WO2007073951A1 - Load isolation circuit for the deenergized connection and isolation of electrical contacts - Google Patents

Load isolation circuit for the deenergized connection and isolation of electrical contacts Download PDF

Info

Publication number
WO2007073951A1
WO2007073951A1 PCT/EP2006/066102 EP2006066102W WO2007073951A1 WO 2007073951 A1 WO2007073951 A1 WO 2007073951A1 EP 2006066102 W EP2006066102 W EP 2006066102W WO 2007073951 A1 WO2007073951 A1 WO 2007073951A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
load
switching element
semiconductor switching
switch
Prior art date
Application number
PCT/EP2006/066102
Other languages
German (de)
French (fr)
Inventor
Jalal Hallak
Original Assignee
SIEMENS AKTIENGESELLSCHAFT öSTERREICH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SIEMENS AKTIENGESELLSCHAFT öSTERREICH filed Critical SIEMENS AKTIENGESELLSCHAFT öSTERREICH
Priority to EP06793300A priority Critical patent/EP1964140B1/en
Publication of WO2007073951A1 publication Critical patent/WO2007073951A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means

Definitions

  • the invention relates to a load disconnect circuit for the currentless connection and disconnection of at least one electrical contact, in particular between a DC power source and an electrical device, wherein the load disconnection circuit comprises a semiconductor switching element which is arranged in series with the at least one electrical contact.
  • DE 198 38 492 A1 describes a plug connection arrangement for connecting a power source to a load, wherein a switching device is arranged between the power source and the load whose control current is likewise connected via the plug connection.
  • the contacts for the main circuits accelerate, while the contacts for the control current lag, so that the main circuits are already closed, before the control circuit is turned on. This will cause a current flow in the main circuits when connecting or
  • the invention is therefore an object of the invention to provide a comparison with the prior art improved solution for separating and connecting an electrical contact.
  • a load-disconnect circuit of the type mentioned in which a switch is arranged parallel to the semiconductor switching element, which a main contact and an auxiliary contact, wherein the main contact and the auxiliary contact are coupled in such a way that the switching state of the auxiliary contact changes before closing and after opening the main contact and wherein a controller is provided which the
  • Semiconductor switching element in response to the switching state of the auxiliary contact before closing the main contact turns on and off after opening the main contact.
  • the power is turned off during a connecting or disconnecting operation of the electrical contact to the whole, so that arcing is reliably prevented.
  • the main contact is switched without power, which extends the life of the switch considerably.
  • the load current flows through the semiconductor switching element only during the connection or disconnection process, this time being determined by the delay between the switching times of the auxiliary contact and the main contact. This delay time results from the design of the switch whose operation can be done either manually or electromagnetically via a relay.
  • the switching position of the auxiliary contact is queried by the controller and leads to switching on and off of the semiconductor switching element.
  • Semiconductor switching element is large. Accordingly, there are no undesirable losses on the semiconductor switching element, which in addition only has to be dimensioned so large that it withstands the load current during the delay time between the switching times of the auxiliary contact and the main contact in addition to a safety value.
  • the at least one electrical contact is secured by a mechanical locking device and that the mechanical locking device is coupled to the switch in such a way that a separation of at least one electrical contact only after Opening the main contact is possible and that connecting the at least one electrical contact is possible only when the main contact is open. This prevents people from performing the connect or disconnect operation incorrectly.
  • a contact element of the main contact and a contact element of the auxiliary contact are coupled to an actuating element of the switch.
  • the contact elements can be arranged fixed or movable relative to each other, resulting in the switching path of the actuating element, the delay times between the switching times of the main contact and the auxiliary contact.
  • the switch can be designed so that the actuating element of the switch shields the at least one electrical contact with the main contact closed and / or fixed and so the electrical contact can not be disconnected or connected.
  • the at least one electrical contact is conveniently formed as a plug and / or screw in the manner and held by the actuating element of the switch, that a separation of the contact is prevented by a train on a cable connected to the contact.
  • Semiconductor switching element is arranged a resistor. This resistance acts in addition to the electrical resistance of the Semiconductor switching element and prevents current flows through the semiconductor switching element when the main contact is closed.
  • an electrical fuse is arranged in series with the semiconductor switching element. This fuse is designed as a slow fuse that only triggers when the load current flows longer than the time provided for switching off the semiconductor switching element delay time.
  • the blocking diode prevents current flowing to an electrical device in the case of a current source connected with reversed poles.
  • Additional security provides an embodiment of the invention, in which the contact of a relay is arranged in series with the semiconductor switching element and in which the coil of the relay is connected to the controller.
  • the current is safely switched off by the galvanic isolation.
  • the operation of the relay takes place by means of control in a connection operation before switching on the semiconductor switching element and in a separation process after switching off the power semiconductor.
  • the load disconnect circuit according to the invention is advantageously suitable for systems in which the DC power source is designed as a DC generator, in particular as a photovoltaic generator and the electrical device as an inverter.
  • the DC power source is designed as a DC generator, in particular as a photovoltaic generator and the electrical device as an inverter.
  • Such systems require a solution for load separation without arcing when exposed to sunlight illuminated solar panels must be disconnected from the inverter.
  • a high degree of efficiency is required for economical operation of photovoltaic systems. This is ensured by the intended for continuous operation contact via the main contact, the electrical
  • Fig. 1 Non-current load disconnecting circuit when connecting electrical contacts
  • Fig. 3 Load-disconnecting circuit with current profile in continuous operation
  • FIG. 4 current-time load-disconnecting circuit during the first switch-off step
  • FIG. 5 current-time load-disconnecting circuit during the second switch-off step
  • Fig. 6 load disconnecting circuit with switched off current
  • Fig. 7 load disconnecting circuit with additional diode as
  • Fig. 8 Time course of current and control signal at
  • FIG. 1 shows a possible circuit variant for a load-disconnecting circuit according to the invention for connecting a photovoltaic generator 9 to an inverter 10.
  • the electrical contacts 1 are connected in such a way that the positive pole directly to the
  • Inverter 10 and the negative terminal are connected via the elements of the load disconnecting circuit to the inverter 10.
  • the elements of the load disconnecting circuit form a switch 3 with a main contact 4 and an auxiliary contact 5 coupled thereto and a semiconductor switching element 2 arranged parallel thereto.
  • a resistor 7 and an electrical fuse 8 can be arranged in series with the semiconductor switching element 2, a resistor 7 and an electrical fuse 8 can be arranged.
  • a controller 6 is provided which reads out the switching state of the auxiliary contact 5 via a control circuit.
  • the switch 3 may for example be designed so that the main contact 4 as normally open and the auxiliary contact 5 as
  • the control circuit with the auxiliary contact 5 is then, for example, switched so that when open auxiliary contact 5, a control voltage U ⁇ is applied to the controller 6.
  • the gate voltage U G of the semiconductor switching element 2 is applied, which is designed for example as an N-channel MOSFET with freewheeling diode.
  • a voltage U T is applied to the semiconductor switching element 2.
  • FIG. 2 shows the same circuit with the switch 3 actuated.
  • the switch 3 is in a middle position, in which the auxiliary contact 5 is already open, but the main contact 4 is not yet closed.
  • the current then passes through the semiconductor switching element 2, which is turned on from the opening time of the auxiliary contact 5.
  • the switch 3 In the case of a separation of the photovoltaic generator 9 from the inverter 10, the switch 3 must first be actuated again before the electrical contacts 1 can be released. Compliance with this condition can be achieved either by a clear marking or advantageously by a corresponding mechanical safety device, for example by the shielding and fixing of the electrical contacts 1 by means of a Betat Trentselements the switch 3. As shown in Figure 4, that is, first the switch 3 is actuated , The main contact 4 opens and during the switching time thus both contacts 4, 5 of the switch 3 are open. The load current commutates from the load-free open main contact 4 to the still switched semiconductor switching element 2. The load-free opening of the main contact while the formation of an arc is excluded.
  • Shutdown of the semiconductor switching element 2 also be done in other ways. If, for example, the auxiliary contact 5 is formed as a changeover switch (dotted lines), the controller 6 can be given a time period after which the semiconductor switching element 2 is switched off when the changeover switch is actuated.
  • FIG. 6 shows the load-disconnecting circuit with the semiconductor switching element 2 switched off, in which case the electrical contacts 1 can now be disconnected without arcing without current.
  • the load-disconnecting circuit shown in Figure 7 is formed with additional protection elements.
  • a diode D is provided as polarity reversal protection.
  • a relay 11 is arranged in the manner for electrical isolation, that the coil is connected to the controller 6.
  • the relay 11 is arranged in series with the semiconductor switching element 2 and one in the connecting line of the positive pole of the photovoltaic generator 9 and the inverter 10.
  • a relay 11 with only one contact can also be provided.
  • the operation of the relay 11 is effected by means of control 6 in a connection operation before switching on the semiconductor switching element 2 and in a separation process after switching off the semiconductor switching element. 2
  • FIG. 8 shows the course of the currents and voltages during a connection operation of electrical contacts 1.
  • the main contact 4 of the switch 3 is open and the semiconductor switching element 2 is turned off, as shown in Figure 1.
  • the auxiliary contact 5 of the switch 3 is closed, so that no control voltage U ⁇ and no gate voltage U G are present.
  • the first step of the connection process consists in the currentless connection of the electrical contacts 1. During the connection time a, the voltage U ⁇ on the semiconductor switching element 2 increases. It then elapses a period of time b until the switch 3 is actuated.
  • the auxiliary contact 5 opens first and the control voltage U ⁇ builds up on the control 6, which is switched by the controller 6 to the semiconductor switching element 2 as a gate voltage U G.
  • the semiconductor switching element 2 is turned on and it begins to flow a current I ⁇ , while the voltage U ⁇ on the semiconductor switching element 2 approaches zero.
  • the delay time c which is defined by the switching path of the switch 3, elapses.
  • the current I ⁇ decreases by the semiconductor switching element 2 and the current I 3 through the main contact 4 of the switch 3 increases until the load current flows only through the main contact 4.
  • the steady state condition is reached.
  • a separation process of the electrical contacts 1 is initiated with the actuation of the switch 3.
  • the corresponding courses of the currents and voltages are shown in FIG.
  • the main contact 4 of the switch 3 opens.
  • the current I 3 through the main contact 4 decreases during an opening time e and the current I ⁇ by the
  • the dead time g is set so that a parallel to the semiconductor switching element 2 arranged carrying electrical fuse 8 does not trigger. Only when the load current longer than the dead time g, for example as a result of a Fulegierens of the semiconductor switching element 2, flows through the electrical fuse 8, this loses and interrupts the flow of current.

Abstract

The invention relates to a load isolation circuit for the deenergized connection and isolation of at least one electrical contact (1), in particular between a DC source (9) and an electrical device (10), wherein the load isolation circuit comprises a semiconductor switching element (2), which is arranged in series with the at least one electrical contact (1), wherein a switch (3), which comprises a main contact (4) and an auxiliary contact (5), is arranged in parallel with the semiconductor switching element (2), wherein the main contact (4) and the auxiliary contact (5) are coupled in such a way that the switching state of the auxiliary contact (5) changes before closing and after opening of the main contact (4), and wherein a controller (6) is provided which switches the semiconductor switching element (2) on as a function of the switching state of the auxiliary contact (5) before the main contact (4) closes and switches it off after the main contact (4) opens.

Description

Lasttrennschaltung zum stromlosen Verbinden und Trennen von elektrischen KontaktenLoad disconnecting circuit for the currentless connection and disconnection of electrical contacts
Beschreibungdescription
Die Erfindung betrifft eine Lasttrennschaltung zum stromlosen Verbinden und Trennen wenigstens eines elektrischen Kontaktes, insbesondere zwischen einer Gleichstromquelle und einer elektrischen Einrichtung, wobei die Lasttrennschaltung ein Halbleiterschaltelement umfasst, welches in Reihe mit dem wenigstens einen elektrischen Kontakt angeordnet ist.The invention relates to a load disconnect circuit for the currentless connection and disconnection of at least one electrical contact, in particular between a DC power source and an electrical device, wherein the load disconnection circuit comprises a semiconductor switching element which is arranged in series with the at least one electrical contact.
Bei elektrischen Verbindungen von insbesondere Gleichstromquellen mit sonstigen elektrischen Einrichtungen kann es bei einer Trennung eines Kontaktes unter Last zur Bildung eines Lichtbogens kommen. Dabei treten häufig Beschädigungen der Kontaktelemente auf bis hin zum Verschweißen des Kontakts. Für elektrische Kontakte, die unter Last trennbar sein sollen, sieht man daher in der Regel eine Uberdimensionierung vor, wodurch mögliche Beschädigungen der Kontaktelemente durch die Lichtbogenbildung gemindert werden. Die Gefahr für Personen bleibt jedoch bestehen.In electrical connections of particular DC power sources with other electrical equipment, it may occur at a separation of a contact under load to form an arc. In this case, often occur damage to the contact elements up to the welding of the contact. For electrical contacts that should be separable under load, therefore, it is therefore usually an oversizing before, whereby possible damage to the contact elements are reduced by the arcing. The danger for persons remains however.
Es sind deshalb verschiedene Systeme bekannt, um elektrische Kontakte vor einem Verbinden oder Trennen stromlos zu schalten. So beschreibt etwa die DE 198 38 492 Al eine Steckverbindungsanordnung zur Verbindung einer Stromquelle mit einem Verbraucher, wobei zwischen Stromquelle und Verbraucher eine Schalteinrichtung angeordnet ist, deren Steuerstrom ebenfalls über die Steckverbindung angeschlossen wird. Dabei eilen die Kontakte für die Hauptstromkreise vor, wahrend die Kontakte für den Steuerstrom nacheilen, so dass die Hauptstromkreise bereist geschlossen sind, ehe der Steuerstromkreis eingeschaltet wird. Dadurch wird ein Stromfluss in den Hauptstromkreisen beim Verbinden oderThere are therefore various systems known to switch off electrical contacts before connecting or disconnecting. For example, DE 198 38 492 A1 describes a plug connection arrangement for connecting a power source to a load, wherein a switching device is arranged between the power source and the load whose control current is likewise connected via the plug connection. In this case, the contacts for the main circuits accelerate, while the contacts for the control current lag, so that the main circuits are already closed, before the control circuit is turned on. This will cause a current flow in the main circuits when connecting or
Trennen der Kontakte der Hauptstromkreise verhindert. Für den Anschluss von beispielsweise Photovoltaikgeneratoren an Wechselrichter ist diese Anordnung nicht geeignet, weil die an der Transistorschaltung auftretenden Verluste den Wirkungsgrad verschlechtern.Disconnecting the contacts of the main circuits prevented. For connecting, for example, photovoltaic generators Inverters, this arrangement is not suitable because the losses occurring at the transistor circuit deteriorate the efficiency.
Eine andere Möglichkeit, eine Stromquelle unter Last von einer elektrischen Einrichtung zu trennen beschreibt die DE 102 25 259 B3. Dabei wird ein als Lasttrenner ausgebildeter elektrischer Steckverbinder angegeben, mit dem ein Lichtbogen vermieden oder zumindest reduziert werden soll. Dies wird erreicht durch einen bei einem Aussteckvorgang voreilenden Hauptkontakt und einen parallel geschalteten nacheilenden Hilfskontakt, so dass beim Ausstecken des Steckverbinders der Hauptkontakt zwangsläufig zuerst und der Hilfskontakt zuletzt von seinem Gegensteckteil getrennt werden und ein in Reihe mit dem Hilfskontakt geschaltetes Halbleiterschaltelement zur Lichtbogenvermeidung bzw. Lichtbogenlöschung. Dabei wird das Halbleiterschaltelement gepulst angesteuert, so dass es während des Aussteckvorgangs zwischen einer Kontakttrennung des Hauptkontakts und des Hilfskontakts zumindest einmal geöffnet und ein Lichtbogen verhindert oder zumindest reduziert wird.Another way to separate a power source under load from an electrical device describes the DE 102 25 259 B3. In this case, designed as a load disconnector electrical connector is specified, with which an arc should be avoided or at least reduced. This is achieved by a leading in a Aussteckvorgang main contact and a parallel-connected trailing auxiliary contact, so that when unplugging the connector of the main contact first and the auxiliary contact last are separated from its mating connector and connected in series with the auxiliary contact semiconductor switching element for arc avoidance or arc extinguishing , In this case, the semiconductor switching element is pulsed, so that it is at least once opened during the Aussteckvorgangs between a contact separation of the main contact and the auxiliary contact and prevents or at least reduced an arc.
Für eine ordnungsgemäße Funktion ist eine genaue Abstimmung der Taktfrequenz des Halbleiterelements mit dem möglichen Zeitablauf während eines Aussteckvorgangs erforderlich. Zudem wird durch die gepulste Ansteuerung des Halbleiterelements ein entstehender Lichtbogen immer wieder gelöscht, jedoch nicht gänzlich vermieden. Der Kontakt ist also nicht stromlos, wodurch weiterhin eine Gefahr für Personen besteht.For proper operation, a precise tuning of the clock frequency of the semiconductor element with the possible timing during a Aussteckvorgangs is required. In addition, due to the pulsed activation of the semiconductor element, a developing arc is always erased, but not completely avoided. The contact is thus not de-energized, which continues to pose a risk to persons.
Der Erfindung liegt demnach die Aufgabe zugrunde, eine gegenüber dem Stand der Technik verbesserte Lösung zum Trennen und Verbinden eines elektrischen Kontakts anzugeben.The invention is therefore an object of the invention to provide a comparison with the prior art improved solution for separating and connecting an electrical contact.
Gelöst wird diese Aufgabe durch eine Lasttrennschaltung der eingangs genannten Art, bei der parallel zu dem Halbleiterschaltelement ein Schalter angeordnet ist, welcher einen Hauptkontakt und einen Hilfskontakt umfasst, wobei der Hauptkontakt und der Hilfskontakt in einer Weise gekoppelt sind, dass sich der Schaltzustand des Hilfskontakts vor einem Schließen und nach einem Offnen des Hauptkontakts ändert und wobei eine Steuerung vorgesehen ist, welche dasThis object is achieved by a load-disconnect circuit of the type mentioned, in which a switch is arranged parallel to the semiconductor switching element, which a main contact and an auxiliary contact, wherein the main contact and the auxiliary contact are coupled in such a way that the switching state of the auxiliary contact changes before closing and after opening the main contact and wherein a controller is provided which the
Halbleiterschaltelement in Abhängigkeit des Schaltzustandes des Hilfskontaktes vor einem Schließen des Hauptkontaktes einschaltet und nach einem Offnen des Hauptkontaktes ausschaltet .Semiconductor switching element in response to the switching state of the auxiliary contact before closing the main contact turns on and off after opening the main contact.
Durch diese Schaltung wird der Strom wahrend eines Verbindungs- oder Trennvorganges des elektrischen Kontakts zur Ganze abgeschaltet, so dass eine Lichtbogenbildung sicher verhindert wird. Zudem wird der Hauptkontakt ohne Leistung geschaltet, wodurch die Lebensdauer des Schalters erheblich verlängert wird. Dabei fließt der Laststrom nur wahrend des Verbindungs- oder Trennvorganges durch das Halbleiterschaltelement, wobei diese Zeitspanne durch die Verzögerung zwischen den Schaltzeitpunkten des Hilfskontakts und des Hauptkontakts bestimmt wird. Diese Verzogerungszeit ergibt sich durch die Bauform des Schalters, dessen Betätigung entweder manuell oder elektromagnetisch über ein Relais erfolgen kann. Die Schaltstellung des Hilfskontakts wird von der Steuerung abgefragt und fuhrt zum Ein- bzw. Ausschalten des Halbleiterschaltelements.By this circuit, the power is turned off during a connecting or disconnecting operation of the electrical contact to the whole, so that arcing is reliably prevented. In addition, the main contact is switched without power, which extends the life of the switch considerably. In this case, the load current flows through the semiconductor switching element only during the connection or disconnection process, this time being determined by the delay between the switching times of the auxiliary contact and the main contact. This delay time results from the design of the switch whose operation can be done either manually or electromagnetically via a relay. The switching position of the auxiliary contact is queried by the controller and leads to switching on and off of the semiconductor switching element.
Bei verbundenem elektrischen Kontakt und eingeschaltetem Schalter fließt der Laststrom ausschließlich über den Hauptkontakt des Schalters, weil der elektrische Widerstand des parallel dazu angeordneten, weiterhin eingeschaltetenWhen connected electrical contact and switch on the load current flows only through the main contact of the switch, because the electrical resistance of the parallel arranged, continue to turn on
Halbleiterschaltelements großer ist. Es ergeben sich demnach keine unerwünschten Verluste am Halbleiterschaltelement, welches zudem nur so groß dimensioniert werden muss, dass es dem Laststrom wahrend der Verzogerungszeit zwischen den Schaltzeitpunkten des Hilfskontakts und des Hauptkontakts zuzuglich eines Sicherheitswertes standhalt. In einer vorteilhaften Ausprägung der Erfindung ist zur Erhöhung der Sicherheit vorgesehen, dass der wenigstens eine elektrische Kontakt durch eine mechanische Sperrvorrichtung gesichert ist und dass die mechanische Sperrvorrichtung in der Weise mit dem Schalter gekoppelt ist, dass ein Trennen des wenigstens einen elektrischen Kontakts nur nach dem Offnen des Hauptkontakts möglich ist und dass ein Verbinden des wenigstens einen elektrischen Kontakts nur bei geöffnetem Hauptkontakt möglich ist. Personen können auf diese Weise daran gehindert werden, den Verbindungs- bzw. Trennvorgang falsch auszufuhren.Semiconductor switching element is large. Accordingly, there are no undesirable losses on the semiconductor switching element, which in addition only has to be dimensioned so large that it withstands the load current during the delay time between the switching times of the auxiliary contact and the main contact in addition to a safety value. In an advantageous embodiment of the invention is provided to increase the security that the at least one electrical contact is secured by a mechanical locking device and that the mechanical locking device is coupled to the switch in such a way that a separation of at least one electrical contact only after Opening the main contact is possible and that connecting the at least one electrical contact is possible only when the main contact is open. This prevents people from performing the connect or disconnect operation incorrectly.
Für die Ausbildung des Hauptkontakts und des Hilfskontakts in einem Schalter ist es vorteilhaft, wenn ein Kontaktelement des Hauptkontakts und ein Kontaktelement des Hilfskontakts mit einem Betatigungselement des Schalters gekoppelt sind. Die Kontaktelemente können dabei relativ zueinander fest oder beweglich angeordnet sein, wobei sich aus dem Schaltweg des Betatigungselements die Verzogerungszeiten zwischen den Schaltzeitpunkten des Hauptkontakts und des Hilfskontakts ergeben .For the formation of the main contact and the auxiliary contact in a switch, it is advantageous if a contact element of the main contact and a contact element of the auxiliary contact are coupled to an actuating element of the switch. The contact elements can be arranged fixed or movable relative to each other, resulting in the switching path of the actuating element, the delay times between the switching times of the main contact and the auxiliary contact.
Als mechanische Sperrvorrichtung zur Sicherung des wenigstens einen elektrischen Kontakts kann dann beispielsweise der Schalter so ausgeführt sein, dass das Betatigungselement des Schalters den wenigstens einen elektrischen Kontakt bei geschlossenem Hauptkontakt abschirmt und/oder fixiert und so der elektrische Kontakt nicht getrennt oder verbunden werden kann. Der wenigstens eine elektrische Kontakt ist dabei gunstigerweise als Steck- und/oder Schraubverbindung in der Weise ausgebildet und durch das Betatigungselement des Schalters gehalten, dass ein Trennen des Kontakts durch einen Zug an einem mit dem Kontakt verbunden Kabel verhindert wird.As a mechanical locking device for securing the at least one electrical contact then, for example, the switch can be designed so that the actuating element of the switch shields the at least one electrical contact with the main contact closed and / or fixed and so the electrical contact can not be disconnected or connected. The at least one electrical contact is conveniently formed as a plug and / or screw in the manner and held by the actuating element of the switch, that a separation of the contact is prevented by a train on a cable connected to the contact.
Vorteilhaft ist es, wenn in Reihe mit demIt is advantageous if in series with the
Halbleiterschaltelement ein Widerstand angeordnet ist. Dieser Widerstand wirkt zusatzlich zum elektrischen Widerstand des Halbleiterschaltelements und verhindert, dass bei geschlossenem Hauptkontakt Strom durch das Halbleiterschaltelement fließt.Semiconductor switching element is arranged a resistor. This resistance acts in addition to the electrical resistance of the Semiconductor switching element and prevents current flows through the semiconductor switching element when the main contact is closed.
Um bei einem Ausfall (z.B. Durchlegieren) desIn case of failure (e.g.
Halbleiterschaltelements zu verhindern, dass durch den zu trennenden elektrische Kontakt weiterhin Strom fließt, ist es vorteilhaft, wenn in Reihe mit dem Halbleiterschaltelement eine elektrische Sicherung angeordnet ist. Diese Sicherung ist dabei als träge Sicherung ausgebildet, die erst auslöst, wenn der Laststrom länger als die bis zur Abschaltung des Halbleiterschaltelements vorgesehene Verzögerungszeit fließt.Semiconductor switching element to prevent that continues to flow due to the electrical contact to be separated, it is advantageous if an electrical fuse is arranged in series with the semiconductor switching element. This fuse is designed as a slow fuse that only triggers when the load current flows longer than the time provided for switching off the semiconductor switching element delay time.
Als Verpolschutz ist es zudem vorteilhaft, wenn in Reihe mit dem Halbleiterschaltelement eine Diode angeordnet ist.As polarity reversal protection, it is also advantageous if a diode is arranged in series with the semiconductor switching element.
Dadurch wird mit der sperrenden Diode verhindert, dass bei einer mit vertauschten Polen angeschlossenen Stromquelle an eine elektrische Einrichtung Strom fließt.As a result, the blocking diode prevents current flowing to an electrical device in the case of a current source connected with reversed poles.
Zusätzliche Sicherheit bietet eine Ausprägung der Erfindung, bei der in Reihe mit dem Halbleiterschaltelement der Kontakt eines Relais angeordnet ist und bei der die Spule des Relais mit der Steuerung verbunden ist. Dabei ist durch die galvanische Trennung der Strom sicher abgeschaltet. Die Betätigung des Relais erfolgt dabei mittels Steuerung bei einem Verbindungsvorgang vor dem Einschalten des Halbleiterschaltelements und bei einem Trennvorgang nach dem Abschalten des Leistungshalbleiters.Additional security provides an embodiment of the invention, in which the contact of a relay is arranged in series with the semiconductor switching element and in which the coil of the relay is connected to the controller. The current is safely switched off by the galvanic isolation. The operation of the relay takes place by means of control in a connection operation before switching on the semiconductor switching element and in a separation process after switching off the power semiconductor.
Aufgrund der geringen Verluste bei verbundenem elektrischen Kontakt und geschlossenem Hauptkontakt ist die erfindungsgemäße Lasttrennschaltung vorteilhafterweise für Anlagen geeignet, bei der die Gleichstromquelle als Gleichstromgenerator, insbesondere als Photovoltaikgenerator und die elektrische Einrichtung als Wechselrichter ausgebildet ist. Derartige Anlagen erfordern eine Lösung für die Lasttrennung ohne Lichtbogenbildung, wenn von Sonnenlicht beschienene Solarpaneele vom Wechselrichter getrennt werden müssen. Zudem ist für ein wirtschaftliches Betreiben von Photovoltaikanlagen ein hoher Wirkungsgrad gefordert. Das wird durch die für den Dauerbetrieb vorgesehene Kontaktierung über den Hauptkontakt gewährleistet, dessen elektrischerDue to the low losses in connected electrical contact and closed main contact, the load disconnect circuit according to the invention is advantageously suitable for systems in which the DC power source is designed as a DC generator, in particular as a photovoltaic generator and the electrical device as an inverter. Such systems require a solution for load separation without arcing when exposed to sunlight illuminated solar panels must be disconnected from the inverter. In addition, a high degree of efficiency is required for economical operation of photovoltaic systems. This is ensured by the intended for continuous operation contact via the main contact, the electrical
Widerstand weitaus geringer als der des Halbleiterschalters ist .Resistance is much lower than that of the semiconductor switch.
Die Erfindung wird nachfolgend in beispielhafter Weise unter Bezugnahme auf die beigefügten Figuren erläutert. Es zeigen in schematischer Darstellung:The invention will now be described by way of example with reference to the accompanying drawings. In a schematic representation:
Fig . 1 : Stromlose Lasttrennschaltung beim Verbinden elektrischer KontakteFig. 1: Non-current load disconnecting circuit when connecting electrical contacts
FFiigg.. 22:: Lasttrennschaltung mit Stromverlauf während desFFiigg .. 22 :: Switching circuit with current during the
EinsehaltvorgangesEinsehaltvorganges
Fig . 3 : Lasttrennschaltung mit Stromverlauf im DauerbetriebFig. 3: Load-disconnecting circuit with current profile in continuous operation
Fig . 4 : Lasttrennschaltung mit Stromverlauf während des ersten Ausschaltvorgang-Schrittes Fig. 5: Lasttrennschaltung mit Stromverlauf während des zweiten Ausschaltvorgang-SchrittesFig. 4: current-time load-disconnecting circuit during the first switch-off step FIG. 5: current-time load-disconnecting circuit during the second switch-off step
Fig. 6: Lasttrennschaltung mit abgeschaltetem Strom Fig. 7: Lasttrennschaltung mit zusätzlicher Diode alsFig. 6: load disconnecting circuit with switched off current Fig. 7: load disconnecting circuit with additional diode as
Verpolschutz und zusätzlichem Relais zur galvanischen TrennungReverse polarity protection and additional relay for galvanic isolation
Fig. 8: Zeitlicher Verlauf von Strom und Steuersignal beimFig. 8: Time course of current and control signal at
Einschalten Fig. 9: Zeitlicher Verlauf von Strom und Steuersignal beimSwitching on Fig. 9: Time course of current and control signal at
AusschaltenTurn off
In Figur 1 ist eine mögliche Schaltungsvariante für eine erfindungsgemäße Lasttrennschaltung zur Anschaltung eines Photovoltaikgenerators 9 an einen Wechselrichter 10 dargestellt. Die elektrischen Kontakte 1 werden dabei in der Weise verbunden, dass der Pluspol direkt an denFIG. 1 shows a possible circuit variant for a load-disconnecting circuit according to the invention for connecting a photovoltaic generator 9 to an inverter 10. The electrical contacts 1 are connected in such a way that the positive pole directly to the
Wechselrichter 10 und der Minuspol über die Elemente der Lasttrennschaltung an den Wechselrichter 10 geschaltet sind. Die Elemente der Lasttrennschaltung bilden ein Schalter 3 mit einem Hauptkontakt 4 und einem mit diesem gekoppelten Hilfskontakt 5 und ein parallel dazu angeordnetes Halbleiterschaltelement 2. In Reihe mit dem Halbleiterschaltelement 2 können ein Widerstand 7 und eine elektrische Sicherung 8 angeordnet sein. Zudem ist eine Steuerung 6 vorgesehen, die über einen Steuerkreis den Schaltzustand des Hilfskontakts 5 ausliest. Der Schalter 3 kann beispielsweise so ausgebildet sein, dass der Hauptkontakt 4 als Schließer und der Hilfskontakt 5 alsInverter 10 and the negative terminal are connected via the elements of the load disconnecting circuit to the inverter 10. The elements of the load disconnecting circuit form a switch 3 with a main contact 4 and an auxiliary contact 5 coupled thereto and a semiconductor switching element 2 arranged parallel thereto. In series with the semiconductor switching element 2, a resistor 7 and an electrical fuse 8 can be arranged. In addition, a controller 6 is provided which reads out the switching state of the auxiliary contact 5 via a control circuit. The switch 3 may for example be designed so that the main contact 4 as normally open and the auxiliary contact 5 as
Offner fungiert. Bei vollständig offenem Hauptkontakt 4 ist der Hilfskontakt 5 dann geschlossen, wie in Figur 1 dargestellt. Bei Betätigung des Schalters 3 öffnet der Hilfskontakt 5 und nach einer Verzogerungszeit, die sich aus dem Schaltweg des Schalters 3 ergibt, schließt derOffner acts. When the main contact 4 is fully open, the auxiliary contact 5 is then closed, as shown in FIG. Upon actuation of the switch 3 opens the auxiliary contact 5 and after a delay time, resulting from the switching path of the switch 3 closes the
Hauptkontakt 4. Der Steuerkreis mit dem Hilfskontakt 5 ist dann beispielsweise so geschaltet, dass bei offenem Hilfskontakt 5 eine Steuerspannung Uκ an der Steuerung 6 anliegt. Am Ausgang der Steuerung liegt die Gatespannung UG des Halbleiterschaltelements 2 an, welches z.B. als N-Kanal- MOSFET mit Freilaufdiode ausgebildet ist. Sobald die elektrischen Kontakte 1 des Photovoltaikgenerators 9 verbunden sind, liegt am Halbleiterschaltelement 2 eine Spannung Uτ an.Main contact 4. The control circuit with the auxiliary contact 5 is then, for example, switched so that when open auxiliary contact 5, a control voltage U κ is applied to the controller 6. At the output of the controller, the gate voltage U G of the semiconductor switching element 2 is applied, which is designed for example as an N-channel MOSFET with freewheeling diode. As soon as the electrical contacts 1 of the photovoltaic generator 9 are connected, a voltage U T is applied to the semiconductor switching element 2.
In Figur 2 ist dieselbe Schaltung mit betätigtem Schalter 3 dargestellt. Der Schalter 3 befindet sich dabei in einer Mittelstellung, in der der Hilfskontakt 5 bereits geöffnet, aber der Hauptkontakt 4 noch nicht geschlossen ist. Der Strom verlauft dann durch das Halbleiterschaltelement 2, das ab dem Offnungszeitpunkt des Hilfskontakts 5 eingeschaltet ist.FIG. 2 shows the same circuit with the switch 3 actuated. The switch 3 is in a middle position, in which the auxiliary contact 5 is already open, but the main contact 4 is not yet closed. The current then passes through the semiconductor switching element 2, which is turned on from the opening time of the auxiliary contact 5.
Bei weiterer Betätigung des Schalters 3 schließt sich der Hauptkontakt 4, wie in Figur 3 dargestellt. Aufgrund des gegenüber dem Halbleiterschaltelement 2 niedrigeren elektrischen Widerstandes verlauft der Strom nun ausschließlich über diesen geschlossenen Hauptkontakt 4. Damit ist der Zustand des Dauerbetriebs erreicht. Das Halbleiterschaltelement 2 bleibt währenddessen weiter eingeschaltet .Upon further actuation of the switch 3, the main contact 4 closes, as shown in Figure 3. Due to the comparison with the semiconductor switching element 2 lower electrical resistance of the current now runs exclusively on this closed main contact. 4 Thus the condition of the continuous operation is reached. The semiconductor switching element 2 remains switched on during this time.
Im Falle einer Trennung des Photovoltaikgenerators 9 vom Wechselrichter 10 muss zunächst wieder der Schalter 3 betätigt werden, bevor die elektrischen Kontakte 1 gelost werden können. Die Einhaltung dieser Bedingung kann entweder durch eine deutliche Kennzeichnung oder vorteilhafterweise durch eine entsprechende mechanische Sicherungseinrichtung erreicht werden, beispielsweise durch die Abschirmung und Fixierung der elektrischen Kontakte 1 mittels eines Betatigungselements des Schalters 3. Wie in Figur 4 dargestellt, wird also zunächst der Schalter 3 betätigt. Der Hauptkontakt 4 öffnet und wahrend der Schaltzeit sind somit beide Kontakte 4, 5 des Schalters 3 offen. Der Laststrom kommutiert von dem lastfrei geöffneten Hauptkontakt 4 auf das nach wie vor eingeschaltete Halbleiterschaltelement 2. Durch die lastfreie Öffnung des Hauptkontakts ist dabei die Bildung eines Lichtbogens ausgeschlossen.In the case of a separation of the photovoltaic generator 9 from the inverter 10, the switch 3 must first be actuated again before the electrical contacts 1 can be released. Compliance with this condition can be achieved either by a clear marking or advantageously by a corresponding mechanical safety device, for example by the shielding and fixing of the electrical contacts 1 by means of a Betatigungselements the switch 3. As shown in Figure 4, that is, first the switch 3 is actuated , The main contact 4 opens and during the switching time thus both contacts 4, 5 of the switch 3 are open. The load current commutates from the load-free open main contact 4 to the still switched semiconductor switching element 2. The load-free opening of the main contact while the formation of an arc is excluded.
Bei weiterer Betätigung des Schalters 3 schließt der Hilfskontakt 5, wie in Figur 5 dargestellt. Darauf hin schaltet die Steuerung 6 das Halbleiterschaltelement 2 ab. Abhangig von der Bauweise des Schalters 3 kann dieUpon further actuation of the switch 3 closes the auxiliary contact 5, as shown in Figure 5. Thereafter, the controller 6 turns off the semiconductor switching element 2. Depending on the design of the switch 3, the
Abschaltung des Halbleiterschaltelements 2 auch auf andere Weise erfolgen. Ist beispielsweise der Hilfskontakt 5 als Wechselschalter ausgebildet (gepunktete Linien) , kann der Steuerung 6 eine Zeitspanne vorgegeben werden, nach der bei betätigtem Wechselschalter das Halbleiterschaltelement 2 abgeschaltet wird.Shutdown of the semiconductor switching element 2 also be done in other ways. If, for example, the auxiliary contact 5 is formed as a changeover switch (dotted lines), the controller 6 can be given a time period after which the semiconductor switching element 2 is switched off when the changeover switch is actuated.
In Figur 6 ist die Lasttrennschaltung mit abgeschaltetem Halbleiterschaltelement 2 dargestellt, bei der nun die elektrischen Kontakte 1 stromlos ohne Lichtbogenbildung getrennt werden können. Die in Figur 7 dargestellte Lasttrennschaltung ist mit zusätzlichen Schutzelementen ausgebildet. In Reihe mit dem Halbleiterschaltelement 2 ist eine Diode D als Verpolschutz vorgesehen. Ein Relais 11 ist in der Weise zur galvanischen Trennung angeordnet, dass die Spule an die Steuerung 6 angeschaltet ist. Von den zwei Kontakten des Relais 11 ist einer in Reihe mit dem Halbleiterschaltelement 2 und einer in der Verbindungsleitung des Pluspols des Photovoltaikgenerators 9 und des Wechselrichters 10 angeordnet. Abhängig von den Anforderungen an die Sicherheit kann auch ein Relais 11 mit nur einem Kontakt vorgesehen sein. Die Betätigung des Relais 11 erfolgt dabei mittels Steuerung 6 bei einem Verbindungsvorgang vor dem Einschalten des Halbleiterschaltelements 2 und bei einem Trennvorgang nach dem Abschalten des Halbleiterschaltelements 2.FIG. 6 shows the load-disconnecting circuit with the semiconductor switching element 2 switched off, in which case the electrical contacts 1 can now be disconnected without arcing without current. The load-disconnecting circuit shown in Figure 7 is formed with additional protection elements. In series with the semiconductor switching element 2, a diode D is provided as polarity reversal protection. A relay 11 is arranged in the manner for electrical isolation, that the coil is connected to the controller 6. Of the two contacts of the relay 11, one is arranged in series with the semiconductor switching element 2 and one in the connecting line of the positive pole of the photovoltaic generator 9 and the inverter 10. Depending on the safety requirements, a relay 11 with only one contact can also be provided. The operation of the relay 11 is effected by means of control 6 in a connection operation before switching on the semiconductor switching element 2 and in a separation process after switching off the semiconductor switching element. 2
In Figur 8 ist der Verlauf der Ströme und Spannungen während eines Verbindungsvorganges elektrischer Kontakte 1 dargestellt. Zunächst ist der Hauptkontakt 4 des Schalters 3 offen und das Halbleiterschaltelement 2 abgeschaltet, wie in Figur 1 dargestellt. Der Hilfskontakt 5 des Schalters 3 ist geschlossen, so dass keine Steuerspannung Uτ und keine Gatespannung UG vorhanden sind.FIG. 8 shows the course of the currents and voltages during a connection operation of electrical contacts 1. First, the main contact 4 of the switch 3 is open and the semiconductor switching element 2 is turned off, as shown in Figure 1. The auxiliary contact 5 of the switch 3 is closed, so that no control voltage U τ and no gate voltage U G are present.
Der erste Schritt des Verbindungsvorganges besteht in der stromlosen Verbindung der elektrischen Kontakte 1. Dabei steigt während der Verbindungszeit a die Spannung Uτ am Halbleiterschaltelement 2 an. Es verstreicht in weiterer Folge eine Zeitspanne b, bis der Schalter 3 betätigt wird.The first step of the connection process consists in the currentless connection of the electrical contacts 1. During the connection time a, the voltage U τ on the semiconductor switching element 2 increases. It then elapses a period of time b until the switch 3 is actuated.
Bei Betätigung des Schalters 3 öffnet sich zunächst der Hilfskontakt 5 und an der Steuerung 6 baut sich die Steuerspannung Uτ auf, die von der Steuerung 6 als Gatespannung UG an das Halbleiterschaltelement 2 geschaltet wird. Damit wird das Halbleiterschaltelement 2 eingeschaltet und es beginnt ein Strom Iτ zu fließen, während die Spannung Uτ am Halbleiterschaltelement 2 gegen Null geht. Bis zum Schließen des Hauptkontakts 4 verstreicht die Verzogerungszeit c, die durch den Schaltweg des Schalters 3 definiert ist. Wahrend der Schließzeit d verringert sich der Strom Iτ durch das Halbleiterschaltelement 2 und der Strom I3 durch den Hauptkontakt 4 des Schalters 3 steigt an, bis der Laststrom nur mehr durch den Hauptkontakt 4 fließt. Damit ist der Dauerbetriebszustand erreicht.Upon actuation of the switch 3, the auxiliary contact 5 opens first and the control voltage U τ builds up on the control 6, which is switched by the controller 6 to the semiconductor switching element 2 as a gate voltage U G. Thus, the semiconductor switching element 2 is turned on and it begins to flow a current I τ , while the voltage U τ on the semiconductor switching element 2 approaches zero. Until the closing of the main contact 4, the delay time c, which is defined by the switching path of the switch 3, elapses. During the closing time d, the current I τ decreases by the semiconductor switching element 2 and the current I 3 through the main contact 4 of the switch 3 increases until the load current flows only through the main contact 4. Thus, the steady state condition is reached.
Ein Trennvorgang der elektrischen Kontakte 1 wird mit der Betätigung des Schalters 3 eingeleitet. Die entsprechenden Verlaufe der Strome und Spannungen sind in Figur 9 dargestellt .A separation process of the electrical contacts 1 is initiated with the actuation of the switch 3. The corresponding courses of the currents and voltages are shown in FIG.
Der Hauptkontakt 4 des Schalters 3 öffnet sich. Der Strom I3 durch den Hauptkontakt 4 verringert sich wahrend einer Öffnungszeit e und der Strom Iτ durch dasThe main contact 4 of the switch 3 opens. The current I 3 through the main contact 4 decreases during an opening time e and the current I τ by the
Halbleiterschaltelement 2 steigt an, bis der Laststrom nur mehr durch das Halbleiterschaltelement 2 fließt. Nach dem Verstreichen der Schaltzeit f des Schalters 3 schließt der Hilfskontakt 5 und die Steuerspannung Uκ sinkt auf Null. Damit beginnt eine Todzeit g zu laufen, nach deren Ablauf auch die Gatespannung UG mittels Steuerung 6 abgeschaltet wird.Semiconductor switching element 2 rises until the load current only flows through the semiconductor switching element 2. After the elapse of the switching time f of the switch 3, the auxiliary contact 5 closes and the control voltage U K decreases to zero. This begins to run a dead time g, after the expiration of the gate voltage U G is switched off by means of control 6.
Die Todzeit g ist dabei so eingestellt, dass eine parallel zum Halbleiterschaltelement 2 angeordnete trage elektrische Sicherung 8 nicht auslost. Erst wenn der Laststrom langer als die Todzeit g, beispielsweise infolge eines Durchlegierens des Halbleiterschaltelements 2, durch die elektrische Sicherung 8 fließt, lost diese aus und unterbricht den Stromfluss .The dead time g is set so that a parallel to the semiconductor switching element 2 arranged carrying electrical fuse 8 does not trigger. Only when the load current longer than the dead time g, for example as a result of a Durchlegierens of the semiconductor switching element 2, flows through the electrical fuse 8, this loses and interrupts the flow of current.
Mit dem Abschalten der Gatespannung UG ist das Halbleiterschaltelement 2 gesperrt und die elektrischenWith the switching off of the gate voltage U G , the semiconductor switching element 2 is locked and the electrical
Kontakte 1 sind stromlos. Am Halbleiterschaltelement 2 liegt so lange eine Spannung Uτ an, bis die elektrischen Kontakte 1 getrennt werden. Contacts 1 are de-energized. On the semiconductor switching element 2 is located as long as a voltage U τ on until the electrical contacts 1 are disconnected.

Claims

Patentansprüche claims
1. Lasttrennschaltung zum stromlosen Verbinden und Trennen wenigstens eines elektrischen Kontaktes (1), insbesondere zwischen einer Gleichstromquelle (9) und einer elektrischen Einrichtung (10), wobei die Lasttrennschaltung ein Halbleiterschaltelement (2) umfasst, welches in Reihe mit dem wenigstens einen elektrischen Kontakt (1) angeordnet ist, dadurch gekennzeichnet, dass — parallel zu dem Halbleiterschaltelement (2) ein Schalter (3) angeordnet ist, welcher einen Hauptkontakt (4) und einen Hilfskontakt (5) umfasst,A load disconnect circuit for the currentless connection and disconnection of at least one electrical contact (1), in particular between a DC power source (9) and an electrical device (10), wherein the load disconnect circuit comprises a semiconductor switching element (2) connected in series with the at least one electrical contact (1) is arranged, characterized in that - parallel to the semiconductor switching element (2) a switch (3) is arranged, which comprises a main contact (4) and an auxiliary contact (5),
- der Hauptkontakt (4) und der Hilfskontakt (5) in einer Weise gekoppelt sind, dass sich der Schaltzustand des Hilfskontakts (5) vor einem Schließen und nach einem Offnen des Hauptkontakts (4) ändert,the main contact (4) and the auxiliary contact (5) are coupled in such a way that the switching state of the auxiliary contact (5) changes before closing and after opening the main contact (4),
- eine Steuerung (6) vorgesehen ist, welche das Halbleiterschaltelement (2) in Abhängigkeit des Schaltzustandes des Hilfskontaktes (5) vor einem Schließen des Hauptkontaktes (4) einschaltet und nach einem Offnen des Hauptkontaktes (4) ausschaltet.- A controller (6) is provided, which switches the semiconductor switching element (2) in response to the switching state of the auxiliary contact (5) before closing the main contact (4) and switches off after opening the main contact (4).
2. Lasttrennschaltung nach Anspruch 1, dadurch gekennzeichnet, dass der wenigstens eine elektrische Kontakt (1) durch eine mechanische Sperrvorrichtung gesichert ist und dass die mechanische Sperrvorrichtung in der Weise mit dem Schalter (3) gekoppelt ist, dass ein Trennen des wenigstens einen elektrischen Kontakts (1) nur nach dem Offnen des Hauptkontakts (4) möglich ist und dass ein Verbinden des wenigstens einen elektrischen Kontakts (1) nur bei geöffnetem Hauptkontakt (4) möglich ist.A load disconnect circuit according to claim 1, characterized in that the at least one electrical contact (1) is secured by a mechanical locking device and that the mechanical locking device is coupled to the switch (3) in such a way that disconnection of the at least one electrical contact (1) only after the opening of the main contact (4) is possible and that a connection of the at least one electrical contact (1) only when the main contact (4) is open.
3. Lasttrennschaltung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Kontaktelement des Hauptkontakts (4) und ein Kontaktelement des Hilfskontakts (5) mit einem Betatigungselement des Schalters (3) gekoppelt sind. 3. Load-disconnect circuit according to claim 1 or 2, characterized in that a contact element of the main contact (4) and a contact element of the auxiliary contact (5) are coupled to an actuating element of the switch (3).
4. Lasttrennschalter nach Anspruch 3, dadurch gekennzeichnet, dass das Betätigungselement des Schalters4. Switch-disconnector according to claim 3, characterized in that the actuating element of the switch
(3) den wenigstens einen elektrischen Kontakt (1) bei geschlossenem Hauptkontakt (4) des Schalters (3) abschirmt und/oder fixiert.(3) shields and / or fixes the at least one electrical contact (1) when the main contact (4) of the switch (3) is closed.
5. Lasttrennschalter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der wenigstens eine elektrische Kontakt (1) als Steck- und/oder Schraubverbindung ausgeführt ist.5. Switch-disconnector according to one of claims 1 to 3, characterized in that the at least one electrical contact (1) is designed as a plug and / or screw connection.
6. Lasttrennschaltung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass in Reihe mit dem Halbleiterschaltelement (2) ein Widerstand (7) angeordnet ist.6. Load-disconnecting circuit according to one of claims 1 to 5, characterized in that in series with the semiconductor switching element (2), a resistor (7) is arranged.
7. Lasttrennschaltung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass in Reihe mit dem Halbleiterschaltelement (2) eine elektrische Sicherung (8) angeordnet ist.7. Load-disconnect circuit according to one of claims 1 to 6, characterized in that in series with the semiconductor switching element (2) an electrical fuse (8) is arranged.
8. Lasttrennschaltung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass in Reihe mit dem Halbleiterschaltelement (2) eine Diode (D) angeordnet ist.8. Load-disconnect circuit according to one of claims 1 to 7, characterized in that in series with the semiconductor switching element (2) a diode (D) is arranged.
9. Lasttrennschaltung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass in Reihe mit dem Halbleiterschaltelement (2) der Kontakt eines Relais (11) angeordnet ist und dass die Spule des Relais (11) mit der Steuerung (6) verbunden ist.9. Load-disconnecting circuit according to one of claims 1 to 8, characterized in that in series with the semiconductor switching element (2), the contact of a relay (11) is arranged and that the coil of the relay (11) to the controller (6) is connected.
10. Lasttrennschaltung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Gleichstromquelle (9) als Gleichstromgenerator, insbesondere als Photovoltaikgenerator und die elektrische Einrichtung (10) als Wechselrichter ausgebildet ist. 10. Load-disconnect circuit according to one of claims 1 to 9, characterized in that the DC power source (9) as a DC generator, in particular as a photovoltaic generator and the electrical device (10) is designed as an inverter.
PCT/EP2006/066102 2005-12-22 2006-09-07 Load isolation circuit for the deenergized connection and isolation of electrical contacts WO2007073951A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06793300A EP1964140B1 (en) 2005-12-22 2006-09-07 Load isolation circuit for the deenergized connection and isolation of electrical contacts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005061532.5 2005-12-22
DE200510061532 DE102005061532B4 (en) 2005-12-22 2005-12-22 Load disconnecting circuit for the currentless connection and disconnection of electrical contacts

Publications (1)

Publication Number Publication Date
WO2007073951A1 true WO2007073951A1 (en) 2007-07-05

Family

ID=37269808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/066102 WO2007073951A1 (en) 2005-12-22 2006-09-07 Load isolation circuit for the deenergized connection and isolation of electrical contacts

Country Status (3)

Country Link
EP (1) EP1964140B1 (en)
DE (1) DE102005061532B4 (en)
WO (1) WO2007073951A1 (en)

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2048679A1 (en) 2007-10-12 2009-04-15 SMA Solar Technology AG Circuit breaker assembly
DE102008057874A1 (en) * 2008-11-18 2010-05-20 Adensis Gmbh Switch circuit for a photo-voltaic assembly, at a current circuit, has a mechanical switch and a second electronic switch
GB2486408A (en) * 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
US8289742B2 (en) 2007-12-05 2012-10-16 Solaredge Ltd. Parallel connected inverters
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US8324921B2 (en) 2007-12-05 2012-12-04 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8531055B2 (en) 2006-12-06 2013-09-10 Solaredge Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
US8587151B2 (en) 2006-12-06 2013-11-19 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US8710699B2 (en) 2009-12-01 2014-04-29 Solaredge Technologies Ltd. Dual use photovoltaic system
US8766696B2 (en) 2010-01-27 2014-07-01 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8957645B2 (en) 2008-03-24 2015-02-17 Solaredge Technologies Ltd. Zero voltage switching
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8988838B2 (en) 2012-01-30 2015-03-24 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9000617B2 (en) 2008-05-05 2015-04-07 Solaredge Technologies, Ltd. Direct current power combiner
US9006569B2 (en) 2009-05-22 2015-04-14 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9870016B2 (en) 2012-05-25 2018-01-16 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US10061957B2 (en) 2016-03-03 2018-08-28 Solaredge Technologies Ltd. Methods for mapping power generation installations
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10599113B2 (en) 2016-03-03 2020-03-24 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
CN111656600A (en) * 2018-07-04 2020-09-11 宝马股份公司 Safety switching device for a high-voltage battery of a motor vehicle, high-voltage battery, on-board electrical system, and motor vehicle
CN111971770A (en) * 2018-03-09 2020-11-20 埃伦贝格尔及珀恩斯根有限公司 Separating device for interrupting a direct current in a current path and on-board electrical system of a motor vehicle
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11081608B2 (en) 2016-03-03 2021-08-03 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007043512A1 (en) * 2007-09-12 2009-03-19 Kostal Industrie Elektrik Gmbh Energy conversion system
DE102009012928A1 (en) 2009-03-12 2010-09-16 Kostal Industrie Elektrik Gmbh Energy conversion system
DE102009019831A1 (en) * 2009-05-04 2010-11-11 Voltwerk Electronics Gmbh circuitry
AT510512B1 (en) 2010-09-30 2015-08-15 Fronius Int Gmbh INVERTER
DE102011056577C5 (en) * 2011-12-19 2015-02-19 Sma Solar Technology Ag Circuit arrangement for suppressing a occurring during a switching arc
WO2013091689A1 (en) * 2011-12-21 2013-06-27 Siemens Aktiengesellschaft Separating device for direct current interruption between a photovoltaic generator and an electrical apparatus, and photovoltaic system having such a separating device
DE102013110240B4 (en) * 2013-09-17 2017-09-07 Sma Solar Technology Ag Circuit arrangement for a photovoltaic inverter for off-load relief with short-circuit switches and uses of the circuit arrangement

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1138473B (en) * 1960-08-12 1962-10-25 Siemens Ag Arrangement for the non-sparking switching of relay contacts
DE2253975A1 (en) 1971-11-04 1973-05-10 Otter Controls Ltd ELECTRIC SWITCH
GB2193844A (en) * 1986-08-08 1988-02-17 Imi Pactrol Switching electrical loads using a fused em relay
US4772809A (en) 1983-11-28 1988-09-20 Omron Tateisi Electronics Co. Switching circuit and a relay device employed to prevent arcing
DE19838492A1 (en) * 1998-08-25 2000-03-09 Stahl R Schaltgeraete Gmbh Explosion-proof connector assembly
EP1011177A2 (en) * 1998-12-15 2000-06-21 GEWISS S.p.A. Interlocked electrical socket
DE10225259B3 (en) 2002-06-07 2004-01-22 Sma Regelsysteme Gmbh Electrical connector
US20040052011A1 (en) * 2002-05-17 2004-03-18 International Rectifier Corp. Arc suppression circuit for electrical contacts

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2360564A1 (en) * 1973-12-05 1975-06-12 Dieter Hofmann Switch contact protective device - has current gate parallel to switch contact controlled by RC element
DE3341947A1 (en) * 1983-11-21 1985-05-30 Friedrich Dipl.-Ing. 8033 Krailling Lauerer Electronic-mechanical switch
AU2003247484A1 (en) * 2002-06-04 2003-12-19 Sure Power Corporation Load break dc power disconnect

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1138473B (en) * 1960-08-12 1962-10-25 Siemens Ag Arrangement for the non-sparking switching of relay contacts
DE2253975A1 (en) 1971-11-04 1973-05-10 Otter Controls Ltd ELECTRIC SWITCH
US4772809A (en) 1983-11-28 1988-09-20 Omron Tateisi Electronics Co. Switching circuit and a relay device employed to prevent arcing
GB2193844A (en) * 1986-08-08 1988-02-17 Imi Pactrol Switching electrical loads using a fused em relay
DE19838492A1 (en) * 1998-08-25 2000-03-09 Stahl R Schaltgeraete Gmbh Explosion-proof connector assembly
EP1011177A2 (en) * 1998-12-15 2000-06-21 GEWISS S.p.A. Interlocked electrical socket
US20040052011A1 (en) * 2002-05-17 2004-03-18 International Rectifier Corp. Arc suppression circuit for electrical contacts
DE10225259B3 (en) 2002-06-07 2004-01-22 Sma Regelsysteme Gmbh Electrical connector

Cited By (175)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8531055B2 (en) 2006-12-06 2013-09-10 Solaredge Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8587151B2 (en) 2006-12-06 2013-11-19 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US8659188B2 (en) 2006-12-06 2014-02-25 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9041339B2 (en) 2006-12-06 2015-05-26 Solaredge Technologies Ltd. Battery power delivery module
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US8773092B2 (en) 2007-08-06 2014-07-08 Solaredge Technologies Ltd. Digital average input current control in power converter
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
EP2048679A1 (en) 2007-10-12 2009-04-15 SMA Solar Technology AG Circuit breaker assembly
KR101059585B1 (en) 2007-10-12 2011-08-25 에스엠에이 솔라 테크놀로지 아게 Load switch
US8213133B2 (en) 2007-10-12 2012-07-03 Sma Solar Technology Ag Load breaker arrangement
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US8289742B2 (en) 2007-12-05 2012-10-16 Solaredge Ltd. Parallel connected inverters
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US8324921B2 (en) 2007-12-05 2012-12-04 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8599588B2 (en) 2007-12-05 2013-12-03 Solaredge Ltd. Parallel connected inverters
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US8957645B2 (en) 2008-03-24 2015-02-17 Solaredge Technologies Ltd. Zero voltage switching
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US9000617B2 (en) 2008-05-05 2015-04-07 Solaredge Technologies, Ltd. Direct current power combiner
DE102008057874A1 (en) * 2008-11-18 2010-05-20 Adensis Gmbh Switch circuit for a photo-voltaic assembly, at a current circuit, has a mechanical switch and a second electronic switch
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9748897B2 (en) 2009-05-22 2017-08-29 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US11695371B2 (en) 2009-05-22 2023-07-04 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US11509263B2 (en) 2009-05-22 2022-11-22 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US10879840B2 (en) 2009-05-22 2020-12-29 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US9006569B2 (en) 2009-05-22 2015-04-14 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US10411644B2 (en) 2009-05-22 2019-09-10 Solaredge Technologies, Ltd. Electrically isolated heat dissipating junction box
US10686402B2 (en) 2009-05-22 2020-06-16 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US9748896B2 (en) 2009-05-22 2017-08-29 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11735951B2 (en) 2009-12-01 2023-08-22 Solaredge Technologies Ltd. Dual use photovoltaic system
US8710699B2 (en) 2009-12-01 2014-04-29 Solaredge Technologies Ltd. Dual use photovoltaic system
US10270255B2 (en) 2009-12-01 2019-04-23 Solaredge Technologies Ltd Dual use photovoltaic system
US9276410B2 (en) 2009-12-01 2016-03-01 Solaredge Technologies Ltd. Dual use photovoltaic system
US11056889B2 (en) 2009-12-01 2021-07-06 Solaredge Technologies Ltd. Dual use photovoltaic system
US9564882B2 (en) 2010-01-27 2017-02-07 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US8766696B2 (en) 2010-01-27 2014-07-01 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US9917587B2 (en) 2010-01-27 2018-03-13 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US9231570B2 (en) 2010-01-27 2016-01-05 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
GB2486408A (en) * 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
US11271394B2 (en) 2010-12-09 2022-03-08 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11979037B2 (en) 2012-01-11 2024-05-07 Solaredge Technologies Ltd. Photovoltaic module
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US8988838B2 (en) 2012-01-30 2015-03-24 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US11740647B2 (en) 2012-05-25 2023-08-29 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US11334104B2 (en) 2012-05-25 2022-05-17 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US10705551B2 (en) 2012-05-25 2020-07-07 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US9870016B2 (en) 2012-05-25 2018-01-16 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US11177768B2 (en) 2012-06-04 2021-11-16 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US10651647B2 (en) 2013-03-15 2020-05-12 Solaredge Technologies Ltd. Bypass mechanism
US11424617B2 (en) 2013-03-15 2022-08-23 Solaredge Technologies Ltd. Bypass mechanism
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
US10886831B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
US10540530B2 (en) 2016-03-03 2020-01-21 Solaredge Technologies Ltd. Methods for mapping power generation installations
US10061957B2 (en) 2016-03-03 2018-08-28 Solaredge Technologies Ltd. Methods for mapping power generation installations
US10599113B2 (en) 2016-03-03 2020-03-24 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11081608B2 (en) 2016-03-03 2021-08-03 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11538951B2 (en) 2016-03-03 2022-12-27 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11824131B2 (en) 2016-03-03 2023-11-21 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
CN111971770A (en) * 2018-03-09 2020-11-20 埃伦贝格尔及珀恩斯根有限公司 Separating device for interrupting a direct current in a current path and on-board electrical system of a motor vehicle
CN111656600B (en) * 2018-07-04 2023-09-01 宝马股份公司 Safety switching device for a high-voltage battery of a motor vehicle, high-voltage battery, on-board electrical system, and motor vehicle
US10966285B2 (en) 2018-07-04 2021-03-30 Bayerische Motoren Werke Aktiengesellschaft Safety switch device for a high-voltage battery of a motor vehicle, high-voltage battery, on-board power supply system and motor vehicle
CN111656600A (en) * 2018-07-04 2020-09-11 宝马股份公司 Safety switching device for a high-voltage battery of a motor vehicle, high-voltage battery, on-board electrical system, and motor vehicle

Also Published As

Publication number Publication date
DE102005061532B4 (en) 2008-05-29
DE102005061532A1 (en) 2007-07-05
EP1964140A1 (en) 2008-09-03
EP1964140B1 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
EP1964140B1 (en) Load isolation circuit for the deenergized connection and isolation of electrical contacts
DE102016100758A1 (en) Separating device for a photovoltaic string, solar system and operating method for a solar system with photovoltaic string
DE102004054933B3 (en) Protection device for a load current leading device
EP2249393B1 (en) Switching assembly
EP2141781B1 (en) Switching device with a bistable relay between a network and an inverter
DE102008057874A1 (en) Switch circuit for a photo-voltaic assembly, at a current circuit, has a mechanical switch and a second electronic switch
EP3047556A2 (en) Circuit arrangement for a photovoltaic inverter for break relief using short-circuit switches, and uses of said circuit arrangement
WO2019170457A1 (en) Alternating-current charging device for a motor vehicle, and method for operating an alternating-current charging device for a motor vehicle
WO2019170475A1 (en) Alternating-current charging device for a motor vehicle, and method for operating an alternating-current charging device for a motor vehicle
DE102010041018A1 (en) Contactors actuating device for e.g. charging device for e.g. electric car, has holding current unit connected to output terminal for supplying holding current to drive coil of contactor
WO2015090735A1 (en) Circuit arrangement for emergency operation of a multiphase voltage converter by means of special operating methods
DE2323482A1 (en) TRANSFORMERLESS POWER SUPPLY DEVICE STABILIZED BY CYCLE FOR CONNECTION TO DC VOLTAGE SOURCES
EP2707888B1 (en) Switching device
EP0203366B1 (en) Control device for electromagnetic commutators
DE112018005842T5 (en) MOTOR CONTROL SYSTEM WITH INTEGRATED SOLID STATE CONTACTOR AND RELAY AND PROCEDURE FOR ITS OPERATION
EP1018794B1 (en) Changeover switch for automatic changeover of emergency lights from emergency to mains operation
DE10218806B4 (en) DC high-speed switching device for traction power supplies and method for switching off DC currents
DE102004057119A1 (en) Operating method for electric circuit e.g. motor vehicle electrical system involves interruption of switching equipment in case of identification of appearance of electric arc to electric current
DE102019213390A1 (en) Method for controlling an electrical switch
DE102018133277B4 (en) DRIVE DEVICE, SEPARATION SYSTEM AND METHOD
DE102006004182B3 (en) Power converter with a switching device
AT221637B (en) Electric AC switch
DE3926990C2 (en) Network switching facility
DE4405052A1 (en) Safety switching circuit with at least one emergency stop switch
DE3341947A1 (en) Electronic-mechanical switch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006793300

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006793300

Country of ref document: EP