can be obtained, for example, by circulating an aqueous medium or gas such as the above-described water or various buffer solutions as an external aqueous phase of the liposome using a syringe pump or the like.
The strength of the fluid force is preferably a high flow rate within a range in which the movement of the liposome in the fluid can be restricted (the liposome can be retained on the base material) from the viewpoint of the formation of the lipid nanotube portion.
That is, by making the flow rate as fast as possible, the extensibility of the lipid membrane by fluid force can be further improved.
<粒子>
 本発明において粒子は、例えば体積平均粒子径5μm以下の粒子を指す。
 粒子の体積平均粒子径としては、脂質ナノチューブ部の形成性の観点からは、例えば10nm~500nmであり、好ましくは10nm~300nmであり、より好ましくは10nm~90nmであり、特に好ましくは20nm~80nmである。
 前記粒子としては、有機粒子(樹脂粒子等)でも無機粒子(金属粒子、金属酸化物粒子、半導体粒子等)でもよい。
 また、前記粒子は、後述のアニオン性基やカチオン性基によって表面修飾されていてもよい。
<Particle>
In the present invention, the particles refer to particles having a volume average particle diameter of 5 μm or less, for example.
The volume average particle diameter of the particles is, for example, from 10 nm to 500 nm, preferably from 10 nm to 300 nm, more preferably from 10 nm to 90 nm, and particularly preferably from 20 nm to 80 nm, from the viewpoint of the formability of the lipid nanotube portion. It is.
The particles may be organic particles (resin particles, etc.) or inorganic particles (metal particles, metal oxide particles, semiconductor particles, etc.).
The particles may be surface-modified with an anionic group or a cationic group described later.
 前記無機粒子としては、シリカナノ粒子、アルミナナノ粒子、磁気ナノ粒子(酸化鉄ナノ粒子等)が好ましい。 As the inorganic particles, silica nanoparticles, alumina nanoparticles, and magnetic nanoparticles (iron oxide nanoparticles, etc.) are preferable.
 前記樹脂粒子としては、ポリスチレンナノ粒子、SBR(スチレン・ブタジエンゴム)ナノ粒子、ヒドロゲルナノ粒子が好ましい。
 前記樹脂粒子は、懸濁液の形態で用いることが好適である。
The resin particles are preferably polystyrene nanoparticles, SBR (styrene-butadiene rubber) nanoparticles, and hydrogel nanoparticles.
The resin particles are preferably used in the form of a suspension.
 前記外部場として電場を用いる場合、前記粒子は電荷を有することが好ましい。
 前記電荷は、正電荷であっても負電荷であってもよい。
 電荷を有する粒子の具体的な形態としては、アニオン性基(又はカチオン性基)で修飾された形態や、帯電性を有する粒子を正又は負に帯電させた形態が挙げられる
When an electric field is used as the external field, the particles preferably have a charge.
The charge may be a positive charge or a negative charge.
Specific forms of the charged particles include a form modified with an anionic group (or cationic group) and a form in which charged particles are charged positively or negatively.
 アニオン性基(又はカチオン性基)を有する樹脂粒子としては、例えば、(1)アニオン性基(又はカチオン性基)を有するモノマーを、単独重合させて、又は、他のモノマーとともに共重合させて得られた樹脂ナノ粒子や、(2)アニオン性基(又はカチオン性基)を有しない樹脂ナノ粒子に対し、アニオン性基(又はカチオン性基)を有するモノマーを付加重合させて得られた樹脂ナノ粒子、(3)アニオン性基(又はカチオン性基)を有しないナノ粒子をアニオン性基(又はカチオン性基)を有する高分子化合物で表面修飾して得られたナノ粒子、などが挙げられる。 As the resin particles having an anionic group (or cationic group), for example, (1) a monomer having an anionic group (or cationic group) is homopolymerized or copolymerized with other monomers. Resin obtained by addition polymerization of a monomer having an anionic group (or cationic group) to the obtained resin nanoparticle or (2) a resin nanoparticle having no anionic group (or cationic group) Nanoparticles, (3) nanoparticles obtained by surface-modifying nanoparticles not having an anionic group (or cationic group) with a polymer compound having an anionic group (or cationic group), and the like. .
 前記アニオン性基としては、カルボキシレート基(-COO基)、スルホネート基(-SO 基)、ホスフェート基(-PO 2-基)、シラノール基などが挙げられる。
 前記カチオン性基としては、無置換のアンモニウム基、アルキル基(好ましくは炭素数1~6のアルキル基)で置換されたアンモニウム基、グアニジニウム基)などが挙げられる。
Examples of the anionic group, carboxylate group (-COO - group), a sulfonate group (-SO 3 - group), a phosphate group (-PO 4 2-group), such as silanol groups.
Examples of the cationic group include an unsubstituted ammonium group, an ammonium group substituted with an alkyl group (preferably an alkyl group having 1 to 6 carbon atoms), and a guanidinium group.
 アニオン性基を有する粒子の具体例としては、カルボキシレート基(COO基)で修飾されたポリスチレンナノ粒子、シラノール基を有するシリカナノ粒子が挙げられる。
 中でも、入手容易性などの観点からは、カルボキシレート基で修飾されたポリスチレンナノ粒子が好ましい。
Specific examples of the particles having an anionic group, carboxylate group (COO - groups) at modified polystyrene nanoparticles include silica nanoparticles having a silanol group.
Among them, polystyrene nanoparticles modified with a carboxylate group are preferable from the viewpoint of availability.
 カチオン性基を有する粒子の具体例としては、アンモニウム基で修飾されたポリスチレンナノ粒子などが挙げられる。 Specific examples of the particles having a cationic group include polystyrene nanoparticles modified with an ammonium group.
 電荷を有する粒子としては、電場による脂質ナノチューブ部の形成性の観点から、pH7.4におけるゼータ電位が、アニオン性基を有する粒子の場合には-60mV~-5mV(より好ましくは-50mV~-10mV)、カチオン性基を有する粒子の場合には+60mV~+5mV(より好ましくは+50mV~+10mV)であることが好ましい。 The charged particles have a zeta potential at pH 7.4 of −60 mV to −5 mV (more preferably −50 mV to −−) in the case of particles having an anionic group from the viewpoint of the formation of the lipid nanotube portion by an electric field. In the case of particles having a cationic group, it is preferably +60 mV to +5 mV (more preferably +50 mV to +10 mV).
 また、電荷を有する粒子としては、市販品を用いることもできる。
 電荷を有する粒子の市販品としては、ポリサイエンス社製粒子、Thermo Fisher社製粒子、Micromod 社製粒子などが挙げられる。
Moreover, a commercial item can also be used as particle | grains which have an electric charge.
Examples of commercially available particles having a charge include particles made by Polysciences, particles made by Thermo Fisher, and particles made by Micromod.
 前記外部場として磁場を用いる場合、前記粒子は磁性(磁気)を有することが好ましい。
 粒子に磁性(磁気)を持たせる方法としては、酸化鉄を含む粒子(例えば酸化鉄粒子)を用いることなどが挙げられる。
When a magnetic field is used as the external field, the particles preferably have magnetism (magnetism).
Examples of a method for imparting magnetism (magnetism) to particles include using particles containing iron oxide (for example, iron oxide particles).
 また、磁性(磁気)を有する粒子としては、市販品を用いることもできる。
 磁性(磁気)を有する粒子の市販品としては、Merck社製粒子、Micromod 社製粒子などが挙げられる。
Moreover, as a particle | grains which have magnetism (magnetism), a commercial item can also be used.
Examples of commercially available particles having magnetism (magnetism) include Merck particles and Micromod particles.
<脂質チューブ部>
 本発明における脂質チューブ部は、前記脂質膜の一部がチューブ状に変形して得られた部位である。
 脂質チューブ部の内径は、前記粒子の体積平均粒子径と同程度(即ち、好ましくは10nm~5μm、より好ましくは10nm~1μm、特に好ましくは20nm~100nmである形態が好適である。
<Lipid tube part>
The lipid tube part in the present invention is a part obtained by deforming a part of the lipid membrane into a tube shape.
The inner diameter of the lipid tube portion is about the same as the volume average particle diameter of the particles (that is, preferably 10 nm to 5 μm, more preferably 10 nm to 1 μm, particularly preferably 20 nm to 100 nm).
 以下、本発明の製造方法の具体的な実施形態について説明する。
 各実施形態を示す図3~図6では、複数のナノ粒子内包リポソームのうち、一部のみに符号を付している。
Hereinafter, specific embodiments of the production method of the present invention will be described.
3 to 6 showing the respective embodiments, only a part of the plurality of nanoparticle-encapsulating liposomes is provided with a reference numeral.
<第1の実施形態>
 図3は、本発明の第1の実施形態として、本発明の製造方法に好適な脂質構造体製造装置30を模式的に示す概略斜視図である。
 図3に示すように、脂質構造体製造装置30は、カバーガラス32(基材)と、カバーガラス32上に配置されたゲル34(例えば、アガロースゲル、ポリアクリルアミドゲル等)と、ゲル34中に含まれるナノ粒子内包リポソーム31と、ゲル34中に挿入された陽極36A及び陰極36Bと、陽極36A-陰極36B間に直流電圧を印加するための電圧印加手段(電源)と、を備えている。
 ナノ粒子内包リポソーム31は、電荷を有するナノ粒子がリポソームに内包された構成を有している。ナノ粒子やリポソームの好ましい形態は前述のとおりである。
 なお、図3では、複数のナノ粒子内包リポソームのうち、一部のナノ粒子内包リポソームのみに符号(31)を付している。後述の図4~6についても同様である。
<First Embodiment>
FIG. 3 is a schematic perspective view schematically showing a lipid structure production apparatus 30 suitable for the production method of the present invention as the first embodiment of the present invention.
As shown in FIG. 3, the lipid structure production apparatus 30 includes a cover glass 32 (base material), a gel 34 (for example, agarose gel, polyacrylamide gel, etc.) disposed on the cover glass 32, and the gel 34. Nanoparticle-encapsulating liposomes 31 included in the electrode 34, an anode 36A and a cathode 36B inserted in the gel 34, and a voltage applying means (power source) for applying a DC voltage between the anode 36A and the cathode 36B. .
The nanoparticle-encapsulating liposome 31 has a configuration in which charged nanoparticles are encapsulated in the liposome. Preferred forms of the nanoparticles and liposomes are as described above.
