WO2010038841A1 - Three-phase rectifier - Google Patents

Three-phase rectifier Download PDF

Info

Publication number
WO2010038841A1
WO2010038841A1 PCT/JP2009/067188 JP2009067188W WO2010038841A1 WO 2010038841 A1 WO2010038841 A1 WO 2010038841A1 JP 2009067188 W JP2009067188 W JP 2009067188W WO 2010038841 A1 WO2010038841 A1 WO 2010038841A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
reactor
switch
current
period
Prior art date
Application number
PCT/JP2009/067188
Other languages
French (fr)
Japanese (ja)
Inventor
通可 植杉
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to JP2010531911A priority Critical patent/JP5427787B2/en
Publication of WO2010038841A1 publication Critical patent/WO2010038841A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4216Arrangements for improving power factor of AC input operating from a three-phase input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • This invention relates to a three-phase rectifier that rectifies the voltage of a three-phase AC power source and converts it into a DC voltage.
  • a rectifier circuit that rectifies the voltage of a three-phase AC power source and converts it into a DC voltage has three series circuits in which a pair of diodes are connected in series, and the interconnection point of each diode in these series circuits is a three-phase AC Connected to each phase line of power supply.
  • a smoothing capacitor is connected to the output terminal of the rectifier circuit, and a load is connected to the smoothing capacitor.
  • the three-phase AC voltage is composed of three phase voltages whose phases are different from each other by 120 °. With these phase voltages, a current flows through the positive diode of each series circuit to the smoothing capacitor, and each of the series circuits is supplied from the smoothing capacitor. Current flows through the negative diode.
  • a reactor is inserted and connected to each phase line on the input side, and a plurality of switch means for forming a closed circuit for these reactors are connected.
  • a three-phase active filter system that causes the input current waveform to follow a sine wave by switching these switch means at high frequency (for example, Patent Document 1).
  • a virtual neutral point is provided as a short-circuit target, the withstand voltage of the short-circuit element can be lowered, and the voltage applied to the reactor is also low, so the di / dt is small and good active filter characteristics can be realized.
  • a reactor is inserted and connected to the input line on the AC power supply side, and a switch element for forming a closed circuit is connected to this reactor.
  • this switch element When this switch element is turned on, a forced current is passed from the AC power supply to the reactor, and the forced current is supplied to the reactor.
  • a DC power supply device in which the power factor is improved by flowing into a smoothing capacitor through a rectifier circuit by switching off a switch element (for example, Patent Document 2).
  • Patent Document 1 performs high-frequency switching, and thus has problems such as generation of high-frequency switching noise and the necessity of using a component that can handle high-frequency current as a reactor. .
  • the DC power supply device of Patent Document 2 is a harmonic reduction means effective for a single-phase AC power supply, but cannot be applied to a three-phase AC power supply.
  • the three-phase rectifier of the present invention uses only a small reactor, and has the object of reducing high-frequency switching noise and improving the harmonic reduction effect.
  • the three-phase rectifier of this invention is A series circuit for U phase in which a pair of diodes are connected in series and an interconnection point between both diodes is connected to a U phase line of a three-phase AC power supply, and a pair of diodes connected in series is an interconnection point between the two diodes.
  • V-phase series circuit connected to the V-phase line of the phase AC power supply, a series circuit for W-phase in which a pair of diodes are connected in series, and an interconnection point of both diodes is connected to the W-phase line of the three-phase AC power supply
  • a rectifier circuit that converts the voltage of the three-phase AC power source into a DC voltage and outputs the DC voltage
  • a U-phase reactor, a V-phase reactor, and a W-phase reactor respectively provided on the U-phase line, the V-phase line, and the W-phase line of the three-phase AC power source
  • a series circuit of a pair of capacitors to which the output voltage of the rectifier circuit is applied A bidirectional U-phase switch connected between an interconnection point of both diodes of the U-phase series circuit and an interconnection point of the capacitors;
  • a bidirectional V-phase switch connected between an interconnection point of both diodes of the V-phase series circuit and an interconnection point of the capacitors;
  • a bidirectional W-phase switch connected
  • the three-phase rectifier of the present invention it is only necessary to adopt a small reactor, and there is little high-frequency switching noise, and the effect of reducing harmonics is improved.
  • FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.
  • FIG. 2 is a waveform diagram showing the waveform of each phase current and the on / off pattern of each switch in one embodiment.
  • FIG. 3 is a waveform diagram for explaining the on / off pattern asynchronization in FIG.
  • FIG. 4 is a waveform diagram showing a state in which the phase current in one embodiment differs depending on the size of the load.
  • FIG. 5 is a diagram showing the relationship between the magnitude of the load and the on / off timing data in one embodiment.
  • FIG. 6 is a Fourier analysis diagram of different phase currents according to the size of the load in one embodiment.
  • FIG. 7 is a diagram in which the limit value of each harmonic order is added to the Fourier analysis diagram of FIG.
  • FIG. 8 is a block diagram illustrating a configuration of a modified example of the embodiment.
  • a three-phase rectifier 10 is connected to three phase lines R, S, and T of a three-phase AC power source 1, and an output voltage of the three-phase rectifier 10 (capacitors 14 and 15 described later)
  • the voltage generated in the series circuit) is applied to the output smoothing capacitor 3 via the DC reactor 2. If the capacitances of the capacitors 14 and 15 are increased, the output smoothing capacitor 3 can be dispensed with. In this case, both ends of the series circuit of the capacitors 14 and 15 are output as they are. However, it is more advantageous in terms of cost to provide the smoothing capacitor 3 and reduce the capacitance of the capacitors 14 and 15 than to use only the large capacitors 14 and 15.
  • the load 4 is connected to the smoothing capacitor 3. Further, current sensors 5u, 5v, 5w are provided in each phase line between the three-phase AC power source 1 and the three-phase rectifier 10, and a current detection circuit 6 is connected to these current sensors. The current detection circuit 6 detects the phase currents Iu, Iv, and Iw via the current sensors 5u, 5v, and 5w.
  • the direct current reactor 2, the smoothing capacitor 3, the current sensors 5u, 5v, 5w, and the current detection circuit 6 are devices attached to the three-phase rectifier 10.
  • the three-phase rectifier 10 has a rectifier circuit 12.
  • the rectifier circuit 12 includes a pair of diodes 12u1 and 12u2 connected in series, and a connection circuit between the two diodes connected to the U-phase line of the three-phase AC power supply 1, and a pair of diodes 12v1 and 12v2 connected in series.
  • a series circuit for V phase in which the connection point between the two diodes is connected to the V phase line of the three-phase AC power source 1, and a pair of diodes 12w1 and 12w2 are connected in series. It has a W-phase series circuit connected to the W-phase line of the power source 1 and converts the three-phase AC voltage of the three-phase AC power source 1 into a DC voltage for output.
  • a plurality of U-phase reactors 11u, V-phase reactors 11v, and W-phase reactors 11w for reducing harmonics are provided on each phase line between the three-phase AC power supply 1 and the rectifier circuit 12, respectively.
  • the output voltage of the rectifier circuit 12 is applied to a series circuit of a pair of capacitors 14 and 15 having the same capacity.
  • the DC voltage generated in the series circuit of the capacitors 14 and 15 becomes the output of the three-phase rectifier 10.
  • a bidirectional U-phase switch 13u is connected between an interconnection point of the capacitors 14 and 15 (hereinafter referred to as a virtual neutral point) and an interconnection point of each diode in the U-phase series circuit of the rectifier circuit 12. Is connected.
  • a bidirectional V-phase switch 13v is connected between the virtual neutral point and the interconnection point of each diode in the V-phase series circuit of the rectifier circuit 12.
  • a bidirectional W-phase switch 13w is connected between the virtual neutral point and the interconnection point of each diode in the W-phase series circuit of the rectifier circuit 12.
  • Each of the U-phase switch 13u, the V-phase switch 13v, and the W-phase switch 13w includes a series circuit of two N-type MOSFETs 21 and 22, and a drive circuit 23 for driving the MOSFETs 21 and 22 on and off. .
  • Each drive circuit 23 drives the MOSFETs 21 and 22 on and off at the same timing in accordance with a command from the control unit 30.
  • the MOSFETs 21 and 22 are turned on, the current from the U-phase reactor 11u, the V-phase reactor 11v, and the W-phase reactor 11w to each virtual neutral point is between the drain and source of the MOSFET 21, and between the source and drain of the MOSFET 22.
  • the current flowing from the respective parasitic neutral points to the U-phase reactor 11u, the V-phase reactor 11v, and the W-phase reactor 11w from the drain to the source of the MOSFET 22, and the source of the MOSFET 21 ⁇ It flows between the drains and through the parasitic diode of MOSFET 21.
  • the control unit 30 operates according to the output voltage of the rectifier circuit 12 and controls each drive circuit 23.
  • the U-phase switch 13u, the V-phase switch 13v, and the W-phase switch 13w are turned on / off with respect to the MOSFETs 21 and 22. It has a memory (storage means) 30a in which timing data is stored, and has the following means (1) and (2) as main functions.
  • a load detection section for detecting the magnitude of the load 4 from each phase current detected by the current detection circuit 6.
  • the phase currents Iu, Iv, Iw flowing from the three-phase AC power source 1 to the U-phase reactor 11u, the V-phase reactor 11v, and the W-phase reactor 11w are monitored, and the phase currents Iu, Iv, Iw Control section (control means) for turning on and off the MOSFETs 21 and 22 of the U-phase switch 13u, the V-phase switch 13v, and the W-phase switch 13w in the half-cycle period of 0 ° to 60 ° and 120 ° to 180 ° .
  • the MOSFETs 21 and 22 of the U-phase switch 13u, the V-phase switch 13v, and the W-phase switch 13w are turned on and off.
  • the on / off timing data corresponding to the magnitude of the load detected in the load detection section is stored in the memory 30a.
  • the MOSFETs 21 and 22 of the U-phase switch 13u are turned on and off during the 0 ° to 60 ° period and the 120 ° to 180 ° period of the half cycle of the phase current Iu.
  • the ON period is gradually shortened and the OFF period is gradually lengthened as the distance from the zero cross point is 0 °.
  • the on period gradually increases and the off period gradually decreases.
  • a forced current flows from the three-phase AC power source 1 to the U-phase reactor 11u during the on period of the MOSFETs 21 and 22 (current increase period).
  • the forced current flows between the rectifier circuit 12 and the DC reactor 2 during the off period of the MOSFETs 21 and 22.
  • ILu in FIG. 2 indicates a current flowing through the U-phase reactor 11u.
  • the MOSFETs 21 and 22 of the V-phase switch 13v are turned on and off during the 0 ° to 60 ° period and the 120 ° to 180 ° period of the half cycle of the phase current Iv.
  • the MOSFETs 21 and 22 of the W-phase switch 13w are turned on and off during the 0 ° to 60 ° period and 120 ° to 180 ° period of the half cycle of the phase current Iw.
  • a U-phase reactor 11u, a V-phase reactor 11v, and a W-phase reactor 11w are provided.
  • the generation of high frequency switching noise can be reduced as compared with the conventional rectifier circuit that performs high frequency switching while obtaining the effect of reducing harmonics, and as a result, the reactor for U phase 11u, the reactor for V phase 11v, and for W phase
  • a three-phase active filter that employs a low-frequency reactor having a small size and a large current / inductance capacity can be configured as the reactor 11w. If the U-phase reactor 11u, the V-phase reactor 11v, and the W-phase reactor 11w are reduced in size, the equipment on which the three-phase rectifier 20 is mounted can be reduced in size.
  • the ON / OFF control period of 0 ° to 60 ° and 120 ° to 180 ° is a period in which the ON / OFF control of one phase has little influence on the current waveforms of the other two phases. By selecting this period, the effect of reducing high-frequency switching noise and the effect of reducing harmonics are increased.
  • the three U-phase switches 13u, the V-phase switch 13v, and the W-phase switch 13w there is a period in which the on / off control of the two switches overlaps. The current increase is superimposed on the remaining one phase, which causes an increase in harmonics.
  • the three U-phase switches 13u, the V-phase switch 13v, and the W-phase switch 13w are turned on and off at timings that are not synchronized with each other. That is, as indicated by the hatched lines in FIG. 3, the on-periods of the U-phase switch 13u, the V-phase switch 13v, and the W-phase switch 13w are shifted from each other. Increases further.
  • the levels of the phase currents Iu, Iv, and Iw vary depending on the magnitude of the load as shown in FIG. Therefore, as on / off timing data for determining on / off timings t1, t2, t3, t4, t5, t6...
  • the load A plurality of types prepared for different sizes are stored in the memory 30 a of the control unit 30.
  • the actual load 4 varies in size. As shown in FIG. 4, there is no on / off timing data for the load H between the load B and the load C in the memory 30a. Therefore, when there is no on / off timing data in the memory 30a that matches the magnitude of the detected load, the on / off timing data corresponding to the magnitude of the detected load is included in each on / off timing data in the memory 30a. Calculated based on straight line interpolation.
  • the timing t1 in the case of the load B and the timing t1 in the case of the load C are connected by a straight line.
  • the point corresponding to the load H is calculated as the timing t1 in the case of the load H.
  • ON / OFF control of the U-phase switch 13u, the V-phase switch 13v, and the W-phase switch 13w is executed.
  • phase current Iua at a predetermined load and the phase current Iub at a half load of the predetermined load are shown as Fourier (FFT) analysis diagrams. This is shown in FIG. Further, FIG. 7 shows the limit value (IEC) of each harmonic order corresponding to IEC61000-3-2 added to the Fourier analysis diagram of FIG. 6, which is suitable for any load and order.
  • FFT Fourier
  • the on / off timing for shifting the on periods of the U-phase switch 13u, the V-phase switch 13v, and the W-phase switch 13w may be set based on on / off timing data in the memory 30a. However, if there is a switch that is turned on during actual control, the other switches may be turned on until the switch is turned off.
  • the current sensors 5u, 5v, 5w and the current detection circuit 6 are used as load detection means, a resistor 7 is inserted and connected to the energization line between the smoothing capacitor 3 and the load 4 as shown by a broken line in FIG.
  • the current detection circuit 8 may be connected to both ends of the resistor 7 so that the current flowing through the load 4 is detected from the voltage generated in the resistor 7 and the size of the load 4 is detected based on the detected current.
  • a general rectifier in which a smoothing capacitor 3 is connected to a rectifier circuit (second rectifier circuit) 9 having a three-phase diode bridge connection similar to the rectifier circuit 12 via a DC reactor 2.
  • the three-phase rectifier 10 of the present invention may be newly connected in parallel to the rectifier circuit 9.
  • the rectifier circuit 9 includes a pair of diodes 9u1 and 9u2 connected in series, and a connection circuit between the two diodes is connected to a U-phase line of the three-phase AC power supply 1, and a pair of diodes 9v1 and 9v2 are connected in series.
  • a series circuit for V phase in which the connection point between the two diodes is connected to the V phase line of the three-phase AC power source 1, and a pair of diodes 9w1 and 9w2 are connected in series. It has a W-phase series circuit connected to the W-phase line of the power source 1 and converts the three-phase AC voltage of the three-phase AC power source 1 into a DC voltage for output.
  • part of the current near the center where the amplitude of the half wave is large (60 ° to 120 ° period or 240 ° to 300 ° period) is made part of the U-phase reactor 11u, the V-phase reactor 11v, Since it flows toward the rectifier circuit 9 without passing through the W-phase reactor 11w, the U-phase reactor 11u, the V-phase reactor 11v, and the W-phase reactor 11w may have a smaller magnetic flux capacity than the current capacity. it can. That is, the U-phase reactor 11u, the V-phase reactor 11v, and the W-phase reactor 11w are further reduced in size.
  • the three-phase rectifier according to the present invention can be mounted on equipment connected to a three-phase AC power source.
  • SYMBOLS 1 Three-phase alternating current power supply, 2 ... DC reactor, 3 ... Smoothing capacitor, 4 ... Load, 10 ... Three-phase rectifier, 11u, 11v, 11w ... Reactor, 12 ... Rectifier circuit, 13u ... U-phase switch, 13v ... V-phase switch, 13w ... W-phase switch, 14, 15 ... capacitor, 21,22 ... MOSFET, 23 ... drive circuit, 30 ... control unit, 30a ... memory (storage means)

Abstract

MOSFETs (21, 22) of a U phase switch (13u), a V phase switch (13v) and a W phase switch (13w) are turned on and off in the 0° to 60° period and the 120° to 180° period of the half-cycles of phase currents (Iu, Iv, Iw) flowing into a U phase reactor (11u), a V phase reactor (11v) and a W phase reactor (11w) from a three-phase AC power source (1).

Description

三相整流装置Three-phase rectifier
 この発明は、三相交流電源の電圧を整流して直流電圧に変換する三相整流装置に関する。 This invention relates to a three-phase rectifier that rectifies the voltage of a three-phase AC power source and converts it into a DC voltage.
 三相交流電源の電圧を整流して直流電圧に変換する整流回路は、一対のダイオードを直列接続してなる3つの直列回路を有し、これら直列回路の各ダイオードの相互接続点が三相交流電源の各相ラインに接続される。そして、この整流回路の出力端に平滑コンデンサが接続され、その平滑コンデンサに負荷が接続される。 A rectifier circuit that rectifies the voltage of a three-phase AC power source and converts it into a DC voltage has three series circuits in which a pair of diodes are connected in series, and the interconnection point of each diode in these series circuits is a three-phase AC Connected to each phase line of power supply. A smoothing capacitor is connected to the output terminal of the rectifier circuit, and a load is connected to the smoothing capacitor.
 三相交流電圧は位相が互いに120°異なる3つの相電圧からなり、これら相電圧により、各直列回路のそれぞれ正側ダイオードを通って平滑コンデンサに電流が流れ、その平滑コンデンサから各直列回路のそれぞれ負側ダイオードを通って電流が流れる。 The three-phase AC voltage is composed of three phase voltages whose phases are different from each other by 120 °. With these phase voltages, a current flows through the positive diode of each series circuit to the smoothing capacitor, and each of the series circuits is supplied from the smoothing capacitor. Current flows through the negative diode.
 このような整流回路の例として、入力電流に含まれる高調波成分を抑制するため、入力側の各相ラインにリアクトルを挿入接続するとともに、これらリアクトルに対する閉回路形成用の複数のスイッチ手段を接続し、これらスイッチ手段を高周波スイッチングさせることにより、入力電流波形を正弦波に追従させる三相アクティブフィルタ方式を採用したものがある(例えば特許文献1)。この方式は短絡対象として仮想中性点が設けられており,短絡素子の耐電圧を低くでき、リアクトルにかかる電圧も低いのでdi/dtが小さく、良好なアクティブフィルタ特性を実現することができる。 As an example of such a rectifier circuit, in order to suppress harmonic components contained in the input current, a reactor is inserted and connected to each phase line on the input side, and a plurality of switch means for forming a closed circuit for these reactors are connected. However, there is one that employs a three-phase active filter system that causes the input current waveform to follow a sine wave by switching these switch means at high frequency (for example, Patent Document 1). In this method, a virtual neutral point is provided as a short-circuit target, the withstand voltage of the short-circuit element can be lowered, and the voltage applied to the reactor is also low, so the di / dt is small and good active filter characteristics can be realized.
 同様に、交流電源側の入力ラインにリアクトルを挿入接続し、このリアクトルに対する閉回路形成用のスイッチ素子を接続し、このスイッチ素子のオンにより交流電源からリアクトルに強制電流を流し、その強制電流をスイッチ素子のオフへの切換えにより整流回路を通して平滑コンデンサに流入させることにより、力率の改善を図るようにした直流電源装置がある(例えば特許文献2)。 Similarly, a reactor is inserted and connected to the input line on the AC power supply side, and a switch element for forming a closed circuit is connected to this reactor. When this switch element is turned on, a forced current is passed from the AC power supply to the reactor, and the forced current is supplied to the reactor. There is a DC power supply device in which the power factor is improved by flowing into a smoothing capacitor through a rectifier circuit by switching off a switch element (for example, Patent Document 2).
特許第2857094号公報Japanese Patent No. 2857094 特開2002-199730号公報JP 2002-199730 A
 上記した特許文献1の三相アクティブフィルタ方式の整流回路は、高周波スイッチングを行うため、高周波スイッチングノイズが発生したり、リアクトルとして高周波電流に対応し得る部品の採用が必要になるなどの課題がある。 The above-described three-phase active filter type rectifier circuit of Patent Document 1 performs high-frequency switching, and thus has problems such as generation of high-frequency switching noise and the necessity of using a component that can handle high-frequency current as a reactor. .
 また、特許文献2の直流電源装置は、単相交流電源には有効な高調波低減手段であるが、三相交流電源には適用できない。 Further, the DC power supply device of Patent Document 2 is a harmonic reduction means effective for a single-phase AC power supply, but cannot be applied to a three-phase AC power supply.
 この発明の三相整流装置は、小形のリアクトルの採用ですみ、しかも高周波スイッチングノイズが少なく、高調波の低減効果が向上することを目的とする。 The three-phase rectifier of the present invention uses only a small reactor, and has the object of reducing high-frequency switching noise and improving the harmonic reduction effect.
 この発明の三相整流装置は、
 一対のダイオードを直列接続しその両ダイオードの相互接続点が三相交流電源のU相ラインに接続されるU相用直列回路、一対のダイオードを直列接続しその両ダイオードの相互接続点が前記三相交流電源のV相ラインに接続されるV相用直列回路、一対のダイオードを直列接続しその両ダイオードの相互接続点が前記三相交流電源のW相ラインに接続されるW相用直列回路を有し、前記三相交流電源の電圧を直流電圧に変換して出力する整流回路と、
 前記三相交流電源のU相ライン,V相ライン,W相ラインにそれぞれ設けられたU相用リアクトル,V相用リアクトル,およびW相用リアクトルと、
 前記整流回路の出力電圧が印加される一対のコンデンサの直列回路と、
 前記U相用直列回路の両ダイオードの相互接続点と前記各コンデンサの相互接続点との間に接続された双方向性のU相用スイッチと、
 前記V相用直列回路の両ダイオードの相互接続点と前記各コンデンサの相互接続点との間に接続された双方向性のV相用スイッチと、
 前記W相用直列回路の両ダイオードの相互接続点と前記各コンデンサの相互接続点との間に接続された双方向性のW相用スイッチと、
 前記U相用スイッチ、前記V相用スイッチ、前記W相用スイッチを前記U相用リアクトル、前記V相用リアクトル、前記W相用リアクトルに流入するU相電流、V相電流、W相電流のそれぞれ0°~60°期間および120°~180°期間においてオン,オフする制御手段と、
 を備え、前記各コンデンサの直列回路に生じる電圧を出力とする。
The three-phase rectifier of this invention is
A series circuit for U phase in which a pair of diodes are connected in series and an interconnection point between both diodes is connected to a U phase line of a three-phase AC power supply, and a pair of diodes connected in series is an interconnection point between the two diodes. V-phase series circuit connected to the V-phase line of the phase AC power supply, a series circuit for W-phase in which a pair of diodes are connected in series, and an interconnection point of both diodes is connected to the W-phase line of the three-phase AC power supply A rectifier circuit that converts the voltage of the three-phase AC power source into a DC voltage and outputs the DC voltage;
A U-phase reactor, a V-phase reactor, and a W-phase reactor respectively provided on the U-phase line, the V-phase line, and the W-phase line of the three-phase AC power source;
A series circuit of a pair of capacitors to which the output voltage of the rectifier circuit is applied;
A bidirectional U-phase switch connected between an interconnection point of both diodes of the U-phase series circuit and an interconnection point of the capacitors;
A bidirectional V-phase switch connected between an interconnection point of both diodes of the V-phase series circuit and an interconnection point of the capacitors;
A bidirectional W-phase switch connected between an interconnection point of both diodes of the W-phase series circuit and an interconnection point of the capacitors;
The U-phase switch, the V-phase switch, and the W-phase switch are connected to the U-phase reactor, the V-phase reactor, the W-phase reactor, the U-phase current, the V-phase current, and the W-phase current. Control means for turning on and off in the period of 0 ° to 60 ° and 120 ° to 180 ° respectively;
The voltage generated in the series circuit of each capacitor is output.
 この発明の三相整流装置によれば、小形のリアクトルの採用ですみ、しかも高周波スイッチングノイズが少なく、高調波に対する低減効果が向上する。 According to the three-phase rectifier of the present invention, it is only necessary to adopt a small reactor, and there is little high-frequency switching noise, and the effect of reducing harmonics is improved.
図1は、この発明の一実施形態の構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention. 図2は、一実施形態における各相電流の波形および各スイッチのオン,オフパターンを示す波形図である。FIG. 2 is a waveform diagram showing the waveform of each phase current and the on / off pattern of each switch in one embodiment. 図3は、図2におけるオン,オフパターンの非同期を説明するための波形図である。FIG. 3 is a waveform diagram for explaining the on / off pattern asynchronization in FIG. 図4は、一実施形態における相電流が負荷の大きさに応じて異なる状態を示す波形図である。FIG. 4 is a waveform diagram showing a state in which the phase current in one embodiment differs depending on the size of the load. 図5は、一実施形態における負荷の大小とオン,オフタイミングデータとの関係を示す図である。FIG. 5 is a diagram showing the relationship between the magnitude of the load and the on / off timing data in one embodiment. 図6は、一実施形態における負荷の大きさに応じて異なる相電流のフーリエ解析図である。FIG. 6 is a Fourier analysis diagram of different phase currents according to the size of the load in one embodiment. 図7は、図6のフーリエ解析図に各高調波次数の限度値を追記した図である。FIG. 7 is a diagram in which the limit value of each harmonic order is added to the Fourier analysis diagram of FIG. 図8は、一実施形態の変形例の構成を示すブロック図である。FIG. 8 is a block diagram illustrating a configuration of a modified example of the embodiment.
 以下、この発明の一実施形態について図面を参照して説明する。 
 図1に示すように、三相交流電源1のR,S,Tの3つの相ラインに三相整流装置10が接続され、その三相整流装置10の出力電圧(後述のコンデンサ14,15の直列回路に生じる電圧)が直流リアクトル2を介して出力用の平滑コンデンサ3に印加される。なお、コンデンサ14,15の容量を大きくすれば、出力用の平滑コンデンサ3を不要とすることもできる。この場合、コンデンサ14,15の直列回路の両端がそのまま出力となる。しかしながら、大容量のコンデンサ14,15のみとするよりも、平滑コンデンサ3を設けてコンデンサ14,15の容量を小さくした方がコスト的に有利となる。
An embodiment of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, a three-phase rectifier 10 is connected to three phase lines R, S, and T of a three-phase AC power source 1, and an output voltage of the three-phase rectifier 10 ( capacitors 14 and 15 described later) The voltage generated in the series circuit) is applied to the output smoothing capacitor 3 via the DC reactor 2. If the capacitances of the capacitors 14 and 15 are increased, the output smoothing capacitor 3 can be dispensed with. In this case, both ends of the series circuit of the capacitors 14 and 15 are output as they are. However, it is more advantageous in terms of cost to provide the smoothing capacitor 3 and reduce the capacitance of the capacitors 14 and 15 than to use only the large capacitors 14 and 15.
 そして、平滑コンデンサ3に負荷4が接続される。また、三相交流電源1と三相整流装置10との間の各相ラインに電流センサ5u,5v,5wが設けられ、これら電流センサに電流検出回路6が接続される。電流検出回路6は、電流センサ5u,5v,5wを介して相電流Iu,Iv,Iwを検出する。 The load 4 is connected to the smoothing capacitor 3. Further, current sensors 5u, 5v, 5w are provided in each phase line between the three-phase AC power source 1 and the three-phase rectifier 10, and a current detection circuit 6 is connected to these current sensors. The current detection circuit 6 detects the phase currents Iu, Iv, and Iw via the current sensors 5u, 5v, and 5w.
 直流リアクトル2、平滑コンデンサ3、電流センサ5u,5v,5w、および電流検出回路6は、三相整流装置10に付属の機器である。 The direct current reactor 2, the smoothing capacitor 3, the current sensors 5u, 5v, 5w, and the current detection circuit 6 are devices attached to the three-phase rectifier 10.
 三相整流装置10は、整流回路12を有する。整流回路12は、一対のダイオード12u1,12u2を直列接続しその両ダイオードの相互接続点が三相交流電源1のU相ラインに接続されるU相用直列回路、一対のダイオード12v1,12v2を直列接続しその両ダイオードの相互接続点が三相交流電源1のV相ラインに接続されるV相用直列回路、一対のダイオード12w1,12w2を直列接続しその両ダイオードの相互接続点が三相交流電源1のW相ラインに接続されるW相用直列回路を有し、三相交流電源1の三相交流電圧を直流電圧に変換して出力する。 The three-phase rectifier 10 has a rectifier circuit 12. The rectifier circuit 12 includes a pair of diodes 12u1 and 12u2 connected in series, and a connection circuit between the two diodes connected to the U-phase line of the three-phase AC power supply 1, and a pair of diodes 12v1 and 12v2 connected in series. A series circuit for V phase in which the connection point between the two diodes is connected to the V phase line of the three-phase AC power source 1, and a pair of diodes 12w1 and 12w2 are connected in series. It has a W-phase series circuit connected to the W-phase line of the power source 1 and converts the three-phase AC voltage of the three-phase AC power source 1 into a DC voltage for output.
 三相交流電源1と整流回路12との間の各相ラインに、高調波低減用の複数のU相用リアクトル11u,V相用リアクトル11v,W相用リアクトル11wがそれぞれ設けられる。 A plurality of U-phase reactors 11u, V-phase reactors 11v, and W-phase reactors 11w for reducing harmonics are provided on each phase line between the three-phase AC power supply 1 and the rectifier circuit 12, respectively.
 整流回路12の出力電圧が、互いに等容量の一対のコンデンサ14,15の直列回路に印加される。このコンデンサ14,15の直列回路に生じる直流電圧が、三相整流装置10の出力となる。 The output voltage of the rectifier circuit 12 is applied to a series circuit of a pair of capacitors 14 and 15 having the same capacity. The DC voltage generated in the series circuit of the capacitors 14 and 15 becomes the output of the three-phase rectifier 10.
 そして、コンデンサ14,15の相互接続点(以下、仮想中性点という)と整流回路12のU相用直列回路における各ダイオードの相互接続点との間に、双方向性のU相用スイッチ13uが接続される。仮想中性点と整流回路12のV相用直列回路における各ダイオードの相互接続点との間に、双方向性のV相用スイッチ13vが接続される。仮想中性点と整流回路12のW相用直列回路における各ダイオードの相互接続点との間に、双方向性のW相用スイッチ13wが接続される。 A bidirectional U-phase switch 13u is connected between an interconnection point of the capacitors 14 and 15 (hereinafter referred to as a virtual neutral point) and an interconnection point of each diode in the U-phase series circuit of the rectifier circuit 12. Is connected. A bidirectional V-phase switch 13v is connected between the virtual neutral point and the interconnection point of each diode in the V-phase series circuit of the rectifier circuit 12. A bidirectional W-phase switch 13w is connected between the virtual neutral point and the interconnection point of each diode in the W-phase series circuit of the rectifier circuit 12.
 U相用スイッチ13u,V相用スイッチ13v,W相用スイッチ13wは、それぞれ、2つのN型のMOSFET21,22の直列回路およびこれらMOSFET21,22をオン,オフ駆動するための駆動回路23を有する。 Each of the U-phase switch 13u, the V-phase switch 13v, and the W-phase switch 13w includes a series circuit of two N- type MOSFETs 21 and 22, and a drive circuit 23 for driving the MOSFETs 21 and 22 on and off. .
 各駆動回路23は、制御部30からの指令に応じてMOSFET21,22を共に同じタイミングでオン,オフ駆動する。MOSFET21,22がオンすることにより、U相用リアクトル11u,V相用リアクトル11v,W相用リアクトル11wから各仮想中性点へと向かう電流はMOSFET21のドレイン・ソース間、MOSFET22のソース-ドレイン間、およびMOSFET22の寄生ダイオードを通って流れ、各仮想中性点からU相用リアクトル11u,V相用リアクトル11v,W相用リアクトル11wへと向かう電流はMOSFET22のドレイン・ソース間、MOSFET21のソース-ドレイン間、およびMOSFET21の寄生ダイオードを通って流れる。 Each drive circuit 23 drives the MOSFETs 21 and 22 on and off at the same timing in accordance with a command from the control unit 30. When the MOSFETs 21 and 22 are turned on, the current from the U-phase reactor 11u, the V-phase reactor 11v, and the W-phase reactor 11w to each virtual neutral point is between the drain and source of the MOSFET 21, and between the source and drain of the MOSFET 22. , And the current flowing from the respective parasitic neutral points to the U-phase reactor 11u, the V-phase reactor 11v, and the W-phase reactor 11w from the drain to the source of the MOSFET 22, and the source of the MOSFET 21− It flows between the drains and through the parasitic diode of MOSFET 21.
 制御部30は、整流回路12の出力電圧により動作して各駆動回路23を制御するもので、U相用スイッチ13u,V相用スイッチ13v,W相用スイッチ13wのMOSFET21,22に対するオン,オフタイミングデータが記憶されたメモリ(記憶手段)30aを有するとともに、主要な機能として次の(1)(2)の手段を有する。 The control unit 30 operates according to the output voltage of the rectifier circuit 12 and controls each drive circuit 23. The U-phase switch 13u, the V-phase switch 13v, and the W-phase switch 13w are turned on / off with respect to the MOSFETs 21 and 22. It has a memory (storage means) 30a in which timing data is stored, and has the following means (1) and (2) as main functions.
 (1)上記電流検出回路6で検出される各相電流から負荷4の大きさを検出する負荷検出セクション(負荷検出手段)。 
 (2)三相交流電源1からU相用リアクトル11u,V相用リアクトル11v,W相用リアクトル11wに流入する相電流Iu,Iv,Iwを監視し、その各相電流Iu,Iv,Iwの半周期の0°~60°期間および120°~180°期間において、U相用スイッチ13u,V相用スイッチ13v,W相用スイッチ13wのMOSFET21,22をオン,オフする制御セクション(制御手段)。具体的には、各相電流Iu,Iv,Iwの半周期の0°~60°期間および120°~180°期間において、かつメモリ30a内の各オン,オフタイミングデータのうち上記負荷検出セクションで検出される負荷の大きさに合致するオン,オフタイミングデータに基づき、U相用スイッチ13u,V相用スイッチ13v,W相用スイッチ13wのMOSFET21,22をオン,オフする。負荷検出セクションで検出される負荷の大きさに合致するオン,オフタイミングデータがメモリ30a内に無い場合は、負荷検出セクションで検出される負荷の大きさに対応するオン,オフタイミングデータをメモリ30a内の各オン,オフタイミングデータから直線補完により算出し、算出したオン,オフタイミングデータに基づき、U相用スイッチ13u,V相用スイッチ13v,W相用スイッチ13wのMOSFET21,22をオン,オフする。
(1) A load detection section (load detection means) for detecting the magnitude of the load 4 from each phase current detected by the current detection circuit 6.
(2) The phase currents Iu, Iv, Iw flowing from the three-phase AC power source 1 to the U-phase reactor 11u, the V-phase reactor 11v, and the W-phase reactor 11w are monitored, and the phase currents Iu, Iv, Iw Control section (control means) for turning on and off the MOSFETs 21 and 22 of the U-phase switch 13u, the V-phase switch 13v, and the W-phase switch 13w in the half-cycle period of 0 ° to 60 ° and 120 ° to 180 ° . Specifically, in the 0 ° to 60 ° period and 120 ° to 180 ° period of the half cycle of each phase current Iu, Iv, Iw, and in the load detection section of the on / off timing data in the memory 30a. Based on the ON / OFF timing data matching the detected load size, the MOSFETs 21 and 22 of the U-phase switch 13u, the V-phase switch 13v, and the W-phase switch 13w are turned on and off. When there is no on / off timing data matching the magnitude of the load detected in the load detection section in the memory 30a, the on / off timing data corresponding to the magnitude of the load detected in the load detection section is stored in the memory 30a. Are calculated by linear interpolation from the on / off timing data, and the MOSFETs 21 and 22 of the U-phase switch 13u, V-phase switch 13v, and W-phase switch 13w are turned on / off based on the calculated on / off timing data. To do.
 次に、作用について説明する。 
 図2に示すように、相電流Iuの半周期の0°~60°期間および120°~180°期間において、U相用スイッチ13uのMOSFET21,22がオン,オフする。0°~60°期間では、零クロス点の0°から離れるに従い、オン期間が徐々に短くなってオフ期間が徐々に長くなる。120°~180°期間では、零クロス点の180°に近づくに従い、オン期間が徐々に長くなってオフ期間が徐々に短くなる。そして、MOSFET21,22のオン期間では三相交流電源1からU相用リアクトル11uに強制電流が流れ(電流増加期間)、その強制電流がMOSFET21,22のオフ期間において整流回路12および直流リアクトル2を通って平滑コンデンサ3に流入する。図2におけるILuは、U相用リアクトル11uに流れる電流を示している。
Next, the operation will be described.
As shown in FIG. 2, the MOSFETs 21 and 22 of the U-phase switch 13u are turned on and off during the 0 ° to 60 ° period and the 120 ° to 180 ° period of the half cycle of the phase current Iu. In the period of 0 ° to 60 °, the ON period is gradually shortened and the OFF period is gradually lengthened as the distance from the zero cross point is 0 °. In the 120 ° to 180 ° period, as the zero cross point approaches 180 °, the on period gradually increases and the off period gradually decreases. A forced current flows from the three-phase AC power source 1 to the U-phase reactor 11u during the on period of the MOSFETs 21 and 22 (current increase period). The forced current flows between the rectifier circuit 12 and the DC reactor 2 during the off period of the MOSFETs 21 and 22. And flows into the smoothing capacitor 3. ILu in FIG. 2 indicates a current flowing through the U-phase reactor 11u.
 同様に、相電流Ivの半周期の0°~60°期間および120°~180°期間において、V相用スイッチ13vのMOSFET21,22がオン,オフする。相電流Iwの半周期の0°~60°期間および120°~180°期間において、W相用スイッチ13wのMOSFET21,22がオン,オフする。 Similarly, the MOSFETs 21 and 22 of the V-phase switch 13v are turned on and off during the 0 ° to 60 ° period and the 120 ° to 180 ° period of the half cycle of the phase current Iv. The MOSFETs 21 and 22 of the W-phase switch 13w are turned on and off during the 0 ° to 60 ° period and 120 ° to 180 ° period of the half cycle of the phase current Iw.
 このようなU相用スイッチ13u,V相用スイッチ13v,W相用スイッチ13wのオン,オフ制御を行うことにより、U相用リアクトル11u,V相用リアクトル11v,W相用リアクトル11wを設けていることによる高調波低減効果を得ながら、従来の高周波スイッチングを行う整流回路に比べて高周波スイッチングノイズの発生を少なくすることができ、ひいてはU相用リアクトル11u,V相用リアクトル11v,W相用リアクトル11wとして小形で電流・インダクタンス容量が大きい低周波リアクトルを採用した三相アクティブフィルタを構成できる。U相用リアクトル11u,V相用リアクトル11v,W相用リアクトル11wが小形になれば、三相整流装置20が搭載される機器の小型化が図れる。 By performing ON / OFF control of the U-phase switch 13u, the V-phase switch 13v, and the W-phase switch 13w, a U-phase reactor 11u, a V-phase reactor 11v, and a W-phase reactor 11w are provided. The generation of high frequency switching noise can be reduced as compared with the conventional rectifier circuit that performs high frequency switching while obtaining the effect of reducing harmonics, and as a result, the reactor for U phase 11u, the reactor for V phase 11v, and for W phase A three-phase active filter that employs a low-frequency reactor having a small size and a large current / inductance capacity can be configured as the reactor 11w. If the U-phase reactor 11u, the V-phase reactor 11v, and the W-phase reactor 11w are reduced in size, the equipment on which the three-phase rectifier 20 is mounted can be reduced in size.
 オン,オフ制御する0°~60°期間および120°~180°期間は、1つの相のオン,オフ制御が他の2つの相の電流波形に及ぼす影響が少ない期間である。この期間を選定していることにより、高周波スイッチングノイズの低減効果および高調波の低減効果が大きくなる。 The ON / OFF control period of 0 ° to 60 ° and 120 ° to 180 ° is a period in which the ON / OFF control of one phase has little influence on the current waveforms of the other two phases. By selecting this period, the effect of reducing high-frequency switching noise and the effect of reducing harmonics are increased.
 一方、3つのU相用スイッチ13u,V相用スイッチ13v,W相用スイッチ13wのうち、2つスイッチのオン,オフ制御が重なる期間が存在するため、2つのスイッチが同時にオンすると2つの相の電流増加が重畳した形で残りの1つの相に影響し、高調波の増加の原因となってしまう。この不具合を解消するため、3つのU相用スイッチ13u,V相用スイッチ13v,W相用スイッチ13wが互いに同期しないタイミングでオン,オフされる。すなわち、図3に斜線で示すように、U相用スイッチ13u,V相用スイッチ13v,W相用スイッチ13wのオン期間が互いにずれることにより、上記の期間選定と合せて、高調波低減の効果がさらに増大する。 On the other hand, among the three U-phase switches 13u, the V-phase switch 13v, and the W-phase switch 13w, there is a period in which the on / off control of the two switches overlaps. The current increase is superimposed on the remaining one phase, which causes an increase in harmonics. In order to eliminate this problem, the three U-phase switches 13u, the V-phase switch 13v, and the W-phase switch 13w are turned on and off at timings that are not synchronized with each other. That is, as indicated by the hatched lines in FIG. 3, the on-periods of the U-phase switch 13u, the V-phase switch 13v, and the W-phase switch 13w are shifted from each other. Increases further.
 また、相電流Iu,Iv,Iwのレベルについては、図4に示すように、負荷の大きさに応じて異なる。このため、U相用スイッチ13u,V相用スイッチ13v,W相用スイッチ13wのオン,オフタイミングt1,t2,t3,t4,t5,t6…を決定するためのオン,オフタイミングデータとして、負荷の大きさ別に用意された複数種が、制御部30のメモリ30aに記憶されている。 Further, the levels of the phase currents Iu, Iv, and Iw vary depending on the magnitude of the load as shown in FIG. Therefore, as on / off timing data for determining on / off timings t1, t2, t3, t4, t5, t6... Of the U-phase switch 13u, V-phase switch 13v, and W-phase switch 13w, the load A plurality of types prepared for different sizes are stored in the memory 30 a of the control unit 30.
 すなわち、図5に示すように、例えば3つの負荷A,B,Cについて、最大相電流Amaxを得るためのオン,オフタイミングデータ、最大相電流Bmaxを得るためのオン,オフタイミングデータ、最大相電流Cmaxを得るためのオン,オフタイミングデータがそれぞれメモリ30aに記憶されている。そして、電流検出回路6の検出電流から負荷4の大きさが検出され、その検出された負荷に合致するオン,オフタイミングデータがメモリ30aから読出される。 That is, as shown in FIG. 5, for example, for three loads A, B, and C, on / off timing data for obtaining the maximum phase current Amax, on / off timing data for obtaining the maximum phase current Bmax, and the maximum phase On / off timing data for obtaining the current Cmax is stored in the memory 30a. Then, the magnitude of the load 4 is detected from the detection current of the current detection circuit 6, and on / off timing data matching the detected load is read from the memory 30a.
 ただし、実際の負荷4の大きさは様々である。図4に示すように、負荷Bと負荷Cとの間の負荷Hについては、メモリ30a内に適合するオン,オフタイミングデータが無い。そこで、検出負荷の大きさに合致するオン,オフタイミングデータがメモリ30a内に無い場合は、検出負荷の大きさに対応するオン,オフタイミングデータが、メモリ30a内の各オン,オフタイミングデータに基づく直線補完により算出される。 However, the actual load 4 varies in size. As shown in FIG. 4, there is no on / off timing data for the load H between the load B and the load C in the memory 30a. Therefore, when there is no on / off timing data in the memory 30a that matches the magnitude of the detected load, the on / off timing data corresponding to the magnitude of the detected load is included in each on / off timing data in the memory 30a. Calculated based on straight line interpolation.
 具体的には、図5に示すように、負荷B,C間の負荷Hについて見ると、負荷Bの場合のタイミングt1と負荷Cの場合のタイミングt1との間を直線でつなぎ、その直線上の負荷Hに見合う点が、負荷Hの場合のタイミングt1として算出される。そして、算出されたオン,オフタイミングデータに基づき、U相用スイッチ13u,V相用スイッチ13v,W相用スイッチ13wのオン,オフ制御が実行される。 Specifically, as shown in FIG. 5, when looking at the load H between the loads B and C, the timing t1 in the case of the load B and the timing t1 in the case of the load C are connected by a straight line. The point corresponding to the load H is calculated as the timing t1 in the case of the load H. Based on the calculated ON / OFF timing data, ON / OFF control of the U-phase switch 13u, the V-phase switch 13v, and the W-phase switch 13w is executed.
 負荷の大きさに応じて相電流がどのように異なるかの例として、所定負荷のときの相電流Iua、その所定負荷の半分の負荷のときの相電流Iubをフーリエ(FFT)解析図として図6に示している。また、この図6のフーリエ解析図にIEC61000-3-2に相当する各高調波次数の限度値(IEC)を追記したのが図7であり、いずれの負荷・次数においても適合している。 As an example of how the phase current varies depending on the size of the load, the phase current Iua at a predetermined load and the phase current Iub at a half load of the predetermined load are shown as Fourier (FFT) analysis diagrams. This is shown in FIG. Further, FIG. 7 shows the limit value (IEC) of each harmonic order corresponding to IEC61000-3-2 added to the Fourier analysis diagram of FIG. 6, which is suitable for any load and order.
 なお、U相用スイッチ13u,V相用スイッチ13v,W相用スイッチ13wのオン期間を互いにずらすためのオン,オフタイミングについては、メモリ30a内のオン,オフタイミングデータに基づいて設定してもよいが、実際の制御中において、オンしているスイッチがあれば、そのスイッチがオフするまで他のスイッチのオンを遅延させるようにしてもよい。 The on / off timing for shifting the on periods of the U-phase switch 13u, the V-phase switch 13v, and the W-phase switch 13w may be set based on on / off timing data in the memory 30a. However, if there is a switch that is turned on during actual control, the other switches may be turned on until the switch is turned off.
 また、負荷検出手段として電流センサ5u,5v,5wおよび電流検出回路6を用いたが、図1に破線で示すように、平滑コンデンサ3と負荷4との間の通電ラインに抵抗7を挿入接続し、その抵抗7の両端に電流検出回路8を接続し、負荷4に流れる電流を抵抗7に生じる電圧から検出し、その検出電流に基づいて負荷4の大きさを検出する構成としてもよい。 Further, although the current sensors 5u, 5v, 5w and the current detection circuit 6 are used as load detection means, a resistor 7 is inserted and connected to the energization line between the smoothing capacitor 3 and the load 4 as shown by a broken line in FIG. The current detection circuit 8 may be connected to both ends of the resistor 7 so that the current flowing through the load 4 is detected from the voltage generated in the resistor 7 and the size of the load 4 is detected based on the detected current.
 さらに、図8に示すように、整流回路12と同様の三相ダイオードブリッジ接続の整流回路(第2の整流回路)9に、直流リアクトル2を介して平滑コンデンサ3が接続された一般的な整流装置がすでに存在する場合、その整流回路9に対し、本発明の三相整流装置10を新たに並列接続する構成としてもよい。 Further, as shown in FIG. 8, a general rectifier in which a smoothing capacitor 3 is connected to a rectifier circuit (second rectifier circuit) 9 having a three-phase diode bridge connection similar to the rectifier circuit 12 via a DC reactor 2. When the device already exists, the three-phase rectifier 10 of the present invention may be newly connected in parallel to the rectifier circuit 9.
 整流回路9は、一対のダイオード9u1,9u2を直列接続しその両ダイオードの相互接続点が三相交流電源1のU相ラインに接続されるU相用直列回路、一対のダイオード9v1,9v2を直列接続しその両ダイオードの相互接続点が三相交流電源1のV相ラインに接続されるV相用直列回路、一対のダイオード9w1,9w2を直列接続しその両ダイオードの相互接続点が三相交流電源1のW相ラインに接続されるW相用直列回路を有し、三相交流電源1の三相交流電圧を直流電圧に変換して出力する。 The rectifier circuit 9 includes a pair of diodes 9u1 and 9u2 connected in series, and a connection circuit between the two diodes is connected to a U-phase line of the three-phase AC power supply 1, and a pair of diodes 9v1 and 9v2 are connected in series. A series circuit for V phase in which the connection point between the two diodes is connected to the V phase line of the three-phase AC power source 1, and a pair of diodes 9w1 and 9w2 are connected in series. It has a W-phase series circuit connected to the W-phase line of the power source 1 and converts the three-phase AC voltage of the three-phase AC power source 1 into a DC voltage for output.
 すなわち、既存の機器に対し、高調波低減対策を目的とした三相整流装置10の後付けが可能になる。この場合、相電流のうち、半波の振幅が大きい中央付近(60°~120°期間または240°~300°期間)の電流の一部が、U相用リアクトル11u,V相用リアクトル11v,W相用リアクトル11wを通らずに整流回路9の方に流れるので、U相用リアクトル11u,V相用リアクトル11v,W相用リアクトル11wを電流容量に対して磁束容量の小さいものにすることができる。つまり、U相用リアクトル11u,V相用リアクトル11v,W相用リアクトル11wがさらに小形となる。 That is, it becomes possible to retrofit the existing equipment with the three-phase rectifier 10 for the purpose of reducing harmonics. In this case, among the phase currents, part of the current near the center where the amplitude of the half wave is large (60 ° to 120 ° period or 240 ° to 300 ° period) is made part of the U-phase reactor 11u, the V-phase reactor 11v, Since it flows toward the rectifier circuit 9 without passing through the W-phase reactor 11w, the U-phase reactor 11u, the V-phase reactor 11v, and the W-phase reactor 11w may have a smaller magnetic flux capacity than the current capacity. it can. That is, the U-phase reactor 11u, the V-phase reactor 11v, and the W-phase reactor 11w are further reduced in size.
 その他、この発明は上記実施形態に限定されるものではなく、要旨を変えない範囲で種々変形実施可能である。 In addition, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the invention.
 この発明の三相整流装置は、三相交流電源に接続される機器への搭載が可能である。 The three-phase rectifier according to the present invention can be mounted on equipment connected to a three-phase AC power source.
 1…三相交流電源、2…直流リアクトル、3…平滑コンデンサ、4…負荷、10…三相整流装置、11u,11v,11w…リアクトル、12…整流回路、13u…U相用スイッチ、13v…V相用スイッチ、13w…W相用スイッチ、14,15…コンデンサ、21,22…MOSFET、23…駆動回路、30…制御部、30a…メモリ(記憶手段) DESCRIPTION OF SYMBOLS 1 ... Three-phase alternating current power supply, 2 ... DC reactor, 3 ... Smoothing capacitor, 4 ... Load, 10 ... Three-phase rectifier, 11u, 11v, 11w ... Reactor, 12 ... Rectifier circuit, 13u ... U-phase switch, 13v ... V-phase switch, 13w ... W-phase switch, 14, 15 ... capacitor, 21,22 ... MOSFET, 23 ... drive circuit, 30 ... control unit, 30a ... memory (storage means)

Claims (7)

  1.  一対のダイオードを直列接続しその両ダイオードの相互接続点が三相交流電源のU相ラインに接続されるU相用直列回路、一対のダイオードを直列接続しその両ダイオードの相互接続点が前記三相交流電源のV相ラインに接続されるV相用直列回路、一対のダイオードを直列接続しその両ダイオードの相互接続点が前記三相交流電源のW相ラインに接続されるW相用直列回路を有し、前記三相交流電源の電圧を直流電圧に変換して出力する整流回路と、
     前記三相交流電源のU相ライン,V相ライン,W相ラインにそれぞれ設けられたU相用リアクトル,V相用リアクトル,およびW相用リアクトルと、
     前記整流回路の出力電圧が印加される一対のコンデンサの直列回路と、
     前記U相用直列回路の両ダイオードの相互接続点と前記各コンデンサの相互接続点との間に接続された双方向性のU相用スイッチと、
     前記V相用直列回路の両ダイオードの相互接続点と前記各コンデンサの相互接続点との間に接続された双方向性のV相用スイッチと、
     前記W相用直列回路の両ダイオードの相互接続点と前記各コンデンサの相互接続点との間に接続された双方向性のW相用スイッチと、
     前記U相用スイッチ、前記V相用スイッチ、前記W相用スイッチを前記U相用リアクトル、前記V相用リアクトル、前記W相用リアクトルに流入するU相電流、V相電流、W相電流のそれぞれ0°~60°期間および120°~180°期間においてオン,オフする制御手段と、
     を備え、前記各コンデンサの直列回路に生じる電圧を出力とすることを特徴とする三相整流装置。
    A series circuit for U phase in which a pair of diodes are connected in series and an interconnection point between both diodes is connected to a U phase line of a three-phase AC power supply, and a pair of diodes connected in series is an interconnection point between the two diodes. V-phase series circuit connected to the V-phase line of the phase AC power supply, a series circuit for W-phase in which a pair of diodes are connected in series, and an interconnection point of both diodes is connected to the W-phase line of the three-phase AC power supply A rectifier circuit that converts the voltage of the three-phase AC power source into a DC voltage and outputs the DC voltage;
    A U-phase reactor, a V-phase reactor, and a W-phase reactor respectively provided on the U-phase line, the V-phase line, and the W-phase line of the three-phase AC power source;
    A series circuit of a pair of capacitors to which the output voltage of the rectifier circuit is applied;
    A bidirectional U-phase switch connected between an interconnection point of both diodes of the U-phase series circuit and an interconnection point of the capacitors;
    A bidirectional V-phase switch connected between an interconnection point of both diodes of the V-phase series circuit and an interconnection point of the capacitors;
    A bidirectional W-phase switch connected between an interconnection point of both diodes of the W-phase series circuit and an interconnection point of the capacitors;
    The U-phase switch, the V-phase switch, and the W-phase switch are connected to the U-phase reactor, the V-phase reactor, the W-phase reactor, the U-phase current, the V-phase current, and the W-phase current. Control means for turning on and off in the period of 0 ° to 60 ° and 120 ° to 180 °, respectively;
    And a voltage generated in a series circuit of the capacitors as an output.
  2.  前記制御手段は、前記U相用スイッチを前記U相用リアクトルに流入するU相電流の半周期の0°~60°期間および120°~180°期間においてオン,オフし、前記V相用スイッチを前記V相用リアクトルに流入するV相電流の半周期の0°~60°期間および120°~180°期間においてオン,オフし、前記W相用スイッチを前記W相用リアクトルに流入するW相電流の半周期の0°~60°期間および120°~180°期間においてオン,オフすることを特徴とする請求項1記載の三相整流装置。 The control means turns the U-phase switch on and off during the 0 ° to 60 ° period and the 120 ° to 180 ° period of a half cycle of the U-phase current flowing into the U-phase reactor, and the V-phase switch Is turned on and off during the 0 ° to 60 ° period and the 120 ° to 180 ° period of the half cycle of the V-phase current flowing into the V-phase reactor, and the W-phase switch flows into the W-phase reactor. 2. The three-phase rectifier according to claim 1, wherein the three-phase rectifier is turned on and off in a 0 ° to 60 ° period and a 120 ° to 180 ° period of a half cycle of the phase current.
  3.  前記制御手段による前記U相用スイッチ、前記V相用スイッチ、前記W相用スイッチのオン,オフタイミングを当該装置の負荷の大きさに応じて決定するための複数のオン,オフタイミングデータが記憶された記憶手段、
     をさらに備えることを特徴とする請求項1記載の三相整流装置。
    A plurality of on / off timing data for determining the on / off timing of the U-phase switch, the V-phase switch, and the W-phase switch according to the magnitude of the load of the device is stored by the control means. Stored storage means,
    The three-phase rectifier according to claim 1, further comprising:
  4.  前記制御手段は、前記U相用スイッチ、前記V相用スイッチ、前記W相用スイッチを、前記U相用リアクトル、前記V相用リアクトル、前記W相用リアクトルに流入するU相電流、V相電流、W相電流のそれぞれ0°~60°期間および120°~180°期間において、かつ前記記憶手段内の各オン,オフタイミングデータのうち当該装置の負荷の大きさに合致するオン,オフタイミングデータに基づき、または当該装置の負荷の大きさに対応するオン,オフタイミングデータを前記記憶手段内の各オン,オフタイミングデータから算出しこの算出したオン,オフタイミングデータに基づき、オン,オフする、
     ことを特徴とする請求項3記載の三相整流装置。
    The control means includes the U-phase switch, the V-phase switch, and the W-phase switch, the U-phase reactor, the V-phase reactor, the U-phase current flowing into the W-phase reactor, and the V-phase reactor. ON / OFF timing corresponding to the load size of the device among the ON / OFF timing data in the storage means in the 0 ° -60 ° period and 120 ° -180 ° period of the current and W phase current, respectively. Based on the data, or on / off timing data corresponding to the load size of the device is calculated from each on / off timing data in the storage means, and the on / off timing data is turned on / off based on the calculated on / off timing data. ,
    The three-phase rectifier according to claim 3.
  5.  前記制御手段は、前記U相用スイッチ、前記V相用スイッチ、前記W相用スイッチを、前記U相用リアクトル、前記V相用リアクトル、前記W相用リアクトルに流入するU相電流、V相電流、W相電流のそれぞれ0°~60°期間および120°~180°期間において、かつ互いに同期しないタイミングで、オン,オフする、
     ことを特徴とする請求項1記載の三相整流装置。
    The control means includes the U-phase switch, the V-phase switch, and the W-phase switch, the U-phase reactor, the V-phase reactor, the U-phase current flowing into the W-phase reactor, and the V-phase reactor. ON and OFF at 0 ° to 60 ° period and 120 ° to 180 ° period of current and W phase current, respectively, and at timings that are not synchronized
    The three-phase rectifier according to claim 1.
  6.  前記各コンデンサの直列回路に生じる電圧が印加される出力用の平滑コンデンサと、
     前記各コンデンサの直列回路と前記平滑コンデンサとの間の通電路に設けられた直流リアクトルと、
     を備えることを特徴とする請求項1記載の三相整流装置。
    A smoothing capacitor for output to which a voltage generated in a series circuit of the capacitors is applied;
    A DC reactor provided in a current path between the series circuit of each capacitor and the smoothing capacitor;
    The three-phase rectifier according to claim 1, comprising:
  7.  前記三相交流電源の電圧を直流電圧に変換する第2の整流回路と、
     前記第2の整流回路の出力電圧および前記各コンデンサの直列回路に生じる電圧が印加される出力用の平滑コンデンサと、
     前記第2の制御回路および前記各コンデンサの直列回路と前記平滑コンデンサとの間の通電路に設けられた直流リアクトルと、
     をさらに備えることを特徴とする三相整流装置。
    A second rectifier circuit for converting the voltage of the three-phase AC power source into a DC voltage;
    A smoothing capacitor for output to which an output voltage of the second rectifier circuit and a voltage generated in a series circuit of the capacitors are applied;
    A DC reactor provided in a current-carrying path between the second control circuit and a series circuit of the capacitors and the smoothing capacitor;
    A three-phase rectifier, further comprising:
PCT/JP2009/067188 2008-10-03 2009-10-01 Three-phase rectifier WO2010038841A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010531911A JP5427787B2 (en) 2008-10-03 2009-10-01 Three-phase rectifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008258723 2008-10-03
JP2008-258723 2008-10-03

Publications (1)

Publication Number Publication Date
WO2010038841A1 true WO2010038841A1 (en) 2010-04-08

Family

ID=42073599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067188 WO2010038841A1 (en) 2008-10-03 2009-10-01 Three-phase rectifier

Country Status (2)

Country Link
JP (1) JP5427787B2 (en)
WO (1) WO2010038841A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207872A (en) * 2012-03-28 2013-10-07 Toshiba Carrier Corp Three-phase rectifier
JP5802828B2 (en) * 2012-04-16 2015-11-04 東芝キヤリア株式会社 Rectifier and rectifier system
EP3431024A1 (en) 2009-05-29 2019-01-23 Smith & Nephew, Inc. Methods and apparatus for performing knee arthroplasty
JP2021132488A (en) * 2020-02-20 2021-09-09 株式会社日立産機システム Converter device and power conversion system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5824339B2 (en) * 2011-11-17 2015-11-25 東芝キヤリア株式会社 Three-phase rectifier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000295853A (en) * 1999-04-02 2000-10-20 Daikin Ind Ltd Multilevel converter
JP2002165459A (en) * 2000-11-24 2002-06-07 Mitsubishi Electric Corp Power circuit and motor-driven device
JP2003174779A (en) * 2001-09-28 2003-06-20 Daikin Ind Ltd Power conversion device
JP2005224039A (en) * 2004-02-06 2005-08-18 Matsushita Electric Ind Co Ltd Power supply device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5929888B2 (en) * 1976-07-07 1984-07-24 株式会社日立製作所 power circuit
JPH02241371A (en) * 1989-03-14 1990-09-26 Mitsubishi Electric Corp Voltage type inverter
JPH04117171A (en) * 1990-09-05 1992-04-17 Makoto Takahashi Ac power supply rectifier
JPH06315261A (en) * 1993-04-27 1994-11-08 Toshiba Corp Power unit
JPH08205560A (en) * 1995-01-24 1996-08-09 Toshiba Corp Power converter
JP2857094B2 (en) * 1995-12-28 1999-02-10 株式会社東芝 Three-phase rectifier
JPH10155273A (en) * 1996-11-20 1998-06-09 Mitsubishi Electric Corp Switching mode rectifying circuit
JPH11146660A (en) * 1997-11-12 1999-05-28 Denso Corp Single-phase inverter device
JP2000324843A (en) * 1999-05-17 2000-11-24 Matsushita Electric Ind Co Ltd Power supply and air conditioner provided with that power supply

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000295853A (en) * 1999-04-02 2000-10-20 Daikin Ind Ltd Multilevel converter
JP2002165459A (en) * 2000-11-24 2002-06-07 Mitsubishi Electric Corp Power circuit and motor-driven device
JP2003174779A (en) * 2001-09-28 2003-06-20 Daikin Ind Ltd Power conversion device
JP2005224039A (en) * 2004-02-06 2005-08-18 Matsushita Electric Ind Co Ltd Power supply device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3431024A1 (en) 2009-05-29 2019-01-23 Smith & Nephew, Inc. Methods and apparatus for performing knee arthroplasty
JP2013207872A (en) * 2012-03-28 2013-10-07 Toshiba Carrier Corp Three-phase rectifier
JP5802828B2 (en) * 2012-04-16 2015-11-04 東芝キヤリア株式会社 Rectifier and rectifier system
JP2021132488A (en) * 2020-02-20 2021-09-09 株式会社日立産機システム Converter device and power conversion system
JP7155182B2 (en) 2020-02-20 2022-10-18 株式会社日立産機システム Converter device and power conversion system

Also Published As

Publication number Publication date
JP5427787B2 (en) 2014-02-26
JPWO2010038841A1 (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP6151034B2 (en) Converter device and air conditioner
JP5360125B2 (en) Series multiple power converter
JP5047582B2 (en) Inverter device
JP5873716B2 (en) Motor control device
JP2006271083A (en) Motor controller
JP6525364B2 (en) Power converter
US11218107B2 (en) Control device for power converter
JP5427787B2 (en) Three-phase rectifier
JP2021118604A (en) Over-current protective device, dc/dc converter device, and electric power system
JP2007006564A (en) Controller for ac-ac direct power transformer
JP6543872B2 (en) Control device, control method and program
JP5635304B2 (en) Power circuit
JP6467524B2 (en) Power converter and railway vehicle
JP2015035894A (en) Power conversion device and method for controlling power conversion device
JP5824339B2 (en) Three-phase rectifier
JP2009022060A (en) Controller of ac electric motor
JP2010110179A (en) Rectifying circuit
JP4707111B2 (en) AC-AC direct power converter controller
JP6016720B2 (en) Power conversion device and power conversion method
JP4779565B2 (en) Inverter control circuit
WO2021049016A1 (en) Power conversion device
KR101946369B1 (en) Power transforming apparatus and air conditioner including the same
JP2016127677A (en) Power converter
JP2013135516A (en) Electric power conversion system and air conditioner
WO2022209318A1 (en) Control device, inverter system, control method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817873

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010531911

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09817873

Country of ref document: EP

Kind code of ref document: A1