WO2012036129A1 - Three-dimensionally moldable lattice structure - Google Patents

Three-dimensionally moldable lattice structure Download PDF

Info

Publication number
WO2012036129A1
WO2012036129A1 PCT/JP2011/070747 JP2011070747W WO2012036129A1 WO 2012036129 A1 WO2012036129 A1 WO 2012036129A1 JP 2011070747 W JP2011070747 W JP 2011070747W WO 2012036129 A1 WO2012036129 A1 WO 2012036129A1
Authority
WO
WIPO (PCT)
Prior art keywords
lattice
lattice structure
bridge
shape
points
Prior art date
Application number
PCT/JP2011/070747
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 茂樹
建梅 何
雄一 鄭
伸雄 佐々木
Original Assignee
株式会社ネクスト21
国立大学法人東京大学
学校法人工学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ネクスト21, 国立大学法人東京大学, 学校法人工学院大学 filed Critical 株式会社ネクスト21
Priority to JP2012533997A priority Critical patent/JP5942066B2/en
Publication of WO2012036129A1 publication Critical patent/WO2012036129A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2/2846Support means for bone substitute or for bone graft implants, e.g. membranes or plates for covering bone defects

Definitions

  • the present invention relates to a lattice structure that can be molded in a three-dimensional direction.
  • the present invention also relates to a lattice structure having a highly extensible structure and capable of adapting an elastic modulus to a composite material.
  • a lattice called a mesh has been used in order to improve physical strength while reducing the weight of an article or to maintain air permeability and liquid permeability.
  • Conventional grids are manufactured, for example, by braiding metal wires so as to cross each other or by punching and forming circular or polygonal holes in a metal plate by punching.
  • Patent Document 1 discloses a lattice having a network structure formed of a biocompatible material in order to reinforce a skull, a jawbone, or a bone defect.
  • This publication discloses a lattice in which four curved lattice bridges are connected at one lattice point, and one opening is defined by the four lattice bridges and the four lattice points.
  • Carbon fiber is light and has excellent mechanical properties (high specific strength, high specific modulus) and excellent properties derived from carbon (conductivity, heat resistance, low thermal expansion coefficient, chemical stability, self-lubricating property In recent years, it has been widely used for various purposes.
  • an object of the present invention is to provide a lattice structure having high stretchability and bending properties.
  • the above-mentioned problems related to composite materials are caused by the difference in elastic modulus of each composite material. Therefore, in order to solve the above problem, it is necessary to make the elastic modulus of one material to be combined coincide with the elastic modulus of another material. However, since the elastic modulus of a material depends on the material properties of the material, it is not possible to match the elastic modulus by changing the elastic modulus of the material itself.
  • an object of the present invention is to match the elastic modulus of the composite material by adjusting the elastic modulus according to the structure of the material. That is, an object of the present invention is to provide a highly stretchable lattice that can be adapted to the elastic modulus of a composite material.
  • the present invention can provide a lattice structure that is highly flexible and can be molded in a three-dimensional direction by devising the shape of the lattice opening defined by the lattice bridge and lattice points. It is based on the knowledge that.
  • the lattice structure according to the present invention includes a flat plate shape, a cylindrical shape, and a spherical shape.
  • the lattice structure 100 includes a plurality of lattice bridges 10 that are curved or refracted in an S shape and a plurality of lattice bridges 10 that connect end portions of three lattice bridges 10 among the plurality of lattice bridges 10. Grid point 20.
  • the plurality of lattice bridges 10 and the plurality of lattice points 20 define a plurality of lattice openings 30. At this time, each of the lattice openings 30 is defined by being surrounded by the six lattice bridges 10 and the six lattice points 20 among the plurality of lattice bridges 10 and the plurality of lattice points 20.
  • the present invention is a lattice structure based on a hexagon, and a mesh pattern is formed by connecting the basic hexagons without gaps, and each side of the hexagon is curved or refracted into an S shape. It will be.
  • Each of the lattice openings 30 thus defined includes one main opening 32 and six subordinate openings 34.
  • Each of the six subordinate openings 34 is defined so as to extend from the main opening 32.
  • the lattice structure 100 according to the present invention can be expanded and contracted not only in the vertical and horizontal directions but also in an oblique direction.
  • the shape of the structure can be deformed in a three-dimensional direction.
  • the lattice structure can easily change its elastic modulus by adjusting the width of the lattice bridge 10 and the bending rate of the lattice bridge 10. Therefore, even when the lattice structure 100 is composited with other materials, the elastic moduli of the materials can be matched. Further, by applying the lattice structure 100 according to the present invention to a composite material, it is possible to provide a structure that does not easily peel even when stress or impact is applied.
  • the six subordinate openings 34 are preferably defined so as to extend radially from the main openings 32 in the same direction.
  • the six lattice points 20 surrounding the lattice opening 30 are preferably located at the vertices of a regular hexagon formed by connecting the lattice points 20.
  • the lattice structure 100 can be expanded and contracted evenly even when it is pulled or compressed from any of the diagonal directions of the hexagon formed by connecting the lattice points 20. can do. Therefore, the lattice structure 100 has the same elastic modulus for the three diagonal directions in the hexagon.
  • the lattice structure 100 forms a hexagon by connecting the six lattice points 20 surrounding the lattice opening 30, it can be said to be an application of a so-called honeycomb structure.
  • a lattice structure having a honeycomb structure based on a hexagon has a higher degree of freedom in the expansion and contraction direction because the number of polygonal diagonal lines forming the lattice is larger than that of a lattice structure based on a quadrangle. Therefore, the lattice structure 100 according to the present invention can be deformed more flexibly than a lattice based on a quadrangle.
  • the lattice based on the quadrangle is different in stretchability and elastic modulus depending on the direction in which it is pulled.
  • the lattice structure 100 according to the present invention can be stretched or stretched from any direction. The elastic modulus can be made uniform.
  • the lattice structure 100 according to the present invention can be expanded and contracted in the three-dimensional direction, it has a uniform stress against impacts from all directions. Therefore, the lattice structure 100 according to the present invention can uniformly distribute the applied impact and pressure.
  • the lattice structure 100 is defined by six straight lattice bridges 10 and six lattice points 20 when the lattice bridge 10 curved in an S shape is a straight lattice bridge 10 that is not curved. It is preferable that the lattice opening 30 forms a regular hexagon.
  • the distance between the lattice points 20 connected via the lattice bridge 10 curved in an S shape is a straight line that does not curve the lattice bridge 10 curved in an S shape. It is preferable that the length of the straight lattice bridge 10 is 1 ⁇ 2 or less of the length of the lattice lattice bridge 10. That is, it is preferable that the distance between the lattice points 20 connected via the lattice bridge 10 curved in an S shape is extended more than twice by pulling the lattice bridge 10 into a straight line.
  • the bending rate of the S-shaped lattice bridge 10 In order to extend the S-shaped lattice bridge 10 more than twice as described above, the bending rate of the S-shaped lattice bridge 10, the length of the bridge portion of the lattice bridge 10, the thickness of the lattice bridge 10 is increased. You can adjust.
  • the lattice bridge 10 is a spring alloy material or a shape memory alloy, and preferably contains a Ti—Ni (titanium nickel) alloy. Since Ti—Ni alloy is a material with excellent spring characteristics, it is easier to match the elastic modulus with the material combined with the lattice bridge 10 by using the Ti—Ni alloy as the material of the lattice bridge 10. It becomes.
  • the lattice bridge 10 may be made of pure titanium or titanium.
  • the lattice structure 100 according to the first aspect of the present invention may have a flat plate shape.
  • the flat lattice structure can be used as a medical plate, for example, to reinforce the skull, jawbone, or bone defect.
  • the flat lattice structure it is possible to impart bending characteristics of the flat plate and elasticity of the vertical thickness by forming irregularities at each lattice point or bending the lattice bridge in the vertical direction.
  • the lattice structure 100 may be cylindrical.
  • the cylindrical lattice structure 100 is used for a medical stent, for example.
  • a stent is a medical device for expanding a tubular portion of a human body such as a blood vessel, trachea, esophagus, duodenum, large intestine, and biliary tract from inside a lumen.
  • the stent can be manufactured by laser-cutting a cylinder to which the lattice structure 100 is applied, or by forming the lattice structure 100 of the present invention by knitting a wire.
  • the cylindrical lattice structure can be used for an artificial tooth root of a dental implant. By making the elastic modulus of the artificial root and the alveolar bone closer, the stress concentration of the alveolar bone can be reduced, and the root can be prevented from loosening and detaching from the alveolar bone.
  • the lattice structure 100 according to the first aspect of the present invention may be formed in a cylindrical shape, and the structure may have a ring shape forming a ring.
  • the lattice structure 100 formed in a cylindrical ring shape can be used, for example, as a structure of a vehicle tire or a structure of an anti-skid device attached to the tire.
  • the lattice structure 100 according to the first aspect of the present invention may be spherical. Since the lattice structure 100 of the present invention can be expanded and contracted in a three-dimensional direction and has high bending characteristics, it can also have a spherical shape.
  • the lattice structure 100 of the present invention the hexagonal polygon for which the basic, it is possible to form the positive 12 side pairs or truncated icosahedron structure (so-called C 60 fullerene structure).
  • the lattice structure 100 according to the first aspect of the present invention can be used by being stacked on a plurality of layers.
  • the second aspect of the present invention relates to a multi-layer lattice structure 200 in which a plurality of lattice structures 100 are stacked.
  • An example of the multi-layer lattice structure 200 is a multi-layer lattice structure 200 formed by stacking two flat lattice structures 100.
  • the strength of the structure itself can be increased by overlapping the lattice structure 100 in a plurality of layers.
  • a preferred embodiment of the second aspect of the present invention relates to a multi-layer lattice structure 200 in which the lattice structure 100 is stacked with a plurality of layers shifted by a predetermined angle or a predetermined direction. Shifting the lattice structure 100 in a predetermined angle or in a predetermined direction means that the lattice structure 100 is not stacked on a plurality of layers and the lattice pattern inherent to each lattice structure 100 is not reproduced. This means that a lattice pattern that is not originally a lattice pattern of each lattice structure 100 is exposed when observed in a planar manner.
  • the structure corresponding to each of the displayed lattice patterns is improved.
  • the characteristics of can be demonstrated.
  • the two-layer lattice structure 100 is overlapped in two layers, the two-layer lattice structure 100 is overlapped to form a multi-layer lattice structure 200 in which an anisotropic lattice pattern appears. Accordingly, it is preferable that the tensile stress when the multi-layer lattice structure 200 is pulled in a certain specific direction and the tensile stress when pulled in another specific direction are different.
  • the multi-layer lattice structure 200 displays the lattice pattern having anisotropy, it is possible to provide a lattice having different stresses in the tensile direction. Therefore, for example, even when two or more materials having different elastic moduli are mixed, by applying the multi-layer lattice structure 200 having anisotropy, the elastic moduli are matched with each material. It is possible.
  • the multi-layer lattice structure is formed on the first lattice and the first lattice so as to overlap each other at a predetermined angle or in a predetermined direction.
  • the tensile stress when pulled in a specific direction may be different from the tensile stress when pulled in another specific direction.
  • the first grating and the second grating may be the grating structure 100 according to the first aspect of the present invention.
  • the third aspect of the present invention relates to a multi-layer three-dimensional lattice structure 300 in which a plurality of lattice structures are three-dimensionally joined.
  • the multi-layer three-dimensional lattice structure 300 includes at least two lattice structures 100 according to the first aspect of the present invention. That is, the multilayer lattice structure 300 includes at least a first lattice structure 100a and a second lattice structure 100b.
  • the first lattice structure 100a and the second lattice structure 100b are joined at at least one lattice point (20a, 20b). Any one or more of the lattice bridges (10a, 10b) whose ends are connected to the joined lattice points (20a, 20b) are erected in a direction perpendicular to the plane of the lattice structure.
  • the multi-layer lattice structure 300 can obtain arbitrary elasticity and strength not only in the planar direction of the lattice structure but also in the three-dimensional direction of the lattice structure. Therefore, according to the third aspect of the present invention, for example, other materials can be combined in the three-dimensional direction of the metal multi-layer lattice structure 300. That is, the multi-layer lattice structure 300 can be designed so as to obtain arbitrary elasticity and strength in the three-dimensional direction of the lattice structure, so that the elastic moduli of the composite materials can be matched. Therefore, according to the third aspect of the present invention, it is possible to provide a three-dimensional structure in which the composite material is less likely to be peeled off even when stress or impact is applied.
  • the multi-layer three-dimensional lattice structure 300 preferably includes at least three lattice structures 100. That is, the multi-layer lattice structure 300 includes at least a first lattice structure 100a, a second lattice structure 100b, and a third lattice structure 100c.
  • the second lattice structure 100b is located between the first lattice structure 100a and the third lattice structure 100c.
  • the lattice points 20b 1 located at one end portion of the lattice bridges 10b with second grating structure 100b is joined to the lattice point 20a of the first grating structure 100a.
  • the lattice point 20b 2 located at the other end portion of the lattice bridges 10b with second grating structure 100b is joined to the lattice point 20c of the third grating structure 100c.
  • At least the lattice bridge 10b with the second lattice structure 100b preferably rises in a direction perpendicular to the plane of the second lattice structure 100b.
  • any one or more of the lattice bridges 10a whose ends are connected to the lattice points 20a to which the first lattice structure 100a is joined rises in a direction perpendicular to the plane of the first lattice structure 100a.
  • any one or more of the lattice bridges 10c whose ends are connected to the lattice points 20c joined to the third lattice structure 100c are in a direction perpendicular to the plane of the third lattice structure 100c. It is preferable that it is upright.
  • the second lattice structure 100b is positioned between the first lattice structure 100a and the third lattice structure 100c, and the second lattice structure 100b. It is preferable to design the first and second lattice structures 100a and 100c so that the lattice bridge 10b is raised.
  • the lattice bridge 10b of the second lattice structure 100b is connected to the lattice bridge of the first lattice structure 100 and the third lattice structure 100c connected via the joined lattice points. It is preferable that the lattice bridge 10c also rises in the three-dimensional direction.
  • the multi-layered three-dimensional lattice structure 300 includes three or more lattice structures, thereby further improving the elasticity and strength in the three-dimensional direction.
  • the multi-layer three-dimensional lattice structure 300 may include four or more lattice structures 100.
  • the lattice structure according to the first aspect of the present invention may be one in which the lattice bridge 10 is refracted into an S shape.
  • the lattice bridge 10 is refracted at two points: an inner refraction point 17 projecting at an acute angle toward the inside of a certain lattice opening 30 and an outer refraction point 18 projecting at an acute angle toward the outside of the certain opening 30. It may be what you did.
  • the lattice opening 30 includes six hexagonal main openings 32 and six subordinates having a certain rotational direction extending from one end of each side of the main opening 32 to an extension line of each side.
  • a slack opening 34 is defined.
  • the “constant rotational directionality” means, for example, that each of the six subordinate openings 34 formed linearly is regularly 60 degrees compared to the adjacent subordinate openings 34. Means tilted.
  • the lattice opening 30 is basically formed by the hexagonal main opening 32 and the six subordinate openings 34 linearly extending with a certain rotational direction from each vertex of the recording angle. It has a relatively simple shape. For this reason, the lattice structure having the above-described configuration can be easily manufactured by punching a plurality of through holes having the same shape as the lattice openings 30 on a plate-like base. In general, the punching process is extremely productive, but the shape of the through hole to be drilled is limited. In this respect, since the structure having the above-described structure can be manufactured by punching, it has the advantage that it is extremely productive and can be realized at low cost.
  • the lattice bridge 10 of the lattice structure according to the first aspect of the present invention includes a first inner refraction point 17a and a second inner refraction point 17b that project at an obtuse angle toward the inside of a certain lattice opening 30, and
  • the light may be refracted at four points, ie, a first outer refraction point 18a and a second outer refraction point 18b that project at an obtuse angle toward the outside of a certain lattice opening 30.
  • the lattice opening 30 is on a dodecagonal main opening 32 in which an acute angle and an obtuse angle continue alternately, and an extension line of one side that forms the acute angle end from each acute angle end of the main opening 30.
  • Six secondary openings 34 are defined having an extended constant rotational direction.
  • the lattice opening 30 is basically formed by the hexagonal star-shaped main opening 32 and the six subordinate openings 34 linearly extending from each vertex of the hexagonal star with a certain rotational direction. This is also a relatively simple shape. For this reason, the lattice structure having the above-described structure can be manufactured at a low cost with high productivity by punching. Further, the lattice structure having the above structure has a lattice bridge 10 formed in an S-shape having four refraction points and stretches relatively flexibly, and thus has high stretchability and bending characteristics and is highly biocompatible.
  • a lattice opening defined by lattice bridges and lattice points is a shape based on a hexagonal polygon.
  • the lattice structure according to the present invention can be expanded and contracted in a three-dimensional direction and has high elasticity.
  • the present invention can provide a lattice structure capable of adapting an elastic modulus to a composite material.
  • FIG. 1 is a diagram showing the shape of a lattice structure according to the first aspect of the present invention.
  • FIG. 1A is an enlarged view of a part of the diagram shown in FIG.
  • FIG. 2 is a diagram showing the shape of the lattice structure according to the first aspect of the present invention.
  • FIG. 2A is an enlarged view of a part of the diagram shown in FIG.
  • FIG. 3 is a diagram showing the shape of the lattice structure according to the first aspect of the present invention.
  • FIG. 3A is an enlarged view of a part of the diagram shown in FIG.
  • FIG. 4 is a diagram showing the shape of the lattice structure according to the first aspect of the present invention.
  • FIG. 4A is an enlarged view of a part of the diagram shown in FIG. FIG.
  • FIG. 5 is a diagram showing the shape of the lattice structure according to the first aspect of the present invention.
  • FIG. 5A is an enlarged view of a part of the diagram shown in FIG.
  • FIG. 6 is a diagram showing the shape of the lattice structure according to the first aspect of the present invention.
  • FIG. 6A is an enlarged view of a part of the diagram shown in FIG.
  • FIG. 7 is a conceptual diagram for explaining an example of the design process of the lattice structure.
  • FIG. 8 is a conceptual diagram for explaining an example of use of the lattice structure according to the present invention.
  • FIG. 9 is a conceptual diagram for explaining an operation example of the lattice structure according to the present invention.
  • FIG. 10 is a conceptual diagram for explaining an operation example of the lattice structure according to the present invention.
  • FIG. 10A shows a lattice structure 100 having a ratchet structure.
  • FIG. 10B shows a tool for rolling the lattice structure 100 having a ratchet structure.
  • FIG. 11 is a diagram showing a cylindrical lattice structure. The cylindrical lattice structure is applied to, for example, a stent.
  • FIG. 12 is a diagram showing a lattice structure having a spherical shape.
  • FIG. 13 is a conceptual diagram showing a configuration of a multi-layer lattice structure according to the second aspect of the present invention.
  • FIG. 14 (a) to 14 (b) are diagrams showing lattice patterns of a multi-layer lattice structure according to the second aspect of the present invention.
  • FIG. 15 is a side view showing an example of a multi-layer three-dimensional lattice structure.
  • FIG. 16 is a perspective view showing an example of a multi-layer three-dimensional lattice structure.
  • FIG. 17 is a plan view for explaining a lattice structure included in the multi-layer three-dimensional lattice structure.
  • FIG. 18 is a schematic perspective view for explaining a state for forming a multi-layer three-dimensional lattice structure by superimposing a plurality of lattice structures.
  • FIG. 19 shows an example of a punching processing model of the lattice structure of the present invention.
  • FIG. 20 shows an example of a punching processing model of the lattice structure of the present invention.
  • FIG. 21 is a diagram for explaining pieces extracted from the lattice structure according to the present invention.
  • FIG. 22 is a photograph showing an example in which the lattice structure according to the present invention is applied to a living body (particularly a human bone).
  • FIG. 23 is a photograph showing an applied example of the lattice structure according to the present invention and the lattice structure for alveolar bone formation.
  • FIG. 24 is a photograph showing an example in which two lattice structures according to the present invention are pressed and connected using rivets.
  • FIGS. 1A to 6A are views showing the shape of the lattice structure 100 according to the first aspect of the present invention.
  • FIGS. 1A to 6A are enlarged views of parts of the diagrams shown in FIGS. 1B to 6B, respectively.
  • FIGS. 1 to 3 show a lattice in which the S-shaped lattice bridge 10 is relatively small
  • FIGS. 4 to 6 show a lattice in which the S-shaped lattice bridge 10 is relatively large.
  • 1 and FIG. 4 show a relatively thin grid with an S-shaped lattice bridge 10
  • FIGS. 2 and 5 show a grid with a thicker S-shaped grid bridge 10 than in FIGS. 1 and 4.
  • FIGS. 3 and 6 show a lattice in which the thickness of the S-shaped lattice bridge 10 is larger than that in FIGS. 2 and 5.
  • the shape of the lattice structure 100 according to the present invention will be described mainly with reference to FIG.
  • the lattice structure 100 includes a plurality of lattice bridges 10 and a plurality of lattice points 20, and a plurality of lattice openings 30 are defined by the plurality of lattice bridges 10 and the plurality of lattice points 20.
  • the lattice structure 100 includes a plurality of lattice bridges 10 that are curved in an S shape and a plurality of lattice points 20 that connect the ends of the three lattice bridges 10 among the plurality of lattice bridges 10.
  • the plurality of lattice bridges 10 and the plurality of lattice points 20 define a plurality of lattice openings 30.
  • Each of the lattice openings 30 is defined by being surrounded by six lattice bridges 10 and six lattice points 20 among the plurality of lattice bridges 10 and the plurality of lattice points 20. Note that the lattice opening 30 here does not physically exist, and a plurality of lattice bridges 10 and a plurality of lattice points 20 are provided by providing a plurality of lattice bridges 10 and a plurality of lattice points 20. It is an opening part formed between.
  • the number of the lattice bridges 10, the lattice points 20, and the lattice openings 30 defined by the lattice bridges 10 and the lattice points 20 may be appropriately increased or decreased depending on the size of the lattice structure 100. However, since the number of lattice bridges 10, lattice points 20, and lattice openings 30 are dependent on each other, if the number of certain elements is determined, the number of other elements is inevitably determined. .
  • the unit cell is defined by six lattice bridges 10 that are curved in an S-shape and six lattice points 20 that connect the ends of the lattice bridges 10.
  • the unit cell is surrounded by the six lattice bridges 10 and the six lattice points 20, thereby defining one lattice opening 30.
  • a lattice structure 100 is formed by continuously connecting a plurality of such unit lattices.
  • the unit cells are connected to each other via the lattice bridge 10 and the lattice points 20.
  • a certain lattice bridge 10 plays a role of connecting two unit lattices.
  • a certain lattice point 20 plays a role of connecting three unit lattices.
  • each lattice bridge 10 and the lattice point 20 play the role which connects several unit lattices, and unit lattices are connected continuously.
  • the lattice bridge 10 is curved in an S shape. That is, the lattice bridge 10 includes an outer curved portion 12 that is curved outward (R1) from the center of the lattice opening 30, and an inner curved portion 14 that is curved inward (R2) toward the center of the lattice opening 30. And a substantially straight bridge portion 16 connecting the outer curved portion 12 and the inner curved portion 14.
  • the lattice bridge 10 is formed in an S shape by alternately connecting the outer curved portion 12 and the inner curved portion 14 via the bridge portion 16.
  • the lattice bridge 10 curved in an S shape expands and contracts when the lattice structure 100 is compressed or pulled.
  • the lattice bridge 10 may be curved in an S shape so as to have anisotropy. For example, by increasing the curvature rate of one bridge portion 16 and decreasing the curvature rate of the other bridge portion 16 of the two bridge portions 16 that define one subordinate opening 34, the lattice bridge 10 is Anisotropy can be provided. That is, when the curvature rates of the two bridge portions 16 that define one subordinate opening 34 are different, the lengths of the two bridge portions 16 are also different.
  • the thickness of the lattice bridge 10 may be appropriately designed according to the application to which the lattice structure 100 is applied. Further, the thickness in the direction perpendicular to the 10 planes of the grid bridge may be appropriately designed according to the application to which the grid is applied. For example, by changing the thickness and thickness of the lattice bridge 10, the stretchability and elastic modulus of the lattice structure 100 can be freely adjusted. For example, with respect to the thickness of the lattice bridge 10, the lattice shown in FIG. 2 is thicker than the lattice shown in FIG. Further, the lattice shown in FIG. 3 is thicker than the lattice shown in FIG.
  • the thickness of the lattice bridge 10 may be, for example, 0.4 mm to 0.8 mm when the flat lattice structure 100 is used for fixing bone fragments or bridging a bone defect portion. It may be 5 mm to 0.7 mm, or 0.6 mm. Further, the thickness of the lattice bridge 10 may be made thicker when, for example, the flat lattice structure 100 is laminated on clothing and used as protective clothing. However, as the thickness of the lattice bridge 10, a thickness that is so thick as to contact the adjacent lattice bridge 10 cannot be adopted.
  • the thickness of the lattice bridge 10 may be, for example, 0.1 mm to 0.5 mm when the lattice structure 100 is used for fixing bone fragments or bridging a bone defect portion, or 0.2 mm to 0.2 mm. It may be 4 mm or 0.3 mm.
  • the length of the lattice bridge 10, particularly the length of the bridge portion 16 of the lattice bridge 10 may be appropriately designed according to the application to which the lattice structure 100 is applied.
  • the length of the bridge portion 16 the lattice shown in FIGS. 4 to 6 is longer than the lattice shown in FIGS.
  • the maximum extension distance when the lattice structure 100 is pulled can be adjusted by changing the length of the lattice bridge 10, particularly the length of the bridge portion 16.
  • the length of the bridge portion 16 be extended more than twice when the lattice structure 100 is pulled.
  • the length of the bridge portion 16 cannot be selected to be long enough to contact the adjacent lattice bridge.
  • the curvature of the outer music part 12 and the inner music part 14 is substantially the same. This curvature depends on the distance between the lattice points 20 connected via the lattice bridge 10 and the length of the bridge portion 16. That is, the closer the distance between the lattice points 20 connected via the lattice bridge 10 is, the larger the curvature becomes. Moreover, this curvature becomes large, so that the length of the bridge part 16 is long. Accordingly, the curvatures of the outer curved portion 12 and the inner curved portion 14 are determined so as to match the distance between the lattice points 20 connected via the lattice bridge 10 and the length of the bridge portion 16. do it.
  • the six S-shaped lattice bridges 10 included in the unit lattice are preferably hexagonal when the lattice structure 100 is pulled into a linear lattice bridge.
  • the hexagon is preferably a regular hexagon.
  • the lattice structure 100 is pulled with a certain force or more in the diagonal direction of the hexagon formed by connecting the lattice points 20, that is, in the directions of D 1, D 2, and D 3 shown in FIG. Then, the bending load of the outer curved portion 12 and the inner curved portion 14 of the lattice bridge 10 is released, and the lattice bridge 10 becomes linear.
  • the grid bridges 10 having the above-described configuration are connected via grid points 20. More specifically, a certain lattice point 20 connects one end of three lattice bridges 10 adjacent to each other among the plurality of lattice bridges 10. The other end of the lattice bridge 10 is connected to the end of another lattice bridge 10 at another lattice point 20.
  • the unit lattice includes six lattice points 20 among the plurality of lattice points 20 forming the lattice structure 100.
  • a hexagon is formed by connecting six lattice points 20 defining a unit lattice. This hexagon is a regular hexagon.
  • the lattice point 20 is located at the vertex of a regular hexagon.
  • the length of one side of the hexagon that is, the distance between two lattice points 20 connected by a certain lattice bridge 10 can be appropriately designed according to the application to which the lattice structure 100 is applied.
  • the lattice structure 100 when used for fixing a bone fragment or bridging a bone defect portion, it may be 10 mm to 100 mm, 20 mm to 80 mm, or 30 mm to 60 mm. Good. Further, for example, when the lattice structure 100 is laminated on clothes and used as protective clothing, it may be 10 mm to 50 mm, 20 mm to 40 mm, or 30 mm. .
  • the hexagon formed in this way has diagonal lines that run in the directions of D1, D2, and D3.
  • the two lattice bridges 10 positioned on the hexagonal sides parallel to the diagonal line extend.
  • the plurality of lattice bridges 10 and the plurality of lattice points 20 having the above configuration define a plurality of lattice openings 30.
  • Each of the lattice openings 30 is defined by being surrounded by six lattice bridges 10 and six lattice points 20 among the plurality of lattice bridges 10 and the plurality of lattice points 20. That is, six lattice bridges 10 are formed so as to connect the lattice points 20 located at the vertices of the hexagon, and the lattice openings 30 whose entire circumference is closed by the six lattice points 20 and the six lattice bridges 10. Is defined.
  • the lattice opening 30 is defined so as to include one main opening 32 and six subordinate openings 34.
  • the secondary openings 34 are defined so as to extend radially from the center of the main openings 32.
  • the subordinate opening 34 is defined because the lattice bridge 10 is curved in an S shape, and the lattice bridge 10 is mainly curved outward (R1) from the main opening 32. It is defined by including an outer curved portion.
  • Such secondary openings 34 preferably extend radially from the center of the main opening 32 in the same direction. Specifically, it is preferable that each of the subordinate openings 34 extend at an interval of 60 degrees as viewed from the center point of the main opening 32.
  • the lattice structure 100 having the above configuration can be manufactured using a known material.
  • the lattice structure 100 is preferably formed of a metal material. That is, it is preferable that the plurality of lattice bridges 10 and the plurality of lattice points 20 forming the lattice structure 100 are formed of a metal material. In particular, it is preferably formed of a Ti—Ni alloy. Since the Ti—Ni alloy has excellent spring characteristics, the stretchability of the lattice structure 100 can be improved. Therefore, it is easy to adjust the elastic modulus to which the lattice structure 100 is applied.
  • the lattice structure 100 may be formed of a shape memory alloy.
  • shape memory alloys are Ni—Ti (Ni 55%) alloy, CO—Ni—Al alloy, and Fe—Mn—Si alloy. It may be formed.
  • a bioabsorbable material polylactic acid, polyglycolic acid, polycaptolactone, or a combination thereof
  • the bioabsorbable material is a calcium phosphate artificial bone. It can also be used in combination with materials.
  • examples of the metal forming the lattice structure 100 include pure iron, extra mild steel, brass, copper, lead, aluminum, nickel, monel, titanium, and inconel.
  • examples of the alloy forming the lattice structure 100 include steel (Fe—C), Krupp steel, chromium molybdenum steel (Fe—Cr—Mo), manganese molybdenum steel (Fe—Mn—Mo), Yasugi steel, Stainless steel (Fe-Ni-Cr), maraging steel, 42 alloy (Fe-42Ni), red copper, silver (Cu-27Zn-18Ni), bronze (Cu-Ni), bronze (Cu-Au), duralumin ( Al-Cu), nichrome, and sun platinum.
  • an ⁇ alloy (SSAT-525, SSAT-811, SSAT-6242, etc.), an ⁇ - ⁇ alloy (SSAT-325, SSAT-64, SSAT-662, etc.), ⁇ alloy (SSAT-1023, SSAT-3864, SSAT-153) may be mentioned.
  • FIG. 7 is a conceptual diagram showing an example of a lattice design process according to the present invention.
  • the lattice structure 100 according to the present invention is designed in the order of FIGS. 7 (a), (b), (c), (d), (f), and (g). That is, first, as shown in FIG. 7A, a regular hexagon in which a circle with a diameter D is inscribed is defined.
  • the size of the lattice structure 100 in particular, the size of the unit lattice depends on the diameter D of the circle.
  • the diameter D may be adjusted as appropriate according to the use of the material to which the lattice structure 100 is applied.
  • the basic shape of the lattice bridge 10 curved in an S shape is designed based on the regular hexagon defined.
  • the basic shape of the lattice bridge 10 is set so that the center of the S-shape is located at the center of one side of the regular hexagon and both ends of the S-shape are located at the two corners of the regular hexagon sandwiching the one side. design.
  • the length of the lattice bridge 10 changes, so that the flexibility and maximum extension length of the lattice structure 100 can be adjusted.
  • FIG. 7B the basic shape of the lattice bridge 10 curved in an S shape is designed based on the regular hexagon defined.
  • the basic shape of the lattice bridge 10 is set so that the center of the S-shape is located at the center of one side of the regular hexagon and both ends of the S-shape are located at the two corners of the regular hexagon sandwiching the one side. design
  • the line width of the S-shaped basic shape is adjusted based on the designed S-shaped basic shape. Since the line width of the S-shaped basic shape corresponds to the thickness of the lattice bridge 10, the flexibility and strength of the lattice structure 100 can be adjusted by changing the line width of the S-shaped basic shape. Can do.
  • the S-shaped basic shape having a constant line width is inclined at different angles by 60 degrees so as to be positioned on each side of the regular hexagon. Form a degree pattern.
  • FIG. 7E the basic shape of the lattice opening 30 is extracted based on the formed 360 degree pattern.
  • the basic shape of the lattice opening 30 is extracted by connecting the S-shaped contacts located in the innermost part of the formed 360-degree pattern.
  • a basic pattern of the unit cell is formed by providing a line width to the basic shape of the extracted lattice opening 30.
  • the basic pattern of the unit cell formed in this way is rotationally symmetrical at intervals of 60 degrees.
  • the line width of the basic pattern of the unit cell is half the line width of the S-shaped basic shape adjusted in the step (c).
  • the lattice structure 100 is designed by combining a plurality of unit cell basic patterns having a half line width.
  • the line width, length, and bending rate of the lattice bridge 10 can be arbitrarily designed, thereby determining the shape of the unit lattice. If the shape of the unit cell is determined, the mesh pattern of the lattice structure 100 can be designed by connecting a plurality of unit cells.
  • the lattice structure 100 designed according to the above example can be manufactured by a known method.
  • the lattice structure 100 may be manufactured by pouring molten material into a mold having a designed lattice structure.
  • the lattice structure 100 may be manufactured by subjecting a desired material to wire cutting or laser cutting.
  • the lattice structure 100 may be manufactured by punching a desired material with a through hole having the same shape as the lattice opening (30).
  • the plurality of lattice bridges 10 and the plurality of lattice points 20 included in the lattice structure 100 are preferably integrally formed.
  • the lattice structure 100 can be expanded by joining a plurality of lattice structures.
  • the area of the lattice can be expanded while maintaining the mechanical characteristics such as shape followability and elasticity.
  • FIG. 8 is a conceptual diagram for explaining an example of use of the lattice structure 100 according to the present invention.
  • Another component 50 can be attached to the lattice structure 100 according to the present invention using the lattice opening 30.
  • nuts 40 are fitted into the lattice openings 30.
  • the nut 40 is a blind nut, and is preferably a hexagonal nut.
  • the nut 40 is formed with a screw hole at the center thereof, and can be screwed with a component 50 having a thread that matches the nut.
  • the lattice structure 100 can be used as a support member for the other component 50 by fixing the nut 40 to the lattice opening 30 by pressure bonding.
  • the lattice structure 100 according to the present invention when applied as a lattice structure for alveolar bone formation, it can be used for implant treatment by attaching a nut 40 to the lattice opening 30. That is, an artificial tooth (superstructure) 50 can be screwed and fixed to the nut 40 fitted in the lattice opening 30.
  • an artificial dental root is embedded in the alveolar bone, and the alveolar bone grows around the artificial dental root during a stable period (healing period). As a result, the implanted artificial dental root eventually becomes the alveolar bone. It will be firmly fixed to.
  • an abutment portion called an abutment is connected to the artificial tooth root, and a new crown is mounted on the abutment.
  • this stable period required a period during which the artificial dental root was firmly fixed to the alveolar bone, and usually a period of about 3 to 6 months was required.
  • the lattice structure 100 according to the present invention is used for implant treatment, the stability of the artificial tooth root and the artificial tooth 50 is increased, so that the dental implant can be fixed without waiting for bone growth.
  • a hole 22 is formed at the center of the lattice point 20 in the lattice structure 100.
  • the shape of the hole 22 may be formed in a triangular shape as shown in FIG. 14, or may be formed in a polygonal shape such as a quadrilateral, pentagon, hexagon, or star.
  • a dedicated driver suitable for the shape of the hole 22 is inserted into the hole 22. This driver is preferably one that is simultaneously inserted into the six holes 22 of the unit lattice. And the driver inserted in each hole 22 is rotated in the arrow direction shown in FIG. In this way, the unit cell is expanded by rotating the drivers inserted into the six holes 22.
  • each of the lattice bridges 10 curved in an S-shape is pulled so as to rotate, and the curvature of the lattice bridge 10 is reduced.
  • the lattice bridge 10 that is curved in an S-shape is nearly linear, so that the unit lattice is expanded as a whole.
  • the lattice structure 100 that performs such an operation can be applied to an artificial bone, for example. That is, since the lattice structure 100 including the lattice holes 22 can gradually expand the unit lattice by the above-described operation of the driver, it can be adapted to the growth of the human bone without performing an operation for replacing the artificial bone.
  • the artificial bone can be expanded.
  • a saddle-shaped pawl portion 15 projecting inward of the lattice opening 30 is formed on the inner curved portion 14 of the lattice bridge 10 in the lattice structure 100.
  • the pawls 15 are formed in each of the inner curved portions 14 of the lattice bridge 10 and limit the rotation direction of the driver 60 inserted through the lattice opening 30.
  • a gear 62 is formed on a part of the middle pillar of the driver 60. When the driver 60 is inserted through the lattice opening 30, the gear 62 of the driver 60 and the pawl 15 of the lattice structure 100 are engaged.
  • the gear 62 only needs to have a shape that engages with the pawl 15, and may be, for example, a hexagon or a windmill having a hexagonal protrusion.
  • the gear 62 of the driver 60 and the pawl 15 of the lattice structure 100 form a so-called ratchet mechanism.
  • the gear 62 of the driver 60 is restricted from rotating in the direction of the arrow shown in FIG.
  • the lattice structure 100 and the driver 60 can be fixedly joined without loosening.
  • the lattice structure 100 expands and expands. That is, the unit cell expands and expands when the driver 60 inserted into the lattice opening 30 rotates in the direction of the arrow. That is, when the driver 60 rotates in the direction of the arrow, each of the lattice bridges 10 that are curved in an S shape is unfolded so as to rotate, and the curvature of the lattice bridge 10 is reduced. When the curvature of the lattice bridge 10 is reduced, the lattice bridge 10 that is curved in an S shape is close to a straight line, so that the unit lattice is expanded as a whole.
  • FIG. 11A shows an example of a lattice structure 100 having a cylindrical shape.
  • the lattice structure 100 according to the present invention can be formed in a cylindrical shape by curving the lattice structure.
  • the lattice structure 100 according to the present invention is highly flexible, it can have a cylindrical shape with a smaller diameter.
  • the lattice structure 100 according to the present invention can be stretch-molded in a three-dimensional direction and has high flexibility as described above, the cylindrical lattice structure 100 is applied to various uses. be able to.
  • the cylindrical lattice structure 100 can be applied to an artificial tooth root (fixture) used for implant treatment. That is, an artificial tooth root to be embedded in the gum of a patient undergoing implant treatment is formed by the cylindrical lattice structure 100.
  • an artificial tooth root to be embedded in the gum of a patient undergoing implant treatment is formed by the cylindrical lattice structure 100.
  • the amount and thickness of the alveolar bone and the shape of the neck of the jaw of the patient undergoing implant treatment vary.
  • external forces and impacts from all directions continue to be applied to the artificial roots embedded in the patient's gums, so material rigidity and structural flexibility are required to extend the product life. It is done.
  • the artificial tooth root to which the lattice structure 100 according to the present invention is applied can be flexibly molded, it can be adapted to the biological characteristics of the patient to be treated.
  • the artificial tooth root to which the lattice structure 100 according to the present invention is applied ensures the rigidity required for the artificial tooth root by using a metal material, and at the same time disperses the impact from the outside by the structural flexibility. Can do.
  • cylindrical lattice structure 100 can be applied to a column (metal column) used for a building earthquake-proof base. Since the present invention can be expanded and contracted in a three-dimensional direction and has high flexibility, the impact caused by an earthquake can be distributed over the entire column and damage to the column can be prevented.
  • the cylindrical lattice structure 100 may be applied to a stent.
  • a stent to which the present invention is applied and a balloon disposed in the stent are inserted into a stenotic portion of a coronary artery using a catheter.
  • the stent is also expanded by inflating the balloon. If the balloon catheter is withdrawn leaving the expanded stent in the coronary artery, the stent will continue to support the stenosis from the inside. Thus, coronary stenosis is improved.
  • a drug that prevents restenosis may be eluted from the surface of the stent.
  • the lattice structure 100 since the lattice structure 100 has high flexibility and stretchability, the lattice structure 100 can work suitably when applied to a stent.
  • the cylindrical lattice structure 100 can be easily bent in a three-dimensional direction, it can be applied to, for example, a body portion of a medical endoscope (fiber scope).
  • the cylindrical lattice structure 100 has excellent biocompatibility because it can expand and contract in a three-dimensional direction and has high flexibility. Therefore, for example, it can be applied to a thrust spacer for medical use.
  • the cylindrical lattice structure 100 can also be applied to a mechanical structure that is highly flexible and requires light weight. Therefore, for example, the cylindrical lattice structure 100 can be applied to a golf club shaft or fishing rod that requires high torque and light weight.
  • cylindrical lattice structure 100 can be easily curved in the three-dimensional direction, it can also be formed in an annular shape (doughnut shape).
  • the cylindrical annular lattice structure 100 can be used, for example, as a structure of a vehicle tire or a structure of an anti-skid device attached to the tire.
  • FIG. 12 is a conceptual diagram illustrating an example of a lattice structure 100 having a spherical shape.
  • the lattice structure 100 according to the first aspect of the present invention may be spherical. Since the lattice structure 100 of the present invention can be expanded and contracted in a three-dimensional direction and has high bending characteristics, it can also have a spherical shape.
  • the lattice structure 100 of the present invention since a base of hexagonal polygon, it is possible to form the truncated icosahedron structure (so-called C 60 fullerene structure).
  • the spherical lattice structure 100 can be applied to, for example, an elastic sphere that requires heat resistance.
  • the spherical lattice structure 100 can be maintained in rigidity by using a metal material, while a spherical body having a high elastic modulus can be provided by the structural spring characteristics of the lattice structure.
  • a game ball ping-pong ball, golf ball, soccer ball having the lattice pattern of the present invention may be manufactured.
  • the multi-layer lattice 200 includes a plurality of lattice structures 100 according to the first aspect of the present invention.
  • the multi-layer lattice 200 includes two lattice structures 100, and the second lattice structure 100b is superimposed on the first lattice structure 100a.
  • the multi-layer lattice 200 may be welded by a known method at a portion where a plurality of lattice structures 100 overlap. For example, welding may be performed by laser welding or resistance welding.
  • a plurality of lattice structures 100 may be pressed by using rivets (particularly blind rivets).
  • the multi-layer lattice 200 is formed by stacking the lattice structures 100 having different patterns, that is, the lattice structures 100 having different thicknesses of the lattice bridge 10, the length of the bridge portion 16 of the lattice bridge 10, and the curvature of the lattice bridge 10. However, it is preferable to stack the lattice structures 100 having the same pattern.
  • the multi-layer lattice 200 is formed by superimposing two-layer lattice structures (100a, 100b) shifted in a predetermined angle or a predetermined direction.
  • FIG. 14A is a diagram in which a second lattice structure 100b is superimposed on the first lattice structure 100a while being shifted 90 degrees to the left.
  • one of the main openings 32 of the lattice opening 30 of the first lattice structure 100a and one of the main openings 32 of the lattice opening 30 of the second lattice structure 100b are:
  • the second lattice structure 100b is superimposed at the matching position.
  • FIG. 14B is a diagram in which the second lattice structure 100b is superimposed on the first lattice structure 100a while being shifted about 45 degrees to the left.
  • FIG. 14C is a diagram in which the second lattice structure 100b is superimposed on the first lattice structure 100a while being shifted by about a half of the unit lattice in the lower left direction.
  • the second lattice structure 100b is superimposed so that the unit lattice of the second lattice structure 100b is located in the middle of the unit lattices that are continuous in the oblique direction of the first lattice structure 100a.
  • the two gratings (100a, 100b) are superimposed on the plane of the multi-layer grating 200 by shifting them in a predetermined angle or in a predetermined direction.
  • a pattern having anisotropy is expressed.
  • the multi-layer lattice 200 is formed such that the tensile stress when pulled in a certain specific direction is different from the tensile stress when pulled in another specific direction.
  • the two-layer lattice structures (100a, 100b) are regularly shifted in a predetermined angle or a predetermined direction so as to be regularly formed in a planar shape of the multi-layer lattice 200.
  • the pattern may be exposed.
  • the second lattice structure 100b is superimposed on the first lattice structure 100a while being shifted by about a half of the unit lattice in the lower right direction.
  • the second lattice structure 100b is superimposed at a position where the lattice point 20 of the first lattice structure 100a coincides with the lattice point 20 of the second lattice structure 100b.
  • the plurality of lattices 200 formed in such a manner are formed so as to display a regular pattern based on a hexagon on a plane.
  • the multi-layer lattice 200 having such a honeycomb structure is excellent in mechanical strength.
  • the lattice structure 100 or the multi-layer lattice 200 may be laminated on clothes and used as protective clothing. That is, the protective clothing is formed by bonding or braiding the lattice structure 100 or the multi-layer lattice 200 on the surface of the clothing. As described above, since the lattice structure 100 or the multi-layer lattice 200 has high flexibility, it is possible to form a protective clothing that is lightweight and excellent in wearability.
  • the present invention can be applied to various applications in which a lattice structure or a mesh structure is used.
  • FIG. 15 is a side view showing an example of a multi-layer three-dimensional lattice structure.
  • FIG. 16 is a perspective view showing an example of the multi-layered three-dimensional lattice structure 16.
  • the multi-layered three-dimensional lattice structure 300 includes a plurality of lattice structures 100.
  • the multi-layer three-dimensional lattice structure 300 is formed by overlapping the planes of the plurality of lattice structures 100 and joining the two lattice structures 100 facing each other in the thickness direction of the plurality of lattice structures 100. By pulling on, it becomes a three-dimensional structure.
  • the multi-layer three-dimensional lattice structure 300 includes at least a first lattice structure 100a and a second lattice structure 100b, and lattice points 20a of the first lattice structure 100a and the lattices of the second lattice structure.
  • the point 20b is joined.
  • the lattice bridge 10a and the second lattice of the first lattice structure 100a are pulled. Both or one of the lattice bridges 10b of the structure 100b rises in the thickness direction of the lattice structure.
  • the lattice structure superimposed on a plurality of layers becomes a three-dimensional structure.
  • the first lattice structure 100a and the second lattice structure 20b may be joined at at least one lattice point (20a, 20b), and all the lattice points (20a, 20b) are joined. It may be.
  • the number of stacked lattice structures may be two or more, three, or four or more.
  • the second lattice structure 100b is located between the first lattice structure 100a and the third lattice structure 100c.
  • grid point 20b 1 located at one end portion of the lattice bridges 10b it is joined to the lattice point 20a of the first grating structure 100a.
  • the lattice point 20b 2 positioned at the other end of the lattice bridge 10b of the second lattice structure 100b is joined to the lattice point 20c of the third lattice structure 100c.
  • the lattice points (20b 1 , 20b 2 ) located at both ends of the lattice bridge 10b of the second lattice structure 100b are the lattice points 20a of the first lattice structure 100a and the third lattice structure, respectively.
  • the lattice bridge 10b of at least the second lattice structure 100b rises by pulling in the thickness direction of the lattice structure while being joined to the lattice point 20c of 100c.
  • the lattice bridge 10b of the second lattice structure 100b may be raised and the lattice bridge 10a of the first lattice structure 100a or the lattice bridge 10c of the third lattice structure 100c may be raised.
  • the first lattice structure 100a and the third lattice structure 100c are connected via the lattice bridge 10b of the second lattice structure 100b.
  • the number of the lattice bridges 10b of the second lattice structure 100b that connects the first lattice structure 100a and the third lattice structure 100c may be at least one, and two or more. Also good.
  • FIGS. 15 and 16 there may be a portion where the lattice bridges of the lattice structure are joined.
  • the joined lattice bridges do not stand up, but by joining the lattice bridges, the adhesive strength of the laminated lattice structures can be improved.
  • FIG. 17 is a schematic plan view showing an extracted lattice structure (for example, the second lattice structure 100b) positioned between the lattice structures.
  • FIG. 18 is a schematic perspective view for explaining a state in which a plurality of lattice structures are stacked and joined.
  • black circles indicate lattice points bonded to the upper layer lattice structure
  • white circles indicate lattice points bonded to the lower layer lattice structure.
  • black circle and “white circle” are conceptually shown for explanation, and do not actually exist.
  • the second lattice structure 100b positioned between the first lattice structure 100a and the third lattice structure 100c has lattice points joined to the upper lattice structure.
  • upper layer junction lattice point 20b 1 and lower layer junction lattice point 20b 2 which is a lattice point joined to the lower layer lattice structure.
  • the upper-layer junction lattice point 20b 1 is joined to the lattice point 20b of the first lattice structure 100a
  • the lower-layer junction lattice point 20b 2 is joined to the lattice point 20b of the third lattice structure 100c.
  • the lattice bridge 10b connected to the upper bonding grid point 20b 1 and the lower layer bonding grid point 20b 2 is responsible for connecting the lattice structure disposed in the upper layer and lower layer.
  • FIG. 18 shows an example in which three lattice structures, that is, a first lattice structure 100a, a second lattice structure 100b, and a third lattice structure 100c are stacked.
  • the second lattice structure 100b is located between the first lattice structure 100a and the third lattice structure 100c.
  • the second grating structure 100b includes an upper bonding grid point 20b 1 and the lower layer bonding grid point 20b 2.
  • the first grating structure 100a that is located on the upper layer of the second grating structure 100b has a lower bonding grid point 20a 2.
  • the third grid structure 100c positioned in the lower layer of the second grating structure 100b includes an upper bonding grid point 20c 1. Then, the upper bonding grid point 20b 1 of the lower bonding grid point 20a 2 of the first grating structure 100a second grating structure 100b are joined together. Further, the upper bonding grid point 20c 1 of the lower bonding grid point 20b 2 of the second grating structure 100b third grating structure 100c are bonded to each other. In such a state, by pulling the laminated lattice structure in the thickness direction, a multi-layered three-dimensional lattice structure 300 in which three lattice structures are laminated is formed.
  • first lattice structure 100a and the second lattice structure 100b are joined, the back surface of the first lattice structure 100a and the surface of the second lattice structure 100b are joined.
  • second lattice structure 100b and the third lattice structure 100c are joined, the back surface of the second lattice structure 100b and the surface of the third lattice structure 100c are joined.
  • the configuration of the multi-layered three-dimensional lattice structure described above is an example. In other words, various configurations other than the above are adopted as long as the lattice bridge can be raised by superimposing the planes of a plurality of lattice structures to form a three-dimensional lattice structure. Is possible.
  • the above-described multi-layered three-dimensional lattice structure can be used for various purposes.
  • it can be used as an artificial vertebral body, an intervertebral body spacer, or a bone filling material.
  • An artificial vertebral body replaces a damaged vertebral body after extraction, and is required to be elastic and flexible.
  • the intervertebral body spacer is used to adjust the distance between the upper and lower vertebral bodies (intervertebral height) to an appropriate value with an adjusting device and maintain the distance.
  • the bone prosthetic material is a treatment tool filled in a collapsed vertebral body in order to treat a vertebral body compression fracture in which the vertebral body collapses due to trauma, osteoporosis or the like.
  • the multi-layered three-dimensional lattice structure according to the present invention can be designed with any elasticity and strength and is excellent in biocompatibility, it is possible to create an implant material having the same physical properties as a living bone. it can.
  • the multi-layer three-dimensional lattice structure can be used not only for medical purposes but also for industrial purposes such as composite materials with plastic materials.
  • the structure is formed by combining a metal multi-layer solid and another plastic material, the elasticity and strength of the multi-layer solid lattice structure can be adapted to the plus kick material.
  • the several-layer three-dimensional lattice structure can be suitably used as, for example, a structure of a metal cage, a spring block, or a vibration isolator.
  • punching model Next, a model for punching the lattice structure of the present invention will be described.
  • punching processing for forming a through hole having a desired shape has high productivity and low production cost compared to wire cutting and laser cutting.
  • the shape that can be punched is limited to a relatively simple shape, and it is difficult to perform punching for a complicated shape having a continuous curve. Therefore, in the following, a lattice structure that is designed with a relatively simple shape and can be easily manufactured by punching will be described.
  • the lattice bridge 10 has an inner refraction point 17 projecting at an acute angle toward the inside of a certain lattice opening 30 and an outer refraction projecting at an acute angle toward the outside of the certain opening 30.
  • the two points 18 are refracted into an S shape.
  • the shape of the lattice bridge 10 can also be referred to as being refracted into a Z shape.
  • the angle between the inner refraction point 17 and the outer refraction point 18 is, for example, 60 degrees.
  • each lattice opening 30 is defined by being surrounded by six lattice bridges 10 and six lattice points 20. That is, the lattice opening 30 includes a hexagonal main opening 32 and six subordinate openings having a certain rotational direction extending from one end of each side of the main opening 32 onto an extension line of each side. A portion 34 is defined.
  • Constant rotational directionality means, for example, that each of six subordinate openings 34 formed in a straight line is regularly 60 degrees in comparison with the adjacent subordinate openings 34. It means that it is inclined to.
  • the main opening 32 is preferably a regular hexagon.
  • the subordinate opening part 34 is linear form.
  • the lattice bridge 10 has a shape that is refracted at two points of the inner refraction point 17 and the outer refraction point 18, and all the lattice bridges 10 have substantially the same shape. However, it can be manufactured by punching the plurality of lattice openings 30. For this reason, the lattice structure shown in FIG. 19 can be manufactured with high productivity and at low cost, and is suitable for mass production.
  • the lattice bridge 10 includes a first inner refraction point 17 a and a second inner refraction point 17 b that project at an obtuse angle toward the inside of a certain lattice opening 30, and the certain lattice opening.
  • the light is refracted at four points, ie, a first outer refraction point 18a and a second outer refraction point 18b, which project at an obtuse angle toward the outside of 30.
  • the angle of each refraction point is 120 degrees, for example.
  • each lattice opening 30 is defined by being surrounded by six lattice bridges 10 and six lattice points 20. For this reason, the lattice opening 30 extends on the extended line of one side that forms the acute angle end from each acute angle end of the main opening 30 and a dodecagonal main opening 32 in which an acute angle and an obtuse angle continue alternately.
  • Six secondary openings 34 having a constant rotational direction are defined.
  • An example of the acute angle of the main opening 32 is 60 degrees.
  • An example of the obtuse angle of the main opening 32 is 240 degrees.
  • the lattice opening 30 is preferably a regular hexagonal star shape.
  • the subordinate opening part 34 is linear form.
  • the lattice structure shown in FIG. 20 can also be manufactured by punching because the lattice opening 30 has a relatively simple shape. Furthermore, in the lattice structure shown in FIG. 20, the lattice bridge 10 is formed in an S-shape having four refraction points, and can expand and contract relatively flexibly. Therefore, the lattice structure shown in FIG. 20 can be molded flexibly, and has an advantage that it is easily adapted to the biological characteristics of a patient receiving an implant treatment, for example.
  • FIG. 21 shows a piece 400 extracted from the lattice pattern of the lattice structure 100 according to the present invention.
  • the piece 400 has substantially the same shape as the lattice opening 30 of the lattice structure 100.
  • the pieces 400 can be spread without gaps when connected. Since the piece aggregate in which the pieces 400 are spread has a large area bonded between the pieces 400, the frictional force between the pieces 400 is high and cannot be easily detached. In addition, since the piece aggregate is isotropic, it has a uniform stress against impacts from all directions. Therefore, the piece 400 can be suitably used as, for example, a tile spread on the road. In addition, since the piece aggregate in which the pieces 400 are spread expresses a very complicated geometric pattern, the pieces 400 can be used as, for example, pieces of a jigsaw puzzle.
  • FIG. 22 is a photograph showing an example in which the lattice structure according to the present invention is applied to a human bone.
  • a plate-like lattice structure is cut into a size corresponding to the shape of a human bone to be applied, and attached to a human skull, jaw bone, femur, and joint.
  • the lattice structure on the flat plate is curved three-dimensionally to fix bone fragments or bridge bone defects, and is fixed to various human bones by bone screws.
  • the lattice structure of the present invention is flexibly curved, not only a flat bone region, but also a bone surface curved in an uneven shape or a spherical shape is brought into close contact. Can be installed.
  • FIG. 23 is a photograph showing an example in which the lattice structure according to the present invention is applied as a lattice structure for alveolar bone formation.
  • the lattice structure according to the present invention when used for alveolar bone formation, nuts are fitted into the lattice openings. Artificial teeth (superstructure) are screwed and fixed to the nuts fitted in the lattice openings.
  • the lattice structure according to the present invention can be used as an implant.
  • the stability of the artificial tooth root and the artificial tooth is increased, so that the dental implant can be fixed without waiting for bone growth.
  • FIG. 24 is a photograph showing an example in which two lattice structures according to the present invention are pressed and connected using rivets.
  • the grid structure according to the present invention can expand the area of the structure by pressing the plurality of grid structures with rivets and continuing to connect them.
  • a rivet especially a blind rivet
  • the area of the lattice can be expanded while maintaining mechanical characteristics such as shape followability and elasticity.
  • the lattice structure according to the present invention can be molded in a three-dimensional direction.
  • the lattice structure according to the present invention is flexible and has high stretchability. Therefore, the lattice structure according to the present invention is, for example, a lattice structure on a flat plate that requires biocompatibility, a cylindrical lattice structure such as a stent or an implant, and a lattice structure formed into a spherical shape. It can be suitably used.

Abstract

[Problem] The objective of the present invention is to provide a flexible and highly stretchable lattice. Also, the objective of the present invention is to provide a lattice that, by adjusting the modulus of elasticity by means of the structure of the material thereof, can be caused to conform to the modulus of elasticity of a material to be composited. [Solution] The lattice structure (100) includes: a plurality of lattice bridges (10) that curve or bend in an S-shape; and a plurality of lattice points at which the ends of three lattice bridges (10) from among the plurality of lattice bridges (10) are joined. Also, the plurality of lattice bridges (10) and the plurality of lattice points (20) demarcate a plurality of lattice openings (30). Here, each of the lattice openings (30) is demarcated by means of being enclosed by six lattice bridges (10) and six lattice points (20) among the plurality of lattice bridges (10) and the plurality of lattice points (20). As a result, the lattice structure (100) is flexible and has high stretchability.

Description

三次元成形可能な格子構造体Three-dimensional formable lattice structure
 本発明は,三次元方向に成形可能な格子構造体に関する。また,本発明は,高度に伸縮可能な構造を有し,複合される材料に弾性率を適合させることができる格子構造体に関する。 The present invention relates to a lattice structure that can be molded in a three-dimensional direction. The present invention also relates to a lattice structure having a highly extensible structure and capable of adapting an elastic modulus to a composite material.
 従来から,例えば,物品の軽量化を図りつつ物的強度を向上させたり,通気性や通液性を保持するためにメッシュと称される格子が用いられている。従来の格子は,例えば金属線を交差するように編み込んだり,パンチによって金属板に円形や多角形の孔を貫通形成することにより製造される。 Conventionally, for example, a lattice called a mesh has been used in order to improve physical strength while reducing the weight of an article or to maintain air permeability and liquid permeability. Conventional grids are manufactured, for example, by braiding metal wires so as to cross each other or by punching and forming circular or polygonal holes in a metal plate by punching.
 また,特開平10-291173号公報(特許文献1)には,頭骨や顎骨,又は骨欠損部を補強するために,生体適合材料で形成された網状構造を有する格子が開示されている。この公報には,湾曲した4つの格子橋を1の格子点で連結し,4つの格子橋と4つの格子点により,1つの開口部が画定される格子が開示されている。 In addition, Japanese Patent Laid-Open No. 10-291173 (Patent Document 1) discloses a lattice having a network structure formed of a biocompatible material in order to reinforce a skull, a jawbone, or a bone defect. This publication discloses a lattice in which four curved lattice bridges are connected at one lattice point, and one opening is defined by the four lattice bridges and the four lattice points.
 しかしながら,特許文献1に開示されているような格子では,開口部の形状が略四角形で形成されているため,縦及び横の二次元方向にしか伸縮しない。従って,従来の格子は,伸縮性や曲げ特性に乏しく,例えば生体適合させる格子構造体としては十分にその効果を奏し得ないものであった。 However, in the lattice as disclosed in Patent Document 1, since the shape of the opening is formed in a substantially square shape, it expands and contracts only in the vertical and horizontal two-dimensional directions. Therefore, the conventional lattice is poor in stretchability and bending properties, and for example, cannot be sufficiently effective as a lattice structure for biocompatibility.
 一方,例えば金属材料とカーボンファイバのような2つの材料を,複合して用いる場合がある。カーボンファイバは,軽く,優れた機械的な性質(高比強度,高比弾性率)と,炭素質に由来する優れた特性(導電性,耐熱性,低熱膨張率,化学安定性,自己潤滑性及び高熱伝導性など)を併せもつものであるため,近年では様々な用途で汎用的に用いられているものである。 On the other hand, there are cases where two materials such as a metal material and a carbon fiber are used in combination. Carbon fiber is light and has excellent mechanical properties (high specific strength, high specific modulus) and excellent properties derived from carbon (conductivity, heat resistance, low thermal expansion coefficient, chemical stability, self-lubricating property In recent years, it has been widely used for various purposes.
 しかしながら,このような金属材料とカーボンファイバの複合材料に,張力や衝撃がかかると,これら両材料の弾性率が大きく異なることが原因となり,両材料の間に剥離が生じ,破断してしまうという問題があった。 However, when a composite material of such a metal material and carbon fiber is subjected to tension or impact, the elastic modulus of the two materials is greatly different, causing separation between the two materials and breaking. There was a problem.
 また,例えば,頭骨や顎骨,又は骨欠損部を補強するためには,金属のプレートを骨の補強部に適用する必要がある。このような場合に,金属プレートと皮質骨の弾性率が異なると,骨のへの応力が炎症反応を起こし骨吸収,消失,また骨に損傷を与えるという問題があった。 Also, for example, in order to reinforce the skull, jawbone, or bone defect, it is necessary to apply a metal plate to the bone reinforcement. In such a case, if the elastic modulus of the metal plate and the cortical bone are different, the stress on the bone causes an inflammatory reaction, causing bone resorption, loss, and damage to the bone.
特開平10-291173号公報JP 10-291173 A
 そこで,本発明は,伸縮性や曲げ特性が高い格子構造体を提供することを目的とする。 Therefore, an object of the present invention is to provide a lattice structure having high stretchability and bending properties.
 また,上記した複合材料に関する問題は,複合された材料それぞれの弾性率が異なることにその原因がある。従って,上記問題を解決するためには,複合されるある材料の弾性率を,他の材料の弾性率に一致させることが必要である。しかしながら,材料の弾性率は,その材料の材料特性に依存するものであるので,材料そのものの弾性率を変化させて弾性率の一致を図ることはできない。 Also, the above-mentioned problems related to composite materials are caused by the difference in elastic modulus of each composite material. Therefore, in order to solve the above problem, it is necessary to make the elastic modulus of one material to be combined coincide with the elastic modulus of another material. However, since the elastic modulus of a material depends on the material properties of the material, it is not possible to match the elastic modulus by changing the elastic modulus of the material itself.
 そこで,本発明は,材料の構造によって弾性率を調整することにより,複合される材料の弾性率を一致させることを目的とする。すなわち,本発明は,複合される材料の弾性率に適合させることができる,高度に伸縮可能な格子を提供することを目的とする。 Therefore, an object of the present invention is to match the elastic modulus of the composite material by adjusting the elastic modulus according to the structure of the material. That is, an object of the present invention is to provide a highly stretchable lattice that can be adapted to the elastic modulus of a composite material.
 本発明は,基本的には,格子橋と格子点により画定される格子開口部の形状を工夫することで,柔軟性が高く,三次元方向の成型が可能な格子構造を提供することができるという知見に基づくものである。本発明に係る格子構造体は,平板状,円筒状,及び球形状を含むものである。 Basically, the present invention can provide a lattice structure that is highly flexible and can be molded in a three-dimensional direction by devising the shape of the lattice opening defined by the lattice bridge and lattice points. It is based on the knowledge that. The lattice structure according to the present invention includes a flat plate shape, a cylindrical shape, and a spherical shape.
 本発明の第1の側面に係る格子構造体100は,S字型に湾曲又は屈折した複数の格子橋10と,複数の格子橋10のうち3つの格子橋10の端部を連結する複数の格子点20とを含む。そして,複数の格子橋10と複数の格子点20は,複数の格子開口部30を画定する。このとき,格子開口部30のそれぞれは,複数の格子橋10と複数の格子点20のうち,6つの格子橋10と6つの格子点20で取り囲まれることにより画定される。 The lattice structure 100 according to the first aspect of the present invention includes a plurality of lattice bridges 10 that are curved or refracted in an S shape and a plurality of lattice bridges 10 that connect end portions of three lattice bridges 10 among the plurality of lattice bridges 10. Grid point 20. The plurality of lattice bridges 10 and the plurality of lattice points 20 define a plurality of lattice openings 30. At this time, each of the lattice openings 30 is defined by being surrounded by the six lattice bridges 10 and the six lattice points 20 among the plurality of lattice bridges 10 and the plurality of lattice points 20.
 すなわち,本発明は,六角形を基本とした格子構造体であり,基本となる六角形を隙間なく連接させてメッシュパターンを形成し,その六角形の各辺をS字型に湾曲又は屈折させてなるものである。 That is, the present invention is a lattice structure based on a hexagon, and a mesh pattern is formed by connecting the basic hexagons without gaps, and each side of the hexagon is curved or refracted into an S shape. It will be.
 このようにして画定される格子開口部30のそれぞれは,1つの主たる開口部32と,6つの従たる開口部34を含むものである。そして,6つの従たる開口部34は,それぞれ,主たる開口部32から延びるように画定されている。 Each of the lattice openings 30 thus defined includes one main opening 32 and six subordinate openings 34. Each of the six subordinate openings 34 is defined so as to extend from the main opening 32.
 このような構成を有していることにより,本発明に係る格子構造体100は,縦方向と横方向のみならず,斜め方向にも伸縮することができる。このように,格子構造体100は,高い伸縮性を有するため,構造体の形状を三次元方向に変形させることができる。また,格子構造体は,格子橋10の幅や,格子橋10の曲げ率を調整することにより,弾性率を容易に変化させることができる。従って,格子構造体100が,他の材料に複合される場合であっても,材料同士の弾性率を一致させることができる。また,本発明に係る格子構造体100を複合材料に適用することにより,応力や衝撃が与えられた際にも剥離が生じにくい構造体を提供することができる。 By having such a configuration, the lattice structure 100 according to the present invention can be expanded and contracted not only in the vertical and horizontal directions but also in an oblique direction. Thus, since the lattice structure 100 has high stretchability, the shape of the structure can be deformed in a three-dimensional direction. In addition, the lattice structure can easily change its elastic modulus by adjusting the width of the lattice bridge 10 and the bending rate of the lattice bridge 10. Therefore, even when the lattice structure 100 is composited with other materials, the elastic moduli of the materials can be matched. Further, by applying the lattice structure 100 according to the present invention to a composite material, it is possible to provide a structure that does not easily peel even when stress or impact is applied.
 また,本発明の第1の側面の好ましい態様において,6つの従たる開口部34は,それぞれ,主たる開口部32から,等方向かつ放射状に延びるように画定されていることが好ましい。 In the preferred embodiment of the first aspect of the present invention, the six subordinate openings 34 are preferably defined so as to extend radially from the main openings 32 in the same direction.
 また,格子開口部30を取り囲んでいる6つの格子点20は,それぞれの格子点20をつなぐことにより形成される正六角形の頂点に位置することが好ましい。このような構成を有していることにより,格子点20をつなぐことにより形成される六角形の対角線方向のいずれから引張又は圧縮された場合であっても,格子構造体100は,均等に伸縮することができる。従って,格子構造体100は,六角形における3つの対角線方向に対する弾性率がすべて同一となる。 Also, the six lattice points 20 surrounding the lattice opening 30 are preferably located at the vertices of a regular hexagon formed by connecting the lattice points 20. By having such a configuration, the lattice structure 100 can be expanded and contracted evenly even when it is pulled or compressed from any of the diagonal directions of the hexagon formed by connecting the lattice points 20. can do. Therefore, the lattice structure 100 has the same elastic modulus for the three diagonal directions in the hexagon.
 このように,格子構造体100は,格子開口部30を取り囲んでいる6つの格子点20をつなぐことにより六角形を形成するものであるため,いわゆるハニカム構造の応用であるといえる。このような六角形を基本とするハニカム構造の格子構造体は,四角形を基本とする格子構造体に比べ,格子を形成する多角形の対角線の数が多いため,伸縮方向の自由度が高い。従って,本発明に係る格子構造体100は,四角形を基本とする格子と比べ,より柔軟に変形させることができる。また四角形を基本とする格子は,引張される方向によって伸縮性や弾性率が異なるものであるが,本発明に係る格子構造体100は,どの方向から引張された場合であっても伸縮性や弾性率を均一にすることができる。 Thus, since the lattice structure 100 forms a hexagon by connecting the six lattice points 20 surrounding the lattice opening 30, it can be said to be an application of a so-called honeycomb structure. Such a lattice structure having a honeycomb structure based on a hexagon has a higher degree of freedom in the expansion and contraction direction because the number of polygonal diagonal lines forming the lattice is larger than that of a lattice structure based on a quadrangle. Therefore, the lattice structure 100 according to the present invention can be deformed more flexibly than a lattice based on a quadrangle. In addition, the lattice based on the quadrangle is different in stretchability and elastic modulus depending on the direction in which it is pulled. However, the lattice structure 100 according to the present invention can be stretched or stretched from any direction. The elastic modulus can be made uniform.
 一方で,本発明に係る格子構造体100は,三次元方向に伸縮可能であるため,あらゆる方向からの衝撃に対して,均等な応力を有する。従って,本発明に係る格子構造体100は,与えられた衝撃や圧力を,均等に分散させることができる。 On the other hand, since the lattice structure 100 according to the present invention can be expanded and contracted in the three-dimensional direction, it has a uniform stress against impacts from all directions. Therefore, the lattice structure 100 according to the present invention can uniformly distribute the applied impact and pressure.
 また,格子構造体100は,S字型に湾曲した格子橋10を,湾曲しない直線状の格子橋10とした場合に,6つの直線状の格子橋10と6つの格子点20により画定された格子開口部30が,正六角形をなすことが好ましい。 Further, the lattice structure 100 is defined by six straight lattice bridges 10 and six lattice points 20 when the lattice bridge 10 curved in an S shape is a straight lattice bridge 10 that is not curved. It is preferable that the lattice opening 30 forms a regular hexagon.
 また,本発明の第1の側面の好ましい態様において,S字型に湾曲した格子橋10を介して連結される格子点20同士の距離は,S字型に湾曲した格子橋10を湾曲しない直線状の格子橋10とした場合における,直線状の格子橋10の長さの1/2以下であることが好ましい。すなわち,S字型に湾曲した格子橋10を介して連結される格子点20同士の距離は,格子橋10引張し,直線状とすることにより,2倍以上に伸張することが好ましい。このようにS字型に湾曲した格子橋10を2倍以上に伸張させるためには,S字型格子橋10の曲げ率や,格子橋10の橋部の長さ,格子橋10の太さを調節すればよい。 In a preferred embodiment of the first aspect of the present invention, the distance between the lattice points 20 connected via the lattice bridge 10 curved in an S shape is a straight line that does not curve the lattice bridge 10 curved in an S shape. It is preferable that the length of the straight lattice bridge 10 is ½ or less of the length of the lattice lattice bridge 10. That is, it is preferable that the distance between the lattice points 20 connected via the lattice bridge 10 curved in an S shape is extended more than twice by pulling the lattice bridge 10 into a straight line. In order to extend the S-shaped lattice bridge 10 more than twice as described above, the bending rate of the S-shaped lattice bridge 10, the length of the bridge portion of the lattice bridge 10, the thickness of the lattice bridge 10 is increased. You can adjust.
 また,本発明の第1の側面の好ましい態様において,格子橋10は,バネ合金材料や形状記憶合金であり,特にTi-Ni(チタンニッケル)合金を含むことが好ましい。Ti-Ni合金は,バネ特性に優れた材料であるため,Ti-Ni合金を格子橋10の材料として用いることにより,格子橋10に複合される材料との弾性率を一致させることがさらに容易となる。また,格子橋10は,純チタン,チタニウムからなるものであってもよい。 In the preferred embodiment of the first aspect of the present invention, the lattice bridge 10 is a spring alloy material or a shape memory alloy, and preferably contains a Ti—Ni (titanium nickel) alloy. Since Ti—Ni alloy is a material with excellent spring characteristics, it is easier to match the elastic modulus with the material combined with the lattice bridge 10 by using the Ti—Ni alloy as the material of the lattice bridge 10. It becomes. The lattice bridge 10 may be made of pure titanium or titanium.
 また,本発明の第1の側面に係る格子構造体100は,平板状であってもよい。平板状の格子構造体は,例えば,頭骨や顎骨,又は骨欠損部を補強するため医療用のプレートとして用いることができる。本発明を医療用プレートとして用いた場合には,格子構造体の弾性率と骨弾性率を適合させることが好ましい。平板状の格子構造体について,格子点ごとに凹凸を形成したり,格子橋を上下方向に湾曲させたりすることにより,平板の曲がり特性や上下厚みの弾性を付与することが出来る。 Further, the lattice structure 100 according to the first aspect of the present invention may have a flat plate shape. The flat lattice structure can be used as a medical plate, for example, to reinforce the skull, jawbone, or bone defect. When the present invention is used as a medical plate, it is preferable to adapt the elastic modulus and bone elastic modulus of the lattice structure. With respect to the flat lattice structure, it is possible to impart bending characteristics of the flat plate and elasticity of the vertical thickness by forming irregularities at each lattice point or bending the lattice bridge in the vertical direction.
 また,本発明の第1の側面に係る格子構造体100は,円筒形状であってもよい。円筒形状の格子構造体100は,例えば医療用のステントに用いられる。ステントとは,血管や,気管,食道,十二指腸,大腸,胆道のような人体の管状の部分を管腔内部から広げるための医療機器である。ステントは,格子構造体100が適用された筒をレーザーカットしたり,ワイヤーを編んで本発明の格子構造体100を成形することにより製造することができる。また円筒形状の格子構造体は歯科用インプラントの人工歯根に用いることが出来る。人工歯根と歯槽骨の弾性率を近づけることにより歯槽骨応力集中を減らし,歯根の緩みや,歯槽骨からの脱離を防ぐことが出来る。 Moreover, the lattice structure 100 according to the first aspect of the present invention may be cylindrical. The cylindrical lattice structure 100 is used for a medical stent, for example. A stent is a medical device for expanding a tubular portion of a human body such as a blood vessel, trachea, esophagus, duodenum, large intestine, and biliary tract from inside a lumen. The stent can be manufactured by laser-cutting a cylinder to which the lattice structure 100 is applied, or by forming the lattice structure 100 of the present invention by knitting a wire. The cylindrical lattice structure can be used for an artificial tooth root of a dental implant. By making the elastic modulus of the artificial root and the alveolar bone closer, the stress concentration of the alveolar bone can be reduced, and the root can be prevented from loosening and detaching from the alveolar bone.
 また,本発明の第1の側面に係る格子構造体100は,円筒形状に形成され,その構造体が輪を形成するリング状であってもよい。円筒のリング状に形成された格子構造体100は,例えば,車両のタイヤの構造や,タイヤに装着される滑り止め防止器具の構造として用いることができる。 Also, the lattice structure 100 according to the first aspect of the present invention may be formed in a cylindrical shape, and the structure may have a ring shape forming a ring. The lattice structure 100 formed in a cylindrical ring shape can be used, for example, as a structure of a vehicle tire or a structure of an anti-skid device attached to the tire.
 また,本発明の第1の側面に係る格子構造体100は,球形状であってもよい。本発明の格子構造体100は,三次元方向に伸縮可能であり,高い曲げ特性を有するため,球形状とすることも可能である。また,本発明の格子構造体100は,六角形のポリゴンを基本としているため,正12面対や切頂20面体構造(いわゆるC60フラーレン構造)を形成することもできる。 The lattice structure 100 according to the first aspect of the present invention may be spherical. Since the lattice structure 100 of the present invention can be expanded and contracted in a three-dimensional direction and has high bending characteristics, it can also have a spherical shape. The lattice structure 100 of the present invention, the hexagonal polygon for which the basic, it is possible to form the positive 12 side pairs or truncated icosahedron structure (so-called C 60 fullerene structure).
 さらに,本発明の第1の側面に係る格子構造体100は,複数層に重ねて用いることができる。
 本発明の第2の側面は,格子構造体100を複数層重ねてなる複数層格子構造体200に関する。複数層格子構造体200の例は,平板状の格子構造体100を2枚重ねることにより形成される複数層格子構造体200である。このように,格子構造体100を複数層に重ねることで,構造体自体の強度を高めることができる。
Furthermore, the lattice structure 100 according to the first aspect of the present invention can be used by being stacked on a plurality of layers.
The second aspect of the present invention relates to a multi-layer lattice structure 200 in which a plurality of lattice structures 100 are stacked. An example of the multi-layer lattice structure 200 is a multi-layer lattice structure 200 formed by stacking two flat lattice structures 100. Thus, the strength of the structure itself can be increased by overlapping the lattice structure 100 in a plurality of layers.
 また,本発明の第2の側面の好ましい態様は,格子構造体100が,所定角度又は所定方向にずれて,複数層重ねられてなる複数層格子構造体200に関する。所定角度又は所定方向に格子構造体100をずらすとは,つまり,格子構造体100を複数層に重ね,各格子構造体100が元来有する格子パターンを再現するのではなく,複数層格子200を平面的に観察したときに,各格子構造体100が元来有する格子パターンではない格子パターンを表出させることを意味する。 Also, a preferred embodiment of the second aspect of the present invention relates to a multi-layer lattice structure 200 in which the lattice structure 100 is stacked with a plurality of layers shifted by a predetermined angle or a predetermined direction. Shifting the lattice structure 100 in a predetermined angle or in a predetermined direction means that the lattice structure 100 is not stacked on a plurality of layers and the lattice pattern inherent to each lattice structure 100 is not reproduced. This means that a lattice pattern that is not originally a lattice pattern of each lattice structure 100 is exposed when observed in a planar manner.
 このように,複数層格子構造体200に含まれる複数の格子構造体100を所定角度又は所定方向にずらし特異な格子パターンを表出させることにより,表出したそれぞれの格子パターンに応じた構造上の特性を発揮することができる。 As described above, by shifting the plurality of lattice structures 100 included in the multi-layer lattice structure 200 to a predetermined angle or a predetermined direction to display unique lattice patterns, the structure corresponding to each of the displayed lattice patterns is improved. The characteristics of can be demonstrated.
 例えば,格子構造体100を2層に重ねる場合において,2層の格子構造体100を重ねることにより,異方性を有する格子パターンが表出する複数層格子構造体200が形成される。これにより,複数層格子構造体200が,ある特定の方向に引張された場合の引張応力と,他の特定の方向に引張された場合の引張応力が異なることが好ましい。 For example, when the lattice structure 100 is overlapped in two layers, the two-layer lattice structure 100 is overlapped to form a multi-layer lattice structure 200 in which an anisotropic lattice pattern appears. Accordingly, it is preferable that the tensile stress when the multi-layer lattice structure 200 is pulled in a certain specific direction and the tensile stress when pulled in another specific direction are different.
 このように,複数層格子構造体200が異方性を有する格子パターンを表出されることにより,引張される方向に応力の異なる格子を提供することができる。従って,例えば,それぞれ弾性率の異なる2以上の材料を混合する場合であっても,異方性を有する複数層格子構造体200を適用することにより,それぞれの材料に対して弾性率を一致させることが可能である。 As described above, when the multi-layer lattice structure 200 displays the lattice pattern having anisotropy, it is possible to provide a lattice having different stresses in the tensile direction. Therefore, for example, even when two or more materials having different elastic moduli are mixed, by applying the multi-layer lattice structure 200 having anisotropy, the elastic moduli are matched with each material. It is possible.
 また,本発明の第2の側面の別の態様において,複数層格子構造体は,第1の格子と,第1の格子上に,所定角度又は所定方向にずれて,重畳して形成された第2の格子を有し,第1の格子及び第2の格子は,同一のパターンを有する格子であり,第2の格子と第1の格子を重畳することよって異方性を有するパターンの格子が形成され,これにより,ある特定の方向に引張された場合の引張応力と,他の特定の方向に引張された場合の引張応力が異なるように形成されることとしてもよい。また,第1の格子及び第2の格子は,本発明の第1の側面に係る格子構造体100であってもよい。 In another embodiment of the second aspect of the present invention, the multi-layer lattice structure is formed on the first lattice and the first lattice so as to overlap each other at a predetermined angle or in a predetermined direction. A first lattice and a second lattice having the same pattern, and a lattice having an anisotropy by superimposing the second lattice and the first lattice. Thus, the tensile stress when pulled in a specific direction may be different from the tensile stress when pulled in another specific direction. Further, the first grating and the second grating may be the grating structure 100 according to the first aspect of the present invention.
 本発明の第3の側面は,複数の格子構造体が立体的に接合された複数層立体格子構造体300に関する。
 複数層立体格子構造体300は,本発明の第1側面に係る格子構造体100を少なくとも2枚以上含む。すなわち,複数層格子構造体300は,少なくとも第1の格子構造体100aと第2の格子構造体100bを含む。
 これらの第1の格子構造体100aと第2の格子構造体100bは,少なくとも1箇所の格子点(20a,20b)において接合されている。そして,接合された格子点(20a,20b)に端部が連結された格子橋(10a,10b)のいずれか一つ以上は,格子構造体の平面に直交する方向に立上している。
The third aspect of the present invention relates to a multi-layer three-dimensional lattice structure 300 in which a plurality of lattice structures are three-dimensionally joined.
The multi-layer three-dimensional lattice structure 300 includes at least two lattice structures 100 according to the first aspect of the present invention. That is, the multilayer lattice structure 300 includes at least a first lattice structure 100a and a second lattice structure 100b.
The first lattice structure 100a and the second lattice structure 100b are joined at at least one lattice point (20a, 20b). Any one or more of the lattice bridges (10a, 10b) whose ends are connected to the joined lattice points (20a, 20b) are erected in a direction perpendicular to the plane of the lattice structure.
 このような構成を有することにより,複数層格子構造体300は,格子構造体の平面方向のみならず,格子構造体の立体方向についても,任意の弾性と強度を得ることができる。従って,本発明の第3の側面によれば,例えば,金属製の複数層格子構造体300の立体方向に,他の材料が複合することが可能になる。すなわち,複数層格子構造体300は,格子構造体の立体方向についても,任意の弾性と強度を得られるよう設計可能であるため,複合される材料同士の弾性率を一致させることができる。よって,本発明の第3の側面によれば,応力や衝撃が与えられた際にも複合された材料の剥離が生じにくい立体構造体を提供することができる。 By having such a configuration, the multi-layer lattice structure 300 can obtain arbitrary elasticity and strength not only in the planar direction of the lattice structure but also in the three-dimensional direction of the lattice structure. Therefore, according to the third aspect of the present invention, for example, other materials can be combined in the three-dimensional direction of the metal multi-layer lattice structure 300. That is, the multi-layer lattice structure 300 can be designed so as to obtain arbitrary elasticity and strength in the three-dimensional direction of the lattice structure, so that the elastic moduli of the composite materials can be matched. Therefore, according to the third aspect of the present invention, it is possible to provide a three-dimensional structure in which the composite material is less likely to be peeled off even when stress or impact is applied.
 また,複数層立体格子構造体300は,格子構造体100を少なくとも3枚以上含むことが好ましい。すなわち,複数層格子構造体300は,少なくとも第1の格子構造体100a,第2の格子構造体100b,及び第3の格子構造体100cを含む。
 ここで,第1の格子構造体100aと第3の格子構造体100cの間には,第2の格子構造体100bが位置している。
 また,少なくとも,第2の格子構造体100bのある格子橋10bの一端部に位置する格子点20bは,第1の格子構造体100aの格子点20aに接合されている。
 また,少なくとも,第2の格子構造体100bのある格子橋10bの他端部に位置する格子点20bは,第3の格子構造体100cの格子点20cに接合されている。
 そして,少なくとも,第2の格子構造体100bのある格子橋10bは,第2の格子構造体100bの平面に直交する方向に立上していることが好ましい。
Further, the multi-layer three-dimensional lattice structure 300 preferably includes at least three lattice structures 100. That is, the multi-layer lattice structure 300 includes at least a first lattice structure 100a, a second lattice structure 100b, and a third lattice structure 100c.
Here, the second lattice structure 100b is located between the first lattice structure 100a and the third lattice structure 100c.
At least, the lattice points 20b 1 located at one end portion of the lattice bridges 10b with second grating structure 100b is joined to the lattice point 20a of the first grating structure 100a.
At least, the lattice point 20b 2 located at the other end portion of the lattice bridges 10b with second grating structure 100b is joined to the lattice point 20c of the third grating structure 100c.
At least the lattice bridge 10b with the second lattice structure 100b preferably rises in a direction perpendicular to the plane of the second lattice structure 100b.
 また,第1の格子構造体100aの接合された格子点20aに端部が連結された格子橋10aのいずれか一つ以上が,第1の格子構造体100aの平面に直交する方向に立上しており,第3の格子構造体100cの接合された格子点20cに端部が連結された格子橋10cのいずれか一つ以上が,第3の格子構造体100cの平面に直交する方向に立上していることが好ましい。 Also, any one or more of the lattice bridges 10a whose ends are connected to the lattice points 20a to which the first lattice structure 100a is joined rises in a direction perpendicular to the plane of the first lattice structure 100a. In addition, any one or more of the lattice bridges 10c whose ends are connected to the lattice points 20c joined to the third lattice structure 100c are in a direction perpendicular to the plane of the third lattice structure 100c. It is preferable that it is upright.
 このように,本発明の第3の側面においては,第1の格子構造体100aと第3の格子構造体100cの間に第2の格子構造体100bを位置させ,第2の格子構造体100bの格子橋10bを立上させて,第1の格子構造体100aと第3の格子構造体100cを繋ぐように設計することが好ましい。特に,第2の格子構造体100bの立上した格子橋10bと,接合された格子点を介して連結された,第1の格子構造体100の格子橋,及び第3の格子構造体100cの格子橋10cも立体方向に立上することが好ましい。
 このように,複数層立体格子構造体300が,格子構造体を3枚以上含むことにより
さらに,立体方向への弾性と強度が向上する。
 複数層立体格子構造体300は,格子構造体100を4枚以上含むものであってもよい。
Thus, in the third aspect of the present invention, the second lattice structure 100b is positioned between the first lattice structure 100a and the third lattice structure 100c, and the second lattice structure 100b. It is preferable to design the first and second lattice structures 100a and 100c so that the lattice bridge 10b is raised. In particular, the lattice bridge 10b of the second lattice structure 100b is connected to the lattice bridge of the first lattice structure 100 and the third lattice structure 100c connected via the joined lattice points. It is preferable that the lattice bridge 10c also rises in the three-dimensional direction.
Thus, the multi-layered three-dimensional lattice structure 300 includes three or more lattice structures, thereby further improving the elasticity and strength in the three-dimensional direction.
The multi-layer three-dimensional lattice structure 300 may include four or more lattice structures 100.
 本発明の第1の側面に係る格子構造体は,格子橋10が,S字型に屈折したものであってもよい。例えば,格子橋10は,ある格子開口部30の内側に向かって鋭角に突出した内側屈折点17と,当該ある開口部30の外側に向かって鋭角に突出した外側屈折点18の2点において屈折したものであってもよい。この場合において,格子開口部30は,六角形状の主たる開口部32と,当該主たる開口部32の各辺の一端部から当該各辺の延長線上に延びた一定の回転方向性を有する6つの従たる開口部34が画定される。なお,「一定の回転方向性」とは,例えば,直線的に形成された6つの従たる開口部が34のそれぞれが,隣り合う従たる開口部34と比較して,60度ずつ規則的に傾斜していることを意味する。 The lattice structure according to the first aspect of the present invention may be one in which the lattice bridge 10 is refracted into an S shape. For example, the lattice bridge 10 is refracted at two points: an inner refraction point 17 projecting at an acute angle toward the inside of a certain lattice opening 30 and an outer refraction point 18 projecting at an acute angle toward the outside of the certain opening 30. It may be what you did. In this case, the lattice opening 30 includes six hexagonal main openings 32 and six subordinates having a certain rotational direction extending from one end of each side of the main opening 32 to an extension line of each side. A slack opening 34 is defined. The “constant rotational directionality” means, for example, that each of the six subordinate openings 34 formed linearly is regularly 60 degrees compared to the adjacent subordinate openings 34. Means tilted.
 上記構成においては,格子開口部30が,要するに,六角形状の主たる開口部32と,録角形の各頂点から一定の回転方向性をもって延出した直線状の6つの従たる開口部34で形成されており,比較的簡易な形状となっている。このため,上記構成の格子構造体は,板状の基盤に,格子開口部30と同一形状の複数の貫通孔をパンチング加工することで,容易に製造することができる。一般的に,パンチング加工は,生産性は極めて高いが,穿設する貫通孔の形状に制限がある。この点,上記構成の構造体は,パンチング加工により製造できるため,極めて生産性が高く,安価なコストで具現化できるという利点を有する。 In the above configuration, the lattice opening 30 is basically formed by the hexagonal main opening 32 and the six subordinate openings 34 linearly extending with a certain rotational direction from each vertex of the recording angle. It has a relatively simple shape. For this reason, the lattice structure having the above-described configuration can be easily manufactured by punching a plurality of through holes having the same shape as the lattice openings 30 on a plate-like base. In general, the punching process is extremely productive, but the shape of the through hole to be drilled is limited. In this respect, since the structure having the above-described structure can be manufactured by punching, it has the advantage that it is extremely productive and can be realized at low cost.
 本発明の第1の側面に係る格子構造体の格子橋10は,ある格子開口部30の内側に向かって鈍角に突出する第1の内側屈折点17aと第2の内側屈折点17b,及び当該ある格子開口部30の外側に向かって鈍角に突出する第1の外側屈折点18aと第2の外側屈折点18bの4点において屈折するものであってもよい。この場合において,格子開口部30は,鋭角と鈍角が交互に連続した12角形状の主たる開口部32と,当該主たる開口部30の各鋭角端から当該鋭角端をなす一方の辺の延長線上に延びた一定の回転方向性を有する6つの従たる開口部34が画定される。 The lattice bridge 10 of the lattice structure according to the first aspect of the present invention includes a first inner refraction point 17a and a second inner refraction point 17b that project at an obtuse angle toward the inside of a certain lattice opening 30, and The light may be refracted at four points, ie, a first outer refraction point 18a and a second outer refraction point 18b that project at an obtuse angle toward the outside of a certain lattice opening 30. In this case, the lattice opening 30 is on a dodecagonal main opening 32 in which an acute angle and an obtuse angle continue alternately, and an extension line of one side that forms the acute angle end from each acute angle end of the main opening 30. Six secondary openings 34 are defined having an extended constant rotational direction.
 上記構成においては,格子開口部30が,要するに,六角星型の主たる開口部32と,六角星の各頂点から一定の回転方向性をもって直線的に延出した6つの従たる開口部34で形成されており,これも比較的簡易な形状となっている。このため,上記構造の格子構造体も,パンチング加工により,生産性が高く,しかも安価なコストで製造できる。さらに,上記構造の格子構造体は,格子橋10が4つの屈折点を有するS字型で形成されており比較的柔軟に伸縮するため,伸縮性や曲げ特性が高く生体適合性が良い。 In the above configuration, the lattice opening 30 is basically formed by the hexagonal star-shaped main opening 32 and the six subordinate openings 34 linearly extending from each vertex of the hexagonal star with a certain rotational direction. This is also a relatively simple shape. For this reason, the lattice structure having the above-described structure can be manufactured at a low cost with high productivity by punching. Further, the lattice structure having the above structure has a lattice bridge 10 formed in an S-shape having four refraction points and stretches relatively flexibly, and thus has high stretchability and bending characteristics and is highly biocompatible.
 本発明に係る格子構造体は,格子橋と格子点により画定された格子開口部が,六角形のポリゴンを基本とする形状である。このような新規な格子開口部の形状を有することにより,本発明に係る格子構造体は,三次元方向に伸縮することができ,高い伸縮性を有する。また,本発明は,複合される材料に弾性率を適合させることができる格子構造体を提供することができる。 In the lattice structure according to the present invention, a lattice opening defined by lattice bridges and lattice points is a shape based on a hexagonal polygon. By having such a new lattice opening shape, the lattice structure according to the present invention can be expanded and contracted in a three-dimensional direction and has high elasticity. In addition, the present invention can provide a lattice structure capable of adapting an elastic modulus to a composite material.
図1は,本発明の第1の側面に係る格子構造体の形状を示す図である。図1(a)は,図1(b)に示す図の一部を拡大した図である。FIG. 1 is a diagram showing the shape of a lattice structure according to the first aspect of the present invention. FIG. 1A is an enlarged view of a part of the diagram shown in FIG. 図2は,本発明の第1の側面に係る格子構造体の形状を示す図である。図2(a)は,図2(b)に示す図の一部を拡大した図である。FIG. 2 is a diagram showing the shape of the lattice structure according to the first aspect of the present invention. FIG. 2A is an enlarged view of a part of the diagram shown in FIG. 図3は,本発明の第1の側面に係る格子構造体の形状を示す図である。図3(a)は,図3(b)に示す図の一部を拡大した図である。FIG. 3 is a diagram showing the shape of the lattice structure according to the first aspect of the present invention. FIG. 3A is an enlarged view of a part of the diagram shown in FIG. 図4は,本発明の第1の側面に係る格子構造体の形状を示す図である。図4(a)は,図4(b)に示す図の一部を拡大した図である。FIG. 4 is a diagram showing the shape of the lattice structure according to the first aspect of the present invention. FIG. 4A is an enlarged view of a part of the diagram shown in FIG. 図5は,本発明の第1の側面に係る格子構造体の形状を示す図である。図5(a)は,図5(b)に示す図の一部を拡大した図である。FIG. 5 is a diagram showing the shape of the lattice structure according to the first aspect of the present invention. FIG. 5A is an enlarged view of a part of the diagram shown in FIG. 図6は,本発明の第1の側面に係る格子構造体の形状を示す図である。図6(a)は,図6(b)に示す図の一部を拡大した図である。FIG. 6 is a diagram showing the shape of the lattice structure according to the first aspect of the present invention. FIG. 6A is an enlarged view of a part of the diagram shown in FIG. 図7は,格子構造の設計工程の例を説明するための概念図である。FIG. 7 is a conceptual diagram for explaining an example of the design process of the lattice structure. 図8は,本発明に係る格子構造体の使用例について説明するための概念図である。FIG. 8 is a conceptual diagram for explaining an example of use of the lattice structure according to the present invention. 図9は,本発明に係る格子構造体の動作例について説明するための概念図である。FIG. 9 is a conceptual diagram for explaining an operation example of the lattice structure according to the present invention. 図10は,本発明に係る格子構造体の動作例について説明するための概念図である。図10(a)は,ラチェット構造を有する格子構造体100を示す。図10(b)は,ラチェット構造を有する格子構造体100を転開させるための道具を示す。FIG. 10 is a conceptual diagram for explaining an operation example of the lattice structure according to the present invention. FIG. 10A shows a lattice structure 100 having a ratchet structure. FIG. 10B shows a tool for rolling the lattice structure 100 having a ratchet structure. 図11は,円筒状である格子構造体を示す図である。円筒状の格子構造体は,例えば,ステントに適用される。FIG. 11 is a diagram showing a cylindrical lattice structure. The cylindrical lattice structure is applied to, for example, a stent. 図12は,球形状である格子構造体を示す図である。FIG. 12 is a diagram showing a lattice structure having a spherical shape. 図13は,本発明の第2の側面に係る複数層格子構造体の構成を示す概念図である。FIG. 13 is a conceptual diagram showing a configuration of a multi-layer lattice structure according to the second aspect of the present invention. 図14(a)から図14(b)は,本発明の第2の側面に係る複数層格子構造体の格子パターンを示す図である。14 (a) to 14 (b) are diagrams showing lattice patterns of a multi-layer lattice structure according to the second aspect of the present invention. 図15は,複数層立体格子構造体の例を示す側面図である。FIG. 15 is a side view showing an example of a multi-layer three-dimensional lattice structure. 図16は,複数層立体格子構造体の例を示す斜視図である。FIG. 16 is a perspective view showing an example of a multi-layer three-dimensional lattice structure. 図17は,複数層立体格子構造体に含まれる格子構造体を説明するための平面図である。FIG. 17 is a plan view for explaining a lattice structure included in the multi-layer three-dimensional lattice structure. 図18は,複数の格子構造体を重ね合わせて複数層立体格子構造体を形成するための状態を説明するための概略斜視図である。FIG. 18 is a schematic perspective view for explaining a state for forming a multi-layer three-dimensional lattice structure by superimposing a plurality of lattice structures. 図19は,本発明の格子構造体のパンチング加工モデルの例を示している。FIG. 19 shows an example of a punching processing model of the lattice structure of the present invention. 図20は,本発明の格子構造体のパンチング加工モデルの例を示している。FIG. 20 shows an example of a punching processing model of the lattice structure of the present invention. 図21は,本発明に係る格子構造体から抽出されるピースを説明するための図である。FIG. 21 is a diagram for explaining pieces extracted from the lattice structure according to the present invention. 図22は,本発明に係る格子構造体を生体(特に人の骨)に適用した実施例を示す写真である。FIG. 22 is a photograph showing an example in which the lattice structure according to the present invention is applied to a living body (particularly a human bone). 図23は,本発明に係る格子構造体,歯槽骨造成用の格子構造体としての応用した実施例を示し写真である。FIG. 23 is a photograph showing an applied example of the lattice structure according to the present invention and the lattice structure for alveolar bone formation. 図24は,リベットを用いて2つの本発明に係る格子構造体を圧接し連結した実施例を示す写真である。FIG. 24 is a photograph showing an example in which two lattice structures according to the present invention are pressed and connected using rivets.
 以下,図面を用いて,本発明を実施するための形態について説明する。ただし,本発明は,以下の実施の形態に限定されるものではなく,当業者にとって自明な範囲で適宜修正したものを含む。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments, and includes modifications appropriately made within the scope obvious to those skilled in the art.
(1 格子)
 図1から図6は,本発明の第1の側面に係る格子構造体100の形状を示す図である。図1(a)から図6(a)は,それぞれ,図1(b)から図6(b)に示す図の一部を拡大した図である。図1から図3までは,S字型の格子橋10が比較的小さい格子を示し,図4から図6は,S字型の格子橋10が比較的大きい格子を示している。また,図1及び図4は,S字型の格子橋10が比較的細い格子を示し,図2及び図5は,S字型の格子橋10が図1及び図4と比較して太い格子を示し,図3及び図6は,S字型の格子橋10の太さが図2及び図5と比較してさらに太い格子を示す。このように,格子橋10の形状や太さ,厚みを変化させることにより,格子構造体100が引張された場合の伸張率や,弾性率を調整することが可能である。以下,主に図1を用いて,本発明に係る格子構造体100の形状について説明する。
(1 lattice)
1 to 6 are views showing the shape of the lattice structure 100 according to the first aspect of the present invention. FIGS. 1A to 6A are enlarged views of parts of the diagrams shown in FIGS. 1B to 6B, respectively. FIGS. 1 to 3 show a lattice in which the S-shaped lattice bridge 10 is relatively small, and FIGS. 4 to 6 show a lattice in which the S-shaped lattice bridge 10 is relatively large. 1 and FIG. 4 show a relatively thin grid with an S-shaped lattice bridge 10, and FIGS. 2 and 5 show a grid with a thicker S-shaped grid bridge 10 than in FIGS. 1 and 4. 3 and 6 show a lattice in which the thickness of the S-shaped lattice bridge 10 is larger than that in FIGS. 2 and 5. In this way, by changing the shape, thickness, and thickness of the lattice bridge 10, it is possible to adjust the stretch rate and the elastic modulus when the lattice structure 100 is pulled. Hereinafter, the shape of the lattice structure 100 according to the present invention will be described mainly with reference to FIG.
 図1に示すように,格子構造体100は,複数の格子橋10,複数の格子点20を含み,複数の格子橋10と複数の格子点20により,複数の格子開口部30が画定されている。すなわち,格子構造体100は,S字型に湾曲した複数の格子橋10と,複数の格子橋10のうち3つの格子橋10の端部を連結する複数の格子点20とを含む。そして,複数の格子橋10と複数の格子点20は,複数の格子開口部30を画定する。格子開口部30のそれぞれは,複数の格子橋10と複数の格子点20のうち,6つの格子橋10と6つの格子点20で取り囲まれることにより画定されている。なお,ここにいう格子開口部30とは,物理的に存在するものではなく,複数の格子橋10と複数の格子点20が設けられることで,複数の格子橋10と複数の格子点20との間に形成される開口部である。格子橋10,格子点20,及び格子橋10と格子点20により画定される格子開口部30の数は,格子構造体100の大きさによって適宜増減すればよい。ただし,格子橋10,格子点20,及び格子開口部30の数は,それぞれ依存し合うものであるため,ある要素の数が決定されれば,必然的に他の要素の数も決定される。 As shown in FIG. 1, the lattice structure 100 includes a plurality of lattice bridges 10 and a plurality of lattice points 20, and a plurality of lattice openings 30 are defined by the plurality of lattice bridges 10 and the plurality of lattice points 20. Yes. That is, the lattice structure 100 includes a plurality of lattice bridges 10 that are curved in an S shape and a plurality of lattice points 20 that connect the ends of the three lattice bridges 10 among the plurality of lattice bridges 10. The plurality of lattice bridges 10 and the plurality of lattice points 20 define a plurality of lattice openings 30. Each of the lattice openings 30 is defined by being surrounded by six lattice bridges 10 and six lattice points 20 among the plurality of lattice bridges 10 and the plurality of lattice points 20. Note that the lattice opening 30 here does not physically exist, and a plurality of lattice bridges 10 and a plurality of lattice points 20 are provided by providing a plurality of lattice bridges 10 and a plurality of lattice points 20. It is an opening part formed between. The number of the lattice bridges 10, the lattice points 20, and the lattice openings 30 defined by the lattice bridges 10 and the lattice points 20 may be appropriately increased or decreased depending on the size of the lattice structure 100. However, since the number of lattice bridges 10, lattice points 20, and lattice openings 30 are dependent on each other, if the number of certain elements is determined, the number of other elements is inevitably determined. .
 ここで,格子構造体100をなす六角形を基本とした一単位を,説明の便宜上,単位格子と呼ぶ。すなわち,単位格子は,S字型に湾曲した6つの格子橋10と,格子橋10の端部を連結する6つの格子点20により画定される。そして,単位格子は,これら6つの格子橋10と6つの格子点20によって取り囲まれることにより1つの格子開口部30が画定されている。このような単位格子が,連続的に複数連結されていることにより,格子構造体100が形成される。また,単位格子同士は,格子橋10及び格子点20を介して,互いに連結されている。すなわち,ある格子橋10は,2つの単位格子を連結する役割を担う。また,ある格子点20は,3つの単位格子を連結する役割を担う。このようにしてそれぞれの格子橋10と格子点20が,複数の単位格子を連結する役割を担うことで,単位格子同士は連続的に連結されている。 Here, one unit based on a hexagon forming the lattice structure 100 is referred to as a unit lattice for convenience of explanation. That is, the unit cell is defined by six lattice bridges 10 that are curved in an S-shape and six lattice points 20 that connect the ends of the lattice bridges 10. The unit cell is surrounded by the six lattice bridges 10 and the six lattice points 20, thereby defining one lattice opening 30. A lattice structure 100 is formed by continuously connecting a plurality of such unit lattices. The unit cells are connected to each other via the lattice bridge 10 and the lattice points 20. That is, a certain lattice bridge 10 plays a role of connecting two unit lattices. A certain lattice point 20 plays a role of connecting three unit lattices. Thus, each lattice bridge 10 and the lattice point 20 play the role which connects several unit lattices, and unit lattices are connected continuously.
(1-1 格子橋)
 図1に示すように,格子橋10は,S字型に湾曲している。つまり,格子橋10は,格子開口部30の中心から外方(R1)に向かって湾曲した外曲部12と,格子開口部30中心に向かって内方(R2)に湾曲した内曲部14と,外曲部12と内曲部14とを結ぶ略直線状の橋部16とからなる。そして,格子橋10は,橋部16を介して,外曲部12と内曲部14が交互に連続することによりS字型となっている。このようにS字型に湾曲した格子橋10は,格子構造体100が圧縮又は引張された場合に伸縮する。
(1-1 Lattice bridge)
As shown in FIG. 1, the lattice bridge 10 is curved in an S shape. That is, the lattice bridge 10 includes an outer curved portion 12 that is curved outward (R1) from the center of the lattice opening 30, and an inner curved portion 14 that is curved inward (R2) toward the center of the lattice opening 30. And a substantially straight bridge portion 16 connecting the outer curved portion 12 and the inner curved portion 14. The lattice bridge 10 is formed in an S shape by alternately connecting the outer curved portion 12 and the inner curved portion 14 via the bridge portion 16. Thus, the lattice bridge 10 curved in an S shape expands and contracts when the lattice structure 100 is compressed or pulled.
 格子橋10は,異方性を有するようにS字型に湾曲していてもよい。例えば,1つの従たる開口部34を画定する2つの橋部16のうち,一方の橋部16の湾曲率を大きくし,他方の橋部16の湾曲率を小さくすることにより,格子橋10は異方性を備えることができる。すなわち,1つの従たる開口部34を画定する2つの橋部16の湾曲率が異なる場合,これら2つの橋部16の長さも異なる。 The lattice bridge 10 may be curved in an S shape so as to have anisotropy. For example, by increasing the curvature rate of one bridge portion 16 and decreasing the curvature rate of the other bridge portion 16 of the two bridge portions 16 that define one subordinate opening 34, the lattice bridge 10 is Anisotropy can be provided. That is, when the curvature rates of the two bridge portions 16 that define one subordinate opening 34 are different, the lengths of the two bridge portions 16 are also different.
 格子橋10の太さは,格子構造体100が適用される用途に応じて適宜設計すればよい。また,格子橋の10の平面に対し垂直方向の厚みも,格子が適用される用途に応じて適宜設計すればよい。例えば,格子橋10の太さと厚みを変更することにより,格子構造体100の伸縮性や,弾性率を自由に調整することができる。また,例えば,格子橋10の太さに関しては,図1に示されている格子よりも,図2に示されている格子の方が太くなっている。また,図2に示されている格子よりも,図3に示されている格子の方が太くなっている。格子橋10の太さは,例えば,平板状の格子構造体100を骨片の固定又は骨欠損分部の架橋に用いる場合に,0.4mmから0.8mmであってもよいし,0.5mmから0.7mmであってもよいし,0.6mmであってもよい。また,格子橋10の太さは,例えば,平板状の格子構造体100を衣服にラミネートして防護服として用いるような場合には,より太く形成すればよい。ただし,この格子橋10の太さとして,隣接する格子橋10に接触する程に太いものを採用することはできない。格子橋10の厚みは,例えば,格子構造体100を骨片の固定又は骨欠損分部の架橋に用いる場合に,0.1mmから0.5mmであってもよいし,0.2mmから0.4mmであってもよいし,0.3mmであってもよい。 The thickness of the lattice bridge 10 may be appropriately designed according to the application to which the lattice structure 100 is applied. Further, the thickness in the direction perpendicular to the 10 planes of the grid bridge may be appropriately designed according to the application to which the grid is applied. For example, by changing the thickness and thickness of the lattice bridge 10, the stretchability and elastic modulus of the lattice structure 100 can be freely adjusted. For example, with respect to the thickness of the lattice bridge 10, the lattice shown in FIG. 2 is thicker than the lattice shown in FIG. Further, the lattice shown in FIG. 3 is thicker than the lattice shown in FIG. The thickness of the lattice bridge 10 may be, for example, 0.4 mm to 0.8 mm when the flat lattice structure 100 is used for fixing bone fragments or bridging a bone defect portion. It may be 5 mm to 0.7 mm, or 0.6 mm. Further, the thickness of the lattice bridge 10 may be made thicker when, for example, the flat lattice structure 100 is laminated on clothing and used as protective clothing. However, as the thickness of the lattice bridge 10, a thickness that is so thick as to contact the adjacent lattice bridge 10 cannot be adopted. The thickness of the lattice bridge 10 may be, for example, 0.1 mm to 0.5 mm when the lattice structure 100 is used for fixing bone fragments or bridging a bone defect portion, or 0.2 mm to 0.2 mm. It may be 4 mm or 0.3 mm.
 また,格子橋10の長さ,特に格子橋10の橋部16の長さも格子構造体100が適用される用途に応じて適宜設計すればよい。例えば,橋部16の長さに関しては,図1から図3に示す格子より,図4から図6に示す格子の方が長くなっている。このように,格子橋10の長さ,特に橋部16の長さを変更することにより,格子構造体100が引張された場合の最大伸張距離を調節することができる。特に,この橋部16の長さは,格子構造体100が引張された場合に,2倍以上に伸張されることが好ましい。ただし,この橋部16の長さも,隣接する格子橋に接触する程度に長いものを選択することはできない。 Further, the length of the lattice bridge 10, particularly the length of the bridge portion 16 of the lattice bridge 10 may be appropriately designed according to the application to which the lattice structure 100 is applied. For example, regarding the length of the bridge portion 16, the lattice shown in FIGS. 4 to 6 is longer than the lattice shown in FIGS. Thus, the maximum extension distance when the lattice structure 100 is pulled can be adjusted by changing the length of the lattice bridge 10, particularly the length of the bridge portion 16. In particular, it is preferable that the length of the bridge portion 16 be extended more than twice when the lattice structure 100 is pulled. However, the length of the bridge portion 16 cannot be selected to be long enough to contact the adjacent lattice bridge.
 外曲部12と内曲部14の曲率は,実質的に,同一であることが好ましい。そして,この曲率は,格子橋10を介して連結される格子点20同士の距離と,橋部16の長さに依存する。すなわち,格子橋10を介して連結される格子点20同士の距離が近いほど,この曲率も大きくなる。また,橋部16の長さが長いほど,この曲率は大きくなる。従って,外曲部12と内曲部14の曲率は,格子橋10を介して連結される格子点20同士の距離と,橋部16の長さを決定した後,これらに適合するように決定すればよい。 It is preferable that the curvature of the outer music part 12 and the inner music part 14 is substantially the same. This curvature depends on the distance between the lattice points 20 connected via the lattice bridge 10 and the length of the bridge portion 16. That is, the closer the distance between the lattice points 20 connected via the lattice bridge 10 is, the larger the curvature becomes. Moreover, this curvature becomes large, so that the length of the bridge part 16 is long. Accordingly, the curvatures of the outer curved portion 12 and the inner curved portion 14 are determined so as to match the distance between the lattice points 20 connected via the lattice bridge 10 and the length of the bridge portion 16. do it.
 また,単位格子に含まれる6つのS字型の格子橋10は,格子構造体100が引張され,直線状の格子橋となった場合に,六角形となることが好ましい。特に,この六角形は,正六角形であることが好ましい。このように,格子構造体100は,格子点20同士をつなぐことにより形成される六角形の対角線方向,つまり,図1に示すD1,D2及びD3の方向に,ある一定以上の力で引張されると,格子橋10の外曲部12及び内曲部14の曲げ負荷が解放され,格子橋10は直線状となる。 Also, the six S-shaped lattice bridges 10 included in the unit lattice are preferably hexagonal when the lattice structure 100 is pulled into a linear lattice bridge. In particular, the hexagon is preferably a regular hexagon. Thus, the lattice structure 100 is pulled with a certain force or more in the diagonal direction of the hexagon formed by connecting the lattice points 20, that is, in the directions of D 1, D 2, and D 3 shown in FIG. Then, the bending load of the outer curved portion 12 and the inner curved portion 14 of the lattice bridge 10 is released, and the lattice bridge 10 becomes linear.
(1-2 格子点)
 上記構成を有する格子橋10は,格子点20を介して連結されている。具体的に説明すると,ある格子点20は,複数の格子橋10のうち,近接する3つの格子橋10の一端部を連結する。なお,格子橋10の他端部は,他の格子点20において,他の格子橋10の端部と連結されている。
(1-2 grid points)
The grid bridges 10 having the above-described configuration are connected via grid points 20. More specifically, a certain lattice point 20 connects one end of three lattice bridges 10 adjacent to each other among the plurality of lattice bridges 10. The other end of the lattice bridge 10 is connected to the end of another lattice bridge 10 at another lattice point 20.
 単位格子には,格子構造体100を形成する複数の格子点20うち,6つの格子点20が含まれる。単位格子を画定する6つの格子点20を繋ぐことにより,六角形が形成される。この六角形は,正六角形である。そして,格子点20は,正六角形の頂点に位置する。この六角形の一辺の長さ,つまり,ある格子橋10により連結された2つの格子点20の間の距離は,格子構造体100が適用される用途に応じて適宜設計することができる。例えば,格子構造体100を骨片の固定又は骨欠損分部の架橋に用いる場合に,10mmから100mmであってもよいし,20mmから80mmであってもよいし,30mmから60mmであってもよい。また,例えば,格子構造体100を衣服にラミネートして防護服として用いるような場合には,10mmから50mmであってもよいし,20mmから40mmであってもよいし,30mmであってもよい。 The unit lattice includes six lattice points 20 among the plurality of lattice points 20 forming the lattice structure 100. A hexagon is formed by connecting six lattice points 20 defining a unit lattice. This hexagon is a regular hexagon. And the lattice point 20 is located at the vertex of a regular hexagon. The length of one side of the hexagon, that is, the distance between two lattice points 20 connected by a certain lattice bridge 10 can be appropriately designed according to the application to which the lattice structure 100 is applied. For example, when the lattice structure 100 is used for fixing a bone fragment or bridging a bone defect portion, it may be 10 mm to 100 mm, 20 mm to 80 mm, or 30 mm to 60 mm. Good. Further, for example, when the lattice structure 100 is laminated on clothes and used as protective clothing, it may be 10 mm to 50 mm, 20 mm to 40 mm, or 30 mm. .
 このように形成された六角形は,D1,D2,及びD3方向に走行する対角線を有する。この対角線が走行する方向に,格子構造体100が引張された場合,この対角線に平行な六角形の辺に位置する2つの格子橋10が伸張する。 The hexagon formed in this way has diagonal lines that run in the directions of D1, D2, and D3. When the lattice structure 100 is pulled in the direction in which the diagonal line travels, the two lattice bridges 10 positioned on the hexagonal sides parallel to the diagonal line extend.
(1-3 格子開口部)
 上記構成を有する複数の格子橋10及び複数の格子点20は,複数の格子開口部30を画定する。格子開口部30のそれぞれは,複数の格子橋10と複数の格子点20のうち,6つの格子橋10と6つの格子点20で取り囲まれることにより画定される。すなわち,六角形の頂点にそれぞれ位置する格子点20を連結するように6つの格子橋10が形成され,6つの格子点20と6つの格子橋10により,全周が閉じられた格子開口部30が画定される。
(1-3 lattice opening)
The plurality of lattice bridges 10 and the plurality of lattice points 20 having the above configuration define a plurality of lattice openings 30. Each of the lattice openings 30 is defined by being surrounded by six lattice bridges 10 and six lattice points 20 among the plurality of lattice bridges 10 and the plurality of lattice points 20. That is, six lattice bridges 10 are formed so as to connect the lattice points 20 located at the vertices of the hexagon, and the lattice openings 30 whose entire circumference is closed by the six lattice points 20 and the six lattice bridges 10. Is defined.
 格子開口部30は,図1に示すように,1つの主たる開口部32と,6つの従たる開口部34を含むように画定される。従たる開口部34は,主たる開口部32の中心から,放射状に延びるようにして画定されている。従たる開口部34は,格子橋10がS字に湾曲していることに起因して画定されたものであり,主として,格子橋10が主たる開口部32から外方(R1)に向かって湾曲する外曲部を含んでいることによって画定されたものである。このような従たる開口部34は,主たる開口部32の中心から放射状に,かつ等方向に延びていることが好ましい。具体的には,従たる開口部34のそれぞれは,主たる開口部32の中心点から見て,60度間隔で延伸していることが好ましい。 As shown in FIG. 1, the lattice opening 30 is defined so as to include one main opening 32 and six subordinate openings 34. The secondary openings 34 are defined so as to extend radially from the center of the main openings 32. The subordinate opening 34 is defined because the lattice bridge 10 is curved in an S shape, and the lattice bridge 10 is mainly curved outward (R1) from the main opening 32. It is defined by including an outer curved portion. Such secondary openings 34 preferably extend radially from the center of the main opening 32 in the same direction. Specifically, it is preferable that each of the subordinate openings 34 extend at an interval of 60 degrees as viewed from the center point of the main opening 32.
(1-4 材料)
 上記構成を有する格子構造体100は,公知の材料を用いて製造することができる。格子構造体100は,金属材料で形成されていることが好ましい。すなわち,格子構造体100を形成する複数の格子橋10及び複数の格子点20が,金属材料で形成されていることが好ましい。特に,Ti-Ni合金により形成することが好ましい。Ti-Ni合金は,バネ特性に優れているものであるため,格子構造体100の伸縮性を高めることができる。従って,格子構造体100が適用される弾性率の調整が容易となる。また,格子構造体100は,形状記憶合金で形成されていることとしてもよい。形状記憶合金の例としては,Ni-Ti(Ni55%)合金や,CO-Ni-Al合金,Fe-Mn-Si合金であるが,この他にも公知の合金を用いて格子構造体100を形成することとしても良い。また医療用の吸収性メッシュとして使用する場合には,生体吸収材料(ポリ乳酸,ポリグリコール酸,ポリカプトラクトン,或いはその配合剤)が適しており,生体吸収性材料を燐酸カルシウム系の人工骨材料と複合化して用いることも出来る。
(1-4 materials)
The lattice structure 100 having the above configuration can be manufactured using a known material. The lattice structure 100 is preferably formed of a metal material. That is, it is preferable that the plurality of lattice bridges 10 and the plurality of lattice points 20 forming the lattice structure 100 are formed of a metal material. In particular, it is preferably formed of a Ti—Ni alloy. Since the Ti—Ni alloy has excellent spring characteristics, the stretchability of the lattice structure 100 can be improved. Therefore, it is easy to adjust the elastic modulus to which the lattice structure 100 is applied. The lattice structure 100 may be formed of a shape memory alloy. Examples of shape memory alloys are Ni—Ti (Ni 55%) alloy, CO—Ni—Al alloy, and Fe—Mn—Si alloy. It may be formed. In addition, when used as a medical absorbent mesh, a bioabsorbable material (polylactic acid, polyglycolic acid, polycaptolactone, or a combination thereof) is suitable, and the bioabsorbable material is a calcium phosphate artificial bone. It can also be used in combination with materials.
 さらに,格子構造体100を形成する金属としては,例えば,純鉄,極軟鋼,黄銅,銅,鉛,アルミニウム,ニッケル,モネル,チタン,インコネルが挙げられる。また,格子構造体100を形成する合金としては,例えば,鋼(Fe-C),クルップ鋼,クロムモリブデン鋼(Fe-Cr-Mo),マンガンモリブデン鋼(Fe-Mn-Mo),安来鋼,ステンレス鋼(Fe-Ni-Cr),マルエージング鋼,42アロイ(Fe-42Ni),丹銅,洋銀(Cu-27Zn-18Ni),青銅(Cu-Ni),赤銅(Cu-Au),ジュラルミン(Al-Cu),ニクロム,サンプラチナが挙げられる。特に,格子構造体100を形成するチタン合金としては,α合金(SSAT-525,SSAT-811,SSAT-6242等),α-β合金(SSAT-325,SSAT-64,SSAT-662等),β合金(SSAT-1023,SSAT-3864,SSAT-153)が挙げられる。 Furthermore, examples of the metal forming the lattice structure 100 include pure iron, extra mild steel, brass, copper, lead, aluminum, nickel, monel, titanium, and inconel. Examples of the alloy forming the lattice structure 100 include steel (Fe—C), Krupp steel, chromium molybdenum steel (Fe—Cr—Mo), manganese molybdenum steel (Fe—Mn—Mo), Yasugi steel, Stainless steel (Fe-Ni-Cr), maraging steel, 42 alloy (Fe-42Ni), red copper, silver (Cu-27Zn-18Ni), bronze (Cu-Ni), bronze (Cu-Au), duralumin ( Al-Cu), nichrome, and sun platinum. In particular, as a titanium alloy forming the lattice structure 100, an α alloy (SSAT-525, SSAT-811, SSAT-6242, etc.), an α-β alloy (SSAT-325, SSAT-64, SSAT-662, etc.), β alloy (SSAT-1023, SSAT-3864, SSAT-153) may be mentioned.
(1-5 製造方法)
 図7を参照して,本発明に係る格子構造体100の格子形状の設計工程の一例について説明する。図7は,本発明に係る格子の設計工程の一例を示した概念図である。この例においては,本発明に係る格子構造体100は,図7(a),(b),(c),(d),(f),(g)の順の工程で設計される。つまり,まず,図7(a)に示すように,直径Dの円が内接する正六角形を規定する。格子構造体100の大きさ,特に単位格子の大きさは,円の直径Dに依存するものである。直径Dは,格子構造体100を適用する材料の用途に応じて適宜調整すればよい。次に,図7(b)に示すように,規定した正六角形を基に,S字型に湾曲した格子橋10の基本形状を設計する。このとき,S字の中心が正六角形の1辺の中心に位置し,かつ,S字の両端がその1辺をはさむ正六角形の2角に位置するようにして,格子橋10の基本形状を設計する。このS字型の基本形状の曲率を変更することにより,格子橋10の長さが変化するため,格子構造体100の柔軟性や最大延伸長を調整することができる。次に,図7(c)に示すように,設計したS字型の基本形状を基に,S字型の基本形状の線幅を調整する。このS型の基本形状の線幅は,格子橋10の太さに対応するため,S字型の基本形状の線幅を変更することにより,格子構造体100の柔軟性や強度を調整することができる。次に,図7(d)に示すように,一定の線幅を有するS字型の基本形状を,60度ずつ異なった角度に傾斜させ,正六角形のそれぞれの辺に位置するようにし,360度のパターンを形成する。そして,図7(e)に示すように,形成した360度のパターンを基に,格子開口部30の基本形状を抽出する。つまり,形成した360度のパターンの最内部に位置するS字同士の接点をつなぎ合わせることにより,格子開口部30の基本形状を抽出する。次に,図7(f)に示すように,抽出した格子開口部30の基本形状に線幅を設けることにより,単位格子の基本パターンを形成する。このようにして形成された単位格子の基本パターンは,60度間隔の回転対称となっている。また,このときに単位格子の基本パターンが有する線幅は,(c)の工程で調整されたS字型の基本形状の線幅の半分とする。最後に,図7(g)に示すように,半分の線幅を有する単位格子の基本パターンを,複数組み合わせるようにして,格子構造体100を設計する。
(1-5 Manufacturing method)
With reference to FIG. 7, an example of the design process of the lattice shape of the lattice structure 100 according to the present invention will be described. FIG. 7 is a conceptual diagram showing an example of a lattice design process according to the present invention. In this example, the lattice structure 100 according to the present invention is designed in the order of FIGS. 7 (a), (b), (c), (d), (f), and (g). That is, first, as shown in FIG. 7A, a regular hexagon in which a circle with a diameter D is inscribed is defined. The size of the lattice structure 100, in particular, the size of the unit lattice depends on the diameter D of the circle. The diameter D may be adjusted as appropriate according to the use of the material to which the lattice structure 100 is applied. Next, as shown in FIG. 7B, the basic shape of the lattice bridge 10 curved in an S shape is designed based on the regular hexagon defined. At this time, the basic shape of the lattice bridge 10 is set so that the center of the S-shape is located at the center of one side of the regular hexagon and both ends of the S-shape are located at the two corners of the regular hexagon sandwiching the one side. design. By changing the curvature of the S-shaped basic shape, the length of the lattice bridge 10 changes, so that the flexibility and maximum extension length of the lattice structure 100 can be adjusted. Next, as shown in FIG. 7C, the line width of the S-shaped basic shape is adjusted based on the designed S-shaped basic shape. Since the line width of the S-shaped basic shape corresponds to the thickness of the lattice bridge 10, the flexibility and strength of the lattice structure 100 can be adjusted by changing the line width of the S-shaped basic shape. Can do. Next, as shown in FIG. 7D, the S-shaped basic shape having a constant line width is inclined at different angles by 60 degrees so as to be positioned on each side of the regular hexagon. Form a degree pattern. Then, as shown in FIG. 7E, the basic shape of the lattice opening 30 is extracted based on the formed 360 degree pattern. That is, the basic shape of the lattice opening 30 is extracted by connecting the S-shaped contacts located in the innermost part of the formed 360-degree pattern. Next, as shown in FIG. 7F, a basic pattern of the unit cell is formed by providing a line width to the basic shape of the extracted lattice opening 30. The basic pattern of the unit cell formed in this way is rotationally symmetrical at intervals of 60 degrees. At this time, the line width of the basic pattern of the unit cell is half the line width of the S-shaped basic shape adjusted in the step (c). Finally, as shown in FIG. 7G, the lattice structure 100 is designed by combining a plurality of unit cell basic patterns having a half line width.
 このように,設計することにより,格子橋10の線幅,長さ及び曲げ率を全て任意に設計することができ,これにより,単位格子の形状が定まる。単位格子の形状が定まれば,複数の単位格子を連結させることにより格子構造体100のメッシュパターンを設計することが可能である。 Thus, by designing, the line width, length, and bending rate of the lattice bridge 10 can be arbitrarily designed, thereby determining the shape of the unit lattice. If the shape of the unit cell is determined, the mesh pattern of the lattice structure 100 can be designed by connecting a plurality of unit cells.
 また,上記例によって設計された格子構造100は,公知の方法によって製造することができる。例えば,設計された格子構造を有する型に溶融した材料を流し込むことにより格子構造体100を製造することとしてもよい。また,所望の材料にワイヤーカット加工や,レーザーカット加工を施して,格子構造体100を製造することとしてもよい。また,所望の材料に,格子開口部(30)と同形状の貫通孔を穿設するパンチング加工を施すことにより格子構造体100を製造することとしてもよい。格子構造体100に含まれる複数の格子橋10及び複数の格子点20は,すべて一体成形されていることが好ましい。 Also, the lattice structure 100 designed according to the above example can be manufactured by a known method. For example, the lattice structure 100 may be manufactured by pouring molten material into a mold having a designed lattice structure. Alternatively, the lattice structure 100 may be manufactured by subjecting a desired material to wire cutting or laser cutting. Alternatively, the lattice structure 100 may be manufactured by punching a desired material with a through hole having the same shape as the lattice opening (30). The plurality of lattice bridges 10 and the plurality of lattice points 20 included in the lattice structure 100 are preferably integrally formed.
 また,格子構造体100は,複数の格子構造体を接合することにより拡張することができる。特に,リベット(特にブラインドリベット)を用いて複数の格子構造体100を圧接することにより形状追随性や弾性などの機械特性を維持したまま格子の面積を拡大できる。 Also, the lattice structure 100 can be expanded by joining a plurality of lattice structures. In particular, by pressing the plurality of lattice structures 100 using rivets (especially blind rivets), the area of the lattice can be expanded while maintaining the mechanical characteristics such as shape followability and elasticity.
(2-1 使用例)
 図8は,本発明に係る格子構造体100の使用例について説明するための概念図である。本発明に係る格子構造体100には,格子開口部30を利用して,他の部品50を取り付けることができる。図8においては,格子開口部30にナット40が嵌着されている。ナット40は,ブラインドナットであり,特に六角ナットであることが好ましい。ナット40は,その中心にネジ穴が形成されており,これに適合するネジ山を有する部品50を螺合することができるようになっている。このように,格子開口部30にナット40を圧着固定することにより,格子構造体100を他の部品50の支持部材として利用することができる。
(2-1 Usage example)
FIG. 8 is a conceptual diagram for explaining an example of use of the lattice structure 100 according to the present invention. Another component 50 can be attached to the lattice structure 100 according to the present invention using the lattice opening 30. In FIG. 8, nuts 40 are fitted into the lattice openings 30. The nut 40 is a blind nut, and is preferably a hexagonal nut. The nut 40 is formed with a screw hole at the center thereof, and can be screwed with a component 50 having a thread that matches the nut. In this way, the lattice structure 100 can be used as a support member for the other component 50 by fixing the nut 40 to the lattice opening 30 by pressure bonding.
 特に,本発明に係る格子構造体100を,歯槽骨造成用の格子構造体としての応用する場合,格子開口部30にナット40を取り付けることにより,インプラント治療に利用できる。すなわち,格子開口部30に嵌着されたナット40には,人工歯(上部構造)50を螺合させ固定できる。一般的に,インプラント治療では,人工歯根が歯槽骨に埋め込まれ,歯槽骨が人工歯根の周囲で安定期間(治癒期間)中に育成し,その結果,埋め込まれた人工歯根は最終的に歯槽骨にしっかりと固定されることとなる。そして,人工歯根にアバットメントと称する支台部が連結され,そのアバットメントの上に新しい歯冠を装着する。従来は,この安定期間として人工歯根が歯槽骨にしっかりと固定される期間が必要であり,通常約3ケ月~6ケ月の期間が必要とされていた。しかし,本発明に係る格子構造体100をインプラント治療にとして利用した場合,人工歯根と人工歯50の安定性が高まるため,骨の成長を待つことなく歯科インプラントの固定が可能である。 In particular, when the lattice structure 100 according to the present invention is applied as a lattice structure for alveolar bone formation, it can be used for implant treatment by attaching a nut 40 to the lattice opening 30. That is, an artificial tooth (superstructure) 50 can be screwed and fixed to the nut 40 fitted in the lattice opening 30. In general, in implant treatment, an artificial dental root is embedded in the alveolar bone, and the alveolar bone grows around the artificial dental root during a stable period (healing period). As a result, the implanted artificial dental root eventually becomes the alveolar bone. It will be firmly fixed to. Then, an abutment portion called an abutment is connected to the artificial tooth root, and a new crown is mounted on the abutment. In the past, this stable period required a period during which the artificial dental root was firmly fixed to the alveolar bone, and usually a period of about 3 to 6 months was required. However, when the lattice structure 100 according to the present invention is used for implant treatment, the stability of the artificial tooth root and the artificial tooth 50 is increased, so that the dental implant can be fixed without waiting for bone growth.
(2-2 動作例1)
 次に,図9を用いて,本発明に係る格子構造体100の第1の動作例について説明する。
(2-2 Operation example 1)
Next, a first operation example of the lattice structure 100 according to the present invention will be described with reference to FIG.
 図9に示すように,格子構造体100における格子点20の中心には,孔部22が形成されている。孔部22の形状は,図14に示すように三角形状に形成されていてもよいし,例えば,四角形,五角形,六角形,星型のような多角形状で形成することとしてもよい。このような孔部22には,孔部22の形状に適合した専用のドライバが挿入される。このドライバは,単位格子が有する6つの孔部22に同時に挿入されるものであることが好ましい。そして,それぞれの孔部22に挿入されたドライバは,図14に示す矢印方向に回転される。このようにして,6つの孔部22に挿入されたドライバが,回転されることにより,単位格子が拡張される。すなわち,孔部22に挿入されたドライバが回転されることにより,S字型に湾曲した格子橋10のそれぞれが,回転するようにして引張され,格子橋10の曲率が小さくなる。格子橋10の曲率が小さくなると,S字型に湾曲している格子橋10は,直線状に近くなるため,全体として単位格子が拡張されることとなる。 As shown in FIG. 9, a hole 22 is formed at the center of the lattice point 20 in the lattice structure 100. The shape of the hole 22 may be formed in a triangular shape as shown in FIG. 14, or may be formed in a polygonal shape such as a quadrilateral, pentagon, hexagon, or star. A dedicated driver suitable for the shape of the hole 22 is inserted into the hole 22. This driver is preferably one that is simultaneously inserted into the six holes 22 of the unit lattice. And the driver inserted in each hole 22 is rotated in the arrow direction shown in FIG. In this way, the unit cell is expanded by rotating the drivers inserted into the six holes 22. That is, when the driver inserted into the hole 22 is rotated, each of the lattice bridges 10 curved in an S-shape is pulled so as to rotate, and the curvature of the lattice bridge 10 is reduced. When the curvature of the lattice bridge 10 is reduced, the lattice bridge 10 that is curved in an S-shape is nearly linear, so that the unit lattice is expanded as a whole.
 このような動作を行う格子構造体100は,例えば,人工骨に適用されうる。すなわち,格子孔22を含む格子構造体100は,上記したドライバの操作により,徐々に単位格子を拡張することができるため,人工骨を取り替えるような施術を行わなくとも,人骨の成長に合わせて人工骨を拡張していくことができる。 The lattice structure 100 that performs such an operation can be applied to an artificial bone, for example. That is, since the lattice structure 100 including the lattice holes 22 can gradually expand the unit lattice by the above-described operation of the driver, it can be adapted to the growth of the human bone without performing an operation for replacing the artificial bone. The artificial bone can be expanded.
(2-3 動作例2)
 次に,図10を用いて,本発明に係る格子構造体100の第2の動作例について説明する。
(2-3 Operation example 2)
Next, a second operation example of the lattice structure 100 according to the present invention will be described with reference to FIG.
  図10(a)に示すように,格子構造体100における格子橋10の内曲部14には,格子開口部30の内方に向かって突起した鉤型の歯止部15が形成されている。歯止部15は,格子橋の10の内曲部14のそれぞれに形成されており,格子開口部30に挿通されるドライバ60の回転方向を制限する。図10(b)に示すように,ドライバ60の中柱の一部には,歯車62が形成されている。ドライバ60が格子開口部30に挿通されると,ドライバ60の歯車62と格子構造体100の歯止部15が係合する。歯車62は,歯止部15と係合する形状であればよく,例えば,六角形,又は六角形に突起を設けた風車形状であってもよい。このように,ドライバ60の歯車62と格子構造体100の歯止部15によって,いわゆるラチェット機構をなす。ドライバ60の歯車62は,図10(a)に示す矢印の方向への回転が制限されている。このように,格子構造体100の弾性特性によって構造体は逆回転しないため,緩みなく,格子構造体100とドライバ60を固定接合することができる。 As shown in FIG. 10A, a saddle-shaped pawl portion 15 projecting inward of the lattice opening 30 is formed on the inner curved portion 14 of the lattice bridge 10 in the lattice structure 100. . The pawls 15 are formed in each of the inner curved portions 14 of the lattice bridge 10 and limit the rotation direction of the driver 60 inserted through the lattice opening 30. As shown in FIG. 10B, a gear 62 is formed on a part of the middle pillar of the driver 60. When the driver 60 is inserted through the lattice opening 30, the gear 62 of the driver 60 and the pawl 15 of the lattice structure 100 are engaged. The gear 62 only needs to have a shape that engages with the pawl 15, and may be, for example, a hexagon or a windmill having a hexagonal protrusion. In this way, the gear 62 of the driver 60 and the pawl 15 of the lattice structure 100 form a so-called ratchet mechanism. The gear 62 of the driver 60 is restricted from rotating in the direction of the arrow shown in FIG. Thus, since the structure does not reversely rotate due to the elastic characteristics of the lattice structure 100, the lattice structure 100 and the driver 60 can be fixedly joined without loosening.
 また,格子構造体100の歯止部15にドライバ60の歯車62を係合させ,図10(a)に示す矢印の方向に回転させると,格子構造体100は,拡張展開する。つまり,格子開口部30に挿入されたドライバ60が,矢印方向に回転することにより,単位格子が拡張展開する。すなわち,ドライバ60が矢印方向に回転することにより,S字型に湾曲した格子橋10のそれぞれが,回転するようにして展開し,格子橋10の曲率が小さくなる。格子橋10の曲率が小さくなると,S字型に湾曲している格子橋10は,直線に近くなるため,全体として単位格子が拡張することとなる。 Further, when the gear 62 of the driver 60 is engaged with the pawl 15 of the lattice structure 100 and rotated in the direction of the arrow shown in FIG. 10A, the lattice structure 100 expands and expands. That is, the unit cell expands and expands when the driver 60 inserted into the lattice opening 30 rotates in the direction of the arrow. That is, when the driver 60 rotates in the direction of the arrow, each of the lattice bridges 10 that are curved in an S shape is unfolded so as to rotate, and the curvature of the lattice bridge 10 is reduced. When the curvature of the lattice bridge 10 is reduced, the lattice bridge 10 that is curved in an S shape is close to a straight line, so that the unit lattice is expanded as a whole.
(3-1 構造例1)
 次に,図11を用いて,本発明に係る格子構造体100の第1の構造例について説明する。
(3-1 Structure Example 1)
Next, a first structural example of the lattice structure 100 according to the present invention will be described with reference to FIG.
 図11(a)は,円筒形状である格子構造体100の例を示した図である。図11(a)に示すように,本発明に係る格子構造体100は,格子構造を湾曲させ,円筒状に形成することが可能である。特に本発明に係る格子構造体100は,柔軟性が高いものであるため,直径がより小さい円筒形状とすることが可能である。 FIG. 11A shows an example of a lattice structure 100 having a cylindrical shape. As shown in FIG. 11A, the lattice structure 100 according to the present invention can be formed in a cylindrical shape by curving the lattice structure. In particular, since the lattice structure 100 according to the present invention is highly flexible, it can have a cylindrical shape with a smaller diameter.
 本発明に係る格子構造体100は,上述したように,三次元方向に伸縮成形が可能であり,柔軟性が高いものであるため,円筒状の格子構造体100は,様々な用途に応用することができる。 Since the lattice structure 100 according to the present invention can be stretch-molded in a three-dimensional direction and has high flexibility as described above, the cylindrical lattice structure 100 is applied to various uses. be able to.
 例えば,図11(b)に示すように,円筒状の格子構造体100は,インプラント治療に用いられる人工歯根(フィクスチャー)に適用することができる。すなわち,インプラント治療の患者の歯茎に埋入される人工歯根を円筒状の格子構造体100によって成形する。一般的に,インプラント治療を受ける患者の歯槽骨の量や厚み,あごの骨のくびれなどの形態は様々である。また,患者の歯茎に埋入される人工歯根にはあらゆる方向からの外力や衝撃が加わり続けるため,製品の長寿命化を図るためには,素材的な剛性と,構造的な柔軟性が求められる。この点,本発明に係る格子構造体100が適用された人工歯根は,柔軟に成形可能であるため,治療を受ける患者の生体特性に適合させることができる。また,本発明に係る格子構造体100が適用された人工歯根は,金属材料を用いることによって人工歯根として求められる剛性を担保すると同時に,構造的な柔軟性によって外方からの衝撃を分散させることができる。 For example, as shown in FIG. 11B, the cylindrical lattice structure 100 can be applied to an artificial tooth root (fixture) used for implant treatment. That is, an artificial tooth root to be embedded in the gum of a patient undergoing implant treatment is formed by the cylindrical lattice structure 100. In general, the amount and thickness of the alveolar bone and the shape of the neck of the jaw of the patient undergoing implant treatment vary. In addition, external forces and impacts from all directions continue to be applied to the artificial roots embedded in the patient's gums, so material rigidity and structural flexibility are required to extend the product life. It is done. In this respect, since the artificial tooth root to which the lattice structure 100 according to the present invention is applied can be flexibly molded, it can be adapted to the biological characteristics of the patient to be treated. In addition, the artificial tooth root to which the lattice structure 100 according to the present invention is applied ensures the rigidity required for the artificial tooth root by using a metal material, and at the same time disperses the impact from the outside by the structural flexibility. Can do.
 また,円筒状の格子構造100を建築用の耐震台に用いられる支柱(金属柱)に適用することができる。本発明は,三次元方向に伸縮可能であり,高い柔軟性を有するため,地震がもたらす衝撃を支柱全体に分散させることができ,支柱の破損を防止できる。 In addition, the cylindrical lattice structure 100 can be applied to a column (metal column) used for a building earthquake-proof base. Since the present invention can be expanded and contracted in a three-dimensional direction and has high flexibility, the impact caused by an earthquake can be distributed over the entire column and damage to the column can be prevented.
 また,円筒状の格子構造体100は,ステントに適用することとしてもよい。例えば,冠動脈の狭窄している部分にカテーテルを用いて本発明が適用されたステントと,ステント内に配置されたバルーンを挿入する。そして,バルーンを膨張させることにより,ステントも広がる。広がったステントを冠動脈内に残してバルーンカテーテルを抜き取ると,ステントは狭窄部分を内側から支え続ける。このようにして冠動脈の狭窄が改善される。また,ステントの表面から再狭窄を防ぐ薬剤が溶出することとしてもよい。前述したように,格子構造体100は,柔軟性と伸縮性が高いため,ステントに適用することにより好適に作用しうる。 Further, the cylindrical lattice structure 100 may be applied to a stent. For example, a stent to which the present invention is applied and a balloon disposed in the stent are inserted into a stenotic portion of a coronary artery using a catheter. The stent is also expanded by inflating the balloon. If the balloon catheter is withdrawn leaving the expanded stent in the coronary artery, the stent will continue to support the stenosis from the inside. Thus, coronary stenosis is improved. In addition, a drug that prevents restenosis may be eluted from the surface of the stent. As described above, since the lattice structure 100 has high flexibility and stretchability, the lattice structure 100 can work suitably when applied to a stent.
 また,円筒状の格子構造体100は,三次元方向に湾曲させることが容易であるため,例えば,医療用内視鏡(ファイバスコープ)の胴体部分に適用することができる。また,円筒状の格子構造体100は,三次元方向に伸縮可能であり高い柔軟性を有するため優れた生体適合性を有する。従って,例えば,医療用の推体スペーサに適用することができる。 Also, since the cylindrical lattice structure 100 can be easily bent in a three-dimensional direction, it can be applied to, for example, a body portion of a medical endoscope (fiber scope). In addition, the cylindrical lattice structure 100 has excellent biocompatibility because it can expand and contract in a three-dimensional direction and has high flexibility. Therefore, for example, it can be applied to a thrust spacer for medical use.
 また,円筒状の格子構造体100は,柔軟性が高く軽量性が求められる機械的構造にも適用するこができる。従って,例えば,円筒状の格子構造体100は,高いトルクと軽量性が要求されるゴルフクラブのシャフト,あるいは釣竿に適用することできる。 The cylindrical lattice structure 100 can also be applied to a mechanical structure that is highly flexible and requires light weight. Therefore, for example, the cylindrical lattice structure 100 can be applied to a golf club shaft or fishing rod that requires high torque and light weight.
 また,円筒状の格子構造体100は,三次元方向に湾曲させることが容易であるため,環状(ドーナツ状)に形成することもできる。円筒環状の格子構造体100は,例えば,車両のタイヤの構造や,タイヤに装着される滑り止め防止器具の構造として用いることができる。 Moreover, since the cylindrical lattice structure 100 can be easily curved in the three-dimensional direction, it can also be formed in an annular shape (doughnut shape). The cylindrical annular lattice structure 100 can be used, for example, as a structure of a vehicle tire or a structure of an anti-skid device attached to the tire.
(3-2 構造例2)
 次に,図12を用いて,本発明に係る格子構造体100の第2の構造例について説明する。
(3-2 Structure example 2)
Next, a second structural example of the lattice structure 100 according to the present invention will be described with reference to FIG.
 図12は,球体形状である格子構造体100の例を示す概念図である。このように,本発明の第1の側面に係る格子構造体100は,球形状であってもよい。本発明の格子構造体100は,三次元方向に伸縮可能であり,高い曲げ特性を有するため,球形状とすることも可能である。また,本発明の格子構造体100は,六角形のポリゴンを基本としているため,切頂20面体構造(いわゆるC60フラーレン構造)を形成することもできる。 FIG. 12 is a conceptual diagram illustrating an example of a lattice structure 100 having a spherical shape. Thus, the lattice structure 100 according to the first aspect of the present invention may be spherical. Since the lattice structure 100 of the present invention can be expanded and contracted in a three-dimensional direction and has high bending characteristics, it can also have a spherical shape. The lattice structure 100 of the present invention, since a base of hexagonal polygon, it is possible to form the truncated icosahedron structure (so-called C 60 fullerene structure).
 球形状の格子構造体100は,例えば,耐熱性が求められる弾性球体に適用することができる。球形状の格子構造体100には金属材料を用いて剛性を維持させ,その一方で,格子構造の構造的なバネ特性によって高い弾性率を有する球体を提供することができる。また,格子構造体100は,切頂20面体構造とすることが可能であるため,本発明の格子パターンを有する遊戯用ボール(ピンポン玉,ゴルフボール,サッカーボール)を製造することとしても良い。 The spherical lattice structure 100 can be applied to, for example, an elastic sphere that requires heat resistance. The spherical lattice structure 100 can be maintained in rigidity by using a metal material, while a spherical body having a high elastic modulus can be provided by the structural spring characteristics of the lattice structure. In addition, since the lattice structure 100 can have a truncated icosahedron structure, a game ball (ping-pong ball, golf ball, soccer ball) having the lattice pattern of the present invention may be manufactured.
(4 複数層格子)
 以下,図13及び図14を用いて,本発明の第2の実施の形態に係る複数層格子200について説明する。図13に示すように,複数層格子200は,本発明の第1の側面に係る格子構造体100を複数枚含む。例えば,複数層格子200は,格子構造体100を二枚含み,第1の格子構造体100a上に第2の格子構造体100bを重畳したものである。複数層格子200は,複数枚の格子構造体100が重なる部分を公知の方法により溶接すればよい。例えば,レーザ溶接,又は抵抗溶接によって溶接すればよい。また,リベット(特にブラインドリベット)を用いて複数の格子構造体100を圧接することとしてもよい。複数層格子200は,異なるパターンの格子構造体100,すなわち,格子橋10の太さや,格子橋10の橋部16長さ,格子橋10の曲率が異なる格子構造体100を重ねることにより形成することとしても良いが,同一のパターンを有する格子構造体100を重ねることが好ましい。
(4 multi-layer lattice)
Hereinafter, a multi-layer grating 200 according to the second embodiment of the present invention will be described with reference to FIGS. 13 and 14. As shown in FIG. 13, the multi-layer lattice 200 includes a plurality of lattice structures 100 according to the first aspect of the present invention. For example, the multi-layer lattice 200 includes two lattice structures 100, and the second lattice structure 100b is superimposed on the first lattice structure 100a. The multi-layer lattice 200 may be welded by a known method at a portion where a plurality of lattice structures 100 overlap. For example, welding may be performed by laser welding or resistance welding. Further, a plurality of lattice structures 100 may be pressed by using rivets (particularly blind rivets). The multi-layer lattice 200 is formed by stacking the lattice structures 100 having different patterns, that is, the lattice structures 100 having different thicknesses of the lattice bridge 10, the length of the bridge portion 16 of the lattice bridge 10, and the curvature of the lattice bridge 10. However, it is preferable to stack the lattice structures 100 having the same pattern.
 図14に示すように,複数層格子200は,2層の格子構造体(100a,100b)が,所定角度又は所定方向にずれて重畳されたものである。例えば,図14(a)は,第1の格子構造体100a上に,第2の格子構造体100bを,90度左方向にずらして重畳したものである。このとき,第1の格子構造体100aの格子開口部30の主たる開口部32のうちの1つと,第2の格子構造体100bの格子開口部30の主たる開口部32のうちの1つとが,一致する位置に,第2の格子構造体100bが重畳されている。また図14(b)は,第1の格子構造体100a上に,第2の格子構造体100bを,約45度左方向にずらして重畳したものである。また,図14(c)は,第1の格子構造体100a上に,第2の格子構造体100bを,左下方向に,単位格子約半個分ずらして重畳させたものである。すなわち,第1の格子構造体100aの斜め方向に連続する単位格子の中間に,第2の格子構造体100bの単位格子が位置するように,第2の格子構造体100bが重畳されている。このように,図14(a)から図14(b)は,2枚の格子(100a,100b)を,所定角度又は所定方向にずらして重畳することにより,複数層格子200の平面上に,異方性を有するパターンが表出されている。このようにして,複数層格子200は,ある特定の方向に引張された場合の引張応力と,他の特定の方向に引張された場合の引張応力が異なるように形成されている。 As shown in FIG. 14, the multi-layer lattice 200 is formed by superimposing two-layer lattice structures (100a, 100b) shifted in a predetermined angle or a predetermined direction. For example, FIG. 14A is a diagram in which a second lattice structure 100b is superimposed on the first lattice structure 100a while being shifted 90 degrees to the left. At this time, one of the main openings 32 of the lattice opening 30 of the first lattice structure 100a and one of the main openings 32 of the lattice opening 30 of the second lattice structure 100b are: The second lattice structure 100b is superimposed at the matching position. In FIG. 14B, the second lattice structure 100b is superimposed on the first lattice structure 100a while being shifted about 45 degrees to the left. FIG. 14C is a diagram in which the second lattice structure 100b is superimposed on the first lattice structure 100a while being shifted by about a half of the unit lattice in the lower left direction. In other words, the second lattice structure 100b is superimposed so that the unit lattice of the second lattice structure 100b is located in the middle of the unit lattices that are continuous in the oblique direction of the first lattice structure 100a. 14A to 14B, the two gratings (100a, 100b) are superimposed on the plane of the multi-layer grating 200 by shifting them in a predetermined angle or in a predetermined direction. A pattern having anisotropy is expressed. In this way, the multi-layer lattice 200 is formed such that the tensile stress when pulled in a certain specific direction is different from the tensile stress when pulled in another specific direction.
 また,図14(d)に示すように,2層の格子構造体(100a,100b)を,所定角度又は所定方向にずらして重畳することにより,複数層格子200の平面状に,規則的なパターンが表出することとしてもよい。例えば,図14(d)においては,第1の格子構造体100a上に,第2の格子構造体100bを,右下方向に,単位格子約半個分ずらして重畳させたものである。このとき,このとき,第1の格子構造体100aの格子点20と,第2の格子構造体100bの格子点20とが,一致する位置に,第2の格子構造体100bが重畳されている。このようにして,重畳形成された複数格子200は,平面上に六角形を基本とする規則的なパターンを表出するように形成されている。このようなハニカム構造を有する複数層格子200は,機械的強度に優れたものである。 Further, as shown in FIG. 14 (d), the two-layer lattice structures (100a, 100b) are regularly shifted in a predetermined angle or a predetermined direction so as to be regularly formed in a planar shape of the multi-layer lattice 200. The pattern may be exposed. For example, in FIG. 14D, the second lattice structure 100b is superimposed on the first lattice structure 100a while being shifted by about a half of the unit lattice in the lower right direction. At this time, the second lattice structure 100b is superimposed at a position where the lattice point 20 of the first lattice structure 100a coincides with the lattice point 20 of the second lattice structure 100b. . The plurality of lattices 200 formed in such a manner are formed so as to display a regular pattern based on a hexagon on a plane. The multi-layer lattice 200 having such a honeycomb structure is excellent in mechanical strength.
 また,格子構造体100又は複数層格子200は,衣服にラミネートして防護服として用いることとしてもよい。つまり,衣服の表面に,格子構造体100又は複数層格子200を,接着又は編み込むことにより防護服を形成する。前述したように,格子構造体100又は複数層格子200は,高い柔軟性を有するため,軽量で装着性に優れた防護服を形成することができる。 Further, the lattice structure 100 or the multi-layer lattice 200 may be laminated on clothes and used as protective clothing. That is, the protective clothing is formed by bonding or braiding the lattice structure 100 or the multi-layer lattice 200 on the surface of the clothing. As described above, since the lattice structure 100 or the multi-layer lattice 200 has high flexibility, it is possible to form a protective clothing that is lightweight and excellent in wearability.
 また,格子構造体100又は複数層格子200,上記した用途の他にも,格子構造又はメッシュ構造が用いられる,多様なアプリケーションに適用することができる。 Further, in addition to the lattice structure 100 or the multi-layer lattice 200 and the above-described uses, the present invention can be applied to various applications in which a lattice structure or a mesh structure is used.
(5 複数層立体格子構造体)
 図15は,複数層立体格子構造体の例を示す側面図である。また,図16は,複数層立体格子構造体16の例を示す斜視図である。
 図15や図16に示されるように,複数層立体格子構造体300は,複数の格子構造体100を含む。そして,複数層立体格子構造体300は,複数の格子構造体100の平面を重ね合わせ,互いに対向する2枚の格子構造体100の一部を接合したまま,複数の格子構造体100の厚み方向に引張することにより,立体構造となる。
(5 Multi-layered lattice structure)
FIG. 15 is a side view showing an example of a multi-layer three-dimensional lattice structure. FIG. 16 is a perspective view showing an example of the multi-layered three-dimensional lattice structure 16.
As shown in FIGS. 15 and 16, the multi-layered three-dimensional lattice structure 300 includes a plurality of lattice structures 100. The multi-layer three-dimensional lattice structure 300 is formed by overlapping the planes of the plurality of lattice structures 100 and joining the two lattice structures 100 facing each other in the thickness direction of the plurality of lattice structures 100. By pulling on, it becomes a three-dimensional structure.
 複数層立体格子構造体300は,少なくとも,第1の格子構造体100aと第2の格子構造体100bとを含み,第1の格子構造体100aの格子点20aと第2の格子構造体の格子点20bは接合されている。このように,格子点同士を接合したまま,第1の格子構造体100aと第2の格子構造体100bを厚み方向に引張すると,第1の格子構造体100aの格子橋10a及び第2の格子構造体100bの格子橋10bの両方,又はいずれか一方が,格子構造体の厚み方向に立ち上がることとなる。従って,複数層に重ね合わされた格子構造体が,立体構造となる。第1の格子構造体100aと第2の格子構造体20bは,少なくとも一箇所の格子点(20a,20b)において接合されていればよく,また,全ての格子点(20a,20b)が接合されていてもよい。 The multi-layer three-dimensional lattice structure 300 includes at least a first lattice structure 100a and a second lattice structure 100b, and lattice points 20a of the first lattice structure 100a and the lattices of the second lattice structure. The point 20b is joined. As described above, when the first lattice structure 100a and the second lattice structure 100b are pulled in the thickness direction while the lattice points are joined, the lattice bridge 10a and the second lattice of the first lattice structure 100a are pulled. Both or one of the lattice bridges 10b of the structure 100b rises in the thickness direction of the lattice structure. Therefore, the lattice structure superimposed on a plurality of layers becomes a three-dimensional structure. The first lattice structure 100a and the second lattice structure 20b may be joined at at least one lattice point (20a, 20b), and all the lattice points (20a, 20b) are joined. It may be.
 図15及び図16には,5枚の格子構造体が積層され,立体構造を形成した例が示されている。このように,格子構造体を積層する数は,2枚以上であればよく,3枚であってもよいし,4枚以上としてもよい。図5及び図6に示された例においては,第1の格子構造体100aと第3の格子構造体100cの間に,第2の格子構造体100bが位置している。第2の格子構造体100bの格子橋10bに注目してみると,格子橋10bの一端部に位置する格子点20bが,第1の格子構造体100aの格子点20aに接合されている。また,第2の格子構造体100bの格子橋10bの他端部に位置する格子点20bが,第3の格子構造体100cの格子点20cに接合されている。このように,第2の格子構造体100bの格子橋10bの両端に位置する格子点(20b,20b)が,それぞれ第1の格子構造体100aの格子点20aと第3の格子構造体100cの格子点20cに接合されている状態で,格子構造体の厚み方向に引張することにより,少なくとも第2の格子構造体100bの格子橋10bが立上することとなる。また,第2の格子構造体100bの格子橋10bを立上させるとともに,第1の格子構造体100aの格子橋10aや,第3の格子構造体100cの格子橋10cを立上させることとしてもよい。すなわち,第1の格子構造体100aと第3の格子構造体100cは,第2の格子構造体100bの格子橋10bを介して連結される。第1の格子構造体100aと第3の格子構造体100cを連結する第2の格子構造体100bの格子橋10bの数は,少なくとも1つ以上存在していればよく,2つ以上であってもよい。 15 and 16 show an example in which five lattice structures are stacked to form a three-dimensional structure. As described above, the number of stacked lattice structures may be two or more, three, or four or more. In the example shown in FIGS. 5 and 6, the second lattice structure 100b is located between the first lattice structure 100a and the third lattice structure 100c. When attention is paid to the lattice bridge 10b of the second grating structure 100b, grid point 20b 1 located at one end portion of the lattice bridges 10b it is joined to the lattice point 20a of the first grating structure 100a. Further, the lattice point 20b 2 positioned at the other end of the lattice bridge 10b of the second lattice structure 100b is joined to the lattice point 20c of the third lattice structure 100c. In this way, the lattice points (20b 1 , 20b 2 ) located at both ends of the lattice bridge 10b of the second lattice structure 100b are the lattice points 20a of the first lattice structure 100a and the third lattice structure, respectively. The lattice bridge 10b of at least the second lattice structure 100b rises by pulling in the thickness direction of the lattice structure while being joined to the lattice point 20c of 100c. Alternatively, the lattice bridge 10b of the second lattice structure 100b may be raised and the lattice bridge 10a of the first lattice structure 100a or the lattice bridge 10c of the third lattice structure 100c may be raised. Good. That is, the first lattice structure 100a and the third lattice structure 100c are connected via the lattice bridge 10b of the second lattice structure 100b. The number of the lattice bridges 10b of the second lattice structure 100b that connects the first lattice structure 100a and the third lattice structure 100c may be at least one, and two or more. Also good.
 なお,図15や図16に示されるように,格子構造体の格子橋同士が接合される箇所が一部に存在していてもよい。格子橋同士を接合すると,接合された格子橋は立ち上がらないが,格子橋同士を接合することにより,積層された格子構造体の接着強度を向上させることができる。 Note that, as shown in FIGS. 15 and 16, there may be a portion where the lattice bridges of the lattice structure are joined. When the lattice bridges are joined, the joined lattice bridges do not stand up, but by joining the lattice bridges, the adhesive strength of the laminated lattice structures can be improved.
 図17は,格子構造体の間に位置する格子構造体(例えば第2の格子構造体100b)を抽出して示した概略平面図である。また,図18は,複数の格子構造体を積層して接合する状態を説明するための概略斜視図である。図17及び図18において,“黒丸”は,上層の格子構造体に接合される格子点を示しており,“白丸”は,下層の格子構造体に接合される格子点を示している。図17及び図18において,“黒丸”と“白丸”は,説明のために概念的に示したものであり,実際には存在していない。 FIG. 17 is a schematic plan view showing an extracted lattice structure (for example, the second lattice structure 100b) positioned between the lattice structures. FIG. 18 is a schematic perspective view for explaining a state in which a plurality of lattice structures are stacked and joined. In FIG. 17 and FIG. 18, “black circles” indicate lattice points bonded to the upper layer lattice structure, and “white circles” indicate lattice points bonded to the lower layer lattice structure. In FIG. 17 and FIG. 18, “black circle” and “white circle” are conceptually shown for explanation, and do not actually exist.
 すなわち,図17に示されるように,第1の格子構造体100aと第3の格子構造体100cの間に位置する第2の格子構造体100bは,上層の格子構造体に接合される格子点である上層接合格子点20bと,下層の格子構造体に接合される格子点である下層接合格子点20bを有している。例えば,上層接合格子点20bは,第1の格子構造体100aの格子点20bと接合され,下層接合格子点20bは,第3の格子構造体100cの格子点20bと接合される。図17に示されるように,第2の格子構造体100bにおいて,格子橋10bの一端には上層接合格子点20bが形成され,格子橋10bの他端には下層接合格子点20bが形成されることが好ましい。これにより,上層接合格子点20bと下層接合格子点20bに繋がる格子橋10bが,上層と下層に配置された格子構造体を連結する役割を担う。 That is, as shown in FIG. 17, the second lattice structure 100b positioned between the first lattice structure 100a and the third lattice structure 100c has lattice points joined to the upper lattice structure. And upper layer junction lattice point 20b 1 and lower layer junction lattice point 20b 2 which is a lattice point joined to the lower layer lattice structure. For example, the upper-layer junction lattice point 20b 1 is joined to the lattice point 20b of the first lattice structure 100a, and the lower-layer junction lattice point 20b 2 is joined to the lattice point 20b of the third lattice structure 100c. As shown in FIG. 17, in the second grating structure 100b, at one end of the lattice bridges 10b upper bonding grid point 20b 1 is formed, at the other end of the lattice bridges 10b is lower bonding grid point 20b 2 formed It is preferred that Thus, the lattice bridge 10b connected to the upper bonding grid point 20b 1 and the lower layer bonding grid point 20b 2 is responsible for connecting the lattice structure disposed in the upper layer and lower layer.
 図18においては,3枚の格子構造体,すなわち,第1の格子構造体100a,第2の格子構造体100b,及び第3の格子構造体100cが積層される状態の例が示されている。第2の格子構造体100bは,第1の格子構造体100aと第3の格子構造体100cの間に位置する。上述したように,第2の格子構造体100bは,上層接合格子点20bと下層接合格子点20bを有している。一方,第2の格子構造体100bの上層に位置する第1の格子構造体100aは,下層接合格子点20aを有する。また,第2の格子構造体100bの下層に位置する第3の格子構造体100cは,上層接合格子点20cを有する。そして,第1の格子構造体100aの下層接合格子点20aと第2の格子構造体100bの上層接合格子点20bが,互いに接合される。また,第2の格子構造体100bの下層接合格子点20bと第3の格子構造体100cの上層接合格子点20cが,互いに接合される。このような状態で,積層した格子構造体を厚み方向に引張することにより,3枚の格子構造体が積層した複数層立体格子構造体300が形成される。なお,第1の格子構造体100aと第2の格子構造体100bを接合する際には,第1の格子構造体100aの裏面と第2の格子構造体100bの表面が接合される。同様に,第2の格子構造体100bと第3の格子構造体100cを接合する際には,第2の格子構造体100bの裏面と,第3の格子構造体100cの表面が接合される。 FIG. 18 shows an example in which three lattice structures, that is, a first lattice structure 100a, a second lattice structure 100b, and a third lattice structure 100c are stacked. . The second lattice structure 100b is located between the first lattice structure 100a and the third lattice structure 100c. As described above, the second grating structure 100b includes an upper bonding grid point 20b 1 and the lower layer bonding grid point 20b 2. On the other hand, the first grating structure 100a that is located on the upper layer of the second grating structure 100b has a lower bonding grid point 20a 2. The third grid structure 100c positioned in the lower layer of the second grating structure 100b includes an upper bonding grid point 20c 1. Then, the upper bonding grid point 20b 1 of the lower bonding grid point 20a 2 of the first grating structure 100a second grating structure 100b are joined together. Further, the upper bonding grid point 20c 1 of the lower bonding grid point 20b 2 of the second grating structure 100b third grating structure 100c are bonded to each other. In such a state, by pulling the laminated lattice structure in the thickness direction, a multi-layered three-dimensional lattice structure 300 in which three lattice structures are laminated is formed. Note that when the first lattice structure 100a and the second lattice structure 100b are joined, the back surface of the first lattice structure 100a and the surface of the second lattice structure 100b are joined. Similarly, when the second lattice structure 100b and the third lattice structure 100c are joined, the back surface of the second lattice structure 100b and the surface of the third lattice structure 100c are joined.
 上記した複数層立体格子構造体の構成は,例示である。すなわち,複数枚の格子構造体の平面を重ね合わせて格子橋を立ち上がらせ,複数層の格子構造体を立体構造とすることのできる構成であれば,上記した構成の他に種々の構成を採用することが可能である。 The configuration of the multi-layered three-dimensional lattice structure described above is an example. In other words, various configurations other than the above are adopted as long as the lattice bridge can be raised by superimposing the planes of a plurality of lattice structures to form a three-dimensional lattice structure. Is possible.
 また,上記した複数層立体格子構造体は,種々の用途に採用することができる。例えば,人工椎体、椎体間スペーサ,又は骨補填材として利用可能である。人工椎体は圧損した椎体を摘出後に置換するもので、弾性や柔軟性が要求される。椎体間スペーサは,椎間板を除去した後,調整器具にて上下の椎体間の間隔(椎間高さ)を適正値に調整し,その間隔を保持するために用いられる。また,骨補填材は,外傷や骨粗鬆症等により椎体が潰れる椎体圧迫骨折を治療するため,圧潰した椎体内に充填される治療具である。このように,本発明に係る複数層立体格子構造体は,任意の弾性や強度で設計可能であり生体適合性に優れたているため,生体骨と同じ物性を持つインプラント材を作成することができる。 Moreover, the above-described multi-layered three-dimensional lattice structure can be used for various purposes. For example, it can be used as an artificial vertebral body, an intervertebral body spacer, or a bone filling material. An artificial vertebral body replaces a damaged vertebral body after extraction, and is required to be elastic and flexible. After removing the intervertebral disc, the intervertebral body spacer is used to adjust the distance between the upper and lower vertebral bodies (intervertebral height) to an appropriate value with an adjusting device and maintain the distance. The bone prosthetic material is a treatment tool filled in a collapsed vertebral body in order to treat a vertebral body compression fracture in which the vertebral body collapses due to trauma, osteoporosis or the like. Thus, since the multi-layered three-dimensional lattice structure according to the present invention can be designed with any elasticity and strength and is excellent in biocompatibility, it is possible to create an implant material having the same physical properties as a living bone. it can.
 また,複数層立体格子構造体は,医療的用途のみならず,例えば,プラスチチック材との複合材料のような工業的用途にも利用することができる。例えば,金属製の複数層立体と他のプラスチック材を複合して形成された構造であっても,複数層立体格子構造体の弾性や強度をプラスキック材に適合させることができる。また,数層立体格子構造体は,例えば,金属ケージ,バネブロック,防振材の構造としても好適に利用可能である。 In addition, the multi-layer three-dimensional lattice structure can be used not only for medical purposes but also for industrial purposes such as composite materials with plastic materials. For example, even if the structure is formed by combining a metal multi-layer solid and another plastic material, the elasticity and strength of the multi-layer solid lattice structure can be adapted to the plus kick material. Further, the several-layer three-dimensional lattice structure can be suitably used as, for example, a structure of a metal cage, a spring block, or a vibration isolator.
(6 パンチング加工モデル)
 次に,本発明の格子構造体をパンチング加工する際のモデルについて説明する。
 一般的に,所望の形状の貫通孔を穿設するパンチング加工は,ワイヤーカットやレーザーカットと比較して高い生産性を有し,かつ生産コストも安価である。しかしながら,パンチング加工を行うことができる形状は,比較的単純な形状に限られており,曲線が連続するような複雑な形状については,パンチング加工を施すことが困難であるとされている。
 そこで,以下では,比較的単純な形状で設計されておりパンチング加工で製造することが容易な格子構造体について説明する。
(6 punching model)
Next, a model for punching the lattice structure of the present invention will be described.
In general, punching processing for forming a through hole having a desired shape has high productivity and low production cost compared to wire cutting and laser cutting. However, the shape that can be punched is limited to a relatively simple shape, and it is difficult to perform punching for a complicated shape having a continuous curve.
Therefore, in the following, a lattice structure that is designed with a relatively simple shape and can be easily manufactured by punching will be described.
 図19に示された例では,格子橋10が,ある格子開口部30の内側に向かって鋭角に突出した内側屈折点17と,当該ある開口部30の外側に向かって鋭角に突出した外側屈折点18の2点においてS字型に屈折したものとなっている。なお,格子橋10の形状は,Z字型に屈折したものと称することもできる。内側屈折点17と外側屈折点18の角度は,例えば60度である。 In the example shown in FIG. 19, the lattice bridge 10 has an inner refraction point 17 projecting at an acute angle toward the inside of a certain lattice opening 30 and an outer refraction projecting at an acute angle toward the outside of the certain opening 30. The two points 18 are refracted into an S shape. The shape of the lattice bridge 10 can also be referred to as being refracted into a Z shape. The angle between the inner refraction point 17 and the outer refraction point 18 is, for example, 60 degrees.
 格子点20においては,S字型に屈折した3つの格子橋10の一端部が連接している。そして,各格子開口部30は,6つの格子橋10と6つの格子点20で取り囲まれることにより画定されている。すなわち,格子開口部30は,六角形状の主たる開口部32と,当該主たる開口部32の各辺の一端部から当該各辺の延長線上に延びた一定の回転方向性を有する6つの従たる開口部34が画定される。ここで,「一定の回転方向性」とは,例えば,直線的に形成された6つの従たる開口部が34のそれぞれが,隣り合う従たる開口部34と比較して,60度ずつ規則的に傾斜していることを意味する。主たる開口部32は,正六角形であることが好ましい。また,従たる開口部34は,直線状であることが好ましい。 At the lattice point 20, one end portions of the three lattice bridges 10 refracted into an S shape are connected. Each lattice opening 30 is defined by being surrounded by six lattice bridges 10 and six lattice points 20. That is, the lattice opening 30 includes a hexagonal main opening 32 and six subordinate openings having a certain rotational direction extending from one end of each side of the main opening 32 onto an extension line of each side. A portion 34 is defined. Here, “constant rotational directionality” means, for example, that each of six subordinate openings 34 formed in a straight line is regularly 60 degrees in comparison with the adjacent subordinate openings 34. It means that it is inclined to. The main opening 32 is preferably a regular hexagon. Moreover, it is preferable that the subordinate opening part 34 is linear form.
 図19に示された格子構造体は,格子橋10が内側屈折点17と外側屈折点18の2点で屈折する形状となり,かつ全ての格子橋10の形状が略同一となるように留意しながら,複数の格子開口部30をパンチング加工することにより製造が可能である。このため,図19に示された格子構造体は,高い生産性でかつ安価に製造することができ,大量生産に適している。 In the lattice structure shown in FIG. 19, the lattice bridge 10 has a shape that is refracted at two points of the inner refraction point 17 and the outer refraction point 18, and all the lattice bridges 10 have substantially the same shape. However, it can be manufactured by punching the plurality of lattice openings 30. For this reason, the lattice structure shown in FIG. 19 can be manufactured with high productivity and at low cost, and is suitable for mass production.
 図20に示された例では,格子橋10が,ある格子開口部30の内側に向かって鈍角に突出する第1の内側屈折点17aと第2の内側屈折点17b,及び当該ある格子開口部30の外側に向かって鈍角に突出する第1の外側屈折点18aと第2の外側屈折点18bの4点において屈折している。各屈折点の角度は,例えば120度である。 In the example shown in FIG. 20, the lattice bridge 10 includes a first inner refraction point 17 a and a second inner refraction point 17 b that project at an obtuse angle toward the inside of a certain lattice opening 30, and the certain lattice opening. The light is refracted at four points, ie, a first outer refraction point 18a and a second outer refraction point 18b, which project at an obtuse angle toward the outside of 30. The angle of each refraction point is 120 degrees, for example.
 格子点20においては,S字型に屈折した3つの格子橋10の一端部が連接している。そして,各格子開口部30は,6つの格子橋10と6つの格子点20で取り囲まれることにより画定されている。このため,格子開口部30は,鋭角と鈍角が交互に連続した12角形状の主たる開口部32と,当該主たる開口部30の各鋭角端から当該鋭角端をなす一方の辺の延長線上に延びた一定の回転方向性を有する6つの従たる開口部34が画定される。主たる開口部32の鋭角の例は,60度である。また,主たる開口部32の鈍角の例は,240度である。例えば,格子開口部30は,正六角星形状であることが好ましい。また,従たる開口部34は,直線状であることが好ましい。 At the lattice point 20, one end portions of the three lattice bridges 10 refracted into an S shape are connected. Each lattice opening 30 is defined by being surrounded by six lattice bridges 10 and six lattice points 20. For this reason, the lattice opening 30 extends on the extended line of one side that forms the acute angle end from each acute angle end of the main opening 30 and a dodecagonal main opening 32 in which an acute angle and an obtuse angle continue alternately. Six secondary openings 34 having a constant rotational direction are defined. An example of the acute angle of the main opening 32 is 60 degrees. An example of the obtuse angle of the main opening 32 is 240 degrees. For example, the lattice opening 30 is preferably a regular hexagonal star shape. Moreover, it is preferable that the subordinate opening part 34 is linear form.
 図20に示された格子構造体でも,格子開口部30が,比較的簡易な形状となっているため,パンチング加工により製造できる。さらに,図20に示された格子構造体では,の格子橋10が4つの屈折点を有するS字型で形成されており比較的柔軟に伸縮する。従って,図20に示された格子構造体は柔軟に成形可能であり,例えばインプラント治療を受ける患者の生体特性に適合し易いという利点を有する。 20 can also be manufactured by punching because the lattice opening 30 has a relatively simple shape. Furthermore, in the lattice structure shown in FIG. 20, the lattice bridge 10 is formed in an S-shape having four refraction points, and can expand and contract relatively flexibly. Therefore, the lattice structure shown in FIG. 20 can be molded flexibly, and has an advantage that it is easily adapted to the biological characteristics of a patient receiving an implant treatment, for example.
(7 格子パターンから抽出されるピース)
 図21は,本発明に係る格子構造体100の格子パターンから抽出されたピース400を示している。ピース400は,格子構造体100の格子開口部30と略同一の形状である。また,ピース400は,連結させると隙間なく敷き詰めることができる。ピース400が敷き詰められたピース集合体は,各ピース400間において接着している面積が大きいため,各ピース400間の摩擦力が高く,容易には外れなくなっている。また,ピース集合体は等方性を有しているため,あらゆる方向からの衝撃に対して均一な応力を有する。従って,ピース400は,例えば路上に敷き詰めるタイルとして好適に利用することができる。また,ピース400を敷き詰めたピース集合体は,非常に複雑な幾何学模様を表出しているため,ピース400は,例えばジグソーパズルのピースとして利用することができる。
(7 pieces extracted from the lattice pattern)
FIG. 21 shows a piece 400 extracted from the lattice pattern of the lattice structure 100 according to the present invention. The piece 400 has substantially the same shape as the lattice opening 30 of the lattice structure 100. Also, the pieces 400 can be spread without gaps when connected. Since the piece aggregate in which the pieces 400 are spread has a large area bonded between the pieces 400, the frictional force between the pieces 400 is high and cannot be easily detached. In addition, since the piece aggregate is isotropic, it has a uniform stress against impacts from all directions. Therefore, the piece 400 can be suitably used as, for example, a tile spread on the road. In addition, since the piece aggregate in which the pieces 400 are spread expresses a very complicated geometric pattern, the pieces 400 can be used as, for example, pieces of a jigsaw puzzle.
 以下に,図22~図24の写真を参照して,本発明の実施例について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the photographs in FIGS.
 図22は,本発明に係る格子構造体を人骨に適用した実施例を示す写真である。図22においては,板状である格子構造体を,適用する人骨の形状に合わせた大きさに切断し,人の頭骨や,顎骨,大腿骨,関節にそれぞれ装着しさせている。平板上の格子構造体は,骨片を固定したり骨欠損部を架橋したりするため,に三次元的に湾曲され,骨ネジによって,各種人骨に固定される。図22に示すように,本発明の格子構体は,柔軟に湾曲するものであるため,平坦な骨の領域だけでなく,凹凸形状や球状状に湾曲した骨表面であっても,密着させて装着することができる。 FIG. 22 is a photograph showing an example in which the lattice structure according to the present invention is applied to a human bone. In FIG. 22, a plate-like lattice structure is cut into a size corresponding to the shape of a human bone to be applied, and attached to a human skull, jaw bone, femur, and joint. The lattice structure on the flat plate is curved three-dimensionally to fix bone fragments or bridge bone defects, and is fixed to various human bones by bone screws. As shown in FIG. 22, since the lattice structure of the present invention is flexibly curved, not only a flat bone region, but also a bone surface curved in an uneven shape or a spherical shape is brought into close contact. Can be installed.
 図23は,本発明に係る格子構造体を,歯槽骨造成用の格子構造体としての応用する場合の実施例を示す写真である。このように,本発明に係る格子構造体を歯槽骨造成用として利用する場合,格子開口部はナットが嵌着されている。格子開口部に嵌着されたナットには,人工歯(上部構造)が螺合され固定される。このように,本発明に係る格子構造体は,インプラントとして用いることができる。本発明に係る格子構造体をインプラント治療にとして利用した場合,人工歯根と人工歯の安定性が高まるため,骨の成長を待つことなく歯科インプラントの固定が可能である。 FIG. 23 is a photograph showing an example in which the lattice structure according to the present invention is applied as a lattice structure for alveolar bone formation. Thus, when the lattice structure according to the present invention is used for alveolar bone formation, nuts are fitted into the lattice openings. Artificial teeth (superstructure) are screwed and fixed to the nuts fitted in the lattice openings. Thus, the lattice structure according to the present invention can be used as an implant. When the lattice structure according to the present invention is used as an implant treatment, the stability of the artificial tooth root and the artificial tooth is increased, so that the dental implant can be fixed without waiting for bone growth.
 図24は,リベットを用いて2つの本発明に係る格子構造体を圧接し連結した実施例を示す写真である。このように,本発明にかかる格子構造体は,複数の格子構造体をリベットより圧接し,それぞれ連結を続けていくことにより,構造体の面積を拡張することができる。特に,リベット(特にブラインドリベット)を用いて複数の格子構造体を圧接し連結することにより,形状追随性や弾性などの機械特性を維持したまま格子の面積を拡大できる。 FIG. 24 is a photograph showing an example in which two lattice structures according to the present invention are pressed and connected using rivets. As described above, the grid structure according to the present invention can expand the area of the structure by pressing the plurality of grid structures with rivets and continuing to connect them. In particular, by using a rivet (especially a blind rivet) to press and connect a plurality of lattice structures, the area of the lattice can be expanded while maintaining mechanical characteristics such as shape followability and elasticity.
 本発明に係る格子構造体は,三次元方向に成形可能である。また,本発明に係る格子構造体は,柔軟で高い伸縮性を有するものである。従って,本発明に係る格子構造体は,例えば,生体適合が必要な平板上の格子構造体や,ステントやインプラントのような円筒形状の格子構造体,さらには球形状に成形した格子構造体として好適に利用しうる。 The lattice structure according to the present invention can be molded in a three-dimensional direction. The lattice structure according to the present invention is flexible and has high stretchability. Therefore, the lattice structure according to the present invention is, for example, a lattice structure on a flat plate that requires biocompatibility, a cylindrical lattice structure such as a stent or an implant, and a lattice structure formed into a spherical shape. It can be suitably used.
 10  格子橋
 12  外曲部
 14  内曲部
 15  歯止部
 16  橋部
 17  内側屈折点 
 18  外側屈折点
 20  格子点
 22  孔部
 30  格子開口部
 32  主たる開口部
 34  従たる開口部
 40  ナット
 50  部品
 60  ドライバ
 62  歯車部
 100 格子
 200 複数層格子
 300 複数層立体格子構造体
 400 ピース
 
 
 
 
DESCRIPTION OF SYMBOLS 10 Lattice bridge 12 Outer bending part 14 Inner bending part 15 Pawl part 16 Bridge part 17 Inner refraction point
18 Outer refraction point 20 Lattice point 22 Hole 30 Lattice opening 32 Main opening 34 Subordinate opening 40 Nut 50 Parts 60 Driver 62 Gear part 100 Lattice 200 Multi-layer lattice 300 Multi-layer solid lattice structure 400 Piece


Claims (17)

  1.  S字型に湾曲又は屈折した複数の格子橋(10)と,
     前記複数の格子橋(10)のうち3つの格子橋(10)の端部を連結する複数の格子点(20)と,を含み,
     前記複数の格子橋(10)と前記複数の格子点(20)は,複数の格子開口部(30)を画定し,
     前記格子開口部(30)のそれぞれは,前記複数の格子橋(10)と前記複数の格子点(20)のうち,6つの格子橋(10)と6つの格子点(20)で取り囲まれることにより画定される
     格子構造体(100)。
     
    A plurality of lattice bridges (10) curved or refracted into an S-shape;
    A plurality of lattice points (20) connecting the ends of three lattice bridges (10) among the plurality of lattice bridges (10),
    The plurality of grid bridges (10) and the plurality of grid points (20) define a plurality of grid openings (30);
    Each of the lattice openings (30) is surrounded by six lattice bridges (10) and six lattice points (20) among the plurality of lattice bridges (10) and the plurality of lattice points (20). A lattice structure (100) defined by:
  2.  前記格子開口部(30)のそれぞれは,
     1つの主たる開口部(32)と,6つの従たる開口部(34)を含み,
     前記従たる開口部(34)は,前記主たる開口部(32)から,等方向に,放射状に延びるように画定されている
     請求項1に記載の格子構造体(100)。
     
    Each of the lattice openings (30)
    Including one main opening (32) and six sub-openings (34),
    The lattice structure (100) according to claim 1, wherein the secondary openings (34) are defined to extend radially from the main openings (32) in the same direction.
  3.  前記格子開口部(30)を取り囲んでいる6つの前記格子点(20)は,
     それぞれの格子点(20)をつなぐことにより形成される六角形の頂点に位置する
     請求項1に記載の格子構造体(100)。
     
    The six lattice points (20) surrounding the lattice opening (30) are:
    The lattice structure (100) according to claim 1, wherein the lattice structure (100) is located at a vertex of a hexagon formed by connecting the respective lattice points (20).
  4.  前記格子を形成するS字型に湾曲した格子橋(10)を,湾曲しない直線状の格子橋(10)とした場合に,
     6つの前記直線状の格子橋(10)と6つの前記格子点(20)により画定された格子開口部(30a)は,六角形をなす
     請求項1に記載の格子構造体(100)。
     
    When the lattice bridge (10) curved in an S shape that forms the lattice is a straight lattice bridge (10) that is not curved,
    The lattice structure (100) according to claim 1, wherein the lattice openings (30a) defined by the six straight lattice bridges (10) and the six lattice points (20) form a hexagon.
  5.  前記S字型に湾曲した格子橋(10)を介して連結される前記格子点(20)同士の距離は,
     前記S字型に湾曲した格子橋(10)を,湾曲しない直線状の格子橋(10)とした場合における,前記直線状の格子橋(10)の長さの90%以下である
     請求項1に記載の格子構造体(100)。
     
    The distance between the lattice points (20) connected via the lattice bridge (10) curved in the S-shape is:
    2. The length of the straight lattice bridge (10) is 90% or less when the lattice bridge (10) curved in an S shape is a straight lattice bridge (10) that is not curved. A lattice structure (100) according to claim 1.
  6.  前記複数の格子開口部(30)の少なくとも1つにはネジ穴が形成されたナット(40)が嵌め込まれている
     請求項1に記載の格子構造体(100)。
     
    The lattice structure (100) according to claim 1, wherein a nut (40) in which a screw hole is formed is fitted in at least one of the plurality of lattice openings (30).
  7.  前記格子橋(10)と前記格子点(20)は,バネ合金材料又は形状記憶合金で出来ており,
     Ti-Ni合金を含む
     請求項1に記載の格子構造体(100)。
     
    The lattice bridge (10) and the lattice point (20) are made of a spring alloy material or a shape memory alloy,
    The lattice structure (100) according to claim 1, comprising a Ti-Ni alloy.
  8.  平板状に形成されている
     請求項1に記載の格子構造体(100)。
     
    The lattice structure (100) according to claim 1, which is formed in a flat plate shape.
  9.  円筒状に形成されている
     請求項1に記載の格子構造体(100)。
     
    The lattice structure (100) according to claim 1, which is formed in a cylindrical shape.
  10.  円筒形状に形成され,
     その構造体が輪を形成するリング状である
     請求項1に記載の格子構造体(100)。
     
    Formed in a cylindrical shape,
    The lattice structure (100) according to claim 1, wherein the structure has a ring shape forming a ring.
  11.  球形状に形成されている
     請求項1に記載の格子構造体(100)。
     
    The lattice structure (100) according to claim 1, wherein the lattice structure (100) is formed in a spherical shape.
  12.  請求項1に記載の格子構造体(100)を複数層に重ねてなる
     複数層格子構造体(200)。
     
    A multi-layer lattice structure (200) comprising a plurality of layers of the lattice structure (100) according to claim 1.
  13.  請求項1に記載の格子構造体(100)が,所定角度又は所定方向にずれて,複数層に重ねられてなる
     複数層格子構造体(200)。
     
    A multi-layer lattice structure (200), wherein the lattice structure (100) according to claim 1 is stacked in a plurality of layers at a predetermined angle or in a predetermined direction.
  14.  請求項1に記載の格子構造体(100)を少なくとも2枚以上含み,
     少なくとも2枚以上の格子構造体には,第1の格子構造体(100a)と第2の格子構造体(100b)が含まれ,
     前記第1の格子構造体(100a)と前記第2の格子構造体(100b)は,少なくとも1箇所の格子点(20a,20b)において接合されており,
     接合された格子点(20a,20b)に端部が連結された格子橋(10a,10b)のいずれか一つ以上は,格子構造体の平面に直交する方向に立上している
     複数層立体格子構造体(300)。
     
    Including at least two lattice structures (100) according to claim 1,
    The at least two or more lattice structures include a first lattice structure (100a) and a second lattice structure (100b).
    The first lattice structure (100a) and the second lattice structure (100b) are joined at at least one lattice point (20a, 20b),
    Any one or more of the lattice bridges (10a, 10b) whose ends are connected to the joined lattice points (20a, 20b) are erected in a direction perpendicular to the plane of the lattice structure. Lattice structure (300).
  15.  第3の格子構造体(100c)をさらに含み,
     前記第1の格子構造体(100a)と前記第3の格子構造体(100c)の間に,前記第2の格子構造体(100b)が位置し,
     少なくとも,前記第2の格子構造体(100b)のある格子橋(10b)の一端部に位置する格子点(20b)は,前記第1の格子構造体(100a)の格子点(20a)に接合されており,
     少なくとも,前記第2の格子構造体(100b)のある格子橋(10b)の他端部に位置する格子点(20b)は,前記第3の格子構造体(100c)の格子点(20c)に接合されており,
     少なくとも,前記第2の格子構造体(100b)のある格子橋(10b)は,前記第2の格子構造体(100b)の平面に直交する方向に立上している。
     請求項16に記載の複数層立体格子構造体(300)。
     
    A third lattice structure (100c);
    The second lattice structure (100b) is located between the first lattice structure (100a) and the third lattice structure (100c),
    At least the lattice point (20b 1 ) located at one end of the lattice bridge (10b) where the second lattice structure (100b) is located is the lattice point (20a) of the first lattice structure (100a). Are joined,
    At least the lattice point (20b 2 ) located at the other end of the lattice bridge (10b) with the second lattice structure (100b) is the lattice point (20c) of the third lattice structure (100c). Is joined to
    At least the lattice bridge (10b) with the second lattice structure (100b) rises in a direction perpendicular to the plane of the second lattice structure (100b).
    The multi-layer three-dimensional lattice structure (300) according to claim 16.
  16.  前記格子橋(10)は,S字型に屈折したものであり,
     前記格子橋(10)は,ある格子開口部(30)の内側に向かって鋭角に突出した内側屈折点(17)と,当該ある開口部(30)の外側に向かって鋭角に突出した外側屈折点(18)の2点において屈折し,
     前記格子開口部(30)は,六角形状の主たる開口部(32)と,当該主たる開口部(32)の各辺の一端部から当該各辺の延長線上に延びた一定の回転方向性を有する6つの従たる開口部(34)が画定される
     請求項1に記載の格子構造体。
     
    The lattice bridge (10) is refracted into an S-shape,
    The lattice bridge (10) has an inner refraction point (17) projecting at an acute angle toward the inside of a certain lattice opening (30), and an outer refraction projecting at an acute angle toward the outside of the certain opening (30). Refracted at two points (18),
    The lattice opening (30) has a hexagonal main opening (32) and a certain rotational direction extending from one end of each side of the main opening (32) onto an extension line of each side. The lattice structure of claim 1, wherein six secondary openings (34) are defined.
  17.  前記格子橋(10)は,S字型に屈折したものであり,
     前記格子橋(10)は,ある格子開口部(30)の内側に向かって鈍角に突出する第1の内側屈折点(17a)と第2の内側屈折点(17b),及び当該ある格子開口部(30)の外側に向かって鈍角に突出する第1の外側屈折点(18a)と第2の外側屈折点(18b)の4点において屈折し,
     前記格子開口部(30)は,鋭角と鈍角が交互に連続した12角形状の主たる開口部(32)と,当該主たる開口部(30)の各鋭角端から当該鋭角端をなす一方の辺の延長線上に延びた一定の回転方向性を有する6つの従たる開口部(34)が画定される
     請求項1に記載の格子構造体。
     
     
    The lattice bridge (10) is refracted into an S-shape,
    The lattice bridge (10) includes a first inner refraction point (17a) and a second inner refraction point (17b) protruding at an obtuse angle toward the inside of a certain lattice opening (30), and the certain lattice opening. Refracted at four points of a first outer refraction point (18a) and a second outer refraction point (18b) projecting at an obtuse angle toward the outside of (30),
    The lattice opening (30) includes a dodecagonal main opening (32) having an acute angle and an obtuse angle alternately arranged, and one side that forms the acute angle end from each acute angle end of the main opening (30). The grid structure according to claim 1, wherein six secondary openings (34) having a constant direction of rotation extending on the extension are defined.

PCT/JP2011/070747 2010-09-15 2011-09-12 Three-dimensionally moldable lattice structure WO2012036129A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012533997A JP5942066B2 (en) 2010-09-15 2011-09-12 Three-dimensional formable lattice structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-207231 2010-09-15
JP2010207231 2010-09-15

Publications (1)

Publication Number Publication Date
WO2012036129A1 true WO2012036129A1 (en) 2012-03-22

Family

ID=45831589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070747 WO2012036129A1 (en) 2010-09-15 2011-09-12 Three-dimensionally moldable lattice structure

Country Status (2)

Country Link
JP (1) JP5942066B2 (en)
WO (1) WO2012036129A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015039484A (en) * 2013-08-21 2015-03-02 株式会社カネカ Stent machining jig and manufacturing process of stent
WO2016046549A1 (en) * 2014-09-23 2016-03-31 Ucl Business Plc Device and method of its fabrication
JP2016527997A (en) * 2013-08-22 2016-09-15 ジョンソン・アンド・ジョンソン・メディカル・ゲーエムベーハー Surgical implant
JP2016221055A (en) * 2015-06-01 2016-12-28 株式会社ネクスト21 Implant member and its manufacturing method
WO2019191850A1 (en) * 2018-04-06 2019-10-10 Sunnybrook Research Institute Formable mesh for correcting bone defects
JP2019531866A (en) * 2016-10-25 2019-11-07 インスティテュート フォー マスキュロスケレタル サイエンス アンドエジュケイション,リミテッド Implant with multilayer bone interface lattice
JP2019532773A (en) * 2016-11-03 2019-11-14 デピュイ・シンセス・プロダクツ・インコーポレイテッド Folded body storage device for bone defect
USD909580S1 (en) 2019-04-05 2021-02-02 Sunnybrook Research Institute Surgical mesh implant
CN115054410A (en) * 2022-06-09 2022-09-16 北京大学口腔医学院 Super-ductility plastic titanium mesh and processing method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101984703B1 (en) * 2017-08-14 2019-05-31 한국생산기술연구원 Artificial bone having flexible mesh structure and method for manufacturing the same
KR101996849B1 (en) 2018-12-26 2019-10-01 (주)메디쎄이 Patient-tailored mandibular implants and methods for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1052503A (en) * 1996-06-11 1998-02-24 Robert E Fischell Multi cell stent having different characteristic cell
JPH10277053A (en) * 1997-04-02 1998-10-20 Tadeusz Z Wellisz Surcial connector
JPH11155879A (en) * 1997-10-21 1999-06-15 Howmedica Leibinger Gmbh & Co Kg Grid for fixing bone piece or bridging bone loss part
JP2002505152A (en) * 1998-03-04 2002-02-19 ボストン サイエンティフィック リミテッド Improved stent cell structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1284683B1 (en) * 2000-05-22 2011-08-10 OrbusNeich Medical, Inc. Self-expanding stent
CN101194864A (en) * 2007-12-29 2008-06-11 北京吉马飞科技发展有限公司 Parallelogram floral type bone injury renovation net

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1052503A (en) * 1996-06-11 1998-02-24 Robert E Fischell Multi cell stent having different characteristic cell
JPH10277053A (en) * 1997-04-02 1998-10-20 Tadeusz Z Wellisz Surcial connector
JPH11155879A (en) * 1997-10-21 1999-06-15 Howmedica Leibinger Gmbh & Co Kg Grid for fixing bone piece or bridging bone loss part
JP2002505152A (en) * 1998-03-04 2002-02-19 ボストン サイエンティフィック リミテッド Improved stent cell structure

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015039484A (en) * 2013-08-21 2015-03-02 株式会社カネカ Stent machining jig and manufacturing process of stent
JP2016527997A (en) * 2013-08-22 2016-09-15 ジョンソン・アンド・ジョンソン・メディカル・ゲーエムベーハー Surgical implant
WO2016046549A1 (en) * 2014-09-23 2016-03-31 Ucl Business Plc Device and method of its fabrication
US20170296243A1 (en) * 2014-09-23 2017-10-19 Ucl Business Plc Device and method
JP2016221055A (en) * 2015-06-01 2016-12-28 株式会社ネクスト21 Implant member and its manufacturing method
JP2019531866A (en) * 2016-10-25 2019-11-07 インスティテュート フォー マスキュロスケレタル サイエンス アンドエジュケイション,リミテッド Implant with multilayer bone interface lattice
JP2022000292A (en) * 2016-10-25 2022-01-04 インスティテュート フォー マスキュロスケレタル サイエンス アンド エジュケイション,リミテッド Implant with multi-layer bone interfacing lattice
JP2019532773A (en) * 2016-11-03 2019-11-14 デピュイ・シンセス・プロダクツ・インコーポレイテッド Folded body storage device for bone defect
JP7094951B2 (en) 2016-11-03 2022-07-04 デピュイ・シンセス・プロダクツ・インコーポレイテッド Folding body accommodating device for bone defects
US11633284B2 (en) 2016-11-03 2023-04-25 DePuy Synthes Products, Inc. Fold-up containment device for bone defects
WO2019191850A1 (en) * 2018-04-06 2019-10-10 Sunnybrook Research Institute Formable mesh for correcting bone defects
USD909580S1 (en) 2019-04-05 2021-02-02 Sunnybrook Research Institute Surgical mesh implant
CN115054410A (en) * 2022-06-09 2022-09-16 北京大学口腔医学院 Super-ductility plastic titanium mesh and processing method and application thereof

Also Published As

Publication number Publication date
JP5942066B2 (en) 2016-06-29
JPWO2012036129A1 (en) 2014-02-03

Similar Documents

Publication Publication Date Title
JP5942066B2 (en) Three-dimensional formable lattice structure
EP3179961B1 (en) Bone implants for correcting bone defects
CN105120802B (en) Mosaic implant, kit and the method for correcting Cranial defect
EP3119347B1 (en) Segmented orthodontic appliance with elastics
CN107847330B (en) Multi-element biological absorbable intravascular stent
US9220597B2 (en) Mosaic implants, kits and methods for correcting bone defects
KR101784805B1 (en) Method for producing a patient-specific bracket body, and associated bracket body
JP2008531134A (en) Bone implant
JP6720397B2 (en) Flexible upper and lower jaw fixation device
JP2007503291A5 (en)
JP7129747B2 (en) Elastomer orthodontic bracket
CN104812330A (en) Dental implant
CN102415920A (en) Manufacturing method of individual stent used for mandibular defect tissue engineering repair
ES2678521T3 (en) Manufacturing procedure of a specific band for the patient and the corresponding band
JP5479242B2 (en) Medical linear members
US20080293014A1 (en) Emergency implant fixture
ES2905369T3 (en) Manufacturing procedure of an orthodontic correction device
Favero et al. Comparative analysis of anchorage systems for micro implant orthodontics
US20150209095A1 (en) Bone connection material
TWI624250B (en) Bioglass fiber dental implant
US20130236853A1 (en) 3d ductile and perforated retaining sheet
CN217090992U (en) Cover film for dentistry
CN113456290B (en) Degradable metal skull repairing mesh implant
JP2016221055A (en) Implant member and its manufacturing method
Trandem et al. Comparison of deformation of 3 orthodontic miniplate lever arms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825131

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012533997

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11825131

Country of ref document: EP

Kind code of ref document: A1