WO2010081268A1 - Methods for separating and redispersing nano-materials - Google Patents

Methods for separating and redispersing nano-materials Download PDF

Info

Publication number
WO2010081268A1
WO2010081268A1 PCT/CN2009/000774 CN2009000774W WO2010081268A1 WO 2010081268 A1 WO2010081268 A1 WO 2010081268A1 CN 2009000774 W CN2009000774 W CN 2009000774W WO 2010081268 A1 WO2010081268 A1 WO 2010081268A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
nanoparticles
nano
group
minutes
Prior art date
Application number
PCT/CN2009/000774
Other languages
French (fr)
Chinese (zh)
Inventor
刘景富
刘睿
阴永光
江桂斌
Original Assignee
中国科学院生态环境研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院生态环境研究中心 filed Critical 中国科学院生态环境研究中心
Publication of WO2010081268A1 publication Critical patent/WO2010081268A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/0288Applications, solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents

Definitions

  • the present invention relates to a method for separation and redispersion of nanomaterials, and more particularly to a method for separation and redispersion of nanomaterials suitable for nanomaterial applications. Background technique
  • phase transfer of nanomaterials mainly including a method for separating micro or nano-sized particles based on a water two-phase system of a buffer solution of a polymer and water or water ((a) SM Baxter, PR Sperry and Z. Fu, Langmuir, 1997, 13, 3948-3952; (b) MR Helfrich, M.
  • the present inventors have completed the present invention through intensive research.
  • a method for separation of nanomaterials comprising the steps of:
  • a method for redispersing a nanomaterial comprising the steps of:
  • the method Compared with the phase transfer method of existing nano materials, the method has the following advantages:
  • Nanomaterials with different chemical compositions that can be extracted/phase transferred including semiconductor quantum dots (eg, CdSe/ZnS quantum dots, etc.), metal oxide nanoparticles (eg, Ti0 2 nanoparticles, Fe 3 ) 0 4 nanoparticles), precious metal nanoparticles (eg, Ag, Au, Pt, Pd nanoparticles, etc.) and carbon nanomaterials (eg, C 6 o fullerene, single-walled carbon nanotubes, multi-walled carbon nanotubes, etc.) )Wait;
  • semiconductor quantum dots eg, CdSe/ZnS quantum dots, etc.
  • metal oxide nanoparticles eg, Ti0 2 nanoparticles, Fe 3 ) 0 4 nanoparticles
  • precious metal nanoparticles eg, Ag, Au, Pt, Pd nanoparticles, etc.
  • carbon nanomaterials eg, C 6 o fullerene, single-walled carbon nanotubes, multi-walled carbon nano
  • the method is based on the formation of a non-covalent assembly of nanomaterials and nonionic surfactants without the use of chemical agents containing sulfur, nitrogen and phosphorus atoms so as not to lose active sites on the surface of the nanomaterial.
  • the method can realize the separation of nano materials at a lower temperature and lower centrifugation, saving energy.
  • This method uses salt as a means of phase separation promotion without the use of other methods, such as pH adjustment.
  • the term “cloud point phase” means increasing the nano material and the nonionic surface unless otherwise specified. After the temperature of the aqueous dispersion of the active agent and the addition of the salt to the system, a phase enriched in the nonionic surfactant and nanomaterial appears in the lower portion of the aqueous dispersion.
  • the present invention provides a method for the separation of nanomaterials, the method comprising the steps of:
  • the nonionic surfactant is selected from the group consisting of Triton TX-114 (polyoxyethylene (8) nonylphenyl ether, available from Acros Oganic, USA), Triton TX-100 ( Polyoxyethylene (10) octyl phenyl ether, purchased from Acros Oganic, USA, PONPE-10 (polyoxyethylene (10) p-isooctyl phenyl ether, purchased from Tokyo Chemical Industry Co., Ltd.
  • Triton TX-114 polyoxyethylene (8) nonylphenyl ether, available from Acros Oganic, USA
  • Triton TX-100 Polyoxyethylene (10) octyl phenyl ether, purchased from Acros Oganic, USA
  • PONPE-10 polyoxyethylene (10) p-isooctyl phenyl ether
  • the nanomaterials are nanomaterials having different chemical compositions, different surface modifications, including but not limited to, semiconductor quantum dots (eg, CdSe/ZnS quantum dots, etc.); Rice particles (eg, Ti0 2 , Fe 3 0 4 nanoparticles, etc.); precious metal nanoparticles (eg, Ag, Au, Pt, Pd nanoparticles, etc.); carbon nanomaterials (eg, C 6 C fullerene, single-walled carbon) Nanotubes, multi-walled carbon nanotubes, etc.);
  • semiconductor quantum dots eg, CdSe/ZnS quantum dots, etc.
  • Rice particles eg, Ti0 2 , Fe 3 0 4 nanoparticles, etc.
  • precious metal nanoparticles eg, Ag, Au, Pt, Pd nanoparticles, etc.
  • carbon nanomaterials eg, C 6 C fullerene, single-walled carbon
  • Nanotubes eg, multi-walled carbon nanotubes, etc.
  • a salt is added to the mixture of the nanomaterial and the nonionic surfactant to shield the surface charge of the nanomaterial by the salt, thereby promoting the micellar phase and water during centrifugation The separation of phases.
  • the salt is a water-soluble salt of a Group I element or a Group II element, such as NaCl, LiCK CK CaCl 2 , MgCl 2 , etc., of which NaCl is preferred.
  • the salt is used in an amount of from 0.01 to 1% by weight, preferably 0.2% by weight, based on the weight percent of the mixture obtained in the step (b).
  • the present invention also provides a method for redispersion of a nanomaterial, the method comprising the steps of: adding 0.05 to 1% by weight of the aqueous dispersion to a nonionic surfactant to obtain a mixture;
  • the nonionic surfactant is selected from the group consisting of Triton TX-114 (polyoxyethylene (8) nonylphenyl ether, available from Acros Oganic, USA), Triton TX-100 ( Polyoxyethylene (10) octyl phenyl ether, purchased from Acros Oganic, USA, PONPE-10 (polyoxyethylene (10) p-isooctyl phenyl ether, purchased from Tokyo Chemical Industry Co., Ltd.
  • Triton TX-114 polyoxyethylene (8) nonylphenyl ether, available from Acros Oganic, USA
  • Triton TX-100 Polyoxyethylene (10) octyl phenyl ether, purchased from Acros Oganic, USA
  • PONPE-10 polyoxyethylene (10) p-isooctyl phenyl ether
  • IgepalCO-630 (2-[2-(4-mercaptophenoxy)ethoxy]ethanol, purchased from Alfa Aesar, USA), Genapol X-150 (isotridecyl polyglycol ether) 15 EO), Clariant Chemicals (China) Co., Ltd., Genapol X-80 (isotridecyl polyglycol ether (8 EO), Clariant Chemicals (China) Co., Ltd.), Brij-30 (polyoxyethylene) Dodecyl ether, purchased from Acros Oganic, USA, Brij-56 (decahamol hexadecyl ether, available from Fluka), Brij-97 (polyoxyethylene (10) oleyl ether, purchased from Sigma Aldrich), Pluronic L61 (oxyethylene (2)-oxypropylene (30)-oxyethylene (2) copolymer, available from BASF), Pluronic P105 (oxyethylene (37)-oxypropylene (56)-oxyethylene (37)
  • the nanomaterials are nanomaterials having different chemical compositions, different surface modifications, including, but not limited to, semiconductor quantum dots (eg, CdSe/ZnS quantum dots, etc.); metal oxide nanoparticles ( For example, Ti0 2 , Fe 3 0 4 nanoparticles, etc.; precious metal nanoparticles (eg, Ag, Au, Pt, Pd nanoparticles, etc.); carbon nanomaterials (eg, C 6Q fullerene, single-walled carbon nanotubes, Multi-walled carbon nanotubes, etc.);
  • semiconductor quantum dots eg, CdSe/ZnS quantum dots, etc.
  • metal oxide nanoparticles For example, Ti0 2 , Fe 3 0 4 nanoparticles, etc.
  • precious metal nanoparticles eg, Ag, Au, Pt, Pd nanoparticles, etc.
  • carbon nanomaterials eg, C 6Q fullerene, single-walled carbon nanotubes, Multi-walled carbon nanotubes, etc.
  • a salt is added to the mixture of the nanomaterial and the nonionic surfactant to shield the surface charge of the nanomaterial by the salt, thereby promoting the micellar phase and water during centrifugation The separation of phases.
  • the salt is a water-soluble salt of a Group I element or a Group II element, such as NaCl, LiCK KCK CaCl 2 , MgCl 2 , etc., of which NaCl is preferred.
  • the salt is used in an amount of from 0.01 to 1% by weight, preferably 0.2% by weight, based on the weight percent of the mixture obtained in the step (b).
  • the effect of separating the nanomaterial by the nonionic surfactant is characterized by calculating the extraction efficiency.
  • the extraction efficiency is calculated by the following methods:
  • V! and V 2 are the volumes of the supernatant and the cloud point phase, respectively.
  • Triton TX-114 (available from Acros Oganic, USA);
  • Triton TX-100 (available from Acros Oganic, USA);
  • PVP Polyvinylpyrrolidone
  • Chloroauric acid (purchased from Sinopharm Chemical Reagent Co., Ltd.);
  • NaCK KCK AgN0 3 sodium hypophosphite, sodium metaphosphate, FeCl 3 '6H 2 0, FeS (V7H 2 0, ammonia (25%), trisodium citrate (purchased from Beijing Chemical Plant);
  • CdSe/ZnS/PEG polyethylene glycol-coated CdSe/ZnS core-shell quantum dots with a particle size of 5-10 nm, purchased from Wuhan Jiayuan Quantum Dot
  • the PVP-coated nanosilver was synthesized by the method of reducing silver nitrate by sodium hypophosphite.
  • the synthesis was carried out as follows: 0.44 g of sodium hypophosphite, 0.4 g of PVP and 0.2 g of sodium metaphosphate were dissolved in 50 mL of secondary water. The pH of the solution was adjusted to 2.0 to obtain solution A.
  • Solution B was obtained by dissolving 1.6 g of silver nitrate in another 10 mL of secondary water. After the solution A and the solution B were simultaneously heated to 40 ° C and held for 30 minutes, the solution B was added dropwise to the solution A under stirring. The obtained mixture was continuously stirred in a 40 ° C water bath for 30 minutes.
  • the obtained nanosilver colloid was centrifuged at 6000 rpm for 20 minutes, and the obtained precipitate was washed once with each of 1% aqueous 1,1,3-benzotriazole, acetone and ethanol to remove unreacted materials. Finally, the reactant was vacuum dried at 50 ° C for 3 hours to obtain a PVP-coated nanosilver powder.
  • the PVP-coated nanosilver was characterized by a transmission electron microscope (TEM) (H-7500, Hitachi, Japan) with an average particle size of 35.8 ⁇ 8.0 nm.
  • TEM transmission electron microscope
  • Nanogold was prepared in the same manner as in Example 3 except that 100 mL of a 2.5 mmol/L aqueous solution of chloroauric acid was added and 2.5 mmol of trisodium citrate was added.
  • the average particle size of the synthesized nano gold is 40.6 ⁇ 7.9
  • Example 5 Synthesis of gold nanoclusters with an average particle size of 1.5 ⁇ 0.3 nm
  • 1.5 nm gold nanoclusters were synthesized using standard PVP encapsulation. That is, 1.111 g of polyvinylpyrrolidone was added to 100 mL of a 1 mmol/L aqueous solution of chloroauric acid in a 250 mL Erlenmeyer flask. The conical flask was then placed in an ice bath with magnetic stirring. After stirring for 30 minutes, 10 mL of 100 mmol/L potassium borohydride was added to the solution. The color of the solution quickly changed from light yellow to brownish red, indicating the synthesis of nanogold. The average particle size of the synthesized gold nanoparticles is 1.5 ⁇ 0.3 nm.
  • Example 6 Synthesis of nanopalladium
  • Nanoplatinum was prepared in the same manner as in Example 2 except that chloroauric acid was replaced with chloroplatinic acid. Prepared The average particle size of rice palladium is 8.6 ⁇ 2.9 nm.
  • Example 8 Humic acid-coated Fe 3 0 4 nanoparticles
  • Nano gold measured by UV-Vis spectrophotometer
  • the supernatant liquid two-phase system and the lower cloud point phase placed in an ice bath for 5 minutes, to obtain the oscillation Ti0 2 nano-particles were redispersed.
  • the redispersion was centrifuged at 3000 g for 10 minutes without obtaining a cloud point phase.
  • the re-dispersion was again heated to 35 ° C, followed by centrifugation at 160 g for 10 minutes to obtain a cloud point phase rich in Ti 2 2 nanoparticles again.
  • the average particle diameter of the Ti0 2 nanoparticles measured by TEM was 26.4 ⁇ 14.0 nm, and no significant change occurred.

Abstract

Methods for separating and redispersing nano-materials include the following steps: adding a kind of nonionic surfactant to an aqueous dispersion solution of nano-materials whose concentration is 10-6-1 mg/mL to obtain a mixture, the amount of the nonionic surfactant is 0.05-1wt% of the aqueous dispersion solution of nano-materials; heating the mixture at 30℃-60℃ for 5-60 minutes; adding a kind of salt to the mixture and the amount of the salt is 0.01-1wt% of the mixture; separating the mixture into a two-phase system with an upper clear liquid and a lower cloud point phase having said nano-materials by centrifugal separating. In addition, by cooling the separated nano-materials dispersion from 30℃-60℃ to 0℃-20℃, the nano-materials can be redispersed reversibly. The methods are suitable for separating and redispersing nano- materials in the field of nano-materials application.

Description

用于纳米材料的分离和再分散的方法 技术领域  Method for separation and redispersion of nanomaterials
本发明涉及用于纳米材料的分离和再分散的方法, 特别涉及适合纳米材料应用领 域的纳米材料的分离和再分散的方法。 背景技术  The present invention relates to a method for separation and redispersion of nanomaterials, and more particularly to a method for separation and redispersion of nanomaterials suitable for nanomaterial applications. Background technique
纳米材料的很多应用都涉及到制备高浓度的纳米材料水溶液或者水分散体系, 以 及从水溶液中富集 /回收 /分离纳米材料。在不同相之间可逆地转移, 以实现其回收和循 环使用充当催化剂的贵重金属纳米材料, 具有重荽的科学意义和潜在的经济价值。 目 前报道的可用于纳米材料的相转移的方法比较少, 主要包括基于聚合物和水或者水的 缓冲盐溶液的水双相体系分离微米或者纳米尺寸的颗粒的方法 ((a) S. M. Baxter, P. R. Sperry and Z. Fu, Langmuir, 1997, 13, 3948-3952; (b) M. R. Helfrich, M. El-Kouedi, M. R. Etherton and C. D. Keating, Langmuir, 2005, 21, 8478-8486; (c) X. Zeng and K. Osseo-Asare, J. Colloid Interf. Sci., 2004, 272, 298-307) 0 长链硫醇、 离子液体、 聚合物、 表面活性剂、 平面金属化合物也可以用于纳米材料的相转移。 但是这些方法都是通过 制备特殊的聚合物 -金属离子或聚合物 -金属氧化物纳米复合物, 或者通过合成一些尚 未商业化的特殊化学品, 来实现温度控制的可逆分散和分离的。 Many applications of nanomaterials involve the preparation of high concentrations of aqueous solutions or aqueous dispersions of nanomaterials, as well as the enrichment/recovery/separation of nanomaterials from aqueous solutions. Reversible transfer between different phases to achieve their recovery and recycling of precious metal nanomaterials acting as catalysts has a scientific and potential economic value. At present, there are few methods for phase transfer of nanomaterials, mainly including a method for separating micro or nano-sized particles based on a water two-phase system of a buffer solution of a polymer and water or water ((a) SM Baxter, PR Sperry and Z. Fu, Langmuir, 1997, 13, 3948-3952; (b) MR Helfrich, M. El-Kouedi, MR Etherton and CD Keating, Langmuir, 2005, 21, 8478-8486; (c) X. Zeng And K. Osseo-Asare, J. Colloid Interf. Sci., 2004, 272, 298-307) 0 long-chain thiols, ionic liquids, polymers, surfactants, planar metal compounds can also be used in the phase of nanomaterials Transfer. However, these methods achieve temperature-controlled reversible dispersion and separation by preparing special polymer-metal ion or polymer-metal oxide nanocomposites, or by synthesizing some special chemicals that have not yet been commercialized.
因此, 开发一种对具有不同化学组成, 不同表面修饰的纳米材料都普遍适用的, 能够低成本并可逆地分离和分散纳米材料的方法, 具有非常重要的意义。 发明内容  Therefore, it is of great significance to develop a method for the nanomaterials with different chemical compositions and different surface modifications that can be used for low cost and reversible separation and dispersion of nanomaterials. Summary of the invention
本发明的目的是提供用于纳米材料的分离和再分散的方法, 该方法能够可逆地从 水相中分离 /再分散具有不同化学组成, 不同表面修饰的纳米材料, 具有广泛的适用性 和低廉的成本。  It is an object of the present invention to provide a method for the separation and redispersion of nanomaterials which is capable of reversibly separating/redispersing nanomaterials having different chemical compositions and different surface modifications from an aqueous phase, having wide applicability and low cost. the cost of.
本发明人经过深入细致的研究, 完成了本发明。  The present inventors have completed the present invention through intensive research.
根据本发明的一个方面, 提供了一种用于纳米材料的分离的方法, 所述方法包括 以下步骤:  According to one aspect of the invention, a method for separation of nanomaterials is provided, the method comprising the steps of:
(a) 向浓度为 10—6-1 mg/mL的纳米材料的水性分散液中加入按所述的纳米材料的 水性分散液的重量百分比计为 0.05-1%的非离子型表面活性剂, 以得到混合物; (b) 将所述混合物在 30°C-60°C的温度加热 5-60分钟; (a) to a concentration of 10- 6 -1 mg / mL of the aqueous dispersion of nanomaterials added aqueous dispersion of the nanomaterial by a percentage of 0.05 to 1% by weight of nonionic surfactants, To obtain a mixture; (b) heating the mixture at a temperature between 30 ° C and 60 ° C for 5 to 60 minutes;
(c) 向得到的混合物中加入按所述混合物的重量百分比计为 0.01-1%的盐; 和  (c) adding, to the resulting mixture, 0.01-1% by weight of the mixture; and
(d) 离心分离, 使所述混合物分离为上层清液和含有所述纳米材料的下层浊点相 的二相体系。  (d) Centrifugation to separate the mixture into a supernatant and a two-phase system containing the lower cloud point phase of the nanomaterial.
根据本发明的另一个方面, 提供了一种用于纳米材料的再分散^方法, 所述方法 包括以下步骤:  According to another aspect of the present invention, a method for redispersing a nanomaterial is provided, the method comprising the steps of:
(a) 向浓度为 10—6-1 mg/mL的纳米材料的水性分散液中加入按所述的纳米材料的 水性分散液的重量百分比计为 0.05-1%的非离子型表面活性剂, 以得到混合物; (a) to a concentration of 10- 6 -1 mg / mL of the aqueous dispersion of nanomaterials added aqueous dispersion of the nanomaterial by a percentage of 0.05 to 1% by weight of nonionic surfactants, To obtain a mixture;
(b) 将所述混合物在 30°C-60°C的温度加热 5-60分钟;  (b) heating the mixture at a temperature of from 30 ° C to 60 ° C for from 5 to 60 minutes;
(c) 向得到的混合物中加入按所述混合物的重量百分比计为 0.01-1%的盐;  (c) adding 0.01-1% by weight of the mixture to the obtained mixture;
(d) 离心分离, 使所述混合物分离为上层清液和含有所述纳米材料的下层浊点相 的二相体系; 和  (d) centrifuging to separate the mixture into a supernatant liquid and a two-phase system containing the lower cloud point phase of the nanomaterial;
(e) 将所述上层清液和下层浊点相的二相体系从 30°C-60°C冷却至 0'C-20'C,使所 述上层清液和含有所述纳米材料的下层浊点相的二相体系再混合。  (e) cooling the two-phase system of the supernatant and the lower cloud point phase from 30 ° C to 60 ° C to 0 'C-20 'C, so that the supernatant liquid and the lower layer containing the nano material The two phase system of the cloud point phase is remixed.
与现有纳米材料的相转移方法相比, 本方法主要具有以下优点:  Compared with the phase transfer method of existing nano materials, the method has the following advantages:
1. 较为广泛的适用性: 可萃取 /相转移不同化学组成的纳米材料, 包括半导体量 子点 (例如, CdSe/ZnS 量子点等)、 金属氧化物纳米颗粒 (例如, Ti02纳米颗粒、 Fe304 纳米颗粒 )、 贵重金属纳米颗粒 (例如, Ag、 Au、 Pt、 Pd纳米颗粒等)以及碳纳米材料 (例如, C6o富勒烯、 单壁碳纳米管、 多壁碳纳米管等)等; 1. Broad applicability: Nanomaterials with different chemical compositions that can be extracted/phase transferred, including semiconductor quantum dots (eg, CdSe/ZnS quantum dots, etc.), metal oxide nanoparticles (eg, Ti0 2 nanoparticles, Fe 3 ) 0 4 nanoparticles), precious metal nanoparticles (eg, Ag, Au, Pt, Pd nanoparticles, etc.) and carbon nanomaterials (eg, C 6 o fullerene, single-walled carbon nanotubes, multi-walled carbon nanotubes, etc.) )Wait;
2. 方法的绿色性: 不需要使用有毒害 (如硫醇)、 异味 (铵盐)、 昂贵或者尚未实现 商业化的化学品 (Triton TX-114具有很好的生物兼容性);  2. Greenness of the method: It is not necessary to use chemicals that are toxic (such as mercaptan), odor (ammonium salts), expensive or not yet commercialized (Triton TX-114 has good biocompatibility);
3. 可逆性: 只需要在较小范围内改变温度, 就可以灵活地实现纳米材料的分离 / 浓缩 /再分散;  3. Reversibility: The separation/concentration/redistribution of nanomaterials can be flexibly achieved by simply changing the temperature within a small range;
4. 该方法基于形成纳米材料与非离子型表面活性剂的非共价集合体,而不使用含 硫、 氮和磷原子的化学试剂, 从而不会损失纳米材料表面的活性位点。  4. The method is based on the formation of a non-covalent assembly of nanomaterials and nonionic surfactants without the use of chemical agents containing sulfur, nitrogen and phosphorus atoms so as not to lose active sites on the surface of the nanomaterial.
5. 本方法在较低的温度、 较低的离心下即可实现纳米材料的分离, 节省能源。  5. The method can realize the separation of nano materials at a lower temperature and lower centrifugation, saving energy.
6. 本方法使用了盐作为相分离促进手段, 而不使用其它方法, 如调节 pH值。 具体实施方式  6. This method uses salt as a means of phase separation promotion without the use of other methods, such as pH adjustment. detailed description
在本发明中, 除非特别指出, 术语 "浊点相"是指在升高纳米材料和非离子表面 活性剂的水性分散体的温度并且向体系中加入盐以后, 在所述水性分散体的下部出现 的富含非离子型表面活性剂和纳米材料的相。 In the present invention, the term "cloud point phase" means increasing the nano material and the nonionic surface unless otherwise specified. After the temperature of the aqueous dispersion of the active agent and the addition of the salt to the system, a phase enriched in the nonionic surfactant and nanomaterial appears in the lower portion of the aqueous dispersion.
在本发明人的研究中发现, 当将非离子型表面活性剂加入到纳米材料的水溶液中 时, 这些非离子型表面活性剂通过聚乙氧基链迅速吸附在纳米材料的表面上, 从而形 成较大的胶束团 -纳米材料复合体。 当将溶液的温度升高以出现浊点相时, 纳米材料表 面上的表面活性剂的聚乙氧基链与周围水分子间的氢键作用被削弱, 分子间氢键作用 增强, 使得胶束 /团-纳米材料复合体发生团聚, 以致水合粒径进一步增大。 但是, 纳米 材料表面上的电荷所引起的库仑排斥作用使得这些复合体得以在水溶液中稳定。 通过 加入盐可以屏蔽这些静电作用, 从而通过在较低的离心力下或者较长时间的静置, 就 可以得到萃取了纳米材料的富表面活性剂的相。  In the present inventors' research, it was found that when a nonionic surfactant is added to an aqueous solution of a nanomaterial, these nonionic surfactants are rapidly adsorbed on the surface of the nanomaterial by a polyethoxy chain, thereby forming Large micelle clusters - nanomaterial composites. When the temperature of the solution is raised to form a cloud point phase, the hydrogen bonding between the polyethoxyl chain of the surfactant on the surface of the nanomaterial and the surrounding water molecules is weakened, and the intermolecular hydrogen bonding is enhanced, so that the micelle is made. The agglomerate-nanomaterial composite agglomerates, so that the hydrated particle size is further increased. However, the Coulomb repulsion caused by the charge on the surface of the nanomaterial allows these complexes to be stabilized in aqueous solution. These electrostatic interactions can be shielded by the addition of salt, so that the surfactant-rich phase from which the nanomaterial is extracted can be obtained by standing at a lower centrifugal force or for a longer period of time.
本发明提供了一种用于纳米材料的分离的方法, 所述方法包括以下步骤:  The present invention provides a method for the separation of nanomaterials, the method comprising the steps of:
(a) 向浓度为 10—6-1 mg/mL的纳米材料的水性分散液中加入按所述的纳米材料的 水性分散液的重量百分比计为 0.05-1%的非离子型表面活性剂, 以得到混合物; (a) to a concentration of 10- 6 -1 mg / mL of the aqueous dispersion of nanomaterials added aqueous dispersion of the nanomaterial by a percentage of 0.05 to 1% by weight of nonionic surfactants, To obtain a mixture;
(b) 将所述混合物在 30°C-60'C的温度加热 5-60分钟;  (b) heating the mixture at a temperature between 30 ° C and 60 ° C for 5 to 60 minutes;
(c) 向得到的混合物中加入按所述混合物的重量百分比计为 0.01-1%的盐; 和 (c) adding, to the resulting mixture, 0.01-1% by weight of the mixture; and
(d) 离心分离, 使所述混合物分离为上层清液和含有所述纳米材料的下层浊点相 的二相体系。 (d) Centrifugation to separate the mixture into a supernatant and a two-phase system containing the lower cloud point phase of the nanomaterial.
根据本发明的某些优选实施方案,所述非离子型表面活性剂选自 Triton TX-114(聚 氧乙烯 (8)壬基苯基醚, 购自美国 Acros Oganic公司)、 Triton TX-100(聚氧乙烯 (10)辛基 苯基醚, 购自美国 Acros Oganic公司)、 PONPE-10(聚氧乙烯 (10)对-异辛基苯基醚, 购 自东京化成工业株式会社 (Tokyo Chemical Industry, Tokyo))、 IgepalCO-630(2-[2-(4-壬基 苯氧基)乙氧基]乙醇, 购自美国 AlfaAesar公司)、 Genapol X-150(异十三醇聚乙二醇醚 (15 EO), 科莱恩化工 (中国)有限公司)、 Genapol X-80(异十三醇聚乙二醇醚 (8 EO), 科 莱恩化工 (中国)有限公司)、 Brij-30(聚氧乙烯十二烷基醚,购自美国 Acros Oganic公司)、 Brij-56(十甘醇十六烷基醚,购自 Fluka公司)、 Brij-97(聚氧乙烯 (10)油基醚,购自 Sigma Aldrich公司)、 Pluronic L61(氧乙烯 (2)-氧丙烯 (30)-氧乙烯 (2)共聚物,购自 BASF公司)、 Pluronic P105(氧乙烯 (37)-氧丙烯 (56)-氧乙烯 (37)共聚物, 购自 BASF公司)等, 其中优 选 Triton TX- 114。  According to some preferred embodiments of the invention, the nonionic surfactant is selected from the group consisting of Triton TX-114 (polyoxyethylene (8) nonylphenyl ether, available from Acros Oganic, USA), Triton TX-100 ( Polyoxyethylene (10) octyl phenyl ether, purchased from Acros Oganic, USA, PONPE-10 (polyoxyethylene (10) p-isooctyl phenyl ether, purchased from Tokyo Chemical Industry Co., Ltd. (Tokyo Chemical Industry) , Tokyo)), IgepalCO-630 (2-[2-(4-mercaptophenoxy)ethoxy]ethanol, purchased from Alfa Aesar, USA), Genapol X-150 (isotridecyl polyglycol ether) (15 EO), Clariant Chemicals (China) Co., Ltd., Genapol X-80 (isotridecyl polyglycol ether (8 EO), Clariant Chemicals (China) Co., Ltd.), Brij-30 (polyoxygen) Ethylene lauryl ether, purchased from Acros Oganic, USA, Brij-56 (decyl alcohol, cetyl ether, available from Fluka), Brij-97 (polyoxyethylene (10) oleyl ether, purchased from Sigma Aldrich), Pluronic L61 (oxyethylene (2)-oxypropylene (30)-oxyethylene (2) copolymer, available from BASF), Pluronic P105 (oxyethylene (37)-oxygen Ene (56) - polyoxyethylene (37) copolymer, available from BASF Corporation) and the like, wherein preferably Triton TX- 114.
根据某些优选的实施方案, 所述纳米材料是具有不同化学组成, 不同表面修饰的 纳米材料, 包括但不限于, 半导体量子点 (例如, CdSe/ZnS 量子点等); 金属氧化物纳 米颗粒 (例如, Ti02、 Fe304纳米颗粒等); 贵重金属纳米颗粒 (例如, Ag、 Au、 Pt、 Pd 纳米颗粒等); 碳纳米材料 (例如 C6C富勒烯、 单壁碳纳米管、 多壁碳纳米管等); 等。 According to certain preferred embodiments, the nanomaterials are nanomaterials having different chemical compositions, different surface modifications, including but not limited to, semiconductor quantum dots (eg, CdSe/ZnS quantum dots, etc.); Rice particles (eg, Ti0 2 , Fe 3 0 4 nanoparticles, etc.); precious metal nanoparticles (eg, Ag, Au, Pt, Pd nanoparticles, etc.); carbon nanomaterials (eg, C 6 C fullerene, single-walled carbon) Nanotubes, multi-walled carbon nanotubes, etc.);
根据某些的优选实施方案, 在所述纳米材料和所述非离子型表面活性剂的混合物 中加入盐, 以通过盐屏蔽纳米材料的表面电荷, 从而促进离心操作时的富胶束相和水 相的分离。  According to certain preferred embodiments, a salt is added to the mixture of the nanomaterial and the nonionic surfactant to shield the surface charge of the nanomaterial by the salt, thereby promoting the micellar phase and water during centrifugation The separation of phases.
根据某些的优选实施方案,所述的盐为第 I主族元素或第 II主族元素的水溶性盐, 例如 NaCl、 LiCK CK CaCl2、 MgCl2等, 其中优选 NaCl。 According to certain preferred embodiments, the salt is a water-soluble salt of a Group I element or a Group II element, such as NaCl, LiCK CK CaCl 2 , MgCl 2 , etc., of which NaCl is preferred.
根据某些的优选实施方案, 按在所述步骤 (b)中得到的混合物的重量百分比计, 所 述盐的用量为 0.01-1重量%, 优选为 0.2重量%。  According to certain preferred embodiments, the salt is used in an amount of from 0.01 to 1% by weight, preferably 0.2% by weight, based on the weight percent of the mixture obtained in the step (b).
本发明还提供了一种用于纳米材料的再分散的方法, 所述方法包括以下步骤: 水性分散液的重量百分比计为 0.05-1%的非离子型表面活性剂, 以得到混合物;  The present invention also provides a method for redispersion of a nanomaterial, the method comprising the steps of: adding 0.05 to 1% by weight of the aqueous dispersion to a nonionic surfactant to obtain a mixture;
(b)将所述混合物在 30°C-60°C的温度加热 5-60分钟;  (b) heating the mixture at a temperature of from 30 ° C to 60 ° C for from 5 to 60 minutes;
(c) 向得到的混合物中加入按所述混合物的重量百分比计为 0.01-1%的盐;  (c) adding 0.01-1% by weight of the mixture to the obtained mixture;
(d) 离心分离, 使所述混合物分离为上层清液和含有所述纳米材料的下层浊点相 的二相体系: 和  (d) centrifuging to separate the mixture into a supernatant and a two-phase system containing the lower cloud point phase of the nanomaterial:
(e) 将所述上层清液和含有所述纳米材料的下层浊点相的二相体系从 30°C-60'C 冷却至 0'C-20°C, 使所述上层清液和含有所述纳米材料的下层浊点相的二相体系再混 合  (e) cooling the supernatant liquid and the two-phase system containing the lower cloud point phase of the nano material from 30 ° C to 60 ° C to 0 ° C to 20 ° C to make the supernatant liquid and containing Two-phase system remixing of the lower cloud point phase of the nanomaterial
根据本发明的某些优选实施方案,所述非离子型表面活性剂选自 Triton TX-114(聚 氧乙烯 (8)壬基苯基醚, 购自美国 Acros Oganic公司)、 Triton TX-100(聚氧乙烯 (10)辛基 苯基醚, 购自美国 Acros Oganic公司)、 PONPE-10(聚氧乙烯 (10)对-异辛基苯基醚, 购 自东京化成工业株式会社 (Tokyo Chemical Industry, Tokyo)) IgepalCO-630(2-[2-(4-壬基 苯氧基)乙氧基]乙醇, 购自美国 AlfaAesar公司)、 Genapol X-150(异十三醇聚乙二醇醚 (15 EO), 科莱恩化工 (中国)有限公司)、 Genapol X-80(异十三醇聚乙二醇醚 (8 EO), 科 莱恩化工 (中国)有限公司)、 Brij-30(聚氧乙烯十二烷基醚,购自美国 Acros Oganic公司)、 Brij-56(十甘醇十六垸基醚,购自 Fluka公司)、 Brij-97(聚氧乙烯 (10)油基醚,购自 Sigma Aldrich公司)、 Pluronic L61(氧乙烯 (2)-氧丙烯 (30)-氧乙烯 (2)共聚物,购自 BASF公司)、 Pluronic P105(氧乙烯 (37)-氧丙烯 (56)-氧乙烯 (37)共聚物, 购自 BASF公司)等, 其中优 选 Triton TX-114。 根据某些优选的实施方案, 所述纳米材料是具有不同化学组成, 不同表面修饰的 纳米材料, 包括但不限于, 半导体量子点 (例如, CdSe/ZnS 量子点等); 金属氧化物纳 米颗粒 (例如, Ti02、 Fe304纳米颗粒等); 贵重金属纳米颗粒 (例如, Ag、 Au、 Pt、 Pd 纳米颗粒等); 碳纳米材料 (例如 C6Q富勒烯、 单壁碳纳米管、 多壁碳纳米管等); 等。 According to some preferred embodiments of the invention, the nonionic surfactant is selected from the group consisting of Triton TX-114 (polyoxyethylene (8) nonylphenyl ether, available from Acros Oganic, USA), Triton TX-100 ( Polyoxyethylene (10) octyl phenyl ether, purchased from Acros Oganic, USA, PONPE-10 (polyoxyethylene (10) p-isooctyl phenyl ether, purchased from Tokyo Chemical Industry Co., Ltd. (Tokyo Chemical Industry) , Tokyo)) IgepalCO-630 (2-[2-(4-mercaptophenoxy)ethoxy]ethanol, purchased from Alfa Aesar, USA), Genapol X-150 (isotridecyl polyglycol ether) 15 EO), Clariant Chemicals (China) Co., Ltd., Genapol X-80 (isotridecyl polyglycol ether (8 EO), Clariant Chemicals (China) Co., Ltd.), Brij-30 (polyoxyethylene) Dodecyl ether, purchased from Acros Oganic, USA, Brij-56 (decahamol hexadecyl ether, available from Fluka), Brij-97 (polyoxyethylene (10) oleyl ether, purchased from Sigma Aldrich), Pluronic L61 (oxyethylene (2)-oxypropylene (30)-oxyethylene (2) copolymer, available from BASF), Pluronic P105 (oxyethylene (37)-oxypropylene (56)-oxyethylene (37) Copolymer , purchased from BASF Corporation, etc., among which Triton TX-114 is preferred. According to certain preferred embodiments, the nanomaterials are nanomaterials having different chemical compositions, different surface modifications, including, but not limited to, semiconductor quantum dots (eg, CdSe/ZnS quantum dots, etc.); metal oxide nanoparticles ( For example, Ti0 2 , Fe 3 0 4 nanoparticles, etc.; precious metal nanoparticles (eg, Ag, Au, Pt, Pd nanoparticles, etc.); carbon nanomaterials (eg, C 6Q fullerene, single-walled carbon nanotubes, Multi-walled carbon nanotubes, etc.);
根据某些的优选实施方案, 在所述纳米材料和所述非离子型表面活性剂的混合物 中加入盐, 以通过盐屏蔽纳米材料的表面电荷, 从而促进离心操作时的富胶束相和水 相的分离。  According to certain preferred embodiments, a salt is added to the mixture of the nanomaterial and the nonionic surfactant to shield the surface charge of the nanomaterial by the salt, thereby promoting the micellar phase and water during centrifugation The separation of phases.
根据某些的优选实施方案,所述的盐为第 I主族元素或第 II主族元素的水溶性盐, 例如 NaCl、 LiCK KCK CaCl2、 MgCl2等, 其中优选 NaCl。 According to certain preferred embodiments, the salt is a water-soluble salt of a Group I element or a Group II element, such as NaCl, LiCK KCK CaCl 2 , MgCl 2 , etc., of which NaCl is preferred.
根据某些的优选实施方案, 按在所述步骤 (b)中得到的混合物的重量百分比计, 所 述盐的用量为 0.01-1重量%, 优选为 0.2重量%。 下面结合实施例对本发明进行更详细的描述。 需要指出, 这些描述和实施例都是 为了使本发明便于理解, 而非对本发明的限制。 本发明的保护范围以所附的权利要求 书为准。 测试方法: 分离效果的表征  According to certain preferred embodiments, the salt is used in an amount of from 0.01 to 1% by weight, preferably 0.2% by weight, based on the weight percent of the mixture obtained in the step (b). The invention will now be described in greater detail with reference to the embodiments. It is to be understood that the description and examples are intended to be illustrative and not restrictive. The scope of the invention is defined by the appended claims. Test method: Characterization of separation effect
在本发明中, 通过计算萃取效率来表征通过非离子型表面活性剂分离纳米材料的 效果。 萃取效率通过下列方法计算:  In the present invention, the effect of separating the nanomaterial by the nonionic surfactant is characterized by calculating the extraction efficiency. The extraction efficiency is calculated by the following methods:
1. 对于浓度较高的纳米金(≥ lmg/L): 在萃取之前和萃取之后, 分别使用紫外可 见分光光度计 (Model UV-1102, 天美科技, 上海)测量水相中在纳米金的特征吸收波长 的吸光度值 A
Figure imgf000007_0001
A , 并且通过 算萃取效率。 另外, 可以测量下层浊点 相在相应波长的吸光度值 Aa,并且将八^/八^作为富集倍数 C。通过 CxV aA^xl00% (其 中, ¾为浊点相体积, 为萃取前水相体积), 即可得出萃取效率。 本发明的方法中 的萃取效率是上述两种方法计算的萃取效率的平均值。
1. For higher concentrations of gold (≥ lmg/L) : Before and after extraction, the characteristics of nano-gold in the aqueous phase were measured using an ultraviolet-visible spectrophotometer (Model UV-1102, Tianmei Technology, Shanghai). Absorbance value of absorption wavelength A
Figure imgf000007_0001
A, and by calculating the extraction efficiency. In addition, the absorbance value A a of the lower layer of the cloud point phase at the corresponding wavelength can be measured, and 八 / 八 ^ is taken as the enrichment factor C. By CxV a A ^ xl00% (wherein, ¾ cloud point phase volume, of the aqueous phase before extraction volume), the extraction efficiency can be obtained. The extraction efficiency in the method of the present invention is the average of the extraction efficiencies calculated by the above two methods.
2. 对于浓度较低的纳米金(≤1(^8 )以及其它纳米材料 (例如 Ti02、 Fe304、 Ag、 Pt、 Pd纳米颗粒等): 用电感耦合等离子体质谱仪 (ICP-MS) (Agilent 7500ce, 安捷伦公 司, 美国)分别测量将混合物离心分离后的上层清液和浊点相中相应于使用的纳米材料 的特征元素 (例如, 纳米金的 Au、 Fe304纳米颗粒的 Fe、 或纳米银的 Ag等)的含量 d 和 C2, 并且通过下式计算萃取效率:
Figure imgf000008_0001
χΙΟΟ %
2. For lower concentration of gold (≤1 (^ 8 ) and other nanomaterials (such as Ti0 2 , Fe 3 0 4 , Ag, Pt, Pd nanoparticles, etc.): Inductively coupled plasma mass spectrometry (ICP) -MS) (Agilent 7500ce, Agilent, USA) separately measured the supernatant and the cloud point phase of the mixture after centrifugation, corresponding to the characteristic elements of the nanomaterial used (eg, gold, Au, Fe 3 0 4 nm) The content of the particles Fe, or the nano-silver Ag, etc., d and C 2 , and the extraction efficiency is calculated by the following formula:
Figure imgf000008_0001
χΙΟΟ %
其中, V!、 V2分别是上层清液和浊点相的体积。 实施例 Among them, V! and V 2 are the volumes of the supernatant and the cloud point phase, respectively. Example
实施例中采用的原料如下:  The materials used in the examples are as follows:
Triton TX- 114(购自美国 Acros Oganic公司);  Triton TX-114 (available from Acros Oganic, USA);
Triton TX-100(购自美国 Acros Oganic公司);  Triton TX-100 (available from Acros Oganic, USA);
PONPE-10(购自东京化成工业株式会社 (Tokyo Chemical Industry, Tokyo));  PONPE-10 (purchased from Tokyo Chemical Industry, Tokyo);
聚乙烯基吡咯垸酮 (PVP) (购自美国 Acros Oganic公司);  Polyvinylpyrrolidone (PVP) (purchased from Acros Oganic, USA);
氯金酸 (购自国药集团化学试剂有 ^公司);  Chloroauric acid (purchased from Sinopharm Chemical Reagent Co., Ltd.);
NaCK KCK AgN03、次磷酸钠、偏磷酸钠、 FeCl3'6H20、 FeS(V7H20、氨水 (25%)、 柠檬酸三钠 (购自北京化工厂); NaCK KCK AgN0 3 , sodium hypophosphite, sodium metaphosphate, FeCl 3 '6H 2 0, FeS (V7H 2 0, ammonia (25%), trisodium citrate (purchased from Beijing Chemical Plant);
C60富勒烯 (购自 Aldrich公司); C 60 fullerene (purchased from Aldrich);
腐殖酸 (购自美国 Acrose Organic公司);  Humic acid (purchased from Acrose Organic, USA);
Ti02纳米颗粒 (AEROXIDE®Ti02 P 25 , 购自德固赛 (中国)公司); Ti0 2 nanoparticles (AEROXIDE® Ti02 P 25 , purchased from Degussa (China) Co., Ltd.);
CdSe/ZnS/PEG (聚乙二醇包裹的 CdSe/ZnS核壳结构量子点,粒径在 5-10nm之间, 购自武汉迦源量子点公司);  CdSe/ZnS/PEG (polyethylene glycol-coated CdSe/ZnS core-shell quantum dots with a particle size of 5-10 nm, purchased from Wuhan Jiayuan Quantum Dot);
其它试剂均来自北京化工厂。 实施例 1 : 纳米银的合成  Other reagents are from Beijing Chemical Plant. Example 1 : Synthesis of nanosilver
使用次磷酸钠还原硝酸银的方法合成 PVP包裹的纳米银。合成过程如下: 将 0.44 g 次磷酸钠、 0.4 g PVP和 0.2 g偏磷酸钠溶于 50 mL二次水中。 调解溶液的 pH值到 2.0, 得到溶液 A。 将 1.6 g硝酸银溶于另外 10 mL二次水中得到溶液 B。 将溶液 A和 溶液 B同时加热到 40°C并保持 30分钟后, 将溶液 B在搅拌下逐滴加入到溶液 A中。 将获得的混合液在 40°C水浴中持续搅拌 30分钟。 将获得的纳米银胶体在 6000 rmp下 离心 20分钟, 获得的沉淀使用 1% 1, 2, 3-苯并三唑水溶液、 丙酮和乙醇各冲洗一次, 以除去未反应物。最后将反应物在 50°C下真空干燥 3小时,得到 PVP包裹的纳米银粉 末。 该 PVP包裹的纳米银通过透射电子显微镜 (TEM)(H-7500, Hitachi, 日本)表征的 平均粒径为 35.8 ± 8.0 nm。 实施例 2: 平均粒径为 4.2 ± 1.5 nm的纳米金 (Au1)的合成 The PVP-coated nanosilver was synthesized by the method of reducing silver nitrate by sodium hypophosphite. The synthesis was carried out as follows: 0.44 g of sodium hypophosphite, 0.4 g of PVP and 0.2 g of sodium metaphosphate were dissolved in 50 mL of secondary water. The pH of the solution was adjusted to 2.0 to obtain solution A. Solution B was obtained by dissolving 1.6 g of silver nitrate in another 10 mL of secondary water. After the solution A and the solution B were simultaneously heated to 40 ° C and held for 30 minutes, the solution B was added dropwise to the solution A under stirring. The obtained mixture was continuously stirred in a 40 ° C water bath for 30 minutes. The obtained nanosilver colloid was centrifuged at 6000 rpm for 20 minutes, and the obtained precipitate was washed once with each of 1% aqueous 1,1,3-benzotriazole, acetone and ethanol to remove unreacted materials. Finally, the reactant was vacuum dried at 50 ° C for 3 hours to obtain a PVP-coated nanosilver powder. The PVP-coated nanosilver was characterized by a transmission electron microscope (TEM) (H-7500, Hitachi, Japan) with an average particle size of 35.8 ± 8.0 nm. Example 2: Synthesis of nano gold (Au 1 ) with an average particle size of 4.2 ± 1.5 nm
将含 0.1% Triton X-114的 50 mL lmmol/L的氯金酸溶液置于 50 mL锥形瓶中,并 且在冰浴下搅 30分钟, 之后加入 lmL 100 mmol/L 的 KBH4水溶液, 并且迅速塞紧瓶 塞。 溶液搅拌 2小时后获得通过 TEM测量的平均粒径为 4.2 ± 1.5 nm的纳米金。 实施例 3: 平均粒径为 13.7 ± 2.4 nm的纳米金 (Au2)的合成 50 mL of 1 mmol/L chloroauric acid solution containing 0.1% Triton X-114 was placed in a 50 mL Erlenmeyer flask and stirred in an ice bath for 30 minutes, after which 1 mL of 100 mmol/L KBH 4 aqueous solution was added, and Quickly stopper the stopper. After the solution was stirred for 2 hours, nano gold having an average particle diameter of 4.2 ± 1.5 nm as measured by TEM was obtained. Example 3: Synthesis of nano gold (Au 2 ) with an average particle size of 13.7 ± 2.4 nm
在 250 mL的锥形瓶内, 加入 lOOmL 1 mmol L的氯金酸水溶液, 在磁力搅拌下, 加热至沸腾。 30分钟后, 加入 10 mL 38.8mmol/L的柠檬酸三钠, 溶液颜色依次由浅黄 色变为无色、 黑色, 最后变为酒红色, 显示了纳米金的合成。 通过 TEM对合成的纳米 金进行表征。 测得的金纳米颗粒的平均粒径为 13.7士 2.4 nm。 实施例 4: 平均粒径为 40.6 ± 7.9 nm的纳米金 (Au3)的合成 In a 250 mL Erlenmeyer flask, add 100 mL of 1 mmol L aqueous solution of chloroauric acid and heat to boiling under magnetic stirring. After 30 minutes, 10 mL of 38.8 mmol/L trisodium citrate was added, and the color of the solution changed from light yellow to colorless, black, and finally to wine red, indicating the synthesis of nano gold. The synthesized nano gold was characterized by TEM. The measured gold nanoparticles had an average particle size of 13.7 ± 2.4 nm. Example 4: Synthesis of Nano Gold (Au 3 ) with an Average Particle Size of 40.6 ± 7.9 nm
除加入 100 mL浓度为 2.5 mmol/L的氯金酸水溶液、加入 2.5 mmol的的柠檬酸三 钠以外, 以与实施例 3中相同的方式制备纳米金。 合成的纳米金平均粒径为 40.6 ± 7.9  Nanogold was prepared in the same manner as in Example 3 except that 100 mL of a 2.5 mmol/L aqueous solution of chloroauric acid was added and 2.5 mmol of trisodium citrate was added. The average particle size of the synthesized nano gold is 40.6 ± 7.9
实施例 5: 平均粒径为 1.5 ± 0.3 nm的金纳米簇的合成 Example 5: Synthesis of gold nanoclusters with an average particle size of 1.5 ± 0.3 nm
使用标准的 PVP包裹法合成 1.5纳米的金纳米簇。即,向 250 mL锥形瓶内的 lOOmL 的 1 mmol/L的氯金酸水溶液中,加入 1.111克聚乙烯基吡咯垸酮。然后在磁力搅拌下, 将锥形瓶放置在冰浴中。 搅拌 30分钟后, 向溶液中添加 10 mL的 100 mmol/L的硼氢 化钾。 溶液颜色由浅黄色迅速变为棕红色, 显示了纳米金的合成。 合成后的纳米金的 平均粒径为 1.5 ± 0.3 nm. 实施例 6: 纳米钯的合成  1.5 nm gold nanoclusters were synthesized using standard PVP encapsulation. That is, 1.111 g of polyvinylpyrrolidone was added to 100 mL of a 1 mmol/L aqueous solution of chloroauric acid in a 250 mL Erlenmeyer flask. The conical flask was then placed in an ice bath with magnetic stirring. After stirring for 30 minutes, 10 mL of 100 mmol/L potassium borohydride was added to the solution. The color of the solution quickly changed from light yellow to brownish red, indicating the synthesis of nanogold. The average particle size of the synthesized gold nanoparticles is 1.5 ± 0.3 nm. Example 6: Synthesis of nanopalladium
将 0.0177 g氯化钯加入到 100 mL二次水中并且加入 0.2 mL 1 mol L的盐酸水溶 液。 将分散液在室温下剧烈搅拌 0.5 .小时后, 氯化钯溶解并且溶液变为亮黄色。 之后 加入 1 mL 100 mmol/L 的 KBH4水溶液, 并且迅速塞紧瓶塞。 溶液搅拌 2小时后获得 通过 TEM测量的平均粒径为 3.6 ± 1.0 nm的纳米钯。 实施例 7: 纳米铂的合成 0.0177 g of palladium chloride was added to 100 mL of secondary water and 0.2 mL of 1 mol L of aqueous hydrochloric acid was added. After the dispersion was vigorously stirred at room temperature for 0.5 hour, palladium chloride was dissolved and the solution turned bright yellow. Then add 1 mL of 100 mmol/L aqueous KBH 4 solution and quickly stopper the stopper. After stirring the solution for 2 hours, nanopalladium having an average particle diameter of 3.6 ± 1.0 nm as measured by TEM was obtained. Example 7: Synthesis of nanoplatinum
除将氯金酸换成氯铂酸以外, 以与实施例 2相同的方式制备纳米铂。 所制备的纳 米钯的平均粒径为 8.6 ± 2.9 nm。 实施例 8: 腐殖酸包裹的 Fe304纳米颗粒 Nanoplatinum was prepared in the same manner as in Example 2 except that chloroauric acid was replaced with chloroplatinic acid. Prepared The average particle size of rice palladium is 8.6 ± 2.9 nm. Example 8: Humic acid-coated Fe 3 0 4 nanoparticles
将 6.1 g FeCl3-6H20 和 4.2 g FeS04 7H20溶于 100 mL二次水中并将其加热到 90 V, 随后在迅速搅拌下依次加入 10 mL 25%的氨水和 50 mL含有 0.5 g腐殖酸的水溶 液。 将获得混合液在 90°C下搅拌 30分钟后冷却到室温。 将获得黑色的沉淀过滤并使 用二次水冲洗,干燥即可以获得腐殖酸包裹的 Fe304纳米颗粒。获得的 Fe304纳米颗粒 平均粒径为 9.3 ± 3.3 nm。 实施例 9: 纳米氧化铜的合成 Dissolve 6.1 g of FeCl 3 -6H 2 0 and 4.2 g of FeS0 4 7H 2 0 in 100 mL of secondary water and heat to 90 V, then add 10 mL of 25% ammonia and 50 mL containing 0.5 under rapid stirring. An aqueous solution of humic acid. The resulting mixture was stirred at 90 ° C for 30 minutes and then cooled to room temperature. The obtained black precipitate was filtered and rinsed using a secondary water, drying can be obtained humic wrapped Fe 3 0 4 nanoparticles. The Fe 3 0 4 nanoparticles obtained had an average particle diameter of 9.3 ± 3.3 nm. Example 9: Synthesis of nanometer copper oxide
向 50 mL 40 mmol/L的 NaOH的乙醇溶液中加入 50 mL的 20 mmol/L硫酸铜溶液。 将溶液在搅拌的条件下回流 2小时, 即可以获得氧化铜乙醇溶胶。 在 -52°C下真空冷冻 干燥获得粉末状固体。 该粉末状固体重新溶于水即可以获得纳米铜水溶液, 其平均粒 径为 61.5 ± 13.4 nm。 实施例 10: C6Q富勒烯的分散 Add 50 mL of 20 mmol/L copper sulfate solution to 50 mL of 40 mmol/L NaOH in ethanol. The copper oxide ethanol sol was obtained by refluxing the solution under stirring for 2 hours. It was freeze-dried under vacuum at -52 ° C to obtain a powdery solid. The powdery solid is redissolved in water to obtain a nano-copper aqueous solution having an average particle diameter of 61.5 ± 13.4 nm. Example 10: Dispersion of C 6Q fullerene
将富勒烯溶于甲苯中, 配制成浓度为 lg/L的溶液。 取 20 mL lg/L富勒烯甲苯溶 液加入到 50 mL二次水中, 再加入 1.5 mL 乙醇。 所得混合液置于超声清洗仪 (Crest Model 275HT, 38.5 KHZ, USA)中超声, 以去除有机溶剂, 从而获得稳定的 C6o富勒 烯水分散体系。 实施例 11 : 纳米银的分离和再分散 The fullerene was dissolved in toluene to prepare a solution having a concentration of lg/L. Add 20 mL of lg/L fullerene in toluene solution to 50 mL of secondary water and add 1.5 mL of ethanol. The resulting mixture was subjected to ultrasonication in an ultrasonic cleaner (Crest Model 275HT, 38.5 KHZ, USA) to remove the organic solvent, thereby obtaining a stable aqueous dispersion of C 6 o fullerene. Example 11: Separation and redispersion of nanosilver
向 9.5 mL 0.01 mg/mL的实施例 1中制备的纳米银 (平均粒径: 35.8 ± 8.0 nm)的水 溶液中加入 0.4 mL 50 mg/mL Triton X-114水溶液, 用蒸馏水定容到 9.9 mL。 将得到的 溶液在 35 °C的水浴中加热 30分钟后, 加入 0.1 mL 0.2 mol/L的 NaCl水溶液, 随后在 160g下离心 10分钟即获得富含纳米银的浊点相。通过 ICP-MS测量的纳米银的萃取效 率为 97%。  To a solution of 9.5 mL of 0.01 mg/mL of the nanosilver (average particle diameter: 35.8 ± 8.0 nm) prepared in Example 1, 0.4 mL of a 50 mg/mL Triton X-114 aqueous solution was added, and the volume was adjusted to 9.9 mL with distilled water. After the obtained solution was heated in a water bath at 35 ° C for 30 minutes, 0.1 mL of a 0.2 mol/L NaCl aqueous solution was added, followed by centrifugation at 160 g for 10 minutes to obtain a nano silver-rich cloud point phase. The extraction efficiency of nanosilver measured by ICP-MS was 97%.
然后, 将上层清液和下层浊点相的二相体系置于冰浴中 5分钟, 振荡后即可获得 纳米银的再分散液。该再分散液在 3000g下离心 10分钟不会得到浊点相。重新将再分 散液加热到 35 °C, 随后在 160 g下离心 10分钟, 可再次得到富含纳米银的浊点相。 重 复 10次该循环以后, 通过 TEM测量的纳米银的平均粒径为 34.5 ± 11.4 nm, 没有发生 明显变化。 实施例 12: 纳米金 (Au2)的分离和再分散 Then, the two-phase system of the supernatant and the lower cloud point phase was placed in an ice bath for 5 minutes, and after shaking, a nano-silver redispersion was obtained. The redispersion was centrifuged at 3000 g for 10 minutes without obtaining a cloud point phase. The re-dispersion was again heated to 35 ° C, followed by centrifugation at 160 g for 10 minutes to obtain a nano-silver-rich cloud point phase again. Heavy After 10 cycles of this cycle, the average particle size of the nanosilver measured by TEM was 34.5 ± 11.4 nm, and no significant change occurred. Example 12: Separation and redispersion of gold nanoparticles (Au 2 )
向 8.9 mL 0.01 mg/mL实施例 3中制备的纳米金 (Au2)(13.7 ± 2.4 nm)的水溶液中加 入 1.0 mL 50 mg/mL Triton X-114水溶液,用蒸馏水定容到 9.9 mL。将得到的溶液在 35 'C的水浴中加热 30分钟后, 加入 0.1 mL 0.2 mol/L的 NaCl水溶液, 随后在 160g下离 心 10分钟即获得富含纳米金 (Au2)的浊点相。 通过紫外可见分光光度计测量的纳米金 (Au2)的萃取效率为 99 %。 To 8.9 mL of 0.01 mg/mL aqueous solution of gold (Au 2 ) (13.7 ± 2.4 nm) prepared in Example 3, 1.0 mL of 50 mg/mL Triton X-114 aqueous solution was added, and the volume was adjusted to 9.9 mL with distilled water. After the resulting solution was heated in a 35 ° C water bath for 30 minutes, 0.1 mL of a 0.2 mol/L NaCl aqueous solution was added, followed by centrifugation at 160 g for 10 minutes to obtain a nano-gold (Au 2 )-rich cloud point phase. The extraction efficiency of nano gold (Au 2 ) measured by an ultraviolet-visible spectrophotometer was 99%.
然后, 将上层清液和下层浊点相的二相体系的温度降低到 0°C, 振荡即可获得纳 米金 (Au2)的再分散液。 该再分散液在 3000g下离心 10分钟不会得到浊点相。 重新将 再分散液加热到 35'C, 随后在 160g下离心 10分钟, 可再次得到富含纳米金 (Au2)浊点 相。重复 10次该循环以后,通过 TEM测量的纳米金 (Au2)的平均粒径为 13.3 ± 2.5 nm, 没有发生明显变化。 实施例 13: 纳米金 (Au2)的分离和再分散 Then, the temperature of the two-phase system of the supernatant and the lower cloud point phase is lowered to 0 ° C, and a redispersion of gold (Au 2 ) is obtained by shaking. The redispersion was centrifuged at 3000 g for 10 minutes without obtaining a cloud point phase. The re-dispersion was again heated to 35 C and then centrifuged at 160 g for 10 minutes to again obtain a nano-gold (Au 2 ) rich cloud phase. After repeating this cycle 10 times, the average particle diameter of the nano gold (Au 2 ) measured by TEM was 13.3 ± 2.5 nm, and no significant change occurred. Example 13: Separation and redispersion of gold nanoparticles (Au 2 )
向 9.5 mL 0.01 mg/mL实施例 3中制备的纳米金 (Au2)(13.7士 2.4 nm)的水溶液中加 入 0.4 mL 50 mg/mL PONPE-10水溶液, 用蒸馏水定容到 9.9 mL。 将得到的溶液在 35To a solution of 9.5 mL of 0.01 mg/mL of gold (Au 2 ) (13.7 ± 2.4 nm) prepared in Example 3, 0.4 mL of 50 mg/mL PONPE-10 aqueous solution was added, and the volume was adjusted to 9.9 mL with distilled water. The resulting solution is at 35
°C的水浴中加热 30分钟后, 加入 0.1 mL 0.2 mol/L的 NaCl水溶液, 随后在 160g下离 心 10分钟即获得富含纳米金 (Au2)的浊点相。 通过紫外可见分光光度计测量的纳米金After heating in a water bath at ° C for 30 minutes, 0.1 mL of a 0.2 mol/L NaCl aqueous solution was added, followed by centrifugation at 160 g for 10 minutes to obtain a nano-gold (Au 2 )-rich cloud point phase. Nano gold measured by UV-Vis spectrophotometer
(Au2)的萃取效率为 92 %。 The extraction efficiency of (Au 2 ) was 92%.
然后, 将上层清液和下层浊点相的二相体系的温度降低到 4'C , 振荡即可获得纳 米金 (Au2)的再分散液。 该再分散液在 3000g下离心 10分钟不会得到浊点相。 重新将 再分散液加热到 35'C, 随后在 160g下离心 10分钟, 可再次得到富含纳米金 (Au2)浊点 相。重复 10次该循环以后,通过 TEM测量的纳米金 (Au2)的平均粒径为 13.3 ± 2.1 nm, 没有发生明显变化。 实施例 14: 纳米金 (Au1)的分离和再分散 Then, the temperature of the two-phase system of the supernatant liquid and the lower cloud point phase is lowered to 4'C, and a red gold (Au 2 ) redispersion liquid is obtained by shaking. The redispersion was centrifuged at 3000 g for 10 minutes without obtaining a cloud point phase. The re-dispersion was again heated to 35 C and then centrifuged at 160 g for 10 minutes to again obtain a nano-gold (Au 2 ) rich cloud phase. After repeating this cycle 10 times, the average particle diameter of the nano gold (Au 2 ) measured by TEM was 13.3 ± 2.1 nm, and no significant change occurred. Example 14: Separation and redispersion of gold nanoparticles (Au 1 )
向 9.5 mL O.Ol mg/mL实施例 2中制备的纳米金 (Au')(4.2士 1.5nm)的水溶液中加入 0.4 mL 50 mg/mL Triton X-100水溶液, 用蒸馏水定容到 9.9 mL。将得到的溶液在 60°C 的水浴中加热 30分钟后, 加入 0.1 mL 0.2 mol/L的 NaCl水溶液, 随后在 160g下离心 10分钟即获得富含纳米金 (Au1)的浊点相。通过紫外可见分光光度计测量的纳米金 (Au1) 的萃取效率为 93 %。 Add 0.4 mL of 50 mg/mL Triton X-100 aqueous solution to 9.5 mL O.Ol mg/mL aqueous solution of gold (Au') (4.2 ± 1.5 nm) prepared in Example 2, and dilute to 9.9 mL with distilled water. . The resulting solution was at 60 ° C After heating in a water bath for 30 minutes, 0.1 mL of a 0.2 mol/L NaCl aqueous solution was added, followed by centrifugation at 160 g for 10 minutes to obtain a nano-gold (Au 1 )-rich cloud point phase. The extraction efficiency of nano gold (Au 1 ) measured by an ultraviolet-visible spectrophotometer was 93%.
然后, 将上层清液和下层浊点相的二相体系的温度降低到 4°C, 振荡即可获得纳 米金 (Au1)的再分散液。 该再分散液在 3000g下离心 10分钟不会得到浊点相。 重新将 再分散液加热到 60'C, 随后在 160g下离心 10分钟, 可再次得到富含纳米金 (Au1)浊点 相。 重复 10次该循环以后, 通过 TEM测量的纳米金 (Au1)的平均粒径为 4.6 ± 1.3 nm, 没有发生明显变化。 实施例 15: 纳米金 (Au1)的分离和再分散 Then, the temperature of the two-phase system of the supernatant liquid and the lower cloud point phase was lowered to 4 ° C, and a redispersion of nano gold (Au 1 ) was obtained by shaking. The redispersion was centrifuged at 3000 g for 10 minutes without obtaining a cloud point phase. The redispersion was again heated to 60 ° C, followed by centrifugation at 160 g for 10 minutes to obtain a nano-gold (Au 1 ) rich cloud phase. After repeating this cycle 10 times, the average particle diameter of the nano gold (Au 1 ) measured by TEM was 4.6 ± 1.3 nm, and no significant change occurred. Example 15: Separation and redispersion of gold nanoparticles (Au 1 )
向 9.5 mL O. 1 mg/mL实施例 2中制备的纳米金 (Α^)(4.2 ± 1.5nm)的水溶液中加入 0.4 mL 50 mg/mL Triton X-114水溶液, 用蒸馏水定容到 9.9 mL。 将得到的溶液在 60°C 的水浴中加热 30分钟后, 加入 0.1 mL 0.2 mol/L的 NaCl水溶液, 随后在 160g下离心 10分钟即获得富含纳米金 (Au1)的浊点相。通过紫外可见分光光度计测量的纳米金 (Au1) 的萃取效率为 97 %。 Add 0.4 mL of 50 mg/mL Triton X-114 aqueous solution to 9.5 mL of O. 1 mg/mL aqueous solution of gold (Α^) (4.2 ± 1.5 nm) prepared in Example 2, and dilute to 9.9 mL with distilled water. . After the resulting solution was heated in a water bath at 60 ° C for 30 minutes, 0.1 mL of a 0.2 mol/L NaCl aqueous solution was added, followed by centrifugation at 160 g for 10 minutes to obtain a nano-gold (Au 1 )-rich cloud point phase. The extraction efficiency of nano gold (Au 1 ) measured by an ultraviolet-visible spectrophotometer was 97%.
然后, 将上层清液和下层浊点相的二相体系的温度降低到 0'C, 振荡即可获得纳 米金 (Au1)的再分散液。 该再分散液在 3000 g下离心 10分钟不会得到浊点相。 重新将 再分散液加热到 60°C, 随后在 160g下离心 10分钟, 可再次得到富含纳米金 (Au1)浊点 相。重复 10次该循环以后, 通过 TEM测量的纳米金 (Au1)的平均粒径为 4.6 ± 1.3 nm, 没有发生明显变化。 一 - 实施例 16: 纳米金 (Au3)的分离和再分散 Then, the temperature of the two-phase system of the supernatant and the lower cloud point phase is lowered to 0'C, and a redispersion of nano gold (Au 1 ) is obtained by shaking. The redispersion was centrifuged at 3000 g for 10 minutes without obtaining a cloud point phase. The redispersion was again heated to 60 ° C, followed by centrifugation at 160 g for 10 minutes to obtain a nano-gold (Au 1 ) rich cloud phase. After repeating this cycle 10 times, the average particle diameter of the nano gold (Au 1 ) measured by TEM was 4.6 ± 1.3 nm, and no significant change occurred. I - Example 16: Separation and redispersion of gold nanoparticles (Au 3 )
向 9.5 mL 0.01 mg/mL实施例 4中制备的纳米金 (Au3)(40.6 ± 7.9 nm)的水溶液中加 入 0.4 mL 50 mg/mL Triton X- 114水溶液,用蒸馏水定容到 9.9 mL。将得到的溶液在 35 °C的水浴中加热 30分钟后, 加入 0.1 mL 0.2 mol/L的 KC1水溶液, 随后在 160g下离 心 10分钟即获得富含纳米金 (Au3)的浊点相。 通过紫外可见分光光度计测量的纳米金 (Au3)的萃取效率为 93 %。 To a solution of 9.5 mL of 0.01 mg/mL of gold (Au 3 ) (40.6 ± 7.9 nm) prepared in Example 4, 0.4 mL of a 50 mg/mL Triton X-114 aqueous solution was added, and the volume was adjusted to 9.9 mL with distilled water. After the resulting solution was heated in a water bath at 35 ° C for 30 minutes, 0.1 mL of a 0.2 mol/L KC1 aqueous solution was added, followed by centrifugation at 160 g for 10 minutes to obtain a nano-gold (Au 3 )-rich cloud point phase. The extraction efficiency of nano gold (Au 3 ) measured by an ultraviolet-visible spectrophotometer was 93%.
然后, 将上层清液和下层浊点相的二相体系的温度降低到 12°C, 振荡即可获得纳 米金 (Au1)的再分散液。 该再分散液在 3000g下离心 10分钟不会得到浊点相。 重新将 再分散液加热到 60'C, 随后在 160g下离心 10分钟, 可再次得到富含纳米金 (Au1)浊点 相。重复 10次该循环以后,通过 TEM测量的纳米金 (Au3)的平均粒径为 38.6 ± 1.9 nm, 没有发生明显变化。 实施例 17: 纳米钯的分离和再分散 Then, the temperature of the two-phase system of the supernatant and the lower cloud point phase was lowered to 12 ° C, and a redispersion of gold (Au 1 ) was obtained by shaking. The redispersion was centrifuged at 3000 g for 10 minutes without obtaining a cloud point phase. Re-dispersing the redispersion to 60 ° C, followed by centrifugation at 160 g for 10 minutes, can again obtain the nano-gold (Au 1 ) rich cloud point Phase. After repeating this cycle 10 times, the average particle diameter of the gold (Au 3 ) measured by TEM was 38.6 ± 1.9 nm, and no significant change occurred. Example 17: Separation and redispersion of nanopalladium
向 9.5 mL O.Ol mg/mL的实施例 6中制备的纳米钯 (平均粒径: 3.6 ± 1.0 nm)的水溶 液中加入 0.4mL 50 mg/mL Triton X-114水溶液, 用蒸熘水定容到 9.9 mL。 将得到的溶 液在 35 °C的水浴中加热 30分钟后,加入 0.1 mL 0.2 mol/L的 NaCl水溶液,随后在 160g 下离心 10分钟即获得富含纳米钯的浊点相。通过 ICP-MS测量的纳米钯的萃取效率为 96%。  To 9.5 mL of O.Ol mg/mL of the aqueous solution of nanopalladium (average particle size: 3.6 ± 1.0 nm) prepared in Example 6, 0.4 mL of 50 mg/mL Triton X-114 aqueous solution was added, and the volume was adjusted with distilled water. To 9.9 mL. After the obtained solution was heated in a water bath at 35 ° C for 30 minutes, 0.1 mL of a 0.2 mol/L NaCl aqueous solution was added, followed by centrifugation at 160 g for 10 minutes to obtain a nanopalladium-rich cloud point phase. The extraction efficiency of nanopalladium measured by ICP-MS was 96%.
然后, 将上层清液和下层浊点相的二相体系置于冰浴中 5分钟, 振荡即可获得纳 米钯的再分散液。该再分散液在 3000g下离心 10分钟不会得到浊点相。重新将再分散 液加热到 35'C, 随后在 160g下离心 10分钟, 可再次得到富含纳米钯的浊点相。 重复 10次该循环以后, 通过 TEM测量的纳米钯的平均粒径为 4.1 ± 1.3 nm, 没有发生明显 变化。 实施例 18: 纳米铂的分离和再分散  Then, the two-phase system of the supernatant and the lower cloud point phase was placed in an ice bath for 5 minutes, and a redispersion of nanopalladium was obtained by shaking. The redispersion was centrifuged at 3000 g for 10 minutes without obtaining a cloud point phase. The re-dispersion was again heated to 35 ° C, followed by centrifugation at 160 g for 10 minutes to obtain a nanopalladium-rich cloud point phase again. After repeating this cycle 10 times, the average particle diameter of nanopalladium measured by TEM was 4.1 ± 1.3 nm, and no significant change occurred. Example 18: Separation and redispersion of nanoplatinum
向 9.5 mL O.Ol mg/mL的实施例 7中制备的纳米铂 (平均粒径: 8.6 ± 2.9 nm)的水溶 液中加入 0.4mL 50 mg/mL Triton X-114水溶液, 用蒸馏水定容到 9.9 mL。 将得到的溶 液在 35°C的水浴中加热 30分钟后,加入 0.1 mL 0.2 mol/L的 NaCl水溶液,随后在 160g 下离心 10分钟即获得富含纳米铂的浊点相。通过 ICP-MS测量的纳米铂的萃取效率为 98%。  To 9.5 mL of O.Ol mg/mL of the aqueous solution of nanoplatinum (average particle size: 8.6 ± 2.9 nm) prepared in Example 7, 0.4 mL of 50 mg/mL Triton X-114 aqueous solution was added, and the volume was adjusted to 9.9 with distilled water. mL. After the resulting solution was heated in a water bath at 35 ° C for 30 minutes, 0.1 mL of a 0.2 mol/L NaCl aqueous solution was added, followed by centrifugation at 160 g for 10 minutes to obtain a nanoplatinum-rich cloud point phase. The extraction efficiency of nanoplatinum as measured by ICP-MS was 98%.
然后, 将上层清液和下层浊点相的二相体系置于冰浴中 5分钟, 振荡即可获得纳 米铂的再分散液。该再分散液在 3000g下离心 10分钟不会得到浊点相。重新将再分散 液加热到 35°C, 随后在 160g下离心 10分钟, 可再次得到富含纳米铂的浊点相。 重复 10次该循环以后, 通过 TEM测量的纳米铂的平均粒径为 9.2 ± 2.3 nm, 没有发生明显 变化。 实施例 19: 腐殖酸包裹的 Fe304纳米颗粒的分离和再分散 Then, the two-phase system of the supernatant and the lower cloud point phase was placed in an ice bath for 5 minutes, and a redispersed solution of nanoplatinum was obtained by shaking. The redispersion was centrifuged at 3000 g for 10 minutes without obtaining a cloud point phase. The re-dispersion was again heated to 35 ° C, followed by centrifugation at 160 g for 10 minutes to obtain a nano-platinum-rich cloud point phase again. After repeating this cycle 10 times, the average particle diameter of nano-platinum measured by TEM was 9.2 ± 2.3 nm, and no significant change occurred. Example 19: Separation and redispersion of humic acid-coated Fe 3 0 4 nanoparticles
向 9.5 mL 0.01 mg/mL的实施例 8中制备的腐殖酸包裹的 Fe304.纳米颗粒 (平均粒 径: 9.3 ± 3.3 nm)的水溶液中加入 0.4mL 50 mg/mL Triton X-114水溶液, 用蒸馏水定容 到 9.9 mL。 将得到的溶液在 35'C的水浴中加热 30分钟后, 加入 0.1 mL 0.2 mol/L的 NaCl水溶液, 随后在 160g下离心 10分钟即获得富含腐殖酸包裹的 Fe304纳米颗粒的 浊点相。 通过 ICP-MS测量的腐殖酸包裹的 Fe304纳米颗粒的萃取效率为 97%。 To 9.5 mL of 0.01 mg/mL of the humic acid-coated Fe 3 0 4 nanoparticle (average particle size: 9.3 ± 3.3 nm) prepared in Example 8, 0.4 mL 50 mg/mL Triton X-114 was added. Aqueous solution, constant volume with distilled water To 9.9 mL. After the obtained solution was heated in a 35 ° C water bath for 30 minutes, 0.1 mL of a 0.2 mol/L NaCl aqueous solution was added, followed by centrifugation at 160 g for 10 minutes to obtain a humic acid-enriched Fe 3 0 4 nanoparticle. Cloud point phase. The extraction efficiency of the humic acid-coated Fe 3 0 4 nanoparticles measured by ICP-MS was 97%.
然后, 将上层清液和下层浊点相的二相体系置于冰浴中 5分钟, 振荡即可获得腐 殖酸包裹的 Fe304纳米颗粒的再分散液。该再分散液在 3000g下离心 10分钟不会得到 浊点相。 重新将再分散液加热到 35°C, 随后在 160g下离心 10分钟, 可再次得到富含 腐殖酸包裹的 Fe304纳米颗粒的浊点相。 重复 10次该循环以后, 通过 TEM测量的腐 殖酸包裹的 Fe304纳米颗粒的平均粒径为 9.3 ± 4.4 nm, 没有发生明显变化。 实施例 20: 纳米氧化铜的分离和再分散 Then, the supernatant liquid two-phase system and the lower cloud point phase placed in an ice bath for 5 minutes, to obtain the oscillation humic wrapped Fe 3 0 4 particles was redispersed nanometers. The redispersion was centrifuged at 3000 g for 10 minutes without obtaining a cloud point phase. The re-dispersion was again heated to 35 ° C, followed by centrifugation at 160 g for 10 minutes to again obtain the cloud point phase of the humic acid-enriched Fe 3 0 4 nanoparticles. After repeating this cycle 10 times, the average particle size of the humic acid-coated Fe 3 0 4 nanoparticles measured by TEM was 9.3 ± 4.4 nm, and no significant change occurred. Example 20: Separation and redispersion of nano-copper oxide
向 9.5 mL 0.01 mg/mL的实施例 9中制备的纳米氧化铜 (平均粒径:61.5 土 13.4 nm) 的水溶液中加入 0.4mL 50 mg/mL Triton X-114水溶液, 用蒸馏水定容到 9.9 mL。 将得 到的溶液在 35°C的水浴中加热 30分钟后, 加入 0.1 mL 0.2 mol/L的 NaCl水溶液, 随 后在 160g下离心 10分钟即获得富含纳米氧化铜的浊点相。 通过 ICP-MS测量的纳米 氧化铜的萃取效率为 94%。  To 9.5 mL of 0.01 mg/mL of the aqueous solution of nano-copper oxide (average particle size: 61.5 soil 13.4 nm) prepared in Example 9, 0.4 mL of 50 mg/mL Triton X-114 aqueous solution was added, and the volume was adjusted to 9.9 mL with distilled water. . After the obtained solution was heated in a water bath at 35 ° C for 30 minutes, 0.1 mL of a 0.2 mol/L NaCl aqueous solution was added, followed by centrifugation at 160 g for 10 minutes to obtain a cloud phase phase rich in nano copper oxide. The extraction efficiency of nano-copper oxide measured by ICP-MS was 94%.
然后, 将上层清液和下层浊点相的二相体系置于冰浴中 5分钟, 振荡即可获得纳 米氧化铜的再分散液。该再分散液在 3000g下离心 10分钟不会得到浊点相。重新将再 分散液加热到 35°C, 随后在 160g下离心 10分钟, 可再次得到富含纳米氧化铜的浊点 相。 重复 10次该循环以后, 通过 TEM测量的纳米氧化铜的平均粒径为 61 nm, 没有 发生明显变化。 实施例 21 : C6Q富勒烯的分离和再分散 Then, the two-phase system of the supernatant and the lower cloud point phase was placed in an ice bath for 5 minutes, and a redispersion of the nano-copper oxide was obtained by shaking. The redispersion was centrifuged at 3000 g for 10 minutes without obtaining a cloud point phase. The re-dispersion was again heated to 35 ° C, followed by centrifugation at 160 g for 10 minutes to obtain a cloud phase phase rich in nano-copper oxide again. After repeating this cycle 10 times, the average particle diameter of the nano-copper oxide measured by TEM was 61 nm, and no significant change occurred. Example 21: Separation and redispersion of C 6Q fullerenes
向 9.5ml 0.01 mg/mL的实施例 10中分散的 C60富勒烯 (平均粒径: 112.1士 57.0 nm) 的水溶液中加入 0.4 mL 50 mg/mL Triton X-114水溶液, 用蒸馏水定容到 9.9 mL。将得 到的溶液在 35Ό的水浴中加热 30分钟后, 加入 0.1 mL 0.2 mol/L的 NaCl水溶液, 随 后在 160g下离心 10分钟即获得富含 C6D富勒烯的浊点相。 通过紫外可见分光光度计 测量的 C6D富勒烯的萃取效率为 92%。 To 9.5 ml of 0.01 mg/mL of the aqueous solution of C 60 fullerene (average particle size: 112.1 ± 57.0 nm) dispersed in Example 10, 0.4 mL of 50 mg/mL Triton X-114 aqueous solution was added, and the volume was adjusted to the volume with distilled water. 9.9 mL. After the resulting solution was heated in a 35 Torr water bath for 30 minutes, 0.1 mL of a 0.2 mol/L NaCl aqueous solution was added, followed by centrifugation at 160 g for 10 minutes to obtain a cloud point phase rich in C 6D fullerene. The extraction efficiency of C 6D fullerene measured by an ultraviolet-visible spectrophotometer was 92%.
然后,将上层清液和下层浊点相的二相体系置于冰浴中 5分钟,振荡即可获得 C60 富勒烯的再分散液。该再分散液在 3000g下离心 10分钟不会得到浊点相。重新将再分 散液加热到 35'C, 随后在 160g下离心 10分钟, 可再次得到富含 C6o富勒烯的浊点相。 重复 10次该循环以后, 通过 (透射电镜)测量的 C6Q富勒烯的平均粒径为 108.3 ± 53.7 nm, 没有发生明显变化。 实施例 22: Ti02纳米颗粒的分离和再分散 Then, the two-phase system of the supernatant and the lower cloud point phase was placed in an ice bath for 5 minutes, and a redispersed liquid of C 60 fullerene was obtained by shaking. The redispersion was centrifuged at 3000 g for 10 minutes without obtaining a cloud point phase. The re-dispersion was again heated to 35 ° C, followed by centrifugation at 160 g for 10 minutes to again obtain a cloud point phase rich in C 6 o fullerene. After repeating this cycle 10 times, the average particle diameter of the C 6Q fullerene measured by (transmission electron microscopy) was 108.3 ± 53.7 nm, and no significant change occurred. Example 22: Separation and redispersion of Ti0 2 nanoparticles
向 9.5ml 0.01 mg/mL的 Ti02纳米颗粒 (平均粒径: 29.2 ± 12.5 nm)(购自德固赛 (中 国)公司)的水分散液中加入 0.4 mL 50 mg/mL Triton X-114水溶液,用蒸馏水定容到 9.9 mLo 将得到的溶液在 35°C的水浴中加热 30分钟后, 加入 0.1 mL 0.2 mol/L的 NaCl水 溶液, 随后在 160g下离心 10分钟即获得富含 Ti02纳米颗粒的浊点相。 通过 ICP-MS 测量的 Ti02纳米颗粒的萃取效率为 93%。 Add 0.4 mL of 50 mg/mL Triton X-114 aqueous solution to 9.5 ml of 0.01 mg/mL Ti0 2 nanoparticles (average particle size: 29.2 ± 12.5 nm) (available from Degussa (China)). , with distilled water to a solution of 9.9 mLo obtained after heating for 30 minutes at 35 ° C in a water bath, was added 0.1 mL 0.2 mol / L NaCl aqueous solution, and then centrifuged for 10 minutes at 160g i.e. enriched in Ti0 2 nanoparticles The cloud point phase. The extraction efficiency of Ti0 2 nanoparticles measured by ICP-MS was 93%.
然后,将上层清液和下层浊点相的二相体系置于冰浴中 5分钟,振荡即可获得 Ti02 纳米颗粒的再分散液。该再分散液在 3000g下离心 10分钟不会得到浊点相。重新将再 分散液加热到 35°C, 随后在 160g下离心 10分钟,可再次得到富含 Ti02纳米颗粒的浊 点相。重复 10次该循环以后,通过 TEM测量的 Ti02纳米颗粒的平均粒径为 26.4 ± 14.0 nm, 没有发生明显变化。 Then, the supernatant liquid two-phase system and the lower cloud point phase placed in an ice bath for 5 minutes, to obtain the oscillation Ti0 2 nano-particles were redispersed. The redispersion was centrifuged at 3000 g for 10 minutes without obtaining a cloud point phase. The re-dispersion was again heated to 35 ° C, followed by centrifugation at 160 g for 10 minutes to obtain a cloud point phase rich in Ti 2 2 nanoparticles again. After repeating this cycle 10 times, the average particle diameter of the Ti0 2 nanoparticles measured by TEM was 26.4 ± 14.0 nm, and no significant change occurred.

Claims

权 利 要 求 Rights request
1. 一种用于纳米材料的分离的方法, 所述方法包括以下步骤-A method for separation of nanomaterials, the method comprising the steps of -
(a) 向浓度为 10—6-1 (a) Concentration is 10-6-1
水性分散液的重量百分比计为 0.05-1%的非离子型表面活性剂, 以得到混合物; The weight percentage of the aqueous dispersion is 0.05-1% of a nonionic surfactant to obtain a mixture;
(b)将所述混合物在 30°C-6(TC的温度加热 5-60分钟;  (b) heating the mixture at a temperature of 30 ° C to 6 (TC) for 5 to 60 minutes;
(c) 向得到的混合物中加入按所述混合物的重量百分比计为 0.01-1%的盐; 和 (c) adding, to the resulting mixture, 0.01-1% by weight of the mixture; and
(d) 离心分离, 使所述混合物分离为上层清液和含有所述纳米材料的下层浊点相 的二相体系。 (d) Centrifugation to separate the mixture into a supernatant and a two-phase system containing the lower cloud point phase of the nanomaterial.
2. 按照权利要求 1 所述的方法, 其中, 所述非离子型表面活性剂选自 Triton TX-114、 Triton ΤΧ-100、 ΡΟΝΡΕ-10、 IgepalCO-630、 Genapol Χ-150、 Genapol X-80、 Brij-30、 Brij-56、 Brij-97、 Pluronic L61或 Pluronic P105。  2. The method according to claim 1, wherein the nonionic surfactant is selected from the group consisting of Triton TX-114, Triton®-100, ΡΟΝΡΕ-10, Igepal CO-630, Genapol®-150, Genapol X-80. , Brij-30, Brij-56, Brij-97, Pluronic L61 or Pluronic P105.
3. 按照权利要求 1所述的方法, 其中, 所述纳米材料选自 CdSe/ZnS核壳结构量 子点、 Fe304纳米颗粒、 Ti02纳米颗粒、 银纳米颗粒、 金纳米颗粒、 钯纳米颗粒、 铂纳 米颗粒、 C6Q富勒烯、 单壁碳纳米管或多壁碳纳米管。 3. The method according to claim 1, wherein the nano material is selected from the group consisting of CdSe/ZnS core-shell structure quantum dots, Fe 3 0 4 nanoparticles, Ti 2 2 nanoparticles, silver nanoparticles, gold nanoparticles, palladium nanoparticles Particles, platinum nanoparticles, C 6Q fullerenes, single-walled carbon nanotubes or multi-walled carbon nanotubes.
4. 按照权利要求 1所述的方法, 其中, 所述的盐选自第 I主族元素或第 II主族元 素的水溶性盐。  The method according to claim 1, wherein the salt is selected from a water-soluble salt of a Group I element or a Group II element.
5. 按照权利要求 4所述的方法, 其中, 所述的第 I主族元素或第 II主族元素的水 溶性盐选自 NaCl、 LiCl、 KC1、 CaCl2或 MgCl2The method according to claim 4, wherein the water-soluble salt of the first main group element or the second main group element is selected from the group consisting of NaCl, LiCl, KC1, CaCl 2 or MgCl 2 .
6.一种用于纳米材料的再分散的方法, 所述方法包括以下步骤- 6. A method for redispersion of nanomaterials, the method comprising the steps -
' (a) 向浓度为 10—6-1 mg/mL的纳米材料的水性分散液中加入按所述的纳米材料的 水性分散液的重量百分比计为 0.05-1%的非离子型表面活性剂, 以得到混合物; Nonionic surfactants aqueous dispersion of nanomaterials' (a) to a concentration of 10- 6 -1 mg / mL was added to the aqueous dispersion of the nanomaterial according to the percentage by weight of 0.05 to 1% To obtain a mixture;
(b)将所述混合物在 30°C-60°C的温度加热 5-60分钟;  (b) heating the mixture at a temperature of from 30 ° C to 60 ° C for from 5 to 60 minutes;
(c) 向得到的混合物中加入按所述混合物的重量百分比计为 0.01-1%的盐;  (c) adding 0.01-1% by weight of the mixture to the obtained mixture;
(d) 离心分离, 使所述混合物分离为上层清液和含有所述纳米材料的下层浊点相 的二相体系; 和  (d) centrifuging to separate the mixture into a supernatant liquid and a two-phase system containing the lower cloud point phase of the nanomaterial;
(e) 将所述上层清液和含有所述纳米材料的下层浊点相的二相体系从 30°C-60'C 冷却至 0°C-20'C, 使所述上层清液和含有所述纳米材料的下层浊点相的二相体系再混 合。  (e) cooling the supernatant liquid and the two-phase system containing the lower cloud point phase of the nano material from 30 ° C to 60 ° C to 0 ° C to 20 ° C to make the supernatant liquid and containing The two-phase system of the lower cloud point phase of the nanomaterial is remixed.
7. 按照权利要求 6 所述的方法, 其中, 所述非离子型表面活性剂选自 Triton TX-114、 Triton TX-100、 PONPE-10 IgepalCO-630、 Genapol X-150、 Genapol X-80 Brij-30、 Brij-56、 Brij-97、 Pluronic L61或 Pluronic P105。 7. The method according to claim 6, wherein the nonionic surfactant is selected from the group consisting of Triton TX-114, Triton TX-100, PONPE-10 IgepalCO-630, Genapol X-150, Genapol X-80 Brij-30, Brij-56, Brij-97, Pluronic L61 or Pluronic P105.
8. 按照权利要求 6所述的方法, 其中, 所述纳米材料选自 CdSe/ZnS核壳结构量 子点、 Fe304纳米颗粒、 Ti02纳米颗粒、 银纳米颗粒、 金纳米颗粒、 钯纳米颗粒、 铂纳 米颗粒、 C6c富勒烯、 单壁碳纳米管或多壁碳纳米管。 8. The method according to claim 6, wherein the nano material is selected from the group consisting of CdSe/ZnS core-shell structure quantum dots, Fe 3 0 4 nanoparticles, Ti 2 2 nanoparticles, silver nanoparticles, gold nanoparticles, palladium nanoparticles Particles, platinum nanoparticles, C 6 c fullerenes, single-walled carbon nanotubes or multi-walled carbon nanotubes.
9. 按照权利要求 6所述的方法, 其中, 所述的盐选自第 I主族元素或第 II主族元 素的水溶性盐。  The method according to claim 6, wherein the salt is selected from a water-soluble salt of a Group I element or a Group II element.
10. 按照权利要求 9所述的方法, 其中, 所述的第 I主族元素或第 II主族元素的 水溶性盐选自 NaCl、 LiCl、 KC1、 CaCl2或 MgCl210. The method according to claim 9, wherein the water-soluble salt of the first main group element or the second main group element is selected from the group consisting of NaCl, LiCl, KC1, CaCl 2 or MgCl 2 .
PCT/CN2009/000774 2008-12-30 2009-07-07 Methods for separating and redispersing nano-materials WO2010081268A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008102467412A CN101766923B (en) 2008-12-30 2008-12-30 Method for separation and redispersion of nanometer materials
CN200810246741.2 2008-12-30

Publications (1)

Publication Number Publication Date
WO2010081268A1 true WO2010081268A1 (en) 2010-07-22

Family

ID=42339389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000774 WO2010081268A1 (en) 2008-12-30 2009-07-07 Methods for separating and redispersing nano-materials

Country Status (2)

Country Link
CN (1) CN101766923B (en)
WO (1) WO2010081268A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102614872A (en) * 2012-02-27 2012-08-01 苏州大学 Preparation method of gold cluster/TiO2 composite nano material
CN111257457A (en) * 2020-02-17 2020-06-09 广州大学 Analysis method for determining metal sulfide nanoparticles in water

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101935017B (en) * 2010-07-29 2013-05-01 中国科学院生态环境研究中心 Method for synthesizing noble metal superfine nanowire water phase and establishing noble metal nanopore membrane by self-precipitation thereof
CN102371358A (en) * 2011-11-18 2012-03-14 复旦大学 Aqueous-phase preparation method for re-dispersible nano-copper particles
CN103805173A (en) * 2014-02-18 2014-05-21 东南大学 Gram-scale preparation of core-shell structure quantum dot and method for coating silicon dioxide on surface of core-shell structure quantum dot
JP6355240B2 (en) * 2014-05-19 2018-07-11 Dowaエレクトロニクス株式会社 Silver fine particle dispersion
CN104483245A (en) * 2014-09-28 2015-04-01 上海交通大学 Method for separating C60 nanocrystalline particle size distribution by utilization of asymmetrical field flow meter
CN105364066B (en) * 2015-12-02 2017-12-19 首都师范大学 A kind of method that golden nanometer particle surface in ionic liquid is modified
CN105645380B (en) * 2016-01-12 2018-07-13 云南民族大学 A kind of separation and recovery method of organic aqueous two-phase to multi-walled carbon nanotube dispersion liquid
CN109187823B (en) * 2018-11-22 2020-10-20 中国科学院生态环境研究中心 Method for determining nano-plastic based on cloud point extraction-thermal cracking gas chromatography-mass spectrometry
CN111073726B (en) * 2019-12-20 2021-04-02 清华大学 Preparation method and application of micro-nano particle friction additive
CN113509813B (en) * 2021-07-08 2022-07-26 广西柳州中和高新技术有限公司 Ag@Fe 3 O 4 @C/TiO 2 Synthesis method and application of nano material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1049160C (en) * 1996-02-07 2000-02-09 吉林大学 Preparation method for transition metal oxide nuclear shell type nano meter particle
JP2007169120A (en) * 2005-12-22 2007-07-05 The Inctec Inc Method for dispersing carbon nanotube
CN1995144A (en) * 2006-12-22 2007-07-11 淮阴师范学院 Method for synthesizing magnetic temperature-sensitive nano particle
CN101016391A (en) * 2007-02-12 2007-08-15 东华大学 Polysaccharides nano material with antibiotic function, preparing method and application thereof
JP2007284714A (en) * 2006-04-13 2007-11-01 Sumitomo Osaka Cement Co Ltd Method for producing nickel nanorod, and nickel nanorod
US20080206124A1 (en) * 2007-02-22 2008-08-28 Jang Bor Z Method of producing nano-scaled graphene and inorganic platelets and their nanocomposites

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7019120B2 (en) * 2002-12-19 2006-03-28 Novozymes A/S Cloud-point extraction of enzymes and polypeptides from a fermentation broth using a non-ionic surfactant
CN1298634C (en) * 2004-07-22 2007-02-07 中国地质大学(武汉) Process for preparing nano alkaline bismuth nitrate by micro emulsion
CN100356989C (en) * 2005-11-03 2007-12-26 同济大学 Method for preparing organic and inorganic nanometer composite organization engineering stent material by using thermal phase separation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1049160C (en) * 1996-02-07 2000-02-09 吉林大学 Preparation method for transition metal oxide nuclear shell type nano meter particle
JP2007169120A (en) * 2005-12-22 2007-07-05 The Inctec Inc Method for dispersing carbon nanotube
JP2007284714A (en) * 2006-04-13 2007-11-01 Sumitomo Osaka Cement Co Ltd Method for producing nickel nanorod, and nickel nanorod
CN1995144A (en) * 2006-12-22 2007-07-11 淮阴师范学院 Method for synthesizing magnetic temperature-sensitive nano particle
CN101016391A (en) * 2007-02-12 2007-08-15 东华大学 Polysaccharides nano material with antibiotic function, preparing method and application thereof
US20080206124A1 (en) * 2007-02-22 2008-08-28 Jang Bor Z Method of producing nano-scaled graphene and inorganic platelets and their nanocomposites

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
LIU RUI ET AL.: "Research on Cloud Point Extraction for Reversible Separation and Enrichment and Dispersion ofNano-materials.", 5TH NATIONAL CONFERENCE ON ENVIRONMENTAL CHEMISTRY ABSTRACTS, May 2009 (2009-05-01), pages 394 - 395 *
MARCUS R. HELFRICH ET AL.: "Partitioning and Assembly of metal Particles and Their Bioconjugates in Aqueous Two-Phase Systems.", LANGMUIR., vol. 21, no. 18, 28 July 2005 (2005-07-28), pages 8478 - 8486 *
STEVEN M. BAXTER ET AL.: "Partitioning of Polymer and Inorganic Colloids in Two-Phase Aqueous Polymer Systems.", LANGMUIR., vol. 13, no. 15, 23 July 1997 (1997-07-23), pages 3948 - 3952 *
X. ZENG ET AL.: "Partitioning behavior of silica in the Triton X-100/dextran/water aqueous biphasic system.", JOURNAL OF COLLOID AND INTERFACE SCIENCE., vol. 272, no. 2, 15 April 2004 (2004-04-15), pages 298 - 307 *
XU YONG ET AL.: "Progress in Separation of Sem-SWNTs with Met-SWNTs.", NEW TECHNOLOGY & NEW PROCESS., December 2007 (2007-12-01), pages 100 - 103 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102614872A (en) * 2012-02-27 2012-08-01 苏州大学 Preparation method of gold cluster/TiO2 composite nano material
CN111257457A (en) * 2020-02-17 2020-06-09 广州大学 Analysis method for determining metal sulfide nanoparticles in water
CN111257457B (en) * 2020-02-17 2022-05-24 广州大学 Analysis method for determining metal sulfide nanoparticles in water

Also Published As

Publication number Publication date
CN101766923B (en) 2011-12-21
CN101766923A (en) 2010-07-07

Similar Documents

Publication Publication Date Title
WO2010081268A1 (en) Methods for separating and redispersing nano-materials
Digigow et al. Preparation and characterization of functional silica hybrid magnetic nanoparticles
Kim et al. Generalized fabrication of multifunctional nanoparticle assemblies on silica spheres
Mansur et al. CdSe quantum dots stabilized by carboxylic-functionalized PVA: synthesis and UV–vis spectroscopy characterization
Lei et al. A novel two-step modifying process for preparation of chitosan-coated Fe3O4/SiO2 microspheres
Sezer et al. Stabilization of the aqueous dispersion of carbon nanotubes using different approaches
Fang et al. Monodisperse α-Fe2O3@ SiO2@ Au core/shell nanocomposite spheres: synthesis, characterization and properties
TWI518190B (en) Core - shell type nano - particles and its manufacturing method
Lou et al. Functionalized magnetic-fluorescent hybrid nanoparticles for cell labelling
CN102344632A (en) Three-layer core-shell-structure inorganic nanoparticle/silicon dioxide/high polymer composite microspheres and preparation method thereof
Xiong et al. Biomolecule-assisted synthesis of highly stable dispersions of water-soluble copper nanoparticles
Brichkin et al. Hydrophilic semiconductor quantum dots
WO2006059664A1 (en) Stabilized inorganic nanoparticle, stabilized inorganic nanoparticles, process for producing stabilized inorganic nanoparticle, and method of utilizing stabilized inorganic nanoparticle
Sarpong et al. Heteroaggregation of multiwalled carbon nanotubes and zinc sulfide nanoparticles
Chowdhury et al. Preparation of stable sub 10 nm copper nanopowders redispersible in polar and non-polar solvents
JP5915529B2 (en) Manufacturing method of semiconductor nanoparticle assembly
Zhong et al. The bis (p-sulfonatophenyl) phenylphosphine-assisted synthesis and phase transfer of ultrafine gold nanoclusters
Capek Preparation and functionalization of gold nanoparticles
Ding et al. Preparation of water dispersible, fluorescent Ag–PAA–PVP hybrid nanogels and their optical properties
Ashayer et al. Synthesis and characterization of gold nanoshells using poly (diallyldimethyl ammonium chloride)
Wang et al. Carboxylic acid enriched nanospheres of semiconductor nanorods for cell imaging
Naoe et al. Preparation of water-soluble palladium nanocrystals by reverse micelle method: Digestive ripening behavior of mercaptocarboxylic acids as stabilizing agent
Ni et al. Solvent mediated assembly of nickel crystallites: From chains to isolated spheres
Zhao et al. Enhanced photocatalytic activity through anchoring and size effects of Au nanoparticles on niobate nanotubes and nanosheets for water splitting
JP5790570B2 (en) Semiconductor nanoparticle assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09838055

Country of ref document: EP

Kind code of ref document: A1