WO2011083896A1 - Method for the fabricating graphene nanosheets, and graphene nanosheets fabricated using the method - Google Patents

Method for the fabricating graphene nanosheets, and graphene nanosheets fabricated using the method Download PDF

Info

Publication number
WO2011083896A1
WO2011083896A1 PCT/KR2010/002552 KR2010002552W WO2011083896A1 WO 2011083896 A1 WO2011083896 A1 WO 2011083896A1 KR 2010002552 W KR2010002552 W KR 2010002552W WO 2011083896 A1 WO2011083896 A1 WO 2011083896A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
graphene sheet
sheet manufacturing
manufacturing
layer binder
Prior art date
Application number
PCT/KR2010/002552
Other languages
French (fr)
Korean (ko)
Inventor
오일권
스리다바다하남비
전진한
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Publication of WO2011083896A1 publication Critical patent/WO2011083896A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • C01B32/192Preparation by exfoliation starting from graphitic oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0879Solid

Definitions

  • the present invention relates to a graphene manufacturing method, and more particularly, to a graphene sheet manufacturing method suitable for large-scale synthesis and environmentally friendly, and a graphene sheet prepared by the above method.
  • Graphene is a monolayer in which carbon atoms are densely compacted in the benzene ring structure, making blocks of various structures such as carbon black, carbon fiber, nanoleuubles, and fullerenes.
  • Graphene is an interesting 2D flat material composed of single-layered carbon atoms.
  • the freely fixed individual graphene sheets have unique properties and are promising for the production of nanoscale engineering and nanoscale equipment.
  • graphene's unique properties make it a very promising application in field-effect transistors, lithium-ion batteries, hydrogen storage, molecular sensors, and actuators by strengthening layering agents in high-performance polymer nanocomposites.
  • graphene is characterized by progressive growth in size of precursor particles from atomic or molecular species, ie graphene on a substrate. It is synthesized by growing epitaxial growth of or graphene platelets by CVD.
  • the barb-up technique has the ability to control size, shape, size distribution, and agglomeration, but in practice this is very difficult to realize.
  • PAH polyaromatic hydrocarbon
  • EPA California Environmental Protection Agency Order
  • More common top-down techniques include stripping of individual graphene sheets from graphite structures such as expanded graphite and carbon nanotubes.
  • Many techniques including physical methods by hand stripping of individual graphene layers using Scotch tape, electrochemical methods using dissociative liquids as solvents, and thermal and chemical exfoliation of expanded graphite oxide, have been employed. Has been developed to obtain.
  • graphitic microstructures such as graphite, carbon fiber, and carbon nanotubes are the starting materials, and individual graphene layers are cut out by physical, electrochemical or chemical routes. Peeling off
  • Another object of the present invention is to minimize the problems associated with excessive oxidation to obtain a high quality graphene sheet as well as a graphene sheet manufacturing method having a higher yield and the graphene sheet prepared by the method To provide.
  • the present invention provides a graphene layer having a perfect lamination structure (9
  • a microwave irradiation step of performing microwave irradiation on the oxidized nibble structure It provides a graphene sheet manufacturing method comprising a; and an ultrasonic treatment step of sonicating the graphene layer conjugate consisting of several layers obtained after the irradiation step.
  • the oxidation step is sonicated by immersing the intumescent structure in hydrogen peroxide.
  • the oxidation step is sonicated for 2 to 6 minutes by further adding ammonium peroxy disulfate to the hydrogen peroxide and immersing the flammable structure.
  • ammonium peroxy disulfate is added at 0.05 to 2 weight 3 ⁇ 4 with respect to hydrogen peroxide.
  • the microwave irradiation step is performed at 150 to 550 W for 50 to 100 seconds after placing the oxidized structure in the microwave oven.
  • the sonication step is sonicated for 15 to 25 minutes by dispersing the graphene layer binder in an alcohol solvent.
  • the method further includes a removing step of removing residual oxide groups from the graphene sheet obtained after the sonication step.
  • the removing step is hydrazine of the graphene sheet It is carried out by dispersing in solution.
  • the flammable structure is a flaky or carbon nanotube.
  • the graphene layer binder is obtained by dry sonication after the irradiation step.
  • the graphene layer binder has a curved or curled structure.
  • the graphene layer binder has an oxygen content of 1.41%.
  • the present invention provides a graphene sheet, characterized in that produced by the graphene manufacturing method of any one of claims 1 to 12.
  • the graphene sheet has an undulation that increases the visible thickness.
  • the present invention has the following excellent effects.
  • the graphene sheet manufacturing method of the present invention and the graphene sheet produced by the method is suitable for the synthesis of large-scale graphene sheet through low cost and short manufacturing time. According to the graphene sheet manufacturing method of the present invention and the graphene sheet produced by the method can minimize the problems associated with excessive oxidation to obtain a high quality graphene sheet as well as have a higher yield.
  • FIG. 1 is a representative view showing a pure graphene manufacturing process proposed in an embodiment of the present invention
  • Figure 2 is a SEM observation of the graphene worms obtained by microwave irradiation in one embodiment of the present invention
  • Figures 3 and 4 are obtained by microwave irradiation in one embodiment of the present invention.
  • FIG. 7 illustrates a nanopropyllomitry image obtained by observing a graphene sheet obtained in one embodiment of the present invention with an atomic force microscope (AFM).
  • AFM atomic force microscope
  • FIG. 8 is a graphene sheet obtained in an embodiment of the present invention by analyzing the Raman spectrometer and the analyzed spectra graph.
  • the present invention provides an oxidation step of oxidizing a flaw structure having a graphene layer having a perfect stack structure stacking); A microwave irradiation step of obtaining a graphene layer binder composed of several layers by performing microwave irradiation on the oxidized graphite structure; And an ultrasonic wave treatment step of ultrasonically treating the graphene layer binder.
  • the graphene sheet manufacturing method includes a graphene layer binder having several layers, particularly through microwave irradiation. .
  • the microwave irradiation step is performed using 150 to 550W for 50 to 100 seconds using microwave oven, preferably 450 to 550W for 85 to 95 seconds.
  • This very simple and convenient microwave irradiation step eliminates the need for the use of strong oxidants such as sulfuric acid / potassium permanganate (KMn04) or carboxylic acids or formic acid in the oxidation step, and the environment for further exfoliation. Of harmful organic solvents Excessive use can be excluded.
  • strong oxidants such as sulfuric acid / potassium permanganate (KMn04) or carboxylic acids or formic acid
  • the inductible structure refers to all materials whose members are composed only of carbon, and include graphite (array), carbon black, carbon fiber, carbon nanotube, and the like.
  • the lamination structure of the graphene layer constituting the lamination structure can provide the optimum manufacturing conditions for producing the graphene sheet from an abrupt structure having a perfect array of stacking A ⁇ stack structure.
  • Graphene sheets were obtained from graphite in which graphene layers were arranged in perfect ⁇ laminate stacking).
  • Natural graphite (purity 993 ⁇ 4, average particle size 200ura), ammonium peroxy disulfate and hydrogen peroxide were prepared to prepare natural graphite, hydrogen peroxide (concentration 35%) and ammonium peroxy disulfate prepared in a glass tube.
  • the graphite was immersed in the solvent in a weight ratio of 1: 0.1.
  • the glass tube was sonicated for 3 minutes in an ultrasonic apparatus of known configuration.
  • Graphene worms were dry sonicated for 30, 60, and 60 minutes to obtain several layers of graphene layer binders from graphene worms formed by microwave irradiation. Best results obtained after 90 minutes of dry sonication All. In some cases, the graphene layer binder may be obtained only by microwave irradiation. Thereafter, the obtained graphene layer binder was dispersed in ethyl alcohol and sonicated for 20 minutes to obtain individually separated graphene sheets.
  • sonication time is preferably in the range of 15 to 25 minutes.
  • a step of removing the remaining oxide groups from the graphene sheet obtained after the sonication step may be further performed, for example, dispersing the obtained graphene sheet in a hydrazine solution.
  • the graphene worms obtained by the microwave irradiation in the embodiment was observed by SEM and the shape photographs are shown in FIG. 2, and the spectra result graphs analyzed through the XPS spectrometer and the Raman spectrometer were shown in FIGS. 3 and 4, respectively. Shown in
  • the principle of forming graphene worms which is a preliminary step for obtaining the graphene layer binder, shows that ammonium peroxydisulfate is decomposed into radical releasing radical radicals that cause the cutting of graphite sheets due to microwave irradiation.
  • the radicals attack the defects on the graphite surface, and then as reaction reactions, the radicals of the oxide are generated from the decomposition of hydrogen peroxide and are inserted between the interlayer graphite layers to cause rapid expansion, leading to graphene walls. It is formed.
  • FIG. 2 which shows SEM photographs of the graphene worms, shows a uniform distance between balloons of the graphene worms, suggesting that there was a uniform expansion along the c-axis of graphite.
  • the peeling rate (exfoliation coefficient: ratio of the volume V GIC of the graphite-inserted compound to the volume V EG of graphite) was found to be 150.
  • Characteristics of graphene worms such as pore structure, porosity, sphericity of pores, and fractal dimensions were analyzed by Image J, image analysis software.
  • Raman spectra in FIG. 4 is an intensity that indicates the well stacked characteristics of graphene nanosheets in the graphene worms and the protruding D and G bands of nearly equal full width half maximum (FWHM). Shows.
  • the graphene layered binder composed of few layers of fluffy graphene nanosheets obtained by dry sonication of the graphene worms in the Example was observed by SEM and TEM (FIG. 5 d). 5 is shown, in particular the SEM micrographs (a, b, c in FIG. 5) show the presence of curled up or onion-like structures. It is well known that sharp edges and facets are less stable than structures with smooth bends and curls or that the formation of a sphere is caused by the need to minimize surface area. Therefore, it can be seen that the bending of the graphene sheet under microwave irradiation is a surface stress-induced pressure phenomenon that leads to the formation of an ellipsoidal structure composed of weakly attached graphene sheets.
  • sonicating graphene worms and / or graphene layer composites causes acoustic cavitation near the surface, thereby tearing and shearing platelets. This creates a partial erosion that leads to.
  • Inertial cavitation also caused by the violent collapse of the bubble, causes the plates to tear away, and the released graphene nanosheets can further activate adjacent plates.
  • Micro streaming can also occur close to the surface of the bubbles that withstand stable cavitation and cause the adjacent plates to be shaved or torn apart.
  • the present invention is directed to all of the processes described above due to various parameters such as balloon size of the graphene worms, viscosity of the medium, particle size distribution, etc., which affect the degree of dissipation and formation of these acoustic cavities. Can happen simultaneously It is derived from the prediction of the possibility, and by realizing such a possibility, the mass production of graphene sheets is possible quickly and eco-friendly.
  • the SEM photograph (a) of FIG. 6 shows the scrolling of the sheets while the scrolling phenomenon is not observed in the TEM photograph (b).
  • the substrate in which the graphene sheets are gathered seems to affect the morphology.
  • the graphene sheet obtained in Example was subjected to an atomic force microscope:
  • Aminopropyl was shown in Figure 7 by observation with AFM).
  • AFM images such as those shown in FIG. 7 have traditionally been used to measure the dimensions of isolated sheets of flanks.
  • image distortion in atomic force microscopy (AFM) of thin films may be due to the limited size of the AFM tip.
  • the degree of distortion in the image depends on the relative sharpness of the tip and the surface properties.
  • graphene is flat, it is very wavy due to its thin size and is bistable by bringing distortion to the measured thickness. So a non-invasive technique using monochromatic optical light used to test the thickness of the graphene layers was used here.
  • the graphene sheet also has a lateral dimension of several micrometers and a thickness of 2 nm comparable to the thickness measured by AFM, and has the properties of a fully peeled graphene oxide sheet.
  • the undulation of the dried graphene surface on the substrate increases its visible thickness as measured by AFM. It was also found that the bends were not minimized, although perforated substrate M0 was used in the present invention.
  • the graphene sheet obtained in the Example was analyzed by Raman spectrometer and the analyzed spectra result graph is shown in FIG. 8.
  • Raman spectra are essential for characterizing carbon-containing materials. This is because its shape makes it possible to distinguish between monolayer and multilayer samples. In addition to the almost total absence of the D band (although nodules were observed in the D bend region) as shown in Fig. 8, the G bands appeared sharp, suggesting that four peaks suggesting that high purity graphene can be obtained (Fig. 8). A single G-peak was shown that could not be entangled.
  • the experimental examples show that a high-quality graphene (nano) sheet can be obtained through a manufacturing method such as the embodiment of the present invention, which can be quickly and environmentally friendly, simple, and mass production from graphite.

Abstract

The present invention relates to a method for the green synthesis of graphene from graphite or graphite oxide, and more particularly, to a method for the green synthesis of graphene nanoshheets, which is environmentally friendly and appropriate for large-scale synthesis, as well as to graphene nanosheets fabricated using the method.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
그라핀시트 제조방법 및 상기 방법으로 제조된 그라핀시트 【기술분야】  Graphene sheet manufacturing method and graphene sheet prepared by the above method
<1> 본 발명은 그라핀 제조방법에 관한 것으로, 보다 구체적으로는 친환경적이면 서도 대규모 합성에 적합한 그라핀시트 제조방법 및 상기 방법으로 제조된 그라핀 시트에 관한 것이다.  The present invention relates to a graphene manufacturing method, and more particularly, to a graphene sheet manufacturing method suitable for large-scale synthesis and environmentally friendly, and a graphene sheet prepared by the above method.
<2>  <2>
【배경기술】  Background Art
<3> 그라핀 (Graphene)은 탄소원자들이 벤젠 고리 구조에 조밀하게 압축된 단층이 고 카본 블랙, 카본 섬유, 나노류브 및 플러린 (fullerene)과 같은 다양한 구조들의 블록을 만들고 있다.  Graphene is a monolayer in which carbon atoms are densely compacted in the benzene ring structure, making blocks of various structures such as carbon black, carbon fiber, nanoleuubles, and fullerenes.
<4> 이와 같이 그라핀 (Graphene)은 단층 탄소 원자로 구성된 흥미로운 2D 플랫 물질로서, 유리되어 고정된 개별적인 그라핀 시트들은 독특한 특성들을 갖고 나노 스케일 엔지니어링 및 나노스케일 장비들의 제작에 유망한 물질이다.  Graphene is an interesting 2D flat material composed of single-layered carbon atoms. The freely fixed individual graphene sheets have unique properties and are promising for the production of nanoscale engineering and nanoscale equipment.
<5> 즉 그라핀의 독특한 특성들은 고 성능 고분자 나노복합재료 등에서 층전제를 강화함으로써 필드효과 트랜지스터, 리튬이온배터리, 수소 스토리지, 분자센서, 액 추에이터에서 매우 유망한 적용가능성을 갖고 있기 때문이다.  In other words, graphene's unique properties make it a very promising application in field-effect transistors, lithium-ion batteries, hydrogen storage, molecular sensors, and actuators by strengthening layering agents in high-performance polymer nanocomposites.
<6> 기계적인 박리 (필링방법)에 의해 그라핀을 생산한다는 첫 번째 보고 이래로 많은 기술들이 넓은 범위로 탑 다운공법 및 바텀업공법 하에서 분류되고 개발되어 왔다. Since the first report of producing graphene by mechanical peeling (pilling method), many techniques have been classified and developed under the top down method and the bottom up method.
<7> 열화학적 증기 증착법 (thermal chemical vapor deposition : CVD)과 같은 바 텁업공법에서, 그라핀은 원자 또는 분자 종들 (species)로부터 프리커서 입자들이 점진적으로 사이즈가 자라도톡 함으로써 즉, 기판상에서 그라핀의 에피성장 (epitaxial growth) 또는 CVD에 의한 그라핀 작은판들 (platelets)의 성장시킴으로 써 합성된다. 이론적으로 바텁업공법은 사이즈, 형상, 사이즈분포, 웅괴 (agglomeration) 둥을 제어할 수 있는 능력을 갖지만 실질적으로는 이것이 실현되 기는 매우 어렵다. 또한 CVD가 고품질 그라핀들을 생산할 수 있음에도 불구하고 PAH (폴리아로마틱 하이드로카본) (캘리포니아의 환경 보호 에이전시 (EPA) 명령 참 조)의 방출에 대한환경적인 염려가 있다. <8> 보다 보편적인 탑다운 공법은 팽창된 그라파이트 및 카본 나노튜브들과 같은 흑연성구조들로부터 개별적인 그라핀 시트들의 스트립핑 (stripping)을 포함한다. 스카치 테이프를 이용한 개별적인 그라핀층들의 손으로 하는 스트립핑에 의한 물리 적인 방법, 용제로서 이은성 액체를 이용하는 전기화학적 방법 및 팽창된 그라파이 트 산화물의 열적 및 화학적 박리를 포함하는 많은 테크닉들이 그라핀 단층을 얻기 위해 개발되어 왔다. In bar-up techniques such as thermal chemical vapor deposition (CVD), graphene is characterized by progressive growth in size of precursor particles from atomic or molecular species, ie graphene on a substrate. It is synthesized by growing epitaxial growth of or graphene platelets by CVD. In theory, the barb-up technique has the ability to control size, shape, size distribution, and agglomeration, but in practice this is very difficult to realize. There is also an environmental concern for the release of PAH (polyaromatic hydrocarbon) (see California Environmental Protection Agency (EPA) Order), although CVD can produce high quality graphenes. More common top-down techniques include stripping of individual graphene sheets from graphite structures such as expanded graphite and carbon nanotubes. Many techniques, including physical methods by hand stripping of individual graphene layers using Scotch tape, electrochemical methods using dissociative liquids as solvents, and thermal and chemical exfoliation of expanded graphite oxide, have been employed. Has been developed to obtain.
<9> 이와 같이 탑다운공법에서는 그라파이트, 카본 섬유, 카본 나노튜브 등과 같 은 혹연성 (graphitic) 미세구조들이 시작물질들이고, 개별적인 그라핀 층들이 물 리적, 전기화학적 또는화학적 루트들에 의해 잘라내지거나 벗겨진다.  In the top-down process, graphitic microstructures such as graphite, carbon fiber, and carbon nanotubes are the starting materials, and individual graphene layers are cut out by physical, electrochemical or chemical routes. Peeling off
<ιο> 특히 그라핀 산화물로부터 개별적인 그라핀 시트들을 박리하는 것은 가장 보 편적인 방법이며 단충 그라핀들올 성공적으로 얻을 수 있는 많은 테크닉들이 보고 되고 있으나, 그라파이트로부터 그라핀 작은판들을 제조하기 위한 이러한 방법은 황산 /과망간산칼륨 (KMn04)과 같은 산화제를 사용하여 수행되고 하이드라진 또는 알 칼리 중 어느 하나에 의한 환원 :또는 용제 에칭이 후속된다.  <ιο> In particular, peeling individual graphene sheets from graphene oxide is the most common method, and many techniques have been reported to obtain successfully graphene graphene, but this method for producing graphene plates from graphite has been reported. Is carried out using an oxidizing agent such as sulfuric acid / potassium permanganate (KMn04) followed by reduction with either hydrazine or alkali: or solvent etching.
<ιι> 그 결과 지금까지 알려진 대부분의 화학적 방법들은 황산 /과망간산칼륨  <ιι> As a result, most of the chemical methods known to date are sulfuric acid / potassium permanganate
(KMn04) 또는 카르복실산, 포름산과 같은 강산화제의 사용 및 추가적인 박리작용을 위한환경에 유해한 유기용매의 과다한사용에 심각하게 의존한다.  (KMn04) or the use of strong oxidizing agents such as carboxylic acids, formic acid, and excessive use of organic solvents harmful to the environment for further exfoliation.
<12> 또한, 화학적 또는 전기화학적 방법들 중 어느 하나에 의한 그라핀산화물의 환원에 대한 몇 몇 친환경적인 연구결과가 있음에도 불구하고, 현재까지 그라핀 합 성의 모든 공정에 대해 통합적으로 친환경적인 접근방법이 아직까지 개발되어 있지 않다.  In addition, although there have been some environmentally friendly studies on the reduction of graphene oxide by either chemical or electrochemical methods, an integrated environmentally friendly approach for all processes of graphene synthesis to date. This is not yet developed.
<13>  <13>
【발명의 상세한 설명】  [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
<14> 본 발명자들은 상기와 같은 문제를 해결하기 위해 연구 노력한 결과 대규모 합성에 적합하면서도 친환경적인 그라핀시트 제조방법을 개발하게 되어 본 발명을 완성하였다. ᅳ  As a result of research efforts to solve the above problems, the present inventors have developed an eco-friendly graphene sheet manufacturing method suitable for large-scale synthesis and completed the present invention. ᅳ
<15> 따라서, 본 발명의 목적은 황산 /과망간산칼륨 (KMn04) 또는 카르복실산, 포름 산과 같은 강산화제의 사용 및 추가적인 박리작용을 위한 환경에 유해한 유기용매 의 과다한 사용 없이 그라핀 합성의 모든 공정에 대해 통합적으로 친환경적인 그라 핀시트 제조방법 및 그 방법으로 제 S된 그라핀시트를 제공하는 것이다. <16> 본 발명의 다른 목적은 낮은 코스트 및 짧은 제조시간을 통해 대규모 합성에 적합한 그라핀시트 제조방법 및 그 방법으로 제조된 그라핀시트를 제공하는 것이 다. Therefore, it is an object of the present invention to provide all processes of graphene synthesis without the use of sulfuric acid / potassium permanganate (KMn04) or strong oxidizing agents such as carboxylic acid, formic acid and excessive use of environmentally harmful organic solvents for further exfoliation. It is to provide an integrated environmentally friendly graphene sheet manufacturing method and the graphene sheet made by the method. Another object of the present invention is to provide a graphene sheet manufacturing method suitable for large scale synthesis and a graphene sheet prepared by the method through low cost and short manufacturing time.
<17> 본 발명의 또 다른 목적은 과도한산화와 연관된 문제들을 최소화할 수 있어 고품질의 그라핀시트를 얻을 수 있을 뿐만 아니라 더 높은 수율을 갖는 그라핀시트 제조방법 및 그 방법으로 제조된 그라핀시트를 제공하는 것이다.  Another object of the present invention is to minimize the problems associated with excessive oxidation to obtain a high quality graphene sheet as well as a graphene sheet manufacturing method having a higher yield and the graphene sheet prepared by the method To provide.
<18> 본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것 이다 ·  The objects of the present invention are not limited to the above-mentioned objects, and other objects not mentioned will be clearly understood by those skilled in the art from the following description.
<19>  <19>
【기술적 해결방법】  Technical Solution
<20> 상기 목적을 달성하기 위하여 본 발명은 그라핀층이 완벽한 적층구조 ( 9  In order to achieve the above object, the present invention provides a graphene layer having a perfect lamination structure (9
stacking)의 배열을 갖는 흑연성구조체를 산화시키는 산화단계; 상기 산화된 혹연 성구조체에 대해 마이크로파 조사를 수행하는 마이크로파 조사단계; 및 상기 조사 단계 후에 얻어진 몇 개 층으로 된 그라핀층결합체를 초음파분해 처리하는 초음파 처리단계;를 포함하는그라핀시트 제조방법을 제공한다. ᅳ  oxidizing the graphite structure having an array of stackings; A microwave irradiation step of performing microwave irradiation on the oxidized nibble structure; It provides a graphene sheet manufacturing method comprising a; and an ultrasonic treatment step of sonicating the graphene layer conjugate consisting of several layers obtained after the irradiation step. ᅳ
<21> 바람직한 실시예에 있어서, 상기 산화단계는 상기 혹연성구조체를 과산화수 소에 침지시켜 초음파처리한다. In a preferred embodiment, the oxidation step is sonicated by immersing the intumescent structure in hydrogen peroxide.
<22> 바람직한 실시예에 있어서, 상기 산화단계는 상기 과산화수소에 암모늄 퍼옥 시 디설페이트를 더 첨가시키고 상기 혹연성구조체를 침지시켜 2 내지 6분 동안 초 음파처리된다.  In a preferred embodiment, the oxidation step is sonicated for 2 to 6 minutes by further adding ammonium peroxy disulfate to the hydrogen peroxide and immersing the flammable structure.
<23> 바람직한 실시예에 있어서, 상기 암모늄 퍼옥시 디설페이트는 과산화수소에 대해 0.05 내지 2 중량 ¾로 첨가된다.  In a preferred embodiment, the ammonium peroxy disulfate is added at 0.05 to 2 weight ¾ with respect to hydrogen peroxide.
<24> 바람직한 실시예에 있어서, 상기 마이크로파조사단계는 마이크로웨이브오븐 에 상기 산화된 혹연성구조체를 위치시킨 후 50 내지 100초 동안 150 내지 550W로 수행된다.  In a preferred embodiment, the microwave irradiation step is performed at 150 to 550 W for 50 to 100 seconds after placing the oxidized structure in the microwave oven.
<25> 바람직한 실시예에 있어서, 상기 초음파처리단계는 상기 그라핀층결합체를 알코을용매에 분산시켜 15 내지 25분 동안초음파처리된다.  In a preferred embodiment, the sonication step is sonicated for 15 to 25 minutes by dispersing the graphene layer binder in an alcohol solvent.
<26> 바람직한 실시예에 있어서, 상기 초음파처리단계 후에 얻어진 그라핀시트로 부터 잔여 산화물 그룹을 제거하는 제거단계를 더 포함한다.  In a preferred embodiment, the method further includes a removing step of removing residual oxide groups from the graphene sheet obtained after the sonication step.
<27> 바람직한 실시예에 있어서, 상기 제거단계는 상기 그라핀시트를 하이드라진 용액에 분산시켜 수행된다. In a preferred embodiment, the removing step is hydrazine of the graphene sheet It is carried out by dispersing in solution.
바람직한 실시예에 있어서, 상기 혹연성구조체는 혹연 또는 카본나노튜브이 다.  In a preferred embodiment, the flammable structure is a flaky or carbon nanotube.
바람직한 실시예에 있어서, 상기 그라핀층결합체는 상기 조사단계 후에 드라 이 초음파처리하여 얻어진다 .  In a preferred embodiment, the graphene layer binder is obtained by dry sonication after the irradiation step.
바람직한 실시예에 있어서, 상기 그라핀층결합체는 굴곡 또는 컬링된 구조를 갖는다.  In a preferred embodiment, the graphene layer binder has a curved or curled structure.
바람직한 실시예에 있어서, 상기 그라핀층결합체는 산소 함량이 1.41%이다. 또한, 본 발명은 제 1항 내지 제 12항 중 어느 한 항의 그라핀 제조방법에 의 해 제조된 것을 특징으로 하는 그라핀시트를 제공한다.  In a preferred embodiment, the graphene layer binder has an oxygen content of 1.41%. In addition, the present invention provides a graphene sheet, characterized in that produced by the graphene manufacturing method of any one of claims 1 to 12.
바람직한 실시예에 있어서, 상기 그라핀시트는 보이는 두께를 증가시키는 굽 이침 (undulation)을 갖는다.  In a preferred embodiment, the graphene sheet has an undulation that increases the visible thickness.
【유리한 효과】 Advantageous Effects
본 발명은 다음과 같은 우수한 효과를 가진다.  The present invention has the following excellent effects.
먼저, 본 발명의 그라핀시트 제조방법및 그 방법으로 제조된 그라핀시트에 의하면 황산 /과망간산칼륨 (KMn04) 또는 카르복실산, 포름산과 같은 강산화제의 사 용 및 추가적인 박리작용을 위한 환경에 유해한 유기용매의 과다한 사용이 필요 없 어 그라핀시트 합성의 모든 공정에 대해 통합적으로 친환경적이다.  First, according to the graphene sheet manufacturing method of the present invention and the graphene sheet prepared by the method, it is harmful to the environment for the use of sulfuric acid / potassium permanganate (KMn04) or strong oxidizing agents such as carboxylic acid and formic acid and for further exfoliation. There is no need for excessive use of organic solvents, which is integrated and environmentally friendly for all processes of graphene sheet synthesis.
본 발명의 그라핀시트 제조방법 및 그 방법으로 제조된 그라핀시트에 의하면 낮은 코스트 및 짧은 제조시간을 통해 대규모 그라핀시트의 합성에 적합하다. 본 발명의 그라핀시트 제조방법 및 그 방법으로 제조된 그라핀시트에 의하면 과도한 산화와 연관된 문제들을 최소화할 수 있어 고품질의 그라핀시트를 얻을 수 있을 뿐만 아니라 더 높은 수율을 갖는다.  According to the graphene sheet manufacturing method of the present invention and the graphene sheet produced by the method is suitable for the synthesis of large-scale graphene sheet through low cost and short manufacturing time. According to the graphene sheet manufacturing method of the present invention and the graphene sheet produced by the method can minimize the problems associated with excessive oxidation to obtain a high quality graphene sheet as well as have a higher yield.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1은 본 발명의 일 실시예에서 제안한 순수 그라핀 제조 과정을 보여주는 대표도,  1 is a representative view showing a pure graphene manufacturing process proposed in an embodiment of the present invention,
도 2은 본 발명의 일 실시예에서 마이크로파 조사로 인해 얻어진 그라핀웜들 을 SEM으로 관찰한사진들,  Figure 2 is a SEM observation of the graphene worms obtained by microwave irradiation in one embodiment of the present invention,
도 3 및 도 4은 본 발명의 일 실시예에서 마이크로파 조사로 인해 얻어진 그 라핀 웜들의 XPS 스펙트로미터 및 라만스펙트로미터를 통해 분석된 각각의 스펙트 라 결과그래프, Figures 3 and 4 are obtained by microwave irradiation in one embodiment of the present invention Each spectra results graph analyzed by XPS spectrometer and Raman spectrometer of laffin worms,
<43> 도 5는 본 발명의 일 실시 예에서 얻어진 그라핀층결합체를 SEM 및 TEM으로 관찰하여 얻어진 그 결과 사진들,  5 is a photograph of the results obtained by observing the graphene layer binder obtained in an embodiment of the present invention by SEM and TEM,
<44> 도 6는 본 발명의 일 실시 예에서 얻어진 그라핀시트를 SEM 및 TEM으로 관찰 하여 얻어진 결과 사진들, 6 is a photograph of the results obtained by observing the graphene sheet obtained in an embodiment of the present invention by SEM and TEM,
<45> 도 7는 본 발명의 일 실시 예에서 얻어진 그라핀시트를 원자력 현미경 (atomic force microscope : AFM)으로 관찰하여 얻어진 나노프로필로미트리 이미지 , FIG. 7 illustrates a nanopropyllomitry image obtained by observing a graphene sheet obtained in one embodiment of the present invention with an atomic force microscope (AFM).
<46> 도 8은 본 발명의 일 실시 예에서 얻어진 그라핀시트를 라만 스펙트로미터를 통해 분석하고 그 분석된 스펙트라 결과그래프 . 8 is a graphene sheet obtained in an embodiment of the present invention by analyzing the Raman spectrometer and the analyzed spectra graph.
【발명의 실시를 위한 최선의 형 태】  [Best Mode for Implementation of the Invention]
<47> 본 발명에서 사용되는 용어는 가능한 현재 널리 사용되는 일반적 인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정 한 용어도 있는데 이 경우에는 단순한 용어의 명 칭 이 아닌 발명의 상세한 설명 부분에 기 재되거나 사용된 의미를 고려하여 그 의미가 파악되어야 할 것이다 .  The terminology used in the present invention is a general term that has been widely used as far as possible, but in some cases, the term is arbitrarily selected by the applicant. In this case, the terminology used herein is not simply a name of the term. The meaning should be grasped in consideration of the meaning used or used.
<48> 이하, 첨부한 도면 및 바람직한 실시 예들을 참조하여 본 발명의 기술적 구성 을 상세하게 설명 한다 .  Hereinafter, with reference to the accompanying drawings and preferred embodiments will be described in detail the technical configuration of the present invention.
<49> 그러나 , 본 발명은 여기서 설명되는 실시 예에 한정되지 않고 다른 형 태로 구 체화 될 수도 있다 . 명세서 전체에 걸쳐 동일한 참조번호는 동일한 구성요소를 나 타낸다.  However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Like numbers refer to like elements throughout the specification.
<50> 먼저, 본 발명은 그라핀층이 완벽 한 적층구조 stacking)의 배열을 갖 는 혹연성구조체를 산화시 키는 산화단계 ; 상기 산화된 흑연성구조체에 대해 마이크 로파 조사를 수행하여 몇 개 층으로 된 그라핀층결합체를 얻는 마이크로파 조사단 계 ; 및 상기 그라핀층결합체를 초음파분해 처 리하는 초음파처 리단계 ;를 포함하는 그라핀시트 제조방법에 대한 것으로 , 그 기술적 특징은 특히 마이크로파 조사를 통 해 몇 개 층으로 된 그라핀층결합체를 손쉽게 얻는데 있다. 여기서 마이크로파조사 단계는 마이크로웨이브오본을 이용하여 50 내지 100초 동안 150 내지 550W로 수행 되는데, 85 내지 95초 동안 450 내지 550W로 수행되는 것이 바람직하다 .  First, the present invention provides an oxidation step of oxidizing a flaw structure having a graphene layer having a perfect stack structure stacking); A microwave irradiation step of obtaining a graphene layer binder composed of several layers by performing microwave irradiation on the oxidized graphite structure; And an ultrasonic wave treatment step of ultrasonically treating the graphene layer binder. The graphene sheet manufacturing method includes a graphene layer binder having several layers, particularly through microwave irradiation. . The microwave irradiation step is performed using 150 to 550W for 50 to 100 seconds using microwave oven, preferably 450 to 550W for 85 to 95 seconds.
<51> 이와 같이 매우 단순하면서도 간편한 마이크로파 조사단계를 도입함으로써 산화 단계에서 황산 /과망간산칼륨 (KMn04) 또는 카르복실산, 포름산과 같은 강산화 제를 사용할 필요가 없고, 추가적 인 박리작용을 위해 환경에 유해한 유기용매의 과 다한사용을 배제할 수 있다. This very simple and convenient microwave irradiation step eliminates the need for the use of strong oxidants such as sulfuric acid / potassium permanganate (KMn04) or carboxylic acids or formic acid in the oxidation step, and the environment for further exfoliation. Of harmful organic solvents Excessive use can be excluded.
<52> 또한, 낮은 코스트와 짧은 제조시간을 통해 대규모로 고품질 그라핀시트를 합성하는 것이 가능해진다. In addition, low cost and short manufacturing time make it possible to synthesize high quality graphene sheets on a large scale.
<53> 본 발명에서 혹연성구조체는 그 구성원소가 탄소로만으로 이루어진 모든 물 질을 의미하는데 그라파이트 (혹연), 카본블랙, 카본섬유, 카본나노튜브 등을 포함 하며, 본 발명은 특히 혹연성구조체를 구성하는 그라핀층의 적층구조가 완벽한 Αβ 적층구조 stacking)의 배열을 갖는 혹연성구조체로부터 그라핀시트를 제조하기 위한 최적의 제조조건올 제공할 수 있다. In the present invention, the inductible structure refers to all materials whose members are composed only of carbon, and include graphite (array), carbon black, carbon fiber, carbon nanotube, and the like. The lamination structure of the graphene layer constituting the lamination structure can provide the optimum manufacturing conditions for producing the graphene sheet from an abrupt structure having a perfect array of stacking Aβ stack structure.
<54>  <54>
<55> 실시예  <55> Example
<56> 그라파이트 (혹연)로부터의 그라핀시트 제조  <56> Graphene Sheet Preparation from Graphite
<57> 그라핀 층들이 완벽한 ^적층구조 stacking)로 배열된 그라파이트로부터 그라핀시트를 하기와 같은 방법으로 얻었다.  Graphene sheets were obtained from graphite in which graphene layers were arranged in perfect ^ laminate stacking).
<58>  <58>
<59> 1. 산화단계  1. Oxidation stage
<60> 천연 그라파이트 (graphite: 순도 99¾, 평균입도 200ura), 암모늄 퍼옥시 디설 페이트 및 과산화수소를 준비하여, 글래스 튜브에 준비된 천연 그라파이트, 과산화 수소 (농도 35%) 및 암모늄 퍼옥시 디설페이트를 2:1:0.1의 중량비로 넣어 그라파 이트를 상기 용제에 침지시켰다.  Natural graphite (purity 99¾, average particle size 200ura), ammonium peroxy disulfate and hydrogen peroxide were prepared to prepare natural graphite, hydrogen peroxide (concentration 35%) and ammonium peroxy disulfate prepared in a glass tube. The graphite was immersed in the solvent in a weight ratio of 1: 0.1.
<61> 상기 글래스 튜브는 공지된 구성의 초음파장치에서 3분 동안 초음파처리되었 다.  The glass tube was sonicated for 3 minutes in an ultrasonic apparatus of known configuration.
<62>  <62>
<63> 2. 마이크로파 조사단계  2. Microwave irradiation step
<64> 그 다음 상기 글래스 튜브를 마이크로웨이브 오본에 위치시킨 후 90초 동안  And then 90 seconds after placing the glass tube in a microwave oven.
500W로 조사하였다. 이 때 마이크로파 조사 하에서, 급속한 박리현상이 관찰되었으 며, 반짝임 (lightening)이 수반되었다.  Irradiated at 500W. At this time, rapid peeling was observed under microwave irradiation, accompanied by lightening.
<65> 、 <66> 3. 초음파 처리단계  <65>, <66> 3. Ultrasonic Treatment Step
<67> 상기 마이크로파 조사로 인해 형성된 그라핀웜들 (Graphene worms)으로부터 몇 개 층으로 된 그라핀층결합체를 얻기 위해 그라핀웜들을 30, 60, 60 분간 드라 이 초음파처리하였다. 90분간 드라이 초음파 처리한 경우 가장 우수한 결과를 얻었 다. 경우에 따라서는 마이크로파 조사만으로 그라핀층결합체가 얻어질 수도 있을 것이다. 그 후 얻어진 그라핀층결합체를 에틸알코올에 분산시켜 20분간 초음파 처 리하여 개별적으로 분리된 그라핀시트를 얻었다. Graphene worms were dry sonicated for 30, 60, and 60 minutes to obtain several layers of graphene layer binders from graphene worms formed by microwave irradiation. Best results obtained after 90 minutes of dry sonication All. In some cases, the graphene layer binder may be obtained only by microwave irradiation. Thereafter, the obtained graphene layer binder was dispersed in ethyl alcohol and sonicated for 20 minutes to obtain individually separated graphene sheets.
<68> 여기서, 에틸알코올 대신 다른 알코올용매가사용될 수 있으며, 초음파 처리 시간은 15 내지 25분 사이의 범위에 위치하는 것이 바람직하다.  Here, another alcohol solvent may be used instead of ethyl alcohol, and the sonication time is preferably in the range of 15 to 25 minutes.
<69> 이상의 전체적인 과정은 도 1과 같다.  The overall process is as shown in FIG.
<70> 한편 , 초음파처리단계 후에 얻어진 그라핀시트로부터 잔여 산화물 그룹을 제 거하는 제거하는 단계가 더 수행될 수 있는데, 예를 들어 얻어진 그라핀시트를 하 이드라진 용액에 분산시키는 것이다.  Meanwhile, a step of removing the remaining oxide groups from the graphene sheet obtained after the sonication step may be further performed, for example, dispersing the obtained graphene sheet in a hydrazine solution.
<71>  <71>
<72> 실험예 1  <72> Experimental Example 1
<73> 실시예에서 마이크로파 조사로 인해 얻어진 그라핀웜들을 SEM으로 관찰하여 그 형상사진들을 도 2에 나타내었고, XPS 스펙트로미터 및 라만스펙트로미터를 통 해 분석된 스펙트라 결과그래프를 각각 도 3 및 도 4에 나타내었다.  The graphene worms obtained by the microwave irradiation in the embodiment was observed by SEM and the shape photographs are shown in FIG. 2, and the spectra result graphs analyzed through the XPS spectrometer and the Raman spectrometer were shown in FIGS. 3 and 4, respectively. Shown in
<74> 여기서, 그라핀층결합체 얻기 위한 전단계인 그라핀웜들이 형성되는 원리를 살펴보면 마이크로파 조사로 인해 암모늄 퍼옥시디설페이트가 그라파이트 시트들의 커팅이 유발되는 래디칼올 발생시키는 방출 (releasing) 산화 래디칼들로 분해시키 는데, 상기 래디칼들은 상기 그라파이트 표면상의 홈 (defect)을 공격하게 되고, 그 후 반웅 절차들로서, 상기 산화 래디칼들이 과산화수소의 분해로부터 생성되며 상 기 충간 그라파이트 층들사이로 삽입되어 급속한 팽창을 유발하여 그라핀월들이 형 성된다.  Herein, the principle of forming graphene worms, which is a preliminary step for obtaining the graphene layer binder, shows that ammonium peroxydisulfate is decomposed into radical releasing radical radicals that cause the cutting of graphite sheets due to microwave irradiation. The radicals attack the defects on the graphite surface, and then as reaction reactions, the radicals of the oxide are generated from the decomposition of hydrogen peroxide and are inserted between the interlayer graphite layers to cause rapid expansion, leading to graphene walls. It is formed.
<75> 상기 그라핀웜들의 SEM사진들이 도시된 도 2는 그라핀웜들의 벌룬 (balloon) 들 사이에 균일한 거리를 보여주는데, 그라파이트의 c-축을 따라 균일한 팽창이 있 었음을 암시한다. 이 때 박리율 (exfoliation coefficient : 그라파이트의 부피 VEG 에 대해 그라파이트 삽입된 화합물의 부피 VGIC 의 비)은 150인 것으로 나타난다. 포어 구조, 다공성, 포어들의 구형도 (sphericity), 프랙탈 차원들 (fractal dimensions) 등과 같은 그라핀 웜들의 특성들이 이미지 J, 이미지 분석 소프트웨어 에 의해 분석되었다. FIG. 2, which shows SEM photographs of the graphene worms, shows a uniform distance between balloons of the graphene worms, suggesting that there was a uniform expansion along the c-axis of graphite. At this time, the peeling rate (exfoliation coefficient: ratio of the volume V GIC of the graphite-inserted compound to the volume V EG of graphite) was found to be 150. Characteristics of graphene worms such as pore structure, porosity, sphericity of pores, and fractal dimensions were analyzed by Image J, image analysis software.
<76> 도 3가 XPS 스펙트라는 대부분의 산소분 (oxygen moieties)이 마이크로파 처 리동안 없어져서 상기 웜들에서 산소함량이 1.41%정도로 낮음을 보여주는 것을 알 수 있다. 3 shows that most of the oxygen moieties of the XPS spectra are lost during microwave treatment, indicating that the oxygen content in the worms is as low as 1.41%. Can be.
<77> 도 4에서 라만 스펙트라는 거의 균등한 FWHM(Full width half maximum)의 돌 출된 D 및 G의 밴드들 및 상기 그라핀 웜들에서 그라핀 나노시트의 잘 적층된 특징 을 지시하는 명암도 (intensity)를 보여준다.  Raman spectra in FIG. 4 is an intensity that indicates the well stacked characteristics of graphene nanosheets in the graphene worms and the protruding D and G bands of nearly equal full width half maximum (FWHM). Shows.
<78>  <78>
<79> 실험예 2  <79> Experimental Example 2
<80> 실시예에서 그라핀 웜들을 드라이 초음파처리하여 얻어진 솜털같은 (fluffy) 그라핀 나노 시트들의 몇 안 되는 층들로 구성된 그라핀층결합체를 SEM 및 TEM (도 5의 d)으로 관찰하여 그 결과 사진들올 도 5에 나타내었는데, 특히 SEM 마이크로그 래프들 (도 5의 a,b,c)은 말아 올려진 (curled up) 또는 양파 같은 구조들의 존재를 보여준다. 날카로운 모서리들과 각면들 (facets)이 부드러운 굴곡 및 컬링을 가진 구조들보다 덜 안정하거나 구의 형성이 표면적을 최소화하기 위한 필요성에 의해 유발되는 것이 잘 알려져 있다. 그러므로 마이크로웨이브 조사하에 그라핀 시트의 굴곡은 약하게 부착된 그라핀 시트들로 구성된 타원체모양 구조의 형성올 유도하는 표면 스트레스 유발 압력 현상임을 알수 있다.  The graphene layered binder composed of few layers of fluffy graphene nanosheets obtained by dry sonication of the graphene worms in the Example was observed by SEM and TEM (FIG. 5 d). 5 is shown, in particular the SEM micrographs (a, b, c in FIG. 5) show the presence of curled up or onion-like structures. It is well known that sharp edges and facets are less stable than structures with smooth bends and curls or that the formation of a sphere is caused by the need to minimize surface area. Therefore, it can be seen that the bending of the graphene sheet under microwave irradiation is a surface stress-induced pressure phenomenon that leads to the formation of an ellipsoidal structure composed of weakly attached graphene sheets.
<81> 한편, 그라핀웜들 및 /또는 그라핀층복합체를 초음파처리하는 것은 표면 근처 에서 음파공동화 (acoustic cavitation)를 유발하고, 그에 의해 작은판들 (platelets)의 찢김 (ripping) 및 전단 (shearing)을 이끄는 부분적인 침식 (erosion) 을 생성하기 때문이다. 또한 버블의 격렬한 붕괴 때문에 일어난 관성적인 공동화 (inertial cavitation)는 작은판들을 멀리 찢어지게 하고 그 결과 해방된 그라핀 나노시트들은 인접하는 작은판들을 더 활성화시킬 수 있다. 또한 미세흐름 (micro streaming)이 안정된 공동화를 견딘 버블들의 표면에 인접하여 일어날 수 있고 부 근에 있는 작은판들이 깎아지거나 멀리 찢어지게 할 수 있다. 박리된 그라파이트 입자들의 연약한 본성 때문에 초음파 조사를 제안했던 첸 등에 의한 다른 설명은 대부분의 입자들이 짧아진 아코디언 같은 입자들을 유발한다고 하는데, 상기 짧아 진 입자들은 층분히 작고, 하위 입자들 (sub-particles)로부터 상기 성분을 이루는 그라파이트 플레이트들의 분리가 지배적이고 또한, 조사시간의 증가는 상기 엽상의 그라파이트 나노시트들의 깨뜨림을 가져을 것이기 때문이다.  On the other hand, sonicating graphene worms and / or graphene layer composites causes acoustic cavitation near the surface, thereby tearing and shearing platelets. This creates a partial erosion that leads to. Inertial cavitation, also caused by the violent collapse of the bubble, causes the plates to tear away, and the released graphene nanosheets can further activate adjacent plates. Micro streaming can also occur close to the surface of the bubbles that withstand stable cavitation and cause the adjacent plates to be shaved or torn apart. Another explanation by Chen et al., Who proposed ultrasonic irradiation due to the fragile nature of exfoliated graphite particles, suggests that most of the particles cause shortened accordion-like particles, the shorter particles being much smaller and sub-particles. This is because the separation of the graphite plates constituting the above components is dominant and also the increase in irradiation time will result in the breaking of the graphite nanosheets on the leaf.
<82> 그러나, 본 발명은 이러한 음파 공동들의 소실 (dissipation) 및 형성의 정도 에 영향을 주는 상기 그라핀 웜들의 벌룬크기, 상기 매체의 점도, 입자 크기 분포 등과 같은 다양한 파라미터들 때문에 상술된 모든 공정들이 동시에 일어날 수 있는 가능성을 예측한데서 비롯된 것이고, 그러한 가능성을 실현시켜 신속하고 친환경적 으로 그라핀시트의 대량생산을 가능하게 하였다. However, the present invention is directed to all of the processes described above due to various parameters such as balloon size of the graphene worms, viscosity of the medium, particle size distribution, etc., which affect the degree of dissipation and formation of these acoustic cavities. Can happen simultaneously It is derived from the prediction of the possibility, and by realizing such a possibility, the mass production of graphene sheets is possible quickly and eco-friendly.
<83>  <83>
<84> 실험예 3  <84> Experimental Example 3
<85> 실시예에서 얻어진 그라핀시트를 SEM 및 TEM으로 관찰하여 그 결과사진들을 도 6에 나타내었다.  The graphene sheets obtained in the examples were observed by SEM and TEM, and the photographs are shown in FIG. 6.
<86> 상기 도 6의 SEM 사진 (a)은 상기 시트들의 스크를링을 보여주는 반면 이 스 크롤링 현상은 TEM 사진 (b)에서는 관찰되지 않는다. 그라핀 시트들이 모여진 기판 (substrate)이 상기 형태에 영향을 미치는 것처럼 보인다.  The SEM photograph (a) of FIG. 6 shows the scrolling of the sheets while the scrolling phenomenon is not observed in the TEM photograph (b). The substrate in which the graphene sheets are gathered seems to affect the morphology.
<87>  <87>
<88> 실험예 4  <88> Experimental Example 4
<89> 실시예에서 얻어진 그라핀시트를 원자력 현미경 (atomic force microscope :  The graphene sheet obtained in Example was subjected to an atomic force microscope:
AFM)으로 관찰하여 나노프로필로미트리 이미지를 도 7에 나타내었다.  Aminopropyl) was shown in Figure 7 by observation with AFM).
<90> 도 7에 도시된 것과 같은 AFM이미지들은 전통적으로 분리된 혹연성 시트의 디멘전들을 측정하기 위해 사용되어 왔다. 그러나 얇은 필름들의 원자력 현미경 (AFM)에서의 이미지 왜곡은 상기 AFM팁의 한정된 크기에 의한 것일 수 있다. 이미 지에서 왜곡 정도는 상기 팁의 상대적인 예리함 ( sharpness ) 및 상기 표면 특성에 좌우된다. 그라핀은 평평함에도 불구하고 그것의 얇은 크기 때문에 매우 물결모양 이고, 측정된 두께로 왜곡을 가져음으로써 쌍안정 (bistability)을 이룬다. 그래서 상기 그라핀 층들의 두께를 테스트하기 위해 사용되는 단색성 광 (monochromatic optical light)을사용하는 비침입 테크닉이 여기서 사용되었다.  AFM images such as those shown in FIG. 7 have traditionally been used to measure the dimensions of isolated sheets of flanks. However, image distortion in atomic force microscopy (AFM) of thin films may be due to the limited size of the AFM tip. The degree of distortion in the image depends on the relative sharpness of the tip and the surface properties. Although graphene is flat, it is very wavy due to its thin size and is bistable by bringing distortion to the measured thickness. So a non-invasive technique using monochromatic optical light used to test the thickness of the graphene layers was used here.
<9i> 또한 상기 그라핀시트는 몇 마이크로미터의 측면 차원과 AFM에 의해 측정된 두께에 필적하는 2nm의 두께를 갖고, 완전히 박리된 그라핀 산화물 시트의 특성을 갖는다. 기판 상에서 건조된 그라핀 표면의 굽이침 (undulation)은 AFM에 의해 측정 된 것처럼 그것의 보이는 두께를 증가시킨다. 또한 구멍 난 기판 (M0)이 본 발명에 서 사용되었음에도 불구하고, 상기 굽이침들은 최소화되지 않았음을 알 수 있었다. The graphene sheet also has a lateral dimension of several micrometers and a thickness of 2 nm comparable to the thickness measured by AFM, and has the properties of a fully peeled graphene oxide sheet. The undulation of the dried graphene surface on the substrate increases its visible thickness as measured by AFM. It was also found that the bends were not minimized, although perforated substrate M0 was used in the present invention.
<92> <92>
<93> 실험예 5  <93> Experimental Example 5
<94> 실시예에서 얻어진 그라핀시트를 라만 스펙트로미터를 통해 분석하고 그 분 석된 스펙트라 결과그래프를 도 8에 나타내었다.  The graphene sheet obtained in the Example was analyzed by Raman spectrometer and the analyzed spectra result graph is shown in FIG. 8.
<95> 라만 스펙트라는 탄소를 함유하는 물질들의 특성을 파악하기 위한 필수적인 를로써, 그것의 형태는 단일층 및 다층 샘플들을 구분하게 하기 때문이다. 도 8에 도시된 바와 같이 D밴드의 거의 전체적인 부재 (D벤드지역에서 작은 혹이 관찰됨에 도 불구하고)외에도 G밴드가 날카롭게 보였고, 고순도 그라핀이 얻어질 수 있다고 제안하는 4개의 피크 (도 8에 삽입)에 뒤얽히지 않을 수 있는 단일의 G피크가 보였 다. Raman spectra are essential for characterizing carbon-containing materials. This is because its shape makes it possible to distinguish between monolayer and multilayer samples. In addition to the almost total absence of the D band (although nodules were observed in the D bend region) as shown in Fig. 8, the G bands appeared sharp, suggesting that four peaks suggesting that high purity graphene can be obtained (Fig. 8). A single G-peak was shown that could not be entangled.
<96>  <96>
<97> 상기 실험예들은 그라파이트로부터 신속하고 친환경적이며, 단순하고 대량생 산이 가능할 수 있는 본 발명의 실시예와 같은 제조방법을 통해 고품질의 그라핀 ( 나노)시트를 얻을 수 있음을 보여준다.  The experimental examples show that a high-quality graphene (nano) sheet can be obtained through a manufacturing method such as the embodiment of the present invention, which can be quickly and environmentally friendly, simple, and mass production from graphite.
<98>  <98>
<99> 또한, 상술된 실험예에서 라만 스펙트라는 O.lmW에서 작동되어 514.5nm의 크 리스탈 레이저 여기를 가진 인비아 리플렉스 마이크로 라만 스펙트로미터 (레니소우 사)를 사용하여 얻어졌다. SEM 결과사진들은 넁 필드 방출 스캐닝 일렉트론 현미경 (S-4700, 히타치, 일본)을 사용하여 기록되었다. TEM은 구멍이 있는 탄소 코팅된 구리 그리드를 사용하여 200kV에서 동작되는 JEOL JEM 2010 현미경에서 수행되었 다. TEM 및 SEM 실험들은 모두 침전 후에 매우 묽게 분산된 한 방울올 상대적인 기 판들 상에 위치시키고 대기압 조건에서 건조시켰다. 나노프로필로미트리 (nanoprofilometry)는 나노시스터메즈 (한국)에 의해 제조된 3개의 간섭 대물 렌즈 、 ( interfero metric objective lens) 및 0.5nm의 수직해상도 (vertical resolution) 를 가진 나노뷰 NV 200를 사용하여 수행되었다.  In addition, in the above experimental example, Raman spectra was obtained using an Invia reflex micro Raman spectrometer (Reniso), which was operated in O.lmW and had a crystal laser excitation of 514.5 nm. SEM results photographs were recorded using a Dune Field Emission Scanning Electron Microscope (S-4700, Hitachi, Japan). TEM was performed on a JEOL JEM 2010 microscope operated at 200 kV using a carbon coated copper grid with holes. TEM and SEM experiments were both placed on a drop of very diluted relative substrates after precipitation and dried at atmospheric conditions. Nanoprofilometry was performed using a nanoview NV 200 with three interfero metric objective lenses, manufactured by Nanosister Metz (Korea), and a vertical resolution of 0.5 nm. It became.
<100>  <100>
<101> 이상에서 살펴본 바와 같이 본 발명은 바람직한 실시예를 들어 도시하고 설 명하였으나, 상기한 실시 예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양 한 변경과 수정이 가능할 것이다.  As described above, the present invention has been illustrated and described with reference to preferred embodiments, but is not limited to the above-described embodiments, and the general knowledge in the art to which the present invention pertains does not depart from the spirit of the present invention. Various changes and modifications will be possible by those who have the responsibility.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
그라핀층이 완벽한 적층구조 ( stacking)의 배열을 갖는 혹연성구조체를 산화시키는 산화단계 ;  An oxidation step in which the graphene layer oxidizes an abrupt structure having a perfect stacking arrangement;
상기 산화된 흑연성구조체에 대해 마이크로파 조사를 수행하는 마이크로파 조사단계 ; 및  A microwave irradiation step of performing microwave irradiation on the oxidized graphite structure; And
상기 조사단계 후에 얻어진 몇 개 층으로 된 그라핀층결합체를 초음파분해 처 리하는 초음파처 리단계 ;를 포함하는 그라핀시트 제조방법 .  A method for producing a graphene sheet comprising a; ultrasonic treatment step of sonicating the graphene layer binder consisting of several layers obtained after the irradiation step.
【청구항 2] [Claim 2]
계 1항에 있어서,  The method according to claim 1,
상기 산화단계는 상기 흑연성구조체를 과산화수소에 침지시켜 초음파처 리하 는 것을 특징으로 하는 그라핀시트 제조방법 .  The oxidation step is a graphene sheet manufacturing method characterized in that the ultrasonic treatment by immersing the graphite structure in hydrogen peroxide.
【청구항 3】 [Claim 3]
겨 12항에 있어서 ,  According to claim 12,
상기 산화단계는 상기 과산화수소에 암모늄 퍼옥시 디설페이트를 더 첨가시 키고 상기 혹연성구조체를 침지시켜 2 내지 6분 동안 초음파처리되는 것을 특징으 로 하는 그라핀시트 제조방법 .  The oxidation step is a graphene sheet manufacturing method characterized in that the addition of ammonium peroxy disulfate to the hydrogen peroxide further and sonicated for 2 to 6 minutes by immersing the flammable structure.
【청구항 4】 [Claim 4]
제 3항에 있어서,  The method of claim 3,
상기 암모늄 퍼옥시 디설페이트는 과산화수소에 대해 0.05 내지 2 중량 ¾로 첨가되는 것을 특징으로 하는 그라핀시트 제조방법 .  The ammonium peroxy disulfate is graphene sheet production method characterized in that the addition of 0.05 to 2 weight ¾ to hydrogen peroxide.
【청구항 5】 [Claim 5]
제 1항에 있어서,  The method of claim 1,
상기 마이크로파조사단계는 마이크로웨이브오븐에 상기 산화된 혹연성구조체 를 위치시 킨 후 50 내지 100초 동안 150 내지 550W로 수행되는 것을 특징으로 하는 그라핀시트제조방법 ᅳ The microwave irradiation step is a graphene sheet manufacturing method characterized in that carried out at 150 to 550W for 50 to 100 seconds after placing the oxidized structure in the microwave oven ᅳ
【청구항 6] [Claim 6]
제 1항에 있어서,  The method of claim 1,
상기 초음파처리단계는 상기 그라핀층결합체를 알코올용매에 분산시켜 15 내 지 25분 동안 초음파처리되는 것을 특징으로 하는 그라핀시트제조방법 .  The sonication step is a graphene sheet manufacturing method characterized in that the graphene layer binder is dispersed in an alcohol solvent sonicated for 15 to 25 minutes.
【청구항 7】 [Claim 7]
제 1항에 있어서 ,  The method of claim 1,
상기 초음파처리단계 후에 얻어진 그라핀시트로부터 잔여 산화물 그룹을 제 거하는 제거단계를 더 포함하는 것을 특징으로 하는 그라핀제조방법 .  And a removing step of removing the residual oxide group from the graphene sheet obtained after the sonication step.
【청구항 8】 [Claim 8]
제 7항에 있어서,  The method of claim 7,
상기 제거단계는 상기 그라핀시트를 하이드라진 용액에 분산시켜 수행되는 것을 특징으로 하는 그라핀시트제조방법 .  The removing step is a graphene sheet manufacturing method characterized in that is carried out by dispersing the graphene sheet in a hydrazine solution.
【청구항 9】 [Claim 9]
제 1항에 있어서,  The method of claim 1,
상기 흑연성구조체는 혹연 또는 카본나노튜브인 것을 특징으로 하는 그라핀 시트제조방법 .  The graphitic structure is a graphene sheet manufacturing method, characterized in that by abyss or carbon nanotubes.
【청구항 10] [Claim 10]
제 1항에 있어서 ,  The method of claim 1,
상기 그라핀층결합체는 상기 조사단계 후에 드라이 초음파차리하여 얻어지는 것을 특징으로 하는 그라핀시트제조방법 .  The graphene layer binder is a graphene sheet manufacturing method characterized in that it is obtained by dry ultrasonic charging after the irradiation step.
【청구항 11] [Claim 11]
겨 U항에 있어서,  In U, at least
상기 그라핀층결합체는 굴곡 또는 컬링 된 구조를 갖는 것을 특징으로 하는 그라핀시트제조방법 . '  The graphene layer binder is a graphene sheet manufacturing method characterized in that it has a curved or curled structure. '
【청구항 12] 제 1항에 있어서, [Claim 12] The method of claim 1,
상기 그라핀층결합체는 산소 함량이 1.41%인 것을 특징으로 하는 그라핀시트 제조방법 .  The graphene layer binder is a graphene sheet manufacturing method, characterized in that the oxygen content is 1.41%.
【청구항 13] [Claim 13]
제 1항 내지 제 12항 중 어느 한 항의 그라핀 제조방법에 의해 제조된 것을 특 징으로 하는 그라핀시트.  A graphene sheet characterized by being produced by the graphene manufacturing method of any one of claims 1 to 12.
【청구항 14] [Claim 14]
제 13항에 있어서,  The method of claim 13,
상기 그라핀시트는 보이는 두께를 증가시키는 굽이참 (undulation)을 갖는 것 을 특징으로 하는 그라핀시트.  The graphene sheet is a graphene sheet characterized in that it has an undulation to increase the visible thickness (undulation).
PCT/KR2010/002552 2010-01-08 2010-04-23 Method for the fabricating graphene nanosheets, and graphene nanosheets fabricated using the method WO2011083896A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0001918 2010-01-08
KR1020100001918A KR100996883B1 (en) 2010-01-08 2010-01-08 Method of green synthesis of graphene nano-sheets and graphene nano-sheets

Publications (1)

Publication Number Publication Date
WO2011083896A1 true WO2011083896A1 (en) 2011-07-14

Family

ID=43410159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/002552 WO2011083896A1 (en) 2010-01-08 2010-04-23 Method for the fabricating graphene nanosheets, and graphene nanosheets fabricated using the method

Country Status (2)

Country Link
KR (1) KR100996883B1 (en)
WO (1) WO2011083896A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014150363A3 (en) * 2013-03-15 2015-01-08 Lockheed Martin Corporation Method of separating an atomically thin material from a substrate
US10458026B2 (en) 2014-02-14 2019-10-29 Cambridge Enterprise Limited Method of producing graphene
CN113735103A (en) * 2021-09-30 2021-12-03 昆明理工大学 Method for rapidly preparing large graphene sheets in large scale
CN114314571A (en) * 2020-10-10 2022-04-12 吴国明 Preparation method of graphene microchip

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101308967B1 (en) 2011-09-09 2013-09-17 한국과학기술연구원 Process of preparing polymer/NGPs nanocomposite films with enhanced gas barrier properties
KR101356716B1 (en) * 2011-12-15 2014-02-05 한국과학기술원 Method for manufacturing graphene
KR101554215B1 (en) 2012-04-03 2015-09-21 연세대학교 산학협력단 Carbon nanofiber having excellent electrical characteristics and method for manufacturing the carbon nano fiber
KR101565484B1 (en) 2013-08-20 2015-11-13 한국에너지기술연구원 Method for fabricating graphite oxide and method for manufacturing graphene nano seat using the graphite oxide
KR102072914B1 (en) * 2018-07-03 2020-02-03 전북대학교산학협력단 A method for eco-friendly production of oxidized graphite and oxidized graphene using a hydroxylation reaction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040151981A1 (en) * 2001-10-08 2004-08-05 Spahr Michael E Electrochemical cell
US20080048152A1 (en) * 2006-08-25 2008-02-28 Jang Bor Z Process for producing nano-scaled platelets and nanocompsites
US20080206124A1 (en) * 2007-02-22 2008-08-28 Jang Bor Z Method of producing nano-scaled graphene and inorganic platelets and their nanocomposites
US20080258359A1 (en) * 2007-04-17 2008-10-23 Aruna Zhamu Low-temperature method of producing nano-scaled graphene platelets and their nanocomposites

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040151981A1 (en) * 2001-10-08 2004-08-05 Spahr Michael E Electrochemical cell
US20080048152A1 (en) * 2006-08-25 2008-02-28 Jang Bor Z Process for producing nano-scaled platelets and nanocompsites
US20080206124A1 (en) * 2007-02-22 2008-08-28 Jang Bor Z Method of producing nano-scaled graphene and inorganic platelets and their nanocomposites
US20080258359A1 (en) * 2007-04-17 2008-10-23 Aruna Zhamu Low-temperature method of producing nano-scaled graphene platelets and their nanocomposites

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014150363A3 (en) * 2013-03-15 2015-01-08 Lockheed Martin Corporation Method of separating an atomically thin material from a substrate
US10458026B2 (en) 2014-02-14 2019-10-29 Cambridge Enterprise Limited Method of producing graphene
US10865488B2 (en) 2014-02-14 2020-12-15 Cambridge Enterprise Limited Method of producing graphene
CN114314571A (en) * 2020-10-10 2022-04-12 吴国明 Preparation method of graphene microchip
CN113735103A (en) * 2021-09-30 2021-12-03 昆明理工大学 Method for rapidly preparing large graphene sheets in large scale
CN113735103B (en) * 2021-09-30 2022-09-16 昆明理工大学 Method for rapidly preparing large graphene sheets in large scale

Also Published As

Publication number Publication date
KR100996883B1 (en) 2010-11-26

Similar Documents

Publication Publication Date Title
KR100988577B1 (en) Method of fabrication of graphene nano-sheets from turbostratic structure and graphene nano-sheets
KR100996883B1 (en) Method of green synthesis of graphene nano-sheets and graphene nano-sheets
JP5605650B2 (en) Method for producing graphene dispersion
Young et al. The mechanics of graphene nanocomposites: A review
EP2038209B1 (en) Production of nano-structures
JP5613230B2 (en) Graphene nanoribbons produced from carbon nanotubes by alkali metal exposure
JP5464600B2 (en) Carbon nanotube film structure and carbon nanotube microstructure
Eftekhari et al. Curly graphene with specious interlayers displaying superior capacity for hydrogen storage
KR102077688B1 (en) Dispersion method
Meyyappan Plasma nanotechnology: past, present and future
US9963781B2 (en) Carbon nanotubes grown on nanostructured flake substrates and methods for production thereof
WO2014021257A1 (en) Method for producing composite film comprising graphene and carbon nanotubes
Zheng et al. Synthesis, structure, and properties of graphene and graphene oxide
JP2016538228A (en) Large-scale preparation of holey carbon allotropes by controlled catalytic oxidation
Sridhar et al. Microwave extraction of graphene from carbon fibers
JP2019099989A (en) Production method of carbon nano structure, and carbon nano structure
Vizireanu et al. Stability of carbon nanowalls against chemical attack with acid solutions
Li et al. High-strength reduced graphene oxide paper prepared by a simple and efficient method
KR101282741B1 (en) Method of continuous mass manufacturing of nanoflake using electrochemical reaction with ultrasonic wave irradiation
Ong et al. Highly hydrophobic 3D graphene-carbon nanotubes composite film for oil absorption
US20110300057A1 (en) Production Of Nano-Structures
Singha et al. Graphene, its Family and Potential Applications
TWI410374B (en) Method for manufacturing graphene
Yoon Structural and chemical change of graphene
Luo A study of graphene and MXene and their composites: fabrication, mechanical properties, strain sensing, and electromagnetic interference shielding application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10842276

Country of ref document: EP

Kind code of ref document: A1