In addition, in FIG. 3, the code | symbol (31) is attached | subjected only to the one part nanoparticle inclusion | inner_cover liposome among several nanoparticle inclusion | inner_cover liposome. The same applies to FIGS. 4 to 6 described later.
 この脂質構造体製造装置30において、ナノ粒子内包リポソーム31は、ゲル34によって保持されるとともに、陽極36A及び陰極36Bにより生じた電場の中に配置されている。
 ナノ粒子内包リポソーム31がゲル34によって保持されているので、ナノ粒子内包リポソーム31のうち、脂質ナノチューブ部となる一部を除いた部分については電場による移動が制限される。これに対し、脂質ナノチューブ部となる一部は、電場によるナノ粒子の移動によって押し出されて脂質ナノチューブ部となる。
In this lipid structure production apparatus 30, the nanoparticle-encapsulating liposome 31 is held by the gel 34 and disposed in the electric field generated by the anode 36 </ b> A and the cathode 36 </ b> B.
Since the nanoparticle-encapsulating liposome 31 is held by the gel 34, movement of the nanoparticle-encapsulating liposome 31 excluding a part that becomes the lipid nanotube portion is restricted by the electric field. On the other hand, part of the lipid nanotube part is pushed out by the movement of the nanoparticles by the electric field to become the lipid nanotube part.
<第2の実施形態>
 図4は、本発明の第2の実施形態として、本発明の製造方法に好適な脂質構造体製造装置40を模式的に示す概略斜視図である。
 図4に示すように、脂質構造体製造装置40は、カバーガラスチャンバー42(第1の基材)と、カバーガラス49(第2の基材)と、カバーガラスチャンバー42とカバーガラス49との間に挟持されたナノ粒子内包リポソーム含有ゲル44と、ナノ粒子内包リポソーム含有ゲル44の一端の外側に配置された陽極46Aと、ナノ粒子内包リポソーム含有ゲル44の他端の外側に配置された陰極46Bと、陽極46A-陰極46B間に直流電圧を印加するための電圧印加手段と、を備えている。カバーガラスチャンバー42とカバーガラス49とは、封止剤48(例えば、シリコーンシール)によって固定されている。
 ナノ粒子内包リポソーム含有ゲル44は、本発明におけるナノ粒子内包リポソームを含んだゲルである。ゲルとしては、第1の実施形態におけるゲル34として例示したゲルと同様のものを用いることができる。
 ナノ粒子内包リポソームとしては、第1の実施形態におけるナノ粒子内包リポソーム31と同様のものを用いることができる。
<Second Embodiment>
FIG. 4 is a schematic perspective view schematically showing a lipid structure production apparatus 40 suitable for the production method of the present invention as the second embodiment of the present invention.
As shown in FIG. 4, the lipid structure manufacturing apparatus 40 includes a cover glass chamber 42 (first base material), a cover glass 49 (second base material), a cover glass chamber 42, and a cover glass 49. Nanoparticle-encapsulating liposome-containing gel 44 sandwiched therebetween, anode 46A disposed outside one end of nanoparticle-encapsulating liposome-containing gel 44, and cathode disposed outside the other end of nanoparticle-encapsulating liposome-containing gel 44 46B, and voltage applying means for applying a DC voltage between the anode 46A and the cathode 46B. The cover glass chamber 42 and the cover glass 49 are fixed by a sealant 48 (for example, a silicone seal).
The nanoparticle-encapsulating liposome-containing gel 44 is a gel containing the nanoparticle-encapsulating liposome in the present invention. As the gel, the same gel as the gel exemplified as the gel 34 in the first embodiment can be used.
As a nanoparticle inclusion | inner_cover liposome, the thing similar to the nanoparticle inclusion | inner_cover liposome 31 in 1st Embodiment can be used.
 この脂質構造体製造装置40において、ナノ粒子内包リポソームは、ゲルによって保持されるとともに、陽極46A及び陰極46Bにより生じた電場の中に配置されている。
 これにより、ナノ粒子内包リポソームのうち、脂質ナノチューブ部となる一部を除いた部分が電場による移動が制限される一方で、脂質ナノチューブ部となる一部が、ナノ粒子の移動によって押し出されて脂質ナノチューブ部となる。
In the lipid structure production apparatus 40, the nanoparticle-encapsulating liposome is held by a gel and is disposed in an electric field generated by the anode 46A and the cathode 46B.
As a result, among the nanoparticle-encapsulated liposomes, a portion excluding a portion that becomes a lipid nanotube portion is restricted from moving by an electric field, while a portion that becomes a lipid nanotube portion is pushed out by the movement of the nanoparticle and becomes a lipid. It becomes a nanotube part.
<第3の実施形態>
 図5は、本発明の第3の実施形態として、本発明の製造方法に好適な脂質構造体製造装置50を模式的に示す概略斜視図である。
 図5に示すように、脂質構造体製造装置50は、互いに連通された陽極槽と陰極槽とを有するセル52と、前記セル52の陽極槽と陰極槽との連通部に配置されたゲル54(例えばアガロースゲル)と、陽極槽に収容された陽極液55A(例えば、水、緩衝液などの水系媒体)と、陰極槽に収容された陰極液55B(例えば、水、緩衝液などの水系媒体)と、陰極液55B中に存在する(例えば分散されている)ナノ粒子内包リポソーム51と、陽極液55Aに浸漬された陽極56Aと、陰極液55Bに浸漬された陰極56Bと、陽極56A-陰極56B間に直流電圧を印加するための電圧印加手段(電源)と、を備えている。
 ここで、ゲル54としては、第1の実施形態におけるゲル34と同様のものを用いることができる。
 ナノ粒子内包リポソーム51としては、リポソームに負電荷を有するナノ粒子が内包された構造のナノ粒子内包リポソームを用いる。
<Third Embodiment>
FIG. 5: is a schematic perspective view which shows typically the lipid structure manufacturing apparatus 50 suitable for the manufacturing method of this invention as the 3rd Embodiment of this invention.
As shown in FIG. 5, the lipid structure production apparatus 50 includes a cell 52 having an anode tank and a cathode tank that are in communication with each other, and a gel 54 that is disposed in a communication portion between the anode tank and the cathode tank of the cell 52. (For example, agarose gel), an anolyte 55A (for example, an aqueous medium such as water or buffer) contained in the anode tank, and a catholyte 55B (for example, an aqueous medium such as water or buffer) contained in the cathode tank. ), The nanoparticle-encapsulating liposome 51 present (for example, dispersed) in the catholyte 55B, the anode 56A immersed in the anolyte 55A, the cathode 56B immersed in the catholyte 55B, and the anode 56A-cathode Voltage applying means (power supply) for applying a DC voltage between 56B.
Here, as the gel 54, the thing similar to the gel 34 in 1st Embodiment can be used.
As the nanoparticle-encapsulating liposome 51, a nanoparticle-encapsulating liposome having a structure in which nanoparticles having a negative charge are encapsulated in the liposome is used.
 この脂質構造体製造装置50においては、陽極56A→陽極液55A→ゲル54→陰極液55B→陰極56Bの経路で電場が生じる。
 また、この脂質構造体製造装置50においては、ナノ粒子内包リポソーム51は陰極液55B中を自由に移動できるが、ゲル54中を移動することはできない。一方、ナノ粒子単体は、ゲル54中を移動できることが実験的に確認されている。この違いは、ナノ粒子内包リポソームとナノ粒子とのサイズの違いによるものと推測される。
 従って、脂質構造体製造装置50では、以下のようにして、脂質ナノチューブ部が形成される。
 まず、前記電場により、ナノ粒子内包リポソーム51が陰極液55B中を移動して、ゲル54との界面まで移動する。
 次に、界面に到達したナノ粒子内包リポソーム51の脂質膜の一部が、ナノ粒子によってゲル54中に押し出され、ゲル54中に脂質ナノチューブ部が形成される。
In this lipid structure manufacturing apparatus 50, an electric field is generated in the path of anode 56A → anolyte 55A → gel 54 → catholyte 55B → cathode 56B.
In the lipid structure production apparatus 50, the nanoparticle-encapsulating liposome 51 can freely move in the catholyte 55B, but cannot move in the gel 54. On the other hand, it has been experimentally confirmed that a single nanoparticle can move in the gel 54. This difference is presumed to be due to the difference in size between the nanoparticle-encapsulated liposome and the nanoparticle.
Therefore, in the lipid structure manufacturing apparatus 50, the lipid nanotube portion is formed as follows.
First, the nanoparticle-encapsulating liposome 51 moves in the catholyte 55B and moves to the interface with the gel 54 by the electric field.
Next, a part of the lipid membrane of the nanoparticle-encapsulating liposome 51 reaching the interface is pushed out into the gel 54 by the nanoparticles, and a lipid nanotube portion is formed in the gel 54.
 この第3の実施形態の変形例としては、正電荷を有するナノ粒子が内包された構造のナノ粒子内包リポソームを陽極液55Aに添加する例が挙げられる。
 この場合においても、脂質構造体製造装置50と同様の原理により、陽極液55Aとゲル54との界面に到達したナノ粒子内包リポソームの脂質膜の一部が、ナノ粒子によってゲル54中に押し出され、ゲル54中に脂質ナノチューブ部が形成される。
As a modified example of the third embodiment, there is an example in which nanoparticle-encapsulating liposomes having a structure in which positively charged nanoparticles are encapsulated are added to the anolyte 55A.
Even in this case, a part of the lipid membrane of the nanoparticle-encapsulating liposome that has reached the interface between the anolyte 55A and the gel 54 is pushed out into the gel 54 by the nanoparticles based on the same principle as that of the lipid structure production apparatus 50. The lipid nanotube portion is formed in the gel 54.
<第4の実施形態>
 図6は、本発明の第4の実施形態として、本発明の製造方法に好適な脂質構造体製造装置60を模式的に示す概略斜視図である。
 図6に示すように、脂質構造体製造装置60は、スライドガラス62(基材)と、スライドガラス62にリンカー65を介して保持されたナノ粒子内包リポソーム61と、ナノ粒子内包リポソーム61に電場を与えるための陽極66A及び陰極66Bと、陽極66A-陰極66B間に直流電圧を印加するための電圧印加手段(電源)と、を備えている。
 図6中の破線は、スライドガラス62のナノ粒子内包リポソーム61を保持する側の面及びナノ粒子内包リポソーム61を浸漬する水系媒体(水や緩衝液等)である。図6では、ナノ粒子内包リポソーム61を保持する側の面を見やすくするために、当該水系媒体を破線で表している。
 ナノ粒子内包リポソーム61では、電荷を有するナノ粒子がリポソームに内包されている。
 ナノ粒子内包リポソーム61としては、第1の実施形態におけるナノ粒子内包リポソーム31と同様のものを用いることができる。
<Fourth Embodiment>
FIG. 6: is a schematic perspective view which shows typically the lipid structure manufacturing apparatus 60 suitable for the manufacturing method of this invention as the 4th Embodiment of this invention.
As shown in FIG. 6, the lipid structure production apparatus 60 includes a slide glass 62 (base material), nanoparticle-encapsulated liposomes 61 held on the slide glass 62 via a linker 65, and an electric field applied to the nanoparticle-encapsulated liposomes 61. An anode 66A and a cathode 66B, and voltage applying means (power source) for applying a DC voltage between the anode 66A and the cathode 66B.
The broken line in FIG. 6 is the surface of the slide glass 62 that holds the nanoparticle-encapsulating liposome 61 and the aqueous medium (water, buffer solution, etc.) in which the nanoparticle-encapsulating liposome 61 is immersed. In FIG. 6, the aqueous medium is indicated by a broken line in order to make it easier to see the surface holding the nanoparticle-encapsulating liposome 61.
In the nanoparticle-encapsulating liposome 61, charged nanoparticles are encapsulated in the liposome.
As the nanoparticle-encapsulating liposome 61, those similar to the nanoparticle-encapsulating liposome 31 in the first embodiment can be used.
 この脂質構造体製造装置60において、ナノ粒子内包リポソーム61は、リンカー65によってスライドガラス62(基材)に保持されるとともに、陽極66A及び陰極66Bにより生じた電場の中に配置されている。
 これにより、ナノ粒子内包リポソーム61のうち、脂質ナノチューブ部となる一部を除いた部分は電場による移動が制限される一方で、脂質ナノチューブ部となる一部は、ナノ粒子の移動によって水系媒体中に押し出されて脂質ナノチューブ部となる。
In the lipid structure production apparatus 60, the nanoparticle-encapsulating liposome 61 is held on the slide glass 62 (base material) by the linker 65, and is disposed in the electric field generated by the anode 66A and the cathode 66B.
As a result, in the nanoparticle-encapsulating liposome 61, a portion excluding a portion that becomes the lipid nanotube portion is restricted from moving by the electric field, while a portion that becomes the lipid nanotube portion is in the aqueous medium due to the movement of the nanoparticle. Extruded into the lipid nanotube part.
 図7は、ガラス基板上にリンカーを介して保持されたナノ粒子内包リポソームの一例を示す概念図である。
 図7に示す一例では、DSPE-ビオチン(DSPE-Biotin)によって修飾されたナノ粒子内包リポソーム10のDSPE-ビオチンと、BSA-ビオチン(BSA-Biotin)によって修飾されたガラス基板(Glass substrate)のBSA-ビオチンと、がストレプトアビジン(streptavidin)を介して結合されている。換言すれば、ナノ粒子内包リポソーム10が、DSPE-ビオチン、ストレプトアビジン、及びBSA-ビオチンからなるリンカーを介して、ガラス基板に保持されている。
 このように、本発明におけるリンカーとしては、ビオチン及びアビジンを含むリンカー(例えば、DSPE-ビオチン、ストレプトアビジン、BSA-ビオチン、DOPE-ビオチン等)を用いることができる。
 但し、本発明におけるリンカーはビオチン及びアビジンに限定されることはなく、生体分子と基材とを接続する公知のリンカー(例えば、リンカーDNA、ジスルフィド結合、等)を特に制限なく利用できる。
FIG. 7 is a conceptual diagram showing an example of a nanoparticle-encapsulating liposome held on a glass substrate via a linker.
In one example shown in FIG. 7, DSPE-biotin of nanoparticle-encapsulating liposome 10 modified with DSPE-biotin (DSPE-Biotin) and BSA of glass substrate modified with BSA-biotin (BSA-Biotin) -Biotin is bound via streptavidin. In other words, the nanoparticle-encapsulating liposome 10 is held on the glass substrate via a linker composed of DSPE-biotin, streptavidin, and BSA-biotin.
Thus, as the linker in the present invention, a linker containing biotin and avidin (for example, DSPE-biotin, streptavidin, BSA-biotin, DOPE-biotin, etc.) can be used.
However, the linker in the present invention is not limited to biotin and avidin, and a known linker (for example, linker DNA, disulfide bond, etc.) for connecting a biomolecule and a substrate can be used without particular limitation.
<第5の実施形態>
 図8は、本発明の第5の実施形態の1つの例として、本発明の製造方法に好適な脂質構造体製造装置70を模式的に示す概略斜視図である。
 図8に示すように、第5の実施形態の1つの例は、脂質構造体製造装置70として、リポソーム71に与える流体力(せん断流)を制御するために両端に流入口76A及び流出口76Bを有し、下スライドガラス72(基材)と上スライドガラス73とで囲まれたフローチャンバー(m-Slides VI, ibidi-GmbH, Munich, Germany)を用いている。具体的には、脂質構造体製造装置70は、下スライドガラス72(基材)と、下スライドガラス72にリンカー75を介して保持されたリポソーム71と、上スライドガラス73に設けられた水系媒体(水や緩衝液等)の流入口76A及び流出口76Bと、流入口76A-流出口76B間に水系媒体を流すためのシリンジポンプ(不図示)と、を備えている。
 なお、第5の実施形態のリポソーム71は、図7に示すナノ粒子内包リポソーム10内のナノ粒子が内包されていない構成となっている。
<Fifth Embodiment>
FIG. 8: is a schematic perspective view which shows typically the lipid structure manufacturing apparatus 70 suitable for the manufacturing method of this invention as one example of the 5th Embodiment of this invention.
As shown in FIG. 8, one example of the fifth embodiment is a lipid structure manufacturing apparatus 70 in which an inlet 76 </ b> A and an outlet 76 </ b> B are provided at both ends in order to control the fluid force (shear flow) applied to the liposome 71. A flow chamber (m-Slides VI, ibidi-GmbH, Munich, Germany) surrounded by a lower slide glass 72 (base material) and an upper slide glass 73 is used. Specifically, the lipid structure production apparatus 70 includes a lower slide glass 72 (base material), liposomes 71 held on the lower slide glass 72 via a linker 75, and an aqueous medium provided on the upper slide glass 73. An inlet 76A and an outlet 76B for (water, buffer solution, etc.) and a syringe pump (not shown) for flowing an aqueous medium between the inlet 76A and the outlet 76B are provided.
In addition, the liposome 71 of 5th Embodiment becomes a structure by which the nanoparticle in the nanoparticle inclusion | inner_cover liposome 10 shown in FIG. 7 is not included.
 この脂質構造体製造装置70において、リポソーム71は、図7に示すナノ粒子内包リポソーム10と同様に、ストレプトアビジン―ビオチン結合を介して下スライドガラス72(基材)に保持されている。このようなリポソームは、以下のような方法で作製することができる。
 即ち、1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC)に対して1,2-distearoyl-sn-glycero-3-phosphoethanolamine-[biotinyl(poly-ethylene glycol)-2000](DSPE-Biotin)を1mol%~4mol%添加し、静置水和法によりジャイアントリポソームを作製した。水和にはHEPES緩衝液(10 mM, pH 7.4)を用いた。HEPES緩衝液により洗浄したフローチャンバー中に、albumin bovine biotinamidocaproyl (BSA-Biotin)溶液(2mg/mL)、ストレプトアビジン溶液(1mg/ml)の順に注入し、下スライドガラス72の表面にストレプトアビジンを固定化したものを得た。次に、先に用意したジャイアントリポソーム溶液でチャンバーを満たし、下スライドガラス72上にリポソーム71を固定化した。
In this lipid structure production apparatus 70, the liposome 71 is held on the lower slide glass 72 (base material) via a streptavidin-biotin bond, similarly to the nanoparticle-encapsulating liposome 10 shown in FIG. Such liposomes can be prepared by the following method.
That is, 1,2-disolearoyl-sn-glycero-3-phosphoethanolamine- [biotinyl (poly-ethylene glycol) -2000] (DSPE-Biotin) against 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) ) Was added in an amount of 1 mol% to 4 mol%, and giant liposomes were prepared by the stationary hydration method. HEPES buffer (10 mM, pH 7.4) was used for hydration. Injected in order of albumin bovine biotinamidocaproyl (BSA-Biotin) solution (2 mg / mL) and streptavidin solution (1 mg / ml) into a flow chamber washed with HEPES buffer, and fixed streptavidin on the surface of lower slide glass 72 Obtained Next, the chamber was filled with the previously prepared giant liposome solution, and the liposome 71 was immobilized on the lower slide glass 72.
 このように、ストレプトアビジン-ビオチン相互作用によって下スライドガラス72上に保持したリポソーム71に対して、0.05mL/min~1.0mL/minの流速でHEPES緩衝液を注入することで流体力を作用させ、せん断流を加えることにより、その伸長方向が制御された脂質ナノチューブ部71Aを得た。換言すれば、リポソーム71の大部分は流体力による移動が制限されるが、脂質膜の一部はせん断流によって変形し、HEPES緩衝液の流れとともに伸長して脂質ナノチューブ部71Aが得られる。 As described above, the fluid force is increased by injecting the HEPES buffer at a flow rate of 0.05 mL / min to 1.0 mL / min into the liposome 71 held on the lower slide glass 72 by the streptavidin-biotin interaction. By acting and applying a shear flow, a lipid nanotube portion 71A whose elongation direction was controlled was obtained. In other words, most of the liposomes 71 are restricted from moving by fluid force, but a part of the lipid membrane is deformed by the shear flow and is elongated along with the flow of the HEPES buffer solution to obtain the lipid nanotube portion 71A.
