WO2010150322A1 - Test method and test system for ac coupling input buffer, and semiconductor integrated circuit - Google Patents

Test method and test system for ac coupling input buffer, and semiconductor integrated circuit Download PDF

Info

Publication number
WO2010150322A1
WO2010150322A1 PCT/JP2009/002950 JP2009002950W WO2010150322A1 WO 2010150322 A1 WO2010150322 A1 WO 2010150322A1 JP 2009002950 W JP2009002950 W JP 2009002950W WO 2010150322 A1 WO2010150322 A1 WO 2010150322A1
Authority
WO
WIPO (PCT)
Prior art keywords
input buffer
coupling input
frequency
tester
counter
Prior art date
Application number
PCT/JP2009/002950
Other languages
French (fr)
Japanese (ja)
Inventor
小野田恭也
紺本明彦
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2009/002950 priority Critical patent/WO2010150322A1/en
Publication of WO2010150322A1 publication Critical patent/WO2010150322A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31712Input or output aspects
    • G01R31/31715Testing of input or output circuits; test of circuitry between the I/C pins and the functional core, e.g. testing of input or output driver, receiver, buffer

Definitions

  • the present invention relates to an AC coupling input buffer test method, a test system, and a semiconductor integrated circuit.
  • the high frequency performance of input / output depends on the frequency performance of an I / O (Input / Output) buffer in an interface circuit of an IC or LSI that is an AC (alternating current) coupling unit. For this reason, the frequency performance of the I / O buffer is tested.
  • FIG. 6 is an explanatory diagram of a conventional AC coupling I / O test method. As shown in FIG. 6, the LSI for measurement 120 is mounted on the tester board 100. Here, the LSI for measurement 120 shows only an interface circuit.
  • the LSI for measurement 120 includes an input buffer (AC coupling unit: receiver) 122, a test circuit 124, and a synchronization circuit 126.
  • the input buffer 122 includes a pair of capacitive elements (capacitors) 122-1 connected to the pair of signal lines L1 and L2, respectively, and a differential amplifier 122-2 connected to the capacitor 122-1.
  • the input buffer 122 receives a differential input signal from the pair of signal lines L1 and L2 and converts it into a DC pulse signal.
  • the synchronization circuit 126 outputs the pulse signal from the input buffer 122 to the internal circuit in synchronization with the internal circuit.
  • the LSI tester 130 connected to the tester board 100 is a system for testing various performances of the LSI 110.
  • the LSI tester 130 outputs a general control signal for testing the LSI 110 from the signal line L5 to the LSI 110.
  • the LSI tester 130 is a general-purpose tester, and the signal output from the channel has a limit of several hundred MHz. Therefore, a dedicated test circuit 124 is provided in the interface circuit of the LSI 120 in order to perform a test at a high frequency of the LSI 120.
  • the dedicated test circuit 124 includes a loopback circuit 124-1 and a determination circuit.
  • the LSI tester 130 sends a control signal to the test circuit 124 via the signal line L3 and starts the operation of the test circuit 124.
  • the loopback circuit 124-1 is configured with a driver and outputs a pulse signal from the high-frequency pulse generation circuit in the test circuit 124 to the input stage of the input buffer 122.
  • the determination circuit of the test circuit 124 determines the performance for the given high frequency from the output from the input buffer 122. Then, the determination circuit of the test circuit 124 outputs a determination signal to the LSI tester 130 via the signal line L4. In this way, the frequency dynamic range of the AC coupling unit is measured at a frequency higher than the limit frequency of the LSI tester 130.
  • test pulse generation method from the Loopback circuit has a problem that the control for performing the test is complicated and it is difficult to create a test circuit and a test pattern.
  • the diagnosis is made in a wide range including the driver 124-1 and the receiver 122, it is difficult to specify the failure location when there is a failure.
  • an object of the present invention is to provide an AC coupling input buffer test method, a test system, and a semiconductor integrated circuit, which can easily perform an AC coupling input buffer test at a high frequency using a general-purpose LSI tester. There is.
  • an AC coupling input buffer test method for testing the frequency characteristics of an AC coupling input buffer includes a pulse generator provided on a test board on which a semiconductor integrated device having the AC coupling input buffer is mounted. The step of inputting a pulse signal having a set frequency to the AC coupling input buffer, the step of counting the output pulses of the AC coupling input buffer to which the pulse signal has been inputted by a counter, and the pulse generation A tester reads a value of the counter after a set number of signals are input to the AC coupling input buffer; and the tester reads the value of the counter and the set number And the AC coupling input bar at the frequency. And a step of determining characteristics of the file.
  • a pulse generator provided on the board for inputting a pulse signal having a set frequency to the AC coupling input buffer, and a counter value for counting output pulses of the AC coupling input buffer to which the pulse signal is input. After the pulse generator inputs a set number of signals to the AC coupling input buffer, it reads out, compares the read counter value with the set number, and A tester for determining characteristics of the AC coupling input buffer.
  • the semiconductor integrated circuit is supplied with a pulse signal having a set frequency from an AC coupling input buffer and a pulse generator provided on the test board to the AC coupling input buffer.
  • a counter for counting output pulses of the AC coupling input buffer to which the pulse signal is input, and a terminal for reading the value of the counter from the tester.
  • the tester's test board is equipped with a pulse generator to output high frequency pulses, it is possible to measure the high frequency of the AC coupling input buffer. Further, since the signal is controlled from the channel of the tester, it is not necessary to consider the combination with the driver, and it is understood that if there is a circuit failure, it is a problem of the receiver itself. In addition, since it is not necessary to provide a loopback circuit and a determination circuit for the conventional test in the circuit under test, the number of elements of the semiconductor integrated circuit can be reduced.
  • FIG. 1 is a block diagram of a semiconductor integrated circuit according to an embodiment of the present invention. It is a block diagram of the test system of one embodiment of this invention. It is a wave form diagram of each part of the structure of FIG.
  • FIG. 3 is a measurement process flow diagram of the first embodiment of the present invention. It is a measurement processing flowchart of the 2nd Embodiment of this invention. It is explanatory drawing of the measuring method of the conventional AC coupling input buffer.
  • FIG. 1 is a block diagram of an embodiment of an IC to be measured according to the present invention.
  • An example is Processor Unit).
  • the IC under measurement 1 includes an arithmetic device 10 that executes arithmetic operations, an instruction control device 12 that analyzes instructions and controls each circuit (device), and an interface circuit connected to the instruction control device 12.
  • the IC 1 to be measured includes a memory interface circuit group 22 for connecting to an external memory, and a memory controller 16 connected to the memory interface circuit group 22 and controlling the cache memory 14.
  • This CPU analyzes the instruction received from the interface circuit group 20 by the instruction control device 12, sets the data in the cache memory 14 to the arithmetic device 10 based on the analysis result, and executes the arithmetic operation.
  • the calculation result is stored in the cache memory 14.
  • the instruction control device 12 instructs the memory controller 16 to access the external memory via the memory interface circuit group 22 based on the analysis result.
  • the memory controller 16 accesses (reads or writes) the external memory via the memory interface circuit group 22, stores necessary data in the cache memory 14, or writes data in the cache memory 14 to the external memory.
  • the IC 1 to be measured further has a test control circuit 18.
  • the test control circuit 18 tests the arithmetic device 10, the instruction control device 12, the interface circuit group 20, the memory interface circuit group 22, the cache memory 14, and the memory controller 16 according to instructions from the outside. Necessary instructions are output, and the test state is output to the outside.
  • the interface circuit group 20 and the memory interface circuit group 30 are provided with as many input buffer units (AC coupling units) 30 as the number of connection lines. That is, the CPU 1 is connected to an external circuit or a memory via a connection line by the interface circuit group 20 and the memory interface circuit group 22, and the input buffer unit (receiver) 30 receives a signal such as a command or data from the signal line. Receive.
  • AC coupling units AC coupling units
  • the IC to be measured 1 is not limited to the CPU in FIG. 1, but may be another functional element (memory, bridge circuit, I / O controller, hub, etc.) connected to the connection line and having an input buffer.
  • FIG. 2 is a block diagram of an embodiment of the test system of the present invention
  • FIG. 3 is a waveform diagram of each part of FIG. 2 that are the same as those shown in FIG. 1 are denoted by the same symbols.
  • the IC 1 to be measured is mounted on the tester board 7 of the LSI tester 8.
  • the IC for measurement 1 shows only the input buffer unit 30 of the interface circuit 20 (22).
  • the input buffer unit 30 of the IC 1 to be measured has an input buffer (AC coupling unit: receiver) 2, a counter 5, and a synchronization circuit 6.
  • the input buffer 2 includes a pair of capacitive elements (capacitors) 3 connected to the pair of signal lines L 10 and L 11, and a differential amplifier 4 connected to the capacitor 3.
  • the input buffer 2 receives the differential input signals (B and C in FIG. 3) from the pair of signal lines L10 and L11 and converts them into a DC pulse signal (D in FIG. 3).
  • the synchronization circuit 6 outputs the pulse signal from the input buffer 2 to an internal circuit (for example, a memory controller or an instruction control device in FIG. 1) in synchronization with the internal circuit.
  • the counter 5 counts pulse signals from the input buffer 2.
  • the LSI tester 8 connected to the tester board 7 is a system for testing various performances of the IC 1.
  • the LSI tester 8 outputs a general control signal for testing the IC1 from the signal line L9 to the IC1 (the test control circuit 18).
  • This LSI tester 8 is a general-purpose tester, and the signal output from the channel is limited to several hundred MHz. Therefore, a pulse generator 70 and a frequency setting circuit 72 are provided on the tester board 7 in order to execute a test of the IC 1 at a high frequency.
  • the frequency setting circuit 72 receives a set frequency signal given from the LSI tester 8 through the signal line L7, and sets the frequency of the generated pulse in the pulse generator 70.
  • the pulse generator 70 generates pulse signals B and C having frequencies set by the frequency setting circuit 72 in response to an enable signal A (see FIG. 3) given from the LSI tester 8 via the signal line L6. Output to. The count value of the counter 5 is read into the LSI tester 8 through the signal line L8.
  • the pulse generator 70 is arranged between the channel of the general-purpose LSI tester 8 and the AC coupling I / O 2 to be tested, and the test counter circuit 5 is connected to the output of the AC coupling I / O 2. Connecting.
  • the pulse generator 70 is a self-oscillation type, and Output When Enable (OE) A is asserted, a waveform with an arbitrary frequency is output.
  • OE signal A
  • the waveforms B and C are output from the pulse generator 70, and the generated waveforms are input to the AC coupling I / O2 to be measured.
  • a waveform having the same frequency as the input waveform is output from the output of the AC coupling I / O 2 and propagates to the clock input of the next-stage test counter circuit 5.
  • the counter 5 counts up with this clock. After the output of the pulse generator 70 is stopped by deasserting OE (signal A), the upper bits of the counter 5 are read. As a result, the LSI tester 8 determines whether the AC coupling I / O operation is good or bad.
  • the pulse generator 70 since the pulse generator 70 is used, a high-frequency pulse can be distributed, so that the AC coupling capacitor 3 can be passed. Further, since the frequency can be made variable by using the pulse generator 70, it is possible to investigate the operation limit of the IC.
  • FIG. 4 is a process flowchart of the first embodiment of the measurement process of the present invention, and shows the measurement process for discriminating between a good product and a defective product, which is executed by the LSI tester 8 of FIG.
  • the LSI tester 8 outputs the signal via the signal line L6. Enable A is asserted and the pulse generator 70 is operated. The pulse generator 70 generates pulses B and C at a set frequency and outputs them to the signal lines L10 and L11. As a result, a pulse is applied to the input buffer 2 of the measured interface circuit 20 / memory interface circuit 30. When the input buffer 2 can receive a pulse, a counter clock signal D is generated from the input buffer 2. When the counter clock signal D is generated, the counter 5 counts up.
  • the pulse generator 70 generates the set number of pulses and stops.
  • the LSI tester 8 reads the value of the counter 5 through the signal line L8.
  • the LSI tester 8 compares the read counter value with the value (number of pulses) previously set in the frequency setting circuit 72.
  • the pulse generator 70 is provided on the tester board of the general-purpose tester and the high frequency pulse is output, the AC coupling capacitor 3 can be passed at a high frequency.
  • the signal is controlled from the channel of the LSI tester 8, it is not necessary to consider the combination with the driver.
  • the circuit failure it is understood that this is a problem of the receiver 2 itself.
  • the number of elements of the IC1 can be reduced.
  • FIG. 5 is a process flow diagram of the second embodiment of the measurement process of the present invention, which is executed by the LSI tester 8 of FIG. In this example, a measurement process for measuring the frequency limit performance of an IC is shown.
  • FIG. 5 the same components as those shown in FIG. 4 are indicated by the same symbols.
  • the LSI tester 8 executes S10 to S18 of FIG. That is, a general control signal is sent from the LSI tester 8 to the IC 1 through the signal line L9, and all counters in the IC 1 are reset (S10).
  • the frequency and the number of pulses of the frequency setting circuit 72 are set by the control signal from the LSI tester 8 through the signal line L7 (S12).
  • the LSI tester 8 outputs the signal via the signal line L6. Enable A is asserted, the pulse generator 70 is operated, and pulses B and C having a set frequency are generated from the pulse generator 70 and output to the signal lines L10 and L11.
  • the counter 5 counts up the counter clock signal D (S14).
  • the LSI tester 8 reads the value of the counter 5 through the signal line L8 (S16).
  • the LSI tester 8 compares the read counter value with the value (number of pulses) previously set in the frequency setting circuit 72.
  • the LSI tester 8 updates the frequency set in the frequency setting circuit 72 to a frequency one step higher. Then, the LSI tester 8 determines whether the updated frequency exceeds the upper limit frequency of measurement. If the updated frequency exceeds the upper limit frequency of measurement, the LSI tester 8 determines that the upper limit frequency is the limit frequency of the IC and stores this. On the other hand, if the updated frequency does not exceed the upper limit frequency for measurement, the LSI tester 8 returns to step S30 (step S10 in FIG. 4).
  • the pulse generator 70 is provided on the test board and the high frequency pulse can be distributed, it is possible to pass through the AC coupling capacitor 3 and to measure at a high frequency. Further, since the frequency can be made variable by using the pulse generator 70, it is possible to investigate the operation limit of the IC.
  • the interface circuit has been described with an example of one input buffer.
  • the present invention can be similarly applied even when a plurality of input buffers are provided.
  • the pulse generator 70 of the test board may be provided with an output switching circuit for a plurality of input buffers, and the measurement of the plurality of input buffers may be executed sequentially. If a plurality of input buffers are provided, the counter 5 may be shared.
  • the tester's test board is equipped with a pulse generator to output high frequency pulses, it is possible to measure the high frequency of the AC coupling input buffer. Further, since the signal is controlled from the channel of the tester, it is not necessary to consider the combination with the driver, and it is understood that if there is a circuit failure, it is a problem of the receiver itself. In addition, since it is not necessary to provide a loopback circuit and a determination circuit for the conventional test in the circuit under test, the number of elements of the semiconductor integrated circuit can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

A pulse generator (70) is provided on a test board (7) of a tester (8); high-frequency pulses are output to an AC coupling input buffer (30) of a semiconductor integrated circuit (1) mounted on the test board (7); and the output pulses of the AC coupling input buffer (30) are counted by a counter (5). The tester (8) measures the high frequency of the AC coupling input buffer from the count value of the counter (5).

Description

ACカップリング入力バッファのテスト方法、テストシステム及び半導体集積回路AC coupling input buffer test method, test system, and semiconductor integrated circuit
 本発明は、ACカップリング入力バッファのテスト方法、テストシステム及び半導体集積回路に関する。 The present invention relates to an AC coupling input buffer test method, a test system, and a semiconductor integrated circuit.
 近年、IC(Integrated  Circuit:集積回路)やLSI(Large Scale Integrated circuit:大規模集積回路)デバイスの高速化が、著しい。このため、IC,LSI間の信号周波数も高くなっており、入出力の高周波性能を、テストすることが、重要となっている。 In recent years, the speedup of IC (Integrated Circuit) and LSI (Large Scale Integrated circuit) devices has been remarkable. For this reason, the signal frequency between IC and LSI is also high, and it is important to test the high-frequency performance of input and output.
 通常、入出力の高周波性能は、AC(交流)カップリング部であるIC,LSIのインターフェース回路内のI/O(Input/Output:入出力)バッファの周波数性能に依存する。このため、I/Oバッファの周波数性能をテストしている。 Usually, the high frequency performance of input / output depends on the frequency performance of an I / O (Input / Output) buffer in an interface circuit of an IC or LSI that is an AC (alternating current) coupling unit. For this reason, the frequency performance of the I / O buffer is tested.
 図6は、従来のACカップリングI/Oのテスト方法の説明図である。図6に示すように、被測定用LSI120を、テスターボード100に搭載する。ここでは、被測定用LSI120は、インターフェース回路のみを示す。 FIG. 6 is an explanatory diagram of a conventional AC coupling I / O test method. As shown in FIG. 6, the LSI for measurement 120 is mounted on the tester board 100. Here, the LSI for measurement 120 shows only an interface circuit.
 被測定用LSI120は、入力バッファ(ACカップリング部:レシーバー)122、テスト回路124、同期回路126とを有する。入力バッファ122は、一対の信号線L1、L2に各々に接続された一対の容量素子(コンデンサ)122-1と、このコンデンサ122-1に接続された差動アンプ122-2とを有する。そして、入力バッファ122は、一対の信号線L1、L2からの差動入力信号を受け、直流のパルス信号に変換する。 The LSI for measurement 120 includes an input buffer (AC coupling unit: receiver) 122, a test circuit 124, and a synchronization circuit 126. The input buffer 122 includes a pair of capacitive elements (capacitors) 122-1 connected to the pair of signal lines L1 and L2, respectively, and a differential amplifier 122-2 connected to the capacitor 122-1. The input buffer 122 receives a differential input signal from the pair of signal lines L1 and L2 and converts it into a DC pulse signal.
 又、同期回路126は、入力バッファ122からのパルス信号を、内部回路と同期して、内部回路に出力する。一方、テスターボード100に接続するLSIテスター130は、このLSI110の各種の性能をテストするシステムである。LSIテスター130は、LSI110をテストするための一般制御信号を、信号線L5から、LSI110に出力する。 The synchronization circuit 126 outputs the pulse signal from the input buffer 122 to the internal circuit in synchronization with the internal circuit. On the other hand, the LSI tester 130 connected to the tester board 100 is a system for testing various performances of the LSI 110. The LSI tester 130 outputs a general control signal for testing the LSI 110 from the signal line L5 to the LSI 110.
 このLSIテスター130は、汎用テスターであり、そのチャネルから出力される信号は、数百MHzが限界である。このため、LSI120の高周波でのテストを実行するために、LSI120のインターフェース回路内に、専用テスト回路124を設けていた。この専用テスト回路124は、ループバック回路124-1と、判定回路とを有する。 The LSI tester 130 is a general-purpose tester, and the signal output from the channel has a limit of several hundred MHz. Therefore, a dedicated test circuit 124 is provided in the interface circuit of the LSI 120 in order to perform a test at a high frequency of the LSI 120. The dedicated test circuit 124 includes a loopback circuit 124-1 and a determination circuit.
 LSI120のACカップリング部のテストのため、LSIテスター130は、信号線L3を介し、制御信号をテスト回路124に送り、テスト回路124の動作を開始する。ループバック回路124-1は、ドライバーで構成され、テスト回路124内の高周波パルス発生回路からのパルス信号を、入力バッファ122の入力段に出力する。 In order to test the AC coupling unit of the LSI 120, the LSI tester 130 sends a control signal to the test circuit 124 via the signal line L3 and starts the operation of the test circuit 124. The loopback circuit 124-1 is configured with a driver and outputs a pulse signal from the high-frequency pulse generation circuit in the test circuit 124 to the input stage of the input buffer 122.
 一方、テスト回路124の判定回路は、入力バッファ122から出力から、その与えられた高周波数に対する性能を判定する。そして、テスト回路124の判定回路は、LSIテスター130に信号線L4を介し、判定信号を出力する。このようにして、LSIテスター130の限界周波数以上の高周波数で、ACカップリング部の周波数ダイナミックレンジを測定していた。 On the other hand, the determination circuit of the test circuit 124 determines the performance for the given high frequency from the output from the input buffer 122. Then, the determination circuit of the test circuit 124 outputs a determination signal to the LSI tester 130 via the signal line L4. In this way, the frequency dynamic range of the AC coupling unit is measured at a frequency higher than the limit frequency of the LSI tester 130.
特開平09-113586号公報Japanese Patent Laid-Open No. 09-113586 特開2008-128759号公報JP 2008-128759 A
 しかしながら、近年のLSIの高速化に伴い、信号伝送レート(周波数)が、GHzを越えるオーダーのものが、要求される。汎用LSIテスターのチャネルから出力される信号は、数百MHzが限界であるため、このような、LSIテスターから、GHzを越える伝送レートのACカップリングI/Oに信号を送れない。このため、かかる伝送レートのACカップリング部のテストが困難である。 However, as the speed of LSIs in recent years increases, a signal transmission rate (frequency) on the order of more than GHz is required. Since the signal output from the channel of the general-purpose LSI tester has a limit of several hundred MHz, such an LSI tester cannot send a signal to the AC coupling I / O having a transmission rate exceeding GHz. For this reason, it is difficult to test an AC coupling unit having such a transmission rate.
 又、Loopback回路からのテストパルスの発生方法では、テストを行うための制御が複雑で、テスト回路及びテストパターン作成が難しいという問題がある。 Also, the test pulse generation method from the Loopback circuit has a problem that the control for performing the test is complicated and it is difficult to create a test circuit and a test pattern.
 更に、ドライバー124-1とレシーバー122を含めた広い範囲での診断となるため、故障があった場合に故障箇所の特定が困難である。 Furthermore, since the diagnosis is made in a wide range including the driver 124-1 and the receiver 122, it is difficult to specify the failure location when there is a failure.
 従って、本発明の目的は、汎用LSIテスターを使用して、容易に、高周波数におけるACカップリング入力バッファのテストを実現するACカップリング入力バッファのテスト方法、テストシステム及び半導体集積回路を提供することにある。 Therefore, an object of the present invention is to provide an AC coupling input buffer test method, a test system, and a semiconductor integrated circuit, which can easily perform an AC coupling input buffer test at a high frequency using a general-purpose LSI tester. There is.
 この目的の達成のため、ACカップリング入力バッファの周波数特性をテストするACカップリング入力バッファのテスト方法は、前記ACカップリング入力バッファを有する半導体集積装置を搭載するテストボードに設けたパルス発生器から、前記ACカップリング入力バッファに、設定された周波数のパルス信号を入力するステップと、前記パルス信号が入力された前記ACカップリング入力バッファの出力パルスをカウンタでカウントするステップと、前記パルス発生器が、設定された数の信号を前記ACカップリング入力バッファに入力した後、テスターが、前記カウンタの値を読み出すステップと、前記テスターが、前記読み出したカウンタの値と、前記設定された数とを比較して、前記周波数での前記ACカップリング入力バッファの特性を判定するステップとを有する。 To achieve this object, an AC coupling input buffer test method for testing the frequency characteristics of an AC coupling input buffer includes a pulse generator provided on a test board on which a semiconductor integrated device having the AC coupling input buffer is mounted. The step of inputting a pulse signal having a set frequency to the AC coupling input buffer, the step of counting the output pulses of the AC coupling input buffer to which the pulse signal has been inputted by a counter, and the pulse generation A tester reads a value of the counter after a set number of signals are input to the AC coupling input buffer; and the tester reads the value of the counter and the set number And the AC coupling input bar at the frequency. And a step of determining characteristics of the file.
 又、この目的の達成のため、ACカップリング入力バッファの周波数特性をテストするACカップリング入力バッファのテストシステムは、前記ACカップリング入力バッファを有する半導体集積装置を搭載するテストボードと、前記テストボードに設けられ、前記ACカップリング入力バッファに、設定された周波数のパルス信号を入力するパルス発生器と、前記パルス信号が入力された前記ACカップリング入力バッファの出力パルスをカウントするカウンタの値を、前記パルス発生器が、設定された数の信号を前記ACカップリング入力バッファに入力した後、読み出し、前記読み出したカウンタの値と、前記設定された数とを比較して、前記周波数での前記ACカップリング入力バッファの特性を判定するテスターとを有する。 In order to achieve this object, an AC coupling input buffer test system for testing frequency characteristics of an AC coupling input buffer includes a test board on which a semiconductor integrated device having the AC coupling input buffer is mounted, and the test. A pulse generator provided on the board for inputting a pulse signal having a set frequency to the AC coupling input buffer, and a counter value for counting output pulses of the AC coupling input buffer to which the pulse signal is input. After the pulse generator inputs a set number of signals to the AC coupling input buffer, it reads out, compares the read counter value with the set number, and A tester for determining characteristics of the AC coupling input buffer.
 更に、この目的の達成のため、半導体集積回路は、ACカップリング入力バッファと、前記テストボードに設けられたパルス発生器から前記ACカップリング入力バッファに、設定された周波数のパルス信号を入力された時に、前記パルス信号が入力された前記ACカップリング入力バッファの出力パルスをカウントするカウンタと、テスターから、前記カウンタの値を読み出すための端子と有する。 In order to achieve this object, the semiconductor integrated circuit is supplied with a pulse signal having a set frequency from an AC coupling input buffer and a pulse generator provided on the test board to the AC coupling input buffer. A counter for counting output pulses of the AC coupling input buffer to which the pulse signal is input, and a terminal for reading the value of the counter from the tester.
 テスターのテストボードに、パルス発生器を設け、高周波パルスを出力するようにしたため、ACカップリング入力バッファの高周波数の測定が可能となる。又、テスターのチャネルから信号制御するので、ドライバーとの組み合わせを考慮する必要がなく、回路の故障があった場合は、レシーバー自体の問題であることが分かる。その上、従来の試験のためのループバック回路や判定回路を、被測定回路に設ける必要がないため、半導体集積回路の素子数を削減できる。 ∙ Since the tester's test board is equipped with a pulse generator to output high frequency pulses, it is possible to measure the high frequency of the AC coupling input buffer. Further, since the signal is controlled from the channel of the tester, it is not necessary to consider the combination with the driver, and it is understood that if there is a circuit failure, it is a problem of the receiver itself. In addition, since it is not necessary to provide a loopback circuit and a determination circuit for the conventional test in the circuit under test, the number of elements of the semiconductor integrated circuit can be reduced.
本発明の一実施の形態の半導体集積回路のブロック図である。1 is a block diagram of a semiconductor integrated circuit according to an embodiment of the present invention. 本発明の一実施の形態のテストシステムの構成図である。It is a block diagram of the test system of one embodiment of this invention. 図2の構成の各部の波形図である。It is a wave form diagram of each part of the structure of FIG. 本発明の第1の実施の形態の測定処理フロー図である。FIG. 3 is a measurement process flow diagram of the first embodiment of the present invention. 本発明の第2の実施の形態の測定処理フロー図である。It is a measurement processing flowchart of the 2nd Embodiment of this invention. 従来のACカップリング入力バッファの測定方法の説明図である。It is explanatory drawing of the measuring method of the conventional AC coupling input buffer.
 以下、本発明の実施の形態を、被測定IC、テストシステム、測定処理の実施の形態、他の実施の形態の順で説明するが、本発明は、この実施の形態に限られない。 Hereinafter, embodiments of the present invention will be described in the order of an IC to be measured, a test system, an embodiment of a measurement process, and other embodiments, but the present invention is not limited to this embodiment.
 (被測定IC)
 図1は、本発明の被測定ICの一実施の形態のブロック図であり、CPU(Central
Processor Unit)を例に示す。
(IC to be measured)
FIG. 1 is a block diagram of an embodiment of an IC to be measured according to the present invention.
An example is Processor Unit).
 図1に示すように、被測定IC1は、演算を実行する演算装置10と、命令を解析し、各回路(装置)を制御する命令制御装置12と、命令制御装置12に接続されたインターフェース回路群20とを有する。又、被測定IC1は、外部のメモリと接続するためのメモリインターフェース回路群22と、メモリインターフェース回路群22に接続され、キャッシュメモリ14を制御するメモリコントローラ16とを有する。 As shown in FIG. 1, the IC under measurement 1 includes an arithmetic device 10 that executes arithmetic operations, an instruction control device 12 that analyzes instructions and controls each circuit (device), and an interface circuit connected to the instruction control device 12. Group 20. The IC 1 to be measured includes a memory interface circuit group 22 for connecting to an external memory, and a memory controller 16 connected to the memory interface circuit group 22 and controlling the cache memory 14.
 このCPUは、命令制御装置12が、インターフェース回路群20から受けた命令を解析し、解析結果により、演算装置10に、キャッシュメモリ14のデータをセットし、演算を実行させる。演算結果は、キャッシュメモリ14に格納される。 This CPU analyzes the instruction received from the interface circuit group 20 by the instruction control device 12, sets the data in the cache memory 14 to the arithmetic device 10 based on the analysis result, and executes the arithmetic operation. The calculation result is stored in the cache memory 14.
 又、命令制御装置12は、解析結果により、メモリコントローラ16に、メモリインターフェース回路群22を介し、外部メモリをアクセスすることを指示する。メモリコントローラ16は、メモリインターフェース回路群22を介し、外部メモリをアクセス(リード又はライト)し、必要なデータを、キャッシュメモリ14に格納し、又はキャッシュメモリ14のデータを、外部メモリにライトする。 Further, the instruction control device 12 instructs the memory controller 16 to access the external memory via the memory interface circuit group 22 based on the analysis result. The memory controller 16 accesses (reads or writes) the external memory via the memory interface circuit group 22, stores necessary data in the cache memory 14, or writes data in the cache memory 14 to the external memory.
 被測定IC1は、更に、テスト制御回路18を有する。テスト制御回路18は、演算装置10と、命令制御装置12と、インターフェース回路群20と、メモリインターフェース回路群22と、キャッシュメモリ14と、メモリコントローラ16とに、外部からの指示に応じて、テストに必要な指示を行い、又、外部にテスト状態を出力する。 The IC 1 to be measured further has a test control circuit 18. The test control circuit 18 tests the arithmetic device 10, the instruction control device 12, the interface circuit group 20, the memory interface circuit group 22, the cache memory 14, and the memory controller 16 according to instructions from the outside. Necessary instructions are output, and the test state is output to the outside.
 ここで、インターフェース回路群20と、メモリインターフェース回路群30とに、接続線数に応じた数の入力バッファ部(ACカップリング部)30が、設けられる。即ち、CPU1は、インターフェース回路群20とメモリインターフェース回路群22により、接続線を介し、外部回路やメモリに接続し、その入力バッファ部(レシーバー)30で、信号線から、コマンド、データ等の信号を受信する。 Here, the interface circuit group 20 and the memory interface circuit group 30 are provided with as many input buffer units (AC coupling units) 30 as the number of connection lines. That is, the CPU 1 is connected to an external circuit or a memory via a connection line by the interface circuit group 20 and the memory interface circuit group 22, and the input buffer unit (receiver) 30 receives a signal such as a command or data from the signal line. Receive.
 尚、被測定IC1は、図1のCPUに限らず、接続線に接続され、入力バッファを有する他の機能素子(メモリ、ブリッジ回路、I/Oコントローラ、ハブ等)であっても良い。 Note that the IC to be measured 1 is not limited to the CPU in FIG. 1, but may be another functional element (memory, bridge circuit, I / O controller, hub, etc.) connected to the connection line and having an input buffer.
 (テストシステム)
 図2は、本発明のテストシステムの一実施の形態のブロック図、図3は、図2の各部の波形図である。図2において、図1で示したものと同一のものは、同一の記号で示してある。
(Test system)
FIG. 2 is a block diagram of an embodiment of the test system of the present invention, and FIG. 3 is a waveform diagram of each part of FIG. 2 that are the same as those shown in FIG. 1 are denoted by the same symbols.
 図2に示すように、被測定用IC1を、LSIテスター8のテスターボード7に搭載する。ここでは、被測定用IC1は、インターフェース回路20(22)の入力バッファ部30のみを示す。 As shown in FIG. 2, the IC 1 to be measured is mounted on the tester board 7 of the LSI tester 8. Here, the IC for measurement 1 shows only the input buffer unit 30 of the interface circuit 20 (22).
 被測定用IC1の入力バッファ部30は、入力バッファ(ACカップリング部:レシーバー)2、カウンタ5、同期回路6とを有する。入力バッファ2は、一対の信号線L10,L11に各々に接続された一対の容量素子(コンデンサ)3と、このコンデンサ3に接続された差動アンプ4とを有する。 The input buffer unit 30 of the IC 1 to be measured has an input buffer (AC coupling unit: receiver) 2, a counter 5, and a synchronization circuit 6. The input buffer 2 includes a pair of capacitive elements (capacitors) 3 connected to the pair of signal lines L 10 and L 11, and a differential amplifier 4 connected to the capacitor 3.
 そして、入力バッファ2は、一対の信号線L10、L11からの差動入力信号(図3のB,C)を受け、直流のパルス信号(図3のD)に変換する。又、同期回路6は、入力バッファ2からのパルス信号を、内部回路に同期して、内部回路(例えば、図1では、メモリコントローラ、命令制御装置)に出力する。カウンタ5は、入力バッファ2からのパルス信号を計数する。 The input buffer 2 receives the differential input signals (B and C in FIG. 3) from the pair of signal lines L10 and L11 and converts them into a DC pulse signal (D in FIG. 3). The synchronization circuit 6 outputs the pulse signal from the input buffer 2 to an internal circuit (for example, a memory controller or an instruction control device in FIG. 1) in synchronization with the internal circuit. The counter 5 counts pulse signals from the input buffer 2.
 一方、テスターボード7に接続するLSIテスター8は、このIC1の各種の性能をテストするシステムである。LSIテスター8は、IC1をテストするための一般制御信号を、信号線L9から、IC1(のテスト制御回路18)に出力する。 On the other hand, the LSI tester 8 connected to the tester board 7 is a system for testing various performances of the IC 1. The LSI tester 8 outputs a general control signal for testing the IC1 from the signal line L9 to the IC1 (the test control circuit 18).
 このLSIテスター8は、汎用テスターであり、そのチャネルから出力される信号は、数百MHzが限界である。このため、IC1の高周波でのテストを実行するために、テスターボード7に、パルス発生器70と、周波数設定回路72とを設ける。周波数設定回路72は、LSIテスター8から、信号線L7を介して与えられる設定周波数信号を受け、パルス発生器70に、発生パルスの周波数を設定する。 This LSI tester 8 is a general-purpose tester, and the signal output from the channel is limited to several hundred MHz. Therefore, a pulse generator 70 and a frequency setting circuit 72 are provided on the tester board 7 in order to execute a test of the IC 1 at a high frequency. The frequency setting circuit 72 receives a set frequency signal given from the LSI tester 8 through the signal line L7, and sets the frequency of the generated pulse in the pulse generator 70.
 パルス発生器70は、LSIテスター8から、信号線L6を介し与えられるエネーブル信号A(図3参照)により、周波数設定回路72から設定された周波数のパルス信号B,Cを、信号線L10,L11に出力する。カウンタ5の計数値は、信号線L8により、LSIテスター8に読み込まれる。 The pulse generator 70 generates pulse signals B and C having frequencies set by the frequency setting circuit 72 in response to an enable signal A (see FIG. 3) given from the LSI tester 8 via the signal line L6. Output to. The count value of the counter 5 is read into the LSI tester 8 through the signal line L8.
 このように、汎用LSIテスター8のチャネルと、試験対象のACカップリングI/O2との間に、パルス発生器70を配置し、ACカップリングI/O2の出力に、試験用カウンタ回路5を接続する。パルス発生器70は、自己発振タイプであり、Output
Enable(OE)Aがアサートされたら、任意の周波数の波形を出力する。
As described above, the pulse generator 70 is arranged between the channel of the general-purpose LSI tester 8 and the AC coupling I / O 2 to be tested, and the test counter circuit 5 is connected to the output of the AC coupling I / O 2. Connecting. The pulse generator 70 is a self-oscillation type, and Output
When Enable (OE) A is asserted, a waveform with an arbitrary frequency is output.
 試験時は、図3のようにOE(信号A)をアサートして、パルス発生器70から波形B,Cを出力させ、発生波形を、被測定ACカップリングI/O2に入力させる。ACカップリング部2の回路が正常な場合は、ACカップリングI/O2の出力から、入力波形と同じ周波数の波形が出力され、次段の試験用カウンタ回路5のクロック入力に伝播する。 During the test, OE (signal A) is asserted as shown in FIG. 3, the waveforms B and C are output from the pulse generator 70, and the generated waveforms are input to the AC coupling I / O2 to be measured. When the circuit of the AC coupling unit 2 is normal, a waveform having the same frequency as the input waveform is output from the output of the AC coupling I / O 2 and propagates to the clock input of the next-stage test counter circuit 5.
 このクロックによって、カウンタ5がカウントアップする。パルス発生器70の出力を、OE(信号A)のデアサートによって、停止した後に、カウンタ5の上位ビットを読み出す。これにより、LSIテスター8は、ACカップリングI/Oの動作の良否判定を行う。 The counter 5 counts up with this clock. After the output of the pulse generator 70 is stopped by deasserting OE (signal A), the upper bits of the counter 5 are read. As a result, the LSI tester 8 determines whether the AC coupling I / O operation is good or bad.
 このような構成により、パルス発生器70を使用するので、高周波パルスを分配できるため、ACカップリング用キャパシタ3を通過することが可能となる。又、パルス発生器70を使用し、周波数を可変に出来るため、ICの動作限界を調査することが可能である。 With such a configuration, since the pulse generator 70 is used, a high-frequency pulse can be distributed, so that the AC coupling capacitor 3 can be passed. Further, since the frequency can be made variable by using the pulse generator 70, it is possible to investigate the operation limit of the IC.
 更に、LSIテスター8のチャネルから信号制御するので、ドライバーとの組み合わせを考慮する必要がない。しかも、回路の故障があった場合は、レシーバー2自体の問題であることが分かる。この場合、試験用カウンタ5は、他のファンクション試験で動作が確認されていることが前提である。 Furthermore, since the signal is controlled from the channel of the LSI tester 8, there is no need to consider the combination with the driver. In addition, when there is a circuit failure, it is understood that this is a problem of the receiver 2 itself. In this case, it is assumed that the operation of the test counter 5 has been confirmed by another function test.
 その上、従来の試験のためのループバック回路や判定回路を、IC1に設ける必要がないため、IC1の素子数を削減できる。 In addition, since there is no need to provide a loopback circuit and a judgment circuit for the conventional test in the IC1, the number of elements of the IC1 can be reduced.
 (測定処理)
 図4は、本発明の測定処理の第1の実施の形態の処理フロー図であり、図2のLSIテスター8が実行する、良品と、不良品との判別のための測定処理を示す。
(Measurement process)
FIG. 4 is a process flowchart of the first embodiment of the measurement process of the present invention, and shows the measurement process for discriminating between a good product and a defective product, which is executed by the LSI tester 8 of FIG.
 (S10)LSIテスター8から、信号線L9より、一般制御信号をIC1に送り、IC1内の全てのカウンタをリセットする。 (S10) A general control signal is sent from the LSI tester 8 to the IC 1 through the signal line L9, and all counters in the IC 1 are reset.
 (S12)LSIテスター8から、信号線L7を介し、制御信号により、周波数設定回路72の周波数とパルス数を設定する。 (S12) The frequency and number of pulses of the frequency setting circuit 72 are set by the control signal from the LSI tester 8 through the signal line L7.
 (S14)LSIテスター8が、信号線L6を介し、Output
Enable Aをアサートし、パルス発生器70を動作させる。パルス発生器70は、設定された周波数でパルスB,Cを発生し、信号線L10,L11に出力する。これにより、被測定インターフェース回路20/メモリインターファース回路30の入力バッファ2に、パルスが印加される。入力バッファ2がパルスを受信出来た場合、入力バッファ2から、カウンタクロック信号Dが発生する。カウンタクロック信号Dが発生した場合、カウンタ5がカウントアップする。
(S14) The LSI tester 8 outputs the signal via the signal line L6.
Enable A is asserted and the pulse generator 70 is operated. The pulse generator 70 generates pulses B and C at a set frequency and outputs them to the signal lines L10 and L11. As a result, a pulse is applied to the input buffer 2 of the measured interface circuit 20 / memory interface circuit 30. When the input buffer 2 can receive a pulse, a counter clock signal D is generated from the input buffer 2. When the counter clock signal D is generated, the counter 5 counts up.
 (S16)パルス発生器70は、設定されたパルス数を発生して、停止する。LSIテスター8は、信号線L8を介し、カウンタ5の値を読み出す。 (S16) The pulse generator 70 generates the set number of pulses and stops. The LSI tester 8 reads the value of the counter 5 through the signal line L8.
 (S18)LSIテスター8は、読み出したカウンタ値と、先に、周波数設定回路72に設定した値(パルス数)とを比較する。 (S18) The LSI tester 8 compares the read counter value with the value (number of pulses) previously set in the frequency setting circuit 72.
 (S20)被測定インターフェース回路20/メモリインターファース回路30が、この周波数のパルスを受信できた場合は、それぞれの値が一致するため、LSIテスター8は、比較結果が一致を示す場合には、この被測定IC1は、良品であると判断する。一方、被測定インターフェース回路20/メモリインターファース回路30が、この周波数のパルスを受信できなかった場合は、カウンタクロック信号が発生しない。カウンタクロック信号が発生しない場合、カウンタ5がカウントアップしない。このため、LSIテスター8は、比較結果が一致を示さない場合には、この被測定IC1は、不良品であると判断する。 (S20) When the measured interface circuit 20 / memory interface circuit 30 can receive a pulse of this frequency, the values match, so the LSI tester 8 indicates that the comparison result indicates a match. This measured IC 1 is determined to be a non-defective product. On the other hand, if the measured interface circuit 20 / memory interface circuit 30 cannot receive the pulse of this frequency, the counter clock signal is not generated. When the counter clock signal is not generated, the counter 5 does not count up. For this reason, the LSI tester 8 determines that the IC 1 to be measured is a defective product when the comparison result does not indicate coincidence.
 このように、汎用テスターのテスタボードに、パルス発生器70を設け、高周波パルスを出力するため、高周波数において、ACカップリング用キャパシタ3を通過することが可能となる。又、LSIテスター8のチャネルから信号制御するので、ドライバーとの組み合わせを考慮する必要がない。しかも、回路の故障があった場合は、レシーバー2自体の問題であることが分かる。その上、従来の試験のためのループバック回路や判定回路を、IC1に設ける必要がないため、IC1の素子数を削減できる。 Thus, since the pulse generator 70 is provided on the tester board of the general-purpose tester and the high frequency pulse is output, the AC coupling capacitor 3 can be passed at a high frequency. In addition, since the signal is controlled from the channel of the LSI tester 8, it is not necessary to consider the combination with the driver. In addition, when there is a circuit failure, it is understood that this is a problem of the receiver 2 itself. In addition, since there is no need to provide a loopback circuit and a determination circuit for the conventional test in the IC1, the number of elements of the IC1 can be reduced.
 図5は、本発明の測定処理の第2の実施の形態の処理フロー図であり、図2のLSIテスター8が実行する。この例では、ICの周波数限界性能を測定するための測定処理を示す。図5において、図4で示したものと同一のものは、同一の記号で示してある。 FIG. 5 is a process flow diagram of the second embodiment of the measurement process of the present invention, which is executed by the LSI tester 8 of FIG. In this example, a measurement process for measuring the frequency limit performance of an IC is shown. In FIG. 5, the same components as those shown in FIG. 4 are indicated by the same symbols.
 (S30)LSIテスター8は、図4のS10~S18を実行する。即ち、LSIテスター8から、信号線L9より、一般制御信号をIC1に送り、IC1内の全てのカウンタをリセットする(S10)。LSIテスター8から、信号線L7を介し、制御信号により、周波数設定回路72の周波数とパルス数を設定する(S12)。LSIテスター8が、信号線L6を介し、Output
Enable Aをアサートし、パルス発生器70を動作させて、パルス発生器70から、設定された周波数のパルスB,Cを発生させ、信号線L10,L11に出力する。カウンタクロック信号Dを、カウンタ5がカウントアップする(S14)。LSIテスター8は、信号線L8を介し、カウンタ5の値を読み出す(S16)。LSIテスター8は、読み出したカウンタ値と、先に、周波数設定回路72に設定した値(パルス数)とを比較する。
(S30) The LSI tester 8 executes S10 to S18 of FIG. That is, a general control signal is sent from the LSI tester 8 to the IC 1 through the signal line L9, and all counters in the IC 1 are reset (S10). The frequency and the number of pulses of the frequency setting circuit 72 are set by the control signal from the LSI tester 8 through the signal line L7 (S12). The LSI tester 8 outputs the signal via the signal line L6.
Enable A is asserted, the pulse generator 70 is operated, and pulses B and C having a set frequency are generated from the pulse generator 70 and output to the signal lines L10 and L11. The counter 5 counts up the counter clock signal D (S14). The LSI tester 8 reads the value of the counter 5 through the signal line L8 (S16). The LSI tester 8 compares the read counter value with the value (number of pulses) previously set in the frequency setting circuit 72.
 (S32)LSIテスター8は、比較結果が一致を示すかを判定する。 (S32) The LSI tester 8 determines whether the comparison result indicates a match.
 (S34)LSIテスター8は、比較結果が一致する場合に、周波数設定回路72に設定する周波数を、1段階高い周波数に更新する。そして、LSIテスター8は、この更新した周波数が、測定の上限周波数を超えたかを判定する。LSIテスター8は、更新した周波数が、測定の上限周波数を超えた場合には、上限周波数を、ICの限界周波数と判断し、これを記憶する。一方、LSIテスター8は、更新した周波数が、測定の上限周波数を超えていない場合には、ステップS30(図4のステップS10)に戻る。 (S34) When the comparison results match, the LSI tester 8 updates the frequency set in the frequency setting circuit 72 to a frequency one step higher. Then, the LSI tester 8 determines whether the updated frequency exceeds the upper limit frequency of measurement. If the updated frequency exceeds the upper limit frequency of measurement, the LSI tester 8 determines that the upper limit frequency is the limit frequency of the IC and stores this. On the other hand, if the updated frequency does not exceed the upper limit frequency for measurement, the LSI tester 8 returns to step S30 (step S10 in FIG. 4).
 (S36)LSIテスター8は、比較結果が一致しない場合には、今回の測定の1回前に設定した周波数を、ICの限界周波数と判断し、これを記憶する。 (S36) If the comparison result does not match, the LSI tester 8 determines that the frequency set one time before the current measurement is the limit frequency of the IC, and stores this.
 このように、テストボードに、パルス発生器70を設け、高周波パルスを分配できるため、ACカップリング用キャパシタ3を通過することが可能となり、高周波数の測定が可能となる。又、パルス発生器70を使用し、周波数を可変に出来るため、ICの動作限界を調査することが可能である。 Thus, since the pulse generator 70 is provided on the test board and the high frequency pulse can be distributed, it is possible to pass through the AC coupling capacitor 3 and to measure at a high frequency. Further, since the frequency can be made variable by using the pulse generator 70, it is possible to investigate the operation limit of the IC.
 更に、LSIテスター8のチャネルから信号制御するので、ドライバーとの組み合わせを考慮する必要がない。しかも、回路の故障があった場合は、レシーバー2自体の問題であることが分かる。この場合、試験用カウンタ5は、他のファンクション試験で動作が確認されていることが前提である。その上、従来の試験のためのループバック回路や判定回路を、IC1に設ける必要がないため、IC1の素子数を削減できる。 Furthermore, since the signal is controlled from the channel of the LSI tester 8, there is no need to consider the combination with the driver. In addition, when there is a circuit failure, it is understood that this is a problem of the receiver 2 itself. In this case, it is assumed that the operation of the test counter 5 has been confirmed by another function test. In addition, since there is no need to provide a loopback circuit and a determination circuit for the conventional test in the IC1, the number of elements of the IC1 can be reduced.
 (他の実施の形態)
 前述の説明では、インターフェース回路に、1つの入力バッファの例で説明したが、複数の入力バッファを設けても、同様に、適用できる。この場合、テストボードのパルス発生器70に、複数の入力バッファへの出力切り替え回路を設け、順次、複数の入力バッファの測定を実行しても良い。又、複数の入力バッファを設けた場合、カウンタ5を共用する構成としても良い。
(Other embodiments)
In the above description, the interface circuit has been described with an example of one input buffer. However, the present invention can be similarly applied even when a plurality of input buffers are provided. In this case, the pulse generator 70 of the test board may be provided with an output switching circuit for a plurality of input buffers, and the measurement of the plurality of input buffers may be executed sequentially. If a plurality of input buffers are provided, the counter 5 may be shared.
 テスターのテストボードに、パルス発生器を設け、高周波パルスを出力するようにしたため、ACカップリング入力バッファの高周波数の測定が可能となる。又、テスターのチャネルから信号制御するので、ドライバーとの組み合わせを考慮する必要がなく、回路の故障があった場合は、レシーバー自体の問題であることが分かる。その上、従来の試験のためのループバック回路や判定回路を、被測定回路に設ける必要がないため、半導体集積回路の素子数を削減できる。 ∙ Since the tester's test board is equipped with a pulse generator to output high frequency pulses, it is possible to measure the high frequency of the AC coupling input buffer. Further, since the signal is controlled from the channel of the tester, it is not necessary to consider the combination with the driver, and it is understood that if there is a circuit failure, it is a problem of the receiver itself. In addition, since it is not necessary to provide a loopback circuit and a determination circuit for the conventional test in the circuit under test, the number of elements of the semiconductor integrated circuit can be reduced.
1 半導体集積回路(IC)
2 ACカップリング入力バッファ
3 コンデンサ(容量素子)
4 差動アンプ
5 カウンタ
6 同期回路
7 テストボード
8 LSIテスター
20(22) インターフェース回路
30 入力バッファ部
70 パルス発生器
72 周波数設定回路
1 Semiconductor integrated circuit (IC)
2 AC coupling input buffer 3 Capacitor (capacitance element)
4 Differential Amplifier 5 Counter 6 Synchronous Circuit 7 Test Board 8 LSI Tester 20 (22) Interface Circuit 30 Input Buffer 70 Pulse Generator 72 Frequency Setting Circuit

Claims (15)

  1.  ACカップリング入力バッファの周波数特性をテストするACカップリング入力バッファのテスト方法であって、
     前記ACカップリング入力バッファを有する半導体集積装置を搭載するテストボードに設けたパルス発生器から、前記ACカップリング入力バッファに、設定された周波数のパルス信号を入力するステップと、
     前記パルス信号が入力された前記ACカップリング入力バッファの出力パルスをカウンタでカウントするステップと、
     前記パルス発生器が、設定された数の信号を前記ACカップリング入力バッファに入力した後、テスターが、前記カウンタの値を読み出すステップと、
     前記テスターが、前記読み出したカウンタの値と、前記設定された数とを比較して、前記周波数での前記ACカップリング入力バッファの特性を判定するステップとを有する
     ことを特徴とするACカップリング入力バッファのテスト方法。
    An AC coupling input buffer test method for testing a frequency characteristic of an AC coupling input buffer, the method comprising:
    A step of inputting a pulse signal having a set frequency to the AC coupling input buffer from a pulse generator provided on a test board on which the semiconductor integrated device having the AC coupling input buffer is mounted;
    Counting the output pulses of the AC coupling input buffer to which the pulse signal is input with a counter;
    After the pulse generator inputs a set number of signals to the AC coupling input buffer, the tester reads the value of the counter;
    The tester comprises a step of comparing the read counter value with the set number to determine a characteristic of the AC coupling input buffer at the frequency. How to test the input buffer.
  2.  前記判定ステップは、更に、
     前記テスターが、前記読み出したカウンタの値と、前記設定された数とを比較して、前記比較結果が良好な場合に、前記パルス発生器に設定する周波数を、所定数高い周波数に更新するステップと、
     前記テスターが、前記更新した周波数を、前記パルス発生器に設定し、前記入力ステップ、カウントステップ、読み出しステップ、判定ステップを実行するステップと、
     前記テスターが、前記読み出したカウンタの値と、前記設定された数とを比較して、前記比較結果が良好でない場合に、前記更新前の周波数を、前記ACカップリング入力バッファの周波数特性として、決定するステップとを有する
     ことを特徴とする請求項1のACカップリング入力バッファのテスト方法。
    The determination step further includes:
    The tester compares the read counter value with the set number, and updates the frequency set in the pulse generator to a frequency higher by a predetermined number when the comparison result is good. When,
    The tester sets the updated frequency in the pulse generator, and executes the input step, the counting step, the reading step, and the determining step;
    When the tester compares the read counter value with the set number and the comparison result is not good, the frequency before update is set as the frequency characteristic of the AC coupling input buffer. The method for testing an AC coupling input buffer according to claim 1, further comprising the step of:
  3.  前記ACカップリング入力バッファが、一対の信号線に各々接続された一対の容量素子と、前記一対の容量素子に接続された差動アンプとを有する
     ことを特徴とする請求項1及び2のいずれかのACカップリング入力バッファのテスト方法。
    The AC coupling input buffer includes a pair of capacitive elements respectively connected to a pair of signal lines, and a differential amplifier connected to the pair of capacitive elements. A method for testing the AC coupling input buffer.
  4.  前記判定ステップは、前記比較結果から、前記ACカップリング入力バッファの良否を判定するステップを有する
     ことを特徴とする請求項1のACカップリング入力バッファのテスト方法。
    The method of testing an AC coupling input buffer according to claim 1, wherein the determining step includes a step of determining whether the AC coupling input buffer is good or bad from the comparison result.
  5.  前記半導体集積装置は、前記ACカップリング入力バッファと前記カウンタとを有する
     ことを特徴とする請求項1のACカップリング入力バッファのテスト方法。
    The test method for an AC coupling input buffer according to claim 1, wherein the semiconductor integrated device includes the AC coupling input buffer and the counter.
  6.  前記テスターが、前記カウンタをリセットするステップと、
     前記テスターが、前記パルス発生器に、前記周波数とパルス数を設定するステップと、
     前記テスターが、前記パルス発生器に、動作開始を指示するステップとを更に有する
     ことを特徴とする請求項1のACカップリング入力バッファのテスト方法。
    The tester resetting the counter;
    The tester sets the frequency and number of pulses in the pulse generator;
    The test method for an AC coupling input buffer according to claim 1, wherein the tester further includes a step of instructing the pulse generator to start operation.
  7.  ACカップリング入力バッファの周波数特性をテストするACカップリング入力バッファのテストシステムであって、
     前記ACカップリング入力バッファを有する半導体集積装置を搭載するテストボードと、
     前記テストボードに設けられ、前記ACカップリング入力バッファに、設定された周波数のパルス信号を入力するパルス発生器と、
     前記パルス信号が入力された前記ACカップリング入力バッファの出力パルスをカウントするカウンタの値を、前記パルス発生器が、設定された数の信号を前記ACカップリング入力バッファに入力した後、読み出し、前記読み出したカウンタの値と、前記設定された数とを比較して、前記周波数での前記ACカップリング入力バッファの特性を判定するテスターとを有する
     ことを特徴とするACカップリング入力バッファのテストシステム。
    An AC coupling input buffer test system for testing a frequency characteristic of an AC coupling input buffer, comprising:
    A test board on which a semiconductor integrated device having the AC coupling input buffer is mounted;
    A pulse generator provided on the test board and for inputting a pulse signal having a set frequency to the AC coupling input buffer;
    The value of a counter that counts output pulses of the AC coupling input buffer to which the pulse signal is input is read after the pulse generator inputs a set number of signals to the AC coupling input buffer, A tester for comparing the value of the read counter with the set number to determine the characteristics of the AC coupling input buffer at the frequency; system.
  8.  前記テスターは、更に、
     前記読み出したカウンタの値と、前記設定された数とを比較して、前記比較結果が良好な場合に、前記パルス発生器に設定する周波数を、所定数高い周波数に更新し、前記更新した周波数を、前記パルス発生器に設定した後、前記読み出したカウンタの値と、前記設定された数とを比較して、前記比較結果が良好でない場合に、前記更新前の周波数を、前記ACカップリング入力バッファの周波数特性として、決定する
     ことを特徴とする請求項7のACカップリング入力バッファのテストシステム。
    The tester further comprises:
    The read counter value is compared with the set number, and if the comparison result is good, the frequency set in the pulse generator is updated to a predetermined higher frequency, and the updated frequency Is set in the pulse generator, and the value of the read counter is compared with the set number, and if the comparison result is not good, the frequency before the update is determined as the AC coupling. 8. The AC coupling input buffer test system according to claim 7, wherein the frequency characteristic of the input buffer is determined.
  9.  前記ACカップリング入力バッファが、一対の信号線に各々接続された一対の容量素子と、前記一対の容量素子に接続された差動アンプとを有する
     ことを特徴とする請求項7及び8のいずれかのACカップリング入力バッファのテストシステム。
    9. The AC coupling input buffer includes a pair of capacitive elements respectively connected to a pair of signal lines, and a differential amplifier connected to the pair of capacitive elements. AC coupling input buffer test system.
  10.  前記テスターは、前記比較結果から、前記ACカップリング入力バッファの良否を判定する
     ことを特徴とする請求項7のACカップリング入力バッファのテストシステム。
    The test system for an AC coupling input buffer according to claim 7, wherein the tester determines whether the AC coupling input buffer is good or bad from the comparison result.
  11.  前記半導体集積装置は、前記ACカップリング入力バッファと前記カウンタとを有する
     ことを特徴とする請求項7のACカップリング入力バッファのテストシステム。
    The test system for an AC coupling input buffer according to claim 7, wherein the semiconductor integrated device includes the AC coupling input buffer and the counter.
  12.  前記テスターは、前記カウンタをリセットした後、前記パルス発生器に、前記周波数とパルス数を設定し、前記パルス発生器に、動作開始を指示する
     ことを特徴とする請求項7のACカップリング入力バッファのテストシステム。
    8. The AC coupling input according to claim 7, wherein the tester resets the counter, sets the frequency and the number of pulses to the pulse generator, and instructs the pulse generator to start operation. Buffer test system.
  13.  ACカップリング入力バッファと、
     前記テストボードに設けられたパルス発生器から前記ACカップリング入力バッファに、設定された周波数のパルス信号を入力された時に、前記パルス信号が入力された前記ACカップリング入力バッファの出力パルスをカウントするカウンタと、
     テスターから、前記カウンタの値を読み出すための端子と有する
     ことを特徴とする半導体集積回路。
    An AC coupling input buffer;
    When a pulse signal having a set frequency is input from the pulse generator provided on the test board to the AC coupling input buffer, the output pulses of the AC coupling input buffer to which the pulse signal is input are counted. Counter to
    A semiconductor integrated circuit comprising: a terminal for reading the value of the counter from a tester.
  14.  前記ACカップリング入力バッファが、一対の信号線に各々接続された一対の容量素子と、前記一対の容量素子に接続された差動アンプとを有する
     ことを特徴とする請求項13の半導体集積回路。
    The semiconductor integrated circuit according to claim 13, wherein the AC coupling input buffer includes a pair of capacitive elements respectively connected to a pair of signal lines, and a differential amplifier connected to the pair of capacitive elements. .
  15.  前記ACカップリング入力バッファと、前記カウンタとを有するインターフェース回路と、
     前記インターフェース回路を介して、外部機器と接続し、データを送受信する機能回路とを有する
     ことを特徴とする請求項13の半導体集積回路。
    An interface circuit having the AC coupling input buffer and the counter;
    The semiconductor integrated circuit according to claim 13, further comprising: a functional circuit that is connected to an external device via the interface circuit and transmits / receives data.
PCT/JP2009/002950 2009-06-26 2009-06-26 Test method and test system for ac coupling input buffer, and semiconductor integrated circuit WO2010150322A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/002950 WO2010150322A1 (en) 2009-06-26 2009-06-26 Test method and test system for ac coupling input buffer, and semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/002950 WO2010150322A1 (en) 2009-06-26 2009-06-26 Test method and test system for ac coupling input buffer, and semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
WO2010150322A1 true WO2010150322A1 (en) 2010-12-29

Family

ID=43386118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002950 WO2010150322A1 (en) 2009-06-26 2009-06-26 Test method and test system for ac coupling input buffer, and semiconductor integrated circuit

Country Status (1)

Country Link
WO (1) WO2010150322A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012177626A (en) * 2011-02-25 2012-09-13 Fujitsu Semiconductor Ltd Semiconductor device, test program, test method, and testing device
CN110940937A (en) * 2014-11-04 2020-03-31 意法半导体股份有限公司 Detection circuit, related active discharge circuit, integrated circuit and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152015A (en) * 1997-08-06 1999-02-26 Nec Corp Test circuit for high-speed semiconductor integrated circuit apparatus
JP2002014140A (en) * 2000-06-29 2002-01-18 Konica Corp Instrument for measuring operating frequency, and image-forming device
JP2002033653A (en) * 2000-07-17 2002-01-31 Mitsubishi Electric Corp Signal level conversion circuit and semiconductor device provided with the same
JP2008128795A (en) * 2006-11-20 2008-06-05 Fujitsu Ltd Semiconductor integrated circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152015A (en) * 1997-08-06 1999-02-26 Nec Corp Test circuit for high-speed semiconductor integrated circuit apparatus
JP2002014140A (en) * 2000-06-29 2002-01-18 Konica Corp Instrument for measuring operating frequency, and image-forming device
JP2002033653A (en) * 2000-07-17 2002-01-31 Mitsubishi Electric Corp Signal level conversion circuit and semiconductor device provided with the same
JP2008128795A (en) * 2006-11-20 2008-06-05 Fujitsu Ltd Semiconductor integrated circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012177626A (en) * 2011-02-25 2012-09-13 Fujitsu Semiconductor Ltd Semiconductor device, test program, test method, and testing device
CN110940937A (en) * 2014-11-04 2020-03-31 意法半导体股份有限公司 Detection circuit, related active discharge circuit, integrated circuit and method
US11750010B2 (en) 2014-11-04 2023-09-05 Stmicroelectronics S.R.L. Detection circuit for an active discharge circuit of an X-capacitor, related active discharge circuit, integrated circuit and method

Similar Documents

Publication Publication Date Title
JP6594309B2 (en) Channel circuit and automatic test system
JPS62228177A (en) Tolerant input voltage inspection circuit for semiconductor integrated circuit
US5610925A (en) Failure analyzer for semiconductor tester
WO2010150322A1 (en) Test method and test system for ac coupling input buffer, and semiconductor integrated circuit
US20090210566A1 (en) Multi-chip digital system signal identification apparatus
US7765087B2 (en) System performance profiling device integrated inside a system-on-chip
JP2020030073A (en) Electronic product evaluation method and evaluation device
US20080137240A1 (en) System and method for monitoring speed signals from multiple fans
JP2985056B2 (en) IC test equipment
US7739536B2 (en) Intelligent frequency and voltage margining
US7043379B2 (en) Method for quantifying I/O chip/package resonance
JP5725057B2 (en) Interface board
US6738956B2 (en) Circuit configuration of a chip with a graphic controller integrated and method for testing the same
JP2010210298A (en) Semiconductor testing device and semiconductor testing method
CN114138701B (en) I2C signal adjusting method, device, equipment and readable storage medium
JP2000221242A (en) Semiconductor tester
JPH0519027A (en) Semiconductor logic integrated circuit
CN109696617B (en) Electric signal detection circuit and device
JPWO2019049199A1 (en) Data display system, display device, and data display method
KR102307088B1 (en) Interconnect fault diagnosis device using reference Through Silicon Via and the method thereof
JP2933028B2 (en) Semiconductor integrated circuit inspection equipment
JPS6021356B2 (en) Integrated circuit measurement equipment
JPH0329871A (en) Logical integrated circuit
JPH0526981A (en) Testing circuit for semiconductor integrated circuit
JPS62115379A (en) Logical lsi testing circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09846455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09846455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP