WO2011099122A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2011099122A1
WO2011099122A1 PCT/JP2010/051963 JP2010051963W WO2011099122A1 WO 2011099122 A1 WO2011099122 A1 WO 2011099122A1 JP 2010051963 W JP2010051963 W JP 2010051963W WO 2011099122 A1 WO2011099122 A1 WO 2011099122A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
switching
power
control
pulse
Prior art date
Application number
PCT/JP2010/051963
Other languages
English (en)
French (fr)
Inventor
和人 大山
利貞 三井
慎吾 西口
公久 古川
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to PCT/JP2010/051963 priority Critical patent/WO2011099122A1/ja
Priority to US13/023,685 priority patent/US20110193509A1/en
Priority to CN201310492137.9A priority patent/CN103560688A/zh
Priority to EP11153943A priority patent/EP2355319A2/en
Priority to CN2011100364112A priority patent/CN102148582A/zh
Publication of WO2011099122A1 publication Critical patent/WO2011099122A1/ja
Priority to US13/963,382 priority patent/US20140049198A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K7/00Modulating pulses with a continuously-variable modulating signal
    • H03K7/08Duration or width modulation ; Duty cycle modulation

Definitions

  • the present invention relates to a power conversion device that converts DC power into AC power or AC power into DC power.
  • a power conversion device that receives direct current power and converts the direct current power into alternating current power for supplying to the rotating electrical machine includes a plurality of switching elements, and the switching element repeats a switching operation to supply the direct current supplied. Convert power to AC power. Many of the power converters are also used to convert AC power induced in the rotating electrical machine into DC power by the switching operation of the switching element.
  • the above-described switching element is generally controlled based on a pulse width modulation method (hereinafter referred to as a PWM method) using a carrier wave that changes at a constant frequency. By increasing the frequency of the carrier wave, the control accuracy is improved and the torque generated by the rotating electrical machine tends to be smooth.
  • the switching element when the switching element is switched from the cut-off state to the conductive state, or when the switching element is switched from the conductive state to the cut-off state, the power loss increases and the heat generation amount increases.
  • Patent Document 1 An example of a power converter is disclosed in Japanese Patent Laid-Open No. 63-234878 (see Patent Document 1).
  • An object of the present invention is to reduce switching loss while suppressing an increase in torque pulsation as much as possible in a power converter.
  • the embodiment described below reflects research results preferable as a product, and solves various specific problems preferable as a product. Specific problems to be solved by specific configurations and operations in the following embodiments will be described in the following embodiments.
  • the present invention has at least one of the following features.
  • One of the features of the present invention is that a plurality of switching elements for receiving DC power supply and converting them to AC power supplied to an inductance load, and a drive signal for controlling conduction and interruption of the switching elements are output. And a driver circuit that conducts or cuts off the switching element according to the drive signal based on the angle or phase of the AC power to be converted. With such a configuration, the number of switching times of the switching element can be reduced.
  • the switching element in the first modulation degree having a small modulation degree is obtained by synchronizing the conduction start timing of the switching element with the phase of the AC power to be converted.
  • the angle at which the conduction state continues (hereinafter referred to as the conduction duration angle) is controlled to increase at the second modulation degree that is higher than the first modulation degree, and the subsequent switching element continues to be shut off. (Hereinafter referred to as a cut-off duration angle) is reduced, and the cut-off duration angle is decreased to a predetermined angle larger than an angle at which the switching element can operate at a third modulation degree that is higher than the second modulation degree. Control is performed so as to connect to the next conduction duration angle by eliminating the interruption period. By controlling in this way, the reliability can be improved in addition to the reduction of the switching frequency of the switching element.
  • Still another feature of the present invention is that a plurality of switching elements for receiving supply of DC power and converting them into AC power supplied to an inductance load, and a drive for controlling conduction and interruption of the switching elements are provided.
  • a driver circuit that outputs a signal, and controls the switching element to be turned on or off by the drive signal based on the phase of the AC power to be converted, and has substantially the same degree of modulation. In this case, for example, when the rotational speed of a rotating electrical machine such as a permanent magnet type synchronous rotating electrical machine or induction rotating electrical machine that operates as an inductance load is increased, the switching operation time interval of the switching element is shortened. Control the switching element.
  • the AC The switching element is controlled so that the number of switching times per cycle for generating electric power is not changed as much as possible.
  • Still another feature of the present invention is that the number of harmonics to be deleted can be selected, and the number of switching per unit phase of the switching element can be reduced by deleting the harmonics of the order that does not need to be deleted. The increase can be prevented.
  • Still another feature of the present invention is that the harmonics of the order to be deleted are superimposed and deleted for each unit phase, for example, every zero [rad] to ⁇ [rad]. Switching frequency can be reduced.
  • Still another feature of the present invention is that a plurality of switching elements constituting an upper arm and a lower arm are provided for converting supplied DC power into three-phase AC power for driving a rotating electrical machine.
  • An AC circuit that includes a bridge circuit, a control circuit that controls conduction and interruption of the switching element, and a driver circuit that generates a drive signal that conducts and interrupts the switching element, and that is to be output in the first period.
  • a drive signal is supplied from the driver circuit to the switching element based on the phase of electric power, and the switching element is turned on based on the drive signal to supply an alternating current to the rotating electrical machine.
  • the switching element is turned on for a period previously determined by the control circuit to store energy in the rotating electrical machine, and then, in the second period, one of the upper arm and the lower arm of the bridge circuit is shut off.
  • the other is made conductive, and the current flowing to the rotating electrical machine is kept flowing based on the stored energy.
  • Still another feature of the present invention is that, in the first operating region, a drive signal for controlling the switching operation of the switching element is supplied to the switching element based on the phase of the AC power to be output and output.
  • the switching device In the second region where the frequency of the AC power to be output from the first operating region is low, the switching device is turned on and off based on the carrier wave. In other words, PWM control is performed.
  • Still another feature of the present invention is that, as described in the second aspect of the present invention, in addition to the above-mentioned features, an HM control mode for controlling the switching element corresponding to the phase of the output AC waveform and a constant cycle
  • the sine wave PWM control mode for controlling the switching element based on the carrier wave is switched based on the rotational speed of the motor.
  • the HM control mode includes one switching element for each phase for each rotation of the motor. Further included is a rectangular wave control mode that is turned on and off each time.
  • the fourth aspect of the present invention in the power conversion device of the third aspect, in the HM control mode, at least one of the electrical angle position forming the first period and the length of the first period is changed. Then, the harmonic component of the alternating current flowing through the motor is changed to a desired value, and the rectangular wave control mode is shifted by the change of the harmonic component.
  • the power conversion apparatus outputs a compensation pulse for compensating a transient current generated in an alternating current flowing through the motor.
  • Compensating means is further provided.
  • This transient current compensation means outputs a compensation pulse when switching between the HM control mode and the sine wave PWM control mode.
  • the transient current compensation means is configured to perform a predetermined condition at the time of switching between the HM control mode and the sine wave PWM control mode, or in addition thereto. When the above is satisfied, a compensation pulse is output.
  • Still another feature of the present invention is that, as described in the seventh aspect of the present invention, based on the determination means for determining whether or not the rotation state of the motor can be detected, and the determination result by the determination means.
  • chopper control means for outputting a predetermined one-phase chopper control signal for alternately forming the first period and the second period regardless of the electrical angle.
  • Still another feature of the present invention is that, as described in the eighth aspect of the present invention, the period of the one-phase chopper control signal is determined according to the inductance of the motor.
  • the power conversion device includes a bridge circuit including a plurality of switching elements constituting the upper arm and the lower arm, and A switching circuit that outputs a driving signal for turning on or off the switching element; and a controller for controlling the driving circuit, the switching element corresponding to a phase of AC power converted from DC power. And controlling the conduction or cutoff period of the switching element based on the degree of modulation.
  • One of the other characteristics of the present invention is that, in the above characteristics, when the harmonic component of the alternating current flowing through the motor is changed to a desired value and the modulation degree is maximum, each phase is rotated for each rotation of the motor.
  • the rectangular wave control is performed to turn on and off each of the switching elements once.
  • an increase in torque pulsation can be suppressed to some extent, and further switching loss can be reduced.
  • the following embodiments can solve a desirable problem in commercialization and have a desirable effect in commercialization. Play. Some of them will be described next, and in the description of the embodiments, specific solutions to problems and specific effects will be described.
  • a drive signal is sent from the drive circuit to the switching element to control the switching operation of the switching element based on the angle or phase of the waveform of the AC power converted from the DC power. And the switching element conducts or cuts off in association with the phase of the AC power to be converted.
  • the number of switching operations of the switching element per unit time or the number of switching operations per cycle of AC power can be reduced as compared with a general PWM system.
  • the switching frequency of the switching element of the power switching circuit is reduced, an increase in distortion of the output AC waveform can be suppressed, and the loss associated with the switching operation can be reduced. This leads to a reduction in heat generation of the switching element of the power switching circuit.
  • the order of the harmonic to be deleted is selected.
  • the order to be deleted can be selected in accordance with the application target of the present invention, so that it is possible to prevent the number of types of orders to be deleted from being increased more than necessary.
  • the number of switching operations can be reduced.
  • the harmonics of the orders to be reduced are superimposed for each unit phase, and the switching timing of the switching elements of the power switching circuit is controlled based on the superimposed waveforms, so that the number of switching times of the switching elements of the power switching circuit can be reduced.
  • the switching element is preferably an element having a high operating speed and capable of controlling both conduction and cutoff operation based on a control signal.
  • Examples of such an element include an insulated gate bipolar transistor (hereinafter referred to as IGBT) and a field effect transistor (hereinafter referred to as IGBT). MOS transistors), and these elements are desirable in terms of responsiveness and controllability.
  • the AC power output from the power converter is supplied to an inductance circuit composed of a rotating electrical machine and flows an AC current based on the action of the inductance.
  • a rotating electrical machine that acts as a motor or a generator as an inductance circuit will be described as an example.
  • Use of the present invention to generate AC power for driving the rotating electrical machine is optimal from the viewpoint of effect, but it can also be used as a power conversion device that supplies AC power to an inductance circuit other than the rotating electrical machine.
  • the switching operation of the switching element in the first operating range where the rotating speed of the rotating electrical machine is high, the switching operation of the switching element is generated based on the phase of the AC waveform to be output, while In the second operation region where the rotating speed of the rotating electrical machine is slow, the switching element is controlled by a PWM method that controls the operation of the switching element based on a carrier wave having a constant frequency.
  • the second operating region may include a stopped state of the rotor of the rotating electrical machine.
  • a motor generator used as a rotating electrical machine and a motor generator used as a generator will be described as an example.
  • the distortion of the AC waveform tends to increase in a region where the frequency of the output AC power is low.
  • the second region where the frequency of the AC output is low uses the PWM method to control the switching element based on the passage of time, and the first region where the frequency is higher than the second region is based on the angle. To control the switching element. By controlling the switching elements using different methods as described above, an effect of reducing distortion of the output AC power is produced.
  • the AC power is generated by PWM control in a low-speed operation state of a rotating electrical machine that supplies AC power, and the rotational speed of the rotating electrical machine is increased.
  • the process shifts to AC power generation control by HM control. Thereby, the influence of distortion can be suppressed as much as possible, and the efficiency can be improved.
  • the process shifts to the rectangular wave control in the HM control.
  • the switching timing is controlled in accordance with the phase of the AC waveform to be output, and switching in a half cycle of AC power (electrical angle from zero to ⁇ , or from ⁇ to 2 ⁇ ) as the modulation degree is increased.
  • the number of times gradually decreases, and finally, the process shifts to rectangular wave control in which conduction is performed only once in a half cycle.
  • a power conversion device is a power conversion device that generates AC power for driving a rotating electrical machine of a hybrid vehicle (hereinafter referred to as HEV) or a pure electric vehicle (hereinafter referred to as EV).
  • HEV hybrid vehicle
  • EV pure electric vehicle
  • HEV power converters and EV power converters are common in basic configuration and control, and as a representative example, a control configuration when the power converter according to the embodiment of the present invention is applied to a hybrid vehicle.
  • the circuit configuration of the power converter will be described with reference to FIGS.
  • FIG. 1 is a diagram showing a control block of a hybrid vehicle.
  • an in-vehicle power conversion device of an in-vehicle electric system mounted on an automobile will be described.
  • a vehicle drive power conversion device that is used in a vehicle drive electrical system and has a very severe mounting environment and operational environment will be described as an example.
  • the vehicle drive power conversion device is provided in a vehicle drive electrical system as a control device that drives a vehicle drive rotating electrical machine.
  • This power conversion device for driving a vehicle converts DC power supplied from an on-vehicle battery or an on-vehicle power generation device constituting an in-vehicle power source into predetermined AC power, and supplies the obtained AC power to the rotating electrical machine. Drives the rotating electrical machine.
  • the power converter since the rotating electrical machine has a function as a generator in addition to the function of an electric motor, the power converter not only converts DC power into AC power according to the operation mode, but also generates the rotating electrical machine. The operation to convert the alternating current power to direct current power is also performed. The converted DC power is supplied to the on-vehicle battery.
  • the configuration of the present embodiment is optimal as a power conversion device for driving a vehicle such as an automobile or a truck.
  • power converters other than these such as power converters such as trains, ships, and aircraft, industrial power converters for generating AC power to be supplied to rotating electrical machines that drive factory equipment, or household
  • the present invention can also be applied to a power conversion device used in a control device for a rotating electrical machine that drives a photovoltaic power generation system or a household electrical appliance.
  • HEV 110 is one electric vehicle and includes two vehicle driving systems.
  • One of them is an engine system that uses an engine 120 that is an internal combustion engine as a power source.
  • the engine system is mainly used as a drive source for HEV.
  • the other is an in-vehicle electric system using motor generators 192 and 194 as a power source.
  • the in-vehicle electric system is mainly used as an HEV drive source and an HEV power generation source.
  • the motor generators 192 and 194 are examples of a rotating electric machine such as a synchronous machine or an induction machine, and operate as both a motor and a generator depending on the operation method.
  • a front wheel axle 114 is rotatably supported at the front part of the vehicle body.
  • a pair of front wheels 112 are provided at both ends of the front wheel axle 114.
  • a rear wheel axle (not shown) is rotatably supported on the rear portion of the vehicle body.
  • a pair of rear wheels are provided at both ends of the rear wheel axle.
  • the HEV of this embodiment employs a so-called front wheel drive system in which the main wheel driven by power is the front wheel 112 and the driven wheel to be driven is the rear wheel. You may adopt.
  • a front wheel side differential gear (hereinafter referred to as “front wheel side DEF”) 116 is provided at the center of the front wheel axle 114.
  • the front wheel axle 114 is mechanically connected to the output side of the front wheel side DEF 116.
  • the output shaft of the transmission 118 is mechanically connected to the input side of the front wheel side DEF 116.
  • the front wheel side DEF 116 is a differential power distribution mechanism that distributes the rotational driving force that is shifted and transmitted by the transmission 118 to the left and right front wheel axles 114.
  • the output side of the motor generator 192 is mechanically connected to the input side of the transmission 118.
  • the output side of the engine 120 and the output side of the motor generator 194 are mechanically connected to the input side of the motor generator 192 via the power distribution mechanism 122.
  • Motor generators 192 and 194 and power distribution mechanism 122 are housed inside the casing of transmission 118.
  • the motor generators 192 and 194 are synchronous machines having permanent magnets on the rotor.
  • the AC power supplied to the armature windings of the stator is controlled by the power converters 140 and 142, whereby the driving of the motor generators 192 and 194 is controlled.
  • a battery 136 is electrically connected to the power converters 140 and 142. Power can be exchanged between the battery 136 and the power converters 140 and 142.
  • the in-vehicle electric machine system of the present embodiment includes two of a first motor generator unit composed of a motor generator 192 and a power converter 140 and a second motor generator unit composed of a motor generator 194 and a power converter 142, They are used properly according to the driving conditions. That is, when the vehicle is driven by the power from the engine 120, when assisting the driving torque of the vehicle, the second motor generator unit is operated by the power of the engine 120 as a power generation unit to generate power, and the power generation The first motor generator unit is operated as an electric unit by the electric power obtained by the above.
  • the first motor generator unit when assisting the vehicle speed of the vehicle, is operated by the power of the engine 120 as a power generation unit to generate power, and the second motor generator unit is generated by the electric power obtained by the power generation. Is operated as an electric unit.
  • the vehicle can be driven only by the power of the motor generator 192 by operating the first motor generator unit as an electric unit by the electric power of the battery 136.
  • the battery 136 can be charged by generating power by operating the first motor generator unit or the second motor generator unit as the power generation unit by the power of the engine 120 or the power from the wheels.
  • the battery 136 is also used as a power source for driving an auxiliary motor 195.
  • the auxiliary motor is, for example, a motor for driving a compressor of an air conditioner or a motor for driving a control hydraulic pump.
  • DC power is supplied from the battery 136 to the power converter 43, converted into AC power by the power converter 43, and supplied to the motor 195.
  • the power conversion device 43 has the same function as the power conversion devices 140 and 142 and controls the phase, frequency, and power of alternating current supplied to the motor 195.
  • the motor 195 generates torque by supplying AC power having a leading phase with respect to the rotation of the rotor of the motor 195.
  • the motor 195 acts as a generator and operates in a regenerative braking state.
  • Such a control function of the power conversion device 43 is the same as the control function of the power conversion devices 140 and 142. Since the capacity of the motor 195 is smaller than the capacity of the motor generators 192 and 194, the maximum converted power of the power converter 43 is smaller than that of the power converters 140 and 142.
  • the circuit configuration and operation of the power conversion device 43 are basically similar to the circuit configuration and operation of the power conversion devices 140 and 142.
  • the power converters 140 and 142, the power converter 43, and the capacitor module 500 are in an electrical close relationship. Furthermore, there is a common point that measures against heat generation are necessary. It is also desired to make the volume of the device as small as possible. From these points, the power conversion device described in detail below includes the power conversion devices 140 and 142, the power conversion device 43, and the capacitor module 500 in the casing of the power conversion device. With this configuration, a small and highly reliable device can be realized.
  • the power conversion devices 140 and 142, the power conversion device 43, and the capacitor module 500 in one housing, it is effective in simplifying wiring and taking measures against noise.
  • the inductance of the connection circuit between the capacitor module 500, the power converters 140 and 142, and the power converter 43 can be reduced, the spike voltage can be reduced, heat generation can be reduced, and heat dissipation efficiency can be improved.
  • the electric circuit configuration of the power converters 140 and 142 or the power converter 43 will be described with reference to FIG.
  • the case where the power conversion devices 140 and 142 or the power conversion device 43 are individually configured will be described as an example.
  • the power conversion devices 140 and 142 or the power conversion device 43 have the same functions and the same functions with the same configuration.
  • the power converter 140 will be described as a representative example.
  • the power conversion device 200 includes a power conversion device 140 and a capacitor module 500.
  • the power conversion device 140 includes a power switching circuit 144 and a control unit 170. Further, the power switching circuit 144 has a switching element that operates as an upper arm and a switching element that operates as a lower arm.
  • an IGBT insulated gate bipolar transistor
  • the IGBT 328 operating as the upper arm is connected in parallel with the diode 156, and the IGBT 330 operating as the lower arm is connected in parallel with the diode 166.
  • control unit 170 includes a driver circuit 174 that drives and controls the power switching circuit 144 and a control circuit 172 that supplies a control signal to the driver circuit 174 via the signal line 176.
  • the IGBTs 328 and 330 of the upper arm and the lower arm are switching elements, operate in response to a drive signal output from the control unit 170, and convert DC power supplied from the battery 136 into three-phase AC power.
  • the converted electric power is supplied to the armature winding of the motor generator 192.
  • power conversion device 140 also performs an operation of converting three-phase AC power generated by motor generator 192 into DC power.
  • the power conversion device 200 includes power conversion devices 140 and 142, a power conversion device 43, and a capacitor module 500 as shown in FIG. Since the power converters 140 and 142 and the power converter 43 have the same circuit configuration as described above, the power converter 140 is described here as a representative, and the power converter 142 and the power converter 43 are as described above. Omitted.
  • the power switching circuit 144 is composed of a three-phase bridge circuit.
  • a direct current positive electrode terminal 314 and a direct current negative electrode terminal 316 are electrically connected to the positive electrode side and the negative electrode side of the battery 136.
  • upper and lower arm series circuits 150, 150, 150 corresponding to the respective phases are electrically connected in parallel.
  • the series circuit 150 of the upper and lower arms is referred to as an arm.
  • Each arm includes a switching element 328 and a diode 156 on the upper arm side, and a switching element 330 and a diode 166 on the lower arm side.
  • IGBTs 328 and 330 include collector electrodes 153 and 163, emitter electrodes (signal emitter electrode terminals 155 and 165), and gate electrodes (gate electrode terminals 154 and 164).
  • Diodes 156 and 166 are electrically connected in parallel between the collector electrodes 153 and 163 of the IGBTs 328 and 330 and the emitter electrode as shown in the figure.
  • the diodes 156 and 166 include two electrodes, a cathode electrode and an anode electrode.
  • the cathode electrode is electrically connected to the collector electrode of the IGBTs 328 and 330 and the anode electrode is electrically connected to the emitter electrodes of the IGBTs 328 and 330 so that the direction from the emitter electrode to the collector electrode of the IGBTs 328 and 330 is the forward direction.
  • a MOSFET metal oxide semiconductor field effect transistor
  • the diode 156 and the diode 166 are unnecessary.
  • the series circuit 150 of the upper and lower arms corresponds to each phase of AC power supplied to the three-phase motor generator 192.
  • Each series circuit 150, 150, 150 connects the emitter electrode of the IGBT 328 and the collector electrode 163 of the IGBT 330.
  • the connection point 169 is used to output U-phase, V-phase, and W-phase AC power, respectively.
  • the connection point 169 of each phase is connected to the U-phase, V-phase, and W-phase armature windings (stator winding in the synchronous motor) of the motor generator 192 via the AC terminal 159 and the connector 188, respectively.
  • U-phase, V-phase, and W-phase currents flow through the armature winding.
  • the series circuits of the upper and lower arms are electrically connected in parallel.
  • the collector electrode 153 of the upper arm IGBT 328 is connected to the positive electrode capacitor electrode of the capacitor module 500 via the positive terminal (P terminal) 157, and the emitter electrode of the lower arm IGBT 330 is connected to the capacitor via the negative electrode terminal (N terminal) 158.
  • the module 500 is electrically connected to a negative electrode capacitor electrode via a DC bus bar or the like.
  • the capacitor module 500 is for configuring a smoothing circuit that suppresses fluctuations in DC voltage caused by the switching operation of the IGBTs 328 and 330.
  • the positive electrode side of the battery 136 is electrically connected to the positive electrode side capacitor electrode of the capacitor module 500, and the negative electrode side of the battery 136 is electrically connected to the negative electrode side capacitor electrode of the capacitor module 500 via the DC connector 138.
  • the capacitor module 500 is connected between the collector electrode 153 of the upper arm IGBT 328 and the positive electrode side of the battery 136, and between the emitter electrode of the lower arm IGBT 330 and the negative electrode side of the battery 136. Are electrically connected in parallel to the series circuit 150.
  • the control unit 170 functions to control the operation of turning on and off the IGBTs 328 and 330, and the control unit 170 controls the switching timing of the IGBTs 328 and 330 based on input information from other control devices and sensors. And a drive circuit 174 for generating a drive signal for switching the IGBTs 328 and 330 based on the timing signal output from the control circuit 172.
  • the control circuit 172 includes a microcomputer for calculating the switching timing of the IGBTs 328 and 330.
  • a target torque value required for the motor generator 192 a current value supplied to the armature winding of the motor generator 192 from the series circuit 150 of the upper and lower arms, and the motor generator 192
  • the magnetic pole position of the rotor is input.
  • the target torque value is based on a command signal output from a host controller (not shown).
  • the current value is detected based on the detection signal output from the current sensor 180.
  • the magnetic pole position is detected based on a detection signal output from a rotating magnetic pole sensor (not shown) provided in the motor generator 192.
  • the case where the current values of three phases are detected will be described as an example, but the current values for two phases may be detected.
  • the microcomputer in the control circuit 172 calculates the d and q axis current command values of the motor generator 192 based on the input target torque value, and the calculated d and q axis current command values are detected.
  • the d and q axis voltage command values are calculated based on the difference between the d and q axis current values, and a pulsed drive signal is generated from the d and q axis voltage command values.
  • the control circuit 172 has a function of generating drive signals of two types as will be described later. These two types of drive signals are selected based on the state of the motor generator 192, which is an inductance load, or based on the frequency of the AC power to be converted.
  • HM Hexad Generation
  • PWM Pulse Width Modulation
  • the driver circuit 174 When driving the lower arm, the driver circuit 174 amplifies the pulse-like modulated wave signal and outputs it as a drive signal to the gate electrode of the corresponding lower arm IGBT 330.
  • the reference potential level of the pulsed modulated wave signal When driving the upper arm, the reference potential level of the pulsed modulated wave signal is shifted to the reference potential level of the upper arm, and then the pulsed modulated wave signal is amplified and used as a drive signal. , Output to the gate electrode of the IGBT 328 of the corresponding upper arm. As a result, each IGBT 328, 330 performs a switching operation based on the input drive signal.
  • the power converter 140 converts the voltage supplied from the battery 136, which is a DC power supply, to 2 ⁇ / in electrical angle.
  • the output voltage is converted into U-phase, V-phase, and W-phase output voltages shifted every 3 ⁇ rad, and supplied to a motor generator 192 that is a three-phase AC motor.
  • the electrical angle corresponds to the rotational state of the motor generator 192, specifically the position of the rotor, and periodically changes between 0 and 2 ⁇ .
  • the switching states of the IGBTs 328 and 330 that is, the output voltages of the U phase, the V phase, and the W phase can be determined according to the rotation state of the motor generator 192.
  • control unit 170 detects an abnormality (overcurrent, overvoltage, overtemperature, etc.) and protects the series circuit 150 of the upper and lower arms. For this reason, sensing information is input to the control unit 170. For example, information on the current flowing through the emitter electrodes of the IGBTs 328 and 330 is input to the corresponding drive units (ICs) from the signal emitter electrode terminals 155 and 165 of each arm. Thereby, each drive part (IC) detects overcurrent, and when overcurrent is detected, the switching operation of corresponding IGBT328,330 is stopped, and corresponding IGBT328,330 is protected from overcurrent.
  • an abnormality overcurrent, overvoltage, overtemperature, etc.
  • Information on the temperature of the series circuit 150 of the upper and lower arms is input to the microcomputer from a temperature sensor (not shown) provided in the series circuit 150 of the upper and lower arms.
  • voltage information on the DC positive side of the series circuit 150 of the upper and lower arms is input to the microcomputer.
  • the microcomputer performs over-temperature detection and over-voltage detection based on such information, and when an over-temperature or over-voltage is detected, stops the switching operation of all IGBTs 328 and 330, and pulls up and down the series circuit 150 of the upper and lower arms.
  • the semiconductor module including the circuit 150 is protected from overtemperature or overvoltage.
  • a series circuit 150 of upper and lower arms is a series circuit of an IGBT 328 and an upper arm diode 156 of the upper arm, and an IGBT 330 and a lower arm diode 166 of the lower arm.
  • IGBTs 328 and 330 are switching semiconductor elements. The conduction and cutoff operations of the IGBTs 328 and 330 of the upper and lower arms of the power switching circuit 144 are switched in a fixed order. The current of the stator winding of the motor generator 192 at the time of switching flows through a circuit formed by the diodes 156 and 166.
  • the upper and lower arm series circuit 150 includes a positive terminal (P terminal, positive terminal) 157, a negative terminal (N terminal 158, negative terminal), an AC terminal 159 from the connection point 169 of the upper and lower arms, A signal terminal (signal emitter electrode terminal) 155, an upper arm gate electrode terminal 154, a lower arm signal terminal (signal emitter electrode terminal) 165, and a lower arm gate terminal electrode 164 are provided.
  • the power conversion device 200 has a DC connector 138 on the input side and an AC connector 188 on the output side, and is connected to the battery 136 and the motor generator 192 through the connectors 138 and 188, respectively. Further, as a circuit that generates an output of each phase of the three-phase alternating current that is output to the motor generator, a power conversion device having a circuit configuration in which a series circuit of two upper and lower arms is connected in parallel to each phase may be used.
  • the control mode switching performed in the power converter 140 will be described with reference to FIG.
  • the power conversion device 140 switches between the PWM control method and the HM control method described later according to the rotation speed of the motor, that is, the motor generator 192.
  • FIG. 3 shows how the control mode is switched in the power converter 140.
  • the rotation speed for switching the control mode can be arbitrarily changed. For example, when the automobile starts running from a stopped state, the motor generator 192 needs to generate a large torque in the stopped state. In order to give the vehicle a high-class feel, smooth start and acceleration are desirable.
  • PWM control or chopper control is performed corresponding to the required torque, and the alternating current supplied to the stator of the rotor is controlled. As the rotational speed of the motor generator 192 increases, the control shifts to PWM control.
  • HM control When starting and accelerating the vehicle, it is desirable to reduce the distortion of the AC power supplied to the motor generator 192 in order to realize smooth acceleration. Switching of the switching element of the power switching circuit 144 in the PWM control method is desirable. Control the behavior.
  • the HM control described below has a problem in controllability when the rotational speed of the motor generator 192 is in a very low speed state including a stopped state, and tends to increase the distortion of the AC power waveform, and is combined with the control by the PWM control method. In this case, or by adding further chopper control, such a drawback can be compensated.
  • the rotational speed of the motor generator for switching between the control by the PWM method and the HM control is not particularly limited.
  • the state of 700 rpm or less is controlled by the PWM method, and the HM control is performed at a rotational speed higher than 700 rpm.
  • the range from 1500 rpm to 5000 rpm is an operation region that is very suitable for HM control. In this region, the HM control has a greater effect of reducing the switching loss of the switching element than the PWM control.
  • This driving region is a driving region that is easy to use in urban driving, and the control of the HM method exhibits a great effect in the driving region closely related to daily life.
  • the mode controlled by the PWM control method (hereinafter referred to as PWM control mode) is used in a region where the rotational speed of the motor generator 192 is relatively low, while the HM control mode described later is used in a region where the rotational speed is relatively high. use.
  • PWM control mode the power converter 140 performs control using the PWM signal as described above. That is, the microcomputer in the control circuit 172 calculates the voltage command values for the d and q axes of the motor generator 192 based on the input target torque value, and calculates the voltage command values for the U phase, V phase, and W phase.
  • a sine wave corresponding to the voltage command value of each phase is used as a fundamental wave, and this is compared with a triangular wave having a predetermined period as a carrier wave, and a pulse-like modulated wave having a pulse width determined based on the comparison result is driver Output to the circuit 174.
  • the DC voltage output from the battery 136 is converted into a three-phase AC voltage, and the motor generator 192.
  • HM The contents of HM will be explained in detail later.
  • the modulated wave generated by the control circuit 172 in the HM control mode is output to the driver circuit 174.
  • a drive signal corresponding to the modulated wave is output from the driver circuit 174 to the corresponding IGBTs 328 and 330 of each phase.
  • the DC voltage output from the battery 136 is converted into a three-phase AC voltage and supplied to the motor generator 192.
  • the PWM control mode and the HM control mode are switched according to the frequency of the AC power to be converted or the rotational speed of the motor related to this frequency, thereby lower harmonics.
  • the HM control method is applied to the motor rotation range that is not easily influenced by the above-mentioned, that is, the high-speed rotation range, and the PWM control method is applied to the low-speed rotation range where torque pulsation is likely to occur. By doing in this way, increase of torque pulsation can be suppressed comparatively low, and switching loss can be reduced.
  • this rectangular wave control state is one control form of the HM control method as the final state of the number of switchings per half cycle that decreases as the modulation degree in the converted AC power waveform increases. Can be understood as This point will be described in detail later.
  • PWM control the switching element is controlled based on the comparison of the magnitude of the carrier wave having a constant frequency and the AC waveform to be output, and the switching element is turned on and off.
  • PWM control AC power with less pulsation can be supplied to the motor, and motor control with less torque pulsation becomes possible.
  • switching loss is large because the number of times of switching per unit time or per cycle of the AC waveform is large.
  • the switching loss can be reduced because the number of times of switching is small.
  • the AC waveform to be converted becomes a rectangular wave when the influence of the inductance load is ignored, and the sine wave includes harmonic components such as the fifth, seventh, eleventh,... Can see.
  • harmonic components such as fifth order, seventh order, eleventh order,. This harmonic component causes current distortion that causes torque pulsation.
  • the PWM control and the rectangular wave control are opposite to each other.
  • FIG. 5 shows an example of the harmonic component generated in the AC power when it is assumed that conduction and cutoff of the switching element are controlled in a rectangular wave shape.
  • FIG. 5A is an example in which an alternating waveform that changes in a rectangular waveform is decomposed into a sine wave that is a fundamental wave and harmonic components such as fifth, seventh, eleventh,...
  • the Fourier series expansion of the rectangular wave shown in FIG. 5 (a) is expressed as Equation (1).
  • f ( ⁇ t) 4 / ⁇ ⁇ ⁇ sin ⁇ t + (sin3 ⁇ t) / 3 + (sin5 ⁇ t) / 5 + (sin7 ⁇ t) / 7 + ... ⁇ (1)
  • Equation (1) is obtained from the sine wave of the fundamental wave expressed by 4 / ⁇ ⁇ (sin ⁇ t) and the third, fifth, seventh,... It shows that the rectangular wave shown in (a) is formed. Thus, it turns out that it approximates a rectangular wave by synthesize
  • FIG. 5B shows a state in which the amplitudes of the fundamental wave, the third harmonic, and the fifth harmonic are respectively compared.
  • the amplitude of the rectangular wave in FIG. 5A is 1, the amplitude of the fundamental wave is 1.27, the amplitude of the third harmonic is 0.42, and the amplitude of the fifth harmonic is 0.25.
  • the influence of the rectangular wave control becomes smaller because the amplitude becomes smaller as the order of the harmonics increases.
  • the harmonic component of the rectangular wave alternating current is output to some extent depending on the state of control, and AC power is output, thereby reducing the influence of motor control torque pulsation,
  • the switching loss is reduced by setting a state in which harmonic components are included in a range in which there is no problem in use.
  • the PWM control method is used in a state where low-frequency AC power that is greatly affected by harmonics in the HM control method or has poor controllability is output. Specifically, by switching between PWM control and HM control according to the rotational speed of the motor, and using the PWM method in a region where the rotational speed is low, the motor is desirable in each of the low-speed rotational region and the high-speed rotational region. Control is performed.
  • control circuit 172 for realizing the above control.
  • Three types of motor control methods will be described as control methods for the control circuit 172 mounted on the power conversion device 140. In the following, these three types of motor control methods will be described in the first, second, and third embodiments. It describes as.
  • FIG. 6 shows a motor control system by the control circuit 172 according to the first embodiment of the present invention.
  • a torque command T * as a target torque value is input to the control circuit 172 from a host control device.
  • the torque command / current command converter 410 stores a torque-rotation speed map stored in advance. Are used to obtain a d-axis current command signal Id * and a q-axis current command signal Iq *.
  • the d-axis current command signal Id * and the q-axis current command signal Iq * obtained by the torque command / current command converter 410 are output to the current controllers (ACR) 420 and 421, respectively.
  • ACR current controllers
  • the current controllers (ACR) 420 and 421 include the d-axis current command signal Id * and the q-axis current command signal Iq * output from the torque command / current command converter 410 and the motor generator 192 detected by the current sensor 180.
  • Phase current detection signals lu, lv, and lw are converted into Id and Iq current signals converted on the d and q axes by a magnetic pole position signal from a rotation sensor in a three-phase two-phase converter (not shown) on the control circuit 172.
  • the d-axis voltage command signal Vd * and the q-axis voltage command signal Vq * are respectively calculated so that the current flowing through the motor generator 192 follows the d-axis current command signal Id * and the q-axis current command signal Iq *. .
  • the d-axis voltage command signal Vd * and the q-axis voltage command signal Vq * obtained by the current controller (ACR) 420 are output to the pulse modulator 430 for HM control.
  • the d-axis voltage command signal Vd * and the q-axis voltage command signal Vq * obtained by the current controller (ACR) 421 are output to the pulse modulator 440 for PWM control.
  • the pulse modulator 430 for HM control includes a voltage phase difference calculator 431, a modulation degree calculator 432, and a pulse generator 434.
  • the d-axis voltage command signal Vd * and the q-axis voltage command signal Vq * output from the current controller 420 are input to the voltage phase difference calculator 431 and the modulation factor calculator 432 in the pulse modulator 430.
  • the voltage phase difference calculator 431 further calculates the voltage phase by adding the magnetic pole position represented by the magnetic pole position signal ⁇ from the rotating magnetic pole sensor 193 to the voltage phase difference ⁇ . Then, a voltage phase signal ⁇ v corresponding to the calculated voltage phase is output to the pulse generator 434.
  • the modulation factor calculator 432 calculates the modulation factor by normalizing the magnitude of the vector represented by the d-axis voltage command signal Vd * and the q-axis voltage command signal Vq * with the voltage of the battery 136, and according to the modulation factor.
  • the modulation degree signal a is output to the pulse generator 434.
  • the modulation degree signal a is determined based on the battery voltage that is a DC voltage supplied to the power switching circuit 144 shown in FIG. 2, and the modulation degree a decreases as the battery voltage increases. Tend to be. Further, as the amplitude value of the command value increases, the degree of modulation a tends to increase. Specifically, when the battery voltage is Vdc, it is expressed by Expression (4).
  • Vd represents the amplitude value of the d-axis voltage command signal Vd *
  • Vq represents the amplitude value of the q-axis voltage command signal Vq *.
  • the pulse generator 434 Based on the voltage phase signal ⁇ v from the voltage phase difference calculator 431 and the modulation degree signal a from the modulation degree calculator 432, the pulse generator 434 applies to the upper and lower arms of the U phase, V phase, and W phase, respectively. Pulse signals based on six types of corresponding HM controls are generated. Then, the generated pulse signal is output to the switching unit 450, and is output from the switching unit 450 to the driver circuit 174, and a drive signal is output to each switching element. A method for generating a pulse signal based on HM control (hereinafter referred to as HM pulse signal) will be described in detail later.
  • HM pulse signal A method for generating a pulse signal based on HM control (hereinafter referred to as HM pulse signal) will be described in detail later.
  • the pulse modulator 440 for PWM control is based on the d-axis voltage command signal Vd * and the q-axis voltage command signal Vq * output from the current controller 421 and the magnetic pole position signal ⁇ from the rotating magnetic pole sensor 193.
  • pulse signals (hereinafter referred to as PWM pulse signals) based on six types of PWM control respectively corresponding to the U-phase, V-phase, and W-phase upper and lower arms are generated by a known PWM method.
  • the generated PWM pulse signal is output to the switch 450, supplied from the switch 450 to the drive circuit 174, and the drive signal is supplied from the drive circuit 174 to each switching element.
  • Switcher 450 selects either the HM pulse signal output from pulse modulator 430 for HM control or the PWM pulse signal output from pulse modulator 440 for PWM control.
  • the selection of the pulse signal by the switch 450 is performed according to the rotational speed of the motor generator 192 as described above. That is, when the rotational speed of motor generator 192 is lower than a predetermined threshold set as a switching line, PWM control method is applied in power converter 140 by selecting a PWM pulse signal. . Further, when the rotation speed of motor generator 192 is higher than the threshold value, the HM control method is applied to power converter 140 by selecting the HM pulse signal. Thus, the HM pulse signal or PWM pulse signal selected by switch 450 is output to driver circuit 174 (not shown).
  • the HM pulse signal or the PWM pulse signal is output as a modulated wave from the control circuit 172 to the driver circuit 174.
  • a drive signal is output from the driver circuit 174 to the IGBTs 328 and 330 of the power switching circuit 144.
  • the pulse generator 434 is realized by a phase searcher 435 and a timer counter comparator 436, for example, as shown in FIG.
  • the phase search unit 435 is based on the rotation speed information based on the voltage phase signal ⁇ v from the voltage phase difference calculator 431, the modulation degree signal a from the modulation degree calculator 432, and the magnetic pole position signal ⁇ and stored in advance. From the phase information table, a phase for which a switching pulse is to be output is searched for the upper and lower arms of the U phase, V phase, and W phase, and information on the search result is output to the timer counter comparator 436.
  • the timer counter comparator 436 generates HM pulse signals as switching commands for the upper and lower arms of the U-phase, V-phase, and W-phase, respectively, based on the search result output from the phase searcher 435.
  • the six types of HM pulse signals generated by the timer counter comparator 436 for the upper and lower arms of each phase are output to the switch 450 as described above.
  • FIG. 8 is a flowchart illustrating in detail the procedure of pulse generation by the phase search unit 435 and the timer counter comparator 436 in FIG.
  • the phase searcher 435 takes in the modulation degree signal a as an input signal in step 801 and takes in the voltage phase signal ⁇ v as an input signal in step 802.
  • the phase searcher 435 calculates a voltage phase range corresponding to the next control period in consideration of the control delay time and the rotation speed based on the input current voltage phase signal ⁇ v.
  • the phase searcher 435 performs a ROM search.
  • this ROM search switching on and off phases are searched from a table stored in advance in a ROM (not shown) within the voltage phase range calculated in step 803 based on the input modulation degree signal a. .
  • the phase search unit 435 outputs the information on the switching ON / OFF phase obtained by the ROM search in step 804 to the timer counter comparator 436 in step 805.
  • the timer counter comparator 436 converts this phase information into time information in Step 806, and generates an HM pulse signal using a compare match function with the timer counter.
  • the process of converting phase information into time information uses information of a rotational speed signal.
  • the HM pulse may be generated by using the compare match function with the phase counter in step 806 based on the information on the switching ON / OFF phase obtained by the ROM search in step 804.
  • the timer counter comparator 436 outputs the HM pulse signal generated in step 806 to the switch 450 in the next step 807.
  • the processing in steps 801 to 807 described above is performed in the phase search unit 435 and the timer counter comparator 436, whereby the HM pulse signal is generated in the pulse generator 434.
  • pulse generation may be performed by executing the processing shown in the flowchart of FIG. 9 in the pulse generator 434 instead of the flowchart of FIG.
  • This process generates a switching phase for each control cycle of the current controller (ACR) without using a table retrieval method for retrieving a switching phase using a table stored in advance as shown in the flowchart of FIG. It is a method.
  • the pulse generator 434 receives the modulation degree signal a in step 801 and the voltage phase signal ⁇ v in step 802. In the following step 820, the pulse generator 434 sets the on / off phase of switching based on the input modulation degree signal a and the voltage phase signal ⁇ v in consideration of the control delay time and the rotation speed. ACR) is determined every control cycle.
  • step 821 the pulse generator 434 specifies a harmonic order to be deleted based on the rotation speed.
  • the pulse generator 434 performs processing such as matrix calculation in the subsequent step 822, and outputs a pulse reference angle in step 823.
  • the pulse generation process from step 821 to step 823 is calculated according to the determinant expressed by the following equations (5) to (8).
  • the pulse generator 434 performs matrix calculation in the next step 822.
  • a row vector like Formula (5) is made with respect to the 3rd, 5th and 7th erasure orders.
  • the value of each element of Equation (5) is determined by setting the harmonic order from which the denominator value is deleted and the numerator value being an arbitrary odd number excluding an odd multiple of the denominator. be able to.
  • the number of elements in the row vector is three since the erasure orders are of three types (third order, fifth order, and seventh order).
  • a row vector having N elements can be set for N types of erasure orders, and the value of each element can be determined.
  • Equation (5) by changing the numerator and denominator values of each element other than those described above, the spectrum can be shaped instead of removing the harmonic component. Therefore, the numerator and denominator values of each element may be arbitrarily selected for the main purpose of spectrum shaping rather than elimination of harmonic components. In that case, the numerator and denominator values do not necessarily have to be integers, but the numerator value should not be an odd multiple of the denominator. Further, the values of the numerator and denominator need not be constants, and may be values that change according to time.
  • a vector of three columns can be set as shown in Equation (5).
  • a vector of N elements whose value is determined by a combination of a denominator and a numerator that is, a vector of N columns can be set.
  • this N-column vector is referred to as a harmonic-based phase vector.
  • the harmonic-compliant phase vector is a three-column vector as shown in Equation (5), the harmonic-compliant phase vector is transposed and the calculation of Equation (6) is performed. As a result, pulse reference angles from S1 to S4 are obtained.
  • the pulse reference angles S1 to S4 are parameters representing the center position of the voltage pulse, and are compared with a triangular wave carrier described later. As described above, when the pulse reference angle is four (S1 to S4), generally, the number of pulses per one cycle of the line voltage is 16.
  • Equation (8) when the harmonic compliant phase vector is four columns as in Equation (7), Matrix Operation Equation (8) is applied.
  • pulse reference angle output from S1 to S8 can be obtained.
  • the number of pulses per cycle of the line voltage is 32.
  • the relationship between the number of harmonic components to be deleted and the number of pulses is generally as follows. That is, when there are two harmonic components to be deleted, the number of pulses per cycle of the line voltage is 8 pulses, and when there are 3 harmonic components to be deleted, the number of pulses per cycle of the line voltage Is 16 pulses, and when there are 4 harmonic components to be deleted, the number of pulses per cycle of the line voltage is 32 pulses, and when there are 5 harmonic components to be deleted, one cycle of the line voltage The number of hits is 64 pulses. Similarly, as the number of harmonic components to be deleted increases by one, the number of pulses per cycle of the line voltage doubles.
  • the number of pulses may differ from the above when the pulse arrangement is such that positive and negative pulses are superimposed on the line voltage.
  • the HM pulse signal generated in the pulse generator 434 forms a pulse waveform in each of three types of line voltages, that is, a UV line voltage, a VW line voltage, and a WU line voltage.
  • the pulse waveforms of these line voltages are the same pulse waveform having a phase difference of 2 ⁇ / 3. Therefore, only the UV line voltage will be described below as a representative of each line voltage.
  • Equation (9) there is a relationship of Equation (9) between the reference phase ⁇ uvl of the voltage between the UV rays, the voltage phase signal ⁇ v, and the magnetic pole position ⁇ e.
  • One method for realizing this is to compare the center phase of the UV line voltage pulse in the range of 0 ⁇ ⁇ uvl ⁇ ⁇ / 2 with a 4-channel phase counter, and based on the comparison result, one period, that is, 0 ⁇ ⁇ uvl.
  • This is an algorithm for generating a UV line voltage pulse in a range of ⁇ 2 ⁇ . The conceptual diagram is shown in FIG.
  • FIG. 11 shows an example in which there are four line voltage pulses in the range of 0 ⁇ ⁇ uvl ⁇ ⁇ / 2.
  • pulse reference angles S1 to S4 represent the center phases of the four pulses.
  • Carr1 ( ⁇ uvl), carr2 ( ⁇ uvl), carr3 ( ⁇ uvl), and carr4 ( ⁇ uvl) represent each of the 4-channel phase counters. Each of these phase counters is a triangular wave having a period of 2 ⁇ rad with respect to the reference phase ⁇ uvl. Further, carr1 ( ⁇ uvl) and carr2 ( ⁇ uvl) have a deviation of d ⁇ in the amplitude direction, and the relationship between carr3 ( ⁇ uvl) and carr4 ( ⁇ uvl) is the same.
  • D ⁇ represents the width of the line voltage pulse.
  • the amplitude of the fundamental wave changes linearly with respect to this pulse width d ⁇ .
  • the line voltage pulse is a pulse reference angle S1 that represents the center phase of each pulse in the range of 0 ⁇ ⁇ uvl ⁇ ⁇ / 2 and each phase counter carr1 ( ⁇ uvl), carr2 ( ⁇ uvl), carr3 ( ⁇ uvl), carr4 ( ⁇ uvl) Formed at each intersection with ⁇ S4. Thereby, a symmetrical pulse signal is generated every 90 degrees.
  • a pulse of width d ⁇ having a positive amplitude is generated at a point where carr1 ( ⁇ uvl), carr2 ( ⁇ uvl) and S1 to S4 coincide with each other.
  • a pulse of width d ⁇ having a negative amplitude is generated at the point where carr3 ( ⁇ uvl), carr4 ( ⁇ uvl) coincides with S1 to S4.
  • FIG. 12 shows an example in which the waveform of the line voltage generated using the method described above is drawn for each modulation degree.
  • An example of a voltage pulse waveform is shown.
  • each switching element performs a switching operation based on the phase of the AC power to be output by sending a drive signal from the driver circuit 174 to each switching element of the power switching circuit 144.
  • the number of switching times of the switching element in one cycle of AC power tends to increase as the number of harmonics to be removed increases.
  • the higher harmonics of multiples of 3 cancel each other out, so even if they are not included in the harmonics to be removed good.
  • the HM system control is not performed, but a fixed period.
  • the power switching circuit 144 is controlled by a PWM method using a carrier wave of the same, and the power switching circuit 144 is controlled by switching to the HM method in a state where the rotation speed is increased.
  • the power switching circuit 144 is controlled by the PWM method, and after a certain acceleration, the control is switched to the MH method.
  • control with less torque pulsation can be realized at least at the time of starting, and it is possible to perform control by the HM method with less switching loss at least in the state of shifting to constant speed driving which is normal operation. Control with less loss can be realized while suppressing the influence of
  • the HM pulse signal used in the present invention is characterized in that when the modulation degree is fixed as described above, a line voltage waveform is formed by a pulse train having the same pulse width except for exceptions.
  • the case where the pulse width of the line voltage is unequal to other pulse trains is an exception when a pulse having a positive amplitude and a pulse having a negative amplitude overlap as described above.
  • the widths of the pulses are always equal throughout. That is, the degree of modulation changes with a change in pulse width.
  • FIG. 13 shows an enlarged line voltage pulse waveform at a modulation degree of 1.0 in FIG. 12 in the range of ⁇ / 2 ⁇ ⁇ uvl ⁇ 3 ⁇ / 2.
  • this line voltage pulse waveform two pulses near the center have different pulse widths from other pulses.
  • FIG. 13 shows a state where such a pulse width is different from others. From this figure, in this part, a pulse having a positive amplitude and a pulse having a negative amplitude each having the same pulse width as other pulses are overlapped, and these pulses are combined to be different from others. It can be seen that a pulse having a pulse width is formed. That is, by decomposing the overlap of pulses in this way, it can be seen that the pulse waveform of the line voltage formed in accordance with the HM pulse signal is composed of pulses having a certain pulse width.
  • FIG. 14 shows another example of the line voltage pulse waveform by the HM pulse signal generated by the present invention.
  • An example of a pulse waveform is shown.
  • the degree of modulation is 1.17 or more
  • there is no gap between two symmetrically adjacent pulses at the positions of ⁇ uvl ⁇ / 2 and 3 ⁇ / 2. Therefore, it can be seen that the target harmonic component can be deleted when the modulation factor is less than 1.17, but the harmonic component cannot be effectively deleted when the modulation factor exceeds this value.
  • the degree of modulation is further increased, the gap between adjacent pulses disappears at other positions, and finally a rectangular line voltage pulse waveform is obtained at a degree of modulation of 1.27.
  • FIG. 15 shows an example in which the line voltage pulse waveform shown in FIG. 14 is represented by a corresponding phase voltage pulse waveform.
  • FIG. 15 shows an example in which the line voltage pulse waveform shown in FIG. 14 is represented by a corresponding phase voltage pulse waveform.
  • FIG. 15 shows that the gap between two adjacent pulses disappears when the modulation degree becomes 1.17 or more.
  • FIG. 16 shows an example of a conversion table used in the conversion from the line voltage pulse to the phase voltage pulse.
  • Each mode of 1 to 6 described in the leftmost column in this table is assigned a number for each possible switching state.
  • modes 1 to 6 the relationship from the line voltage to the output voltage is determined on a one-to-one basis.
  • Each of these modes corresponds to an active period in which energy is transferred between the DC side and the three-phase AC side.
  • the line voltages described in the table of FIG. 16 are obtained by normalizing patterns that can be taken as potential differences between different phases with the battery voltage Vdc.
  • FIG. 17 shows an example in which a line voltage pulse is converted into a phase voltage pulse in a mode in which the power switching circuit 144 is controlled in a rectangular wave state using the conversion table of FIG.
  • the upper part shows the UV line voltage Vuv as a typical example of the line voltage
  • the U phase terminal voltage Vu, the V phase terminal voltage Vv, and the W phase terminal voltage Vw are shown below.
  • the modes shown in the conversion table of FIG. In the rectangular wave control mode, there is no later-described three-phase short-circuit period.
  • FIG. 18 shows how the line voltage pulse waveform illustrated in FIG. 12 is converted into a phase voltage pulse according to the conversion table of FIG.
  • the upper stage shows a UV line voltage pulse as a representative example of the line voltage
  • the U phase terminal voltage Vu, the V phase terminal voltage Vv, and the W phase terminal voltage Vw are shown below.
  • the upper part of FIG. 18 shows the number of the mode (the active period in which energy is transferred between the DC side and the three-phase AC side) and the period in which the three-phase is short-circuited.
  • the three-phase short-circuit period either the three-phase upper arm is turned on or the three-phase lower arm is turned on, either switch depending on the switching loss or conduction loss situation. Select a mode.
  • the UV line voltage Vuv when the UV line voltage Vuv is 1, the U-phase terminal voltage Vu is 1 and the V-phase terminal voltage Vv is 0 (modes 1 and 6).
  • the UV line voltage Vuv When the UV line voltage Vuv is 0, the U-phase terminal voltage Vu and the V-phase terminal voltage Vv are the same value, that is, Vu is 1 and Vv is 1 (mode 2, 3-phase short circuit), or Vu is 0 and Vv is 0 (mode 5, 3-phase short circuit).
  • the UV line voltage Vuv When the UV line voltage Vuv is ⁇ 1, the U-phase terminal voltage Vu is 0 and the V-phase terminal voltage Vv is 1 (modes 3 and 4). Based on such a relationship, each pulse of the phase voltage, that is, the phase terminal voltage (gate voltage pulse) is generated.
  • the pattern of the line voltage pulse and the phase terminal voltage pulse of each phase is a pattern that repeats quasi-periodically with ⁇ / 3 as a minimum unit with respect to the phase ⁇ uvl. That is, the pattern in which 1 and 0 of the U-phase terminal voltage in the period of 0 ⁇ ⁇ uvl ⁇ ⁇ / 3 are inverted is the same as the pattern of the W-phase terminal voltage of ⁇ / 3 ⁇ ⁇ uvl ⁇ 2 ⁇ / 3.
  • a pattern obtained by inverting 1 and 0 of the V-phase terminal voltage in the period of 0 ⁇ ⁇ uvl ⁇ ⁇ / 3 is the same as the pattern of the U-phase terminal voltage of ⁇ / 3 ⁇ ⁇ uvl ⁇ 2 ⁇ / 3, and 0 ⁇
  • the pattern obtained by inverting 1 and 0 of the W-phase terminal voltage during the period of ⁇ uvl ⁇ ⁇ / 3 is the same as the pattern of the V-phase terminal voltage of ⁇ / 3 ⁇ ⁇ uvl ⁇ 2 ⁇ / 3.
  • Such a characteristic is particularly noticeable in a steady state where the rotational speed and output of the motor are constant.
  • the above modes 1 to 6 are set as a first period in which the upper arm IGBT 328 and the lower arm IGBT 330 are turned on in different phases, respectively, and current is supplied from the battery 136 as a DC power source to the motor generator 192.
  • the three-phase short-circuit period is defined as a second period in which either the upper arm IGBT 328 or the lower arm IGBT 330 is turned on and the torque is maintained with the energy accumulated in the motor generator 192 in all phases. .
  • the first period and the second period are alternately formed according to the electrical angle.
  • modes 6 and 5 as the first period are alternately repeated with a three-phase short-circuit period as the second period in between.
  • mode 6 the lower arm IGBT 330 is turned on in the V phase, while in the other U phase and W phase, the side different from the V phase, that is, the upper arm IGBT 328 is turned on. is doing.
  • mode 5 the upper arm IGBT 328 is turned on in the W phase, while in the other U phase and V phase, the side different from the W phase, that is, the lower arm IGBT 330 is turned on.
  • one of the U phase, the V phase, and the W phase (the V phase in mode 6 and the W phase in mode 5) is selected, and the selected one phase is used for the upper arm.
  • IGBT 328 or lower arm IGBT 330 is turned on, and for the other two phases (U phase and W phase in mode 6, U phase and V phase in mode 5), IGBT 328 for the arm on the side different from the selected one phase , 330 are turned on.
  • the 1 phase (V phase, W phase) selected for every 1st period is replaced.
  • any one of modes 1 to 6 as the first period is alternately repeated with a three-phase short-circuit period as the second period in between. That is, modes 1 and 6 are performed in the period of ⁇ / 3 ⁇ ⁇ uvl ⁇ 2 ⁇ / 3, modes 2 and 1 are performed in the period of 2 ⁇ / 3 ⁇ ⁇ uvl ⁇ ⁇ , and modes 3 and 2 in the period of ⁇ ⁇ ⁇ uvl ⁇ 4 ⁇ / 3.
  • the modes 4 and 3 are alternately repeated in the period of 4 ⁇ / 3 ⁇ ⁇ uvl ⁇ 5 ⁇ , and the modes 5 and 4 are alternately repeated in the period of 5 ⁇ / 3 ⁇ ⁇ uvl ⁇ 2 ⁇ . Accordingly, in the same manner as above, in the first period, any one of the U phase, the V phase, and the W phase is selected, and the IGBT 328 for the upper arm or the IGBT 330 for the lower arm is selected for the selected one phase. At the same time, the IGBTs 328 and 330 for the arm on the side different from the selected one phase are turned on for the other two phases. Moreover, the 1 phase selected for every 1st period is replaced.
  • the electrical angle position forming the first period that is, the period of modes 1 to 6, and the length of this period can be changed in accordance with a request command such as torque or rotational speed for the motor generator 192.
  • a request command such as torque or rotational speed for the motor generator 192.
  • the specific electrical angle position forming the first period is changed in order to change the order of the harmonics to be deleted in accordance with changes in the rotational speed and torque of the motor.
  • the modulation factor is changed by changing the length of the first period, that is, the pulse width, in accordance with changes in the rotational speed or torque of the motor.
  • the waveform of the alternating current flowing through the motor more specifically, the harmonic component of the alternating current is changed to a desired value, and the electric power supplied from the battery 136 to the motor generator 192 can be controlled by this change.
  • the specific electrical angle position and the length of the first period may be changed, or both may be changed simultaneously.
  • the illustrated pulse width has an effect of changing the effective value of the voltage.
  • the effective value of the voltage is large, and when it is narrow, the effective value of the voltage is small.
  • the number of harmonics to be deleted is small, the effective value of the voltage is high, so that the upper limit of the modulation degree approaches a rectangular wave.
  • This effect is effective when the rotating electrical machine (motor generator 192) is rotating at a high speed, and can be output exceeding the upper limit of the output when controlled by normal PWM.
  • the voltage is applied to the motor generator 192.
  • an output corresponding to the rotation state of the motor generator 192 can be obtained.
  • the pulse shape of the drive signal shown in FIG. 18 is asymmetrical about an arbitrary ⁇ uvl, that is, an electrical angle, for each of the U phase, the V phase, and the W phase.
  • at least one of the on period and the off period of the pulse includes a period in which ⁇ uvl (electrical angle) continues for ⁇ / 3 or more.
  • the power conversion device of the present embodiment when the HM control mode is selected, the first period in which power is supplied from the DC power supply to the motor and all phases of the three-phase full bridge The second period during which the upper arm is turned on or the lower arm of all phases is turned on is alternately generated at a specific timing according to the electrical angle.
  • the switching frequency may be 1/7 to 1/10 or less. Therefore, switching loss can be reduced.
  • EMC electromagnetic noise
  • FIG. 19 is a diagram illustrating the amplitudes of the fundamental wave and the harmonic component to be deleted in the line voltage pulse when the modulation degree is changed.
  • FIG. 19 (a) shows an example of the fundamental wave and the amplitude of each harmonic in the line voltage pulse in which the third and fifth harmonics are to be deleted. According to this figure, it can be seen that the fifth harmonic appears without being completely deleted when the modulation degree is 1.2 or more.
  • FIG. 19B shows an example of the fundamental wave and the amplitude of each harmonic in the line voltage pulse for which the third, fifth and seventh harmonics are to be deleted. According to this figure, it can be seen that the fifth and seventh harmonics are not completely deleted when the modulation degree is 1.17 or more.
  • FIG. 19B corresponds to the line voltage pulse waveform and the phase voltage pulse waveform shown in FIGS.
  • FIG. 22A shows waveforms of the voltage command signal in each phase of the U phase, the V phase, and the W phase and the triangular wave carrier used for generating the PWM pulse.
  • the voltage command signal for each phase is a sine wave command signal whose phases are shifted by 2 ⁇ / 3 from each other, and the amplitude changes according to the degree of modulation.
  • the voltage command signal and the triangular wave carrier signal are compared for each of the U, V, and W phases, and the intersection of the two is set as the on / off timing of the pulse, whereby FIGS.
  • FIG. 22 (e) shows the waveform of the UV line voltage.
  • the number of pulses is equal to twice the number of triangular wave pulses in the triangular wave carrier, that is, twice the number of pulses in the voltage pulse waveform for each phase.
  • FIG. 23 shows an example in which the waveform of the line voltage formed by the PWM pulse signal is drawn for each modulation degree.
  • a line voltage pulse waveform when the modulation degree is changed from 0 to 1.27 is shown.
  • the degree of modulation is 1.17 or more, there is no gap between two adjacent pulses, and a total of one pulse.
  • Such a pulse signal is called an overmodulated PWM pulse.
  • the line voltage pulse waveform is a rectangular wave at a modulation degree of 1.27.
  • FIG. 24 shows an example in which the line voltage pulse waveform shown in FIG. 23 is represented by a corresponding phase voltage pulse waveform. 24, as in FIG. 23, it can be seen that the gap between two adjacent pulses disappears when the modulation degree is 1.17 or more. Note that there is a phase difference of ⁇ / 6 between the phase voltage pulse waveform of FIG. 24 and the line voltage pulse waveform of FIG.
  • FIG. 25A shows an example of a line voltage pulse waveform by an HM pulse signal. This corresponds to a line voltage pulse waveform having a modulation degree of 0.4 in FIG.
  • FIG. 25B shows an example of the line voltage pulse waveform by the PWM pulse signal. This corresponds to a line voltage pulse waveform having a modulation degree of 0.4 in FIG.
  • the line voltage pulse waveform based on the HM pulse signal shown in FIG. 25A is based on the PWM pulse signal shown in FIG. It can be seen that the number of pulses is significantly smaller than the line voltage pulse waveform. Therefore, when the HM pulse signal is used, the control responsiveness is lower than the case of the PWM signal because the number of generated line voltage pulses is small. However, the number of times of switching is greatly reduced as compared with the case of using the PWM signal. Can do. As a result, switching loss can be greatly reduced.
  • FIG. 26 shows a state when the PWM control mode and the HM control mode are switched according to the motor rotation speed by the switching operation of the switch 450.
  • the line voltage pulse waveform when the control mode is switched from the PWM control mode to the HM control mode by switching the selection destination of the switch 450 from the PWM pulse signal to the HM pulse signal when ⁇ uvl ⁇ .
  • An example is shown.
  • FIG. 27A shows a triangular wave carrier used for generating a PWM pulse signal, and a U-phase voltage, a V-phase voltage, and a UV line voltage generated by the PWM pulse signal.
  • FIG. 27B shows the U-phase voltage, the V-phase voltage, and the UV line voltage generated by the HM pulse signal. Comparing these figures, when the PWM pulse signal is used, the pulse width of each pulse of the UV line voltage is not constant, whereas when the HM pulse signal is used, each pulse of the UV line voltage is changed. It can be seen that the pulse width is constant.
  • the pulse width may not be constant, but this is due to the overlap of a pulse with a positive amplitude and a pulse with a negative amplitude. The same pulse width is obtained with this pulse.
  • the triangular wave carrier is constant regardless of the fluctuation of the motor rotation speed, so that the interval of each pulse of the UV line voltage is also constant regardless of the motor rotation speed. It can be seen that when the HM pulse signal is used, the interval of each pulse of the UV line voltage changes according to the motor rotation speed.
  • FIG. 28 shows the relationship between the motor rotation speed and the line voltage pulse waveform by the HM pulse signal.
  • FIG. 28A shows an example of a line voltage pulse waveform by an HM pulse signal at a predetermined motor rotation speed. This corresponds to a line voltage pulse waveform with a modulation degree of 0.4 in FIG. 12, and has 16 pulses per 2 ⁇ electrical angle (reference phase ⁇ uvl of UV line voltage).
  • FIG. 28 (b) shows an example of the line voltage pulse waveform by the HM pulse signal when the motor rotation speed of FIG. 28 (a) is doubled. Note that the length of the horizontal axis in FIG. 28B is equivalent to that in FIG. 28A with respect to the time axis. Comparing FIG. 28 (a) and FIG. 28 (b), the number of pulses per electrical angle 2 ⁇ remains unchanged at 16 pulses, but the number of pulses within the same time is doubled in FIG. 28 (b). I understand that.
  • FIG. 28 (c) shows an example of the line voltage pulse waveform by the HM pulse signal when the motor rotation speed in FIG. 28 (a) is halved.
  • the length of the horizontal axis in FIG. 28C is also equivalent to that in FIG. 28A with respect to the time axis, as in FIG. Comparing FIG. 28 (a) and FIG. 28 (c), since the number of pulses per electrical angle ⁇ is 8 in FIG. 28 (c), the number of pulses per electrical angle 2 ⁇ is 16 pulses. It can be seen that the number of pulses within the same time is 1 ⁇ 2 times in FIG.
  • the number of line voltage pulses per unit time changes in proportion to the motor rotation speed. That is, considering the number of pulses per electrical angle 2 ⁇ , this is constant regardless of the motor rotation speed.
  • the PWM pulse signal is used, as described in FIG. 27, the number of line voltage pulses is constant regardless of the motor rotation speed. That is, considering the number of pulses per electrical angle 2 ⁇ , this decreases as the motor rotation speed increases.
  • FIG. 29 shows the relationship between the number of line voltage pulses per electrical angle 2 ⁇ (that is, per period of line voltage) generated in HM control and PWM control, respectively, and the motor rotation speed.
  • an 8-pole motor (number of pole pairs: 4) is used, and the harmonic components to be deleted in HM control are set to the third, fifth, and seventh orders, and the frequency of the triangular wave carrier used in the sine wave PWM control is set.
  • An example in the case of 10 kHz is shown.
  • the number of line voltage pulses per electrical angle 2 ⁇ decreases as the motor rotation speed increases in the case of PWM control, but is constant regardless of the motor rotation speed in the case of HM control. I understand that. Note that the number of line voltage pulses in the PWM control can be obtained by Expression (10).
  • FIG. 29 shows that the number of line voltage pulses per cycle of the line voltage when there are three harmonic components to be deleted in HM control is 16, but this value is the number to be deleted. It changes as described above according to the number of harmonic components to be performed. That is, when there are two harmonic components to be deleted, 8 when there are four harmonic components to be deleted, 64 when there are five harmonic components to be deleted, and so on. As the number of harmonic components to be deleted increases by one, the number of pulses per cycle of the line voltage doubles.
  • FIG. 30 shows a flowchart of motor control performed by the control circuit 172 according to the first embodiment described above.
  • the control circuit 172 obtains motor rotation speed information.
  • the rotational speed information is obtained based on the magnetic pole position signal ⁇ output from the rotating magnetic pole sensor 193.
  • step 902 the control circuit 172 determines whether or not the motor rotation speed is equal to or higher than a predetermined switching rotation speed based on the rotation speed information acquired in step 901. If the motor rotation speed is equal to or higher than the switching rotation speed, the process proceeds to step 903, and if it is less than the switching rotation speed, the process proceeds to step 906.
  • step S903 the control circuit 172 determines whether or not the motor generator 192 is rotating at a high speed based on the rotation speed information acquired in step 901. If the motor generator 192 is rotating at a high speed, that is, if the motor rotation speed is equal to or higher than the predetermined rotation speed, the process proceeds to step 907; otherwise, the process proceeds to step 904.
  • the control circuit 172 determines the order of the harmonics to be deleted in the HM control.
  • harmonics such as the third order, the fifth order, and the seventh order can be determined as deletion targets.
  • the number of harmonics to be deleted may be changed according to the motor rotation speed. For example, when the motor rotation speed is relatively low, the third, fifth, and seventh harmonics are targeted for deletion, and when the motor rotation speed is relatively high, the third and fifth harmonics are targeted for deletion.
  • the number of harmonics to be deleted is reduced in the high-speed rotation region that is not easily affected by torque pulsation due to the harmonics, and switching loss. Can be more effectively reduced.
  • step 905 the control circuit 172 performs HM control for deleting the harmonics of the order determined in step 904.
  • the HM pulse signal corresponding to the order of the harmonics to be deleted is generated by the pulse modulator 430 in accordance with the generation method as described above, and the HM pulse signal is selected by the switch 450 and is sent from the control circuit 172. It is output to the driver circuit 174.
  • the control circuit 172 returns to step 901 and repeats the above processing.
  • step 906 the control circuit 172 performs PWM control.
  • the PWM pulse signal is generated in the pulse modulator 440 by the generation method as described above based on the comparison result between the predetermined triangular wave carrier and the voltage command signal, and the PWM pulse signal is selected by the switch 450. And output from the control circuit 172 to the driver circuit 174.
  • step 906 the control circuit 172 returns to step 901 and repeats the above processing.
  • step 907 the control circuit 172 performs rectangular wave control.
  • the rectangular wave control can be considered as a form of HM control, that is, the maximum degree of modulation in HM control.
  • the harmonic wave cannot be deleted by the rectangular wave control, the number of times of switching can be minimized.
  • the pulse signal used for the rectangular wave control can be generated by the pulse modulator 430 as in the case of the HM control. This pulse signal is selected by the switch 450 and output from the control circuit 172 to the driver circuit 174.
  • the control circuit 172 After executing Step 907, the control circuit 172 returns to Step 901 and repeats the above processing.
  • the power conversion device 140 controls the three-phase full bridge type power switching circuit 144 including the upper arm and lower arm IGBTs 328 and 330, and outputs a drive signal to the IGBTs 328 and 330 of each phase. 170, and converts the voltage supplied from the battery 136 into an output voltage shifted by 2 ⁇ / 3 rad in electrical angle by the switching operation of the IGBTs 328 and 330 according to the drive signal, to the motor generator 192 Supply.
  • the power converter 140 switches between the HM control mode and the sine wave PWM control mode based on a predetermined condition.
  • the upper arm IGBT 328 and the lower arm IGBT 330 are turned on in different phases to supply current from the battery 136 to the motor generator 192, and the upper arm IGBT 328 in all phases or A second period in which any one of the lower arm IGBTs 330 is turned on and the torque is maintained with the energy accumulated in the motor generator 192 is alternately formed according to the electrical angle.
  • the IGBTs 328 and 330 are turned on in accordance with the pulse width determined based on the comparison result between the sine wave command signal and the carrier wave, and current is supplied from the battery 136 to the motor generator 192. Since it did in this way, appropriate control according to the state of the motor generator 192 can be performed, reducing torque pulsation and switching loss.
  • the power conversion device 140 switches between the HM control mode and the sine wave PWM control mode based on the rotation speed of the motor generator 192 (steps 902, 905, and 906 in FIG. 30). Thereby, it is possible to switch to an appropriate control mode according to the rotation speed of motor generator 192.
  • the HM control mode further includes a rectangular wave control mode in which the IGBTs 328 and 330 of each phase are turned on and off once for each rotation of the motor generator 192.
  • the rectangular wave control mode is a control mode used in a region where the rotational speed is the highest as shown in FIG. 3, but in this embodiment, which is also used in a high output region where a high modulation degree is required, the modulation degree is By increasing the frequency, the number of switching times per half cycle is gradually reduced, and it is possible to smoothly shift to the rectangular wave control mode.
  • the HM control mode In the HM control mode, at least one of the electrical angle position forming the first period and the length of the first period is changed, and the harmonic component of the alternating current flowing through the motor generator 192 is set to a desired value. To change. Due to the change of the harmonic component, the HM control mode shifts to the rectangular wave control mode. More specifically, the length of the first period is changed according to the degree of modulation, and rectangular wave control is performed when the degree of modulation is maximum. Thereby, the transition from the HM control mode to the rectangular wave control mode can be easily realized.
  • FIG. 31 shows a motor control system by the control circuit 172 according to the second embodiment of the present invention.
  • This motor control system further includes a transient current compensator 460 as compared with the motor control system according to the first embodiment shown in FIG.
  • the transient current compensator 460 generates a compensation current for compensating for the transient current generated in the phase current flowing through the motor generator 192 when the control mode is switched from PWM control to HM control or from HM control to PWM control. .
  • the generation of the compensation current detects the phase voltage at the time of switching the control mode, and generates a pulse-like modulated wave from the transient current compensator 460 to the driver circuit 174 to generate a compensation pulse that cancels the detected phase voltage. This is done by outputting.
  • a drive signal based on the modulated wave output from the transient current compensator 460 is output from the driver circuit 174 to the IGBTs 328 and 330 of the power switching circuit 144, so that a compensation pulse is generated and a compensation current can be generated. .
  • FIG. 32 shows, in order from the top, the line voltage waveform and the phase voltage waveform by the PWM pulse signal, the phase current waveform at the time of switching the control mode, the compensation pulse waveform, the line voltage waveform and the phase by the HM pulse signal after the control mode switching.
  • Each example of the voltage waveform is shown.
  • FIG. 32 an example in which the switching from the PWM control mode to the HM control mode is performed at the electrical angle (reference phase) ⁇ in the figure except for the line voltage waveform and the phase voltage waveform due to the PWM pulse signal. Is shown.
  • the phase current is detected as shown in the figure. Based on the detection result of the phase current, the pulse width of the compensation pulse is determined, and the compensation pulse having the amplitude Vdc / 2 having the opposite sign (here, negative) to the phase voltage is output. As a result, as shown in the figure, a compensation current that cancels the transient current that occurs immediately after switching of the control mode flows in the phase current. After the output of the compensation pulse is finished, the HM pulse signal is output.
  • FIG. 33 shows an enlarged view of part of the phase current waveform and the compensation pulse waveform shown in FIG. 32, starting from the switching point of the control mode.
  • the compensation current lup increases to the negative side.
  • the output of the compensation pulse Vun_p is finished in accordance with this timing.
  • the transient current lut and the compensation current lup converge to 0 with the same slope.
  • the phase current lua which is a combination of the transient current lut and the compensation current lup, can be converged to 0 after time t0.
  • the pulse width of the compensation pulse Vun_p in accordance with the timing at which the magnitudes of the transient current lut and the compensation current lup coincide, that is, the timing at which the transient current lut is completely canceled by the compensation current lup,
  • the current lua can be quickly converged to zero.
  • Such a pulse width can be determined in consideration of the time constant of the circuit based on the detection result of the phase current lua at the time of switching the control mode.
  • a compensation pulse is also sent from the transient current compensator 460 by the same method.
  • a compensation current can be generated in the phase current that outputs and cancels the transient current.
  • FIG. 34 shows a flowchart of motor control performed by the control circuit 172 according to the second embodiment described above.
  • the control circuit 172 performs the same processing as the processing according to the first embodiment shown in the flowchart of FIG.
  • step 908 the control circuit 172 determines whether or not the control mode has been switched. When the control mode is switched from PWM control to HM control or from HM control to PWM control, the control circuit 172 proceeds to step 909. On the other hand, if the control mode has not been switched, the control circuit 172 returns to step 901 and repeats the process.
  • the determination result of step 908 is transmitted to the transient current compensator 460 by outputting a compensator interrupt signal from the pulse modulator 430 for HM control or the pulse modulator 440 for PWM control.
  • step 909 the control circuit 172 generates a compensation current by the method as described above to generate a compensation current, and the transient current compensator 460 compensates the transient current generated in the phase current.
  • step 909 the control circuit 172 returns to step 901 and repeats the process.
  • the transient current compensator 460 detects a transient current in each phase of the U phase, the V phase, and the W phase immediately before switching the control mode. This transient current is detected using the current sensor 180.
  • the transient current compensator 460 uses the predetermined circuit time constant ⁇ to calculate the phase voltage application time t0 for each phase so that the compensated current cancels the detected transient current.
  • the phase voltage application time t0 as the pulse width of the U-phase voltage pulse Vu is determined so as to cancel lua.
  • the phase voltage application time t0 may be maintained until the compensation current is balanced with the transient current.
  • the U-phase circuit model is shown as an example, but the same applies to the V-phase and the W-phase.
  • the transient current compensator 460 starts applying the phase voltage of each phase according to the calculated phase voltage application time t0.
  • a phase voltage having an amplitude Vdc / 2 is applied for the phase voltage application time t0 in a direction to cancel the transient current.
  • the transient current compensator 460 stops the application of the phase voltage.
  • the transient current is attenuated according to the time constant ⁇ while the compensation current cancels out. As described above, the transient current compensation in step 909 is performed.
  • the transient current compensator 460 is used to compensate for the transient current generated in the AC current flowing through the motor generator 192. Are output from the power converter 140. Thereby, the rotation of motor generator 192 can be quickly stabilized when the control mode is switched.
  • the transient current may be compensated by outputting a compensation pulse other than when the control mode is switched as described above.
  • a compensation pulse other than when the control mode is switched as described above.
  • Compensator pulses can be output using the device 460 to compensate for the transient current.
  • the presence / absence of a transient current may be determined based on the detection result of the phase current to determine whether to output a compensation pulse.
  • Such output of the compensation pulse may be performed at the time of switching the control mode, or may be performed at the time of switching the control mode.
  • FIG. 37 shows a motor control system by the control circuit 172 according to the third embodiment of the present invention.
  • This motor control system includes a current controller (ACR) 422, a chopper period generator 470, and a pulse modulator 480 for controlling a one-phase chopper as compared with the motor control system according to the second embodiment shown in FIG. In addition.
  • ACR current controller
  • the current controller (ACR) 422 includes a d-axis current command signal Id * and a q-axis current command signal Iq * output from the torque command / current command converter 410. Based on the phase current detection signals lu, lv, and lw of the motor generator 192 detected by the current sensor 180, the d-axis voltage command signal Vd * and the q-axis voltage command signal Vq * are respectively calculated. The d-axis voltage command signal Vd * and the q-axis voltage command signal Vq * obtained by the current controller (ACR) 422 are output to the pulse modulator 480 for controlling the one-phase chopper.
  • the chopper cycle generator 470 outputs a chopper cycle signal repeated at a predetermined cycle to the pulse modulator 480.
  • the period of the chopper period signal is set in advance in consideration of the inductance of the motor generator 192.
  • the pulse modulator 480 generates a one-phase chopper control pulse signal based on the chopper cycle signal from the chopper cycle generator 470 and outputs the pulse signal to the switch 450. That is, the cycle of the pulse signal for controlling the one-phase chopper output from pulse modulator 480 is determined according to the inductance of motor generator 192.
  • the switcher 450 selects the one-phase chopper control pulse signal output from the pulse modulator 480, and the driver circuit 174 Output to the figure. As a result, the one-phase chopper control is performed in the power converter 140.
  • the pulse signal for one-phase chopper control output from the pulse modulator 480 can be used for appropriate motor control when the motor generator 192 is stopped or rotating at an extremely low speed and cannot perform appropriate motor control. This is a signal for increasing the rotational speed of the motor generator 192 until it becomes. Note that when the motor generator 192 is stopped or in an extremely low speed rotation state, the magnetic pole position signal ⁇ representing the rotation state cannot be obtained correctly from the rotating magnetic pole sensor 193, so that appropriate motor control cannot be performed.
  • the period of the pulse signal for controlling the one-phase chopper is determined according to the chopper period signal from the chopper period generator 470.
  • the first period is an energization period in which the upper arm IGBT 328 or the lower arm IGBT 330 is individually turned on in each phase and current is supplied from the battery 136 to the motor generator 192, and is turned on in any one phase.
  • the arm that turns on is different from the arm that turns on in the other two phases.
  • the second period is a three-phase short-circuit period in which the upper arm IGBT 328 or the lower arm IGBT 330 is turned on in common for all phases and the torque is maintained with the energy accumulated in the motor generator 192.
  • a lock current (DC current) continues to flow through the IGBT 328 or 330 that is turned on during the first period, causing abnormal heat generation or damage.
  • the second period is maintained for a long time, electric power is not supplied to motor generator 192, and motor generator 192 cannot be started.
  • the one-phase chopper control mode is applied and the one-phase chopper control is applied.
  • the pulse signal is output from the control circuit 172 to the driver circuit 174 as a modulated wave.
  • a drive signal is output from the driver circuit 174 to the IGBTs 328 and 330 of the power switching circuit 144.
  • FIG. 38 An example of one-phase chopper control using a pulse signal output from the pulse modulator 480 is shown in FIG.
  • FIG. 38 the example of each phase voltage waveform in the case of performing 1 phase chopper control in order of U phase, V phase, and W phase is shown.
  • the V-phase and W-phase voltages are set to -Vdc / 2 while the U-phase voltage is changed in a pulse shape between Vdc / 2 and -Vdc / 2.
  • the pulse width at this time is determined according to the chopper cycle signal output from the chopper cycle generator 470.
  • the U-phase upper arm is turned on and the V-phase and W-phase lower arms are turned on.
  • An energization period is formed.
  • the lower arms of the U-phase, V-phase and W-phase are turned on, so that a three-phase short-circuit period is formed.
  • the V-phase and W-phase voltages are set to Vdc / 2 while changing the U-phase voltage between Vdc / 2 and -Vdc / 2 in the same manner.
  • the U-phase voltage is ⁇ Vdc / 2
  • the U-phase lower arm is turned on, and the V-phase and W-phase upper arms are turned on.
  • a period is formed.
  • the upper arms of the U-phase, V-phase, and W-phase are turned on, so that a three-phase short-circuit period is formed.
  • the V phase voltage is changed in pulses between Vdc / 2 and -Vdc / 2, and the U phase and W phase voltages are first set to -Vdc / 2.
  • Vdc / 2 let Vdc / 2.
  • the U-phase and V-phase voltages are first set to -Vdc / 2 and then set to Vdc / 2 while changing the W-phase voltage in a pulse shape between Vdc / 2 and -Vdc / 2.
  • the one-phase chopper control shifts to another control, that is, PWM. Switch to control or HM control. Thereafter, the motor control is performed by the same method as described in the second embodiment.
  • FIG. 39 shows a flowchart of motor control performed by the control circuit 172 according to the third embodiment described above.
  • the control circuit 172 performs the same processing as the processing according to the second embodiment shown in the flowchart of FIG.
  • step 910 the control circuit 172 determines whether or not the motor generator 192 is stopped or in a very low speed rotation state based on the rotation speed information acquired in step 901.
  • the motor generator 192 is less than a predetermined rotation speed at which it is determined that the motor generator 192 is stopped or in an extremely low speed rotation state, that is, the magnetic pole position signal ⁇ is not correctly obtained from the rotating magnetic pole sensor 193 and the motor generator 192 rotates. If it is determined that the state cannot be detected, the process proceeds to step 911. Otherwise, the process proceeds to step 906, and the PWM control as described above is performed.
  • Step 911 is control of the lowest rotation speed region in FIG. 3, and the control circuit 172 performs one-phase chopper control.
  • a pulse signal for controlling the one-phase chopper is generated in the pulse modulator 480 by the generation method as described above, and the pulse signal is changed to the switch 450.
  • the control circuit 172 proceeds to step 908.
  • a current controller (ACR) 422, a chopper period generator 470, and a one-phase chopper are based on the motor control system according to the second embodiment shown in FIG.
  • the motor control system further including each component of the control pulse modulator 480 has been described as an example. However, based on the motor control system according to the first embodiment shown in FIG. 6, a motor control system further including these components may be used.
  • Step 911 it is determined whether or not the rotation state of the motor generator 192 can be detected and whether or not PWM control is performed.
  • a predetermined one-phase chopper control pulse signal for alternately forming the first period and the second period in each phase regardless of the electrical angle is output from the pulse modulator 480 for controlling the one-phase chopper.
  • Step 911 the rotation speed of the motor generator 192 is increased until appropriate motor control is possible. be able to.
  • the HM control including the rectangular wave control is performed if the motor rotation speed is equal to or higher than the predetermined switching rotation speed, and the PWM control is performed if the motor rotation speed is less than the switching rotation speed, whereby the power conversion device.
  • the control mode is switched.
  • control mode switching is not limited to the mode described in each embodiment, and can be applied at any motor rotation speed.
  • PWM control is performed in the range of 0 to 1,500 r / min
  • HM control is applied in the range of 1,500 to 4,000 r / min, and in the range of 4,000 to 6,000 r / min.
  • PWM control and HM control can be performed in the range of 6,000 to 10,000 r / min. In this way, it is possible to realize even finer motor control using an optimal control mode according to the motor rotation speed.
  • HM control is performed when the motor rotation speed is less than the predetermined switching rotation speed.
  • HM control may be performed instead of PWM control when the motor rotation speed is low for the purpose of alerting a pedestrian or the like. If HM control is performed when the motor rotation speed is low, harmonic components cannot be completely removed, resulting in current distortion, which causes motor operation noise. Therefore, it is possible to alert a pedestrian or the like around the vehicle by intentionally generating such motor operation sound. It should be noted that generation of motor operation sound using such HM control may be enabled or disabled by operating a switch or the like by a vehicle driver.
  • the vehicle may detect surrounding pedestrians and the like and automatically apply HM control to generate a motor operation sound.
  • various well-known methods such as an infrared sensor and image determination, can be used for detecting a pedestrian.
  • the basic principle of the operation of the pulse modulator 430 will be described with reference to FIGS.
  • the above-described rectangular wave control state can be considered.
  • the switching elements 328 and 330 of the power switching circuit 144 are controlled so as to switch once in a half cycle as shown in FIG. 40 (a), that is, switch twice in one cycle.
  • the number of times of switching is significantly less than that of the PWM method, the loss due to switching is greatly reduced.
  • many harmonic components (fifth, seventh, eleventh,...) Are included, and these harmonic components cause distortion.
  • the switching frequency of the switching element of the power switching circuit 144 is increased from the control state shown in FIG. 40A to remove the harmonic components as much as possible. It is desirable.
  • the harmonic component to be removed varies depending on the purpose of use of the AC power to be converted, since it is not necessary to remove all the harmonic components, the number of switching operations is reduced as compared with the PWM method. For example, in AC power supplied to a three-phase rotating electrical machine, harmonic components that are multiples of 3 cancel each other, and therefore, no major problem arises even if they are not removed.
  • the removal of the harmonic component will be described by taking as an example a method of removing the fifth harmonic component of the harmonic components.
  • the fifth-order harmonic component is a vibration waveform having a peak value of five times in a period of an electrical angle ⁇ that is a half cycle of the AC power waveform.
  • the rectangular wave 42 includes a number of harmonic components obtained by Fourier expansion in addition to the sine wave, and one of the harmonic components is the fifth harmonic 45 described above. is there.
  • this fifth-order harmonic 45 is overlaid every unit phase, for example, every half cycle, as shown in FIG.
  • the superimposed waveform 55 is Fourier expanded, the above-mentioned fifth harmonic is obtained.
  • the superimposed waveform 55 having the same area as the fifth harmonic component included in the rectangular wave before deletion is deleted at a specific position.
  • the superposition waveform 55 collected into one for every half cycle is deleted.
  • the deleted waveform does not include the fifth harmonic.
  • the waveform 62 of FIG. 40C obtained by deleting the superposition waveform 55 of the fifth harmonic from the rectangular wave 42 shown in FIG. 40A does not include the fifth harmonic.
  • a waveform 57 shown in FIG. 40C shows an area where the superimposed waveform 55 is deleted, and the area of the waveform 57 is the same area as the superimposed waveform 55 and forms an inverse waveform. That is, the waveform has the same shape with the sign reversed.
  • 41 shows a waveform for switching control of the switching elements 328 and 330 of the power switching circuit 144 in order to produce the waveform 62 shown in FIG. 40 (c).
  • 41 (a) is the same waveform as the waveform 62 shown in FIG. 40 (c), and by supplying the current waveform shown in FIG. 41 (a), an AC waveform current from which the fifth harmonic is deleted is supplied.
  • the Rukoto The waveform showing the operation timing for flowing the current waveform shown in FIG. 41A is the waveform shown in FIG.
  • a waveform 65 for deleting the above-described fifth harmonic is generated by the waveform 75 shown in FIG.
  • FIG. 42 shows a flow when the concept of the harmonic elimination method shown in FIGS. 40 and 41 is considered based on Fourier series expansion.
  • the line voltage waveform is f ( ⁇ t)
  • the pulse shaping flow of the line voltage waveform is shown.
  • the pulse pattern can be obtained by solving an equation in which f ( ⁇ t) is Fourier series expanded and the harmonic order component to be deleted is set to zero.
  • FIG. 43 is a diagram showing, as an example, the generation process and characteristics of the U-phase and V-phase line voltage patterns from which the third, fifth, and seventh harmonics are deleted.
  • the horizontal axis of FIG. 43 is based on the fundamental wave of the line voltage between the U phase and the V phase, and is hereinafter abbreviated as UV line voltage reference phase ⁇ uvl.
  • the UV line voltage reference phase ⁇ uvl corresponds to the electrical angle that is the horizontal axis of FIG.
  • the section of ⁇ ⁇ ⁇ uvl ⁇ 2 ⁇ is omitted here because it is a symmetrical shape in which the sign of the waveform of the voltage pulse train of 0 ⁇ ⁇ uvl ⁇ ⁇ shown in the figure is inverted. 43.
  • the fundamental wave of the voltage pulse is a sine wave voltage with ⁇ uvl as a reference.
  • the pulses to be generated are respectively arranged at positions as illustrated in the figure with respect to ⁇ uvl according to the procedure shown in the figure centering on ⁇ / 2 of the fundamental wave.
  • ⁇ uvl corresponds to the electrical angle as described above
  • the pulse arrangement position in FIG. 43 can be represented by the electrical angle. Therefore, hereinafter, the arrangement position of this pulse is defined as a specific electrical angle position.
  • pulse trains S1 to S4 and S1 'to S2' are formed.
  • This pulse train has a spectral distribution that does not include third-order, fifth-order, and seventh-order harmonics relative to the fundamental wave.
  • this pulse train is a waveform obtained by removing the third, fifth, and seventh harmonics from a rectangular wave having a definition range of 0 ⁇ ⁇ uvl ⁇ 2 ⁇ .
  • the order of the harmonics to be deleted can be other than the third, fifth, and seventh orders.
  • the harmonics to be deleted may be deleted up to high order when the fundamental frequency is small, and only low order when the fundamental frequency is large. For example, when the rotational speed is low, the 5th, 7th, and 11th orders are deleted, and when the rotational speed increases, the 5th and 7th orders are deleted, and when the rotational speed further increases, only the 5th order is deleted.
  • the order to be deleted is changed. This is because the winding impedance of the motor increases and the current pulsation decreases in the high rotation range.
  • the harmonic order to be deleted may be changed according to the magnitude of the torque. For example, when the torque is increased under a condition where the number of rotations is constant, if the torque is small, a pattern for deleting the fifth, seventh and eleventh orders is selected, and the fifth and seventh orders are selected as the torque increases. If the torque further increases, the order of deletion is changed such that only the fifth order is deleted.
  • the harmonic of the order to be deleted in consideration of the influence of distortion on the control target.
  • the number of switching of the switching elements 328 and 330 of the power switching circuit 144 increases as the number of types of harmonics to be deleted increases.
  • the number of switching operations of the switching elements 328 and 330 can be appropriately reduced in consideration of the influence of distortion on the above.
  • rad] switching timing is controlled to be the same, the control can be simplified, and the controllability is improved. Furthermore, even during the period from phase 0 [rad] to ⁇ [rad] or phase ⁇ [rad] to 2 ⁇ [rad], control is performed with the same switching timing centering on phase ⁇ / 2 or 3 ⁇ / 2, and control is simple. And controllability is improved.

Abstract

 電力変換装置は、異なる相で上アーム用のスイッチング素子と下アーム用のスイッチング素子をそれぞれオンさせて直流電源からモータに電流を供給する第1の期間と、全相で上アーム用のスイッチング素子または下アーム用のスイッチング素子のいずれか一方をオンさせてモータに蓄積されたエネルギーでトルクを維持する第2の期間とを、電気角に応じて交互に形成するHM制御モードと、正弦波指令信号と搬送波との比較結果に基づいて決定したパルス幅に応じてスイッチング素子をオンさせて直流電源からモータに電流を供給する正弦波PWM制御モードと、を所定の条件に基づいて切り替える。

Description

電力変換装置
 本発明は、直流電力を交流電力に、または交流電力を直流電力に変換する電力変換装置に関する。
 直流電力を受け、上記直流電力を回転電機に供給するための交流電力に変換する電力変換装置は、複数のスイッチング素子を備えており、上記スイッチング素子がスイッチング動作を繰り返すことにより、供給された直流電力を交流電力に変換する。上記電力変換装置の多くは、さらに上記スイッチング素子のスイッチング動作により、回転電機に誘起された交流電力を直流電力に変換するためにも使用される。上述のスイッチング素子は、一定の周波数で変化する搬送波を使用したパルス幅変調方式(以下PWM方式と記す)に基づいて制御されているものが一般的である。搬送波の周波数を高くすることにより、制御精度が向上し、また回転電機の発生トルクが滑らかになる傾向がある。
 しかし上記スイッチング素子は遮断状態から導通状態への切り替り時、あるいは導通状態から遮断状態への切り替り時に電力損失が増大し、発熱量が増大する。
 電力変換装置の一例は、特開昭63-234878号公報(特許文献1参照)に開示されている。
特開昭63-234878号公報
 上述のスイッチング素子の電力損失を低減することが望ましく、また電力損失を低減することにより、スイッチング素子の発熱量を低減できる。そのためには上記スイッチング素子のスイッチング回数を低減することが望ましい。しかし上述のとおり、一般に使用されているPWM方式では、上記スイッチング素子の単位時間当たりのスイッチング回数を低減するために搬送波の周波数を低くすると、電力変換装置から出力される電流の歪が大きくなり、トルク脈動の増大につながる。
 本発明は、電力変換装置において、トルク脈動の増大をできるだけ抑制しつつ、スイッチング損失の低減を図ることを目的とする。以下に説明する実施の形態は製品として好ましい研究成果が反映されており、製品として好ましいより具体的な色々の課題を解決している。以下の実施の形態における具体的な構成や作用により解決される具体的な課題は、以下の実施の形態の欄で説明する。
 本発明は以下に記載する特徴の少なくとも1つを備えている。
 本発明の特徴の1つは、直流電力の供給を受けインダクタンス負荷に供給される交流電力に変換する為の複数のスイッチング素子と、上記スイッチング素子の導通や遮断を制御するための駆動信号を出力するドライバ回路と、を有していて、変換しようとする交流電力の角度すなわち位相に基づいて上記スイッチング素子を、上記駆動信号により、導通あるいは遮断する。このような構成により上記スイッチング素子のスイッチング回数を低減できる。
 本発明の他の特徴の1つは、上記特徴で説明の構成において、スイッチング素子の導通開始タイミングを変換しようとする交流電力の位相に同期させ、さらに変調度の小さい第1変調度におけるスイッチング素子の導通状態が続く角度(以下導通持続角と記す)が、上記第1変調度より変調度の大きい第2変調度では、増大するように制御すると共に、それに続くスイッチング素子の遮断状態が続く角度(以下遮断持続角と記す)を減少させ、上記第2変調度よりさらに変調度の大きい第3変調度で上記遮断持続角が、上記スイッチング素子が動作できる角より大きい所定の角にまで減少すると、遮断期間を無くして、次の導通持続角につなげるように制御する。このように制御することで、上記スイッチング素子のスイッチング回数の低減に加え、信頼性を向上できる。
 本発明のさらに他の特徴の1つは、直流電力の供給を受けインダクタンス負荷に供給される交流電力に変換する為の複数のスイッチング素子と、上記スイッチング素子の導通や遮断を制御するための駆動信号を出力するドライバ回路と、を有していて、変換しようとする交流電力の位相に基づいて上記スイッチング素子を、上記駆動信号により、導通あるいは遮断するように制御し、略同じ変調度の状態に於いて、例えばインダクタンス負荷として動作する永久磁石型同期回転電機あるいは誘導回転電機のような回転電機の回転速度が高くなった場合に、上記スイッチング素子のスイッチング動作の時間間隔が短くなるように上記スイッチング素子を制御する。すなわち、略同じ変調度の状態に於いて、インダクタンス負荷に供給するための交流電力の周波数が、第1周波数からそれよりも1.5倍あるいは2倍程度の範囲で変化したとしても、上記交流電力を発生する為の1サイクル当たりのスイッチング回数ができるだけ変わらないように、スイッチング素子を制御する。このようにすることで、変換する交流電力の歪をできるだけ抑えながら、スイッチング損失の低減を実現できる。
 本発明のさらに他の特徴は、削除しようとする高調波の次数を選択することができ、削除しなくても良い次数の高調波を削除することにより、スイッチング素子の単位位相当たりのスイッチング回数が増加するのを防止できる。
 本発明のさらに他の特徴は、削除しようとする次数の高調波を単位位相毎に、例えばゼロ〔rad〕~π〔rad〕毎に、重ね合わせて削除するので、スイッチング素子の単位位相当たりのスイッチング回数を低減できる。
 本発明のさらに他の特徴の1つは、供給された直流電力を、回転電機を駆動するための3相交流電力に変換する為に、上アームと下アームとを構成する複数のスイッチング素子有するブリッジ回路と、前記スイッチング素子の導通および遮断を制御するための制御回路と、スイッチング素子を導通および遮断する駆動信号を発生するドライバ回路と、を備え、第1の期間において、出力しようとする交流電力の位相に基づき駆動信号を前記ドライバ回路から前記スイッチング素子に供給し、前記駆動信号に基づいて前記スイッチング素子を導通させて前記回転電機に交流電流を供給する。あらかじめ前記制御回路で求めた期間前記スイッチング素子を導通させて前記回転電機にエネルギーを蓄積し、次に第2の期間において、前記ブリッジ回路の上アームあるいは下アームの内の一方を全て遮断すると共に、他方を全て導通し、前記蓄積されたエネルギーに基づき回転電機に流れる電流を流し続ける。前記第1の期間と第2の期間とを交互に設けることにより、スイッチング回数を低減できる。
 本発明のさらに他の特徴の1つは、第1の運転領域では、出力しようとする交流電力の位相に基づいて、スイッチング素子のスイッチング動作を制御する駆動信号をスイッチング素子に供給し、出力しようとする交流電力の位相に対応付けてスイッチング素子を導通させ、前記第1の運転領域より出力しようとする交流電力の周波数が低い第2の領域では、搬送波に基づいてスイッチング素子の導通および遮断を制御するPWM制御を行うようにしたことである。このような構成とすることにより、第2の領域での歪の増大を低減すると共に第1の領域でのスイッチング数を低減し、電力損失を低減できる。
 本発明のさらに他の特徴は、本発明の第2の態様に記載の如く、上述の各特徴に加え、出力の交流波形の位相に対応してスイッチング素子を制御するHM制御モードと一定周期の搬送波に基づいてスイッチング素子を制御する正弦波PWM制御モードとをモータの回転速度に基づいて切り替えることである。
 本発明のさらに他の特徴の1つは、本発明の第3の態様に記載の如く、上述の各特徴に加え、HM制御モードは、モータの1回転ごとに各相のスイッチング素子をそれぞれ1回ずつオンおよびオフさせる矩形波制御モードをさらに含むことである。
 本発明の第4の態様によると、第3の態様の電力変換装置において、HM制御モードでは、第1の期間を形成する電気角位置と、第1の期間の長さとの少なくとも一方を変化させて、モータを流れる交流電流の高調波成分を所望の値に変化させ、この高調波成分の変化により矩形波制御モードへ移行することである。
 本発明のさらに他の特徴の1つは、本発明の第5の態様に記載の如く、電力変換装置は、モータを流れる交流電流に生じる過渡電流を補償するための補償パルスを出力する過渡電流補償手段をさらに備えることである。この過渡電流補償手段は、HM制御モードと正弦波PWM制御モードとを切り替えるときに補償パルスを出力することである。
 本発明のさらに他の特徴は、本発明の第6の態様に記載の如く、前記過渡電流補償手段は、HM制御モードと正弦波PWM制御モードとの切り替え時に、またはこれに加えて所定の条件を満たしたときに、補償パルスを出力することである。
 本発明のさらに他の特徴の1つは、本発明の第7の態様に記載の如く、モータの回転状態を検出可能であるか否かを判定する判定手段と、判定手段による判定結果に基づいて、各相において第1の期間と第2の期間とを電気角に関わらず交互に形成するための所定の1相チョッパー制御用信号を出力するチョッパー制御手段とをさらに備えることである。
 本発明のさらに他の特徴は、本発明の第8の態様に記載の如く、1相チョッパー制御用信号の周期は、モータのインダクタンスに応じて決定されることである。
 本発明のさらに他の特徴の1つは、本発明の第9の態様に記載の如く、電力変換装置が、上アーム用および下アームを構成する複数のスイッチング素子を備えたブリッジ回路と、上記スイッチング素子を導通あるいは遮断するための駆動信号を出力する駆動回路と、前記駆動回路を制御するためのコントローラと、を有し、直流電力から変換される交流電力の位相に対応して前記スイッチング素子を動作させると共に、変調度に基づいて、前記スイッチング素子の導通あるいは遮断期間を制御することである。
 本発明のさらに他の特徴の1つは、上記特長において、さらにモータを流れる交流電流の高調波成分を所望の値に変化させ、変調度が最大であるとき、モータの1回転ごとに各相のスイッチング素子をそれぞれ1回ずつオンおよびオフさせる矩形波制御を行うことである。
 本発明によれば、電力変換装置において、トルク脈動の増大をある程度抑制でき、さらにスイッチング損失を低減できる。
 なお、以下の実施の形態では、後述するように、製品として望ましい課題を色々解決している。
ハイブリッド車の制御ブロックを示す図である。 電気回路の構成を示す図である。 制御モードの切替を示す図である。 PWM制御と矩形波制御を説明する図である。 矩形波制御において生じる高調波成分の例を示す図である。 第1の実施の形態に係る制御回路によるモータ制御系を示す図である。 パルス生成器の構成を示す図である。 テーブル検索によるパルス生成の手順を示すフローチャートである。 リアルタイム演算によるパルス生成の手順を示すフローチャートである。 パルスパターン演算の手順を示すフローチャートである。 位相カウンタによるパルスの生成方法を示す図である。 HM制御モードにおける線間電圧波形の一例を示す図である。 線間電圧のパルス幅が他のパルス列と不等である場合の説明図である。 HM制御モードにおける線間電圧波形の一例を示す図である。 HM制御モードにおける相電圧波形の一例を示す図である。 線間電圧と相端子電圧の変換表を示す図である。 矩形波制御モードにおける線間電圧パルスを相電圧パルスに変換した例を示す図である。 HM制御モードにおける線間電圧パルスを相電圧パルスに変換した例を示す図である。 変調度を変化させたときの線間電圧パルスにおける基本波と削除対象の高調波成分の振幅の大きさを示した図である。 HM制御モードにおける線間電圧波形の一例を示す図である。 HM制御モードにおける相電圧波形の一例を示す図である。 PWMパルス信号の生成方法を説明するための図である。 PWM制御モードにおける線間電圧波形の一例を示す図である。 PWM制御モードにおける相電圧波形の一例を示す図である。 HMパルス信号による線間電圧パルス波形とPWMパルス信号による線間電圧パルス波形とを比較する図である。 PWM制御モードとHM制御モードを切り替えた様子を示す図である。 PWM制御とHM制御とにおけるパルス形状の違いについて説明するための図である。 モータ回転速度とHMパルス信号による線間電圧パルス波形との関係を示す図である。 HM制御とPWM制御において生成される線間電圧パルス数とモータ回転速度との関係を示す図である。 第1の実施の形態に係る制御回路によって行われるモータ制御のフローチャートを示す図である。 第2の実施の形態に係る制御回路によるモータ制御系を示す図である。 補償電流の発生を説明するための図である。 相電流波形と補償パルス波形の一部をそれぞれ拡大した図である。 第2の実施の形態に係る制御回路によって行われるモータ制御のフローチャートを示す図である。 過渡電流補償の手順を示すフローチャートである。 相電圧印加時間の計算に用いる回路モデルを示す図である。 第3の実施の形態に係る制御回路によるモータ制御系を示す図である。 1相チョッパー制御の一例を示す図である。 第3の実施の形態に係る制御回路によって行われるモータ制御のフローチャートを示す図である。 高調波を低減する動作原理を説明する説明図である。 高調波を低減するためのスイッチング素子のスイッチングタイミングを説明するための説明図である。 高調波の削除方法の考え方をフーリエ級数展開に基づいて説明する説明図である。 3次、5次、7次高調波が削除された場合のU相とV相の線間電圧のパターンを説明する説明図である。
 上記発明が解決しようとする課題の欄や発明の効果の欄に記載の内容に加え、以下の実施の形態では、製品化の上で望ましい課題が解決でき、また製品化の上で望ましい効果を奏する。その幾つかを次に記載すると共に実施の形態の説明でも、具体的な課題の解決や具体的な効果について説明する。
 〔スイッチング素子のスイッチング頻度の低減〕
 以下の実施の形態で説明する電力変換装置では、直流電力から変換される交流電力の波形の角度すなわち位相に基づいて、スイッチング素子のスイッチング動作を制御するために、駆動回路から駆動信号をスイッチング素子に供給し、上記スイッチング素子が、変換される交流電力の位相に対応付けられて導通あるいは遮断動作を行う。このような構成および作用により、上記スイッチング素子のスイッチング動作の単位時間当たりの回数あるいは交流電力の1サイクル当たりのスイッチング回数を、一般のPWM方式に比べ低減できる。また上記構成においては、パワースイッチング回路のスイッチング素子のスイッチング頻度を低減しているにもかかわらず、出力される交流波形の歪の増大を抑制でき、スイッチング動作に伴う損失を低減できる効果がある。このことはパワースイッチング回路のスイッチング素子の発熱の低減につながる。
 以下に説明する実施の形態では、特に図40や図41で説明する実施の形態では、削除しようとする高調波の次数を選択している。このように本発明の適用対象に合せて削除する次数を選択することができるので、必要以上に削除する次数の種類が増えるのを防止でき、このことによりパワースイッチング回路のスイッチング素子の単位位相当たりのスイッチング回数の低減が可能となる。さらにまた低減する次数の高調波を単位位相毎に重ねあわせ、重ね合わせた波形に基づいてパワースイッチング回路のスイッチング素子のスイッチングタイミングを制御するので、パワースイッチング回路のスイッチング素子のスイッチング回数を低減できる。
 なお、スイッチング素子としては、動作速度が速く、また制御信号に基づき導通および遮断動作の両方を制御できる素子が望ましく、このような素子として例えばinsulated gatebipolar transistor(以下IGBTと記す)や電界効果トランジスタ(MOSトランジスタ)があり、これらの素子は応答性や制御性の点から望ましい。
 上記電力変換装置から出力される交流電力は回転電機などで構成されるインダクタンス回路に供給され、インダクタンスの作用に基づいて交流電流を流れる。以下の実施の形態ではインダクタンス回路としてモータやゼネレータの作用を為す回転電機を例に挙げ説明している。回転電機を駆動する交流電力を発生するために本発明を使用することは、効果の点から、最適であるが、回転電機以外のインダクタンス回路に交流電力を供給する電力変換装置としても使用できる。
 以下の実施の形態では、回転電機の回転速度が速い第1の動作範囲では、出力しようとする交流波形の位相に基づいて、スイッチング素子のスイッチング動作を発生し、一方上記第1の動作範囲より回転電機の回転速度が遅い第2の動作領域では、一定周波数の搬送波に基づいてスイッチング素子の動作を制御するPWM方式で上記スイッチング素子を制御する。上記第2の動作領域には上記回転電機の回転子が停止状態を含めることができる。なお、以下の実施の形態では回転電機としてモータおよび発電機として使用されるモータジェネレータを例に説明する。
 〔出力される交流電力の歪低減〕
 出力しようとする電力の交流波形の角度に基づいて、スイッチング素子を導通あるいは遮断する方式では、出力される交流電力の周波数が低い領域では、交流波形の歪が大きくなる傾向が有る。上述の説明において、交流出力の周波数が低い第2の領域はPWM方式を使用して時間経過に基づいてスイッチング素子を制御し、第2の領域より周波数の高い第1の領域では、角度に基づいてスイッチング素子を制御する。このように異なる方式を利用してスイッチング素子を制御することにより、出力される交流電力の歪を低減できる効果が生じる。
 〔基本的制御〕
 以下に説明の実施の形態では、基本的制御として、交流電力を供給する回転電機の低速運転状態ではPWM制御で上記交流電力を発生し、回転電機の回転速度が上昇した状態で以下に説明するHM制御による交流電力の発生制御に移行する。これにより歪の影響をできるだけ押さえ、効率向上を実現できる。
 さらに上記の基本制御において、回転電機の停止状態では、図3や図39に記載の如くチョッパー制御を行い、チョッパー制御からPWM制御に移行する。
 また上記基本制御とは別の観点で、以下の実施の形態で説明の如く、回転電機の高速運転状態では、HM制御の内の矩形波制御に移行する。以下に説明のHM制御では、出力する交流波形の位相に対応してスイッチングタイミングが制御され、変調度を高くするにつれて交流電力の半周期(電気角のゼロからπ、あるいはπから2π)におけるスイッチング回数が徐々に減少し、最後は、半周期に1回導通するだけとなる矩形波制御に移行する。このように以下の実施の形態では、矩形波制御にスムーズに移行できるメリットがあり、このため制御性に優れている。
 本発明の実施形態に係る電力変換装置について、図面を参照しながら以下詳細に説明する。本発明の実施形態に係る電力変換装置は、ハイブリッド用の自動車(以下HEVと記す)や純粋な電気自動車(以下EVと記す)の回転電機を駆動する為の交流電力を発生する電力変換装置に適用した例である。HEV用の電力変換装置もEV用の電力変換装置も基本的な構成や制御において共通するところが多く、代表例として、本発明の実施形態に係る電力変換装置をハイブリッド自動車に適用した場合の制御構成と電力変換装置の回路構成について、図1と図2を用いて説明する。図1はハイブリッド自動車の制御ブロックを示す図である。
 本発明の実施形態に係る電力変換装置では、自動車に搭載される車載電機システムの車載用の電力変換装置について説明する。特に、車両駆動用電機システムに用いられ、搭載環境や動作的環境などが大変厳しい車両駆動用電力変換装置を例に挙げて説明する。車両駆動用電力変換装置は、車両駆動用の回転電機を駆動する制御装置として車両駆動用電機システムに備えられる。この車両駆動用の電力変換装置は、車載電源を構成する車載バッテリ或いは車載発電装置から供給された直流電力を所定の交流電力に変換し、得られた交流電力を上記回転電機に供給して上記回転電機を駆動する。また、上記回転電機は電動機の機能に加え発電機としての機能も有しているので、上記電力変換装置は運転モードに応じ、直流電力を交流電力に変換するだけでなく、上記回転電機が発生する交流電力を直流電力に変換する動作も行う。変換された直流電力は車載バッテリに供給される。
 なお、本実施形態の構成は、自動車やトラックなどの車両駆動用の電力変換装置として最適である。しかし、これら以外の電力変換装置、例えば電車や船舶、航空機などの電力変換装置、さらに工場の設備を駆動する回転電機に供給する交流電力を発生する為の産業用の電力変換装置、或いは家庭の太陽光発電システムや家庭の電化製品を駆動する回転電機の制御装置に用いられたりする電力変換装置に対しても適用可能である。
 図1において、HEV110は1つの電動車両であり、2つの車両駆動用システムを備えている。その1つは、内燃機関であるエンジン120を動力源としたエンジンシステムである。エンジンシステムは、主としてHEVの駆動源として用いられる。もう1つは、モータジェネレータ192,194を動力源とした車載電機システムである。車載電機システムは、主としてHEVの駆動源及びHEVの電力発生源として用いられる。モータジェネレータ192,194は例えば同期機あるいは誘導機などの回転電機の一例であり、運転方法によりモータとしても発電機としても動作するので、ここではモータジェネレータと記すこととする。
 車体のフロント部には前輪車軸114が回転可能に軸支されている。前輪車軸114の両端には1対の前輪112が設けられている。車体のリア部には後輪車軸(図示省略)が回転可能に軸支されている。後輪車軸の両端には1対の後輪が設けられている。本実施形態のHEVでは、動力によって駆動される主輪を前輪112とし、連れ回される従輪を後輪とする、いわゆる前輪駆動方式を採用しているが、この逆、すなわち後輪駆動方式を採用しても構わない。
 前輪車軸114の中央部には前輪側ディファレンシャルギア(以下、「前輪側DEF」と記述する)116が設けられている。前輪車軸114は前輪側DEF116の出力側に機械的に接続されている。前輪側DEF116の入力側には変速機118の出力軸が機械的に接続されている。前輪側DEF116は、変速機118によって変速されて伝達された回転駆動力を左右の前輪車軸114に分配する差動式動力分配機構である。変速機118の入力側にはモータジェネレータ192の出力側が機械的に接続されている。モータジェネレータ192の入力側には動力分配機構122を介してエンジン120の出力側及びモータジェネレータ194の出力側が機械的に接続されている。尚、モータジェネレータ192,194及び動力分配機構122は、変速機118の筐体の内部に収納されている。
 モータジェネレータ192,194は、回転子に永久磁石を備えた同期機である。固定子の電機子巻線に供給される交流電力が電力変換装置140,142によって制御されることにより、モータジェネレータ192,194の駆動が制御される。電力変換装置140,142にはバッテリ136が電気的に接続されている。バッテリ136と電力変換装置140,142との相互において電力の授受が可能である。
 本実施形態の車載電機システムは、モータジェネレータ192及び電力変換装置140からなる第1電動発電ユニットと、モータジェネレータ194及び電力変換装置142からなる第2電動発電ユニットとの2つを備えており、運転状態に応じてそれらを使い分けている。すなわち、エンジン120からの動力によって車両を駆動している場合において、車両の駆動トルクをアシストする場合には、第2電動発電ユニットを発電ユニットとしてエンジン120の動力によって作動させて発電させ、その発電によって得られた電力によって第1電動発電ユニットを電動ユニットとして作動させる。また、同様の場合において、車両の車速をアシストする場合には、第1電動発電ユニットを発電ユニットとしてエンジン120の動力によって作動させて発電させ、その発電によって得られた電力によって第2電動発電ユニットを電動ユニットとして作動させる。
 また、本実施形態では、バッテリ136の電力によって第1電動発電ユニットを電動ユニットとして作動させることにより、モータジェネレータ192の動力のみによって車両の駆動ができる。さらに、本実施形態では、第1電動発電ユニット又は第2電動発電ユニットを発電ユニットとしてエンジン120の動力或いは車輪からの動力によって作動させて発電させることにより、バッテリ136を充電できる。
 バッテリ136はさらに補機用のモータ195を駆動するための電源としても使用される。補機用のモータとしては、例えばエアコンディショナーのコンプレッサを駆動するモータ、あるいは制御用の油圧ポンプを駆動するモータである。バッテリ136から電力変換装置43に直流電力が供給され、電力変換装置43で交流の電力に変換されてモータ195に供給される。電力変換装置43は、電力変換装置140や142と同様の機能を持ち、モータ195に供給する交流の位相や周波数、電力を制御する。例えばモータ195の回転子の回転に対し進み位相の交流電力を供給することにより、モータ195はトルクを発生する。一方、遅れ位相の交流電力を発生することで、モータ195は発電機として作用し、回生制動状態の運転となる。このような電力変換装置43の制御機能は、電力変換装置140や142の制御機能と同様である。モータ195の容量はモータジェネレータ192や194の容量より小さいので、電力変換装置43の最大変換電力は電力変換装置140や142より小さい。しかし、電力変換装置43の回路構成および動作は基本的に電力変換装置140や142の回路構成や動作と類似している。
 電力変換装置140や142および電力変換装置43さらにコンデンサモジュール500は電気的に密接な関係にある。さらに発熱に対する対策が必要な点が共通している。また装置の体積をできるだけ小さく作ることが望まれている。これらの点から以下で詳述する電力変換装置は、電力変換装置140や142および電力変換装置43さらにコンデンサモジュール500を電力変換装置の筐体内に内蔵している。この構成により、小型で信頼性の高い装置が実現できる。
 また電力変換装置140や142および電力変換装置43さらにコンデンサモジュール500を一つの筐体に内蔵することで、配線の簡素化やノイズ対策で効果がある。またコンデンサモジュール500と電力変換装置140や142および電力変換装置43との接続回路のインダクタンスを低減でき、スパイク電圧を低減できると共に、発熱の低減や放熱効率の向上を図ることができる。
 次に、図2を用いて電力変換装置140や142あるいは電力変換装置43の電気回路構成を説明する。尚、図1~図2に示す実施形態では、電力変換装置140や142あるいは電力変換装置43をそれぞれ個別に構成する場合を例に挙げて説明する。電力変換装置140や142あるいは電力変換装置43は同様の構成で同様の作用を為し、同様の機能を有している。ここでは、代表例として電力変換装置140の説明を行う。
 本実施形態に係る電力変換装置200は、電力変換装置140とコンデンサモジュール500とを備える。電力変換装置140は、パワースイッチング回路144と制御部170とを有している。また、パワースイッチング回路144は、上アームとして動作するスイッチング素子と下アームとして動作するスイッチング素子を有している。この実施の形態ではスイッチング素子としてIGBT(絶縁ゲート型バイポーラトランジスタ)を使用している。上アームとして動作するIGBT328はダイオード156と並列接続されており、下アームとして動作するIGBT330はダイオード166と並列接続されている。上下アームの直列回路150を複数有し(図2の例では3つの上下アームの直列回路150,150,150)、それぞれの上下アームの直列回路150の中点部分(接続点169)から交流端子159を通してモータジェネレータ192への交流電力線(交流バスバー)186と接続する構成である。また、制御部170はパワースイッチング回路144を駆動制御するドライバ回路174と、ドライバ回路174へ信号線176を介して制御信号を供給する制御回路172と、を有している。
 上アームと下アームのIGBT328や330は、スイッチング素子であり、制御部170から出力された駆動信号を受けて動作し、バッテリ136から供給された直流電力を三相交流電力に変換する。この変換された電力はモータジェネレータ192の電機子巻線に供給される。上述のとおり、電力変換装置140はモータジェネレータ192が発生する三相交流電力を直流電力に変換する動作も行う。
 本実施形態に係る電力変換装置200は、図1に記載の如く電力変換装置140と142さらに電力変換装置43とコンデンサモジュール500を有している。上述のとおり電力変換装置140と142さらに電力変換装置43は同様の回路構成であるので、ここでは電力変換装置140を代表として記載し、電力変換装置142と電力変換装置43は、既に上述したとおり省略した。
 パワースイッチング回路144は3相のブリッジ回路により構成されている。バッテリ136の正極側と負極側には、直流正極端子314と直流負極端子316が電気的に接続されている。直流正極端子314と直流負極端子316の間には、各相に対応する上下アームの直列回路150,150,150がそれぞれ電気的に並列に接続されている。ここで、上下アームの直列回路150をアームと記載する。各アームは、上アーム側のスイッチング素子328及びダイオード156と、下アーム側のスイッチング素子330及びダイオード166とを備えている。
 本実施形態では、スイッチング素子としてIGBT328や330を用いることを例示している。IGBT328や330は、コレクタ電極153,163、エミッタ電極(信号用エミッタ電極端子155,165)、ゲート電極(ゲート電極端子154,164)を備えている。IGBT328,330のコレクタ電極153,163とエミッタ電極との間には、ダイオード156,166が図示するように電気的に並列に接続されている。ダイオード156,166は、カソード電極及びアノード電極の2つの電極を備えている。IGBT328,330のエミッタ電極からコレクタ電極に向かう方向が順方向となるように、カソード電極がIGBT328,330のコレクタ電極に、アノード電極がIGBT328,330のエミッタ電極にそれぞれ電気的に接続されている。スイッチング素子としては、MOSFET(金属酸化物半導体型電界効果トランジスタ)を用いてもよい。この場合は、ダイオード156やダイオード166は不要となる。
 上下アームの直列回路150は、3相のモータジェネレータ192に供給する交流電力の各相に対応しており、各直列回路150,150,150は、IGBT328のエミッタ電極とIGBT330のコレクタ電極163を接続する接続点169はそれぞれU相、V相、W相の交流電力を出力するのに使用される。各相の上記接続点169がそれぞれ交流端子159とコネクタ188を介して、モータジェネレータ192のU相、V相、W相の電機子巻線(同期電動機では固定子巻線)と接続されることにより、上記電機子巻線にU相、V相、W相の電流が流れる。上記上下アームの直列回路同士は電気的に並列接続されている。上アームのIGBT328のコレクタ電極153は、正極端子(P端子)157を介してコンデンサモジュール500の正極側コンデンサ電極に、下アームのIGBT330のエミッタ電極は、負極端子(N端子)158を介してコンデンサモジュール500の負極側コンデンサ電極に、それぞれ直流バスバーなどを介して電気的に接続されている。
 コンデンサモジュール500は、IGBT328,330のスイッチング動作によって生じる直流電圧の変動を抑制する平滑回路を構成するためのものである。コンデンサモジュール500の正極側コンデンサ電極にはバッテリ136の正極側が、コンデンサモジュール500の負極側コンデンサ電極にはバッテリ136の負極側が、それぞれ直流コネクタ138を介して電気的に接続されている。これにより、コンデンサモジュール500は、上アームIGBT328のコレクタ電極153とバッテリ136の正極側との間と、下アームIGBT330のエミッタ電極とバッテリ136の負極側との間で接続され、バッテリ136と上下アームの直列回路150に対して電気的に並列接続される。
 制御部170は、IGBT328,330を導通や遮断の作動を制御する働きをし、制御部170は、他の制御装置やセンサなどからの入力情報に基づいて、IGBT328,330のスイッチングタイミングを制御するためのタイミング信号を生成する制御回路172と、制御回路172から出力されたタイミング信号に基づいて、IGBT328,330をスイッチング動作させるためのドライブ信号を生成するドライブ回路174とを備えている。
 制御回路172は、IGBT328,330のスイッチングタイミングを演算処理するためのマイクロコンピュータを備えている。このマイクロコンピュータには、入力情報として、モータジェネレータ192に対して要求される目標トルク値、上下アームの直列回路150からモータジェネレータ192の電機子巻線に供給される電流値、及びモータジェネレータ192の回転子の磁極位置が入力される。目標トルク値は、不図示の上位の制御装置から出力された指令信号に基づくものである。電流値は、電流センサ180から出力された検出信号に基づいて検出されたものである。磁極位置は、モータジェネレータ192に設けられた回転磁極センサ(不図示)から出力された検出信号に基づいて検出されたものである。本実施形態では3相の電流値を検出する場合を例に挙げて説明するが、2相分の電流値を検出するようにしても構わない。
 制御回路172内のマイクロコンピュータは、入力された目標トルク値に基づいてモータジェネレータ192のd,q軸の電流指令値を演算し、この演算されたd,q軸の電流指令値と、検出されたd,q軸の電流値との差分に基づいてd,q軸の電圧指令値を演算し、このd,q軸の電圧指令値からパルス状の駆動信号を生成する。制御回路172は後述するように2種類の方式の駆動信号を発生する機能を有する。この2種類の方式の駆動信号は、インダクタンス負荷であるモータジェネレータ192の状態に基づいて、あるいは変換しようとする交流電力の周波数、などに基づいて、選択される。
 上記2種類の方式の内の1つは、出力しようとする交流波形の位相に基づいて、スイッチング素子であるIGBT328、330のスイッチング動作を制御する変調方式(HM方式として後述する)である。上記2種類の方式の内の他の1つは、一般にPWM(Pulse Width Modulation)と呼ばれる変調方式である。
 ドライバ回路174は、下アームを駆動する場合、パルス状の変調波の信号を増幅し、これをドライブ信号として、対応する下アームのIGBT330のゲート電極に出力する。また、上アームを駆動する場合、パルス状の変調波の信号の基準電位のレベルを上アームの基準電位のレベルにシフトしてからパルス状の変調波の信号を増幅し、これをドライブ信号として、対応する上アームのIGBT328のゲート電極に出力する。これにより、各IGBT328,330は、入力されたドライブ信号に基づいてスイッチング動作する。こうして制御部170からの駆動信号(ドライブ信号)に応じて行われる各IGBT328,330のスイッチング動作により、電力変換装置140は、直流電源であるバッテリ136から供給される電圧を、電気角で2π/3 rad毎にずらしたU相、V相、W相の各出力電圧に変換し、3相交流モータであるモータジェネレータ192に供給する。なお、電気角とは、モータジェネレータ192の回転状態、具体的には回転子の位置に対応するものであって、0から2πの間で周期的に変化する。この電気角をパラメータとして用いることで、モータジェネレータ192の回転状態に応じて、各IGBT328,330のスイッチング状態、すなわちU相、V相、W相の各出力電圧を決定することができる。
 また、制御部170は、異常検知(過電流、過電圧、過温度など)を行い、上下アームの直列回路150を保護している。このため、制御部170にはセンシング情報が入力されている。例えば各アームの信号用エミッタ電極端子155,165からは各IGBT328,330のエミッタ電極に流れる電流の情報が、対応する駆動部(IC)に入力されている。これにより、各駆動部(IC)は過電流検知を行い、過電流が検知された場合には対応するIGBT328,330のスイッチング動作を停止させ、対応するIGBT328,330を過電流から保護する。上下アームの直列回路150に設けられた温度センサ(不図示)からは上下アームの直列回路150の温度の情報がマイクロコンピュータに入力されている。また、マイクロコンピュータには上下アームの直列回路150の直流正極側の電圧の情報が入力されている。マイクロコンピュータは、それらの情報に基づいて過温度検知及び過電圧検知を行い、過温度或いは過電圧が検知された場合には全てのIGBT328,330のスイッチング動作を停止させ、上下アームの直列回路150、引いては、この回路150を含む半導体モジュール、を過温度或いは過電圧から保護する。
 図2において、上下アームの直列回路150は、上アームのIGBT328及び上アームのダイオード156と、下アームのIGBT330及び下アームのダイオード166との直列回路である。IGBT328,330は、スイッチング用半導体素子である。パワースイッチング回路144の上下アームのIGBT328,330の導通および遮断動作が一定の順で切り替わる。この切り替わり時のモータジェネレータ192の固定子巻線の電流は、ダイオード156,166によって作られる回路を流れる。
 上下アームの直列回路150は、図示するように、Positive端子(P端子、正極端子)157、Negative端子(N端子158、負極端子)、上下アームの接続点169からの交流端子159、上アームの信号用端子(信号用エミッタ電極端子)155、上アームのゲート電極端子154、下アームの信号用端子(信号用エミッタ電極端子)165、下アームのゲート端子電極164、を備えている。また、電力変換装置200は、入力側に直流コネクタ138を有し、出力側に交流コネクタ188を有して、それぞれのコネクタ138と188を通してバッテリ136とモータジェネレータ192にそれぞれ接続される。また、モータジェネレータへ出力する3相交流の各相の出力を発生する回路として、各相に2つの上下アームの直列回路を並列接続する回路構成の電力変換装置であってもよい。
 図3を用い、電力変換装置140において行われる制御モードの切り替えについて説明する。電力変換装置140は、モータすなわちモータジェネレータ192の回転速度に応じて、PWM制御方式と後述のHM制御方式と、を切り替えて使用する。図3は、電力変換装置140における制御モードの切り替えの様子を示している。なお、制御モードを切り替える回転速度は任意に変更可能である。例えば自動車が停止状態から走行を開始する場合に、前記モータジェネレータ192は停止状態で大きなトルクを発生することが必要である。また車両の高級感を出すためには、滑らかな発進と加速が望ましい。一方回転停止時状態では、要求されるトルクに対応してPWM制御又はチョッパー制御を行い、回転子の固定子に供給する交流電流を制御する。前記モータジェネレータ192の回転速度が上昇するに連れてPWM制御に移行する。
 車両の発進時および加速時は、滑らかな加速を実現する為に、前記モータジェネレータ192に供給する交流電力の歪を少なくすることが望ましく、PWM制御方式でパワースイッチング回路144が有するスイッチング素子のスイッチング動作を制御する。以下に説明するHM制御はモータジェネレータ192の回転速度が停止状態を含む超低速状態では、制御性に問題があり、また交流電力波形の歪が大きくなる傾向に有り、PWM制御方式による制御と組み合わせることで、あるいはさらにチョッパー制御を加えることで、このような欠点を補うことができる。
 前記モータジェネレータ192の低速運転状態では、供給できる交流電流に限界が有り、最大発生トルクを抑えた制御を行う。前記モータジェネレータ192の回転速度が増加するにつけて内部誘起電圧が高くなり、電流の供給量が減少する傾向となる。このため前記モータジェネレータ192の出力トルクは回転速度が増大すると低下する傾向となる。近年モータジェネレータに要求される最高回転速度がより高くなる傾向に有り、毎分1万5千回転を超える速度が要望される場合があり、高速運転ではHM制御は有効である。
 PWM方式による制御とHM制御との切り換えのモータジェネレータの回転速度は特に制限されるものではないが、例えば700rpm以下の状態はPWM方式で制御し、700rpmより高い回転速度ではHM制御を行うことが考えられる。1500rpmから5000rpmの範囲は、HM方式の制御に大変適する運転領域であり、この領域では、PWM方式による制御に対してHM方式の制御の方がスイッチング素子のスイッチング損失の低減効果が大きい。この運転領域は市街地走行において利用され易い運転領域であり、HM方式の制御は生活に密着した運転領域において大きな効果を発揮する。
 本実施例では、PWM制御方式で制御するモード(以下PWM制御モード)は、モータジェネレータ192の回転速度が比較的低い領域で使用し、一方比較的回転速度が高い領域では後述するHM制御モードを使用する。PWM制御モードにおいて、電力変換装置140は前述したようなPWM信号を用いた制御を行う。すなわち、制御回路172内のマイクロコンピュータにより、入力された目標トルク値に基づいてモータジェネレータ192のd,q軸の電圧指令値を演算し、これをU相、V相、W相の電圧指令値に変換する。そして、各相の電圧指令値に応じた正弦波を基本波として、これを搬送波である所定周期の三角波と比較し、その比較結果に基づいて決定したパルス幅を有するパルス状の変調波をドライバ回路174に出力する。この変調波に応じた駆動信号をドライバ回路174から各相の上下アームにそれぞれ対応するIGBT328,330へ出力することにより、バッテリ136から出力された直流電圧が3相交流電圧に変換され、モータジェネレータ192へ供給される。
 HMの内容については後で詳しく説明する。HM制御モードにおいて制御回路172により生成された変調波は、ドライバ回路174に出力される。これにより、当該変調波に応じた駆動信号がドライバ回路174から各相の対応するIGBT328,330へ出力される。その結果、バッテリ136から出力された直流電圧が3相交流電圧に変換され、モータジェネレータ192へ供給される。
 電力変換装置140のようにスイッチング素子を用いて直流電力を交流電力に変換する場合、単位時間当たりあるいは交流電力の所定位相あたりのスイッチング回数を少なくすると、スイッチング損失を低減することができる反面、変換される交流電力に高調波成分が多く含まれる傾向があるためにトルク脈動が増大し、モータ制御の応答性が悪化する可能性がある。そこで本発明では、上記のようにPWM制御モードとHM制御モードとを、変換しようとする交流電力の周波数あるいはこの周波数と関連があるモータの回転速度に応じて切り替えることで、低次の高調波の影響を受けにくいモータ回転域、すなわち高速回転域ではHM制御方式を適用し、トルク脈動の発生しやすい低速回転域ではPWM制御方式を適用するようにしている。このようにすることで、トルク脈動の増大を比較的低く抑えることができ、スイッチング損失を低減できる。
 なお、スイッチング回数が最小となるモータの制御状態として、モータの1回転ごとに各相のスイッチング素子を1回ずつオンオフする矩形波による制御状態がある。この矩形波による制御状態は、上記のHM制御方式においては、変換される交流電力波形における変調度の増大に従って減少する半周期あたりのスイッチング回数の最終的な状態として、HM制御方式の一制御形態として捉えることができる。この点については後で詳しく説明する。
 次にHM制御方式を説明するために、先ず始めにPWM制御と矩形波制御について図4を参照して説明する。PWM制御の場合は一定周波数の搬送波と出力しようとする交流波形との大小比較に基づいて、スイッチング素子の導通や遮断のタイミングを定め、スイッチング素子を制御する方式である。PWM制御を用いることで脈動の少ない交流電力をモータに供給でき、トルク脈動が少ないモータ制御が可能となる。一方単位時間当たりあるいは交流波形の周期毎のスイッチング回数が多いためにスイッチング損失が大きい欠点がある。これに対して、極端な例として、1パルスの矩形波を用いてスイッチング素子を制御の場合は、スイッチング回数が少ないためにスイッチング損失を少なくできる。その一方で、変換される交流波形はインダンタンス負荷の影響を無視すると矩形波状となり、正弦波に対して5次、7次、11次、・・・等の高調波成分が含まれた状態と見ることができる。矩形波をフーリエ展開すると基本正弦波に加え、5次、7次、11次、・・・等の高調波成分があらわれる。この高調波成分がトルク脈動の原因となる電流歪を生じることとなる。このように、PWM制御と矩形波制御は互いに対極的な関係にある。
 矩形波状にスイッチング素子の導通および遮断を制御したと仮定した場合に、交流電力に生じる高調波成分の例を図5に示す。図5(a)は、矩形波状に変化する交流波形を基本波である正弦波と5次、7次、11次、・・・等の高調波成分に分解した例である。図5(a)に示す矩形波のフーリエ級数展開は、式(1)のように表される。
 f(ωt)=4/π×{sinωt+(sin3ωt)/3+(sin5ωt)/5+(sin7ωt)/7+・・・} (1)
 式(1)は、4/π・(sinωt)で表される基本波の正弦波と、これの高調波成分である3次、5次、7次・・・の各成分とにより、図5(a)に示す矩形波が形成されることを示している。このように、基本波に対してより高次の高調波を合成していくことで矩形波に近づくことが分かる。
 図5(b)は、基本波、3次高調波、5次高調波の各振幅をそれぞれ比較した様子を示している。図5(a)の矩形波の振幅を1とすると、基本波の振幅は1.27、3次高調波の振幅は0.42、5次高調波の振幅は0.25とそれぞれ表される。このように、高調波の次数が上がるほどその振幅は小さくなるため、矩形波制御における影響が小さくなることが分かる。
 矩形波形状にスイッチング素子を導通および遮断した場合に発生する可能性があるトルク脈動の観点から、影響の大きい高次の高調波成分を削除しつつ、一方影響が小さい高次の高調波成分に対してその影響を無視してこれら高調波成分を含めることで、スイッチング損失が少なくしかもトルク脈動の増大を低く抑えることができる電力変換器を実現できる。本実施の形態で使用するHM制御では、矩形波交流電流が有する高調波成分を制御の状態に応じてある程度削減した交流電力を出力し、これにより、モータ制御のトルク脈動の影響を小さくし、一方使用上問題が無い範囲で高調波成分が含まれている状態とすることで、スイッチング損失を低減するようにしている。このような制御方式を、上述のとおり、この明細書ではHM制御方式と記載している。
 さらに以下の実施の形態では、HM制御方式における高調波の影響が大きいあるいは制御性が悪くなる低周波の交流電力を出力している状態で、PWM制御方式を使用するようにしている。具体的には、PWM制御とHM制御とをモータの回転速度に応じて切り替え、回転速度の低い領域でPWM方式を使用して制御することで、低速回転域と高速回転域のそれぞれにおいて望ましいモータ制御を行うようにしている。
 続いて上記制御を実現するための制御回路172の構成について説明する。電力変換装置140に搭載される制御回路172の制御方法として、3種類のモータ制御の方法を説明し、以下では、これら3種類のモータ制御方法を第1、第2、第3の実施の形態として記載する。
-第1の実施の形態-
 本発明の第1の実施の形態に係る制御回路172によるモータ制御系を図6に示す。制御回路172には、上位の制御装置より、目標トルク値としてのトルク指令T*が入力される。トルク指令・電流指令変換器410は、入力されたトルク指令T*と、回転磁極センサ193により検出された磁極位置信号θに基づく回転速度情報とに基づいて、予め記憶されたトルク-回転速度マップのデータを用いて、d軸電流指令信号Id*およびq軸電流指令信号Iq*を求める。トルク指令・電流指令変換器410において求められたd軸電流指令信号Id*およびq軸電流指令信号Iq*は、電流制御器(ACR)420、421にそれぞれ出力される。
 電流制御器(ACR)420、421は、トルク指令・電流指令変換器410から出力されたd軸電流指令信号Id*およびq軸電流指令信号Iq*と、電流センサ180により検出されたモータジェネレータ192の相電流検出信号lu、lv、lwが制御回路172上の図示しない3相2相変換器において回転センサ-からの磁極位置信号によりd,q軸上に変換されたId,Iq電流信号とに基づいて、モータジェネレータ192を流れる電流がd軸電流指令信号Id*およびq軸電流指令信号Iq*に追従するように、d軸電圧指令信号Vd*およびq軸電圧指令信号Vq*をそれぞれ演算する。電流制御器(ACR)420において求められたd軸電圧指令信号Vd*およびq軸電圧指令信号Vq*は、HM制御用のパルス変調器430へ出力される。一方、電流制御器(ACR)421において求められたd軸電圧指令信号Vd*およびq軸電圧指令信号Vq*は、PWM制御用のパルス変調器440へ出力される。
 HM制御用のパルス変調器430は、電圧位相差演算器431、変調度演算器432、パルス生成器434により構成される。電流制御器420から出力されたd軸電圧指令信号Vd*およびq軸電圧指令信号Vq*は、パルス変調器430において電圧位相差演算器431と変調度演算器432に入力される。
 電圧位相差演算器431は、モータジェネレータ192の磁極位置とd軸電圧指令信号Vd*およびq軸電圧指令信号Vq*が表す電圧位相との位相差、すなわち電圧位相差を算出する。この電圧位相差をδとすると、電圧位相差δは式(2)で表される。
 δ=arctan(-Vd*/Vq*) ・・・・・・・・・・・・・・・・・・・・・・・・(2)
 電圧位相差演算器431は、さらに上記の電圧位相差δに回転磁極センサ193からの磁極位置信号θが表す磁極位置を加算することで、電圧位相を算出する。そして、算出した電圧位相に応じた電圧位相信号θvをパルス生成器434へ出力する。この電圧位相信号θvは、磁極位置信号θが表す磁極位置をθeとすると式(3)で表される。
 θv=δ+θe+π・・・・・・・・・・・・・・・・・・・・・・・・・・・(3)
 変調度演算器432は、d軸電圧指令信号Vd*およびq軸電圧指令信号Vq*が表すベクトルの大きさをバッテリ136の電圧で正規化することにより変調度を算出し、その変調度に応じた変調度信号aをパルス生成器434へ出力する。この実施の形態では、上記変調度信号aは、図2に示すパワースイッチング回路144に供給される直流電圧であるバッテリ電圧に基づいて定められることになり、バッテリ電圧が高くなると変調度aは小さくなる傾向となる。また指令値の振幅値が大きくなると変調度aは大きくなる傾向となる。具体的にはバッテリ電圧をVdcとすると式(4)で表される。なお、式(4)において、Vdはd軸電圧指令信号Vd*の振幅値、Vqはq軸電圧指令信号Vq*の振幅値をそれぞれ表す。
 a=(√(Vd^2+Vq^2))/Vdc・・・・・・・・・・・・・・・・・・・・・(4)
 パルス生成器434は、電圧位相差演算器431からの電圧位相信号θvと、変調度演算器432からの変調度信号aとに基づいて、U相、V相、W相の各上下アームにそれぞれ対応する6種類のHM制御に基づくパルス信号を生成する。そして、生成したパルス信号を切換器450へ出力し、切換器450からドライバ回路174へ出力し、各スイッチング素子に駆動信号が出力される。なお、HM制御に基づくパルス信号(以下HMパルス信号と記す)の発生方法については、後で詳しく説明する。
 一方、PWM制御用のパルス変調器440は、電流制御器421から出力されたd軸電圧指令信号Vd*およびq軸電圧指令信号Vq*と、回転磁極センサ193からの磁極位置信号θとに基づいて、周知のPWM方式により、U相、V相、W相の各上下アームにそれぞれ対応する6種類のPWM制御に基づくパルス信号(以下PWMパルス信号と記す)を生成する。そして、生成したPWMパルス信号を切換器450へ出力し、切換器450からドライブ回路174に供給され、ドライブ回路174から駆動信号が各スイッチング素子に供給される。
 切換器450は、HM制御用のパルス変調器430から出力されたHMパルス信号またはPWM制御用のパルス変調器440から出力されたPWMパルス信号のいずれか一方を選択する。この切換器450によるパルス信号の選択は、前述のようにモータジェネレータ192の回転速度に応じて行われる。すなわち、モータジェネレータ192の回転速度が切替ラインとして設定された所定のしきい値よりも低い場合は、PWMパルス信号を選択することにより、電力変換装置140においてPWM制御方式が適用されるようにする。また、モータジェネレータ192の回転速度がしきい値よりも高い場合は、HMパルス信号を選択することにより、電力変換装置140においてHM制御方式が適用されるようにする。こうして切換器450において選択されたHMパルス信号またはPWMパルス信号は、ドライバ回路174(不図示)へ出力される。
 以上説明したようにして、制御回路172からドライバ回路174に対して、HMパルス信号またはPWMパルス信号が変調波として出力される。この変調波に応じて、ドライバ回路174よりパワースイッチング回路144の各IGBT328,330へ駆動信号が出力される。
 ここで図6のパルス生成器434の詳細について説明する。パルス生成器434は、たとえば図7に示すように、位相検索器435とタイマカウンタ比較器436によって実現される。位相検索器435は、電圧位相差演算器431からの電圧位相信号θv、変調度演算器432からの変調度信号aおよび磁極位置信号θに基づく回転速度情報に基づいて、予め記憶されたスイッチングパルスの位相情報のテーブルから、スイッチングパルスを出力すべき位相をU相、V相、W相の上下各アームについて検索し、その検索結果の情報をタイマカウンタ比較器436へ出力する。タイマカウンタ比較器436は、位相検索器435から出力された検索結果に基づいて、U相、V相、W相の上下各アームに対するスイッチング指令としてのHMパルス信号をそれぞれ生成する。タイマカウンタ比較器436により生成された各相の上下各アームに対する6種類のHMパルス信号は、前述のように切換器450へ出力される。
 図7の位相検索器435およびタイマカウンタ比較器436によるパルス生成の手順を詳細に説明したフローチャートを図8に示す。位相検索器435は、ステップ801において変調度信号aを入力信号として取り込み、ステップ802において電圧位相信号θvを入力信号として取り込む。続くステップ803において、位相検索器435は、入力された現在の電圧位相信号θvに基づいて、制御遅れ時間と回転速度を考慮して、次の制御周期に対応する電圧位相の範囲を演算する。その後ステップ804において、位相検索器435はROM検索を行う。このROM検索では、入力された変調度信号aに基づいて、ステップ803で演算された電圧位相の範囲において、ROM(不図示)に予め記憶されたテーブルよりスイッチングのオンとオフの位相を検索する。
 位相検索器435は、ステップ804のROM検索によって得られたスイッチングのオンとオフの位相の情報を、ステップ805においてタイマカウンタ比較器436へ出力する。タイマカウンタ比較器436は、この位相情報をステップ806において時間情報に変換し、タイマカウンタとのコンペアマッチ機能を用いてHMパルス信号を生成する。なお、位相情報を時間情報に変換する過程は、回転速度信号の情報を利用する。あるいはステップ804のROM検索によって得られたスイッチングのオンとオフの位相の情報を、ステップ806において位相カウンタとのコンペアマッチ機能を用いてHMパルスを生成しても良い。
 タイマカウンタ比較器436は、ステップ806で生成したHMパルス信号を、次のステップ807において切換器450へ出力する。以上説明したステップ801~807の処理が位相検索器435およびタイマカウンタ比較器436において行われることにより、パルス生成器434においてHMパルス信号が生成される。
 あるいは、図8のフローチャートにかえて、図9のフローチャートに示す処理をパルス生成器434において実行することにより、パルス生成を行うようにしてもよい。この処理は、図8のフローチャートに示したように予め記憶しているテーブルを用いてスイッチング位相を検索するテーブル検索方式を使わず、電流制御器(ACR)の制御周期毎にスイッチング位相を生成する方式である。
 パルス生成器434は、ステップ801において変調度信号aを入力し、ステップ802において電圧位相信号θvを入力する。続くステップ820において、パルス生成器434は、入力された変調度信号aおよび電圧位相信号θvに基づいて、制御遅れ時間と回転速度を考慮して、スイッチングのオンとオフの位相を電流制御器(ACR)の制御周期毎に決定する。
 ステップ820におけるスイッチング位相の決定処理の詳細を図10のフローチャートに示す。パルス生成器434は、ステップ821において、回転速度に基づいて削除する高調波次数を指定する。こうして指定された高調波次数に従って、パルス生成器434は続くステップ822において行列演算などの処理を行い、ステップ823においてパルス基準角度を出力する。
 ステップ821~823までのパルス生成過程は、以下の式(5)~(8)で示す行列式に則って演算される。
 ここでは、一例として、3次、5次、7次成分を消去する場合を取り上げる。
 パルス生成器434は、削除する高調波次数として3次、5次、7次の高調波成分をステップ821において指定すると、次のステップ822において行列演算を行う。
 ここで3次、5次、7次の消去次数に対して式(5)のような行ベクトルを作る。
Figure JPOXMLDOC01-appb-M000001
 式(5)の右辺括弧内の各要素はk1/3、k2/5、k3/7となっている。k1、k2、k3は任意の奇数を選択することができる。ただし、k1=3,9,15、k2=5,15,25、k3=7,21,35などを選択してはならない。この条件下で、3次、5次、7次成分は完全に消去される。
 上記をより一般的に記すと、分母の値を削除する高調波次数とし、分子の値を分母の奇数倍を除く任意の奇数とすることで、式(5)の各要素の値を決定することができる。ここで式(5)の例では、消去次数が3種類(3次、5次、7次)であるため行ベクトルの要素数を3つとしている。同様に、N種類の消去次数に対して要素数Nの行ベクトルを設定し、各要素の値を決定することができる。
 なお、式(5)において、各要素の分子と分母の値を上記のもの以外とすることで、高調波成分を削除するかわりに、そのスペクトルを整形することもできる。そのため、高調波成分の削除ではなくスペクトル整形を主な目的として、各要素の分子と分母の値を任意に選択してもよい。その場合、分子と分母の値は必ずしも整数である必要はないが、分子の値として分母の奇数倍を選択してはならない。また、分子と分母の値は定数である必要はなく、時間に応じて変化する値でもよい。
 上記のように、分母と分子の組み合わせでその値が決定される要素が3つの場合は、式(5)のように3列のベクトルを設定することができる。同様に、分母と分子の組み合わせでその値が決定される要素数Nのベクトル、すなわちN列のベクトルを設定することができる。以下では、このN列のベクトルを高調波準拠位相ベクトルと呼ぶこととする。
 高調波準拠位相ベクトルが式(5)のように3列のベクトルである場合は、その高調波準拠位相ベクトルを転置して式(6)の演算をする。その結果、S1~S4までのパルス基準角度が得られる。
 パルス基準角度S1~S4は、電圧パルスの中心位置を表わすパラメータであり、後述する三角波キャリアと比較される。このようにパルス基準角度が4個(S1~S4)である場合、一般的には、線間電圧一周期当たりのパルス数は16個となる。
Figure JPOXMLDOC01-appb-M000002
 また、式(5)のかわりに式(7)のように高調波準拠位相ベクトルが4列の場合は、行列演算式(8)を施す。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 その結果、S1~S8までのパルス基準角度出力が得られる。このとき線間電圧一周期当たりのパルス数は32個となる。
 削除する高調波成分の数とパルス数との関係は、一般的には次のとおりである。すなわち、削除する高調波成分が2つである場合、線間電圧一周期当たりのパルス数は8パルスであり、削除する高調波成分が3つである場合、線間電圧一周期当たりのパルス数は16パルスであり、削除する高調波成分が4つである場合、線間電圧一周期当たりのパルス数は32パルスであり、削除する高調波成分が5つである場合、線間電圧一周期当たりのパルス数は64パルスである。同様に、削除する高調波成分の数が1つ増すにつれて、線間電圧一周期当たりのパルス数が2倍になる。
 ただし、線間電圧で正のパルスと負のパルスが重畳するようなパルス配置の場合、パルス数は上記とは異なる場合がある。
 上記のようにしてパルス生成器434において生成されるHMパルス信号により、UV線間電圧、VW線間電圧、WU線間電圧の3種類の線間電圧においてパルス波形がそれぞれ形成される。これらの各線間電圧のパルス波形は、それぞれ2π/3の位相差を有する同一のパルス波形である。したがって、以下では各線間電圧を代表して、UV線間電圧のみを説明する。
 ここで、UV線間電圧の基準位相θuvlと電圧位相信号θvおよび磁極位置θeとの間には、式(9)の関係がある。
 θuvl=θv+π/6=θe+δ+7π/6 [rad] ・・・・・・・・・・・・・・・(9)
 式(9)で表されるUV線間電圧の波形は、θuvl=π/2,3π/2の位置を中心に線対称であり、かつ、θuvl=0,πの位置を中心に点対称となる。したがって、UV線間電圧パルスの1周期(θuvlが0から2πまで)の波形は、θuvlが0からπ/2までの間のパルス波形を元に、これをπ/2毎に左右対称または上下対称に配置することによって表現できる。
 これを実現するひとつの方法が、0≦θuvl≦π/2の範囲におけるUV線間電圧パルスの中心位相を4チャンネルの位相カウンタと比較し、その比較結果に基づいて、1周期すなわち0≦θuvl≦2πの範囲についてUV線間電圧パルスを生成するアルゴリズムである。その概念図を図11に示す。
 図11は0≦θuvl≦π/2の範囲における線間電圧パルスが4つである場合の例を示している。図11において、パルス基準角度S1~S4は、その4つのパルスの中心位相を表す。
 carr1(θuvl),carr2(θuvl),carr3(θuvl),carr4(θuvl)は、4チャンネルの位相カウンタの各々を表している。これらの各位相カウンタは、いずれも基準位相θuvlに対して2π radの周期を持つ三角波である。また、carr1(θuvl) とcarr2(θuvl)は振幅方向にdθの偏差を持ち、carr3(θuvl)とcarr4(θuvl)の関係も同様である。
 dθは線間電圧パルスの幅を表している。このパルス幅dθに対して基本波の振幅が線形に変化する。
 線間電圧パルスは、各位相カウンタcarr1(θuvl),carr2(θuvl),carr3(θuvl),carr4(θuvl)と、0≦θuvl≦π/2の範囲におけるパルスの中心位相を表すパルス基準角度S1~S4との各交点に形成される。これにより、90度毎に対称的なパターンのパルス信号が生成される。
 より詳細には、carr1(θuvl),carr2(θuvl)とS1~S4とがそれぞれ一致した点において、正の振幅を有する幅dθのパルスが生成される。一方、carr3(θuvl),carr4(θuvl) とS1~S4とがそれぞれ一致した点において、負の振幅を有する幅dθのパルスが生成される。
 以上説明したような方法を用いて生成した線間電圧の波形を変調度毎に描いた一例を図12に示す。図12では、式(5)のk1、k2、k3の値として、k1=1、k2=1、k3=3をそれぞれ選択し、変調度を0から1.0まで変化させたときの線間電圧パルス波形の例を示している。図12により、変調度の増加とほぼ比例してパルス幅が増加していることが分かる。こうしてパルス幅を増加させることで、電圧の実効値を増加させることができる。ただし、θuvl=0,π,2π付近のパルスは、変調度0.4以上において、変調度が変化してもパルス幅は変化していない。このような現象は、正の振幅を有するパルスと負の振幅を有するパルスが重なり合うことで生じるものである。
 上述したように、上記実施の形態では、ドライバ回路174から駆動信号をパワースイッチング回路144の各スイッチング素子に送ることにより、各スイッチング素子は出力しようとする交流電力の位相に基づいてスイッチング動作を行う。交流電力の一周期におけるスイッチング素子のスイッチング回数は、除去しようとする高調波の種類が増えるほど、増える傾向となる。ここで三相交流の回転電機に供給する三相交流電力を出力する場合には、3の倍数の高次高調波は互いに打ち消し合うことに成るので、除去しようとする高調波に含めなくても良い。
 また別の観点で見ると、供給される直流電力の電圧が低下すると変調度が増加し、導通している各スイッチング動作の導通期間が長くなる傾向となる。またモータなどの回転電機を駆動する場合に回転電機の発生トルクを大きくする場合には変調度が大きくなり、結果的に各スイッチング動作の導通期間が長くなり、回転電機の発生トルクを小さくする場合には、各スイッチング動作の導通期間が短くなる。導通期間が増大し、遮断時間が短くなった場合、つまりスイッチング間隔がある程度短くなった場合には、安全にスイッチング素子を遮断できない可能性が有り、その場合は遮断させないで導通状態のままそれに続く導通期間につながる制御が行われる。
 また別の観点で見ると、出力される交流電力の歪の影響が大きくなる周波数の低い状態、特に回転電機が停止状態あるいは回転速度が非常に低い状態では、HM方式の制御ではなく、定周期の搬送波を利用するPWM方式でパワースイッチング回路144を制御し、回転速度が増加した状態でHM方式に切り換えてパワースイッチング回路144を制御する。本発明を自動車駆動用の電力変換装置の適用した場合には、車が停止状態から発進して加速する段階は、車の高級感に影響するなどの理由で特にトルク脈動の影響を少なくすることが望ましい。このため少なくとも車が停止状態から発進する状態はPWM方式でパワースイッチング回路144を制御し、ある程度加速した後MH方式の制御に切り換える。このようにすることで、少なくとも発進時はトルク脈動の少ない制御が実現でき、少なくとも通常の運転である定速走行に移った状態ではスイッチングロスの少ないHM方式で制御することか可能となり、トルク脈動の影響を抑えながら損失の少ない制御を実現できる。
 本発明において用いられるHMパルス信号によると、上記のように変調度を固定したときに、例外を除き、パルス幅が等しいパルス列による線間電圧波形を形成することを特徴とする。なお、例外的に線間電圧のパルス幅が他のパルス列と不等である場合とは、上記のように正の振幅をもつパルスと負の振幅をもつパルスが重なった場合である。この場合、パルスが重なった部分を正の振幅をもつパルスと負の振幅をもつパルスに分解すると、パルスの幅は全域で必ず等しい。つまり、パルス幅の変化で変調度が変化する。
 ここで、例外的に線間電圧のパルス幅が他のパルス列と不等である場合について、さらに図13を用いて詳細に説明する。図13の上部には、図12において変調度1.0のときの線間電圧パルス波形のうち、π/2≦θuvl≦3π/2の範囲を拡大したものを示している。この線間電圧パルス波形では、中心付近の2つのパルスが他のパルスとは異なるパルス幅を有している。
 図13の下部には、こうしたパルス幅が他とは異なる部分を分解した様子を示している。この図から、当該部分では、他のパルスと同じパルス幅をそれぞれ有する正の振幅をもつパルスと負の振幅をもつパルスとが重なっており、これらのパルスが合成されることによって他とは異なるパルス幅のパルスが形成されていることが分かる。すなわち、こうしてパルスの重なりを分解することで、HMパルス信号に応じて形成される線間電圧のパルス波形は、一定のパルス幅を有するパルスによって構成されていることが分かる。
 本発明により生成されるHMパルス信号による線間電圧パルス波形の他の一例を図14に示す。ここでは、式(5)のk1、k2、k3の値として、k1=1、k2=1、k3=5をそれぞれ選択し、変調度を0から1.27まで変化させたときの線間電圧パルス波形の例を示している。図14では、変調度が1.17以上になると、θuvl=π/2、3π/2の位置において、互いに隣接する左右対称の2つのパルス間の隙間がなくなっている。したがって、変調度が1.17未満の範囲では狙った高調波成分を削除できるが、変調度がこれ以上になると高調波成分を有効に削除できないことが分かる。さらに変調度を大きくしていくと、他の位置においても隣接するパルス間の隙間がなくなっていき、最終的に変調度1.27において矩形波の線間電圧パルス波形となる。
 図14に示した線間電圧パルス波形を対応する相電圧パルス波形で表した例を図15に示す。図15でも図14と同様に、変調度が1.17以上になると隣接する2つのパルス間の隙間がなくなっていくことが分かる。なお、図15の相電圧パルス波形と図14の線間電圧パルス波形との間には、π/6の位相差がある。
 次に、線間電圧パルスを相電圧パルスに変換する方法について説明する。図16は、線間電圧パルスから相電圧パルスへの変換において用いられる変換表の例を示している。この表中で左端の列に記載されている1~6の各モードは、取り得るスイッチング状態ごとに番号を割り当てたものである。モード1~6では、線間電圧から出力電圧への関係が1対1に決まっている。これらの各モードは、直流側と3相交流側の間でエネルギー授受のあるアクティブな期間に対応している。なお、図16の表中に記載されている線間電圧は、異なる相の電位差として取りうるパターンをバッテリ電圧Vdcで正規化して整理したものである。
 図16において、たとえば、モード1ではVuv→1、Vvw→0、Vu→-1と示されているが、これはVu-Vv=Vdc、Vv-Vw=0、Vw-Vu=-Vdcとなる場合を正規化して示している。このときの相電圧すなわち相端子電圧(ゲート電圧に比例)は、図16の表によるとVu→1(U相の上アームをオン、下アームをオフ)、Vv→0(V相の上アームをオフ、下アームをオン)、Vw→0(W相の上アームをオフ、下アームをオン)となる。すなわち、図16の表では、Vu=Vdc、Vv=0、Vw=0となる場合を正規化して示している。モード2~6も、モード1と同様の考え方で成り立っている。
 図16の変換表を用いて矩形波の状態でパワースイッチング回路144を制御するモードにおける線間電圧パルスを相電圧パルスに変換した例を図17に示す。図17において、上段は線間電圧の代表例としてUV線間電圧Vuvを示しており、その下にU相端子電圧Vu、V相端子電圧Vv、W相端子電圧Vwを示している。図17に示すように、矩形波制御モードでは図16の変換表に示したモードが1から6まで順番に変化する。なお、矩形波制御モードでは後述する3相短絡期間は存在しない。
 図18は、図12に例示した線間電圧パルス波形を図16の変換表に従って相電圧パルスに変換する様子を示している。図18において、上段は線間電圧の代表例としてUV線間電圧パルスを示しており、その下にU相端子電圧Vu、V相端子電圧Vv、W相端子電圧Vwを示している。
 図18の上部には、モード(直流側と3相交流側の間でエネルギー授受のあるアクティブな期間)の番号、および3相短絡となっている期間を示している。3相短絡の期間では3相の上アームをすべてオンにするか3相の下アームをすべてオンにするかのいずれかであるが、スイッチング損失や導通損失の状況に応じて、どちらかのスイッチモードを選択すればよい。
 たとえば、UV線間電圧Vuvが1のときは、U相端子電圧Vuが1、V相端子電圧Vvが0である(モード1,6)。UV線間電圧Vuvが0のときは、U相端子電圧VuとV相端子電圧Vvが同じ値、すなわちVuが1かつVvが1(モード2、3相短絡)、またはVuが0かつVvが0(モード5、3相短絡)のいずれかである。UV線間電圧Vuvが-1のときは、U相端子電圧Vuが0、V相端子電圧Vvが1である(モード3,4)。このような関係に基づいて、相電圧すなわち相端子電圧の各パルス(ゲート電圧パルス)が生成される。
 図18において、線間電圧パルスと各相の相端子電圧パルスのパターンは、位相θuvlに対して、π/3を最小単位として準周期的に繰り返されるパターンとなっている。つまり、0≦θuvl≦π/3の期間のU相端子電圧の1と0を反転させたパターンは、π/3≦θuvl≦2π/3のW相端子電圧のパターンと同じである。また、0≦θuvl≦π/3の期間のV相端子電圧の1と0を反転させたパターンは、π/3≦θuvl≦2π/3のU相端子電圧のパターンと同じであり、0≦θuvl≦π/3の期間のW相端子電圧の1と0を反転させたパターンは、π/3≦θuvl≦2π/3のV相端子電圧のパターンと同じである。モータの回転速度と出力が一定である定常状態においては、こうした特徴が特に顕著に表れる。
 ここで、上記のモード1~6を、異なる相で上アーム用のIGBT328と下アーム用のIGBT330をそれぞれオンさせて直流電源であるバッテリ136からモータジェネレータ192に電流を供給する第1の期間として定義する。また、3相短絡期間を、全相で上アーム用のIGBT328または下アーム用のIGBT330のいずれか一方をオンさせてモータジェネレータ192に蓄積されたエネルギーでトルクを維持する第2の期間と定義する。図18に示す例では、これら第1の期間と第2の期間を電気角に応じて交互に形成していることが分かる。
 さらに図18では、たとえば0≦θuvl≦π/3の期間において、第1の期間としてのモード6および5を、第2の期間としての3相短絡期間を間に挟んで交互に繰り返している。ここで図16から分かるように、モード6では、V相において下アーム用のIGBT330をオンする一方で、他のU相、W相では、V相と異なる側、すなわち上アーム用のIGBT328をオンしている。他方、モード5では、W相において上アーム用のIGBT328をオンする一方で、他のU相、V相では、W相と異なる側、すなわち下アーム用のIGBT330をオンしている。すなわち、第1の期間では、U相、V相、W相のうちいずれか1相(モード6ではV相、モード5ではW相)を選択し、この選択した1相について、上アーム用のIGBT328または下アーム用のIGBT330をオンさせると共に、他の2相(モード6ではU相およびW相、モード5ではU相およびV相)について、選択した1相とは異なる側のアーム用のIGBT328,330をオンさせる。また、第1の期間ごとに選択する1相(V相、W相)を交替している。
 0≦θuvl≦π/3以外の期間でも上記と同様に、第1の期間としてのモード1~6のいずれかを、第2の期間としての3相短絡期間を間に挟んで交互に繰り返す。すなわち、π/3≦θuvl≦2π/3の期間ではモード1および6を、2π/3≦θuvl≦πの期間ではモード2および1を、π≦θuvl≦4π/3の期間ではモード3および2を、4π/3≦θuvl≦5πの期間ではモード4および3を、5π/3≦θuvl≦2πの期間ではモード5および4を、それぞれ交互に繰り返す。これにより、上記と同様に、第1の期間では、U相、V相、W相のうちいずれか1相を選択し、選択した1相について、上アーム用のIGBT328または下アーム用のIGBT330をオンさせると共に、他の2相について、選択した1相とは異なる側のアーム用のIGBT328,330をオンさせる。また、第1の期間ごとに選択する1相を交替する。
 ところで、上記の第1の期間すなわちモード1~6の期間を形成する電気角位置と、この期間の長さとは、モータジェネレータ192に対するトルクや回転速度などの要求指令に応じて変化させることができる。すなわち前述のように、モータの回転速度やトルクの変化に伴って削除する高調波の次数を変化させるために、第1の期間を形成する特定の電気角位置を変化させる。あるいは、モータの回転速度やトルクの変化に応じて、第1の期間の長さすなわちパルス幅を変化させ、変調度を変化させる。これにより、モータを流れる交流電流の波形、より具体的には交流電流の高調波成分を所望の値に変化させ、この変化により、バッテリ136からモータジェネレータ192に供給する電力を制御することができる。なお、特定の電気角位置と第1の期間の長さは、いずれか一方のみを変化させてもよいし、両方を同時に変化させてもよい。
 ここで、パルスの形状と電圧には以下の関係がある。図示したパルスの幅は電圧の実効値を変化させる効果があり、線間電圧のパルス幅が広いときには電圧の実効値は大きく、狭いときには電圧の実効値が小さい。また、削除する高調波の個数が少ない場合は、電圧の実効値が高いため、変調度の上限が矩形波に近づく。この効果は、回転電機(モータジェネレータ192)が高速回転しているときに有効であり、通常のPWMで制御した場合の出力の上限を上回って出力させることができる。すなわち、直流電源であるバッテリ136からモータジェネレータ192に電力を供給する第1の期間の長さと、この第1の期間を形成する特定の電気角位置とを変化させることで、モータジェネレータ192に印加する交流電圧の実効値を変化させ、モータジェネレータ192の回転状態に応じた出力を得ることができる。
 また、図18に示す駆動信号のパルス形状は、U相、V相およびW相の各相について、任意のθuvlすなわち電気角を中心に左右非対称となっている。さらに、パルスのオン期間またはオフ期間のうち少なくとも一方がθuvl(電気角)でπ/3以上にわたって連続する期間を含んでいる。たとえばU相では、θuvl=π/2付近を中心に前後それぞれπ/6以上のオン期間と、θuvl=3π/2付近を中心に前後それぞれπ/6以上のオフ期間とを有している。同様に、V相では、θuvl=π/6付近を中心に前後それぞれπ/6以上のオフ期間と、θuvl=7π/6付近を中心に前後それぞれπ/6以上のオン期間とを有しており、W相では、θuvl=5π/6付近を中心に前後それぞれπ/6以上のオフ期間と、θuvl=11π/6付近を中心に前後それぞれπ/6以上のオン期間とを有している。このようなパルス形状の特徴を有している。
 以上説明したように、本実施形態の電力変換装置によれば、HM制御モードが選択されているときに、直流電源からモータに電力を供給する第1の期間と、3相フルブリッジの全相上アームをオン或いは全相下アームをオンさせる第2の期間を、電気角に応じた特定のタイミングで交互に発生させる。これにより、PWM制御モードが選択されている場合に比べて、スイッチングの頻度が1/7から1/10以下で済む。したがって、スイッチング損失を低減することができる。さらに加えて、EMC(電磁ノイズ)を軽減することもできる。
 次に、図14で例示したように変調度を変化させたときの線間電圧パルス波形における高調波成分の削除の様子について説明する。図19は、変調度を変化させたときの線間電圧パルスにおける基本波と削除対象の高調波成分の振幅の大きさを示した図である。
 図19(a)では、3次および5次の高調波を削除対象とした線間電圧パルスにおける基本波と各高調波の振幅の例を示している。この図によると、変調度が1.2以上の範囲では5次高調波が削除しきれずに現れることが分かる。図19(b)では、3次、5次および7次の高調波を削除対象とした線間電圧パルスにおける基本波と各高調波の振幅の例を示している。この図によると、変調度が1.17以上の範囲では5次および7次の高調波が削除しきれずに現れることが分かる。
 なお、図19(a)に対応する線間電圧パルス波形と相電圧パルス波形の例を図20、21にそれぞれ示す。ここでは、要素数が2である行ベクトルを設定し、各要素(k1/3、k2/5)におけるk1、k2の値としてk1=1、k2=3をそれぞれ選択して、変調度を0から1.27まで変化させたときの線間電圧パルス波形と相電圧波形の例を示している。また、図19(b)は、図14、15にそれぞれ示した線間電圧パルス波形と相電圧パルス波形に対応している。
 上記の説明から、変調度がある一定の値を超えると、削除対象とした高調波が削除しきれずに現れ始めることが分かる。また、削除対象とする高調波の種類(数)が多いほど、低い変調度で高調波を削除しきれなくなることが分かる。
 次に、図6に示したPWM制御用のパルス変調器440におけるPWMパルス信号の生成方法について、図22を参照して説明する。図22(a)は、U相、V相、W相の各相における電圧指令信号と、PWMパルスの生成に用いる三角波キャリアとの波形を示している。各相の電圧指令信号は、位相を互いに2π/3ずつずらした正弦波の指令信号であり、変調度に応じて振幅が変化する。この電圧指令信号と三角波キャリア信号とをU、V、Wの各相についてそれぞれ比較し、両者の交点をパルスのオンオフのタイミングとすることで、図22(b)、(c)、(d)にそれぞれ示すようなU相、V相、W相の各相に対する電圧パルス波形が生成される。なお、これらのパルス波形におけるパルス数は、いずれも三角波キャリアにおける三角波パルス数に等しい。
 図22(e)は、UV線間電圧の波形を示している。このパルス数は、三角波キャリアにおける三角波パルス数の2倍、すなわち各相に対する上記の電圧パルス波形におけるパルス数の2倍に等しい。なお、他の線間電圧、すなわちVW線間電圧およびWU線間電圧についても同様である。
 図23は、PWMパルス信号によって形成される線間電圧の波形を変調度毎に描いた一例を示している。ここでは、変調度を0から1.27まで変化させたときの線間電圧パルス波形の例を示している。図23では、変調度が1.17以上になると、互いに隣接する2つのパルス間の隙間がなくなり、合わせて1つのパルスとなっている。こうしたパルス信号は過変調PWMパルスと呼ばれる。最終的には変調度1.27において、矩形波の線間電圧パルス波形となる。
 図23に示した線間電圧パルス波形を対応する相電圧パルス波形で表した例を図24に示す。図24でも図23と同様に、変調度が1.17以上になると隣接する2つのパルス間の隙間がなくなっていくことが分かる。なお、図24の相電圧パルス波形と図23の線間電圧パルス波形との間には、π/6の位相差がある。
 ここで、HMパルス信号による線間電圧パルス波形とPWMパルス信号による線間電圧パルス波形とを比較する。図25(a)は、HMパルス信号による線間電圧パルス波形の一例を示している。これは、図12において変調度0.4の線間電圧パルス波形に相当する。一方、図25(b)は、PWMパルス信号による線間電圧パルス波形の一例を示している。これは、図23において変調度0.4の線間電圧パルス波形に相当する。
 図25(a)と図25(b)とをパルス数について比較すると、図25(a)に示すHMパルス信号による線間電圧パルス波形の方が、図25(b)に示すPWMパルス信号による線間電圧パルス波形よりも大幅にパルス数が少ないことが分かる。したがって、HMパルス信号を用いると、生成される線間電圧パルス数が少ないために制御応答性はPWM信号の場合よりも低下するが、PWM信号を用いた場合よりもスイッチング回数を大幅に減らすことができる。その結果、スイッチング損失を大幅に低減することができる。
 図26は、切換器450の切替動作によってPWM制御モードとHM制御モードをモータ回転速度に応じて切り替えたときの様子を示している。ここでは、θuvl=πのときに切換器450の選択先をPWMパルス信号からHMパルス信号へと切り替えることにより、制御モードをPWM制御モードからHM制御モードへと切り替えたときの線間電圧パルス波形の例を示している。
 次に、PWM制御とHM制御とにおけるパルス形状の違いについて、図27を参照して説明する。図27(a)は、PWMパルス信号の生成に用いられる三角波キャリアと、このPWMパルス信号によって生成されるU相電圧、V相電圧およびUV線間電圧とを示している。図27(b)は、HMパルス信号によって生成されるU相電圧、V相電圧およびUV線間電圧を示している。これらの図を比較すると、PWMパルス信号を用いた場合はUV線間電圧の各パルスのパルス幅が一定ではないのに対して、HMパルス信号を用いた場合はUV線間電圧の各パルスのパルス幅が一定であることが分かる。なお、前述のようにパルス幅が一定とはならない場合もあるが、これは正の振幅をもつパルスと負の振幅をもつパルスとが重なることによるものであり、パルスの重なりを分解すれば全てのパルスで同じパルス幅となる。また、PWMパルス信号を用いた場合は三角波キャリアがモータ回転速度の変動に関わらず一定であるため、UV線間電圧の各パルスの間隔もモータ回転速度によらず一定であるのに対して、HMパルス信号を用いた場合はUV線間電圧の各パルスの間隔がモータ回転速度に応じて変化することが分かる。
 図28は、モータ回転速度とHMパルス信号による線間電圧パルス波形との関係を示している。図28(a)は、所定のモータ回転速度におけるHMパルス信号による線間電圧パルス波形の一例を示している。これは、図12において変調度0.4の線間電圧パルス波形に相当するものであり、電気角(UV線間電圧の基準位相θuvl)2π当たり16パルスを有する。
 図28(b)は、図28(a)のモータ回転速度を2倍としたときのHMパルス信号による線間電圧パルス波形の一例を示している。なお、図28(b)の横軸の長さは、時間軸に対して図28(a)と等価となるようにしている。図28(a)と図28(b)とを比較すると、電気角2π当たりのパルス数は16パルスで変わらないが、同一時間内のパルス数が図28(b)では2倍となっていることが分かる。
 図28(c)は、図28(a)のモータ回転速度を1/2倍としたときのHMパルス信号による線間電圧パルス波形の一例を示している。なお、図28(c)の横軸の長さも、図28(b)と同様に時間軸に対して図28(a)と等価となるようにしている。図28(a)と図28(c)とを比較すると、図28(c)では電気角π当たりのパルス数が8パルスであるため、電気角2π当たりのパルス数では16パルスで変わらないが、同一時間内のパルス数が図28(c)では1/2倍となっていることが分かる。
 以上説明したように、HMパルス信号を用いた場合は、モータ回転速度に比例して線間電圧パルスの単位時間当たりのパルス数が変化する。すなわち、電気角2π当たりのパルス数を考えると、これはモータ回転速度によらず一定である。一方、PWMパルス信号を用いた場合は、図27で説明したように、モータ回転速度によらず線間電圧パルスのパルス数は一定である。すなわち、電気角2π当たりのパルス数を考えると、これはモータ回転速度が上昇するほど低減する。
 図29は、HM制御とPWM制御においてそれぞれ生成される電気角2π当たり(すなわち線間電圧一周期当たり)の線間電圧パルス数と、モータ回転速度との関係を示している。なお図29では、8極モータ(極対数4)を用いて、HM制御において削除対象とする高調波成分を3,5,7次の3つとし、正弦波PWM制御で用いる三角波キャリアの周波数を10kHzとした場合の例を示している。このように電気角2π当たりの線間電圧パルス数は、PWM制御の場合はモータ回転速度が上昇するほど減少していくのに対して、HM制御の場合はモータ回転速度によらず一定であることが分かる。なお、PWM制御における線間電圧パルス数は、式(10)で求めることができる。
 (線間電圧パルス数)
 =(三角波キャリアの周波数)/{(極対数)×(モータ回転速度)/60}×2
 ・・・(10)
 なお、図29では、HM制御において削除対象とする高調波成分を3つとした場合の線間電圧一周期当たりの線間電圧パルス数が16であることを示したが、この値は削除対象とする高調波成分の数に応じて前述のように変化する。すなわち、削除対象の高調波成分が2つである場合は8、削除対象の高調波成分が4つである場合は32、削除対象の高調波成分が5つである場合は64のように、削除対象とする高調波成分の数が1つ増すにつれて、線間電圧一周期当たりのパルス数が2倍になる。
 以上説明した第1の実施の形態に係る制御回路172によって行われるモータ制御のフローチャートを図30に示す。ステップ901において、制御回路172はモータの回転速度情報を取得する。この回転速度情報は、回転磁極センサ193から出力される磁極位置信号θに基づいて求められる。
 ステップ902において、制御回路172は、ステップ901で取得した回転速度情報に基づいて、モータ回転速度が所定の切替回転速度以上であるか否かを判定する。モータ回転速度が切替回転速度以上であればステップ903へ進み、切替回転速度未満であればステップ906へ進む。
 ステップS903において、制御回路172は、ステップ901で取得した回転速度情報に基づいて、モータジェネレータ192が高速回転しているか否かを判定する。モータジェネレータ192が高速回転している場合、すなわちモータ回転速度が所定の回転速度以上である場合はステップ907へ進み、そうでなければステップ904へ進む。
 ステップ904において、制御回路172は、HM制御において削除対象とする高調波の次数を決定する。ここでは前述のように、3次、5次、7次などの高調波を削除対象として決定することができる。なお、モータ回転速度に応じて削除対象とする高調波の数を変化させてもよい。たとえば、モータ回転速度が比較的低い場合は3次、5次および7次の高調波を削除対象とし、モータ回転速度が比較的高い場合は3次および5次の高調波を削除対象とする。このように、モータ回転速度が高くなるほど削除対象とする高調波の数を少なくすることで、高調波によるトルク脈動の影響を受けにくい高速回転域ではHMパルス信号のパルス数を減らして、スイッチング損失をより一層効果的に減少させることができる。
 ステップ905において、制御回路172は、ステップ904で決定した次数の高調波を削除対象とするHM制御を行う。このとき、削除対象の高調波の次数に応じたHMパルス信号が前述のような生成方法に従ってパルス変調器430により生成されると共に、そのHMパルス信号が切換器450によって選択され、制御回路172からドライバ回路174へ出力される。ステップ905を実行したら、制御回路172はステップ901へ戻り、上記のような処理を繰り返す。
 ステップ906において、制御回路172はPWM制御を行う。このとき、所定の三角波キャリアと電圧指令信号との比較結果に基づいて、前述のような生成方法によりPWMパルス信号がパルス変調器440において生成されると共に、そのPWMパルス信号が切換器450によって選択され、制御回路172からドライバ回路174へ出力される。ステップ906を実行したら、制御回路172はステップ901へ戻り、上記のような処理を繰り返す。
 ステップ907において、制御回路172は矩形波制御を行う。矩形波制御は、前述のようにHM制御の一形態、すなわちHM制御において変調度を最大としたものと考えることができる。矩形波制御では高調波を削除することはできないが、スイッチング回数を最小とすることができる。なお、矩形波制御に用いられるパルス信号は、HM制御の場合と同様にパルス変調器430によって生成することができる。このパルス信号が切換器450によって選択され、制御回路172からドライバ回路174へ出力される。ステップ907を実行したら、制御回路172はステップ901へ戻り、上記のような処理を繰り返す。
 以上説明した第1の実施の形態によれば、上述した作用効果を奏し、さらにまた次に記載の作用効果を奏する。
(1)電力変換装置140は、上アーム用および下アーム用のIGBT328,330を備えた3相フルブリッジ型のパワースイッチング回路144と、各相のIGBT328,330に対して駆動信号を出力する制御部170とを具備しており、バッテリ136から供給される電圧を駆動信号に応じたIGBT328,330のスイッチング動作によって電気角で2π/3 rad毎にずらした出力電圧に変換し、モータジェネレータ192へ供給する。この電力変換装置140は、HM制御モードと正弦波PWM制御モードとを所定の条件に基づいて切り替える。HM制御モードでは、異なる相で上アーム用のIGBT328と下アーム用のIGBT330をそれぞれオンさせてバッテリ136からモータジェネレータ192に電流を供給する第1の期間と、全相で上アーム用のIGBT328または下アーム用のIGBT330のいずれか一方をオンさせてモータジェネレータ192に蓄積されたエネルギーでトルクを維持する第2の期間とを、電気角に応じて交互に形成する。正弦波PWM制御モードでは、正弦波指令信号と搬送波との比較結果に基づいて決定したパルス幅に応じてIGBT328,330をオンさせてバッテリ136からモータジェネレータ192に電流を供給する。このようにしたので、トルク脈動とスイッチング損失を低減しつつ、モータジェネレータ192の状態に応じた適切な制御を行うことができる。
(2)電力変換装置140は、HM制御モードと正弦波PWM制御モードとをモータジェネレータ192の回転速度に基づいて切り替えるようにした(図30ステップ902、905、906)。これにより、モータジェネレータ192の回転速度に応じて適切な制御モードに切り替えることができる。
(3)HM制御モードは、モータジェネレータ192の1回転ごとに各相のIGBT328,330をそれぞれ1回ずつオンおよびオフさせる矩形波制御モードをさらに含むようにした。これにより、モータジェネレータ192がトルク脈動の影響が小さい高回転状態であるときなどは、スイッチング損失を最小化することができる。矩形波制御モードは図3に示す如く回転速度の最も高い領域で使用される制御モードであるが、高い変調度を要求される高出力領域でも使用される、本実施の形態では、変調度を高くすることで、半周期当たりのスイッチング回数が徐々に減少し、スムーズに上記矩形波制御モードに移行することが可能である。
(4)HM制御モードでは、第1の期間を形成する電気角位置と、第1の期間の長さとの少なくとも一方を変化させて、モータジェネレータ192を流れる交流電流の高調波成分を所望の値に変化させる。この高調波成分の変化により、HM制御モードから矩形波制御モードへ移行する。より具体的には、第1の期間の長さを変調度に応じて変化させ、変調度が最大であるときに矩形波制御を行うようにした。これにより、HM制御モードから矩形波制御モードへの移行を容易に実現することができる。
-第2の実施の形態-
 本発明の第2の実施の形態に係る制御回路172によるモータ制御系を図31に示す。このモータ制御系は、図6に示した第1の実施の形態によるモータ制御系と比べて、過渡電流補償器460をさらに有している。
 過渡電流補償器460は、PWM制御からHM制御へ、またはHM制御からPWM制御へと制御モードを切り替える際に、モータジェネレータ192に流れる相電流において生じる過渡電流を補償するための補償電流を発生させる。この補償電流の発生は、制御モード切替時の相電圧を検出し、検出された相電圧を打ち消すような補償パルスを生成するためのパルス状の変調波を過渡電流補償器460からドライバ回路174へ出力することによって行われる。過渡電流補償器460から出力された変調波に基づく駆動信号がドライバ回路174からパワースイッチング回路144の各IGBT328,330へ出力されることにより、補償パルスが生成され、補償電流を発生させることができる。
 上記の過渡電流補償器460による補償電流の発生について、図32を参照して説明する。図32には、上から順に、PWMパルス信号による線間電圧波形および相電圧波形、制御モード切替時の相電流波形、補償パルス波形、制御モード切替後のHMパルス信号による線間電圧波形および相電圧波形の各例をそれぞれ示している。なお、図32では、PWMパルス信号による線間電圧波形および相電圧波形を除いて、PWM制御モードからHM制御モードへの切り替えが図中の電気角(基準位相)πにおいて行われたときの例を示している。
 制御モードの切り替えを行うときには、図中に示すように相電流が検出される。この相電流の検出結果に基づいて補償パルスのパルス幅が決定され、相電圧と反対の符号(ここでは負)を有する振幅Vdc/2の補償パルスが出力される。これにより図中に示すように、制御モードの切り替え直後に発生する過渡電流を打ち消すような補償電流が相電流において流れる。補償パルスの出力が終わった後、HMパルス信号が出力される。
 図33は、制御モードの切替時点を起点として、図32に示した相電流波形と補償パルス波形の一部をそれぞれ拡大したものを示している。図33に示すように、過渡電流の補償パルスVun_pが出力されている間、補償電流lupが負側に増大していく。時刻t0において過渡電流lutと補償電流lupの大きさが一致すると、このタイミングに合わせて補償パルスVun_pの出力が終了する。その後は過渡電流lutと補償電流lupが同様の傾斜でそれぞれ0に収束していく。これにより、過渡電流lutと補償電流lupとの合成である相電流luaを時刻t0以降において0に収束させることができる。
 上記のように、過渡電流lutと補償電流lupの大きさが一致するタイミング、すなわち過渡電流lutが補償電流lupによって完全に打ち消されるタイミングに合わせて補償パルスVun_pのパルス幅を決定することで、相電流luaを素早く0に収束させることができる。なお、こうしたパルス幅は、制御モード切替時の相電流luaの検出結果に基づいて、回路の時定数を考慮して決定することができる。
 なお、図32、33ではPWM制御モードからHM制御モードへの切替時について説明したが、反対にHM制御モードからPWM制御モードへ切り替える場合も、同様の方法により過渡電流補償器460から補償パルスを出力し、過渡電流を打ち消すような補償電流を相電流において発生させることができる。
 以上説明した第2の実施の形態に係る制御回路172によって行われるモータ制御のフローチャートを図34に示す。ステップ901~907において、制御回路172は、図30のフローチャートに示した第1の実施の形態による処理と同様の処理を行う。
 ステップ908において、制御回路172は、制御モードの切り替えがあったか否かを判定する。PWM制御からHM制御またはHM制御からPWM制御へ制御モードの切り替えが行われた場合、制御回路172はステップ909へ進む。一方、制御モードの切り替えが行われていない場合、制御回路172はステップ901へ戻って処理を繰り返す。なお、ステップ908の判定結果は、HM制御用のパルス変調器430またはPWM制御用のパルス変調器440から補償器割り込み信号を出力することにより、過渡電流補償器460へと伝えられる。
 ステップ909において、制御回路172は、前述のような方法により補償パルスを生成することで補償電流を発生させ、相電流に生じる過渡電流の補償を過渡電流補償器460において行う。ステップ909を実行したら、制御回路172はステップ901へ戻って処理を繰り返す。
 ここで、ステップ909における過渡電流補償について、図35のフローチャートを参照してさらに詳しく説明する。最初に過渡電流補償器460は、制御モードを切り替える直前のU相、V相、W相各相の過渡電流を検出する。この過渡電流の検出は、電流センサ180を用いて行われる。次に過渡電流補償器460は、予め定められた回路時定数τを用いて、検出した過渡電流を補償電流が打ち消す向きとなるように、相電圧印加時間t0を各相について計算する。
 相電圧印加時間t0の計算は、図36に示す回路モデルに基づいて行われる。すなわち、予め設定された回路インダクタンスLと回路抵抗rから回路時定数τ=L/rを算出し、この回路時定数τと所定の誘起電圧Euに基づいて、過渡電流として検出されたU相電圧luaを打ち消すように、U相電圧パルスVuのパルス幅としての相電圧印加時間t0を決定する。ここで、過渡電流を完全に打ち消したい場合は、補償電流が過渡電流と釣り合うまで相電圧印加時間t0を維持すればよい。なお、図36ではU相の回路モデルを例として示したが、V相、W相についても同様である。
 次に過渡電流補償器460は、計算した相電圧印加時間t0に従って、各相の相電圧の印加を開始する。ここでは、過渡電流を打ち消す方向に、振幅Vdc/2の相電圧を相電圧印加時間t0だけ印加する。相電圧の印加を開始してからの時間が目標印加時間(相電圧印加時間)t0に達したら、過渡電流補償器460は相電圧の印加を停止する。こうした過渡電流補償器460による相電圧の印加が終了した後は、過渡電流を補償電流が打ち消しながら時定数τに従って減衰する。以上説明したようにして、ステップ909における過渡電流補償が行われる。
 以上説明した第2の実施の形態によれば、HM制御モードとPWM制御モードとを切り替えるときに、過渡電流補償器460を用いて、モータジェネレータ192を流れる交流電流に生じる過渡電流を補償するための補償パルスを電力変換装置140から出力する。これにより、制御モードの切替時にモータジェネレータ192の回転を素早く安定させることができる。
 なお、上記のような制御モードの切替時以外にも補償パルスを出力して過渡電流を補償するようにしてもよい。たとえば、HM制御モードにおいて削除する高調波の次数を変更する場合や、変調度またはモータ回転速度が急激に変化した場合など、過渡電流が生じると思われるような状態遷移時においても、過渡電流補償器460を用いて補償パルスを出力し、過渡電流を補償することができる。あるいは、相電流の検出結果に基づいて過渡電流の有無を判断し、補償パルスを出力するか否かを決定してもよい。こうした補償パルスの出力は、制御モードの切替時に加えて行ってもよいし、制御モードの切替時に替えて行ってもよい。
-第3の実施の形態-
 本発明の第3の実施の形態に係る制御回路172によるモータ制御系を図37に示す。このモータ制御系は、図31に示した第2の実施の形態によるモータ制御系と比べて、電流制御器(ACR)422、チョッパー周期発生器470、1相チョッパー制御用のパルス変調器480をさらに有している。
 電流制御器(ACR)422は、電流制御器(ACR)420、421と同様に、トルク指令・電流指令変換器410から出力されたd軸電流指令信号Id*およびq軸電流指令信号Iq*と、電流センサ180により検出されたモータジェネレータ192の相電流検出信号lu、lv、lwとに基づいて、d軸電圧指令信号Vd*およびq軸電圧指令信号Vq*をそれぞれ演算する。電流制御器(ACR)422において求められたd軸電圧指令信号Vd*およびq軸電圧指令信号Vq*は、1相チョッパー制御用のパルス変調器480へ出力される。
 チョッパー周期発生器470は、所定の周期で繰り返されるチョッパー周期信号をパルス変調器480に対して出力する。チョッパー周期信号の周期は、モータジェネレータ192のインダクタンスを考慮して予め設定される。パルス変調器480は、チョッパー周期発生器470からのチョッパー周期信号に基づいて1相チョッパー制御用のパルス信号を生成し、切換器450へ出力する。すなわち、パルス変調器480が出力する1相チョッパー制御用のパルス信号の周期は、モータジェネレータ192のインダクタンスに応じて決定される。
 切換器450は、モータジェネレータ192が停止または極低速の回転状態にあると判断されるときに、パルス変調器480から出力された1相チョッパー制御用のパルス信号を選択し、ドライバ回路174(不図示)へ出力する。これにより、電力変換装置140において1相チョッパー制御が行われるようにする。
 パルス変調器480が出力する1相チョッパー制御用のパルス信号は、モータジェネレータ192が停止または極低速の回転状態であって適切なモータ制御が行えないような場合に、適切なモータ制御が可能となるまでモータジェネレータ192の回転速度を上昇させるための信号である。なお、モータジェネレータ192が停止または極低速の回転状態にあると、その回転状態を表す磁極位置信号θが回転磁極センサ193から正しく得られないために適切なモータ制御が行えなくなる。1相チョッパー制御用のパルス信号の周期は、チョッパー周期発生器470からのチョッパー周期信号に応じて決定される。
 上記のようにモータジェネレータ192が停止または極低速の回転状態であるときにHM制御を行うと、前述の第1の期間または第2の期間のいずれか一方が長時間維持されることとなる。なお、第1の期間は、各相で個別に上アーム用のIGBT328または下アーム用のIGBT330をオンさせてバッテリ136からモータジェネレータ192に電流を供給する通電期間であり、いずれか1相でオンするアームと他の2相でオンするアームとが異なる。また、第2の期間は、全相で共通に上アーム用のIGBT328または下アーム用のIGBT330をオンさせてモータジェネレータ192に蓄積されたエネルギーでトルクを維持する3相短絡期間である。
 第1の期間が長時間維持されると、その間にオンされているIGBT328または330にロック電流(直流電流)が流され続けることとなるため、異常発熱や破損を引き起こす原因となる。一方、第2の期間が長時間維持されると、モータジェネレータ192に電力が供給されないため、モータジェネレータ192を起動させることができなくなる。本実施形態では、こうした状況に陥るのを避けるため、モータジェネレータ192が停止または極低速の回転状態にありPWM制御を行わないと判断したときには、1相チョッパー制御モードを適用し、1相チョッパー制御用のパルス信号を制御回路172からドライバ回路174へ変調波として出力するようにする。この変調波に応じて、ドライバ回路174よりパワースイッチング回路144の各IGBT328,330へ駆動信号が出力される。
 パルス変調器480から出力されるパルス信号を用いた1相チョッパー制御の一例を図38に示す。図38では、U相、V相、W相の順に1相チョッパー制御を行う場合の各相電圧波形の例を示している。最初に、U相電圧をVdc/2と-Vdc/2の間でパルス状に変化させつつ、V相およびW相の電圧を-Vdc/2とする。このときのパルス幅は、チョッパー周期発生器470が出力するチョッパー周期信号に応じて決定される。このようにすると、U相電圧がVdc/2の期間では、U相の上アームがオンされると共に、V相およびW相の下アームがそれぞれオンされるため、U相に電流が流れるU相通電期間が形成される。また、U相電圧が-Vdc/2の期間では、U相、V相およびW相の下アームがそれぞれオンされるため、3相短絡期間が形成される。
 次に、同じようにU相電圧をVdc/2と-Vdc/2の間でパルス状に変化させつつ、V相およびW相の電圧をVdc/2とする。このとき、U相電圧が-Vdc/2の期間では、U相の下アームがオンされると共に、V相およびW相の上アームがそれぞれオンされるため、U相に電流が流れるU相通電期間が形成される。また、U相電圧がVdc/2の期間では、U相、V相およびW相の上アームがそれぞれオンされるため、3相短絡期間が形成される。
 以降、V相およびW相についても同様に、V相電圧をVdc/2と-Vdc/2の間でパルス状に変化させつつ、U相およびW相の電圧を最初に-Vdc/2とし、次にVdc/2とする。また、W相電圧をVdc/2と-Vdc/2の間でパルス状に変化させつつ、U相およびV相の電圧を最初に-Vdc/2とし、次にVdc/2とする。このような1相チョッパー制御を繰り返し行うことにより、U相、V相、W相の各相について、それぞれ通電期間と3相短絡期間を電気角に関わらず交互に形成することができる。これにより、モータジェネレータ192が停止または極低速の回転状態であっても、その状態からモータジェネレータ192の回転速度を上昇させることができる。
 なお、上記のようにして1相チョッパー制御を行うことにより、モータジェネレータ192の回転速度が上昇して停止または極低速の回転状態から脱した場合は、1相チョッパー制御から他の制御、すなわちPWM制御またはHM制御へと切り替える。その後は、前述の第2の実施の形態で説明したのと同様の方法によりモータ制御を行う。
 以上説明した第3の実施の形態に係る制御回路172によって行われるモータ制御のフローチャートを図39に示す。ステップ901~909において、制御回路172は、図34のフローチャートに示した第2の実施の形態による処理と同様の処理を行う。
 ステップ910において、制御回路172は、ステップ901で取得した回転速度情報に基づいて、モータジェネレータ192が停止または極低速の回転状態であるか否かを判定する。モータジェネレータ192が停止または極低速の回転状態にあると判断されるような所定の回転速度未満である場合、すなわち、回転磁極センサ193から磁極位置信号θが正しく得られず、モータジェネレータ192の回転状態を検出できないと判定される状況の場合は、ステップ911へ進む。そうでなければステップ906へ進み、前述したようなPWM制御を行う。
 ステップ911は図3における回転速度のもっとも低い領域の制御で、制御回路172は1相チョッパー制御を行う。ここでは、チョッパー周期発生器470からのチョッパー周期信号に基づいて、前述のような生成方法により1相チョッパー制御用のパルス信号がパルス変調器480において生成されると共に、そのパルス信号が切換器450によって選択され、制御回路172からドライバ回路174へ出力される。ステップ911を実行したら、制御回路172はステップ908へ進む。
 なお、以上説明した第3の実施の形態では、図31に示した第2の実施の形態によるモータ制御系を元に、電流制御器(ACR)422、チョッパー周期発生器470、および1相チョッパー制御用のパルス変調器480の各構成をさらに備えたモータ制御系を例として説明した。しかし、図6に示した第1の実施の形態によるモータ制御系を元に、これらの各構成をさらに備えたモータ制御系としてもよい。
 以上説明した第3の実施の形態によれば、モータジェネレータ192の回転状態を検出可能であるか否か且つPWM制御を行うか否かを判定し(図39ステップ910)、その判定結果に基づいて、各相において第1の期間と第2の期間とを電気角に関わらず交互に形成するための所定の1相チョッパー制御用パルス信号を、1相チョッパー制御用のパルス変調器480より出力する(ステップ911)。このようにしたので、モータジェネレータ192が停止または極低速の回転状態であって適切なモータ制御が行えないような場合に、適切なモータ制御が可能となるまでモータジェネレータ192の回転速度を上昇させることができる。
-変形例-
 以上説明した各実施の形態は、次のように変形することもできる。
(1)上記各実施の形態では、モータ回転速度が所定の切替回転速度以上であれば矩形波制御を含むHM制御を行い、切替回転速度未満であればPWM制御を行うことで、電力変換装置140において制御モードの切替を行うこととした。しかし、こうした制御モードの切替は各実施形態において説明した形態に限らず、任意のモータ回転速度で適用することができる。たとえば、モータ回転速度が0~10,000 r/minである場合に、0~1,500 r/minの範囲ではPWM制御、1,500~4,000 r/minの範囲ではHM制御、4,000~6,000 r/minの範囲ではPWM制御、6,000~10,000 r/minの範囲ではHM制御をそれぞれ行うことができる。このようにすれば、モータ回転速度に応じて最適な制御モードを用いて、より一層きめ細かいモータ制御を実現することができる。
(2)上記各実施の形態では、モータ回転速度が所定の切替回転速度未満のときにはPWM制御を行うこととした。しかし、本発明をハイブリッド自動車などに適用した場合に歩行者等に対して注意を促す目的で、モータ回転速度が低いときにPWM制御に替えてHM制御を行うようにしてもよい。モータ回転速度が低いときにHM制御を行うと、高調波成分を除去しきれないため電流歪が生じ、これがモータ動作音の原因となる。したがって、こうしたモータ動作音を意図的に発生させることで、車両周囲の歩行者等に対して注意を喚起することができる。なお、このようなHM制御を利用したモータ動作音の発生は、車両の運転者がスイッチ等を操作することで有効化あるいは無効化できるようにしてもよい。あるいは、車両が周囲の歩行者等を検出して自動的にHM制御を適用し、モータ動作音を発生させるようにしてもよい。この場合、歩行者の検出には、たとえば赤外線センサや画像判定など、周知の様々な方法を用いることができる。さらに、予め記憶された地図情報などに基づいて車両の現在地が市街地であるか否かを判定し、市街地であればHM制御を適用してモータ動作音を発生させることもできる。
 上述の図6に記載のHM制御用のパルス変調器430の動作原理を図4乃至図6を用いて説明すると共に、パルス変調器430をマイクロプロセッサを用いて実現する場合の図8を用いて説明した。既に図4から図8を用いて動作原理および実現方法を十分に説明したが、再度ここで説明する。
 再び上述するパルス変調器430の動作の基本原理を図40から図43を用いて説明する。上述の如く、直流電力から変換しようとする交流電力の単位位相当たりの、例えば1周期当たりのスイッチング回数が非常に少ない、極端な状態を想定すると、上述した矩形波制御の状態が考えられる。この矩形波制御の状態では、図40(a)に示すように半周期に一度スイッチングする、すなわち1周期に2度スイッチングするように、パワースイッチング回路144のスイッチング素子328と330が制御される。この制御では、PWM方式に比べスイッチング回数が格段に少ないため、スイッチングによる損失が大幅に低減する。しかし反面、高調波成分(5次、7次、11次、・・・)が多く含まれ、これらの高調波成分が歪を生じさせることになる。従って通常の制御において上記高調波による歪を少なくするためには、上記図40(a)に示した制御状態よりパワースイッチング回路144のスイッチング素子のスイッチング回数を増やし、上記高調波成分をできるだけ除去することが望ましい。除去すべき高調波成分は変換される交流電力の使用目的により異なるが、全ての高調波成分を除去する必要が無いので、PWM方式に比べるとスイッチング回数は減少する。例えば三相回転電機に供給する交流電力では、3の倍数となる高調波成分は互いに相殺されるので、除去しなくても大きな問題とはならない。
 次に上記高調波成分の除去について、高調波成分の内の5次高調波成分を除去する方法を例として、説明する。5次高調波成分とは図40(a)および(b)に示す如く、交流電力波形の半周期である電気角πの期間に5回のピーク値を有する振動波形のことである。図40(a)で、矩形波42は、正弦波の基本波の他にフーリエ展開で求められる多数の高調波成分を含んでおり、その高調波成分の1つが上述の5次高調波45である。この5次高調波45を単位位相毎に、例えば半周期毎に図40(b)に示す如く、重ね合わせると重ね合わせ波形55となる。当然ではあるが、重ね合わせ波形55をフーリエ展開すると上述の5次高調波となる。もともとの矩形波に含まれる5次高調波成分を消去する場合に、パワースイッチング素子のスイッチング回数をできるだけ低減する観点から、削除したい高調波をできるだけまとめて消去することが望ましい。そこで、図のように削除前の矩形波に含まれる5次高調波成分と同一面積の重ね合わせ波形55を、特定位置で削除する。この実施の形態では、半周期毎に1つにまとめた重ね合わせ波形55を削除するようにいている。このようにすることで上述のとおり、パワースイッチング回路144のスイッチング素子328と330のスイッチング回数を少なくできる。
 上記重ね合わせ波形55を図40(a)に記載の矩形波42から削除すると、削除された波形は5次高調波を含まない。図40(a)に示す矩形波42から、5次高調波の重ね合わせ波形55を削除した図40(c)の波形62は5次高調波を含まない。図40(c)に示す波形57は、重ね合わせ波形55を削除した面積を示しており、この波形57の面積は重ね合わせ波形55と同じ面積で逆波形を成している。すなわち符号が反転した同一形状の波形を示している。
 図41は、図40(c)に示す波形62を作るために、パワースイッチング回路144のスイッチング素子328と330をスイッチング制御する波形を示す。図41(a)は図40(c)に示す波形62と同じ波形であり、図41(a)に示す電流波形を流すことにより、5次高調波が削除された交流波形の電流が供給されることとなる。図41(a)に示す電流波形を流すための動作タイミングを示す波形が図41(b)の波形である。図41(b)に示す波形75によって上述の5次高調波を削除する波形65が作られる。
 同様の手法で他の高調波も削除することができる。 図42は、図40および図41で示した高調波の削除方法の考え方を、フーリエ級数展開に基づいて考えるときのフローで示したものである。ここでは線間電圧波形をf(ωt)とし、線間電圧波形のパルス成形フローを示している。パルス波形の対称性を考え、f(ωt)=-f(ωt+π)および、f(ωt)=f(π-ωt)の条件を加えてパルスパターンを求める方法を示している。パルスパターンは、f(ωt)をフーリエ級数展開し削除する高調波次数の成分をゼロとおいた方程式を解くことで求まる。
 図43は、一例として、3次、5次、7次高調波が削除されたU相とV相の線間電圧のパターンの生成過程ならびに特徴を示した図である。ただし線間電圧とは各相の端子の電位差であり、U相の相電圧をVu、V相の相電圧をVvとすると、線間電圧VuvはVuv=Vu-Vvで表わされる。V相とW相との線間電圧、W相とU相との線間電圧も同様なので、以下、U相とV相との線間電圧のパターンの生成を代表例として説明する。
 図43の横軸はU相とV相との間の線間電圧の基本波を基準として軸をとっており、以下略してUV線間電圧基準位相θuvlと名付ける。このUV線間電圧基準位相θuvlは、図40の横軸である電気角に対応している。なお、π ≦ θuvl ≦ 2πの区間は、図示した0 ≦ θuvl ≦ πの電圧パルス列の波形の符号を反転させた対称的形状なのでここでは省略する。 図43に示すように、電圧パルスの基本波はθuvlを基準とする正弦波電圧とする。生成するパルスはこの基本波のπ/2を中心に、図示する手順に従って、θuvlに対して図に例示したような位置にそれぞれ配置される。ここで、上記のようにθuvlは電気角に対応するものであるため、図43におけるパルスの配置位置を電気角により表すことができる。したがって、以下では、このパルスの配置位置を特定の電気角位置と定義する。これにより、S1~S4、S1’~ S2’のパルス列ができる。このパルス列は、 基本波に対する3次、5次、7次高調波を含まないスペクトル分布を有する。このパルス列は、言い換えれば、0 ≦ θuvl ≦ 2πを定義域とする矩形波から3次、5次、7次高調波を削除した波形である。なお、削除する高調波の次数は3次、5次、7次以外も可能である。削除する高調波は、基本波周波数が小なるときは高次まで消去し、基本波周波数が大なるときは低次のみでよい。たとえば、回転数が低いときは5次、7次、11次を削除し、回転数の上昇とともに5次、7次の削除に変更し、さらに回転数が上昇した場合は5次のみの削除、という具合に削除する次数を変化させる。これは、高回転域では、モータの巻線インピーダンスが大きくなり、電流脈動が小さくなるからである。
 同様にトルクの大小に応じて、削除する高調波の次数を変化させる場合もある。例えば、ある回転数を一定とした条件にてトルクを増大させたとき、トルクが小なる場合は5次、7次、11次を削除するパターンを選択し、トルクの増大とともに5次、7次の削除とし、さらにトルクが増大した場合は5次のみ削除という具合に削除する次数を変化させる。
 また、上記のように単にトルクや回転数の増大に伴って削除する次数を減少させるばかりではなく、逆に増加させたり、あるいはトルクや回転数の増減にかかわらず削除する次数を変化させない場合もありうる。これらは、モータのトルクリプル、騒音、EMCなどの指標の大小を勘案しながら決定するべきものであるため、回転数やトルクに対し単調に変化するとは限らないものである。
 上述のとおり、図40から図43に示す実施の形態では、制御対象への歪の影響を考慮して、削除したい次数の高調波を選択することができる。上述したように削除しようとする高調波の次数の種類が増えるほど、パワースイッチング回路144のスイッチング素子328と330のスイッチング回数が増大する。上記実施の形態では、制御対象への歪の影響を考慮して、削除したい次数の高調波を選択することができるので、必要以上に多種類の高調波を削除することを防止でき、制御対象への歪の影響を考慮して上記スイッチング素子328と330のスイッチング回数を適切に低減できる。
 上述の実施の形態で説明したように線間電圧の制御では、出力しようとする交流電力の半サイクルである位相0〔rad〕からπ〔rad〕のスイッチングタイミングと位相π〔rad〕から2π〔rad〕のスイッチングタイミングとを同じになるように制御しており、制御を単純化でき、制御性が向上する。さらに位相0〔rad〕からπ〔rad〕あるいは位相π〔rad〕から2π〔rad〕の期間においても、位相π/2あるいは3π/2を中心として同じスイッチングタイミングで制御しており、制御を単純化でき、制御性が向上する。
 さらに、図40(b)で説明したように削除したい次数の高調波を重ね合せ、図40(c)で説明したように、重ね合わせた状態で駆除するので、パワースイッチング回路144のスイッチング素子328と330のスイッチング回数を低減できる。
 以上の説明はあくまで一例であり、本発明は上記の各実施形態の構成に何ら限定されるものではない。
43  電力変換装置
110 電動車両
112 前輪
114 前輪車軸
116 前輪側ディファレンシャルギア(前輪側DEF)
118 変速機
120 エンジン
122 動力分割機構
136 バッテリ
136 バッテリ
138 直流コネクタ
200 電力変換装置
140 電力変換装置
142 電力変換装置
144 パワースイッチング回路
150 上下アームの直列回路
153 コレクタ電極
154 ゲート電極
155 エミッタ電極
156 ダイオード
157 正極端子(P端子)
158 負極端子(N端子)
159 交流端子
163 コレクタ電極
164 ゲート電極
165 エミッタ電極
166 ダイオ-ド
169 接続点
170 制御部
172 制御回路
174 ドライバ回路
186 交流電力線
180 電流センサ
188 交流コネクタ
192 モータジェネレータ
193 回転磁極センサ
194 モータジェネレータ
195 補機用のモータ
314 直流正極端子
316 直流負極端子
328 IGBT
330 IGBT
410 トルク指令・電流指令変換器
420 電流制御器(ACR)
421 電流制御器(ACR)
422 電流制御器(ACR)
430 HM制御用のパルス変調器
431 電圧位相差演算器
432 変調度演算器
434 パルス発生器
435 位相検索器
436 タイマカウンタ又は位相カウンタ比較器
440 PWM制御用のパルス変調器
450 切換器
460 過渡電流補償器
470 チョッパー周期発生器
480 1相チョッパー制御用のパルス変調器
500 コンデンサモジュール

Claims (12)

  1.  直流電力を受けるための直流端子と、上アームとして作用するスイッチング素子と下アームとして作用するスイッチング素子とを直列に接続した直列回路を複数個有し直流電力を受けて交流電力を出力するパワースイッチング回路と、交流電力を出力するための交流端子と、前記パワースイッチング回路が有するスイッチング素子のスイッチング動作を制御するためのドライバ回路と、前記ドライバ回路を制御するための制御回路と、を有し、
     前記パワースイッチング回路は、複数の前記直列回路をそれぞれ前記直流端子に対して並列接続の状態となり、前記上アームとして作用するスイッチング素子と前記下アームとして作用するスイッチング素子との接続部に発生する交流電圧が前記交流端子に加わるように、構成されており、
     前記制御回路は、出力しようとする交流電力の周波数が低い1の動作領域で、PWM方式で前記スイッチング素子のスイッチング動作を制御するため信号を発生して前記ドライバ回路に供給し、
     前記制御回路は、出力しようとする交流電力の周波数が前記1の動作領域より高い動作領域において、前記スイッチング素子のスイッチング動作を、前記出力しようとする交流電力の位相に基づいたタイミングで行うように制御するため信号を発生して前記ドライバ回路に供給し、
     前記ドライバ回路は、前記制御信号からの信号に基づいて、前記スイッチング素子のスイッチング動作を制御することを特徴とする電力変換装置。
  2.  請求項1に記載の電力変換装置における、前記出力しようとする交流電力の位相に基づいたタイミングで前記スイッチング素子のスイッチング動作を制御している状態において、
     前記パワースイッチング回路は、U相とV相とW相を有する三相交流電力を発生し、
     前記相間の交流電圧を発生するために、前記ドライバ回路から前記パワースイッチング回路に対して、前記交流電圧の位相角ゼロからπに基づいたスイッチングタイミングを表す信号を供給すると共に、前記位相角ゼロからπに基づいたスイッチングタイミングと同じスイッチングタイミングを表す信号を位相角πから2πの位相で前記パワースイッチング回路に供給することを特徴とする電力変換装置。
  3.  請求項1に記載の電力変換装置における、前記出力しようとする交流電力の位相に基づいたタイミングで前記スイッチング素子のスイッチング動作を制御している状態において、
     前記制御回路は、除去する高調波の種類が複数ある第1の高調波除去制御において、除去すべき前記高調波に基づいて定まる交流波形の半周期当たりのスイッチング動作を制御する第1の信号を発生して前記ドライバ回路に供給し、
     前記制御回路は、第1の高調波除去制御より除去する高調波の種類が多い第2の高調波除去制御において、除去すべき前記高調波に基づいて定まる交流波形の半周期当たりのスイッチング動作を制御する第2の信号を発生して前記ドライバ回路に供給し、
     前記ドライバ回路の制御により、前記パワースイッチング回路は、前記第1の高調波除去制御による半周期当たりのスイッチング回数より、前記第2の高調波除去制御の半周期当たりのスイッチング回数の方が多くスイッチング動作を行う、ことを特徴とする電力変換装置。
  4.  上アーム用および下アーム用のスイッチング素子を備えた3相フルブリッジ型の電力変換手段と、各相の前記スイッチング素子に対して駆動信号を出力するコントローラとを具備し、直流電源から供給される電圧を、前記駆動信号に応じた前記スイッチング素子のスイッチング動作によって電気角で2π/3 rad毎にずらした出力電圧に変換し、3相交流モータに供給する電力変換装置であって、 
     異なる相で前記上アーム用のスイッチング素子と前記下アーム用のスイッチング素子をそれぞれオンさせて前記直流電源から前記モータに電流を供給する第1の期間と、全相で前記上アーム用のスイッチング素子または前記下アーム用のスイッチング素子のいずれか一方をオンさせて前記モータに蓄積されたエネルギーでトルクを維持する第2の期間とを、電気角に応じて交互に形成するHM制御モードと、
     正弦波指令信号と搬送波との比較結果に基づいて決定したパルス幅に応じて前記スイッチング素子をオンさせて前記直流電源から前記モータに電流を供給する正弦波PWM制御モードと、
     を所定の条件に基づいて切り替えることを特徴とする電力変換装置。
  5.  請求項4に記載の電力変換装置において、
     前記HM制御モードと前記正弦波PWM制御モードとを、前記モータの回転速度に基づいて切り替えることを特徴とする電力変換装置。
  6.  請求項4または5に記載の電力変換装置において、
     前記HM制御モードは、前記モータの1回転ごとに各相の前記スイッチング素子をそれぞれ1回ずつオンおよびオフさせる矩形波制御モードをさらに含むことを特徴とする電力変換装置。
  7.  請求項6に記載の電力変換装置において、
     前記HM制御モードでは、前記第1の期間を形成する電気角位置と、前記第1の期間の長さとの少なくとも一方を変化させて、前記モータを流れる交流電流の高調波成分を所望の値に変化させ、
     前記高調波成分の変化により前記矩形波制御モードへ移行することを特徴とする電力変換装置。
  8.  請求項4~7のいずれか一項に記載の電力変換装置において、
     前記モータを流れる交流電流に生じる過渡電流を補償するための補償パルスを出力する過渡電流補償手段をさらに備え、
     前記過渡電流補償手段は、前記HM制御モードと前記正弦波PWM制御モードとを切り替えるときに前記補償パルスを出力することを特徴とする電力変換装置。
  9.  請求項8に記載の電力変換装置において、
     前記過渡電流補償手段は、前記HM制御モードと前記正弦波PWM制御モードとの切替時に替えて、またはこれに加えて、所定の条件を満たしたときに前記補償パルスを出力することを特徴とする電力変換装置。
  10.  請求項4~9のいずれか一項に記載の電力変換装置において、
     前記モータの回転状態を検出可能であるか否かを判定する判定手段と、
     前記判定手段による判定結果に基づいて、各相において前記第1の期間と前記第2の期間とを電気角に関わらず交互に形成するための所定の1相チョッパー制御用信号を出力するチョッパー制御手段とをさらに備えることを特徴とする電力変換装置。
  11.  請求項10に記載の電力変換装置において、
     前記1相チョッパー制御用信号の周期は、前記モータのインダクタンスに応じて決定されることを特徴とする電力変換装置。
  12.  上アーム用および下アーム用のスイッチング素子を備えた3相フルブリッジ型の電力変換手段と、各相の前記スイッチング素子に対して駆動信号を出力するコントローラとを具備し、直流電源から供給される電圧を、前記駆動信号に応じた前記スイッチング素子のスイッチング動作によって電気角で2π/3 rad毎にずらした出力電圧に変換し、3相交流モータに供給する電力変換装置であって、 
     異なる相で前記上アーム用のスイッチング素子と前記下アーム用のスイッチング素子をそれぞれオンさせて前記直流電源から前記モータに電流を供給する第1の期間と、全相で前記上アーム用のスイッチング素子または前記下アーム用のスイッチング素子のいずれか一方をオンさせて前記モータに蓄積されたエネルギーでトルクを維持する第2の期間とを、電気角に応じて交互に形成し、
     前記第1の期間の長さを変調度に応じて変化させることにより、前記モータを流れる交流電流の高調波成分を所望の値に変化させ、
     前記変調度が最大であるとき、前記モータの1回転ごとに各相の前記スイッチング素子をそれぞれ1回ずつオンおよびオフさせる矩形波制御を行うことを特徴とする電力変換装置。
PCT/JP2010/051963 2010-02-10 2010-02-10 電力変換装置 WO2011099122A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2010/051963 WO2011099122A1 (ja) 2010-02-10 2010-02-10 電力変換装置
US13/023,685 US20110193509A1 (en) 2010-02-10 2011-02-09 Power Conversion Device
CN201310492137.9A CN103560688A (zh) 2010-02-10 2011-02-10 电力变换装置
EP11153943A EP2355319A2 (en) 2010-02-10 2011-02-10 Power conversion device
CN2011100364112A CN102148582A (zh) 2010-02-10 2011-02-10 电力变换装置
US13/963,382 US20140049198A1 (en) 2010-02-10 2013-08-09 Power Conversion Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/051963 WO2011099122A1 (ja) 2010-02-10 2010-02-10 電力変換装置

Publications (1)

Publication Number Publication Date
WO2011099122A1 true WO2011099122A1 (ja) 2011-08-18

Family

ID=44123505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051963 WO2011099122A1 (ja) 2010-02-10 2010-02-10 電力変換装置

Country Status (4)

Country Link
US (2) US20110193509A1 (ja)
EP (1) EP2355319A2 (ja)
CN (2) CN102148582A (ja)
WO (1) WO2011099122A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011200103A (ja) * 2010-02-10 2011-10-06 Hitachi Ltd 電力変換装置
US9647575B2 (en) 2013-04-23 2017-05-09 Mitsubishi Electric Corporation Power converter
US10103675B2 (en) 2013-04-23 2018-10-16 Mitsubishi Electric Corporation Control device of alternating-current electric motor

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2353956B1 (en) * 2008-11-10 2018-05-09 Sumitomo Heavy Industries, LTD. Hybrid construction machine
US11901810B2 (en) 2011-05-08 2024-02-13 Koolbridge Solar, Inc. Adaptive electrical power distribution panel
US8937822B2 (en) 2011-05-08 2015-01-20 Paul Wilkinson Dent Solar energy conversion and utilization system
US11460488B2 (en) 2017-08-14 2022-10-04 Koolbridge Solar, Inc. AC electrical power measurements
US8773063B2 (en) 2011-10-17 2014-07-08 Panasonic Corporation Motor drive system and control method thereof
DE112011105769T5 (de) * 2011-10-26 2014-08-07 Toyota Jidosha Kabushiki Kaisha Motorsteuerung
DE102011085853A1 (de) * 2011-11-07 2013-05-08 Siemens Aktiengesellschaft Verfahren und Anordnung zum Betrieb von Synchronmotoren
CN103187907A (zh) * 2011-12-27 2013-07-03 北京中纺锐力机电有限公司 一种开关磁阻电机控制方式切换方法及装置
US8669728B2 (en) * 2012-01-17 2014-03-11 System General Corp. Angle detection apparatus and method for rotor of motor
JP5392361B2 (ja) * 2012-01-19 2014-01-22 トヨタ自動車株式会社 車両および車両の制御方法
US8583265B1 (en) * 2012-05-22 2013-11-12 GM Global Technology Operations LLC Methods, systems and apparatus for computing a voltage advance used in controlling operation of an electric machine
US8649887B2 (en) 2012-05-22 2014-02-11 GM Global Technology Operations LLC Methods, systems and apparatus for implementing dithering in motor drive system for controlling operation of an electric machine
JP5768770B2 (ja) * 2012-06-29 2015-08-26 株式会社デンソー 回転機の制御装置
US8866326B1 (en) * 2013-04-10 2014-10-21 Hamilton Sundstrand Corporation Interleaved motor controllers for an electric taxi system
JP6062327B2 (ja) * 2013-07-09 2017-01-18 日立オートモティブシステムズ株式会社 インバータ装置および電動車両
CN105493393B (zh) * 2013-08-21 2017-11-28 丰田自动车株式会社 电动机控制装置
CN103474962B (zh) * 2013-09-02 2016-01-20 南京航空航天大学 一种分步式双级矩阵变换器停机保护控制方法
CN103625299B (zh) * 2013-12-05 2016-05-18 中国重汽集团济南动力有限公司 一种双源无轨电车控制系统
CN103986377A (zh) * 2014-06-04 2014-08-13 国家电网公司 一种直流无刷电动机控制方法
CN105634250B (zh) * 2014-11-28 2018-06-22 力博特公司 一种整流器中晶闸管的驱动方法及装置
CN104377980B (zh) * 2014-12-01 2017-01-18 永济新时速电机电器有限责任公司 用于地铁辅助逆变器控制的脉冲生成方法
EP3249789B1 (en) * 2015-01-23 2020-07-01 Mitsubishi Electric Corporation Electric drive device
CN106033947B (zh) * 2015-03-10 2019-04-05 乐金电子研发中心(上海)有限公司 驱动三相交流电机的三相逆变电路及其矢量调制控制方法
JP6581373B2 (ja) * 2015-03-24 2019-09-25 株式会社日立産機システム モータ制御装置
JP6477397B2 (ja) * 2015-09-30 2019-03-06 日産自動車株式会社 電力制御方法、及び、電力制御装置
US10243476B2 (en) * 2015-12-24 2019-03-26 Kabushiki Kaisha Yaskawa Denki Power conversion device and power conversion method
WO2017145304A1 (ja) * 2016-02-24 2017-08-31 本田技研工業株式会社 電源装置、機器及び制御方法
JP6439745B2 (ja) * 2016-04-28 2018-12-19 トヨタ自動車株式会社 自動車
US10135368B2 (en) * 2016-10-01 2018-11-20 Steering Solutions Ip Holding Corporation Torque ripple cancellation algorithm involving supply voltage limit constraint
JP6500872B2 (ja) * 2016-10-19 2019-04-17 トヨタ自動車株式会社 駆動装置および自動車
JP2018074794A (ja) * 2016-10-31 2018-05-10 ファナック株式会社 共通の順変換器を有するモータ駆動装置
JP6838469B2 (ja) * 2017-04-10 2021-03-03 トヨタ自動車株式会社 駆動装置
KR102422140B1 (ko) * 2017-11-07 2022-07-18 현대자동차주식회사 하이브리드 자동차 및 그를 위한 주행 모드 제어 방법
WO2019155918A1 (ja) * 2018-02-06 2019-08-15 日本電産株式会社 電力変換装置、モータおよび電動パワーステアリング装置
JP6950560B2 (ja) * 2018-02-15 2021-10-13 株式会社デンソー 電動車両の制御装置
US11374505B2 (en) * 2018-08-30 2022-06-28 Hitachi Astemo, Ltd. Inverter device for performing a power conversion operation to convert DC power to AC power
JP7100562B2 (ja) * 2018-11-05 2022-07-13 株式会社Soken 駆動システム
CN111585495B (zh) * 2019-02-18 2023-09-08 本田技研工业株式会社 控制装置、车辆系统及控制方法
JP6994488B2 (ja) * 2019-09-25 2022-01-14 本田技研工業株式会社 制御装置、車両システム及び制御方法
JP7153168B2 (ja) * 2019-03-05 2022-10-14 株式会社デンソー 電動機の制御装置
JP7358059B2 (ja) * 2019-03-22 2023-10-10 ミネベアミツミ株式会社 モータ駆動制御装置
CN110797965B (zh) * 2019-10-11 2023-04-28 中国直升机设计研究所 一种转电结构及方法
JP6813074B1 (ja) * 2019-10-30 2021-01-13 株式会社明電舎 電力変換システム
US11456680B2 (en) * 2020-05-08 2022-09-27 Hamilton Sundstrand Corporation Over-modulation pulse width modulation with maximum output and minimum harmonics
CN117478021B (zh) * 2023-12-27 2024-04-09 深圳威洛博机器人有限公司 一种机器人传动时电机速度波动的调节控制系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081287A (ja) * 2004-09-09 2006-03-23 Aisin Aw Co Ltd 電動駆動制御装置、電動駆動制御方法及びそのプログラム
JP2009095144A (ja) * 2007-10-09 2009-04-30 Toyota Motor Corp 交流モータの制御装置および交流モータの制御方法
JP2009100548A (ja) * 2007-10-16 2009-05-07 Hitachi Ltd 電気車制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07108097B2 (ja) 1987-03-20 1995-11-15 株式会社日立製作所 パルス幅変調インバ−タの制御装置
US6014497A (en) * 1997-10-01 2000-01-11 Allen-Bradley Company, Llc Method and apparatus for determining a critical dwell time for use in motor controls
JP4511361B2 (ja) 2002-04-26 2010-07-28 ミズ株式会社 被検定水の溶存水素濃度の定量分析方法及び装置
JP4706324B2 (ja) * 2005-05-10 2011-06-22 トヨタ自動車株式会社 モータ駆動システムの制御装置
CN101667808B (zh) * 2006-04-20 2012-10-17 株式会社电装 多相旋转电机的控制系统
JP5172286B2 (ja) * 2007-11-16 2013-03-27 日立オートモティブシステムズ株式会社 モータ制御装置およびハイブリッド自動車用制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081287A (ja) * 2004-09-09 2006-03-23 Aisin Aw Co Ltd 電動駆動制御装置、電動駆動制御方法及びそのプログラム
JP2009095144A (ja) * 2007-10-09 2009-04-30 Toyota Motor Corp 交流モータの制御装置および交流モータの制御方法
JP2009100548A (ja) * 2007-10-16 2009-05-07 Hitachi Ltd 電気車制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011200103A (ja) * 2010-02-10 2011-10-06 Hitachi Ltd 電力変換装置
US9647575B2 (en) 2013-04-23 2017-05-09 Mitsubishi Electric Corporation Power converter
US10103675B2 (en) 2013-04-23 2018-10-16 Mitsubishi Electric Corporation Control device of alternating-current electric motor

Also Published As

Publication number Publication date
CN103560688A (zh) 2014-02-05
US20110193509A1 (en) 2011-08-11
US20140049198A1 (en) 2014-02-20
CN102148582A (zh) 2011-08-10
EP2355319A2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
WO2011099122A1 (ja) 電力変換装置
WO2011135696A1 (ja) 電力変換装置
WO2011135694A1 (ja) 電力変換装置
JP5558752B2 (ja) 電力変換装置
US6486632B2 (en) Control device for motor/generators
EP2343800B1 (en) Control device and control method for ac motor
JP5454685B2 (ja) モータ駆動装置およびそれを搭載する車両
US8278865B2 (en) Control device
WO2011135621A1 (ja) 車両
JP5633639B2 (ja) 電動機の制御装置およびそれを備える電動車両、ならびに電動機の制御方法
WO2011135695A1 (ja) 電力変換装置
US20090128069A1 (en) Motor Control Apparatus and Control Apparatus for hybrid Electric Vehicles
JP2011200103A (ja) 電力変換装置
JP5369630B2 (ja) 交流電動機の制御装置
US10723233B2 (en) Controller of electrically powered vehicle
JP5439352B2 (ja) 電力変換装置
JP5659945B2 (ja) 回転電機の制御装置
JP5470296B2 (ja) 電力変換装置
JP2011067010A (ja) 車両のモータ駆動装置
JP6838469B2 (ja) 駆動装置
JP5975797B2 (ja) 電力変換装置
JP2019162000A (ja) インバータ制御装置
JP2017118689A (ja) 交流電動機の制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845723

Country of ref document: EP

Kind code of ref document: A1