WO2007055289A1 - Fluorescent lamp operation device - Google Patents

Fluorescent lamp operation device Download PDF

Info

Publication number
WO2007055289A1
WO2007055289A1 PCT/JP2006/322389 JP2006322389W WO2007055289A1 WO 2007055289 A1 WO2007055289 A1 WO 2007055289A1 JP 2006322389 W JP2006322389 W JP 2006322389W WO 2007055289 A1 WO2007055289 A1 WO 2007055289A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
circuit
fluorescent lamp
voltage
lighting device
Prior art date
Application number
PCT/JP2006/322389
Other languages
French (fr)
Japanese (ja)
Inventor
Guo-Hua Wang
Original Assignee
Nitta Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitta Corporation filed Critical Nitta Corporation
Priority to EP06832450A priority Critical patent/EP1951006A4/en
Priority to JP2007544185A priority patent/JPWO2007055289A1/en
Publication of WO2007055289A1 publication Critical patent/WO2007055289A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/24Circuit arrangements in which the lamp is fed by high frequency ac, or with separate oscillator frequency
    • H05B41/245Circuit arrangements in which the lamp is fed by high frequency ac, or with separate oscillator frequency for a plurality of lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2825Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage
    • H05B41/2827Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage using specially adapted components in the load circuit, e.g. feed-back transformers, piezoelectric transformers; using specially adapted load circuit configurations

Definitions

  • the present invention relates to a fluorescent lamp lighting device capable of simultaneously lighting a plurality of fluorescent lamps.
  • a cold cathode tube (Cold Cathode Fluorescent Tube), which is a type of fluorescent lamp, is used as a backlight of various display devices such as a liquid crystal display device.
  • a high-frequency AC lighting method using an inverter has been adopted for driving the cold cathode tube.
  • FIG. 15 is a circuit diagram showing a conventional high-frequency AC lighting device.
  • This high-frequency AC lighting device includes an inverter circuit 21 for supplying high-frequency AC power of several tens of kHz, a main transformer 31, and a plurality of cold cathodes connected at one end to the output line of the main transformer 31.
  • a tube 70 and a current equalizing circuit 601 that is connected to the other ends of the plurality of cold cathode tubes 70 and has a plurality of transformer forces for flowing an equal current to each of the cold cathode tubes 70 are provided.
  • FIG. 16 shows waveforms of respective parts of the high-frequency lighting device of FIG. (A) in Fig. 16 shows the DC input voltage input to inverter 2.
  • FIG. 16 (b) shows the output voltage of the inverter 2, that is, the primary voltage waveform of the main transformer 31.
  • FIG. (C) in Fig. 16 shows the waveform of the high-frequency voltage on the secondary side of the main transformer 31.
  • Patent Document 1 JP 2000-294391 A
  • the current-dividing circuit 601 since the current-dividing circuit 601 includes a plurality of transformers, the size thereof is increasing.
  • the main transformer 31 accounts for the largest proportion in terms of the overall dimensions and price, and thus the miniaturization of the main transformer 31 is also desired.
  • An object of the present invention is to provide a fluorescent lamp lighting device that can use a small current-balance circuit, can efficiently light a fluorescent lamp, and can be made compact as a whole.
  • the fluorescent lamp lighting device performs polarity switching at a predetermined frequency (D with respect to a DC input, thereby switching the polarity switching circuit that outputs the predetermined frequency ( ⁇ low-frequency driving voltage).
  • a plurality of fluorescent lamps having one end connected to the output line of the polarity switching circuit, and a transistor connected to the other end of the plurality of fluorescent lamps for flowing an equal current to each fluorescent lamp.
  • a current equalizing circuit having a constant current circuit force.
  • the current equalizing circuit is a constant current circuit including a transistor, the current equalizing circuit can be reduced in size. Therefore, the overall size of the high-frequency AC lighting device can be reduced.
  • the frequency (£) of the polarity switching circuit is preferably as low as possible, exceeding ⁇ , and not more than 10 kHz. It is more preferable if it exceeds OHz and 1 kHz or less.
  • the lighting device of the fluorescent lamp has the effect of stray capacitance between the fluorescent lamp or its wiring and the chassis (ground potential). Less affected. For this reason, the fluorescent lamp can be directly attached to the chassis of the display device, and the wiring can be extended longer. By directly attaching the fluorescent lamp to the chassis, the thickness of the display device can be reduced. If the wiring can be extended for a long time, a display device with a large screen can be easily manufactured.
  • the present invention provides advantages and subordinates of direct current lighting by using low frequency lighting as described above. It is possible to provide a fluorescent lamp lighting device having the advantages of conventional high-frequency lighting. If the frequency of the polarity switching circuit is set so that the frequency (fl) at the start of lighting of the fluorescent lamp is set to be higher than the frequency ( ⁇ ) during lighting, the start of lighting of the fluorescent lamp becomes easier. This is because when starting lighting at a low frequency ( ⁇ , especially when the outside air temperature is low, it may be difficult to start lighting. Therefore, if the fluorescent lamp is started at a high frequency (fl) only at the time of starting lighting, it will be difficult even at low temperatures. It is possible to start lighting easily.After starting lighting, switching to low frequency (D) makes it possible to make a fluorescent lamp lighting device that is not affected by stray capacitance.
  • the time (T) for controlling the frequency to be higher than the predetermined frequency (£) may be a time necessary for starting the fluorescent lamp. It is desirable to set according to the outside temperature conditions. For example, 1 to 10 seconds.
  • a high frequency voltage superposition circuit for superposing a high frequency voltage having a frequency ( ⁇ ) higher than D on the low frequency drive voltage is further provided.
  • the fluorescent lamp when the fluorescent lamp is turned on, the fluorescent lamp is turned on using the high-frequency voltage superimposed by the high-frequency voltage superimposing circuit. After starting lighting, lighting can be continued using the low frequency drive voltage output from the polarity switching circuit. Even during this lighting, if the high-frequency current superimposed by the high-frequency voltage superposition circuit continues to flow S and the amplitude of the high-frequency voltage is set smaller than the amplitude of the low-frequency drive voltage, the fluorescent lamp or its wiring This is a problem because it is less affected by stray capacitance with the chassis. Of course, you can turn off the high-frequency voltage superimposing circuit and turn on the high-frequency current during lighting.
  • a high-frequency superimposing transformer having a high-frequency power source connected to the primary side and capable of extracting a high-frequency voltage from the secondary side may be used.
  • the use of a high-frequency superimposed transformer has the advantage that it can be easily insulated between the fluorescent lamp and the high-frequency power source.
  • An intermediate tap is provided on the secondary side of the high-frequency superimposing transformer, the output line of the polarity switching circuit is connected to the intermediate tap, the plurality of fluorescent lamps are divided into two groups, and the two One end of the fluorescent lamp belonging to each group is attached to both ends of the secondary side wire. Each may be connected. In this way, the high frequency superimposing transformer can be further reduced by / J.
  • the secondary side winding of the high-frequency superimposing transformer is connected to one output line of the polarity switching circuit through one capacitor and connected to the other output line of the polarity switching circuit through another capacitor. It may be configured. In this way, the high-frequency superimposing transformer can be made smaller, and both ends of the fluorescent lamp can be balancedly lit using the same-phase low-frequency driving voltage, so that uneven brightness can be further eliminated.
  • An LC resonance circuit having an inductor connected in series and a capacitor connected in parallel may be connected between the polarity switching circuit and the plurality of fluorescent lamps.
  • the DC power supply circuit for generating the DC input may include a main transformer for converting an AC voltage and a rectifier circuit for rectifying the output of the main transformer. By setting the power ratio of the main transformer, a desired DC voltage necessary for lighting the fluorescent lamp can be obtained.
  • the rectifier circuit is a voltage doubler rectifier circuit
  • the voltage can be increased by the voltage doubler rectifier circuit, so that the burden of the step-up ratio on the main transformer can be reduced. Therefore, the power ratio of the main transformer can be reduced, which is advantageous for downsizing the main transformer.
  • the AC voltage supplied to the main transformer is preferably generated by an inverter that obtains a high-frequency output of a predetermined frequency from DC.
  • the high frequency generated by the inverter can be set to a high frequency advantageous for improving the conversion efficiency of the main transformer.
  • the higher the frequency of the transformer the higher the conversion efficiency.
  • the number of main transformers can be reduced, and the main transformer can be made sufficiently small.
  • the main transformer can be made smaller by increasing the frequency of the inverter, but if the frequency is increased, the effect of stray capacitance between the fluorescent lamp and the chassis is increased. Will grow bigger.
  • the stray capacitance increases, the wiring distance cannot be increased, and the arrangement of fluorescent lamps in the device is restricted.
  • the reactive current increases, the illuminance of the fluorescent lamp decreases, and it becomes difficult to make the screen brightness uniform.
  • the frequency of the inverter is adjusted to a frequency that is convenient for the main transformer! I could't raise it.
  • the high frequency output from the inverter is converted to direct current by the rectifier circuit and supplied to the fluorescent lamp via the polarity switching circuit. That is, the frequency of the inverter and the driving frequency of the fluorescent lamp can be set separately. Therefore, the frequency of the inverter can be set to a sufficiently high frequency that is advantageous for improving the conversion efficiency of the main transformer. As a result, the main transformer can be easily downsized and the driving frequency f of the fluorescent lamp can be lowered as described above, so that the fluorescent lamp and its wiring can be affected by stray capacitance. Disappear.
  • FIG. 1 is a circuit diagram of a fluorescent lamp lighting device according to the present invention.
  • FIG. 2 is a graph showing waveforms at various parts of the lighting device of FIG.
  • FIG. 3 This is a graph showing how the frequency fl is set to a faster frequency fl only at the start of lighting of the fluorescent lamp and is switched to the frequency f which is turned on and slow.
  • FIG. 4 This is a graph showing how the frequency fl is set to a faster frequency fl only at the start of lighting of the fluorescent lamp and is switched to the slower frequency f.
  • FIG. 5 is a circuit diagram of a fluorescent lamp lighting device according to the present invention in which a high-frequency voltage superposition circuit is provided between the polarity switching circuit 5 and the plurality of cold cathode tubes 71.
  • FIG. 6B is a waveform diagram showing an output voltage waveform of the polarity switching circuit 5.
  • FIG. 6 is a waveform diagram showing the output voltage waveform after the high frequency voltage is superimposed by the high frequency voltage superimposing circuit.
  • FIG. 7 is a specific circuit diagram of the high-frequency power source 9 including two transistors Ql and Q2.
  • FIG. 8 is a circuit diagram of a fluorescent lamp lighting device of the present invention provided with a high-frequency voltage superposition circuit according to a modification.
  • FIG. 9 is a circuit diagram of a fluorescent lamp lighting device of the present invention provided with a high-frequency voltage superposition circuit according to still another modification.
  • FIG. 10 is a circuit diagram of a fluorescent lamp lighting device using a self-excited high-frequency power supply superposition circuit.
  • FIG. 11A is a diagram showing an output voltage waveform of the polarity switching circuit 5.
  • FIG. 11B is a diagram showing an output voltage waveform after a high frequency voltage is superimposed.
  • FIG. 12 is a circuit diagram of a main part of a transformerless lighting device in which the main transformer 3 is omitted.
  • FIG. 13 is a main part circuit diagram showing a configuration in which the inverter circuit 2 and the main transformer 3 are omitted, and the inverter circuit and the transformer of the device 10 in which the lighting device is incorporated are diverted.
  • FIG. 14 is a circuit diagram showing another example of a current equalization circuit.
  • FIG. 15 is a circuit diagram showing a conventional high-frequency AC lighting device.
  • FIG. 16 is a graph showing waveforms at various parts of the high-frequency lighting device of FIG.
  • FIG. 1 is a circuit diagram of a fluorescent lamp lighting device according to the present invention.
  • This lighting device includes an inverter 2 that converts DC input into AC, a main transformer 3 that boosts the AC voltage from the inverter 2, and a voltage doubler that doubles and rectifies the AC voltage output from the main transformer 3.
  • a rectifier circuit 4 a polarity switching circuit 5 for switching the polarity of the rectified DC voltage
  • the output lines (e) and (n) of the polarity switching circuit 5 are connected to the other (n) cold cathode tubes 71 ⁇ 7n connected to D and to the other ends of the plurality of cold cathode tubes 71 ⁇ 7n.
  • Each cold-cathode tube 71... 7 n is equipped with a current equalizing circuit 6 for supplying a current and the like U.
  • the DC input is converted to an AC frequency optimum for the main transformer 3 by switching the switching transistor included in the inverter 2.
  • This “optimal AC frequency for the main transformer 3” is a frequency at which sufficient conversion efficiency is obtained for the main transformer 3, and is usually several tens of kHz to several hundreds of kHz. If the frequency force is lower than this range, the main transformer 3 needs to be enlarged, and the entire device becomes large and heavy. If the frequency is higher than this range, the influence of the parallel capacitance generated inside the main transformer 3 becomes large, resonance occurs, and conversion efficiency decreases.
  • the AC voltage is boosted at a predetermined step-up ratio by the main transformer 3 having a predetermined number of turns and a turn ratio. Further, the voltage doubler rectifier circuit 4 performs rectification and boosting. As a result, it is possible to obtain a DC voltage necessary for lighting the cold cathode tubes 71.
  • the “DC voltage required for lighting the cold cathode tube 71... 7 ⁇ ” is about 1000 V to 2000 V.
  • This DC voltage is converted into AC by turning on / off the switching transistor of the polarity switching circuit 5.
  • the control circuit 51 controls on / off of the switching transistor.
  • the control circuit 51 controls the age of each switching transistor by supplying an on / off signal to the gate of each switching transistor.
  • the range of the frequency f of the on / off signal may be more than OHz and 20 kHz or less. If possible, more than OHz and less than 10kHz is more preferable, more preferably more than OHz and less than 1kHz.
  • the current equalizing circuit 6 is an electronic circuit (constant current circuit, ⁇ ) 61 ', 6n that obtains a constant current using the current flowing between the collector emitters of the transistors, depending on the number of cold cathode tubes 71 ⁇ 7n. I have.
  • Each cold cathode tube 71 ⁇ 7 ⁇ and each constant current circuit 61 ⁇ 6 ⁇ are connected in series with each other. This series of cold cathode tubes 71 ⁇ 7 ⁇ and constant current circuits 61 ⁇ 6 ⁇ (the number of cold cathode tubes 71 ⁇ 7 ⁇ ) is equal to the two output lines (e), ( Connected to D.
  • the transistors of the constant current circuits 61... 6 ⁇ are connected in force parallel to the ⁇ type and the ⁇ type.
  • a resistor R is connected between the emitter and ground. It is.
  • the bases of the transistors are connected to each other in common. This common base voltage is expressed as Vb. Since the voltage Vb that is almost equal to the voltage Vb is common to each transistor, the voltage across the resistor R is almost equal in each constant current circuit 61 ⁇ 6 ⁇ . For this reason, the current flowing in each direction of each constant current circuit 61... 6 ⁇ in one direction (from the collector of the ⁇ type transistor to the emitter) is almost equal, and a constant current is obtained. The current flowing in the reverse direction (the emitter force of the ⁇ transistor is also the collector direction) is equalized by the same action of the ⁇ transistor, and a constant current is obtained.
  • the constant current circuit 61 ⁇ 6 ⁇ including the transistor realizes a constant current, so that it is smaller than the current equalization circuit 601 using a plurality of transformers as in the past. Light weight can be achieved.
  • FIG. 2 is a graph showing waveforms at various parts of the lighting device of FIG.
  • FIG. 2 shows the DC input voltage input to the inverter 2.
  • Fig. 2 shows the waveform of the output voltage of the inverter 2, that is, the primary side voltage of the main transformer.
  • C in Fig. 2 shows the waveform of the secondary side voltage of the main transformer 3.
  • the secondary side voltage of the main transformer 3 is boosted according to the turn ratio of the main transformer 3 with respect to the primary side voltage of the main transformer 3.
  • D of FIG. 2 is an output waveform of the voltage doubler rectifier circuit 4. This output voltage rises further than the secondary voltage of the main transformer 3, and at the same time is rectified into a pulsating current.
  • E in Fig. 2 shows the output waveform of polarity switching circuit 5.
  • the polarity switching circuit 5 switches the DC output rectified into a pulsating flow so that it is alternately positive and negative. This switched output current force is supplied to each cold-cathode tube 71.
  • the switching frequency of the polarity switching circuit 5 is set to be faster only at the start of lighting, and this will be described.
  • the range of the switching frequency f of the polarity switching circuit 5 is set to a frequency fl (fl ⁇ f) that is faster only at the start of lighting when it exceeds 20 Hz and below 20 kHz.
  • the frequency may be switched to a slower frequency f within the range of 20 kHz exceeding OHz.
  • FIG. 2 (e) shows an example in which the on / off frequency of the control circuit 51 is set to a faster frequency fl only at the start of lighting, and after switching on, the frequency is switched to the frequency f.
  • the predetermined time T is set according to the outside air temperature, but is set to about 1 to 10 seconds at room temperature. When starting in a low temperature environment, set a longer time. When using in a high temperature environment, set a shorter time.
  • the frequency fl may be set to be faster only at the start of lighting, and the frequency fl may be gradually decreased and converged to the frequency f as the predetermined time T elapses from the start of lighting. .
  • the setting range of the predetermined time T is almost the same as the case of FIG.
  • the wiring connected to the cold cathode tubes 7 1, 7n and the cold cathode tubes 71 7n and the shank that supports the cold cathode tubes 71 7n Using the stray capacitance between the 8 This is particularly advantageous for starting at low temperatures.
  • a plurality of cold-cathode tubes 71 ⁇ 7 ⁇ can be lit at a low frequency with a frequency f.
  • low frequency lighting means lighting while switching the direct current by the polarity switching circuit 5 at a lower frequency f than in the prior art.
  • the range of the low frequency f is over 0 Hz and below 20 kHz. Preferably it exceeds OHz and is 10 kHz or less, more preferably it exceeds OHz and is 1 kHz or less.
  • the cold cathode tube 71 ⁇ 7 ⁇ and the influence of stray capacitance generated between the wiring connected to 7 ⁇ and the chassis 8 can be reduced, and the screen brightness uniformity is close to ideal! It can be a thing.
  • the effect of maintaining the uniformity of the screen brightness is more advantageous as the switching frequency f of the polarity switching circuit 5 is lower.
  • the main transformer 3 can be driven at a high frequency unrelated to the switching frequency f of the polarity switching circuit 5, the size of the main transformer 3 can be reduced.
  • the entire lighting device can be made small.
  • the cold cathode tube and the chassis supporting it can be brought to infinity. Therefore, the thickness of the liquid crystal display device can be reduced.
  • the voltage at frequency f2 When superimposing the voltage at frequency f2, the voltage at frequency f2 is superimposed on the voltage at frequency f for the entire duration of lighting, not just at the start of lighting.
  • Fig. 5 shows a circuit diagram of a fluorescent lamp lighting device in which an inductor Ll, a capacitor Cl, a high-frequency power source 9 and a voltage superimposing transformer 12 are provided between the polarity switching circuit 5 and a plurality of cold-cathode tubes 71 ⁇ 7 ⁇ . It is.
  • the inductor Ll, capacitor Cl, high frequency power source 9 and voltage superimposing transformer 12 constitute a high frequency voltage superimposing circuit 1.
  • the inductor L1 is connected in series between the polarity switching circuit 5 and the cold cathode tubes 71... 7 ⁇ , and prevents the superimposed high-frequency current from flowing back to the polarity switching circuit 5.
  • Capacitor C1 is provided to prevent short circuit of the low frequency drive voltage.
  • the voltage superimposing transformer 12 includes a primary side wire T1 and a secondary side wire T2, and a high frequency power source 9 is connected to the primary side wire T1.
  • the frequency of the high frequency power supply 9 is written as “f 2”.
  • FIG. 6A shows an output voltage waveform of the polarity switching circuit 5. This waveform is the same as (e) in Fig. 2, but the pulsating flow is omitted.
  • Figure 6B shows the output voltage waveform on which the high-frequency voltage of frequency f2 is superimposed by the high-frequency voltage superposition circuit 1.
  • the amplitude relationship will be described. Assuming that the amplitude of the output voltage of the polarity switching circuit 5 is “a” and the amplitude of the high-frequency voltage of the frequency f2 is “b”, it is desirable that b is about 0.1 to 0.5 times a. 0. If it is lower than 1 times, the effect of superimposing the high frequency f2 will be diminished, and it will be the same as starting with only the low frequency f. If it is higher than 5 times, the power loss during lighting increases due to the stray capacitance.
  • the high-frequency voltage of frequency f2 is superimposed on the output voltage waveform of the polarity switching circuit 5, the high-frequency voltage is used to start the cold cathode tube 71 ⁇ 7 ⁇ . It can be done easily. This is particularly effective for starting lighting at low temperatures. Also, by adjusting the amplitude “b” of the high-frequency voltage at the frequency f2, the brightness of the cold-cathode tube 71 •• 7n being lit can be controlled. The larger “b”, the brighter the sound, and the smaller “b”, the more B sound.
  • the brightness of the cold cathode tube 71 ⁇ 7 ⁇ being lit can be adjusted by selecting the value of the frequency f2. In other words, if there is a leakage magnetic field (1 eakage magbetic flux) of the secondary winding ⁇ 2 of the voltage superimposing transformer 12, the cold cathode tube 71 7n can be darkened by increasing the frequency f2, and the frequency f 2 If the value is lowered, the cold cathode tube 71 ⁇ 7 ⁇ can be brightened.
  • the cold cathode tube 71 ⁇ 7 ⁇ can be brightened by increasing the frequency f 2 and cold cathode tube 71 ⁇ 7 ⁇ by reducing the frequency f 2 Can be darkened.
  • FIG. 7 is a specific circuit diagram of the high-frequency power source 9 described so far.
  • the high frequency power supply 9 is a circuit in which two transistors Ql and Q2 are connected in series, and an AC switching circuit 11 that alternately outputs a high voltage and a low voltage at a frequency f2 is connected to the bases of the transistors Ql and Q2. .
  • the AC switching circuit 11 When the AC switching circuit 11 outputs a high voltage, the transistor Q1 is turned on, and the primary side wire T1 is charged from the power source F through the capacitor C3.
  • the transistor Q2 When the AC switching circuit 11 outputs a low voltage, the transistor Q2 is turned on, and the current charged in the primary side wire T1 discharges the capacitor C3. In this way, a high-frequency current can flow through the primary winding T1.
  • a transformer having a tapped secondary side wire T2 is used as the voltage superimposing transformer 12, and the output line (e) of the polarity switching circuit 5 is connected to this tap.
  • Divide multiple cold-cathode tubes into two groups connect the cold-cathode tubes in parallel in each group, and connect the cold-cathode tube connection ends to the ends (g) and (h) of the secondary side wire T2. It is a figure which shows the circuit structure connected respectively.
  • the cold cathode tubes belonging to one group are indicated as 71, 72 ⁇ , and the cold cathode tubes belonging to the other group are indicated as 81, 82 ⁇ .
  • a high-frequency power source 9 is connected to the primary winding T1 of the voltage superimposing transformer 12 as in FIG.
  • the frequency f2 of the high frequency power supply 9 is set to about 5 to 50 times the low frequency f.
  • the low frequency voltage output from the polarity switching circuit 5 is divided by the tap force. Then, both end (g) and (h) forces of the secondary side winding T2 also go out to each group, and the cold cathode tubes of each group are driven to light.
  • the low-frequency voltage output from the polarity switching circuit 5 has the same phase at both ends (g) and (h) of the secondary winding T2.
  • the high-frequency voltage output from the high-frequency power supply 9 starts lighting the cold cathode tubes of each group in opposite phases from both ends of the secondary winding T2. That is, the high-frequency voltage output from the high-frequency power source 9 is in opposite phase at both ends (g) and (h) of the secondary side winding T2.
  • This circuit eliminates the need for capacitor C1 as in the circuit of FIG.
  • the secondary winding T2 having a center tap is used, the core demagnetization due to the direct current is offset. Therefore, the saturation of the core is reduced, and a small transformer with a small core can be used.
  • Fig. 9 shows that the output line of the polarity switching circuit 5 is connected to the capacitors CI and C 2 connected in series with each other, and the intermediate connection point of the capacitors CI and C2 (the voltage superimposing transformer 12 is connected to 0,
  • An example of a circuit for supplying a starting high-frequency voltage to the cold cathode tubes 71... 7n from the superposed transformer 12 through the capacitors CI and C2 is shown.
  • the high-frequency voltage output from the high-frequency power source 9 starts lighting the cold cathode tubes 71... 7n from the secondary side wire T2 through the capacitors CI and C2.
  • the high-frequency voltage superposition circuit 1 described so far in FIGS. 5 to 9 is a separately-excited circuit using a high-frequency power source 9.
  • the resonant circuit of the capacitor C and the inductor L is connected to both lines (e) and (D on the output side of the polarity switching circuit 5.
  • Fig. 10 is a circuit diagram of a fluorescent lamp lighting device using a self-excited high-frequency voltage superimposing circuit 1 '.
  • Figure 11 ⁇ shows the output voltage waveform of polarity switching circuit 5 when no LC resonant circuit is present. This waveform is the same as in Figure 6A.
  • Figure 11B shows the output voltage waveform with the high frequency voltage superimposed by the LC resonant circuit. When the low-frequency output waveform switches from negative to positive or positive and negative due to the LC resonance circuit, the oscillation output appears and gradually attenuates.
  • the capacitor C may be composed of a cold cathode tube 71... 7 ⁇ and a floating capacity between the wiring and the chassis 8.
  • FIG. 12 is a circuit diagram of a main part of a transformerless lighting device in which the main transformer 3 is omitted.
  • an AC voltage is directly obtained from a DC input by a resonant circuit ⁇ using a coil and a transistor.
  • the AC voltage obtained by the resonant circuit is about 10 times the DC input, for example 240V, and the frequency is 200kHz.
  • the AC voltage is passed through the voltage doubler rectifier circuit 4 to obtain a predetermined voltage, for example, a DC voltage of 1500V.
  • the configuration subsequent to the voltage doubler rectifier circuit 4 is the same as that shown in FIGS.
  • the main transformer 3 can be eliminated, and thus the lighting device can be further reduced in size.
  • FIG. 13 is a diagram showing a configuration in which the inverter circuit 2 and the main transformer 3 are omitted and the inverter circuit 2 and the main transformer 3 of a device (for example, a television receiver) 10 in which the lighting device is incorporated are omitted. It is a partial circuit diagram. AC voltage is obtained from the secondary winding of the power transformer of the device 10, and it is passed through the voltage doubler rectifier circuit 4 to boost and rectify. With this configuration, Cold cathode tube 71 ⁇ ⁇ 7n dedicated inverter 2 and transformer are not required, so the entire device can be downsized.
  • FIG. 14 is a circuit diagram showing another example of the current-equalizing circuit.
  • a circuit 6a for flowing a constant current in one direction and a circuit 6b for flowing in the other direction are separated from each other and installed on both sides of the cold cathode tube.
  • the operation of each constant current circuit 6a, 6b is the same as described with reference to FIG.
  • all npn transistors can be used, which is advantageous in terms of cost.
  • the present invention is not limited to the above-described embodiments.
  • the output of the main transformer 3 is rectified and boosted by the voltage doubler rectifier circuit 4.
  • boosting and rectification may be separated, boosting may be performed by the main transformer, and rectification may be performed by a simple rectifier circuit that is not doubled.
  • the circuit example of the current sharing circuit is not limited to that shown in FIGS. 1 and 14, and any constant current circuit using a transistor may be used.
  • the present invention is not limited to the cold cathode tube used in the above embodiment, and can be applied to general fluorescent lamps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A fluorescent lamp operation device includes: a polarity switching circuit (5) for performing polarity switching with a low frequency (f) not greater than 20 kHz on DC input; a plurality of fluorescent lamps (71, …, 7n) connected to the output line of the polarity switching circuit (5); a uniform flow circuit (6) formed by constant current circuits (61, …, 6n) connected to the other end of the fluorescent lamps (71, …, 7n) and having a transistor for supplying identical current to the respective fluorescent lamps (71, …, 7n). Since the fluorescent lamps are turned on with a low frequency (f) not greater than 20 kHz, they are hardly affected by stray capacitance. The fluorescent lamps (71, …, 7n) can be arranged near a chassis (8) of a display device and it is possible to prolong wiring.

Description

明 細 書  Specification
蛍光灯の点灯装置  Fluorescent lamp lighting device
技術分野  Technical field
[0001] 本発明は、複数の蛍光灯を同時に点灯することのできる蛍光灯の点灯装置に関す るものである。  [0001] The present invention relates to a fluorescent lamp lighting device capable of simultaneously lighting a plurality of fluorescent lamps.
背景技術  Background art
[0002] 液晶表示装置など各種表示装置のバックライトには、蛍光灯の一種である冷陰極 管 (Cold Cathode Fluorescent Tube)が用いられる。この冷陰極管の点灯駆動には、 従来から、インバータを用いた高周波交流点灯方式が採用されている。  A cold cathode tube (Cold Cathode Fluorescent Tube), which is a type of fluorescent lamp, is used as a backlight of various display devices such as a liquid crystal display device. Conventionally, a high-frequency AC lighting method using an inverter has been adopted for driving the cold cathode tube.
図 15は、従来の高周波交流点灯装置を示す回路図である。この高周波交流点灯 装置は、数十 kHzの高周波交流電源を供給するためのインバータ回路 21と、主変 圧器 31と、その主変圧器 31の出力回線に対して一端が接続された複数の冷陰極管 70と、前記複数の冷陰極管 70の他端に接続され、各冷陰極管 70に等しい電流を流 すための、複数の変圧器力もなる均流回路 601とを備えている。  FIG. 15 is a circuit diagram showing a conventional high-frequency AC lighting device. This high-frequency AC lighting device includes an inverter circuit 21 for supplying high-frequency AC power of several tens of kHz, a main transformer 31, and a plurality of cold cathodes connected at one end to the output line of the main transformer 31. A tube 70 and a current equalizing circuit 601 that is connected to the other ends of the plurality of cold cathode tubes 70 and has a plurality of transformer forces for flowing an equal current to each of the cold cathode tubes 70 are provided.
[0003] 図 15の高周波点灯装置の各部の波形を、図 16に示す。図 16の(a)はインバータ 2 に入力される直流入力電圧を示す。図 16の (b)は、インバータ 2の出力電圧すなわ ち主変圧器 31の一次側電圧の波形を示す。図 16の(c)は主変圧器 31の二次側の 高周波電圧の波形を示す。  [0003] FIG. 16 shows waveforms of respective parts of the high-frequency lighting device of FIG. (A) in Fig. 16 shows the DC input voltage input to inverter 2. FIG. 16 (b) shows the output voltage of the inverter 2, that is, the primary voltage waveform of the main transformer 31. FIG. (C) in Fig. 16 shows the waveform of the high-frequency voltage on the secondary side of the main transformer 31.
特許文献 1:特開 2000-294391号公報  Patent Document 1: JP 2000-294391 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] このような高周波点灯装置においては、均流回路 601が複数の変圧器を含むもの であるため、その大きさが大きくなつている。 [0004] In such a high-frequency lighting device, since the current-dividing circuit 601 includes a plurality of transformers, the size thereof is increasing.
また、従来の高周波交流点灯装置では、全体の寸法と価格から言えば主変圧器 3 1の占める割合が一番大き 、ので、主変圧器 31の小型化も望まれて 、る。  In addition, in the conventional high-frequency AC lighting device, the main transformer 31 accounts for the largest proportion in terms of the overall dimensions and price, and thus the miniaturization of the main transformer 31 is also desired.
また、蛍光灯とその周りのシャーシなどとの間に浮遊容量が存在するため、数十 kH zの高周波交流電源で蛍光灯を点灯すれば、高周波電流が浮遊容量を通ってシャ ーシに流れ、点灯中の効率が低下すると 、う問題がある。 In addition, since stray capacitance exists between the fluorescent lamp and the surrounding chassis, when the fluorescent lamp is turned on with a high frequency AC power supply of several tens of kilohertz, the high frequency current flows through the stray capacitance. There is a problem if the efficiency during lighting decreases.
[0005] 本発明は、小さな均流回路を用いることができ、効率よく蛍光灯を点灯でき、全体と して小型にできる蛍光灯の点灯装置を提供することを目的とする。  [0005] An object of the present invention is to provide a fluorescent lamp lighting device that can use a small current-balance circuit, can efficiently light a fluorescent lamp, and can be made compact as a whole.
課題を解決するための手段  Means for solving the problem
[0006] 本発明の蛍光灯の点灯装置は、直流入力に対して所定の周波数 (Dで極性切り替 えを行うことにより、前記所定の周波数 (βの低周波駆動電圧を出力する極性切換回 路と、前記極性切換回路の出力回線に一端が接続された複数の蛍光灯と、前記複 数の蛍光灯の他端にそれぞれ接続され、各蛍光灯に等しい電流を流すための、トラ ンジスタを含む定電流回路力もなる均流回路とを備えることを特徴とする。 [0006] The fluorescent lamp lighting device according to the present invention performs polarity switching at a predetermined frequency (D with respect to a DC input, thereby switching the polarity switching circuit that outputs the predetermined frequency (β low-frequency driving voltage). A plurality of fluorescent lamps having one end connected to the output line of the polarity switching circuit, and a transistor connected to the other end of the plurality of fluorescent lamps for flowing an equal current to each fluorescent lamp. And a current equalizing circuit having a constant current circuit force.
[0007] この蛍光灯の点灯装置であれば、均流回路がトランジスタを含む定電流回路からな るため、均流回路を小型にすることができる。したがって、高周波交流点灯装置の全 体の小型化を図ることができる。  [0007] With this fluorescent lamp lighting device, since the current equalizing circuit is a constant current circuit including a transistor, the current equalizing circuit can be reduced in size. Therefore, the overall size of the high-frequency AC lighting device can be reduced.
前記均流回路はトランジスタを含む定電流回路力 なるため、蛍光灯の駆動周波 数が従来のように高い場合には、損失が大きぐ発熱量が増える傾向にある。そのた め、前記極性切換回路の周波数 (£)は、できるだけ低ぐ ΟΗζを超え、 10kHz以下と することが好ましい。 OHzを超え、 1kHz以下とすればさらに好ましい。  Since the current equalizing circuit has a constant current circuit power including a transistor, when the driving frequency of the fluorescent lamp is as high as before, the loss tends to increase and the amount of generated heat tends to increase. Therefore, the frequency (£) of the polarity switching circuit is preferably as low as possible, exceeding ζ, and not more than 10 kHz. It is more preferable if it exceeds OHz and 1 kHz or less.
[0008] このように、極性切換回路の周波数 (£)を従来よりも低くすることによって、蛍光灯の 点灯装置は、蛍光灯若しくはその配線とシャーシ (接地電位)との間の浮遊容量の影 響を受けることが少なくなる。このため蛍光灯を、表示装置のシャーシに直付けするこ とができ、配線を長く引き延ばすこともできる。蛍光灯をシャーシに直付けすること〖こ より、表示装置の厚みを薄くすることができる。配線を長く引き延ばすことができれば 、大きな画面の表示装置を容易に製作することができる。  [0008] In this way, by making the frequency (£) of the polarity switching circuit lower than before, the lighting device of the fluorescent lamp has the effect of stray capacitance between the fluorescent lamp or its wiring and the chassis (ground potential). Less affected. For this reason, the fluorescent lamp can be directly attached to the chassis of the display device, and the wiring can be extended longer. By directly attaching the fluorescent lamp to the chassis, the thickness of the display device can be reduced. If the wiring can be extended for a long time, a display device with a large screen can be easily manufactured.
[0009] なお、従来から蛍光灯の直流 (OHz)点灯が試みられて!/、る。直流点灯すれば、浮 遊容量の影響はなくなる。ところが、蛍光灯の直流点灯をすると、蛍光灯の水銀が電 界により移動して、陽極方向が時間とともに暗くなる「暗端現象」が発生する。また、一 方のみ電極が摩耗する「スパッター現象」も発生する。このため、画面輝度を均一に することができない。  [0009] In addition, fluorescent lamp direct current (OHz) lighting has been attempted in the past! If DC lighting is used, the effect of floating capacity is eliminated. However, when the fluorescent lamp is turned on by direct current, the mercury in the fluorescent lamp moves due to the electric field, and a “dark edge phenomenon” occurs in which the anode direction becomes darker with time. In addition, a “sputtering phenomenon” occurs in which only one electrode is worn. For this reason, the screen brightness cannot be made uniform.
[0010] そこで、本発明は、前記のように低周波点灯とすることにより、直流点灯の利点と従 来の高周波点灯の利点とを兼ね備えた蛍光灯の点灯装置を提供することができる。 前記極性切換回路の周波数は、蛍光灯の点灯始動時の周波数 (fl)のほうが、点灯 中の周波数 (ί)よりも高く設定されるようにすれば、蛍光灯の点灯始動が容易になる。 なぜなら、低周波数 (βで点灯始動すると、特に外気温の低い場合、点灯始動が難し くなることがある。そこで、点灯始動時だけ高い周波数 (fl)で蛍光灯を始動すれば、 低温時でも簡単に点灯始動できるようになる。点灯始動後は、低周波数 (Dに切り替え ることにより、浮遊容量の影響を受けることのない蛍光灯の点灯装置とすることができ る。 [0010] Therefore, the present invention provides advantages and subordinates of direct current lighting by using low frequency lighting as described above. It is possible to provide a fluorescent lamp lighting device having the advantages of conventional high-frequency lighting. If the frequency of the polarity switching circuit is set so that the frequency (fl) at the start of lighting of the fluorescent lamp is set to be higher than the frequency (ί) during lighting, the start of lighting of the fluorescent lamp becomes easier. This is because when starting lighting at a low frequency (β, especially when the outside air temperature is low, it may be difficult to start lighting. Therefore, if the fluorescent lamp is started at a high frequency (fl) only at the time of starting lighting, it will be difficult even at low temperatures. It is possible to start lighting easily.After starting lighting, switching to low frequency (D) makes it possible to make a fluorescent lamp lighting device that is not affected by stray capacitance.
[0011] 周波数を前記所定の周波数 (£)よりも高くなるように制御する時間 (T)は、蛍光灯の点 灯始動に必要な時間とすればよい。外気温条件などに応じて設定することが望まし い。例えば 1秒〜 10秒である。  [0011] The time (T) for controlling the frequency to be higher than the predetermined frequency (£) may be a time necessary for starting the fluorescent lamp. It is desirable to set according to the outside temperature conditions. For example, 1 to 10 seconds.
また、周波数 (Dを変えるのでなぐ低周波駆動電圧に、より高い周波数 (12)の高周波 電圧を重畳するという構成を採用してもよい。すなわち、蛍光灯に前記所定の周波数 In addition, a configuration in which a high-frequency voltage having a higher frequency (12) is superimposed on a low-frequency driving voltage that changes the frequency (D is changed. That is, the predetermined frequency is applied to the fluorescent lamp.
(Dよりも高い周波数 (β)の高周波電圧を前記低周波駆動電圧に重畳するための高周 波電圧重畳回路をさらに設ける。 (A high frequency voltage superposition circuit for superposing a high frequency voltage having a frequency (β) higher than D on the low frequency drive voltage is further provided.
[0012] この構成であれば、蛍光灯を点灯始動するときは、高周波電圧重畳回路により重 畳された高周波電圧を利用して点灯始動する。点灯始動後は、極性切換回路から 出力される低周波駆動電圧を用いて点灯を続けることができる。この点灯中も、高周 波電圧重畳回路により重畳された高周波電流は流れ続ける力 S、高周波電圧の振幅 を、低周波駆動電圧の振幅よりも小さく設定しておけば、蛍光灯若しくはその配線と シャーシとの間の浮遊容量の影響を受けることも少な 、ので問題な 、。もちろん点灯 中、高周波電圧重畳回路をオフにして高周波電流を流さな 、ようにしてもよ 、。  [0012] With this configuration, when the fluorescent lamp is turned on, the fluorescent lamp is turned on using the high-frequency voltage superimposed by the high-frequency voltage superimposing circuit. After starting lighting, lighting can be continued using the low frequency drive voltage output from the polarity switching circuit. Even during this lighting, if the high-frequency current superimposed by the high-frequency voltage superposition circuit continues to flow S and the amplitude of the high-frequency voltage is set smaller than the amplitude of the low-frequency drive voltage, the fluorescent lamp or its wiring This is a problem because it is less affected by stray capacitance with the chassis. Of course, you can turn off the high-frequency voltage superimposing circuit and turn on the high-frequency current during lighting.
[0013] 前記高周波電圧重畳回路として、一次側に高周波電源が接続され、二次側から高 周波電圧を取り出すことのできる高周波重畳トランスを用いてもょ 、。高周波重畳トラ ンスを用いれば、蛍光灯と高周波電源との間を簡単に絶縁できるメリットもある。 前記高周波重畳トランスの二次側卷線には中間タップが設けられ、前記極性切換 回路の出力回線は、この中間タップに接続され、前記複数の蛍光灯が 2つのグルー プに分割され、前記二次側卷線の両端に、各グループに属する蛍光灯の一端がそ れぞれ接続されている構成であってもよい。こうすれば、高周波重畳トランスをさらに /J、さくすることができる。 [0013] As the high-frequency voltage superimposing circuit, a high-frequency superimposing transformer having a high-frequency power source connected to the primary side and capable of extracting a high-frequency voltage from the secondary side may be used. The use of a high-frequency superimposed transformer has the advantage that it can be easily insulated between the fluorescent lamp and the high-frequency power source. An intermediate tap is provided on the secondary side of the high-frequency superimposing transformer, the output line of the polarity switching circuit is connected to the intermediate tap, the plurality of fluorescent lamps are divided into two groups, and the two One end of the fluorescent lamp belonging to each group is attached to both ends of the secondary side wire. Each may be connected. In this way, the high frequency superimposing transformer can be further reduced by / J.
[0014] また、前記高周波重畳トランスの二次側卷線は、 1つのキャパシタを通して前記極 性切換回路の一方の出力回線に接続され、他のキャパシタを通して前記極性切換 回路の他方の出力回線に接続されている構成であってもよい。こうすれば、高周波 重畳トランスを小さくすることができ、また蛍光灯の両端力も同相の低周波駆動電圧 を用いてバランス点灯することができるので輝度ムラを一層解消することができる。  [0014] The secondary side winding of the high-frequency superimposing transformer is connected to one output line of the polarity switching circuit through one capacitor and connected to the other output line of the polarity switching circuit through another capacitor. It may be configured. In this way, the high-frequency superimposing transformer can be made smaller, and both ends of the fluorescent lamp can be balancedly lit using the same-phase low-frequency driving voltage, so that uneven brightness can be further eliminated.
[0015] 前記極性切換回路と前記複数の蛍光灯との間に、直列に接続されたインダクタと並 列に接続されたキャパシタとを有する LC共振回路を接続してもよい。これにより、低 周波駆動電圧から、高周波電圧を自励式で作り出すことができる。 [0015] An LC resonance circuit having an inductor connected in series and a capacitor connected in parallel may be connected between the polarity switching circuit and the plurality of fluorescent lamps. As a result, a high-frequency voltage can be generated by self-excitation from a low-frequency drive voltage.
前記直流入力を生成するための直流電源回路は、交流電圧を変換するための主 変圧器と、当該主変圧器の出力を整流する整流回路とを有するものであってもよい。 この主変圧器の卷数比を設定することにより、蛍光灯の点灯に必要な所望の直流電 圧を得ることができる。  The DC power supply circuit for generating the DC input may include a main transformer for converting an AC voltage and a rectifier circuit for rectifying the output of the main transformer. By setting the power ratio of the main transformer, a desired DC voltage necessary for lighting the fluorescent lamp can be obtained.
[0016] 前記整流回路を、倍圧整流回路とすれば、倍圧整流回路で電圧を上げることがで きるので、主変圧器に対する昇圧比の負担を下げることができる。したがって、主変 圧器の卷数比を下げることができ、主変圧器の小型化に有利となる。  If the rectifier circuit is a voltage doubler rectifier circuit, the voltage can be increased by the voltage doubler rectifier circuit, so that the burden of the step-up ratio on the main transformer can be reduced. Therefore, the power ratio of the main transformer can be reduced, which is advantageous for downsizing the main transformer.
前記主変圧器に供給される交流電圧は、直流から所定周波数の高周波出力を得 るインバータによって生成することが好ましい。これによつて、インバータによって生成 される高周波の周波数を、主変圧器の変換効率向上に有利な高い周波数とすること ができる。一般に変圧器は周波数が高いほど変換効率が向上するので、これで主変 圧器の卷数が少なくてもよくなり、主変圧器を十分小型にできる。  The AC voltage supplied to the main transformer is preferably generated by an inverter that obtains a high-frequency output of a predetermined frequency from DC. As a result, the high frequency generated by the inverter can be set to a high frequency advantageous for improving the conversion efficiency of the main transformer. In general, the higher the frequency of the transformer, the higher the conversion efficiency. Thus, the number of main transformers can be reduced, and the main transformer can be made sufficiently small.
[0017] 図 15に示した従来の高周波交流点灯装置では、インバータの周波数を上げれば、 主変圧器を小さくできるのでよいが、周波数が高くなると、蛍光灯とシャーシとの間の 浮遊容量の影響が大きくなつてくる。浮遊容量が大きくなると、配線距離を長くできな くなり、機器内の蛍光灯の配置に制約を受ける。また無効電流が大きくなり、蛍光灯 の照度が低下し、画面輝度を均一にすることが難しくなる。  [0017] In the conventional high-frequency AC lighting device shown in Fig. 15, the main transformer can be made smaller by increasing the frequency of the inverter, but if the frequency is increased, the effect of stray capacitance between the fluorescent lamp and the chassis is increased. Will grow bigger. When the stray capacitance increases, the wiring distance cannot be increased, and the arrangement of fluorescent lamps in the device is restricted. In addition, the reactive current increases, the illuminance of the fluorescent lamp decreases, and it becomes difficult to make the screen brightness uniform.
[0018] このように、従来ではインバータの周波数を、主変圧器に都合がよ!、ような周波数ま で上げることができなかった。 [0018] Thus, conventionally, the frequency of the inverter is adjusted to a frequency that is convenient for the main transformer! I couldn't raise it.
ところが本発明では、インバータからの高周波出力は、整流回路によっていつたん 直流化され、極性切換回路を介して蛍光灯に供給される。すなわち、インバータの周 波数と、蛍光灯の駆動周波数とを、別々に設定することができる。したがって、インバ ータの周波数を主変圧器の変換効率向上に有利な十分高い周波数とすることがで きる。このため、主変圧器の小型化が容易になるとともに、蛍光灯の駆動周波数 fを、 前述のように低くすることができるので、蛍光灯やその配線は、浮遊容量の影響を受 けることがなくなる。  However, in the present invention, the high frequency output from the inverter is converted to direct current by the rectifier circuit and supplied to the fluorescent lamp via the polarity switching circuit. That is, the frequency of the inverter and the driving frequency of the fluorescent lamp can be set separately. Therefore, the frequency of the inverter can be set to a sufficiently high frequency that is advantageous for improving the conversion efficiency of the main transformer. As a result, the main transformer can be easily downsized and the driving frequency f of the fluorescent lamp can be lowered as described above, so that the fluorescent lamp and its wiring can be affected by stray capacitance. Disappear.
[0019] 本発明における上述の、又はさらに他の利点、特徴及び効果は、添付図面を参照 して次に述べる実施形態の説明により明らかにされる。  [0019] The above-described or other advantages, features, and effects of the present invention will become apparent from the following description of embodiments with reference to the accompanying drawings.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]本発明の蛍光灯の点灯装置の回路図である。 FIG. 1 is a circuit diagram of a fluorescent lamp lighting device according to the present invention.
[図 2]図 1の点灯装置の各部の波形を示すグラフである。  FIG. 2 is a graph showing waveforms at various parts of the lighting device of FIG.
[図 3]蛍光灯の点灯始動時だけ速めの周波数 flに設定し、点灯して力 遅い周波数 fに切り替える様子を示すグラフである。  [Fig. 3] This is a graph showing how the frequency fl is set to a faster frequency fl only at the start of lighting of the fluorescent lamp and is switched to the frequency f which is turned on and slow.
[図 4]蛍光灯の点灯始動時だけ速めの周波数 flに設定し、点灯して力 遅い周波数 fに切り替える様子を示すグラフである。  [Fig. 4] This is a graph showing how the frequency fl is set to a faster frequency fl only at the start of lighting of the fluorescent lamp and is switched to the slower frequency f.
[図 5]極性切換回路 5と複数の冷陰極管 71 · · 7ηとの間に高周波電圧重畳回路が設 けられた、本発明の蛍光灯の点灯装置の回路図である。  FIG. 5 is a circuit diagram of a fluorescent lamp lighting device according to the present invention in which a high-frequency voltage superposition circuit is provided between the polarity switching circuit 5 and the plurality of cold cathode tubes 71.
[図 6Α]極性切換回路 5の出力電圧波形を示す波形図である。  FIG. 6B is a waveform diagram showing an output voltage waveform of the polarity switching circuit 5.
[図 6Β]高周波電圧重畳回路によって高周波電圧が重畳された後の出力電圧波形を 示す波形図である。  [Fig. 6] is a waveform diagram showing the output voltage waveform after the high frequency voltage is superimposed by the high frequency voltage superimposing circuit.
[図 7]2つのトランジスタ Ql, Q2を高周波電源 9の具体的回路図である。  FIG. 7 is a specific circuit diagram of the high-frequency power source 9 including two transistors Ql and Q2.
[図 8]変形例に係る高周波電圧重畳回路を備えた、本発明の蛍光灯の点灯装置の 回路図である。  FIG. 8 is a circuit diagram of a fluorescent lamp lighting device of the present invention provided with a high-frequency voltage superposition circuit according to a modification.
[図 9]さらに他の変形例に係る高周波電圧重畳回路を備えた、本発明の蛍光灯の点 灯装置の回路図である。  FIG. 9 is a circuit diagram of a fluorescent lamp lighting device of the present invention provided with a high-frequency voltage superposition circuit according to still another modification.
[図 10]自励式の高周波電源重畳回路を用いた蛍光灯の点灯装置の回路図である。 [図 11A]極性切換回路 5の出力電圧波形を示す図である。 FIG. 10 is a circuit diagram of a fluorescent lamp lighting device using a self-excited high-frequency power supply superposition circuit. FIG. 11A is a diagram showing an output voltage waveform of the polarity switching circuit 5.
[図 11B]高周波電圧が重畳された後の出力電圧波形を示す図である。  FIG. 11B is a diagram showing an output voltage waveform after a high frequency voltage is superimposed.
[図 12]主変圧器 3を省略したトランスレス点灯装置の要部回路図である。  FIG. 12 is a circuit diagram of a main part of a transformerless lighting device in which the main transformer 3 is omitted.
[図 13]インバータ回路 2及び主変圧器 3を省略して、この点灯装置が組み込まれる機 器 10のインバータ回路及び変圧器を流用する構成を示す要部回路図である。  FIG. 13 is a main part circuit diagram showing a configuration in which the inverter circuit 2 and the main transformer 3 are omitted, and the inverter circuit and the transformer of the device 10 in which the lighting device is incorporated are diverted.
[図 14]均流回路の他の例を示す回路図である。  FIG. 14 is a circuit diagram showing another example of a current equalization circuit.
[図 15]従来の高周波交流点灯装置を示す回路図である。  FIG. 15 is a circuit diagram showing a conventional high-frequency AC lighting device.
[図 16]図 15の高周波点灯装置の各部の波形を示すグラフである。  FIG. 16 is a graph showing waveforms at various parts of the high-frequency lighting device of FIG.
符号の説明  Explanation of symbols
[0021] 1, \' 高周波電圧重畳回路 [0021] 1, \ 'High-frequency voltage superposition circuit
2 インバータ  2 Inverter
3 主変圧器  3 Main transformer
4 倍圧整流回路  4 double voltage rectifier circuit
5 極性切換回路  5 Polarity switching circuit
6 均流回路  6 Current equalizing circuit
61 · · 6η 定電流回路  61 · · 6η Constant current circuit
71 · · 7η 冷陰極管  71 · · 7η Cold cathode tube
8 シャーシ  8 Chassis
9 高周波電源  9 High frequency power supply
10 機器  10 Equipment
12 電圧重畳トランス  12 Voltage superimposing transformer
51 制御回路  51 Control circuit
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、本発明の実施の形態を、添付図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
図 1は、本発明の蛍光灯の点灯装置の回路図である。  FIG. 1 is a circuit diagram of a fluorescent lamp lighting device according to the present invention.
この点灯装置は、直流入力を交流に変換するインバータ 2と、インバータ 2からの交 流電圧を昇圧する主変圧器 3と、主変圧器 3から出力された交流電圧を倍圧整流す る倍圧整流回路 4と、整流された直流電圧の極性切り替えを行う極性切換回路 5と、 極性切換回路 5の出力回線 (e),(Dに対してそれぞれ接続された複数 (n本)の冷陰極 管 71 · · 7nと、前記複数の冷陰極管 71 · · 7nの他端に接続され、各冷陰極管 71 · · 7 nに等 U、電流を流すための均流回路 6とを備えて 、る。 This lighting device includes an inverter 2 that converts DC input into AC, a main transformer 3 that boosts the AC voltage from the inverter 2, and a voltage doubler that doubles and rectifies the AC voltage output from the main transformer 3. A rectifier circuit 4, a polarity switching circuit 5 for switching the polarity of the rectified DC voltage, The output lines (e) and (n) of the polarity switching circuit 5 are connected to the other (n) cold cathode tubes 71 · 7n connected to D and to the other ends of the plurality of cold cathode tubes 71 · 7n. Each cold-cathode tube 71... 7 n is equipped with a current equalizing circuit 6 for supplying a current and the like U.
[0023] この装置の動作説明をする。まず直流入力を、インバータ 2に含まれるスイッチング トランジスタの切換えにより主変圧器 3に最適な交流周波数に変換する。この「主変 圧器 3に最適な交流周波数」とは、主変圧器 3として十分な変換効率が得られる周波 数のことであり、通常は数十 kHz〜数百 kHzである。周波数力この範囲より低すぎる と、主変圧器 3を大きくする必要があり、装置全体が大きく重くなる。周波数がこの範 囲よりも高いと、主変圧器 3内部で発生する並列容量の影響が大きくなり、共振が発 生して変換効率が低下する。  [0023] The operation of this apparatus will be described. First, the DC input is converted to an AC frequency optimum for the main transformer 3 by switching the switching transistor included in the inverter 2. This “optimal AC frequency for the main transformer 3” is a frequency at which sufficient conversion efficiency is obtained for the main transformer 3, and is usually several tens of kHz to several hundreds of kHz. If the frequency force is lower than this range, the main transformer 3 needs to be enlarged, and the entire device becomes large and heavy. If the frequency is higher than this range, the influence of the parallel capacitance generated inside the main transformer 3 becomes large, resonance occurs, and conversion efficiency decreases.
[0024] 次に、所定の巻き数と巻き数比を持つ主変圧器 3によって、前記交流電圧を所定の 昇圧比で昇圧する。さらに、倍圧整流回路 4によって整流と昇圧とを行う。これによつ て、冷陰極管 71 · · 7ηの点灯に必要な直流電圧を得ることができる。なお「冷陰極管 71 · · 7ηの点灯に必要な直流電圧」とは、 1000 V〜 2000 V程度である。  Next, the AC voltage is boosted at a predetermined step-up ratio by the main transformer 3 having a predetermined number of turns and a turn ratio. Further, the voltage doubler rectifier circuit 4 performs rectification and boosting. As a result, it is possible to obtain a DC voltage necessary for lighting the cold cathode tubes 71. The “DC voltage required for lighting the cold cathode tube 71... 7η” is about 1000 V to 2000 V.
この直流電圧を、極性切換回路 5のスイッチングトランジスタのオンオフにより、交流 に変換する。このスイッチングトランジスタのオンオフを制御するのは、制御回路 51で ある。制御回路 51は各スイッチングトランジスタのゲートにオンオフ信号を供給するこ とにより、各スイッチングトランジスタの才ン才フを制御する。  This DC voltage is converted into AC by turning on / off the switching transistor of the polarity switching circuit 5. The control circuit 51 controls on / off of the switching transistor. The control circuit 51 controls the age of each switching transistor by supplying an on / off signal to the gate of each switching transistor.
[0025] オンオフ信号の周波数 fの範囲は、 OHzを超え、 20kHz以下であればよい。できれ ば、 OHzを超え 10kHz以下がよぐさらに好ましくは、 OHzを超え 1kHz以下がよい。 均流回路 6は、トランジスタのコレクタ ェミッタ間に流れる電流を利用して定電流を 得る電子回路(定電流回路と 、ぅ)61 ', 6nを、冷陰極管 71 · · 7nの数に応じて備えて いる。各冷陰極管 71 · · 7ηと各定電流回路 61 · · 6ηとは、それぞれ直列に接続されて V、る。この冷陰極管 71 · · 7ηと定電流回路 61 · · 6ηとの直列回路 (冷陰極管 71 · · 7η の本数だけある)が、極性切換回路 5の 2本の出力回線 (e),(Dに対して接続されてい る。  [0025] The range of the frequency f of the on / off signal may be more than OHz and 20 kHz or less. If possible, more than OHz and less than 10kHz is more preferable, more preferably more than OHz and less than 1kHz. The current equalizing circuit 6 is an electronic circuit (constant current circuit, ぅ) 61 ', 6n that obtains a constant current using the current flowing between the collector emitters of the transistors, depending on the number of cold cathode tubes 71 ··· 7n. I have. Each cold cathode tube 71 ··· 7η and each constant current circuit 61 ··· 6η are connected in series with each other. This series of cold cathode tubes 71 ··· 7η and constant current circuits 61 ··· 6η (the number of cold cathode tubes 71 ··· 7η) is equal to the two output lines (e), ( Connected to D.
[0026] 各定電流回路 61 · · 6ηのトランジスタは、図 1に示すように、 ηρη型と ρηρ型と力並列 に接続されている。 ηρη型について説明すれば、ェミッタ'接地間に抵抗 Rが接続さ れている。各トランジスタのベースは互いに共通に接続されている。この共通ベース 電圧を Vbと表記する。抵抗 Rの両端電圧は電圧 Vbにほぼ等しぐ電圧 Vbは各トラン ジスタで共通であるから、抵抗 Rの両端電圧は、各定電流回路 61 · · 6ηでほぼ等しく なる。このため各定電流回路 61 · · 6ηを一方向(ηρη型トランジスタのコレクタからエミ ッタ方向)に流れる電流がほぼ等しくなり、定電流が得られる。逆方向(ρηρ型トランジ スタのェミッタ力もコレクタ方向)に流れる電流も、 ρηρ型のトランジスタの同様の作用 により、均一化され、定電流が得られる。 As shown in FIG. 1, the transistors of the constant current circuits 61... 6η are connected in force parallel to the ηρη type and the ρηρ type. Explaining the ηρη type, a resistor R is connected between the emitter and ground. It is. The bases of the transistors are connected to each other in common. This common base voltage is expressed as Vb. Since the voltage Vb that is almost equal to the voltage Vb is common to each transistor, the voltage across the resistor R is almost equal in each constant current circuit 61 ··· 6η. For this reason, the current flowing in each direction of each constant current circuit 61... 6η in one direction (from the collector of the ηρη type transistor to the emitter) is almost equal, and a constant current is obtained. The current flowing in the reverse direction (the emitter force of the ρηρ transistor is also the collector direction) is equalized by the same action of the ρηρ transistor, and a constant current is obtained.
[0027] このように、トランジスタを含む定電流回路 61 · · 6ηを用いて定電流を実現している ので、従来のように複数の変圧器を利用した均流回路 601に比べて小型化'軽量ィ匕 が可能となる。 [0027] As described above, the constant current circuit 61 ··· 6η including the transistor realizes a constant current, so that it is smaller than the current equalization circuit 601 using a plurality of transformers as in the past. Light weight can be achieved.
図 2は、図 1の点灯装置の各部の波形を示すグラフである。  FIG. 2 is a graph showing waveforms at various parts of the lighting device of FIG.
図 2の(a)はインバータ 2に入力される直流入力電圧を示す。図 2の(b)は、インバ ータ 2の出力電圧すなわち主変圧器の一次側電圧の波形である。図 2の(c)は主変 圧器 3の二次側電圧の波形である。主変圧器 3の二次側電圧は、主変圧器 3の一次 側電圧に対して、主変圧器 3の巻き数比に応じて昇圧されている。図 2の(d)は、倍 圧整流回路 4の出力波形である。この出力電圧は主変圧器 3の二次側電圧よりもさら に上昇していると同時に、脈流に整流されている。図 2の(e)は、極性切換回路 5の 出力波形を示す。極性切換回路 5によって、脈流に整流された直流出力が交互に正 負になるように切換えられる。この切り替えられた出力電流力 均流回路 6を通って各 冷陰極管 71 · · 7nに供給される。  (A) in FIG. 2 shows the DC input voltage input to the inverter 2. Fig. 2 (b) shows the waveform of the output voltage of the inverter 2, that is, the primary side voltage of the main transformer. (C) in Fig. 2 shows the waveform of the secondary side voltage of the main transformer 3. The secondary side voltage of the main transformer 3 is boosted according to the turn ratio of the main transformer 3 with respect to the primary side voltage of the main transformer 3. (D) of FIG. 2 is an output waveform of the voltage doubler rectifier circuit 4. This output voltage rises further than the secondary voltage of the main transformer 3, and at the same time is rectified into a pulsating current. (E) in Fig. 2 shows the output waveform of polarity switching circuit 5. The polarity switching circuit 5 switches the DC output rectified into a pulsating flow so that it is alternately positive and negative. This switched output current force is supplied to each cold-cathode tube 71.
[0028] なお、極性切換回路 5の切換周波数を点灯始動時だけ速くするという設定をするこ とが好ましいので、このことについて説明する。前記では、極性切換回路 5の切換周 波数 fの範囲は、 OHzを超え、 20kHz以下と述べた力 点灯始動時だけさらに速め の周波数 fl (fl≥f)に設定し、点灯してからは、前記 OHzを超え 20kHzの範囲内で 、遅い周波数 fに切り替えることとしてもよい。 [0028] It is preferable to set the switching frequency of the polarity switching circuit 5 to be faster only at the start of lighting, and this will be described. In the above, the range of the switching frequency f of the polarity switching circuit 5 is set to a frequency fl (fl≥f) that is faster only at the start of lighting when it exceeds 20 Hz and below 20 kHz. The frequency may be switched to a slower frequency f within the range of 20 kHz exceeding OHz.
[0029] 図 2の(e)に、制御回路 51のオンオフ周波数を、点灯始動時だけ速めの周波数 fl に設定し、点灯してからは遅 、周波数 fに切り替える例を示して 、る。 FIG. 2 (e) shows an example in which the on / off frequency of the control circuit 51 is set to a faster frequency fl only at the start of lighting, and after switching on, the frequency is switched to the frequency f.
図 3は、時間と周波数の関係を示すグラフであり、点灯始動時だけ速めの周波数 fl に設定し、所定時間 τ経過後、遅い周波数 fに切り替えている。例えば、点灯始動時 は fl = lkHzとし、点灯後はそれより遅い f= 120Hzとする。所定時間 Tは、外気温 に応じて設定するが、常温では約 1秒から 10秒の間に設定される。点灯始動しにくい 低温環境で用いる場合は長めに設定し、高温環境で用いる場合は短めに設定する Fig. 3 is a graph showing the relationship between time and frequency. And after a predetermined time τ, the frequency f is switched to a slower frequency f. For example, fl = lkHz at the start of lighting, and f = 120Hz, which is slower after lighting. The predetermined time T is set according to the outside air temperature, but is set to about 1 to 10 seconds at room temperature. When starting in a low temperature environment, set a longer time. When using in a high temperature environment, set a shorter time.
[0030] また、図 4のように点灯始動時だけ速めの周波数 flに設定し、点灯始動から所定時 間 Tの経過とともに、徐々に周波数 flを下げて周波数 fに収束するようにしてもよい。 所定時間 Tの設定範囲は、図 3のケースとほぼ同様である。 [0030] Further, as shown in Fig. 4, the frequency fl may be set to be faster only at the start of lighting, and the frequency fl may be gradually decreased and converged to the frequency f as the predetermined time T elapses from the start of lighting. . The setting range of the predetermined time T is almost the same as the case of FIG.
このように極性切換回路 5の切換周波数を点灯始動時だけ速くすると、冷陰極管 7 1 · · 7n及び冷陰極管 71 · · 7nにつながる配線と、冷陰極管 71 · · 7nを支持するシャ ーシ 8との間の浮遊容量を利用して、冷陰極管 71 · · 7ηの点灯始動がしゃすくなる。 特に低温時の始動に有利となる。  Thus, if the switching frequency of the polarity switching circuit 5 is increased only at the start of lighting, the wiring connected to the cold cathode tubes 7 1, 7n and the cold cathode tubes 71 7n and the shank that supports the cold cathode tubes 71 7n Using the stray capacitance between the 8 This is particularly advantageous for starting at low temperatures.
[0031] 以上のような本発明の点灯装置の構成によって、複数の冷陰極管 71 · · 7ηを、周波 数 fで低周波点灯することができる。  [0031] With the configuration of the lighting device of the present invention as described above, a plurality of cold-cathode tubes 71 ··· 7η can be lit at a low frequency with a frequency f.
ここで「低周波点灯」とは、直流を、極性切換回路 5によって従来よりも低い周波数 f で切換えながら、点灯するという意味である。低周波数 fの範囲は、前述したように、 0 Hzを超え、 20kHz以下である。好ましくは OHzを超え 10kHz以下、さらに好ましくは OHzを超え 1kHz以下である。  Here, “low frequency lighting” means lighting while switching the direct current by the polarity switching circuit 5 at a lower frequency f than in the prior art. As mentioned above, the range of the low frequency f is over 0 Hz and below 20 kHz. Preferably it exceeds OHz and is 10 kHz or less, more preferably it exceeds OHz and is 1 kHz or less.
[0032] 従来では、インバータ 2によって冷陰極管 71 · · 7nに数十 kHzの高周波電流を流し て点灯していたのと比較して、このように低い周波数 fの電流で冷陰極管 71 · · 7ηを 点灯することにより、冷陰極管 71 · · 7η及びそれにつながる配線とシャーシ 8との間に 発生する浮遊容量の影響を低減することができ、画面輝度の均一性を理想に近!ヽも のとすることができる。この画面輝度の均一性を保つ効果は、極性切換回路 5の切換 周波数 fが低 ヽほど有利となる。  [0032] Conventionally, the cold-cathode tube 71 · · 7n with a current of such a low frequency f as compared with the cold-cathode tube 71 · · By lighting 7η, the cold cathode tube 71 · 7η and the influence of stray capacitance generated between the wiring connected to 7η and the chassis 8 can be reduced, and the screen brightness uniformity is close to ideal! It can be a thing. The effect of maintaining the uniformity of the screen brightness is more advantageous as the switching frequency f of the polarity switching circuit 5 is lower.
[0033] また、主変圧器 3は、極性切換回路 5の切換周波数 fとは関係なぐ高周波で駆動 することができるので、主変圧器 3の寸法を小さくできる。  [0033] In addition, since the main transformer 3 can be driven at a high frequency unrelated to the switching frequency f of the polarity switching circuit 5, the size of the main transformer 3 can be reduced.
したがって、本点灯装置を液晶表示装置などのバックライト用に用いれば、点灯装 置全体を小さくできる。また低周波を用いて冷陰極管を点灯することにより、浮遊容 量の影響を低減できるので、冷陰極管と、それを支えるシャーシとを無限に近づける ことができる。従って、液晶表示装置の厚さを薄くすることができる。 Therefore, if the lighting device is used for a backlight of a liquid crystal display device or the like, the entire lighting device can be made small. In addition, by floating the cold cathode tube using low frequency, Since the influence of the quantity can be reduced, the cold cathode tube and the chassis supporting it can be brought to infinity. Therefore, the thickness of the liquid crystal display device can be reduced.
[0034] 次に、前記低周波数 fよりも高い周波数 f 2の高周波電圧を、前記低周波駆動電圧 に重畳するための高周波電圧重畳回路が設けられた回路例を説明する。  Next, a circuit example in which a high frequency voltage superposition circuit for superposing a high frequency voltage having a frequency f 2 higher than the low frequency f on the low frequency drive voltage will be described.
この周波数 f2の電圧を重畳する場合、点灯始動時だけでなぐ点灯中の全時間に わたって、周波数 fの電圧に周波数 f2の電圧を重畳する。  When superimposing the voltage at frequency f2, the voltage at frequency f2 is superimposed on the voltage at frequency f for the entire duration of lighting, not just at the start of lighting.
図 5は、極性切換回路 5と複数の冷陰極管 71 · · 7ηとの間にインダクタ Ll、キャパシ タ Cl、高周波電源 9及び電圧重畳トランス 12が設けられた蛍光灯の点灯装置の回 路図である。これらのインダクタ Ll、キャパシタ Cl、高周波電源 9及び電圧重畳トラ ンス 12によって、高周波電圧重畳回路 1を構成する。  Fig. 5 shows a circuit diagram of a fluorescent lamp lighting device in which an inductor Ll, a capacitor Cl, a high-frequency power source 9 and a voltage superimposing transformer 12 are provided between the polarity switching circuit 5 and a plurality of cold-cathode tubes 71 ··· 7η. It is. The inductor Ll, capacitor Cl, high frequency power source 9 and voltage superimposing transformer 12 constitute a high frequency voltage superimposing circuit 1.
[0035] インダクタ L1は、極性切換回路 5と冷陰極管 71 · · 7ηとの間に直列に接続され、重 畳された高周波電流が極性切換回路 5に逆流するのを防止する。キャパシタ C1は低 周波駆動電圧の短絡を防止するために設けられる。電圧重畳トランス 12は一次側卷 線 T1,二次側卷線 Τ2からなり、一次側卷線 T1には高周波電源 9が接続されている 。この高周波電源 9の周波数を「f 2」と書く。周波数を f 2は、前記低周波数 fの 5〜50 倍程度に設定するとよい。例えば、 f= 100Hzであれば、 f2 = 500Hz〜5kHzである  The inductor L1 is connected in series between the polarity switching circuit 5 and the cold cathode tubes 71... 7η, and prevents the superimposed high-frequency current from flowing back to the polarity switching circuit 5. Capacitor C1 is provided to prevent short circuit of the low frequency drive voltage. The voltage superimposing transformer 12 includes a primary side wire T1 and a secondary side wire T2, and a high frequency power source 9 is connected to the primary side wire T1. The frequency of the high frequency power supply 9 is written as “f 2”. The frequency f2 is preferably set to about 5 to 50 times the low frequency f. For example, if f = 100Hz, f2 = 500Hz ~ 5kHz
[0036] 図 6Aは、極性切換回路 5の出力電圧波形を示す。この波形は、図 2の(e)と同じも のであるが、脈流を省略して描いている。図 6Bは高周波電圧重畳回路 1によって周 波数 f2の高周波電圧が重畳された出力電圧波形を示す。 FIG. 6A shows an output voltage waveform of the polarity switching circuit 5. This waveform is the same as (e) in Fig. 2, but the pulsating flow is omitted. Figure 6B shows the output voltage waveform on which the high-frequency voltage of frequency f2 is superimposed by the high-frequency voltage superposition circuit 1.
ここで、振幅の関係について説明する。極性切換回路 5の出力電圧の振幅を" a"、 周波数 f2の高周波電圧の振幅を" b"とすると、 bは aの 0. 1〜0. 5倍程度であること が望ましい。 0. 1倍よりも低ければ、高周波 f2を重畳する効果が薄くなり、低周波 fの みで始動したのと変わらなくなる。 0. 5倍よりも高ければ、浮遊容量の影響を受けて 点灯中の電力損失が大きくなる。  Here, the amplitude relationship will be described. Assuming that the amplitude of the output voltage of the polarity switching circuit 5 is “a” and the amplitude of the high-frequency voltage of the frequency f2 is “b”, it is desirable that b is about 0.1 to 0.5 times a. 0. If it is lower than 1 times, the effect of superimposing the high frequency f2 will be diminished, and it will be the same as starting with only the low frequency f. If it is higher than 5 times, the power loss during lighting increases due to the stray capacitance.
[0037] このように極性切換回路 5の出力電圧波形に周波数 f 2の高周波電圧が重畳されて いるので、冷陰極管 71 · · 7ηの点灯始動にこの高周波電圧を利用して点灯始動を容 易に行うことができる。特に低温時の点灯始動に有効である。 また、周波数 f2の高周波電圧の振幅" b"を調節することで、点灯中の冷陰極管 71 · •7nの明るさを制御できる。 "b"が大きいほど明るくすることができ、 "b"が小さいほど B音くすることができる。 [0037] Since the high-frequency voltage of frequency f2 is superimposed on the output voltage waveform of the polarity switching circuit 5, the high-frequency voltage is used to start the cold cathode tube 71 · 7η. It can be done easily. This is particularly effective for starting lighting at low temperatures. Also, by adjusting the amplitude “b” of the high-frequency voltage at the frequency f2, the brightness of the cold-cathode tube 71 •• 7n being lit can be controlled. The larger “b”, the brighter the sound, and the smaller “b”, the more B sound.
[0038] また、周波数 f 2の値を選択することによって点灯中の冷陰極管 71 · · 7ηの明るさを 調節することができる。すなわち、電圧重畳トランス 12の二次側卷線 Τ2の漏れ磁界 (1 eakage magbetic flux)がある場合、周波数 f2を高くすれば冷陰極管 71 · · 7nを暗くす ることができ、周波数 f 2を低くすれば冷陰極管 71 · · 7ηを明るくすることができる。逆 に二次側卷線 Τ2の漏れ磁界がない場合、周波数 f 2を高くすれば冷陰極管 71 · · 7η を明るくすることができ、周波数 f 2を低くすれば冷陰極管 71 · · 7ηを暗くすることがで きる。  [0038] The brightness of the cold cathode tube 71 ··· 7η being lit can be adjusted by selecting the value of the frequency f2. In other words, if there is a leakage magnetic field (1 eakage magbetic flux) of the secondary winding Τ2 of the voltage superimposing transformer 12, the cold cathode tube 71 7n can be darkened by increasing the frequency f2, and the frequency f 2 If the value is lowered, the cold cathode tube 71 ··· 7η can be brightened. On the other hand, if there is no leakage magnetic field of secondary side wire Τ2, the cold cathode tube 71 · 7η can be brightened by increasing the frequency f 2 and cold cathode tube 71 · 7η by reducing the frequency f 2 Can be darkened.
[0039] 図 7は、いままで説明した高周波電源 9の具体的回路図である。高周波電源 9は、 2 つのトランジスタ Ql, Q2を直列に接続した回路であり、トランジスタ Ql, Q2のベース に、周波数 f2で高電圧 Ζ低電圧を交互に出力する交流スイッチング回路 11を接続 している。交流スイッチング回路 11が高電圧を出力しているときはトランジスタ Q1が オンになり、電源 Fから、キャパシタ C3を通して一次側卷線 T1に電流が充電される。 交流スイッチング回路 11が低電圧を出力しているときはトランジスタ Q2がオンになり 、一次側卷線 T1に充電された電流は、キャパシタ C3を放電する。このようにして、一 次側卷線 T1に高周波電流を流すことができる。  FIG. 7 is a specific circuit diagram of the high-frequency power source 9 described so far. The high frequency power supply 9 is a circuit in which two transistors Ql and Q2 are connected in series, and an AC switching circuit 11 that alternately outputs a high voltage and a low voltage at a frequency f2 is connected to the bases of the transistors Ql and Q2. . When the AC switching circuit 11 outputs a high voltage, the transistor Q1 is turned on, and the primary side wire T1 is charged from the power source F through the capacitor C3. When the AC switching circuit 11 outputs a low voltage, the transistor Q2 is turned on, and the current charged in the primary side wire T1 discharges the capacitor C3. In this way, a high-frequency current can flow through the primary winding T1.
[0040] 次に高周波電圧重畳回路 1の変形例を、図 8、図 9を用いて説明する。  Next, a modified example of the high-frequency voltage superimposing circuit 1 will be described with reference to FIGS.
図 8では、電圧重畳トランス 12としてタップ付の二次側卷線 T2を有するトランスを使 い、極性切換回路 5の出力回線 (e)をこのタップに接続している。複数の冷陰極管を 2 つのグループに分けて、各グループ内で冷陰極管を並列接続し、冷陰極管の接続 端を、二次側卷線 T2の両端部 (g),(h)にそれぞれ接続した回路構成を示す図である。 1つのグループに属する冷陰極管を 71, 72· · ·と表示し、他のグループに属する冷 陰極管を 81, 82· · ·と表示している。電圧重畳トランス 12の一次側卷線 T1には、図 5と同様、高周波電源 9が接続されている。この高周波電源 9の周波数 f 2は、前記低 周波数 fの 5〜50倍程度に設定される。  In FIG. 8, a transformer having a tapped secondary side wire T2 is used as the voltage superimposing transformer 12, and the output line (e) of the polarity switching circuit 5 is connected to this tap. Divide multiple cold-cathode tubes into two groups, connect the cold-cathode tubes in parallel in each group, and connect the cold-cathode tube connection ends to the ends (g) and (h) of the secondary side wire T2. It is a figure which shows the circuit structure connected respectively. The cold cathode tubes belonging to one group are indicated as 71, 72 ···, and the cold cathode tubes belonging to the other group are indicated as 81, 82 ···. A high-frequency power source 9 is connected to the primary winding T1 of the voltage superimposing transformer 12 as in FIG. The frequency f2 of the high frequency power supply 9 is set to about 5 to 50 times the low frequency f.
[0041] この回路によれば、極性切換回路 5から出力された低周波電圧はタップ力 分かれ て二次側卷線 T2の両端部 (g),(h)力も各グループに出て行き、各グループの冷陰極 管を点灯駆動する。極性切換回路 5から出力された低周波電圧は二次側卷線 T2の 両端部 (g),(h)において同位相である。また高周波電源 9から出力された高周波電圧 は、二次側卷線 T2の両端から、各グループの冷陰極管を逆位相で点灯始動する。 つまり、高周波電源 9から出力された高周波電圧は、二次側卷線 T2の両端部 (g),(h) において逆位相である。この回路によれば、図 5の回路にあるようなキャパシタ C1は 不要になる。またセンタータップを有する二次側卷線 T2を用いるので、直流電流によ るコアの偏磁が相殺される。よってコアの飽和が少なくなり、コアの小さな小型のトラン スを用いることができる。 [0041] According to this circuit, the low frequency voltage output from the polarity switching circuit 5 is divided by the tap force. Then, both end (g) and (h) forces of the secondary side winding T2 also go out to each group, and the cold cathode tubes of each group are driven to light. The low-frequency voltage output from the polarity switching circuit 5 has the same phase at both ends (g) and (h) of the secondary winding T2. The high-frequency voltage output from the high-frequency power supply 9 starts lighting the cold cathode tubes of each group in opposite phases from both ends of the secondary winding T2. That is, the high-frequency voltage output from the high-frequency power source 9 is in opposite phase at both ends (g) and (h) of the secondary side winding T2. This circuit eliminates the need for capacitor C1 as in the circuit of FIG. In addition, since the secondary winding T2 having a center tap is used, the core demagnetization due to the direct current is offset. Therefore, the saturation of the core is reduced, and a small transformer with a small core can be used.
[0042] 図 9は、極性切換回路 5の出力線路に、互いに直列に接続されたキャパシタ CI, C 2をつないで、キャパシタ CI, C2の中間接続点 (0に電圧重畳トランス 12をつなぎ、 電圧重畳トランス 12から、キャパシタ CI, C2を通して、冷陰極管 71 · · 7nに点灯始 動用高周波電圧を供給する回路例を示している。  [0042] Fig. 9 shows that the output line of the polarity switching circuit 5 is connected to the capacitors CI and C 2 connected in series with each other, and the intermediate connection point of the capacitors CI and C2 (the voltage superimposing transformer 12 is connected to 0, An example of a circuit for supplying a starting high-frequency voltage to the cold cathode tubes 71... 7n from the superposed transformer 12 through the capacitors CI and C2 is shown.
この回路によれば、高周波電源 9から出力された高周波電圧は、二次側卷線 T2か ら、キャパシタ CI, C2を通して各冷陰極管 71 · · 7nを点灯始動する。キャパシタ C1, C2の値は、互いに等しくてもよく(C1 =C2)、異なっていてもよい(C1≠C2)。また、 キャパシタ CI, C2の何れかがなくてもよい。つまり C1が短絡されているもの、又は C 2が短絡されて!、るものであってもよ!/、。  According to this circuit, the high-frequency voltage output from the high-frequency power source 9 starts lighting the cold cathode tubes 71... 7n from the secondary side wire T2 through the capacitors CI and C2. The values of the capacitors C1 and C2 may be equal to each other (C1 = C2) or may be different (C1 ≠ C2). Further, either one of the capacitors CI and C2 may be omitted. In other words, C1 is short-circuited, or C2 is short-circuited!
[0043] この回路では、特にキャパシタ CI, C2の値が接近している場合、極性切換回路 5 の出力側の両線路 (e),(h)にそれぞれ高周波電圧が現れ、これらの高周波電圧はほ ぼ同じ電位、同じ位相を持つ。つまり、各冷陰極管の両端から、ほぼ同じ電位、同じ 位相の高周波電圧を印加することができ、これらの高周波電流は、冷陰極管 71 · · 7η やそれにつながる配線を介してすベてシャーシ 8に流れることになる。従って、冷陰 極管 71 · · 7ηの管内に発生するおそれのある輝度ムラを解消することができる。また、 小さなコアを有する小型のトランスを用いることができる。  [0043] In this circuit, particularly when the values of the capacitors CI and C2 are close to each other, high-frequency voltages appear on both lines (e) and (h) on the output side of the polarity switching circuit 5, respectively. It has almost the same potential and the same phase. In other words, high-frequency voltages of almost the same potential and phase can be applied from both ends of each cold-cathode tube, and these high-frequency currents are all transmitted through the cold-cathode tube 71 ··· 7η and wiring connected to it. Will flow to 8. Therefore, it is possible to eliminate uneven brightness that may occur in the cold cathode tube 71. Moreover, a small transformer having a small core can be used.
[0044] 次に、本発明の点灯装置の他の回路例を説明する。いままでの図 5〜図 9で説明し た高周波電圧重畳回路 1は、高周波電源 9を用いた他励式の回路であった。しかし、 キャパシタ Cとインダクタ Lとの共振回路を極性切換回路 5の出力側の両線路 (e),(Dに 設けて、高周波電圧を発振させる自励式の回路を採用することもできる。 図 10は、自励式の高周波電圧重畳回路 1' を用いた蛍光灯の点灯装置の回路図 である。 Next, another circuit example of the lighting device of the present invention will be described. The high-frequency voltage superposition circuit 1 described so far in FIGS. 5 to 9 is a separately-excited circuit using a high-frequency power source 9. However, the resonant circuit of the capacitor C and the inductor L is connected to both lines (e) and (D on the output side of the polarity switching circuit 5. It is also possible to employ a self-excited circuit that oscillates a high-frequency voltage. Fig. 10 is a circuit diagram of a fluorescent lamp lighting device using a self-excited high-frequency voltage superimposing circuit 1 '.
[0045] 極性切換回路 5と冷陰極管 71 · · 7nとの間に直列にインダクタ Lを接続し、接地に 対して並列にキャパシタ Cを接続して 、る。インダクタ Lとキャパシタ Cで発振させるの であるから、 Lと Cとの関係は、 2 π ί2= ΐΖ (LC)を満たしているようにする。  [0045] An inductor L is connected in series between the polarity switching circuit 5 and the cold-cathode tubes 71 ··· 7n, and a capacitor C is connected in parallel to the ground. Since the inductor L and the capacitor C oscillate, the relationship between L and C should satisfy 2 π ί2 = ΐΖ (LC).
図 11 Αは、 LC共振回路が存在しな 、場合の極性切換回路 5の出力電圧波形を示 す。この波形は、図 6Aと同じものである。図 11Bは、 LC共振回路により高周波電圧 が重畳された出力電圧波形を示す。 LC共振回路により、低周波の出力波形が負か ら正に、又は正力 負に切り替わった時点で発振出力が現れ、徐々に減衰している。  Figure 11 を shows the output voltage waveform of polarity switching circuit 5 when no LC resonant circuit is present. This waveform is the same as in Figure 6A. Figure 11B shows the output voltage waveform with the high frequency voltage superimposed by the LC resonant circuit. When the low-frequency output waveform switches from negative to positive or positive and negative due to the LC resonance circuit, the oscillation output appears and gradually attenuates.
[0046] このように極性切換回路 5の出力電圧波形には、高周波電圧が重畳されるので、冷 陰極管 71 · · 7ηの点灯始動にこの高周波電圧を利用して点灯始動を容易に行うこと ができる。  [0046] Since the high-frequency voltage is superimposed on the output voltage waveform of the polarity switching circuit 5 in this way, it is possible to easily start the lighting by using this high-frequency voltage for starting the cold cathode tube 71 ··· 7η. Can do.
なお、前記キャパシタ Cは冷陰極管 71 · · 7η及び配線とシャーシ 8との間の浮遊容 量で構成してもよい。  The capacitor C may be composed of a cold cathode tube 71... 7η and a floating capacity between the wiring and the chassis 8.
[0047] 以下、蛍光灯の点灯装置の回路変形例を説明する。  Hereinafter, a circuit modification example of the fluorescent lamp lighting device will be described.
図 12は、主変圧器 3を省略したトランスレス点灯装置の要部回路図である。この回 路では、直流入力に対して、コイルとトランジスタとを用いた共振回路 ^ により直接、 交流電圧を得ている。共振回路で得られる交流電圧は、直流入力に対して 10倍程 度、例えば 240V、周波数は 200kHzである。この交流電圧を、倍圧整流回路 4に通 すことにより、所定電圧、例えば 1500Vの直流電圧を得ている。倍圧整流回路 4より も後段の構成は、図 1〜図 10に示したものと同じである。  FIG. 12 is a circuit diagram of a main part of a transformerless lighting device in which the main transformer 3 is omitted. In this circuit, an AC voltage is directly obtained from a DC input by a resonant circuit ^ using a coil and a transistor. The AC voltage obtained by the resonant circuit is about 10 times the DC input, for example 240V, and the frequency is 200kHz. The AC voltage is passed through the voltage doubler rectifier circuit 4 to obtain a predetermined voltage, for example, a DC voltage of 1500V. The configuration subsequent to the voltage doubler rectifier circuit 4 is the same as that shown in FIGS.
[0048] この構成により、主変圧器 3をなくすことができるので、点灯装置をさらに小型にでき る。  [0048] With this configuration, the main transformer 3 can be eliminated, and thus the lighting device can be further reduced in size.
図 13は、インバータ回路 2及び主変圧器 3を省略して、この点灯装置が組み込まれ る機器 (例えばテレビジョン受像機) 10のインバータ回路 2及び主変圧器 3を流用す る構成を示す要部回路図である。機器 10の電源変圧器の二次側巻き線から、交流 電圧を得て、それを倍圧整流回路 4に通して、昇圧 '整流している。この構成により、 冷陰極管 71 · · 7n専用のインバータ 2と変圧器とが不要になるので、機器全体を小型 化できる。 FIG. 13 is a diagram showing a configuration in which the inverter circuit 2 and the main transformer 3 are omitted and the inverter circuit 2 and the main transformer 3 of a device (for example, a television receiver) 10 in which the lighting device is incorporated are omitted. It is a partial circuit diagram. AC voltage is obtained from the secondary winding of the power transformer of the device 10, and it is passed through the voltage doubler rectifier circuit 4 to boost and rectify. With this configuration, Cold cathode tube 71 · · 7n dedicated inverter 2 and transformer are not required, so the entire device can be downsized.
図 14は、均流回路の他の例を示す回路図である。この均流回路では、定電流を一 方向に流す回路 6aと他方向に流す回路 6bとが互いに分離され、冷陰極管の両側に 設置されている。各定電流回路 6a, 6bの動作は、図 1を用いて説明したのと同様で ある。この均流回路によれば、全て npn型のトランジスタが使えるので、コスト面で有 利になる。  FIG. 14 is a circuit diagram showing another example of the current-equalizing circuit. In this current equalization circuit, a circuit 6a for flowing a constant current in one direction and a circuit 6b for flowing in the other direction are separated from each other and installed on both sides of the cold cathode tube. The operation of each constant current circuit 6a, 6b is the same as described with reference to FIG. According to this current equalization circuit, all npn transistors can be used, which is advantageous in terms of cost.
いままで本発明の実施の形態を説明したが、本発明は、前記実施の形態に限られ るものでないことはもちろんである。例えば、主変圧器 3の出力に対して、倍圧整流回 路 4によって整流と昇圧とを行っていた。しかし、昇圧と整流を切り離して、昇圧は主 変圧器で行い、整流は倍圧でない単なる整流回路で行ってもよい。また、均流回路 の回路例は図 1、図 14に示されたものに限られず、トランジスタを用いた任意の定電 流回路を用いてもよい。また、本発明は、前記実施の形態で用いた冷陰極管に限ら れず、蛍光灯一般に適用できるものである。  Although the embodiments of the present invention have been described so far, it is needless to say that the present invention is not limited to the above-described embodiments. For example, the output of the main transformer 3 is rectified and boosted by the voltage doubler rectifier circuit 4. However, boosting and rectification may be separated, boosting may be performed by the main transformer, and rectification may be performed by a simple rectifier circuit that is not doubled. In addition, the circuit example of the current sharing circuit is not limited to that shown in FIGS. 1 and 14, and any constant current circuit using a transistor may be used. Further, the present invention is not limited to the cold cathode tube used in the above embodiment, and can be applied to general fluorescent lamps.

Claims

請求の範囲 The scope of the claims
[1] 直流入力に対して所定の周波数 (Dで極性切り替えを行うことにより、前記所定の周 波数 (Dの低周波駆動電圧を出力する極性切換回路と、  [1] By switching the polarity at a predetermined frequency (D with respect to the DC input, the predetermined frequency (a polarity switching circuit that outputs a low-frequency driving voltage of D,
前記極性切換回路の出力回線に一端が接続された複数の蛍光灯と、  A plurality of fluorescent lamps connected at one end to an output line of the polarity switching circuit;
前記複数の蛍光灯の他端にそれぞれ接続され、各蛍光灯に等しい電流を流すた めの、トランジスタを含む定電流回路からなる均流回路とを備える蛍光灯の点灯装置  A fluorescent lamp lighting device comprising: a current equalizing circuit including a constant current circuit including a transistor, connected to the other ends of the plurality of fluorescent lamps, and configured to flow an equal current to each fluorescent lamp.
[2] 前記極性切換回路の周波数 (£)は、 OHzを超え、 10kHz以下の周波数である請求 項 1記載の蛍光灯の点灯装置。 2. The fluorescent lamp lighting device according to claim 1, wherein a frequency (£) of the polarity switching circuit is a frequency exceeding OHz and not more than 10 kHz.
[3] 前記極性切換回路の周波数 (£)は、 OHzを超え、 1kHz以下の周波数である請求項[3] The frequency (£) of the polarity switching circuit is a frequency exceeding OHz and 1 kHz or less.
2記載の蛍光灯の点灯装置。 2. A fluorescent lamp lighting device according to 2.
[4] 前記極性切換回路の周波数 (Dを制御する制御回路をさらに有し、 [4] The frequency of the polarity switching circuit (having a control circuit for controlling D;
当該制御回路は、蛍光灯の点灯始動時における周波数を、前記所定の周波数 (£) よりも高くなるように制御する請求項 1記載の蛍光灯の点灯装置。  2. The fluorescent lamp lighting device according to claim 1, wherein the control circuit controls the frequency at the start of lighting of the fluorescent lamp so as to be higher than the predetermined frequency (£).
[5] 前記制御回路が、前記周波数を前記所定の周波数 (1)よりも高くなるように制御する 時間 (T)は、 1秒〜 10秒である請求項 4記載の蛍光灯の点灯装置。 5. The fluorescent lamp lighting device according to claim 4, wherein time (T) for the control circuit to control the frequency to be higher than the predetermined frequency (1) is 1 second to 10 seconds.
[6] 前記周波数 (£)の低周波駆動電圧に、前記所定の周波数 (1)よりも高い周波数 (12)の 高周波電圧を重畳するための高周波電圧重畳回路がさらに設けられている請求項 1 記載の蛍光灯の点灯装置。 [6] The high-frequency voltage superimposing circuit for superimposing a high-frequency voltage having a frequency (12) higher than the predetermined frequency (1) on the low-frequency driving voltage having the frequency (£) is further provided. The fluorescent lamp lighting device described.
[7] 前記高周波電圧重畳回路は、一次側に周波数 (12)の高周波電源が接続され、二次 側から高周波電圧を取り出すことのできる高周波重畳トランスを含む請求項 6記載の 蛍光灯の点灯装置。 7. The fluorescent lamp lighting device according to claim 6, wherein the high-frequency voltage superimposing circuit includes a high-frequency superimposing transformer to which a high-frequency power source having a frequency (12) is connected on the primary side and capable of taking out a high-frequency voltage from the secondary side. .
[8] 前記高周波重畳トランスの二次側卷線には中間タップが設けられ、前記極性切換 回路の出力回線は、この中間タップに接続され、前記複数の蛍光灯が 2つのグルー プに分割され、前記二次側卷線の両端に、各グループに属する蛍光灯の一端がそ れぞれ接続されている請求項 7記載の蛍光灯の点灯装置。  [8] The intermediate side tap of the high-frequency superimposing transformer is provided with an intermediate tap, the output line of the polarity switching circuit is connected to the intermediate tap, and the plurality of fluorescent lamps are divided into two groups. 8. The fluorescent lamp lighting device according to claim 7, wherein one end of a fluorescent lamp belonging to each group is connected to both ends of the secondary side winding.
[9] 前記高周波重畳トランスの二次側卷線は、 1つのキャパシタを通して前記極性切換 回路の一方の出力回線に接続され、他のキャパシタを通して前記極性切換回路の 他方の出力回線に接続されて!、る請求項 7記載の蛍光灯の点灯装置。 [9] The secondary side winding of the high-frequency superimposing transformer is connected to one output line of the polarity switching circuit through one capacitor and through the other capacitor to the polarity switching circuit. 8. The fluorescent lamp lighting device according to claim 7, wherein the fluorescent lamp lighting device is connected to the other output line.
[10] 前記極性切換回路と前記複数の蛍光灯との間に、直列に接続されたインダクタと並 列に接続されたキャパシタとを有する LC共振回路が接続され、当該 LC共振回路の 共振周波数は、前記所定の周波数 (Dよりも高!、周波数である請求項 1記載の蛍光灯 の点灯装置。 [10] An LC resonance circuit having an inductor connected in series and a capacitor connected in parallel is connected between the polarity switching circuit and the plurality of fluorescent lamps, and the resonance frequency of the LC resonance circuit is 2. The fluorescent lamp lighting device according to claim 1, wherein the predetermined frequency (higher than D! Is a frequency).
[11] 前記直流入力を生成するための直流電源回路をさらに備え、  [11] A DC power supply circuit for generating the DC input is further provided,
当該直流電源回路は、交流電圧を変換するための主変圧器と、当該主変圧器の 出力を整流する倍圧整流回路とを有し、前記主変圧器に供給される交流電圧は、直 流から高周波出力を得るためのインバータによって生成される請求項 1記載の蛍光 灯の点灯装置。  The DC power supply circuit has a main transformer for converting AC voltage and a voltage doubler rectifier circuit for rectifying the output of the main transformer, and the AC voltage supplied to the main transformer is a direct current. 2. The fluorescent lamp lighting device according to claim 1, wherein the lighting device is generated by an inverter for obtaining a high-frequency output from the lamp.
PCT/JP2006/322389 2005-11-14 2006-11-09 Fluorescent lamp operation device WO2007055289A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06832450A EP1951006A4 (en) 2005-11-14 2006-11-09 Fluorescent lamp operation device
JP2007544185A JPWO2007055289A1 (en) 2005-11-14 2006-11-09 Fluorescent lamp lighting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005328981 2005-11-14
JP2005-328981 2005-11-14
JP2006276501 2006-10-10
JP2006-276501 2006-10-10

Publications (1)

Publication Number Publication Date
WO2007055289A1 true WO2007055289A1 (en) 2007-05-18

Family

ID=38023289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322389 WO2007055289A1 (en) 2005-11-14 2006-11-09 Fluorescent lamp operation device

Country Status (4)

Country Link
EP (1) EP1951006A4 (en)
JP (1) JPWO2007055289A1 (en)
TW (1) TW200726321A (en)
WO (1) WO2007055289A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008005792A1 (en) * 2008-01-23 2009-10-15 Minebea Co., Ltd. Electronic circuit for operating a plurality of gas discharge lamps at a common voltage source

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7893628B2 (en) 2006-11-22 2011-02-22 Minebea Co., Ltd. Electronic circuit for operating a plurality of gas discharge lamps at a common voltage source
TWI488417B (en) * 2011-11-29 2015-06-11 Chung Ming Young A non-isolated single-phase multilevel inverter for renewable energy system applications

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02288197A (en) * 1989-04-28 1990-11-28 Shinwa Giken:Kk Discharge lamp lighting device
JPH0473894A (en) * 1990-07-16 1992-03-09 Hitachi Lighting Ltd Discharge lamp lighting circuit
JPH0513182A (en) * 1991-06-28 1993-01-22 Matsushita Electric Ind Co Ltd Discharge lamp lighting device and starting method for lighting discharge lamp
JP2001345196A (en) * 2000-03-31 2001-12-14 Mitsubishi Electric Corp Discharge lamp lighting device
JP2004071226A (en) * 2002-08-02 2004-03-04 Hitachi Media Electoronics Co Ltd Constant current feed control system and shunt balancing circuit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420839B1 (en) * 2001-01-19 2002-07-16 Ambit Microsystems Corp. Power supply system for multiple loads and driving system for multiple lamps
TWI277371B (en) * 2002-06-26 2007-03-21 Darfon Electronics Corp Inverter for driving multiple discharge lamps
WO2004072733A2 (en) * 2003-02-06 2004-08-26 Ceyx Technologies, Inc. Digital control system for lcd backlights
CN1947471B (en) * 2003-11-06 2010-09-08 塔西软件开发有限及两合公司 Method and apparatus for optimizing power efficiency in light emitting device arrays

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02288197A (en) * 1989-04-28 1990-11-28 Shinwa Giken:Kk Discharge lamp lighting device
JPH0473894A (en) * 1990-07-16 1992-03-09 Hitachi Lighting Ltd Discharge lamp lighting circuit
JPH0513182A (en) * 1991-06-28 1993-01-22 Matsushita Electric Ind Co Ltd Discharge lamp lighting device and starting method for lighting discharge lamp
JP2001345196A (en) * 2000-03-31 2001-12-14 Mitsubishi Electric Corp Discharge lamp lighting device
JP2004071226A (en) * 2002-08-02 2004-03-04 Hitachi Media Electoronics Co Ltd Constant current feed control system and shunt balancing circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1951006A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008005792A1 (en) * 2008-01-23 2009-10-15 Minebea Co., Ltd. Electronic circuit for operating a plurality of gas discharge lamps at a common voltage source
DE102008005792B4 (en) * 2008-01-23 2010-04-08 Minebea Co., Ltd. Electronic circuit and method for operating a plurality of gas discharge lamps at a common voltage source
US8188681B2 (en) 2008-01-23 2012-05-29 Minebea Co., Ltd. Electronic circuit for operating a plurality of gas discharge lamps across a common voltage source

Also Published As

Publication number Publication date
TW200726321A (en) 2007-07-01
JPWO2007055289A1 (en) 2009-04-30
EP1951006A4 (en) 2011-03-02
EP1951006A1 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
KR100872467B1 (en) Liquid crystal display
TWI242177B (en) Power supply for an LCD panel
US8625310B2 (en) Method of supplying power, power supply apparatus for performing the method and display apparatus having the apparatus
JP2004511195A (en) Voltage-fed push-pull resonant inverter for LCD backlighting
KR20060053986A (en) Discharge lamp lighting apparatus for lighting multiple discharge lamps
JP2007508799A (en) Power converter
WO2007055289A1 (en) Fluorescent lamp operation device
KR19990083245A (en) Discharge lamp lighting equipment and illuminating apparatus
JPH08237959A (en) Power supply circuit
JP2001244094A (en) Discharge lamp lighting device and liquid crystal display device
JP2006024512A (en) Discharge lamp lighting device
CN101310568A (en) Fluorescent lamp operation device
JP3272218B2 (en) Lighting equipment
JP3608208B2 (en) Discharge lamp lighting device
JP2006059761A (en) High-frequency current lighting device
JP4752610B2 (en) Discharge tube lighting circuit and light source system
JP2008300112A (en) Backlight lighting circuit
JP4468846B2 (en) Piezoelectric transformer control circuit
JP2008234865A (en) Lighting display device for vertical fluorescent lamp
JP2000231998A (en) Power source circuit for lighting discharge tube
JP2009159670A (en) Inverter apparatus
US20110103109A1 (en) Ac power source apparatus
JP2005116501A (en) Dimmer system for electrodeless lamp
JPH0765979A (en) Discharge lamp lighting device
JP2000100586A (en) Discharge lamp lighting device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680042464.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007544185

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006832450

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE