WO2010018240A1 - System and method for power management in a photovoltaic installation - Google Patents

System and method for power management in a photovoltaic installation Download PDF

Info

Publication number
WO2010018240A1
WO2010018240A1 PCT/ES2008/000560 ES2008000560W WO2010018240A1 WO 2010018240 A1 WO2010018240 A1 WO 2010018240A1 ES 2008000560 W ES2008000560 W ES 2008000560W WO 2010018240 A1 WO2010018240 A1 WO 2010018240A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power management
photovoltaic installation
photovoltaic
installation according
Prior art date
Application number
PCT/ES2008/000560
Other languages
Spanish (es)
French (fr)
Inventor
Roberto GONZÁLEZ SENOSIAIN
Javier Coloma Calahorra
Jesús MAYOR LUSARRETA
Ainhoa CÁRCAR MAYOR
Jorge ACEDO SÁNCHEZ
David SOLÉ LÓPEZ
Mikel Zabaleta Maeztu
Susana SIMÓN SEGURA
Javier PÉREZ BARBÁCHANO
Luis Marroyo Palomo
Original Assignee
Ingeteam Energy, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41668725&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010018240(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ingeteam Energy, S.A. filed Critical Ingeteam Energy, S.A.
Priority to EP08805381.4A priority Critical patent/EP2328259B2/en
Priority to PCT/ES2008/000560 priority patent/WO2010018240A1/en
Priority to ES08805381.4T priority patent/ES2480590T3/en
Priority to CN2008801314831A priority patent/CN102177636B/en
Publication of WO2010018240A1 publication Critical patent/WO2010018240A1/en
Priority to US13/023,629 priority patent/US8346400B2/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/10Energy trading, including energy flowing from end-user application to grid

Definitions

  • the present invention has its field of application in electric power generation systems by renewable energy, and more particularly by photovoltaic solar energy.
  • the object of the invention is to provide a power management system for grid connection photovoltaic installations, incorporating an active and reactive power control that takes into account the network requirements at all times.
  • the management system provides the photovoltaic system with a reserve of active and reactive power that allows it to cope with transient demands that appear in the electricity grid.
  • the photovoltaic installation can behave as a conventional energy source (thermal, nuclear ...) participating in the regulation of the electricity grid and contributing to its stability and quality.
  • photovoltaic generators photovoltaic field
  • electronic converter which conditions the energy produced by the photovoltaic field (direct current) for injection into the electricity grid (alternating current).
  • Photovoltaic generator means any device capable of transforming solar energy into electrical energy. Every photovoltaic generator has a characteristic voltage - intensity (VI) curve. This curve varies with the irradiance and temperature of the photovoltaic generator. Associated with this curve VI there is a voltage-power curve (VP) that relates the energy produced by the photovoltaic generator with its working voltage.
  • V characteristic voltage - intensity
  • VP voltage-power curve
  • the photovoltaic converters are provided with at least one follower of the maximum power point (MPP). Said MPP follower (generally dc / dc conversion structures with input voltage control) determines the working voltage that maximizes the energy produced by the association of generators connected to it.
  • the irradiance that affects the generator is a function of the angle formed by the normal of the panel and the sun.
  • solar trackers are often used on which photovoltaic generators are placed.
  • the solar trackers are mobile structures in one or two axes (azimuthal and zenith) controlled by a series of actuators that orient the photovoltaic generators towards the sun, maximizing the irradiance that affects them.
  • the photovoltaic network connection systems inject the energy produced by the installation into the electricity grid.
  • the different generating sources In case of imbalances between generated and consumed power, the different generating sources must readjust the generated power, reestablishing the balance.
  • the sources Conventional ones are obliged to provide an extra or limit the active power (P) and provide or consume reactive power (Q) when demanded by the power grid. Specifically, the following relationship is fulfilled:
  • the energy generated is closely linked to weather conditions, which causes a lack of control over it.
  • the difficulty of estimating the power that the photovoltaic system can provide at all times, given the uncertainty of irradiance, means that the photovoltaic systems of the state of the art do not have a reserve of power that can be provided in the face of increased demand.
  • the present invention consists of a method and power management system for photovoltaic grid connection installations, which incorporates an active and reactive power control, taking into account the needs of the network in every moment.
  • the invention provides an active and reactive power reserve that allows to meet transient demands that appear in the electricity grid.
  • a power management system of a photovoltaic system consisting of:
  • control unit that manages the active and / or reactive power of the photovoltaic system
  • CE electronic converter
  • the system has at least one set consisting of the previous photovoltaic generators on which there is an individualized control of its energy production. This set is called the minimum power control unit (UMCP).
  • UMCP minimum power control unit
  • the present invention comprises the following steps:
  • the limitation of active power of the elements of the second set of UMCP can be established through the active power reserve setpoint and the estimation of the producible power.
  • the estimate of the producible power mentioned above can be obtained through one or more of the following methods:
  • the active power reserve setpoint is determined from an economic optimization algorithm and / or a network frequency control loop and / or from any other external requirement and / or from of a control loop of the variation rate of the output power of the installation.
  • the number of units that form the second set of UMCP is selected based on the limitation of the active power demanded from said set, and taking into account that the number of units that form the first set of UMCP must constitute a representative sample under the operating conditions of the photovoltaic installation.
  • a percentage of the active power reserve is achieved:
  • Another preferred embodiment includes, in the photovoltaic installation, at least one controlled load that allows the active power reserve of the installation to be consumed, this being a percentage of the active power reserve of the installation.
  • the controlled charge could be an electric charge or an energy storage unit, such as an electrolyzer, batteries, a flywheel or a supercapacitor. Depending on its nature, it can be connected to the power grid or to the input of at least one CE.
  • the controlled load is subordinated to the active power demand of the network. In case the network needs extra power, the consumption of the controlled load will decrease or even shut down. This way you can take advantage of the power reserve instead of not using it.
  • each energy storage unit can be used to control variations in the output power of the installation. For example, in the case of a variation in irradiance that results in a proportional variation in the output power, the storage units provide energy, controlling said variation in power according to pre-established criteria.
  • the method also refers to the control of reactive power by setting a power setpoint. reactive for the photovoltaic installation and, subsequently, determine the reactive power generated or consumed by each electronic converter of the installation.
  • the reactive power setpoint can be determined through an economic optimization algorithm, a grid voltage control loop or external requirements.
  • the reactive power generated or consumed by each electronic converter of the photovoltaic system is determined based on its capacity to generate or consume reactive power.
  • the reactive power setpoint is modified in at least one of the electronic converters by means of an internal voltage regulation loop to maintain its output voltage within the established limits.
  • Reactive power control can be performed independently in each of the electronic converters.
  • the system can also include:
  • At least one local control unit (UCL) associated with each UMCP at least one local control unit (UCL) associated with each UMCP; at least one communications network that interconnects at least one UCL with at least the UC and with at least one CE.
  • UCL local control unit
  • the system includes, in UC, active power management means for monitoring the active power of the different UMCPs, establishing the mode of operation of each UMCP and sending active power setpoints to each UMCP.
  • the photovoltaic installation includes a device capable of controlling the position with respect to the sun of at least one UMCP (for example a follower).
  • a device capable of controlling the working voltage of at least one UMCP can be included.
  • the UC and the UCL are part of a single device.
  • the UC, UCL and CE can be found in the same envelope, or in different envelopes (discrete elements).
  • Figure 1 Shows a preferred embodiment of the elements that make up a photovoltaic installation, according to the invention.
  • Figure 2 Shows a preferred embodiment for the control of the active power of the installation.
  • Figure 3 Shows a preferred embodiment for the control of the reactive power of the installation.
  • Figure 4 Represents a practical example of the voltage - power curve of a conventional photovoltaic generator.
  • FIG 1 schematically shows a photovoltaic system in which the proposed power management system is implemented.
  • the photovoltaic system consists of: - a control unit (UC) (104);
  • UMCP_1 - UMCP_n a plurality of minimum power control units (UMCP_1 - UMCP_n) (102i ... 102 n ), each of which is connected to a local control unit (UCL_1 - UCL_n) (103 x ... 103 n );
  • CE_1 - CE_m a plurality of electronic converters (CE_1 - CE_m) (101i ... 101 m ) to which at least one UMCP is connected.
  • These CEs condition the energy produced by the different UMCPs connected to them for injection into the electricity grid (106).
  • a communications network (105) that interconnects the different local control units (UCL_1 - UCL_n) (103 ⁇ ... 103 n ) with the control unit (UC) (104) and electronic converters (CEi ⁇ CE m ) (101i ... 101 m ).
  • UMCP_1 - UMCP_n 102i 102 n
  • UMCP_1 - UMCP_n 102i 102 n
  • a set of photovoltaic generators placed on at least one solar tracker In installations with solar trackers, the position of the tracker can be controlled, which provides the possibility of controlling the energy produced by said generators.
  • a set of photovoltaic generators connected to at least one conversion structure (dc / dc or dc / ac) with control of the input voltage.
  • Each conversion structure provides independent control of the working voltage of the associated generators, which provides the possibility of controlling the energy produced by said generators.
  • a set of photovoltaic generators with sectioning elements that allow their connection and disconnection of electronic converters (CEi ⁇ CE m ) (101i - 101 m ).
  • Each UMCP can work in two operating modes governed by the UC through its corresponding UCL to which it is connected: observer mode (MO) and reserve mode (MR).
  • MO observer mode
  • MR reserve mode
  • MO When a UMCP works in MO mode, it provides the maximum active power available at all times (depending on weather conditions), without any restrictions on it.
  • MR reserve mode
  • the UC limits the active power contributed by that UMCP.
  • the total active power of the installation When operating part of the installation in MR, the total active power of the installation remains below the maximum available with instantaneous radiation conditions.
  • the maximum active power available is estimated from the data provided by the UMCPs in MO mode.
  • the total UMCP of the installation (n) there will be (u) UMCP that will work in MR and (n-u) UMCP that will work in MO mode.
  • a preferred embodiment for the active power control of the photovoltaic system is shown in Figure 2.
  • the invention provides for obtaining a setpoint consisting of an active power reserve, which can be defined as a percentage of the active power produced in the installation at any time (% P res _UC), in another embodiment, obtaining the The setpoint can be defined as a percentage of the nominal active power of the installation or as a desired active power value for the photovoltaic system in absolute units (eg kW).
  • the value of said setpoint is selected in a block (203) based on several criteria, which may be: a value established by the operator of the power grid (% P res _RED) a value generated in the UC (104) according to to several predefined criteria in an algorithm of optimization (% P res _OPT).
  • This algorithm takes into account parameters (201) such as production optimization, active power reserve, network stability at all times, economic premiums for active power reserve, rate information, profit optimization, etc. a value generated in the UC based on the network frequency (% P res _FRE).
  • the network frequency (F network ) is subtracted from a reference frequency (F redrref ) in a block (204) that provides control of the stability of the network frequency, obtaining a frequency error.
  • This error is applied to a controller included in block (204) to obtain the percentage of active power reserve (% P res _FRE).
  • the generation of this setpoint is obtained from a predefined variation rate (TVP ref ) and the total active power (P tot ⁇ defined below) produced by the system, by means of a block (206).
  • the UC (104) also receives as input the active power measurement of each UMCP (UMCP_P ⁇ - UMCP_P n ). These data are used to calculate the total active power (Pto t ) produced by the system, using the blocks (211, 212, 213) according to the following expression:
  • the selected value of the active power reserve setpoint in percent,% P res P UC is converted to absolute units in block (205), according to the following equation:
  • this power value in absolute units could be given as a direct setpoint.
  • the figure also includes the existence of a controlled load that consumes part of the active energy generated by the photovoltaic installation (P Cc ) • This controlled load allows the use of the active power reserve.
  • a total active power reserve (Ptotres) is subtracted in block (218), the value of the controlled load (P C c) obtaining the active power reserve value (Pr es ) according to the following expression:
  • This error is introduced to a controller (208) which can be a PI controller (integral proportional) or of any other type.
  • the output of said controller is applied to a limiting block (209) that limits it according to several criteria, such as: the characteristics of the UMCP, the number of UMCPs that work in MR and the total active power produced by the installation so that it does not exceed the established limit active power.
  • the limited output is the maximum percentage of the nominal active power that must not be exceeded by the UMCPs found in MR (% P n _MR).
  • the number of UMCPs in MR and MO is selected at any time based on the working conditions of each of the UMCPs by block (215).
  • the UC (104) passes at least one UMCP from MO mode to MR mode.
  • the selection of the UMCPs in MO mode is made so that the sample is representative of the installation (UMCP_Mi ... UMCP_M n ).
  • the operating modes of each UMCP and the value of% P n _MR are transmitted to the UCLs through the communications network (105).
  • the UCL is responsible for complying with the limitation established by the% P n _MR, governing the operation of each UMPC.
  • At least one photovoltaic cell calibrated to estimate the active power available in the installation is incorporated into the system, which allows to reduce the number of UMCP in MO.
  • the UC (104) determines the position of the different followers to obtain the reserve of 'active power required based on the equations that govern the irradiance that affects the generator based on its orientation with respect to the sun.
  • Figure 4 shows an example of operation applicable to UMCP over which there is a control of the input voltage.
  • the UMCPs in MO mode work at the point of maximum power (MPP) (401) while the UMCP in MR mode work at a voltage (402) such that it allows the power limitation established by the control method (active power reserve).
  • MPP point of maximum power
  • active power reserve active power reserve
  • FIG. 3 A preferred embodiment for the reactive power control of the photovoltaic system is shown in Figure 3.
  • the active and reactive power of each of the ECs is monitored and the reactive power setpoint of each of them is determined.
  • the reactive power setpoint (Q ref _UC) can be defined as a percentage of the active power of the installation (% Q re f) or as an absolute value. Said setpoint is selected in block (304) based on several criteria, which may be: a value set by the operator of the power grid (Q ref _RED). a value generated in the UC (104) (Q r ⁇ f _OPT) according to several predefined criteria in a block (303) according to an optimization algorithm. This algorithm could take into account parameters represented by a block (302) such as production optimization, network stability at all times, economic premiums for reactive power reserve, tariff information, benefit optimization, etc. a value generated in the UC (104) as a function of the network voltage (V network ).
  • V mains the mains voltage
  • V mains , re f the reference voltage
  • Q ref __VOL the reactive setpoint
  • the UC (104) determines the reactive power that each of the CEs must provide (CE_Qi ref ... CE Q mref ) •
  • This distribution is carried out in a coordinated manner between the different CEs by means of a block (305) that executes an optimization algorithm that takes into account:
  • the active power of each CE (CE_P ⁇ ... CE_P m ).
  • the reactive power of each CE (CEQ 1 ... CEQ m ).
  • the effort demanded from each of them proportion of reactive power produced with respect to their capacity), in order to reduce the electrical stress of the EC.
  • the optimization algorithm also takes into account parameters such as responsiveness of the different CEs, etc.
  • CE_Qi ref ... CE_Q mre f are transmitted to the different CEs through the communications network (105).
  • the CE may incorporate a rapid voltage regulation loop that modifies the setpoint received from the UC to maintain the voltage at the output of the CE within the established limits.
  • the reactive power control can be performed independently in each of the CEs following the pre-established criteria.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

The subject matter of the invention is the provision of a power-management system and method for photovoltaic installations connecting to the grid, which incorporates monitoring active and/or reactive power, account being taken at all times of grid requirements, in order to allow temporary demand arising in the grid to be addressed, thereby contributing to regulation of the grid and to the stability and quality thereof.

Description

SISTEMA Y MÉTODO PARA LA GESTIÓN DE POTENCIA EN UNA INSTALACIÓN POTOVOLTAICA SYSTEM AND METHOD FOR POWER MANAGEMENT IN A POTOVOLTAIC INSTALLATION
OBJETO DE LA INVENCIÓNOBJECT OF THE INVENTION
La presente invención tiene su campo de aplicación en los sistemas de generación de energía eléctrica mediante energías renovables, y más particularmente mediante energía solar fotovoltaica.The present invention has its field of application in electric power generation systems by renewable energy, and more particularly by photovoltaic solar energy.
El objeto de la invención es proporcionar un sistema de gestión de potencia para instalaciones fotovoltaicas de conexión a red, incorporando un control de potencia activa y reactiva que tiene en cuenta en cada momento los requerimientos de la red. El sistema de gestión proporciona a la instalación fotovoltaica una reserva de potencia activa y reactiva que permite hacer frente a demandas transitorias que aparezcan en la red eléctrica. Por medio de dicha gestión, la instalación fotovoltaica puede comportarse como una fuente de energía convencional (térmica, nuclear...) participando en la regulación de la red eléctrica y contribuyendo a la estabilidad y calidad de la misma .The object of the invention is to provide a power management system for grid connection photovoltaic installations, incorporating an active and reactive power control that takes into account the network requirements at all times. The management system provides the photovoltaic system with a reserve of active and reactive power that allows it to cope with transient demands that appear in the electricity grid. Through such management, the photovoltaic installation can behave as a conventional energy source (thermal, nuclear ...) participating in the regulation of the electricity grid and contributing to its stability and quality.
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
Las instalaciones fotovoltaicas conectadas a red gozan hoy en dia de un amplio reconocimiento en nuestra sociedad. Se trata de instalaciones formadas por una pluralidad de generadores fotovoltaicos (campo fotovoltaico) y al menos un convertidor electrónico, que acondiciona la energía producida por el campo fotovoltaico (corriente continua) para su inyección a la red eléctrica (corriente alterna) .Photovoltaic installations connected to the network nowadays enjoy wide recognition in our society. These are installations formed by a plurality of photovoltaic generators (photovoltaic field) and at least one electronic converter, which conditions the energy produced by the photovoltaic field (direct current) for injection into the electricity grid (alternating current).
Se entiende por generador fotovoltaico cualquier dispositivo capaz de transformar la energía solar en energía eléctrica. Todo generador fotovoltaico tiene una curva característica tensión - intensidad (V-I) . Esta curva varia con la irradiancia y la temperatura del generador fotovoltaico. Asociada a esta curva V-I existe una curva tensión-potencia (V-P) que relaciona la energía producida por el generador fotovoltaico con su tensión de trabajo. Con el fin de maximizar la energía producida por el campo fotovoltaico, los convertidores fotovoltaicos están dotados de al menos un seguidor del punto de máxima potencia (MPP) . Dicho seguidor de MPP (generalmente estructuras de conversión dc/dc con control de la tensión de entrada) determina la tensión de trabajo que maximiza la energía producida por la asociación de generadores conectados al mismo .Photovoltaic generator means any device capable of transforming solar energy into electrical energy. Every photovoltaic generator has a characteristic voltage - intensity (VI) curve. This curve varies with the irradiance and temperature of the photovoltaic generator. Associated with this curve VI there is a voltage-power curve (VP) that relates the energy produced by the photovoltaic generator with its working voltage. In order to maximize the energy produced by the photovoltaic field, the photovoltaic converters are provided with at least one follower of the maximum power point (MPP). Said MPP follower (generally dc / dc conversion structures with input voltage control) determines the working voltage that maximizes the energy produced by the association of generators connected to it.
Por otra parte, la irradiancia que incide sobre el generador es función del ángulo formado por la normal del panel y el sol . Con el fin de aumentar la energía producida por las instalaciones fotovoltaicas, a menudo se utilizan seguidores solares sobre los que se colocan los generadores fotovoltaicos. Los seguidores solares son estructuras móviles en uno o dos ejes (azimutal y cenital) controladas por una serie de actuadores que orientan los generadores fotovoltaicos hacia el sol, maximizando la irradiancia que incide sobre ellos.On the other hand, the irradiance that affects the generator is a function of the angle formed by the normal of the panel and the sun. In order to increase the energy produced by photovoltaic installations, solar trackers are often used on which photovoltaic generators are placed. The solar trackers are mobile structures in one or two axes (azimuthal and zenith) controlled by a series of actuators that orient the photovoltaic generators towards the sun, maximizing the irradiance that affects them.
Los sistemas fotovoltaicos de conexión a red inyectan la energía producida por la instalación a la red eléctrica. Para garantizar la estabilidad de la red eléctrica y mantener la frecuencia y tensión dentro de los limites establecidos debe haber un equilibrio entre la potencia generada y la potencia consumida. En caso de desequilibrios entre potencia generada y consumida, las diferentes fuentes generadoras deben reajustar la potencia generada, volviendo a establecer el equilibrio. Para ello las fuentes convencionales están obligadas a aportar un extra o limitar la potencia activa (P) y aportar o consumir potencia reactiva (Q) cuando sea demandado por la red eléctrica. En concreto se cumple la siguiente relación:The photovoltaic network connection systems inject the energy produced by the installation into the electricity grid. To ensure the stability of the electricity grid and maintain the frequency and voltage within the established limits there must be a balance between the power generated and the power consumed. In case of imbalances between generated and consumed power, the different generating sources must readjust the generated power, reestablishing the balance. For this the sources Conventional ones are obliged to provide an extra or limit the active power (P) and provide or consume reactive power (Q) when demanded by the power grid. Specifically, the following relationship is fulfilled:
S = P+ iQS = P + iQ
S: potencia aparente o compleja P : potencia activa Q : potencia reactivaS: apparent or complex power P: active power Q: reactive power
En los sistemas fotovoltaicos, la energía generada está estrechamente ligada a las condiciones meteorológicas, lo que provoca una falta de control sobre ella. La dificultad de estimar la potencia que puede aportar el sistema fotovoltaico en cada momento, ante la incertidumbre de irradiancia, hace que los sistemas fotovoltaicos del estado del arte no dispongan de una reserva de potencia que se pueda aportar ante un aumento de la demanda.In photovoltaic systems, the energy generated is closely linked to weather conditions, which causes a lack of control over it. The difficulty of estimating the power that the photovoltaic system can provide at all times, given the uncertainty of irradiance, means that the photovoltaic systems of the state of the art do not have a reserve of power that can be provided in the face of increased demand.
Por otro lado, en los sistemas fotovoltaicos del estado del arte, la inyección de corriente a la red se realiza con un factor de potencia preestablecido (generalmente cosφ=l), por lo que no se participa en la regulación de potencia reactiva .On the other hand, in the photovoltaic systems of the state of the art, the injection of current to the network is carried out with a pre-established power factor (generally cosφ = l), so that the reactive power regulation is not involved.
A medida que el número de instalaciones fotovoltaicas conectadas a red aumenta, se incrementan los efectos negativos que tienen sobre la estabilidad de la red eléctrica. Por tanto, hay una necesidad de desarrollar un sistema de gestión que permita controlar la potencia activa y reactiva proporcionando al sistema una reserva de potencia (activa y reactiva) que permita hacer frente a demandas transitorias que aparezcan en la red eléctrica. DESCRIPCIÓN DE IA INVENCIÓNAs the number of photovoltaic installations connected to the grid increases, the negative effects they have on the stability of the electricity grid increase. Therefore, there is a need to develop a management system that allows to control the active and reactive power by providing the system with a reserve of power (active and reactive) that allows to meet transient demands that appear in the electricity grid. DESCRIPTION OF THE INVENTION
Para lograr los objetivos y evitar los inconvenientes indicados anteriormente, la presente invención consiste en un método y sistema de gestión de potencia para instalaciones fotovoltaicas de conexión a red, que incorpora un control de potencia activa y reactiva, teniendo en cuenta las necesidades de la red en cada momento. La invención proporciona una reserva de potencia activa y reactiva que permite hacer frente a demandas transitorias que aparezcan en la red eléctrica.In order to achieve the objectives and avoid the inconveniences indicated above, the present invention consists of a method and power management system for photovoltaic grid connection installations, which incorporates an active and reactive power control, taking into account the needs of the network in every moment. The invention provides an active and reactive power reserve that allows to meet transient demands that appear in the electricity grid.
De acuerdo con la presente invención, se propone un sistema de gestión de potencia de una instalación fotovoltaica formado por:In accordance with the present invention, a power management system of a photovoltaic system consisting of:
- al menos una unidad de control (UC) que realiza la gestión de potencia activa y/o reactiva de la instalación fotovoltaica,- at least one control unit (UC) that manages the active and / or reactive power of the photovoltaic system,
- al menos un generador fotovoltaico,- at least one photovoltaic generator,
- al menos un convertidor electrónico (CE) para transformar energía continua en energia alterna.- at least one electronic converter (CE) to transform continuous energy into alternating energy.
En caso de realizar gestión de potencia activa, el sistema dispone de al menos un conjunto formado por los anteriores generadores fotovoltaicos sobre el que se tiene un control individualizado de su producción de energia. Dicho conjunto se denomina unidad mínima de control de potencia (UMCP) .In case of active power management, the system has at least one set consisting of the previous photovoltaic generators on which there is an individualized control of its energy production. This set is called the minimum power control unit (UMCP).
Para realizar el control de potencia activa de la instalación fotovoltaica, la presente invención comprende las siguientes etapas:To carry out the active power control of the photovoltaic system, the present invention comprises the following steps:
- Establecer una consigna de reserva de potencia activa para la instalación.- Establish an active power reserve setpoint for the installation.
- Determinar un primer conjunto de UMCP que operan sin limitar su potencia activa. - Realizar una estimación de la potencia producible por la instalación fotovoltaica.- Determine a first set of UMCPs that operate without limiting their active power. - Make an estimate of the power produced by the photovoltaic installation.
- Determinar un segundo conjunto de UMCP que operan limitando su potencia activa a un valor determinado.- Determine a second set of UMCPs that operate by limiting their active power to a certain value.
La limitación de potencia activa de los elementos del segundo conjunto de UMCP, puede establecerse a través de la consigna de reserva de potencia activa y de la estimación de la potencia producible.The limitation of active power of the elements of the second set of UMCP can be established through the active power reserve setpoint and the estimation of the producible power.
A su vez, la estimación de la potencia producible mencionada anteriormente, puede obtenerse a través de alguno o varios de los siguientes métodos :In turn, the estimate of the producible power mentioned above can be obtained through one or more of the following methods:
- Mediante las potencias generadas por el primer conjunto de UMCP.- Through the powers generated by the first set of UMCP.
- Mediante al menos una célula fotovoltaica equilibrada.- By at least one balanced photovoltaic cell.
- Teniendo en cuenta la orientación de cualquiera de los conjuntos de UMCP respecto al sol.- Taking into account the orientation of any of the UMCP sets with respect to the sun.
- A partir de un muestreo de la curva V - I de la UMCP, que se obtiene a partir de la variación . de la tensión de trabajo periódica de la UMCP.- From a sampling of the V-I curve of the UMCP, which is obtained from the variation. of the periodic working voltage of the UMCP.
En una realización preferida de la invención, la consigna de reserva de potencia activa se determina a partir de un algoritmo de optimización económico y/o un lazo de control de la frecuencia de red y/o a partir de cualquier otro requerimiento externo y/o a partir de un lazo de control de la tasa de variación de la potencia de salida de la instalación.In a preferred embodiment of the invention, the active power reserve setpoint is determined from an economic optimization algorithm and / or a network frequency control loop and / or from any other external requirement and / or from of a control loop of the variation rate of the output power of the installation.
En una realización preferida el número de unidades que forman el segundo conjunto de UMCP se selecciona en función de la limitación de la potencia activa demandada a dicho conjunto, y teniendo en cuenta que el número de unidades que forman el primer conjunto de UMCP debe constituir una muestra representativa bajo las condiciones de funcionamiento de la instalación fotovoltaica. En otra realización preferida, un porcentaje de la reserva de potencia activa se consigue:In a preferred embodiment the number of units that form the second set of UMCP is selected based on the limitation of the active power demanded from said set, and taking into account that the number of units that form the first set of UMCP must constitute a representative sample under the operating conditions of the photovoltaic installation. In another preferred embodiment, a percentage of the active power reserve is achieved:
- Modificando la orientación de al menos una de las unidades del segundo conjunto de UMCP.- Modifying the orientation of at least one of the units of the second set of UMCP.
- Mediante el control de la tensión de trabajo de al menos una de las unidades del segundo conjunto UMCP.- By controlling the working voltage of at least one of the units of the second UMCP set.
Mediante la conexión y desconexión de al menos una UMCP.By connecting and disconnecting at least one UMCP.
Otra realización preferida incluye, en la instalación fotovoltaica, al menos una carga controlada que permite consumir la reserva de potencia activa de la instalación, siendo esta un porcentaje de la reserva de potencia activa de la instalación.Another preferred embodiment includes, in the photovoltaic installation, at least one controlled load that allows the active power reserve of the installation to be consumed, this being a percentage of the active power reserve of the installation.
La carga controlada podria ser una carga eléctrica o una unidad de almacenamiento de energía, como un electrolizador, unas baterías, un volante de inercia o un supercondensador . En función de su naturaleza puede conectarse a la red eléctrica o a la entrada de al menos un CE. La carga controlada está subordinada a la demanda de potencia activa de la red. En caso de que la red necesite un extra de potencia, el consumo de la carga controlada disminuirá o incluso se apagará. De esta manera se consigue aprovechar la reserva de potencia en vez de no usarla.The controlled charge could be an electric charge or an energy storage unit, such as an electrolyzer, batteries, a flywheel or a supercapacitor. Depending on its nature, it can be connected to the power grid or to the input of at least one CE. The controlled load is subordinated to the active power demand of the network. In case the network needs extra power, the consumption of the controlled load will decrease or even shut down. This way you can take advantage of the power reserve instead of not using it.
La energía almacenada en cada unidad de almacenamiento de energía se puede utilizar para controlar las variaciones de la potencia de salida de la instalación. Por ejemplo, ante una variación de irradiancia que produce como consecuencia una variación proporcional de la potencia de salida, se actúa de modo que las unidades de almacenamiento aportan energía, controlando dicha variación de potencia conforme a unos criterios preestablecidos .The energy stored in each energy storage unit can be used to control variations in the output power of the installation. For example, in the case of a variation in irradiance that results in a proportional variation in the output power, the storage units provide energy, controlling said variation in power according to pre-established criteria.
El método también hace referencia al control de la potencia reactiva al establecer una consigna de potencia reactiva para la instalación fotovoltaica y, posteriormente, determinar la potencia reactiva generada o consumida por cada convertidor electrónico de la instalación.The method also refers to the control of reactive power by setting a power setpoint. reactive for the photovoltaic installation and, subsequently, determine the reactive power generated or consumed by each electronic converter of the installation.
La consigna de potencia reactiva puede determinarse a través de un algoritmo de optimización económico, un lazo de control de la tensión de red o requerimientos externos.The reactive power setpoint can be determined through an economic optimization algorithm, a grid voltage control loop or external requirements.
En una realización preferida de la invención, la potencia reactiva generada o consumida por cada convertidor electrónico de la instalación fotovoltaica, viene determinada en función de su capacidad de generación o consumo de potencia reactiva.In a preferred embodiment of the invention, the reactive power generated or consumed by each electronic converter of the photovoltaic system is determined based on its capacity to generate or consume reactive power.
En otra realización preferida se modifica la consigna de potencia reactiva en al menos uno de los convertidores electrónicos mediante un lazo de regulación de tensión interno para mantener su tensión de salida dentro de los limites establecidos.In another preferred embodiment, the reactive power setpoint is modified in at least one of the electronic converters by means of an internal voltage regulation loop to maintain its output voltage within the established limits.
El control de potencia reactiva puede ser realizado independientemente en cada uno de los convertidores electrónicos .Reactive power control can be performed independently in each of the electronic converters.
El sistema además puede comprender:The system can also include:
- al menos una unidad de control local (UCL) asociada a cada UMCP; al menos una red de comunicaciones que interconecta al menos una UCL con al menos la UC y con al menos un CE.- at least one local control unit (UCL) associated with each UMCP; at least one communications network that interconnects at least one UCL with at least the UC and with at least one CE.
En una realización preferida el sistema incluye, en la UC, medios de gestión de potencia activa para la monitorización de la potencia activa de las diferentes UMCP, establecimiento del modo de operación de cada UMCP y envió de consignas de potencia activa a cada UMCP.In a preferred embodiment, the system includes, in UC, active power management means for monitoring the active power of the different UMCPs, establishing the mode of operation of each UMCP and sending active power setpoints to each UMCP.
En otras realizaciones preferidas la instalación fotovoltaica incluye un dispositivo capaz de controlar la posición respecto al sol de al menos una UMCP (por ejemplo un seguidor) . Alternativamente, se puede incluir un dispositivo capaz de controlar la tensión de trabajo de al menos una UMCP.In other preferred embodiments, the photovoltaic installation includes a device capable of controlling the position with respect to the sun of at least one UMCP (for example a follower). Alternatively, a device capable of controlling the working voltage of at least one UMCP can be included.
En una realización preferida la UC y la UCL forman parte de un único dispositivo.In a preferred embodiment the UC and the UCL are part of a single device.
A modo de ejemplo, la UC, UCL y CE pueden encontrarse en la misma envolvente, o bien, en envolventes distintas (elementos discretos) .As an example, the UC, UCL and CE can be found in the same envelope, or in different envelopes (discrete elements).
A continuación, para facilitar una mejor comprensión de esta memoria descriptiva y formando parte integrante de la misma, se acompañan unas figuras en las que con carácter ilustrativo y no limitativo se ha representado el objeto de la invención, asi como algunas figuras pertenecientes al estado de la técnica, que han sido descritas anteriormente.Next, in order to facilitate a better understanding of this descriptive report and forming an integral part thereof, some figures are attached in which the object of the invention has been shown as an illustrative and non-limiting nature, as well as some figures belonging to the state of the technique, which have been described above.
DESCRIPCIÓN DE LAS FIGURASDESCRIPTION OF THE FIGURES
Figura 1: Muestra una realización preferida de los elementos que integran una instalación fotovoltaica, según la invención.Figure 1: Shows a preferred embodiment of the elements that make up a photovoltaic installation, according to the invention.
Figura 2: Muestra una realización preferente para el control de la potencia activa de la instalación.Figure 2: Shows a preferred embodiment for the control of the active power of the installation.
Figura 3: Muestra una realización preferente para el control de la potencia reactiva de la instalación.Figure 3: Shows a preferred embodiment for the control of the reactive power of the installation.
Figura 4: Representa un ejemplo práctico de la curva tensión - potencia de un generador fotovoltaico convencional .Figure 4: Represents a practical example of the voltage - power curve of a conventional photovoltaic generator.
DESCRIPCIÓN DE UNO O VARIOS EJEMPLOS DE REALIZACIÓN DEDESCRIPTION OF ONE OR VARIOUS EXAMPLES OF REALIZATION OF
LA INVENCIÓNTHE INVENTION
Seguidamente se realiza una descripción de ejemplos de la invención, citando referencias de las figuras.Following is a description of examples of the invention, citing references to the figures.
La Figura 1 muestra de manera esquemática un sistema fotovoltaico en el que se implementa el sistema de gestión de potencia propuesto. El sistema fotovoltaico está formado por: - una unidad de control (UC) (104);Figure 1 schematically shows a photovoltaic system in which the proposed power management system is implemented. The photovoltaic system consists of: - a control unit (UC) (104);
- una pluralidad de unidades minimas de control de potencia (UMCP_1 - UMCP_n) (102i ... 102n) , cada una de las cuales está conectada a una unidad de control local (UCL_1 - UCL_n) (103x ... 103n) ;- a plurality of minimum power control units (UMCP_1 - UMCP_n) (102i ... 102 n ), each of which is connected to a local control unit (UCL_1 - UCL_n) (103 x ... 103 n );
- una pluralidad de convertidores electrónicos (CE_1 - CE_m) (101i ... 101m) a los que se conecta al menos una UMCP. Dichos CE acondicionan la energía producida por las diferentes UMCP conectadas a ellos para su inyección a la red eléctrica (106) .- a plurality of electronic converters (CE_1 - CE_m) (101i ... 101 m ) to which at least one UMCP is connected. These CEs condition the energy produced by the different UMCPs connected to them for injection into the electricity grid (106).
- una red de comunicaciones (105) que interconecta las diferentes unidades de control local (UCL_1 - UCL_n) (103χ ... 103n) con la unidad de control (UC) (104) y los convertidores electrónicos (CEi ~ CEm) (101i ... 101m) .- a communications network (105) that interconnects the different local control units (UCL_1 - UCL_n) (103χ ... 103 n ) with the control unit (UC) (104) and electronic converters (CEi ~ CE m ) (101i ... 101 m ).
Cada UMCP anteriormente descrita (UMCP_1 - UMCP_n) (102i 102n) , dependerá de las características de la instalación, pudiendo ser:Each UMCP described above (UMCP_1 - UMCP_n) (102i 102 n ), will depend on the characteristics of the installation, which may be:
- Un conjunto de generadores fotovoltaicos colocado sobre al menos un seguidor solar. En instalaciones con seguidores solares, se puede controlar la posición del seguidor, lo que proporciona la posibilidad de controlar la energía producida por dichos generadores.- A set of photovoltaic generators placed on at least one solar tracker. In installations with solar trackers, the position of the tracker can be controlled, which provides the possibility of controlling the energy produced by said generators.
- Un conjunto de generadores fotovoltaicos conectados al menos a una estructura de conversión (dc/dc o dc/ac) con control de la tensión de entrada. Cada estructura de conversión proporciona un control independiente de la tensión de trabajo de los generadores asociados, lo que proporciona la posibilidad de controlar la energía producida por dichos generadores .- A set of photovoltaic generators connected to at least one conversion structure (dc / dc or dc / ac) with control of the input voltage. Each conversion structure provides independent control of the working voltage of the associated generators, which provides the possibility of controlling the energy produced by said generators.
- Un conjunto de generadores fotovoltaicos con elementos de seccionamiento que permitan su conexión y desconexión de los convertidores electrónicos (CEi ~ CEm) (101i - 101m) .- A set of photovoltaic generators with sectioning elements that allow their connection and disconnection of electronic converters (CEi ~ CE m ) (101i - 101 m ).
- Cualquier combinación de las anteriores . Cada UMCP puede trabajar en dos modos de operación gobernados por la UC a través de su correspondiente UCL a la que está conectado: modo observador (MO) y modo reserva (MR) . Cuando una UMCP trabaja en modo MO aporta la máxima potencia activa disponible en cada momento (dependiente de las condiciones meteorológicas) , sin que exista ninguna restricción sobre ella. Cuando una UMCP trabaja en modo MR, la UC limita la potencia activa aportada por dicha UMCP.- Any combination of the above. Each UMCP can work in two operating modes governed by the UC through its corresponding UCL to which it is connected: observer mode (MO) and reserve mode (MR). When a UMCP works in MO mode, it provides the maximum active power available at all times (depending on weather conditions), without any restrictions on it. When a UMCP works in MR mode, the UC limits the active power contributed by that UMCP.
Al hacer trabajar a parte de la instalación en MR, la potencia activa total de la instalación permanece por debajo de la máxima disponible con las condiciones de radiación instantáneas. La máxima potencia activa disponible se estima a partir de los datos aportados por las UMCP en modo MO. Del total de UMCP de la instalación (n) habrá (u) UMCP que trabajarán en MR y (n-u) UMCP que trabajarán en modo MO.When operating part of the installation in MR, the total active power of the installation remains below the maximum available with instantaneous radiation conditions. The maximum active power available is estimated from the data provided by the UMCPs in MO mode. Of the total UMCP of the installation (n) there will be (u) UMCP that will work in MR and (n-u) UMCP that will work in MO mode.
En la Figura 2 se representa una realización preferente para el control de potencia activa de la instalación fotovoltaica . La invención prevé la obtención de una consigna que consiste en una reserva de potencia activa, que se puede definir como un porcentaje de la potencia activa producida en la instalación en cada momento (%Pres_UC) , en otra realización, la obtención de la consigna se puede definir como un porcentaje de la potencia activa nominal de la instalación o como un valor de potencia activa deseado para el sistema fotovoltaico en unidades absolutas (ej . kW) . El valor de dicha consigna se selecciona en un bloque (203) en función de varios criterios, que pueden ser: un valor establecido por el operador de la red eléctrica (%Pres_RED) un valor generado en la UC (104) de acuerdo a varios criterios predefinidos en un algoritmo de optimización (%Pres_OPT) . Este algoritmo tiene en cuenta parámetros (201) como optimización de la producción, reserva de potencia activa, estabilidad de la red en cada momento, primas económicas por reserva de potencia activa, información de tarifas, optimización de beneficios, etc. un valor generado en la UC en función de la frecuencia de red (%Pres_FRE) . En este caso, la frecuencia de red (Fred) se resta a una de referencia (Fredrref) en un bloque (204) que proporciona el control de la estabilidad de la frecuencia de red , obteniendo un error de frecuencia. Este error se aplica sobre un controlador incluido en el bloque (204) para obtener el tanto por ciento de reserva de potencia activa (%Pres_FRE) . un valor de consigna generado en la UC (104) en función de la tasa de variación de la potencia activa de salida de la instalación. Esto permite controlar la potencia activa de salida en caso de variaciones en la irradiancia, con el fin de suavizar el efecto que dichas variaciones de irradiancia producen sobre la potencia activa de salida. La generación de esta consigna se obtiene a partir de una tasa de variación predefinida (TVPref) y de la potencia activa total (Ptot^ definida a continuación) producida por el sistema, mediante un bloque (206) .A preferred embodiment for the active power control of the photovoltaic system is shown in Figure 2. The invention provides for obtaining a setpoint consisting of an active power reserve, which can be defined as a percentage of the active power produced in the installation at any time (% P res _UC), in another embodiment, obtaining the The setpoint can be defined as a percentage of the nominal active power of the installation or as a desired active power value for the photovoltaic system in absolute units (eg kW). The value of said setpoint is selected in a block (203) based on several criteria, which may be: a value established by the operator of the power grid (% P res _RED) a value generated in the UC (104) according to to several predefined criteria in an algorithm of optimization (% P res _OPT). This algorithm takes into account parameters (201) such as production optimization, active power reserve, network stability at all times, economic premiums for active power reserve, rate information, profit optimization, etc. a value generated in the UC based on the network frequency (% P res _FRE). In this case, the network frequency (F network ) is subtracted from a reference frequency (F redrref ) in a block (204) that provides control of the stability of the network frequency, obtaining a frequency error. This error is applied to a controller included in block (204) to obtain the percentage of active power reserve (% P res _FRE). a setpoint value generated in the UC (104) depending on the rate of variation of the active output power of the installation. This allows controlling the active output power in case of variations in irradiance, in order to soften the effect that said irradiance variations produce on the active output power. The generation of this setpoint is obtained from a predefined variation rate (TVP ref ) and the total active power (P tot ^ defined below) produced by the system, by means of a block (206).
La UC (104) también recibe como entrada la medida de potencia activa de cada UMCP (UMCP_Pχ - UMCP_Pn) . Estos datos se utilizan para calcular la potencia activa total (Ptot) producida por el sistema, mediante los bloques (211, 212, 213) según la siguiente expresión:The UC (104) also receives as input the active power measurement of each UMCP (UMCP_Pχ - UMCP_P n ). These data are used to calculate the total active power (Pto t ) produced by the system, using the blocks (211, 212, 213) according to the following expression:
Ptot = J](UMCP_PV..UMCP_PU)+J](UMCP_PU+V..UMCP_Pn)Ptot = J] (UMCP_P V ..UMCP_P U ) + J] (UMCP_P U + V ..UMCP_P n )
El valor seleccionado de la consigna de reserva de potencia activa en tanto por ciento, %PresP UC, se convierte a unidades absolutas en el bloque (205) , de acuerdo con la siguiente ecuación:The selected value of the active power reserve setpoint in percent,% P res P UC, is converted to absolute units in block (205), according to the following equation:
Ptotres = %Pres_UC PtotPtotres =% Pres_UC Ptot
En otras realizaciones, este valor de potencia en unidades absolutas podria ser dado como consigna directa.In other embodiments, this power value in absolute units could be given as a direct setpoint.
La UC (104) calcula el valor medio de potencia activa entregado por las UMCP en modo reserva - MR - mediante el bloque (213) [P11) y en modo observador - MO - mediante el bloque (214) {Pπ-U) • Estos valores se utilizan para determinar la estimación de reserva de potencia activa que se tiene actualmente en la instalación, mediante los bloques (216, 217), según la ecuación: estPres = (pn_u-Pu)-uThe UC (104) calculates the average value of active power delivered by the UMCPs in reserve mode - MR - using block (213) [P 11 ) and in observer mode - MO - using block (214) {P π - U ) • These values are used to determine the estimate of the active power reserve currently available in the installation, using the blocks (216, 217), according to the equation: estPres = (p n _ u -P u ) -u
La figura también incluye la existencia de una carga controlada que consume parte de la energía activa generada por la instalación fotovoltaica (PCc) • Dicha carga controlada permite el aprovechamiento de la reserva de potencia activa. A la reserva de potencia activa total (Ptotres) se resta en el bloque (218), el valor de la carga controlada (PCc) obteniendo el valor de reserva de potencia activa (Pres) según la siguiente expresión:The figure also includes the existence of a controlled load that consumes part of the active energy generated by the photovoltaic installation (P Cc ) • This controlled load allows the use of the active power reserve. A total active power reserve (Ptotres) is subtracted in block (218), the value of the controlled load (P C c) obtaining the active power reserve value (Pr es ) according to the following expression:
Pres =Ptotres -PcePres = Ptotres -Pce
La estimación de reserva de potencia activa (estPres) se resta a la consigna Pres en el bloque (207) resultando el error (ε_Pres) según la siguiente expresión (207) :
Figure imgf000014_0001
The estimate of active power reserve ( est P res ) is subtracted from the setpoint P res in block (207) resulting in the error (ε_P res ) according to the following expression (207):
Figure imgf000014_0001
Este error se introduce a un controlador (208) que puede ser un controlador PI (proporcional integral) o de cualquier otro tipo. La salida de dicho controlador se aplica a un bloque limitador (209) que la limita de acuerdo a varios criterios, como por ejemplo: las características de las UMCP, el número de UMCP que trabajan en MR y la potencia activa total producida por la instalación para que ésta no exceda la potencia activa limite establecida. La salida limitada es el porcentaje máximo de la potencia activa nominal que no debe ser sobrepasado por las UMCP que se encuentran en MR (%Pn_MR) .This error is introduced to a controller (208) which can be a PI controller (integral proportional) or of any other type. The output of said controller is applied to a limiting block (209) that limits it according to several criteria, such as: the characteristics of the UMCP, the number of UMCPs that work in MR and the total active power produced by the installation so that it does not exceed the established limit active power. The limited output is the maximum percentage of the nominal active power that must not be exceeded by the UMCPs found in MR (% P n _MR).
El número de UMCP en MR y MO se selecciona en cada momento en función de las condiciones de trabajo de cada una de las UMCP mediante el bloque (215) . Cuando el valor %Pn_MR desciende de un determinado umbral, la UC (104) pasa al menos una UMCP del modo MO al modo MR. La selección de las UMCP en modo MO se realiza para que la muestra sea representativa de la instalación (UMCP_Mi ... UMCP_Mn) .The number of UMCPs in MR and MO is selected at any time based on the working conditions of each of the UMCPs by block (215). When the% P n _MR value falls below a certain threshold, the UC (104) passes at least one UMCP from MO mode to MR mode. The selection of the UMCPs in MO mode is made so that the sample is representative of the installation (UMCP_Mi ... UMCP_M n ).
Los modos de funcionamiento de cada UMCP y el valor de %Pn_MR, se transmiten a las UCL a través de la red de comunicaciones (105) . La UCL se encarga del cumplimiento de la limitación establecida por el %Pn_MR, gobernando el funcionamiento de cada UMPC.The operating modes of each UMCP and the value of% P n _MR are transmitted to the UCLs through the communications network (105). The UCL is responsible for complying with the limitation established by the% P n _MR, governing the operation of each UMPC.
En otra realización preferente se incorpora en el sistema al menos una célula fotovoltaica calibrada para estimar la potencia activa disponible en la instalación, lo que permite disminuir el número de UMCP en MO.In another preferred embodiment, at least one photovoltaic cell calibrated to estimate the active power available in the installation is incorporated into the system, which allows to reduce the number of UMCP in MO.
En otra realización preferida aplicable a instalaciones constituidas por generadores fotovoltaicos colocados sobre seguidores solares, la UC (104) determina la posición de los diferentes seguidores para obtener la reserva de' potencia activa requerida en base a las ecuaciones que rigen la irradiancia que incide sobre el generador en función de su orientación respecto al sol .In another preferred embodiment applicable to installations constituted by photovoltaic generators placed on solar trackers, the UC (104) determines the position of the different followers to obtain the reserve of 'active power required based on the equations that govern the irradiance that affects the generator based on its orientation with respect to the sun.
En la Figura 4 se muestra un ejemplo de funcionamiento aplicable a UMCP sobre las que se tiene un control de la tensión de entrada. En ella las UMCP en modo MO trabajan en el punto de máxima potencia (MPP) (401) mientras que las UMCP en modo MR trabajan a una tensión (402) tal que permite la limitación de potencia establecida por el método de control (reserva de potencia activa) .Figure 4 shows an example of operation applicable to UMCP over which there is a control of the input voltage. In it, the UMCPs in MO mode work at the point of maximum power (MPP) (401) while the UMCP in MR mode work at a voltage (402) such that it allows the power limitation established by the control method (active power reserve).
En la Figura 3 se representa una realización preferente para el control de potencia reactiva de la instalación fotovoltaica . En dicha invención se monitoriza la potencia activa y reactiva de cada uno de los CE y se determina la consigna de potencia reactiva de cada uno de ellos.A preferred embodiment for the reactive power control of the photovoltaic system is shown in Figure 3. In said invention, the active and reactive power of each of the ECs is monitored and the reactive power setpoint of each of them is determined.
La consigna de potencia reactiva (Qref_UC) se puede definir como un porcentaje de la potencia activa de la instalación (%Qref) o como un valor absoluto. Dicha consigna se selecciona en el bloque (304) en función de varios criterios, que pueden ser: un valor establecido por el operador de la red eléctrica (Qref_RED) . un valor generado en la UC (104) (Qrβf_OPT) de acuerdo a varios criterios predefinidos en un bloque (303) de acuerdo con un algoritmo de optimización. Este algoritmo podría tener en cuenta parámetros representados mediante un bloque (302) como optimización de la producción, estabilidad de la red en cada momento, primas económicas por reserva de potencia reactiva, información de tarifas, optimización de beneficios, etc. un valor generado en la UC (104) en función de la tensión de red (Vred) . En este caso, la tensión de red (Vred) se resta a la de referencia (Vred,ref) en un bloque (301), obteniendo un error de tensión. Este error se aplica sobre un controlador incluido en el bloque (301) para obtener la consigna de reactiva (Qref__VOL) .The reactive power setpoint (Q ref _UC) can be defined as a percentage of the active power of the installation (% Q re f) or as an absolute value. Said setpoint is selected in block (304) based on several criteria, which may be: a value set by the operator of the power grid (Q ref _RED). a value generated in the UC (104) (Q rβf _OPT) according to several predefined criteria in a block (303) according to an optimization algorithm. This algorithm could take into account parameters represented by a block (302) such as production optimization, network stability at all times, economic premiums for reactive power reserve, tariff information, benefit optimization, etc. a value generated in the UC (104) as a function of the network voltage (V network ). In this case, the mains voltage (V mains ) is subtracted from the reference voltage (V mains , re f) in a block (301), obtaining a voltage error. This error is applied to a controller included in block (301) to obtain the reactive setpoint (Q ref __VOL).
Posteriormente, la UC (104) determina la potencia reactiva que debe aportar cada uno de los CE (CE_Qiref ... CE Qmref) • Este reparto se realiza de manera coordinada entre los diferentes CE por medio de un bloque (305) que ejecuta un algoritmo de optimización que tiene en cuenta: La potencia activa de cada CE (CE_Pχ ... CE_Pm) . La potencia reactiva de cada CE (CEQ1 ... CEQm) . El esfuerzo demandado a cada uno de ellos (proporción de potencia reactiva producida respecto a su capacidad) , con el fin de reducir el estrés eléctrico de los CE.Subsequently, the UC (104) determines the reactive power that each of the CEs must provide (CE_Qi ref ... CE Q mref ) • This distribution is carried out in a coordinated manner between the different CEs by means of a block (305) that executes an optimization algorithm that takes into account: The active power of each CE (CE_Pχ ... CE_P m ). The reactive power of each CE (CEQ 1 ... CEQ m ). The effort demanded from each of them (proportion of reactive power produced with respect to their capacity), in order to reduce the electrical stress of the EC.
El algoritmo de optimización también tiene en cuenta parámetros como capacidad de respuesta de los diferentes CE, etc.The optimization algorithm also takes into account parameters such as responsiveness of the different CEs, etc.
Los valores de CE_Qiref ... CE_Qmref se transmiten a los diferentes CE a través de la red de comunicaciones (105) .The values of CE_Qi ref ... CE_Q mre f are transmitted to the different CEs through the communications network (105).
En una realización preferida los CE podrán incorporar un lazo de regulación de tensión rápido que modifique la consigna recibida desde la UC para mantener la tensión a la salida del CE dentro de los limites establecidos .In a preferred embodiment, the CE may incorporate a rapid voltage regulation loop that modifies the setpoint received from the UC to maintain the voltage at the output of the CE within the established limits.
En otras realizaciones, el control de potencia reactiva se puede realizar independientemente en cada uno de los CE siguiendo los criterios preestablecidos . In other embodiments, the reactive power control can be performed independently in each of the CEs following the pre-established criteria.

Claims

REIVINDICACIONES
1. Método para la gestión de potencia en una instalación fotovoltaica que está dotada de una pluralidad de unidades mínimas de control de potencia (UMPC) caracterizado porque incluye realizar el control de potencia activa que comprende los siguientes fases:1. Method for power management in a photovoltaic installation that is provided with a plurality of minimum power control units (UMPC) characterized in that it includes performing active power control comprising the following phases:
- establecer una consigna de reserva de potencia activa para la instalación;- establish an active power reserve setpoint for the installation;
- determinar un primer conjunto de unidades mínimas de control de potencia (UMCP) que operan sin limitar su potencia activa;- determine a first set of minimum power control units (UMCP) that operate without limiting their active power;
- realizar una estimación de la potencia activa producible por la instalación fotovoltaica;- make an estimate of the active power produced by the photovoltaic system;
- determinar un segundo conjunto de unidades mínimas de control de potencia (UMCP) que operan limitando su potencia activa a un valor determinado.- determine a second set of minimum power control units (UMCP) that operate by limiting their active power to a certain value.
2. Método para la gestión de potencia en una instalación fotovoltaica según reivindicación 1, caracterizado porque la limitación de potencia activa del segundo conjunto de unidades mínimas de control de potencia (UMCP) se establece a partir de la consigna de reserva de potencia activa y de la estimación de la potencia activa producible.2. Method for power management in a photovoltaic installation according to claim 1, characterized in that the active power limitation of the second set of minimum power control units (UMCP) is established from the active and reserve power reserve setpoint. the estimate of the producible active power.
3. Método para la gestión de potencia en una instalación fotovoltaica según reivindicación 1, caracterizado porque la estimación de la potencia activa producible se obtiene mediante las potencias generadas por el primer conjunto de unidades mínimas de control de potencia (UMCP) .3. Method for power management in a photovoltaic installation according to claim 1, characterized in that the estimation of the producible active power is obtained by means of the powers generated by the first set of minimum power control units (UMCP).
4. Método para la gestión de potencia en una instalación fotovoltaica según reivindicación 1, caracterizado porque la estimación de la potencia activa producible se obtiene mediante al menos una célula fotovoltaica calibrada. 4. Method for power management in a photovoltaic installation according to claim 1, characterized in that the estimation of the producible active power is obtained by at least one calibrated photovoltaic cell.
5. Método para la gestión de potencia en una instalación fotovoltaica según reivindicación 1, caracterizado, porque la estimación de la potencia activa producible se obtiene en base a la orientación de cualquiera de los conjuntos de las unidades mínimas de control de potencia (UMCP) respecto al sol .5. Method for power management in a photovoltaic installation according to claim 1, characterized in that the estimation of the producible active power is obtained based on the orientation of any of the sets of the minimum power control units (UMCP) with respect to to the sun .
6. Método para la gestión de potencia en una instalación fotovoltaica según reivindicación 1, caracterizado porque la estimación de la potencia activa producible se obtiene a partir de un muestreo de la curva V - I de las unidades mínimas de control de potencia (UMCP) , obtenido mediante una variación de la tensión de trabajo periódica de las unidades mínimas de control de potencia (UMCP) .6. Method for power management in a photovoltaic installation according to claim 1, characterized in that the estimation of the producible active power is obtained from a sampling of the V-I curve of the minimum power control units (UMCP), obtained by varying the periodic working voltage of the minimum power control units (UMCP).
7. Método para la gestión de potencia en una instalación fotovoltaica según reivindicación 1, caracterizado porque la consigna de reserva de potencia activa es seleccionada entre un algoritmo de optimización económico, un lazo de control de la frecuencia de red, requerimientos externos, un lazo de control de la tasa de variación de la potencia activa de salida de la instalación, y combinación de los mismos .7. Method for power management in a photovoltaic installation according to claim 1, characterized in that the active power reserve setpoint is selected from an economic optimization algorithm, a network frequency control loop, external requirements, a power loop control of the rate of variation of the active output power of the installation, and combination thereof.
8. Método para la gestión de potencia en una instalación fotovoltaica según reivindicación 1, caracterizado porque el número de unidades que forman el segundo conjunto de unidades mínimas de control de potencia (UMCP) se selecciona en función de la limitación de la potencia activa demandada a dicho conjunto, y teniendo en cuenta que el número de unidades que forman el primer conjunto de unidades mínimas de control de potencia (UMCP) debe constituir una muestra representativa de la instalación fotovoltaica .8. Method for power management in a photovoltaic installation according to claim 1, characterized in that the number of units that form the second set of minimum power control units (UMCP) is selected based on the limitation of the active power demanded from said set, and taking into account that the number of units that form the first set of minimum power control units (UMCP) should constitute a representative sample of the photovoltaic installation.
9. Método para la gestión de potencia en una instalación fotovoltaica según reivindicación 1, caracterizado porque un porcentaje de la reserva de potencia activa se obtiene modificando la orientación de al menos una de las unidades del segundo conjunto de unidades mínimas de control de potencia (UMCP) .9. Method for power management in a photovoltaic installation according to claim 1, characterized in that a percentage of the active power reserve is obtained by modifying the orientation of at least one of the units of the second set of minimum power control units (UMCP).
10. Método para la gestión de potencia en una instalación fotovoltaica según reivindicación 1, caracterizado porque un porcentaje de la reserva de potencia activa se consigue mediante el control de la tensión de trabajo de al menos una de las unidades del segundo conjunto de unidades mínimas de control de potencia (UMCP) .10. Method for power management in a photovoltaic installation according to claim 1, characterized in that a percentage of the active power reserve is achieved by controlling the working voltage of at least one of the units of the second set of minimum units of power control (UMCP).
11. Método para la gestión de potencia en una instalación fotovoltaica según reivindicación 1, caracterizado porque un porcentaje de la reserva de potencia activa se obtiene mediante la conexión y desconexión de al menos una unidad mínima de control de potencia (UMCP) .11. Method for power management in a photovoltaic installation according to claim 1, characterized in that a percentage of the active power reserve is obtained by connecting and disconnecting at least one minimum power control unit (UMCP).
12. Método para la gestión de potencia en una instalación fotovoltaica según reivindicación 1, caracterizado porque un porcentaje de la reserva de potencia activa deseada se obtiene a partir del consumo de una carga controlada.12. Method for power management in a photovoltaic installation according to claim 1, characterized in that a percentage of the desired active power reserve is obtained from the consumption of a controlled load.
13. Método para la gestión de potenc-ia en una instalación fotovoltaica que está dotada de al menos un convertidor electrónico, caracterizado porque incluye realizar un control de potencia reactiva que comprende las siguientes fases:13. Method for power management in a photovoltaic installation that is equipped with at least one electronic converter, characterized in that it includes performing a reactive power control comprising the following phases:
- establecer una consigna de potencia reactiva para la instalación fotovoltaica;- establish a reactive power setpoint for the photovoltaic system;
- determinar la potencia reactiva generada o consumida por cada convertidor electrónico de la instalación.- determine the reactive power generated or consumed by each electronic converter of the installation.
14. Método para la gestión de potencia en una instalación fotovoltaica según reivindicación 13, caracterizado porque la consigna de reserva de potencia reactiva es seleccionada entre un algoritmo de optimización económico, un lazo de control de la tensión de red, requerimientos externos, y combinación de los mismos.14. Method for power management in a photovoltaic installation according to claim 13, characterized in that the setpoint of reactive power reserve is selected from an economic optimization algorithm, a control loop of the grid voltage, external requirements, and a combination thereof.
15. Método para la gestión de potencia en una instalación fotovoltaica según reivindicación 13, caracterizado porque la potencia reactiva generada o consumida por cada convertidor electrónico se determina en función de su capacidad de generación o consumo de potencia reactiva .15. Method for power management in a photovoltaic installation according to claim 13, characterized in that the reactive power generated or consumed by each electronic converter is determined according to its capacity to generate or consume reactive power.
16. Método para la gestión de potencia en una instalación fotovoltaica según reivindicación 13, caracterizado porque comprende modificar la consigna de potencia reactiva en al menos uno de los convertidores electrónicos, mediante un lazo de regulación de tensión interno para mantener su tensión de salida dentro de unos limites previamente establecidos.16. Method for power management in a photovoltaic installation according to claim 13, characterized in that it comprises modifying the reactive power setpoint in at least one of the electronic converters, by means of an internal voltage regulation loop to keep its output voltage within previously established limits.
17. Método para la gestión de potencia en una instalación fotovoltaica según reivindicación 13, caracterizado porque el control de potencia reactiva se realiza independientemente en cada uno de los convertidores electrónicos .17. Method for power management in a photovoltaic installation according to claim 13, characterized in that the reactive power control is carried out independently in each of the electronic converters.
18. Sistema para la gestión de potencia en una instalación fotovoltaica que comprende:18. System for power management in a photovoltaic installation comprising:
- al menos una unidad de control (UC) ;- at least one control unit (UC);
- al menos un generador fotovoltaico;- at least one photovoltaic generator;
- al menos un convertidor electrónico (CE) para transformar energía continua en energía alterna; caracterizado porque:- at least one electronic converter (CE) to transform continuous energy into alternating energy; characterized in that:
- la UC comprende medios de gestión de potencia de la instalación fotovoltaica, seleccionados entre medios de gestión de potencia activa, medios de gestión de potencia reactiva y combinación de los mismos. - the UC includes power management means of the photovoltaic installation, selected among active power management means, reactive power management means and combination thereof.
19. Sistema para la gestión de potencia en una instalación fotovoltaica según reivindicación 18, caracterizado porque comprende al menos:19. Power management system in a photovoltaic installation according to claim 18, characterized in that it comprises at least:
- un conjunto de generadores fotovoltaicos sobre los que se tiene un control individualizado de su producción de energía (unidad mínima de control de potencia - UMCP -) ;- a set of photovoltaic generators on which there is an individualized control of their energy production (minimum power control unit - UMCP -);
- una unidad de control local (UCL) asociada a cada generador fotovoltaico . una red de comunicaciones que interconecta al menos una unidad de control local (UCL) con al menos la unidad de control (UC) y con al menos un convertidor electrónico (CE) .- a local control unit (UCL) associated with each photovoltaic generator. a communications network that interconnects at least one local control unit (UCL) with at least the control unit (UC) and with at least one electronic converter (CE).
20. Sistema para la gestión de potencia en una instalación fotovoltaica según reivindicación 19, caracterizado porque los medios de gestión de potencia activa de la unidad de control comprenden los siguientes medios :20. Power management system in a photovoltaic installation according to claim 19, characterized in that the active power management means of the control unit comprise the following means:
- medios de monitorización de la potencia activa de las diferentes UMCP;- means for monitoring the active power of the different UMCPs;
- medios de establecimiento del modo de operación de cada UMCP;- means of establishing the mode of operation of each UMCP;
- medios de envió de consignas de potencia activa a cada UMCP.- means for sending active power setpoints to each UMCP.
21. Sistema para la gestión de potencia en una instalación fotovoltaica según reivindicación 19, caracterizado porque la unidad de control (UC) y la unidad de control local (UCL) forman parte de un único dispositivo.21. System for power management in a photovoltaic installation according to claim 19, characterized in that the control unit (UC) and the local control unit (UCL) are part of a single device.
22. Sistema para la gestión de potencia en una instalación fotovoltaica según reivindicación 19, caracterizado porque incluye un dispositivo de control de la posición respecto al sol de al menos una UMCP. 22. System for power management in a photovoltaic installation according to claim 19, characterized in that it includes a device for controlling the position with respect to the sun of at least one UMCP.
23. Sistema para la gestión de potencia en una instalación fotovoltaica según reivindicación 19, caracterizado porque incluye un dispositivo de control de la tensión de trabajo de al menos una UMCP.23. Power management system in a photovoltaic installation according to claim 19, characterized in that it includes a working voltage control device of at least one UMCP.
24. Sistema para la gestión de potencia en una instalación fotovoltaica según reivindicación 19, caracterizado porque incluye al menos una carga controlada que consume energía activa generada por la instalación fotovoltaica, siendo ésta un porcentaje de la reserva de potencia activa de la instalación.24. Power management system in a photovoltaic installation according to claim 19, characterized in that it includes at least one controlled load that consumes active energy generated by the photovoltaic installation, this being a percentage of the active power reserve of the installation.
25. Sistema para la gestión de potencia en una instalación fotovoltaica según reivindicación 24, caracterizado porque la carga controlada es un elemento seleccionado entre una carga eléctrica y una unidad de almacenamiento de energía, a su vez seleccionado entre un electrolizador, unas baterías, un volante de inercia y un supercondensador .25. Power management system in a photovoltaic installation according to claim 24, characterized in that the controlled load is an element selected from an electric load and an energy storage unit, in turn selected from an electrolyser, batteries, a steering wheel of inertia and a supercapacitor.
26. Método para la gestión de potencia en una instalación fotovoltaica según reivindicación 25, caracterizado porque la unidad de control comprende medios de control de las variaciones de potencia de salida de la instalación, a partir de la energía almacenada en cada unidad de almacenamiento de energía.26. Method for power management in a photovoltaic installation according to claim 25, characterized in that the control unit comprises means for controlling the output power variations of the installation, from the energy stored in each energy storage unit .
27. Sistema para la gestión de potencia en una instalación fotovoltaica según reivindicación 24, caracterizado porque dicha carga controlada se conecta en paralelo a la entrada de los convertidores electrónicos27. System for power management in a photovoltaic installation according to claim 24, characterized in that said controlled load is connected in parallel to the input of the electronic converters
(CE) .(CE).
28. Sistema para la gestión de potencia en una instalación fotovoltaica según reivindicación 24, caracterizado porque dicha carga se conecta en paralelo a la salida de los convertidores electrónicos (CE) . 28. Power management system in a photovoltaic installation according to claim 24, characterized in that said load is connected in parallel to the output of the electronic converters (CE).
29. Sistema para la gestión de potencia en una instalación fotovoltaica según reivindicación 19, caracterizado porque la unidad de control (UC) , la unidad de control local (UCL) , y el convertidor electrónico (CE) se encuentran en envolventes diferentes.29. Power management system in a photovoltaic installation according to claim 19, characterized in that the control unit (UC), the local control unit (UCL), and the electronic converter (CE) are in different enclosures.
30. Sistema para la gestión de potencia en una instalación fotovoltaica según reivindicación 19, caracterizado porque la unidad de control UC, la unidad de control local (UCL) , y el convertidor electrónico (CE) se encuentran en la misma envolvente. 30. System for power management in a photovoltaic installation according to claim 19, characterized in that the UC control unit, the local control unit (UCL), and the electronic converter (CE) are in the same enclosure.
PCT/ES2008/000560 2008-08-12 2008-08-12 System and method for power management in a photovoltaic installation WO2010018240A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP08805381.4A EP2328259B2 (en) 2008-08-12 2008-08-12 System and method for power management in a photovoltaic installation
PCT/ES2008/000560 WO2010018240A1 (en) 2008-08-12 2008-08-12 System and method for power management in a photovoltaic installation
ES08805381.4T ES2480590T3 (en) 2008-08-12 2008-08-12 System and method for power management in a photovoltaic installation
CN2008801314831A CN102177636B (en) 2008-08-12 2008-08-12 System and method for power management in photovoltaic installation
US13/023,629 US8346400B2 (en) 2008-08-12 2011-02-09 System and method for power management in a photovoltaic installation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2008/000560 WO2010018240A1 (en) 2008-08-12 2008-08-12 System and method for power management in a photovoltaic installation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/023,629 Continuation US8346400B2 (en) 2008-08-12 2011-02-09 System and method for power management in a photovoltaic installation

Publications (1)

Publication Number Publication Date
WO2010018240A1 true WO2010018240A1 (en) 2010-02-18

Family

ID=41668725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/000560 WO2010018240A1 (en) 2008-08-12 2008-08-12 System and method for power management in a photovoltaic installation

Country Status (5)

Country Link
US (1) US8346400B2 (en)
EP (1) EP2328259B2 (en)
CN (1) CN102177636B (en)
ES (1) ES2480590T3 (en)
WO (1) WO2010018240A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135110A1 (en) * 2010-04-28 2011-11-03 Ingeteam Energy, S. A. Hydrogen production system for regulating the power at renewable energy electric plants, and a regulation method
CN102289535A (en) * 2011-06-07 2011-12-21 北京航空航天大学 Spacecraft power system energy analysis simulation platform
EP2628229A2 (en) * 2010-10-12 2013-08-21 American Superconductor Corporation Centralized power conditioning
CN104408537A (en) * 2014-12-12 2015-03-11 上海宝钢节能环保技术有限公司 Optimization design system for photovoltaic power station
EP2424066A3 (en) * 2010-08-31 2016-02-17 General Electric Company System and method for distribution of inverter VAR support

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7890217B2 (en) * 2009-10-26 2011-02-15 General Electric Company Integrated real-time power and solar farm control system
PL2541720T3 (en) * 2011-06-29 2019-07-31 Acciona Energia, S.A. Procedure for supply control and storage of power provided by a renewable energy generation plant
CN103843217A (en) * 2011-09-20 2014-06-04 艾思玛太阳能技术股份公司 Provision of control power with a photovoltaic arrangement
US8793028B2 (en) * 2011-11-21 2014-07-29 General Electric Company System and method for determining potential power of inverters during curtailment mode
CN102611138B (en) * 2012-03-20 2013-11-06 湖南大学 Delay-free single-phase photovoltaic synchronization power adjusting method
US20140152111A1 (en) * 2012-11-30 2014-06-05 General Electric Company System and method for controlling a power generation system
EP2951903B1 (en) * 2013-01-30 2018-03-14 SMA Solar Technology AG Method and inverter for power distribution over multiple direct current sources which are connected jointly to a direct voltage input of a dc/ac transformer
CN105308312B (en) * 2013-06-03 2020-03-17 维斯塔斯风力系统集团公司 Wind power plant controller
CN103944172B (en) * 2013-08-22 2016-02-24 南京南瑞集团公司 A kind of reactive voltage control method of photovoltaic power station
JP6223833B2 (en) * 2014-01-09 2017-11-01 株式会社東芝 Power system stabilizer
DE102014101406A1 (en) 2014-02-05 2015-08-06 Sma Solar Technology Ag Control device and method for operating a photovoltaic system
CN106357347B (en) * 2015-07-15 2021-05-11 弗莱克斯电子有限责任公司 Optical communication, audio transmission and charging system
CN105305430B (en) * 2015-11-06 2019-05-07 重庆大学 Light based on hierarchical control stores up electricity generation system power quality method for improving
DE102017102771A1 (en) * 2017-02-13 2018-08-16 Sma Solar Technology Ag Method for determining the maximum possible power of a PV system and PV system
ES2913122T3 (en) * 2017-03-13 2022-05-31 Nordex Energy Se & Co Kg Active power supply control method of a wind farm, and said wind farm
EP3669454B1 (en) 2017-08-17 2020-11-25 SMA Solar Technology AG Method and device for detecting a maximum system output of a photovoltaic system
DK3444938T3 (en) * 2017-08-18 2021-02-22 Nordex Energy Se & Co Kg PROCEDURE FOR CONTROLLING A WIND TURBINE
CN109802426B (en) 2018-11-14 2023-04-07 华为技术有限公司 Photovoltaic power generation system and control method thereof
CN110362147B (en) * 2019-07-15 2021-08-20 西交利物浦大学 Power reserve control method and system based on photovoltaic system
ES2734585A1 (en) * 2019-10-31 2019-12-10 Real Energy Systems S L U Load management system or power limitation in photovoltaic installations. (Machine-translation by Google Translate, not legally binding)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003084041A1 (en) * 2002-03-28 2003-10-09 Curtin University Of Technology Power conversion system and method of converting power
US20080122449A1 (en) * 2006-11-27 2008-05-29 Besser David A Power extractor for impedance matching

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988004801A1 (en) 1986-12-19 1988-06-30 Stuart Maxwell Watkinson Electrical power transfer apparatus
US5642007A (en) 1994-12-30 1997-06-24 Westinghouse Electric Corporation Series compensator inserting real and reactive impedance into electric power system for damping power oscillations
DE19756777B4 (en) 1997-12-19 2005-07-21 Wobben, Aloys, Dipl.-Ing. Method for operating a wind energy plant and wind energy plant
US6889122B2 (en) * 1998-05-21 2005-05-03 The Research Foundation Of State University Of New York Load controller and method to enhance effective capacity of a photovoltaic power supply using a dynamically determined expected peak loading
US6542791B1 (en) * 1998-05-21 2003-04-01 The Research Foundation Of State University Of New York Load controller and method to enhance effective capacity of a photovotaic power supply using a dynamically determined expected peak loading
DE19948196A1 (en) 1999-10-06 2001-05-17 Aloys Wobben Process for operating a wind farm
JP2001256781A (en) 2000-03-14 2001-09-21 Mitsubishi Electric Corp Semiconductor storage device
US20030102675A1 (en) 2000-04-17 2003-06-05 Umweltkontor Renewable Energy Ag Power generators and method and device for generating power
DE10022974C2 (en) 2000-05-11 2003-10-23 Aloys Wobben Method for operating a wind energy plant and wind energy plant
DE10059018C2 (en) 2000-11-28 2002-10-24 Aloys Wobben Wind turbine or wind farm consisting of a large number of wind turbines
DE50214671D1 (en) 2001-04-20 2010-11-04 Baw Gmbh METHOD FOR OPERATING A WIND ENERGY PLANT
US20030171039A1 (en) * 2002-03-05 2003-09-11 Pierson Forrest L. Electrical box for providing electrical power and low voltage signals to a building
KR20030072777A (en) 2002-03-06 2003-09-19 주식회사 엘지이아이 Microwave lighting apparatus
EP1467463B1 (en) 2003-04-09 2016-12-21 General Electric Company Wind farm and method for operating same
US7158395B2 (en) * 2003-05-02 2007-01-02 Ballard Power Systems Corporation Method and apparatus for tracking maximum power point for inverters, for example, in photovoltaic applications
WO2005025026A1 (en) 2003-09-03 2005-03-17 Repower Systems Ag Method for operating or controlling a wind turbine and method for providing primary control power by means of wind turbines
DE10344392A1 (en) 2003-09-25 2005-06-02 Repower Systems Ag Wind turbine with a reactive power module for grid support and method
JP2005151662A (en) 2003-11-13 2005-06-09 Sharp Corp Inverter device and distributed power supply system
US20050121214A1 (en) 2003-12-04 2005-06-09 Gould Len C. Active electrical transmission system
DK1571746T3 (en) 2004-03-05 2019-01-07 Gamesa Innovation & Tech Sl Active power control system of a wind farm
DK1761984T3 (en) * 2004-03-16 2013-07-01 Tecogen Inc MOTOR POWERED POWER INVERTER SYSTEM WITH POWER / HEAT GENERATION
JP4495001B2 (en) 2005-02-17 2010-06-30 三菱重工業株式会社 Power generation system
US7808126B2 (en) 2005-05-13 2010-10-05 Siemens Aktiengesellschaft Wind farm and method for controlling the same
EP1883880A4 (en) 2005-05-24 2010-05-05 Satcon Technology Corp Device, system, and method for providing a low-voltage fault ride-through for a wind generator farm
US8649911B2 (en) 2005-06-03 2014-02-11 General Electric Company System and method for operating a wind farm under high wind speed conditions
DE102005032693A1 (en) 2005-07-13 2007-02-01 Repower Systems Ag Power control of a wind farm
US7476985B2 (en) 2005-07-22 2009-01-13 Gamesa Innovation & Technology, S.L. Method of operating a wind turbine
EP1770277A1 (en) 2005-09-30 2007-04-04 General Electric Company Method for controlling a wind energy turbine of a wind park comprising multiple wind energy turbines
US7378820B2 (en) * 2005-12-19 2008-05-27 General Electric Company Electrical power generation system and method for generating electrical power
DE102006032389A1 (en) * 2006-07-13 2008-01-24 Nordex Energy Gmbh Wind farm and method for operating a wind farm
US7531911B2 (en) * 2006-12-22 2009-05-12 Ingeteam Energy, S.A. Reactive power control for operating a wind farm
TWI331264B (en) 2006-12-26 2010-10-01 Richtek Technology Corp Analog photovoltaic power circuit
US20090055030A1 (en) * 2007-08-21 2009-02-26 Ingeteam, S.A. Control of active power reserve in a wind-farm
US8018748B2 (en) * 2007-11-14 2011-09-13 General Electric Company Method and system to convert direct current (DC) to alternating current (AC) using a photovoltaic inverter
US8138631B2 (en) * 2007-12-21 2012-03-20 Eiq Energy, Inc. Advanced renewable energy harvesting
JP2011165684A (en) * 2008-05-28 2011-08-25 Sharp Corp Method of controlling tracking of tracking drive type solar power generation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003084041A1 (en) * 2002-03-28 2003-10-09 Curtin University Of Technology Power conversion system and method of converting power
US20080122449A1 (en) * 2006-11-27 2008-05-29 Besser David A Power extractor for impedance matching

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DELFINO, F. ET AL.: "An integrated active and reactive power control scheme for grid-connected photovoltaic production systems.", POWER ELECTRONICS SPECIALISTS CONFERENCE PESC 2008, 15 June 2008 (2008-06-15) - 19 June 2008 (2008-06-19), pages 1463 - 1468, XP031300175 *
P.G.BARBOSA ET AL.: "Control strategy for grid- connected DC-AC converters with load power factor correction.", IEE PROC.-GENER. TRANSM. DISTRIB., vol. 145, no. 5, September 1998 (1998-09-01), pages 487 - 491, XP006011187 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135110A1 (en) * 2010-04-28 2011-11-03 Ingeteam Energy, S. A. Hydrogen production system for regulating the power at renewable energy electric plants, and a regulation method
US9222459B2 (en) 2010-04-28 2015-12-29 Ingeteam Power Technology, S.A. Hydrogen production system for controlling the power output of power stations based on renewable energy sources and control process
EP2424066A3 (en) * 2010-08-31 2016-02-17 General Electric Company System and method for distribution of inverter VAR support
EP2628229A2 (en) * 2010-10-12 2013-08-21 American Superconductor Corporation Centralized power conditioning
CN102289535A (en) * 2011-06-07 2011-12-21 北京航空航天大学 Spacecraft power system energy analysis simulation platform
CN104408537A (en) * 2014-12-12 2015-03-11 上海宝钢节能环保技术有限公司 Optimization design system for photovoltaic power station

Also Published As

Publication number Publication date
EP2328259B2 (en) 2024-01-03
US8346400B2 (en) 2013-01-01
US20110196543A1 (en) 2011-08-11
EP2328259B1 (en) 2014-06-25
CN102177636B (en) 2013-10-30
EP2328259A1 (en) 2011-06-01
CN102177636A (en) 2011-09-07
EP2328259A4 (en) 2013-01-09
ES2480590T3 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
WO2010018240A1 (en) System and method for power management in a photovoltaic installation
Khalilnejad et al. A hybrid wind-PV system performance investigation for the purpose of maximum hydrogen production and storage using advanced alkaline electrolyzer
Zhang et al. Fully distributed coordination of multiple DFIGs in a microgrid for load sharing
US9640997B2 (en) Power system stabilization using distributed inverters
ES2548136T3 (en) Solar generation method and system
US10211721B2 (en) DC/AC converter apparatus comprising means for controlling the reactive power and power conversion and generation system comprising such DC/AC converter apparatus
KR20170027829A (en) Hierarchical and distributed power grid control
BR112017000117B1 (en) METHOD FOR INTERFACING WITH A POWER GRID, CONSUMER NODE IN A NETWORK OF A POWER GRID SYSTEM, POWER GRID SYSTEM, AND CONSUMER NODE OF THE POWER GRID SYSTEM
JP2013183622A (en) Distributed power supply system and voltage adjustment method
Arjun Kumar et al. Design and control of grid-connected solar-wind integrated conversion system with DFIG supplying three-phase four-wire loads
AU2017362883A1 (en) Method and system for operating a hybrid power generation system
Gb et al. Design and control of grid-connected solar-wind integrated conversion system with DFIG supplying three-phase four-wire loads
CN105262096A (en) Voltage frequency adjustment method considering photovoltaic maximum power tracking for active power distribution network
JP2020022241A (en) Hybrid power generation system and power control device
CN102255337B (en) Calculating method for wind power field receiving capability of power grid
US9917445B2 (en) Grid-tied solar photovoltaic power system with dynamic grid power stabilization
JP4749375B2 (en) Control device for adjusting power supply and demand in microgrids
CN105244900B (en) A kind of micro-capacitance sensor off-network energy equilibrium control method based on shift frequency control
CN106712113B (en) Droop control method for voltage source inverter in photovoltaic energy storage independence micro-capacitance sensor
CN108695892A (en) A kind of distribution network voltage control method adjusted based on photovoltaic DC-to-AC converter
CN107785932A (en) A kind of energy Real-time Balancing control system and its control method based on phase-change thermal storage
Bayhan et al. A novel energy management algorithm for islanded AC microgrid with limited power sources
Prompinit et al. Ramp rate consideration of a BESS using active power control for PV generation
CN209150736U (en) A kind of energy storage in micro-capacitance sensor monitors regulating system
KR20180066438A (en) Building Energy Management Method and System Based on State of Battery Charge

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880131483.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08805381

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 580/KOLNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008805381

Country of ref document: EP