 図9は、本発明の第5の実施形態におけるリポソームの保持力と脂質ナノチューブ部の形成本数との関係を示すグラフである。
 即ち、リポソームを固定化するためのDSPE-Biotinの濃度を変化させた場合の、チューブ形成挙動について、チャンバー内の特定領域におけるチューブの本数を数えることにより、定量的に評価した。
 図9に示すように、脂質に含まれるDSPE-Biotinの濃度を0μM~40μMまで変化させてチューブの形成挙動を調べたところ、2μM~10μMのときに、脂質ナノチューブ部の形成本数が飛躍的に増えている。また、DSPE-Biotinの濃度の増加に伴いチューブの形成本数は減少し、濃度が40μMの時、チューブはほとんど形成されなかった。これは、DSPE-Biotin濃度の増加によりリポームが基材に強く固定化されるため、せん断流の影響を受け難くなっているものと考えられる。
 従って、リポソームは、流体中での移動が制限され、リポソームの脂質膜に対してせん断流が作用する範囲で基材上に保持される。
 なお、流速と形成本数との関係では、流速が大きくなるにつれて形成本数が増えることが確かめられていることから、リポソームを保持できる範囲内で速い流速とすることが好ましい。
FIG. 9 is a graph showing the relationship between the retention of liposomes and the number of lipid nanotubes formed in the fifth embodiment of the present invention.
That is, the tube formation behavior when the concentration of DSPE-Biotin for immobilizing liposomes was varied was quantitatively evaluated by counting the number of tubes in a specific region in the chamber.
As shown in FIG. 9, the tube formation behavior was examined by changing the concentration of DSPE-Biotin contained in the lipid from 0 μM to 40 μM. When the concentration was 2 μM to 10 μM, the number of lipid nanotubes formed dramatically increased. is increasing. In addition, the number of tubes formed decreased with increasing DSPE-Biotin concentration, and almost no tubes were formed when the concentration was 40 μM. This is probably because the liposome is strongly immobilized on the substrate due to the increase in the DSPE-Biotin concentration, so that it is less susceptible to shear flow.
Therefore, the liposome is held on the substrate in such a range that the movement in the fluid is limited and a shear flow acts on the lipid membrane of the liposome.
In addition, since it has been confirmed that the number of formation increases as the flow rate increases, the relationship between the flow rate and the number of formations is preferable.
 以上、本発明の第1~第5の実施形態について説明したが、本発明は上記各実施形態に限定されることはない。
 例えば、上記第1~第4の実施形態において、磁性を有する粒子(例えばナノ粒子)を含む粒子内包リポソーム(例えばナノ粒子内包リポソーム)を用い、陽極、陰極、及び電圧印加手段に変えて、磁石等の磁場付与手段を用いて粒子内包リポソーム(例えばナノ粒子内包リポソーム)に磁場を付与することで、磁場を利用した脂質構造体の製造を行うことができる。
 また、上記第1、第2、及び第4の実施形態に係る脂質構造体製造装置に対し、遠心分離機によって慣性力(遠心力)を付与することで、慣性力(遠心力)を利用した脂質構造体の製造を行うことができる。
 さらにまた、上記第5の実施形態に係る脂質構造体製造装置において、水系媒体以外の液体や気体を流すことによってリポソームに流体力を作用させ、脂質構造体の製造を行うこともできる。
Although the first to fifth embodiments of the present invention have been described above, the present invention is not limited to the above embodiments.
For example, in the first to fourth embodiments, a particle-encapsulating liposome (for example, a nanoparticle-encapsulating liposome) containing magnetic particles (for example, a nanoparticle) is used, and the magnet is changed to an anode, a cathode, and a voltage applying unit. A lipid structure using a magnetic field can be produced by applying a magnetic field to particle-encapsulated liposomes (for example, nanoparticle-encapsulated liposomes) using a magnetic field-applying means such as.
Further, the inertial force (centrifugal force) was used by applying an inertial force (centrifugal force) to the lipid structure production apparatus according to the first, second, and fourth embodiments by a centrifuge. Lipid structures can be produced.
Furthermore, in the lipid structure production apparatus according to the fifth embodiment, a lipid structure can be produced by causing a fluid force to act on the liposome by flowing a liquid or gas other than the aqueous medium.
 以下、本発明を実施例により更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。以下において、「室温」は25℃を指す。また、HEPES緩衝液は、特に断りのない限り、10mM、pH7.4のHEPES緩衝液である。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the following examples. In the following, “room temperature” refers to 25 ° C. Further, the HEPES buffer is a 10 mM, pH 7.4 HEPES buffer unless otherwise specified.
〔実施例1〕
<電場を利用した脂質ナノチューブ部の形成1>
 図3に示す脂質構造体製造装置30と同様の構成の脂質構造体製造装置を用い、電場を利用した脂質ナノチューブ部の形成を行った。
 具体的な操作を以下に示す。
[Example 1]
<Formation of lipid nanotube part 1 using electric field>
A lipid structure production apparatus having the same configuration as the lipid structure production apparatus 30 shown in FIG. 3 was used to form a lipid nanotube portion using an electric field.
Specific operations are shown below.
(ナノ粒子含有リポソーム分散液Aの調製)
 まず、1,2-dioleoyl-sn-glycero-3-phosphocholine(リン脂質)およびRhodamine-DMPE(蛍光色素)を、クロロホルムに溶解させて溶液Aを調製した。次に、溶液Aからクロロホルムを乾燥させて除去し、蛍光色素含有リン脂質薄膜を得た。
 次に、カルボキシレート基で修飾されたポリスチレンナノ粒子(ポリサイエンス社製Fluoresbrite Carboxylate Microspheres;体積平均粒子径50nm)を、HEPES緩衝液に添加してナノ粒子含有液Bを調製した。
 ここで、上記ポリスチレンナノ粒子のpH7.4におけるゼータ電位は、-40mVである。
 得られたナノ粒子含有液Bを上記リン脂質薄膜に添加し、27℃で1時間以上静置し、薄膜を水和することにより、ナノ粒子含有リポソーム分散液A(ナノ粒子含有リポソームの濃度1.0mM)を得た。
 光学顕微鏡による観察の結果、粒径10μm~20μm程度の、ナノ粒子を含有したリポソームが形成されたことが確認された。
(Preparation of nanoparticle-containing liposome dispersion A)
First, 1,2-dioleoyl-sn-glycero-3-phosphocholine (phospholipid) and Rhodamine-DMPE (fluorescent dye) were dissolved in chloroform to prepare a solution A. Next, chloroform was dried and removed from the solution A to obtain a fluorescent dye-containing phospholipid thin film.
Next, polystyrene nanoparticles modified with a carboxylate group (Fluoresbrite Carboxylate Microspheres manufactured by Polysciences; volume average particle size 50 nm) were added to a HEPES buffer to prepare a nanoparticle-containing solution B.
Here, the zeta potential of the polystyrene nanoparticles at pH 7.4 is −40 mV.
The obtained nanoparticle-containing liquid B was added to the phospholipid thin film, allowed to stand at 27 ° C. for 1 hour or longer, and the thin film was hydrated, whereby the nanoparticle-containing liposome dispersion A (concentration of nanoparticle-containing liposomes was 1). 0.0 mM).
As a result of observation with an optical microscope, it was confirmed that liposomes containing nanoparticles having a particle size of about 10 μm to 20 μm were formed.
(アガロースゲルAの調製)
 上記分散液Aと、アガロース水溶液と、を45℃で混合し、室温下で除冷してゲル化させ、ナノ粒子含有リポソームを含むアガロースゲル(ここでは、「アガロースゲルA」とする)を調製した。
 ここで、各成分の量は、アガロースゲルAにおける組成が、2.0質量%アガロースゲル中に、リポソーム0.05mM、Rhodamine-DMPE0.25μMと、ナノ粒子0.32mg/mL(4.62×1012個/mL)と、が含まれる組成となるように調整した。
(Preparation of agarose gel A)
The dispersion A and an agarose aqueous solution are mixed at 45 ° C., and cooled to room temperature and gelled to prepare an agarose gel containing nanoparticle-containing liposomes (herein referred to as “agarose gel A”). did.
Here, the amount of each component is such that the composition in agarose gel A is 2.0 mass% agarose gel, liposome 0.05 mM, Rhodamine-DMPE 0.25 μM, and nanoparticles 0.32 mg / mL (4.62 × 10 12 pieces / mL).
(脂質構造体製造装置の作製)
 図3に示す脂質構造体製造装置30と同様の構成の脂質構造体製造装置を作製した。
 各部材としては、以下のものを用いた。
 ここで、陽極36A-陰極36B間の距離は、10mmとした。
-脂質構造体製造装置の部材-
・カバーガラス32  … 24mm×60mm×0.12mmtのカバーガラス
・ゲル34及びナノ粒子内包リポソーム31 … 上記アガロースゲルA(5.0g)
・陽極36A及び陰極36B … 1mmφの白金(Pt)電極
(Production of lipid structure production equipment)
A lipid structure production apparatus having the same configuration as that of the lipid structure production apparatus 30 shown in FIG. 3 was produced.
The following were used as each member.
Here, the distance between the anode 36A and the cathode 36B was 10 mm.
-Components of lipid structure manufacturing equipment-
Cover glass 32: Cover glass of 24 mm × 60 mm × 0.12 mmt Gel 34 and nanoparticle-encapsulating liposome 31: Agarose gel A (5.0 g)
Anode 36A and cathode 36B: 1 mmφ platinum (Pt) electrode
(脂質構造体の作製(脂質ナノチューブ部の形成))
 上記脂質構造体製造装置30において、ゲル34の温度を25℃に調温し、かつ、ゲルに浸漬した陽極36A-陰極36B間に3.0kV/mの電界強度(電流0.1mA)となる電圧を印加した状態で、蛍光顕微鏡及び光学顕微鏡による観察を行った。
 蛍光顕微鏡写真(電圧印加開始から60秒後)を図10に、光学顕微鏡写真を図11にそれぞれ示す。
 図10に示すように、電圧の印加によって脂質ナノチューブ部が形成されたことが確認された。
 図10において、筋状に見える部分が脂質ナノチューブ部である。また、脂質ナノチューブの屈曲又は湾曲は、アガロースゲルが不均一であることにより、脂質ナノチューブが屈曲又は湾曲しながら成長したために生じたものと考えられる。
(Preparation of lipid structure (formation of lipid nanotube part))
In the lipid structure production apparatus 30, the temperature of the gel 34 is adjusted to 25 ° C., and the electric field strength (current 0.1 mA) is 3.0 kV / m between the anode 36A and the cathode 36B immersed in the gel. Observation with a fluorescence microscope and an optical microscope was performed in a state where a voltage was applied.
A fluorescence micrograph (60 seconds after the start of voltage application) is shown in FIG. 10, and an optical micrograph is shown in FIG.
As shown in FIG. 10, it was confirmed that the lipid nanotube portion was formed by applying a voltage.
In FIG. 10, the part that looks like a streak is the lipid nanotube part. In addition, the bending or bending of the lipid nanotube is considered to have occurred because the lipid nanotube grew while bending or bending because the agarose gel was not uniform.
 また、図11に示すように、光学顕微鏡写真による観察の結果、電圧印加時においても、ナノ粒子含有リポソーム(のリポソーム部)自体は球形を保っており、ゲル中に保持されていることが確認された。
 なお、脂質ナノチューブの外形は光学顕微鏡の分解能よりも小さいため、光学顕微鏡写真では脂質ナノチューブは観察されない。
Moreover, as shown in FIG. 11, as a result of observation by an optical micrograph, it was confirmed that the nanoparticle-containing liposome itself (the liposome part) itself maintained a spherical shape and was retained in the gel even when voltage was applied. It was done.
Since the outer shape of the lipid nanotube is smaller than the resolution of the optical microscope, the lipid nanotube is not observed in the optical micrograph.
〔実施例2〕
<電場を利用した脂質ナノチューブ部の形成2>
 図4に示す脂質構造体製造装置40と同様の構成の脂質構造体製造装置を用い、電場を利用した脂質ナノチューブ部の形成を行った。
 具体的な操作を以下に示す。
[Example 2]
<Formation of lipid nanotube part 2 using electric field>
A lipid structure production apparatus having the same configuration as the lipid structure production apparatus 40 shown in FIG. 4 was used to form a lipid nanotube portion using an electric field.
Specific operations are shown below.
(アガロースゲルBの調製)
 実施例1のアガロースゲルAの調製において、アガロースゲル中におけるアガロースの濃度が0.8質量%、リポソームの濃度が0.05mMとなるように、各成分の量をそれぞれ調整したこと以外は実施例1のアガロースゲルAの調製と同様にして、アガロースゲルBを得た。
(Preparation of agarose gel B)
In the preparation of the agarose gel A of Example 1, the examples are the same except that the amount of each component was adjusted so that the agarose concentration in the agarose gel was 0.8 mass% and the liposome concentration was 0.05 mM. The agarose gel B was obtained in the same manner as the preparation of 1 agarose gel A.
(脂質構造体製造装置の作製)
 図4に示す脂質構造体製造装置40と同様の構成の脂質構造体製造装置を作製した。
 各部材としては、以下のものを用いた。
-脂質構造体製造装置の部材-
・カバーガラスチャンバー42 … 20mm×45mm×0.12mmtのスライドガラスを底面に有するカバーガラスチャンバー(IWAKIガラス社製、5202-001)
・カバーガラス49 … 10mm×10mm×0.12mmtのカバーガラス
・ナノ粒子内包リポソーム含有ゲル44 … 上記アガロースゲルB(0.01g)
・陽極46A及び陰極46B … 1mmφの白金(Pt)電極
(Production of lipid structure production equipment)
A lipid structure production apparatus having the same configuration as the lipid structure production apparatus 40 shown in FIG. 4 was produced.
The following were used as each member.
-Components of lipid structure manufacturing equipment-
Cover glass chamber 42: A cover glass chamber having a slide glass of 20 mm × 45 mm × 0.12 mmt on the bottom (made by IWAKI Glass, 5202-001)
Cover glass 49: 10 mm × 10 mm × 0.12 mmt cover glass Nanoparticle-encapsulating liposome-containing gel 44 The agarose gel B (0.01 g)
Anode 46A and cathode 46B: 1 mmφ platinum (Pt) electrode
(脂質構造体の作製(脂質ナノチューブ部の形成))
 上記脂質構造体製造装置において、ナノ粒子内包リポソーム含有ゲル44をHEPES緩衝液に浸漬し、その温度を25℃に調温し、かつ、陽極46A-陰極46B間に3.0kV/mの電界強度(電流2~3mA)となる電圧を印加した状態で、蛍光顕微鏡による観察を行った。
 蛍光顕微鏡写真(電圧印加開始から60秒後)を図12に示す。
 図12に示すように、実施例2においても実施例1と同様に、電圧の印加によって脂質ナノチューブ部が形成されたことが確認された。
(Preparation of lipid structure (formation of lipid nanotube part))
In the above lipid structure production apparatus, the nanoparticle-encapsulating liposome-containing gel 44 is immersed in a HEPES buffer, the temperature is adjusted to 25 ° C., and the electric field strength is 3.0 kV / m between the anode 46A and the cathode 46B. Observation with a fluorescence microscope was performed in a state where a voltage of (current 2 to 3 mA) was applied.
A fluorescence micrograph (60 seconds after the start of voltage application) is shown in FIG.
As shown in FIG. 12, in Example 2, as in Example 1, it was confirmed that a lipid nanotube portion was formed by applying a voltage.
〔実施例3〕
<電場を利用した脂質ナノチューブ部の形成3>
 図5に示す脂質構造体製造装置50と同様の構成の脂質構造体製造装置を用い、電場を利用した脂質ナノチューブ部の形成を行った。
 具体的な操作を以下に示す。
Example 3
<Formation of lipid nanotube part 3 using electric field>
A lipid structure production apparatus having the same configuration as the lipid structure production apparatus 50 shown in FIG. 5 was used to form a lipid nanotube portion using an electric field.
Specific operations are shown below.
(陰極液Aの調製)
 実施例1におけるナノ粒子含有リポソーム分散液Aの調製において、リポソーム濃度が0.1mM(Rhodamine-DMPEを5μM含む)、ナノ粒子の濃度が0.32mg/mL(4.62×1012個/mL)となるように各成分の量を調整したこと以外は実施例1と同様にして、ナノ粒子含有リポソーム分散液である陰極液Aを得た。
(Preparation of catholyte A)
In the preparation of the nanoparticle-containing liposome dispersion A in Example 1, the liposome concentration was 0.1 mM (containing 5 μM Rhodamine-DMPE), and the nanoparticle concentration was 0.32 mg / mL (4.62 × 10 12 particles / mL). The catholyte A that is a nanoparticle-containing liposome dispersion was obtained in the same manner as in Example 1 except that the amount of each component was adjusted so that
(アガロースゲルCの調製)
 実施例1におけるアガロースゲルAの調製において、ナノ粒子含有リポソーム分散液Aを用いなかったこと以外はアガロースゲルAの調製と同様にして、2.0質量%アガロースゲルであるアガロースゲルCを得た。
(Preparation of agarose gel C)
In the preparation of agarose gel A in Example 1, agarose gel C, which is a 2.0% by mass agarose gel, was obtained in the same manner as the preparation of agarose gel A except that the nanoparticle-containing liposome dispersion liquid A was not used. .
(脂質構造体製造装置の作製)
 図5に示す脂質構造体製造装置50と同様の構成の脂質構造体製造装置を作製した。
 各部材としては、以下のものを用いた。
-脂質構造体製造装置の部材-
・セル52 … 容積0.1mLの陽極槽及び容積0.1mLの陰極槽を有し、陽極槽と陰極槽との連通部のサイズが、長さ17mm×幅4.8mm×高さ0.4mmであるプラスチックセルを用いた。ここで、連通部の長さは、陽極槽と陰極槽との最近接距離に相当する。
・ゲル54 … 上記連通部に収容された上記アガロースゲルC
・陽極液55A … 容積0.06mLのHEPES緩衝液
・陰極液55B … 容積0.06mLの上記陰極液A
・陽極56A及び陰極56B … 1mmφの白金(Pt)電極
(Production of lipid structure production equipment)
A lipid structure production apparatus having the same configuration as that of the lipid structure production apparatus 50 shown in FIG. 5 was produced.
The following were used as each member.
-Components of lipid structure manufacturing equipment-
-Cell 52: It has an anode tank with a volume of 0.1 mL and a cathode tank with a volume of 0.1 mL, and the size of the communicating part between the anode tank and the cathode tank is 17 mm long × 4.8 mm wide × 0.4 mm high A plastic cell was used. Here, the length of the communication portion corresponds to the closest distance between the anode tank and the cathode tank.
Gel 54: The agarose gel C accommodated in the communication part
-Anolyte 55A-0.06 mL HEPES buffer-Catholyte 55B-0.06 mL catholyte A
Anode 56A and cathode 56B: 1 mmφ platinum (Pt) electrode
(脂質構造体の作製(脂質ナノチューブ部の形成))
 上記脂質構造体製造装置において、ゲル54の温度を25℃に調温し、かつ、陽極56A-陰極56B間に6.0kV/mの電界強度(電流2~3mA)となる電圧を印加した状態で、蛍光顕微鏡による観察を行った。
 蛍光顕微鏡写真(電圧印加開始から60秒後)を図13に示す。
 図13において、右下の大面積の明るい部分はリポソームの集合体であり、リポソーム集合体から延びる筋状の部分が脂質ナノチューブ部である。暗い部分はゲル54である。
 図13に示すように、実施例3では、電圧の印加により、ゲル54中に脂質ナノチューブ部が形成されていた。
(Preparation of lipid structure (formation of lipid nanotube part))
In the above lipid structure production apparatus, the temperature of the gel 54 is adjusted to 25 ° C., and a voltage with an electric field strength of 6.0 kV / m (current 2 to 3 mA) is applied between the anode 56A and the cathode 56B. Then, observation with a fluorescence microscope was performed.
A fluorescence micrograph (60 seconds after the start of voltage application) is shown in FIG.
In FIG. 13, the bright area having a large area at the lower right is an aggregate of liposomes, and the streaky portion extending from the liposome aggregate is a lipid nanotube part. The dark part is the gel 54.
As shown in FIG. 13, in Example 3, a lipid nanotube portion was formed in the gel 54 by applying a voltage.
 次に、本実施例3の脂質構造体製造装置において、ナノ粒子含有リポソームを、カルボキシレート基で修飾されたナノ粒子を着色して得られたナノ粒子に置き換えた装置を作製し、上記と同様に電圧印加を行った。
 すると、目視により、着色されたナノ粒子がゲル中に進出することが確認された。
 この結果と上記の脂質ナノチューブ部の形成とから、マイクロサイズのリポソーム部はゲル中を移動できないが、ナノサイズの物質はゲル中を移動できることが確認され、実施例3における脂質ナノチューブ部形成のメカニズムが立証された。
Next, in the lipid structure production apparatus of Example 3, a device was prepared in which the nanoparticles containing liposomes were replaced with nanoparticles obtained by coloring nanoparticles modified with carboxylate groups, and the same as described above. A voltage was applied to.
Then, it was confirmed by visual observation that the colored nanoparticles advance into the gel.
From this result and the formation of the lipid nanotube part, it was confirmed that the micro-sized liposome part cannot move in the gel, but the nano-sized substance can move in the gel. Was proved.
〔実施例4〕
<電場を利用した脂質ナノチューブ部の形成4>
 図6に示す脂質構造体製造装置60と同様の構成の脂質構造体製造装置を用い、電場を利用した脂質ナノチューブ部の形成を行った。
Example 4
<Formation of lipid nanotube part using electric field 4>
A lipid structure production apparatus having the same configuration as the lipid structure production apparatus 60 shown in FIG. 6 was used to form a lipid nanotube portion using an electric field.
(ナノ粒子含有リポソームを保持したスライドガラスの作製)
 図7に示したビオチン-アビジンの相互作用を利用して、ナノ粒子含有リポソームを保持したスライドガラスを作製した。
 具体的な操作は以下のとおりである。
 エタノール、HEPES緩衝液により洗浄したスライドガラス上に、2mg/ml BSA-Biotin溶液を滴下し10分静置した。この滴下操作をもう一度繰り返した後、スライドガラスをHEPES緩衝液で洗浄した。次に、200 mM NaCl/10 mM Tris-HCl(pH 7.5)溶液で当該濃度のCaseinを溶解(5mg./ml)した後、超遠心(55000rpm)をほどこして得られた上澄みを、スライドガラスに滴下し、10分静置した。この滴下操作をもう一度繰り返した後、HEPES緩衝液で洗浄した。
 以上のようにして、BSA-BiotinおよびCaseinにより基板表面をコーティングした後、1 mg/ml Streptavidin溶液を滴下し40分静置した。この滴下操作についてももう一度繰り返した後、スライドガラスをHEPES緩衝液で洗浄した。ここに、以下のようにして作製したDSPE-ビオチンを導入したナノ粒子含有リポソーム分散液A-1を滴下し、10分静置の操作を2回繰り返した後、HEPES緩衝液で洗浄し、目的の基板(ナノ粒子含有リポソームを保持したスライドガラス)を得た。
(Preparation of slide glass holding nanoparticle-containing liposome)
Using the biotin-avidin interaction shown in FIG. 7, a slide glass holding nanoparticles containing liposomes was prepared.
The specific operation is as follows.
A 2 mg / ml BSA-Biotin solution was dropped onto a glass slide washed with ethanol and HEPES buffer and allowed to stand for 10 minutes. After this dropping operation was repeated once more, the slide glass was washed with a HEPES buffer. Next, after dissolving Casein of the concentration with 200 mM NaCl / 10 mM Tris-HCl (pH 7.5) solution (5 mg./ml), the supernatant obtained by ultracentrifugation (55000 rpm) is placed on a slide glass. The solution was added dropwise and allowed to stand for 10 minutes. This dropping operation was repeated once and then washed with a HEPES buffer.
After coating the substrate surface with BSA-Biotin and Casein as described above, a 1 mg / ml Streptavidin solution was dropped and allowed to stand for 40 minutes. This dropping operation was repeated once again, and then the slide glass was washed with HEPES buffer. Here, the liposome dispersion liquid A-1 containing nanoparticles introduced with DSPE-biotin prepared as described below was dropped and the operation of standing for 10 minutes was repeated twice, followed by washing with a HEPES buffer solution. Substrate (slide glass holding nanoparticle-containing liposomes) was obtained.
(DSPE-ビオチンを導入したナノ粒子含有リポソーム分散液A-1の作製)
 まず、1,2-dioleoyl-sn-glycero-3-phosphocholine(リン脂質)、DSPE-ビオチンおよびRhodamine-DMPE(蛍光色素)をクロロホルムに溶解させて溶液A-1を調製した。その後、溶液A-1からクロロホルムを乾燥させて除去し、蛍光色素含有リン脂質薄膜を得た。次に、カルボキシレート基で修飾されたポリスチレンナノ粒子(ポリサイエンス社製Fluoresbrite Carboxylate Microspheres;体積平均粒子径50nm)をHEPES緩衝液に添加してナノ粒子含有液Bを調製した。
 ここで、上記ポリスチレンナノ粒子のpH7.4におけるゼータ電位は、-40mVである。
 得られたナノ粒子含有液Bを上記リン脂質薄膜に添加し、27℃で1時間以上静置し、薄膜を水和することにより、ナノ粒子含有リポソーム分散液A-1(ナノ粒子含有リポソームの濃度1.0mM)を得た。
 光学顕微鏡による観察の結果、粒径10μm~20μm程度の、ナノ粒子を含有したリポソームが形成されたことが確認された。
(Production of DSPE-biotin-introduced nanoparticle-containing liposome dispersion A-1)
First, 1,2-dioleoyl-sn-glycero-3-phosphocholine (phospholipid), DSPE-biotin and Rhodamine-DMPE (fluorescent dye) were dissolved in chloroform to prepare a solution A-1. Thereafter, chloroform was removed from the solution A-1 by drying to obtain a fluorescent dye-containing phospholipid thin film. Next, polystyrene nanoparticles modified with a carboxylate group (Fluoresbrite Carboxylate Microspheres manufactured by Polysciences; volume average particle diameter 50 nm) were added to a HEPES buffer to prepare a nanoparticle-containing solution B.
Here, the zeta potential of the polystyrene nanoparticles at pH 7.4 is −40 mV.
The obtained nanoparticle-containing liquid B was added to the phospholipid thin film, allowed to stand at 27 ° C. for 1 hour or longer, and the thin film was hydrated, whereby the nanoparticle-containing liposome dispersion A-1 (nanoparticle-containing liposome A concentration of 1.0 mM) was obtained.
As a result of observation with an optical microscope, it was confirmed that liposomes containing nanoparticles having a particle size of about 10 μm to 20 μm were formed.
(脂質構造体製造装置の作製)
 図6に示す脂質構造体製造装置60と同様の構成を有する脂質構造体製造装置を作製した。
 各部材としては、以下のものを用いた。
-脂質構造体製造装置の部材-
・スライドガラス62、リンカー65、及びナノ粒子内包リポソーム61 … 上記で作製したナノ粒子含有リポソームを保持したスライドガラスを用いた。
・陽極66A及び陰極66B … 1mmφの白金(Pt)電極。電極間の距離は10mmとした。
・水系媒体(図6中の破線部) … HEPES緩衝液
(Production of lipid structure production equipment)
A lipid structure production apparatus having the same configuration as that of the lipid structure production apparatus 60 shown in FIG. 6 was produced.
The following were used as each member.
-Components of lipid structure manufacturing equipment-
-Slide glass 62, linker 65, and nanoparticle-encapsulating liposome 61 ... The slide glass holding the nanoparticle-containing liposome prepared above was used.
Anode 66A and cathode 66B: 1 mmφ platinum (Pt) electrode. The distance between the electrodes was 10 mm.
・ Aqueous medium (broken line in FIG. 6): HEPES buffer
(脂質構造体の作製(脂質ナノチューブ部の形成))
 上記脂質構造体製造装置において、25℃の環境下、陽極66A-陰極66B間に4.0kV/mの電界強度(電流3mA)となる電圧を印加した状態で、蛍光顕微鏡による観察を行った。
 蛍光顕微鏡写真を図14に示す。
 図14中、写真(a)は電圧無印加時の様子を撮影したものであり、写真(b)~(h)は電圧を継続して印加し続けたときの様子を、0.1秒間隔で連続的に撮影したものである。即ち、写真(b)と(c)との間隔等、連続する2枚の写真の間隔は0.1秒である。撮影の順序は、(b)、(c)、(d)、(e)、(f)、(g)、(h)の順である。
 図14に示すように、電圧印加開始から時間が経過するにつれ、脂質ナノチューブ部が成長する様子が確認された。
 この結果から、電圧印加時間を変化させることにより、脂質ナノチューブ部の長さを制御できることが示唆された。さらに、電圧印可を停止したのちにもこの脂質ナノチューブ部がその構造を保っていることから、脂質膜間の融合などを介してリポソームと脂質ナノチューブ部が連結されていることが示された。
(Preparation of lipid structure (formation of lipid nanotube part))
In the above lipid structure production apparatus, observation was performed with a fluorescence microscope in a state where a voltage of 4.0 kV / m electric field strength (current 3 mA) was applied between the anode 66A and the cathode 66B in an environment of 25 ° C.
A fluorescence micrograph is shown in FIG.
In FIG. 14, the photograph (a) is a photograph of the state when no voltage is applied, and the photographs (b) to (h) are the states when the voltage is continuously applied at intervals of 0.1 second. The pictures were taken continuously. That is, the interval between two consecutive photos, such as the interval between photos (b) and (c), is 0.1 seconds. The shooting order is (b), (c), (d), (e), (f), (g), (h).
As shown in FIG. 14, it was confirmed that the lipid nanotube portion grew as time elapsed from the start of voltage application.
From this result, it was suggested that the length of the lipid nanotube part can be controlled by changing the voltage application time. Furthermore, since the lipid nanotube part maintained its structure even after the voltage application was stopped, it was shown that the liposome and the lipid nanotube part were connected via fusion between lipid membranes.
〔実施例5〕
<磁場を利用した脂質ナノチューブ部の形成>
 実施例4で用いたDSPE-ビオチンを導入したナノ粒子含有リポソーム分散液A-1のかわりに、以下のようにして作製された、DSPE-ビオチンを導入した磁性ナノ粒子含有リポソーム分散液A-2を用いた以外は、実施例4と同様にしてリポソームを保持したスライドガラスを作製した。作製した、磁性ナノ粒子含有リポソームを保持したスライドガラスのナノ粒子含有リポソームに対し、電磁石(株式会社ギガテコ社製、TMN電磁石)を用いて200KA/m~500KA/mの磁場を印加した。
Example 5
<Formation of lipid nanotube part using magnetic field>
In place of the DSPE-biotin-introduced nanoparticle-containing liposome dispersion A-1 used in Example 4, the DSPE-biotin-introduced magnetic nanoparticle-containing liposome dispersion A-2 was prepared as follows. A slide glass holding liposomes was prepared in the same manner as in Example 4 except that was used. A magnetic field of 200 KA / m to 500 KA / m was applied to the prepared slide glass nanoparticle-containing liposomes holding the magnetic nanoparticle-containing liposomes using an electromagnet (manufactured by Gigateco, Inc., TMN electromagnet).
(DSPE-ビオチンを導入した磁性ナノ粒子含有リポソーム分散液A-2の作製)
 まず、1,2-dioleoyl-sn-glycero-3-phosphocholine(リン脂質)、DSPE-ビオチンおよびRhodamine-DMPE(蛍光色素)をクロロホルムに溶解させて溶液A-1を調製した。その後、溶液A-1からクロロホルムを乾燥させて除去し、蛍光色素含有リン脂質薄膜を得た。次に、カルボキシレート基で修飾された磁性ナノ粒子(フナコシ社製nanomag D COOH;体積平均粒子径130nm)をHEPES緩衝液に添加して磁性ナノ粒子含有液B-1を調製した。
 得られた磁性ナノ粒子含有液B-1を上記リン脂質薄膜に添加し、27℃で1時間以上静置し、薄膜を水和することにより、磁性ナノ粒子含有リポソーム分散液A-2(磁性ナノ粒子含有リポソームの濃度1.0mM)を得た。
 光学顕微鏡による観察の結果、粒径10μm~20μm程度の、磁性ナノ粒子を含有したリポソームが形成されたことが確認された。
(Preparation of DSPE-biotin-introduced liposome dispersion liquid A-2 containing magnetic nanoparticles)
First, 1,2-dioleoyl-sn-glycero-3-phosphocholine (phospholipid), DSPE-biotin and Rhodamine-DMPE (fluorescent dye) were dissolved in chloroform to prepare a solution A-1. Thereafter, chloroform was removed from the solution A-1 by drying to obtain a fluorescent dye-containing phospholipid thin film. Next, magnetic nanoparticles modified with a carboxylate group (Nanomag D COOH manufactured by Funakoshi Co., Ltd .; volume average particle size 130 nm) were added to a HEPES buffer to prepare a magnetic nanoparticle-containing solution B-1.
The obtained magnetic nanoparticle-containing liquid B-1 was added to the phospholipid thin film, and allowed to stand at 27 ° C. for 1 hour or longer to hydrate the thin film, whereby the magnetic nanoparticle-containing liposome dispersion A-2 (magnetic Nanoparticle-containing liposome concentration 1.0 mM) was obtained.
As a result of observation with an optical microscope, it was confirmed that liposomes containing magnetic nanoparticles having a particle size of about 10 μm to 20 μm were formed.
 磁場の印加開始から60秒後の様子を図15の写真(a)~(d)に示す。
 図15中の写真(a)~(d)の破線で囲った部分に示すように、磁場の印加によっても、電場を印加した場合と同様に、脂質ナノチューブ部が形成された。
Pictures (a) to (d) of FIG. 15 show the state 60 seconds after the start of application of the magnetic field.
As shown in the parts surrounded by the broken lines in the photographs (a) to (d) in FIG. 15, the lipid nanotube part was formed by the application of the magnetic field as in the case of applying the electric field.
〔実施例6〕
<慣性力を利用した脂質ナノチューブ部の形成>
 実施例4で作製した、ナノ粒子含有リポソームを保持したスライドガラスのナノ粒子含有リポソームに対し、遠心分離機(Beckman社製GS-15R)を用い、20km/sの慣性力(遠心力)を印加した。
 慣性力(遠心力)の印加開始から3分後の様子を図16に示す。
 図16の破線で囲った部分に示すように、慣性力(遠心力)の印加によっても、電場を印加した場合と同様に、脂質ナノチューブ部が形成された。
Example 6
<Formation of lipid nanotube part using inertial force>
The inertial force (centrifugal force) of 20 km / s 2 was applied to the nanoparticle-containing liposome of the slide glass holding the nanoparticle-containing liposome prepared in Example 4 using a centrifuge (GS-15R manufactured by Beckman). Applied.
FIG. 16 shows a state after 3 minutes from the start of application of inertial force (centrifugal force).
As shown in a portion surrounded by a broken line in FIG. 16, a lipid nanotube portion was formed by applying an inertial force (centrifugal force) as in the case of applying an electric field.
〔実施例7〕
<流体力を利用した脂質ナノチューブ部の形成>
 実施例4で用いたDSPE-ビオチンを導入したナノ粒子含有リポソーム分散液A-1のかわりに、以下のようにして作製された、DSPE-ビオチンを導入しているがナノ粒子を含有していないリポソームの分散液A-3を用いた以外は、実施例4と同様にしてリポソームを保持したスライドガラスを作製した。このようにして作製したスライドガラスのリポソーム(ナノ粒子を含有していないリポソーム)に対し、長さ17mm×幅3.8mm×高さ0.4mmであるフローチャンバー内で、4-(2-ヒドロキシエチル)-1-ピペラジンエタンスルホン酸(「HEPES」)を300μl/minの速さで流し、リポソームに流体力を作用させた。
Example 7
<Formation of lipid nanotube part using fluid force>
Instead of the nanoparticle-containing liposome dispersion A-1 introduced with DSPE-biotin used in Example 4, DSPE-biotin was introduced as described below, but it did not contain nanoparticles. A slide glass holding liposomes was prepared in the same manner as in Example 4 except that the liposome dispersion A-3 was used. The slide glass liposomes thus prepared (liposome not containing nanoparticles) were subjected to 4- (2-hydroxy) in a flow chamber having a length of 17 mm × width of 3.8 mm × height of 0.4 mm. Ethyl) -1-piperazineethanesulfonic acid (“HEPES”) was allowed to flow at a rate of 300 μl / min to apply fluid force to the liposomes.
(DSPE-ビオチンを導入しているがナノ粒子を含有していないリポソームの分散液A-3の作製)
 まず、1,2-dioleoyl-sn-glycero-3-phosphocholine(リン脂質)、DSPE-ビオチンおよびRhodamine-DMPE(蛍光色素)をクロロホルムに溶解させて溶液を調製した。その後、この溶液からクロロホルムを乾燥させて除去し、蛍光色素含有リン脂質薄膜を得た。次に、HEPES緩衝液を上記リン脂質薄膜に添加し、27℃で1時間以上静置し、薄膜を水和することにより、DSPE-ビオチンを導入しているがナノ粒子を含有していないリポソームの分散液A-3を得た。
 光学顕微鏡による観察の結果、粒径10μm~20μm程度の、DSPE-ビオチンを導入しているがナノ粒子を含有していないリポソームが形成されたことが確認された。
(Preparation of dispersion A-3 of liposome into which DSPE-biotin is introduced but does not contain nanoparticles)
First, 1,2-dioleoyl-sn-glycero-3-phosphocholine (phospholipid), DSPE-biotin and Rhodamine-DMPE (fluorescent dye) were dissolved in chloroform to prepare a solution. Thereafter, chloroform was removed from the solution by drying to obtain a fluorescent dye-containing phospholipid thin film. Next, a HEPES buffer solution is added to the phospholipid thin film, and allowed to stand at 27 ° C. for 1 hour or longer, and the thin film is hydrated to introduce DSPE-biotin but no nanoparticles. A dispersion A-3 was obtained.
As a result of observation with an optical microscope, it was confirmed that liposomes having a particle size of about 10 μm to 20 μm, in which DSPE-biotin was introduced but not containing nanoparticles, were formed.
 図17に示すように、ナノ粒子を含有していないリポソームに対しても、せん断流によってリポソームを変形させて脂質膜の一部を伸長させることができ、他の実施例と同様の脂質ナノチューブ部が形成された。
 また、NBDにより脂質膜を蛍光標識(カラー写真では緑色に見える;図17のモノクロ写真では、上段および下段で白く見える部分)したジャイアントリポソームにローダミンによりラベル化したデキストランを内包させ、脂質ナノチューブ部の内水相の有無について検討した。その結果、共焦点レーザ―顕微鏡による観察から、実施例7により作製された脂質ナノチューブ部が内水相を保持(カラー写真では赤色に見える;図17のモノクロ写真では中段および下段で灰色に見える部分)している(チューブとなっている)ことが確認された。
As shown in FIG. 17, even for liposomes that do not contain nanoparticles, the liposome can be deformed by shear flow to extend a part of the lipid membrane, and the same lipid nanotube part as in the other examples Formed.
In addition, dextran labeled with rhodamine is encapsulated in giant liposomes that are fluorescently labeled with NBD (appearing green in the color photograph; white portions in the upper and lower parts in the monochrome photograph of FIG. 17). The presence or absence of the inner water phase was examined. As a result, from observation with a confocal laser-microscope, the lipid nanotube part produced in Example 7 retained the inner aqueous phase (the color photograph looks red; the middle and lower parts in FIG. 17 appear gray) ) (Contained as a tube).
 以上の実施例で示したように、ナノ粒子内包リポソームに対して、外部場(例えば、電場、磁場、または慣性力)を印加することにより、または、リポソームに対して、流体力を作用させることにより、脂質ナノチューブ部を有する脂質構造体を、簡易に、効率よく、制御性よく作製することができた。 As shown in the above examples, applying an external field (for example, an electric field, a magnetic field, or an inertial force) to the nanoparticle-encapsulating liposome or applying a fluid force to the liposome. As a result, a lipid structure having a lipid nanotube portion could be produced easily, efficiently and with good controllability.
 日本出願2011-043237の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese application 2011-043237 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.
10、31、51、61 ナノ粒子内包リポソーム
10A 脂質構造体
12 ナノ粒子
14 脂質膜
20 脂質ナノチューブ部
30、40、50、60、70 脂質構造体製造装置
32 カバーガラス
34、54 ゲル
36A、46A、56A、66A 陽極
36B、46B、56B、66B 陰極
42 カバーガラスチャンバー
44 ナノ粒子内包リポソーム含有ゲル
48 封止剤
49 カバーガラス
52 セル
55A 陽極液
55B 陰極液
62 スライドガラス
65、75 リンカー
71 リポソーム
76A 流入口
76B 流出口
72 下スライドガラス72(基材)
73 上スライドガラス73
F 外部場
10, 31, 51, 61 Nanoparticle-encapsulating liposome 10A Lipid structure 12 Nanoparticle 14 Lipid membrane 20 Lipid nanotube part 30, 40, 50, 60, 70 Lipid structure production apparatus 32 Cover glass 34, 54 Gel 36A, 46A, 56A, 66A Anode 36B, 46B, 56B, 66B Cathode 42 Cover glass chamber 44 Nanoparticle-encapsulating liposome-containing gel 48 Sealant 49 Cover glass 52 Cell 55A Anode solution 55B Catholyte 62 Slide glass 65, 75 Linker 71 Liposome 76A Inlet 76B Outlet 72 Lower slide glass 72 (base material)
73 Upper slide glass 73
F External field

Claims (9)

  1.  リポソームと、前記リポソームに内包された粒子と、を含む粒子内包リポソームを準備することと、
     前記粒子内包リポソーム中の粒子を外部場によって移動させることにより、前記粒子によって前記リポソームの脂質膜の一部を伸長させて脂質チューブ部を形成することと、
    を有し、
     前記リポソームの前記脂質膜の一部を伸長させて前記脂質チューブ部を形成するとき、前記リポソームは、前記外部場中での移動が制限されており、前記粒子が前記リポソームの脂質膜を押し出すように作用する、脂質構造体の製造方法。
    Preparing a particle-encapsulating liposome comprising a liposome and a particle encapsulated in the liposome;
    By moving particles in the particle-encapsulating liposomes by an external field, by extending a part of the lipid membrane of the liposomes by the particles, and forming a lipid tube part;
    Have
    When the lipid tube part is formed by extending a part of the lipid membrane of the liposome, the liposome is restricted from moving in the external field, so that the particle pushes out the lipid membrane of the liposome. A method for producing a lipid structure, which acts on
  2.  前記外部場が、電場、磁場、又は慣性力である請求項1に記載の脂質構造体の製造方法。 The method for producing a lipid structure according to claim 1, wherein the external field is an electric field, a magnetic field, or an inertial force.
  3.  前記リポソームの前記脂質膜の一部を伸長させて前記脂質チューブ部を形成するとき、前記リポソームは、基材上又はゲル中に保持されている請求項1又は請求項2に記載の脂質構造体の製造方法。 The lipid structure according to claim 1 or 2, wherein when the lipid tube part is formed by extending a part of the lipid membrane of the liposome, the liposome is held on a base material or in a gel. Manufacturing method.
  4.  前記粒子の体積平均粒子径が10nm~500nmである請求項1~請求項3のいずれか1項に記載の脂質構造体の製造方法。 The method for producing a lipid structure according to any one of claims 1 to 3, wherein the volume average particle diameter of the particles is 10 nm to 500 nm.
  5.  前記粒子内包リポソームの体積平均粒子径が2μm~100μmである請求項1~請求項4のいずれか1項に記載の脂質構造体の製造方法。 The method for producing a lipid structure according to any one of claims 1 to 4, wherein the particle-encapsulating liposome has a volume average particle diameter of 2 µm to 100 µm.
  6.  前記外部場が、2.0kV/m~10.0kV/mの強さの電場である請求項1~請求項5のいずれか1項に記載の脂質構造体の製造方法。 The method for producing a lipid structure according to any one of claims 1 to 5, wherein the external field is an electric field having a strength of 2.0 kV / m to 10.0 kV / m.
  7.  前記粒子が、カルボキシレート基で修飾されたポリスチレンナノ粒子である請求項1~請求項6のいずれか1項に記載の脂質構造体の製造方法。 The method for producing a lipid structure according to any one of claims 1 to 6, wherein the particles are polystyrene nanoparticles modified with a carboxylate group.
  8.  リポソームを準備することと、
     前記リポソームを外部からの流体力によって変形させることにより、前記リポソームの脂質膜の一部を伸長させて脂質チューブ部を形成することと、
    を有し、
     前記リポソームの前記脂質膜の一部を伸長させて前記脂質チューブ部を形成するとき、前記リポソームは、前記流体中での移動が制限されており、前記リポソームの脂質膜に対してせん断流が作用するようになされている、脂質構造体の製造方法。
    Preparing liposomes;
    Forming a lipid tube part by extending a part of the lipid membrane of the liposome by deforming the liposome by an external fluid force; and
    Have
    When the lipid tube part is formed by extending a part of the lipid membrane of the liposome, the liposome is restricted from moving in the fluid, and a shear flow acts on the lipid membrane of the liposome. A method for producing a lipid structure, wherein
  9.  前記リポソームの前記脂質膜の一部を伸長させて前記脂質チューブ部を形成するとき、前記リポソームは、基材上に保持されている請求項8に記載の脂質構造体の製造方法。 The method for producing a lipid structure according to claim 8, wherein when the lipid tube part is formed by extending a part of the lipid membrane of the liposome, the liposome is held on a base material.
PCT/JP2011/069337 2011-02-28 2011-08-26 Method for producing lipid structure WO2012117587A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011043237A JP2014101273A (en) 2011-02-28 2011-02-28 Method for producing lipid structure
JP2011-043237 2011-02-28

Publications (1)

Publication Number Publication Date
WO2012117587A1 true WO2012117587A1 (en) 2012-09-07

Family

ID=46757541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069337 WO2012117587A1 (en) 2011-02-28 2011-08-26 Method for producing lipid structure

Country Status (2)

Country Link
JP (1) JP2014101273A (en)
WO (1) WO2012117587A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11376218B2 (en) 2015-05-04 2022-07-05 Versantis AG Method for preparing transmembrane pH-gradient vesicles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3537098B1 (en) 2016-11-04 2021-07-21 Fujidenolo Co., Ltd. Measuring device
JP7160385B2 (en) * 2018-06-01 2022-10-25 ソガン ユニバーシティ リサーチ ファウンデーション Nanoparticle complex with improved intracellular uptake efficiency by surface modification using lipid and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004509778A (en) * 2000-09-28 2004-04-02 ナノキシス アーベー Fine network of containers and nanotubes
JP2008525797A (en) * 2004-12-23 2008-07-17 ナノキシス アーベー Equipment and its use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004509778A (en) * 2000-09-28 2004-04-02 ナノキシス アーベー Fine network of containers and nanotubes
JP2008525797A (en) * 2004-12-23 2008-07-17 ナノキシス アーベー Equipment and its use

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AKIRA ITO ET AL.: "Nano Jisei Biryushi o Mochiita Saisei Iryo eno Oyo", SOCIETY OF POWDER TECHNOLOGY, JAPAN - THE ASSOCIATION OF POWDER PROCESS INDUSTRY AND ENGINEERING, 3 July 2006 (2006-07-03), pages 13 - 16 *
CASTILLO, J.A. ET AL.: "Bionanotubule Formation from Surface-Attached Liposomes Using Electric Fields", LANGMUIR, vol. 25, no. 1, 6 January 2009 (2009-01-06), pages 391 - 396 *
INABA, T. ET AL.: "Formation and Maintenance of Tubular Membrane Projections Require Mechanical Force, but their Elongation and Shortening do not Require Additional Force", J. MOL. BIOL., vol. 348, no. 2, 29 April 2005 (2005-04-29), pages 325 - 333 *
TOMOMI MIZUTANI ET AL.: "Lipid tubule and liposome network formation in agarose gel", 85TH ANNUAL MEETING OF CHEMICAL SOCIETY OF JAPAN IN SPRING KOEN YOKOSHU II, 11 March 2005 (2005-03-11), pages 1402 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11376218B2 (en) 2015-05-04 2022-07-05 Versantis AG Method for preparing transmembrane pH-gradient vesicles

Also Published As

Publication number Publication date
JP2014101273A (en) 2014-06-05

Similar Documents

Publication Publication Date Title
Wang et al. Versatile phospholipid assemblies for functional synthetic cells and artificial tissues
Garni et al. Biopores/membrane proteins in synthetic polymer membranes
Keating Aqueous phase separation as a possible route to compartmentalization of biological molecules
Li et al. Deformation and poration of lipid bilayer membranes by cationic nanoparticles
Delcea et al. Stimuli-responsive LbL capsules and nanoshells for drug delivery
US8734816B2 (en) Porous nanoparticle supported lipid bilayer nanostructures
Kresse et al. Novel application of cellulose paper as a platform for the macromolecular self-assembly of biomimetic giant liposomes
US7803405B2 (en) Encapsulation of aqueous phase systems within microscopic volumes
WO2003015701A9 (en) Lipobeads and their production
Zuraw-Weston et al. Nanoparticles binding to lipid membranes: from vesicle-based gels to vesicle tubulation and destruction
JP5640196B2 (en) Method for producing microcapsules
WO2012117587A1 (en) Method for producing lipid structure
Yang et al. Dispersion of hydrophobic Co supracrystal in aqueous solution
Kang et al. Tunable and scalable fabrication of block copolymer-based 3D polymorphic artificial cell membrane array
JP5355456B2 (en) Quantum dot composite-containing vesicle and method for producing the same
Nair et al. Advances in giant unilamellar vesicle preparation techniques and applications
KR20110115660A (en) Fluorescence nanoporous silica nanopaticle coated with lipid bilayer and method of preparing the same
Villanueva et al. Liposome fusion mediated by hydrophobic magnetic nanoparticles stabilized with oleic acid and modulated by an external magnetic field
Li et al. Microfluidic construction of cytoskeleton-like hydrogel matrix for stabilizing artificial cells
RU2409668C1 (en) Method for producing immobilised bilayer vesicles
Sander et al. Robust microcompartments with hydrophobically gated shells
Tan et al. Engineering lipid tubules using nano-sized building blocks: the combinatorial self-assembly of vesicles
Basu et al. Preparation of giant unilamellar vesicles and solid supported bilayer from large unilamellar vesicles: Model biological membranes
Park et al. Selective and vertical microfabrication of lipid tubule arrays on glass substrates using template-guided gentle hydration
He et al. Biointerfacing luminescent nanotubes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP