WO2006120789A1 - Method for manufacturing carbon nanotubes by catalyst, method for manufacturing electric field emission electron source, electric field emission electron source, and electric field emission display - Google Patents

Method for manufacturing carbon nanotubes by catalyst, method for manufacturing electric field emission electron source, electric field emission electron source, and electric field emission display Download PDF

Info

Publication number
WO2006120789A1
WO2006120789A1 PCT/JP2006/303723 JP2006303723W WO2006120789A1 WO 2006120789 A1 WO2006120789 A1 WO 2006120789A1 JP 2006303723 W JP2006303723 W JP 2006303723W WO 2006120789 A1 WO2006120789 A1 WO 2006120789A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
film
carbon nanotubes
field emission
conditions
Prior art date
Application number
PCT/JP2006/303723
Other languages
French (fr)
Japanese (ja)
Inventor
Lujun Pan
Yoshikazu Nakayama
Original Assignee
Public University Corporation, Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005134362A external-priority patent/JP2006128064A/en
Application filed by Public University Corporation, Osaka Prefecture University filed Critical Public University Corporation, Osaka Prefecture University
Publication of WO2006120789A1 publication Critical patent/WO2006120789A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)

Definitions

  • Production method of carbon nanotube by catalyst production method of field emission electron source, field emission electron source and field emission display
  • the present invention relates to a carbon nanotube production method, a field emission electron source production method using carbon nanotubes, a field emission electron source, and a field emission display, and more specifically, a soft material such as a glass substrate.
  • the present invention relates to a method for manufacturing a field emission electron source, a field emission electron source manufactured by the method, and a field emission display.
  • Non-Patent Document 2 conducted a carbon nanotube production experiment using a mixed catalyst.
  • Their mixed catalysts are FeZNi, Ni / Mg, m T Co / Ni, C
  • the produced carbon nanotubes were mainly single-walled carbon nanotubes, and it was found that the production efficiency did not increase so much.
  • FED field emission display
  • Field emission is a phenomenon in which when a strong electric field is applied to the solid surface, the potential barrier on the surface of the electron force confined on the solid surface is lowered, and the tunnel effect makes it easier to jump out into the vacuum.
  • This FEED displays a picture by placing a nanotube on a glass substrate and causing electrons emitted by field emission to collide with a phosphor.
  • thermochemical vapor deposition method As a technology for standing carbon nanotubes on a glass substrate, a carbon nanotube production catalyst is fixed on the glass substrate, and this catalyst is used as a seed for thermal chemical vapor deposition (hereinafter referred to as thermochemical vapor deposition method). Is called a thermal CVD method.) A method of vertically growing carbon nanotubes on a catalyst is conceivable!
  • Non-patent literature 1 Amelinckx, X. B. Znang. D. Bernaerts, X. F. Zhang, V. Ivanov and J. B. Nagy, SCIENCE, 265 (1994) 635
  • Non-Patent Document 2 Supapan Seraphin and Dan Zhou, Applied Physics Letters, Vol. 64 (199 4) pp. 2087-2089
  • the soft spot of glass varies depending on the type of glass. For example, it is 690 ° C, 745 ° C, 900 ° C, etc. even for heat-resistant glass.
  • the soft spot is further reduced. Examples include ° C. Therefore, when a catalyst is fixed to a glass substrate having a low soft spot and carbon nanotubes are grown at a furnace wall temperature of 700 ° C or higher, the glass softens even if the carbon nanotubes grow.
  • a field emission carbon nanotube is formed between a pair of anode electrodes and force sword electrodes formed at intervals of about several tens to several hundreds ⁇ m. It is necessary to form many standing field emission electron sources. In each field emission electron source, it is necessary to dispose the tip of the field emission nanotube at a position lower than the position of the field emission adjusting gate electrode provided between the pair of electrodes. Therefore, in order to produce high-performance field emission electron sources or FEDs using carbon nanotubes, it is necessary to grow the field emission nanotubes with precise control of growth conditions such as quality, length, and formation density. There was a problem that there was.
  • an object of the present invention is to perform vertical growth with high efficiency using a catalyst for growing carbon nanotubes at a temperature of 550 ° C or lower without softening glass or the like used as a substrate.
  • Field emission electron source, field emission force used in FED production, carbon nanotube production method, electric field that can accurately control growth conditions such as quality, length and formation density of single-bonn nanotube An emission electron source manufacturing method, a field emission electron source, and a field emission display are provided.
  • the present invention has been made to solve the above-mentioned problems.
  • the first aspect of the present invention is a CoZTi catalyst film containing at least Co element and Ti element on a substrate, or at least Fe element and A1.
  • An FeZAl catalyst film containing elements is formed, and the catalyst film is placed in the reaction chamber to A method for producing carbon nanotubes by bringing a raw material gas into contact with heating, the conditions for adjusting the film thickness of the catalyst film, whether the raw material gas is preheated at a stage before the raw material gas contacts the catalyst film
  • a method for producing carbon nanotubes using a catalyst that controls the growth of carbon nanotubes by adopting at least one of the above conditions and a condition group consisting of conditions for adjusting the temperature of the reaction chamber.
  • the condition for adjusting the time for the source gas to contact the catalyst film and the condition for adjusting the flow rate of Z or the source gas are the above conditions. It is a manufacturing method of the carbon nanotube by the catalyst added to a group.
  • the catalyst film is configured by stacking metal films of the respective elements, and the film thickness of each of the metal films is adjusted.
  • a fourth aspect of the present invention is a method for producing carbon nanotubes using a catalyst that, in the third aspect, sets the thickness of each metal film to be substantially the same and adjusts the thickness. .
  • a fifth aspect of the present invention is the carbon nanotube by the catalyst according to the first or second aspect, wherein the preheating temperature of the raw material gas is adjusted as a furnace wall temperature in a range of 200 ° C to 1000 ° C. It is a manufacturing method.
  • a sixth aspect of the present invention is the carbon nanotube by the catalyst according to the first or second aspect, wherein the temperature of the reaction chamber is adjusted to a range below the glass soft point as the furnace wall temperature. It is a manufacturing method.
  • the catalyst film comprises the catalyst according to claim 1 or 2, wherein the catalyst element contains the element as an alloy. Production method.
  • An eighth aspect of the present invention is a method for producing carbon nanotubes using a catalyst according to the first or second aspect, wherein the catalyst film contains each element as a metal compound.
  • a ninth aspect of the present invention is a method for producing carbon nanotubes using a catalyst in which the catalyst film is carbonized in the first to eighth aspects.
  • a force sword electrode film is formed on a glass layer, and an insulating layer in which a through hole is formed in a required portion is disposed on the force sword electrode film, and the inside of the through hole is disposed.
  • a CoZ Ti catalyst containing at least Co element and Ti element on the electrode film in the through hole.
  • a field emission electron source in which a FeZAl catalyst containing at least Fe element and Al element is disposed, and by using this catalyst, a carbon nanotube is formed in the through hole, and the tip of the carbon nanotube is present in the through hole.
  • a force sword electrode film is formed on a glass layer, and an insulating layer having a through hole formed in a required portion is disposed on the force sword electrode film, and the inside of the through hole is disposed.
  • a CoZ Ti catalyst containing at least Co element and Ti element on the electrode film in the through hole.
  • a film or a FeZAl catalyst film containing at least Fe element and Al element is disposed, and the catalyst film is exposed in a reaction chamber and brought into contact with a raw material gas under heating to grow carbon nanotubes, the CoZTi catalyst film At least one of a group of conditions including a condition for adjusting the film thickness, a condition for whether the source gas is preheated before the source gas contacts the catalyst film, and a condition force for adjusting the temperature of the reaction chamber.
  • Adopt the conditions Is a manufacturing method of a field emission electron source is present in the through hole of the tip of the carbon nanotubes after.
  • the field emission electron source of the tenth aspect is disposed, an anode electrode is disposed opposite to the gate electrode film, and a phosphor layer is formed on the anode electrode side.
  • a field emission display (FED) in which electrons emitted from the carbon nanotubes collide with the fluorescent material layer to emit light.
  • the present inventors have verified the applicability of force-bonn nanotubes formed by using a two-element catalyst of CoZTi or FeZAl to manufacture an electron source for FED. Verification As a result, it was found that by controlling the catalyst film thickness and growth conditions, it was possible to synthesize vertically aligned high-quality carbon nanotubes and at the same time to control the film thickness using the preheating effect of the reaction gas. This finding makes it possible to produce high-quality FED electron sources by generating high-quality carbon nanotubes with a specified length on the substrate without deformation of the glass substrate.
  • the reactor wall temperature is 550 ° C or lower in the reaction chamber. Carbon nanotubes can be grown substantially vertically on the catalyst with high efficiency.
  • the combined catalyst of Co element and Ti element, Fe element and A1 element was discovered for the first time by the present inventors and succeeded in synthesizing carbon nanotubes for the first time by this combination.
  • the substrate for the catalyst film in the present invention is a glass substrate, the substrate temperature is adjusted to 550 ° C. or lower, and the glass substrate does not soften.
  • the glass substrate on which the carbon nanotubes produced by this method are grown can be used as it is as an electron source for FED.
  • the substrate is a heat-resistant substrate
  • carbon nanotubes that can be adjusted to a desired temperature of 550 ° C. or higher can be grown with high efficiency.
  • conditions for adjusting the film thickness of the catalyst film conditions for whether or not the source gas is preheated before the source gas contacts the catalyst film, and conditions for adjusting the temperature of the reaction chamber Since the growth of carbon nanotubes is controlled by adopting at least one of the powerful conditions, the growth conditions such as the quality, length and density of carbon nanotubes can be controlled accurately, and field emission It is possible to provide a manufacturing method suitable for manufacturing an FED without an electron source.
  • the length of the grown carbon nanotubes is adjusted according to the condition for adjusting the time for the source gas to contact the catalyst film and the condition for adjusting the flow rate of Z or the source gas.
  • the length full length
  • the catalyst film is C. o
  • the film is composed of a Ti film or a Fe film and an Al film, and the film thickness of the catalyst film is adjusted by adjusting each film thickness. Therefore, in the process of forming a metal film of CoZTi or FeZAl, Carbon nanotube growth conditions can be controlled with high precision through controllable layer formation and film thickness adjustment.
  • various PVD methods (physical vapor deposition) and CVD methods (chemical vapor deposition) such as vapor deposition, sputtering, and ion plating can be used as the method for laminating the metal film.
  • the Co film thickness and the Ti film thickness or the Fe film and the A1 film are set substantially the same, and the film thickness of each metal film is set. Therefore, the growth condition of the carbon nanotube can be controlled with high accuracy by adjusting the film thickness value that can be controlled in the metal film forming process of CoZTi or FeZAl.
  • the preheating temperature of the source gas is adjusted as a furnace wall temperature
  • a range force of 200 ° C to 1000 ° C is also adjusted.
  • the raw material gas whose preheating temperature is set to at least 100 ° C. or more can be supplied to the reaction chamber to efficiently grow carbon nanotubes in the catalyst, and the conditions for growing carbon nanotubes by the catalyst Can be easily controlled by the furnace wall temperature, and there can be provided a method for producing a carbon nanotube suitable for industrial production of FED without a field emission electron source.
  • the temperature of the reaction chamber is adjusted to a range below the glass soft spot as the furnace wall temperature.
  • the raw material gas is supplied to the chamber so that the carbon nanotubes can be efficiently grown on the catalyst, and the growth conditions of the carbon nanotubes by the catalyst can be easily controlled by the furnace wall temperature.
  • the glass soft spot is a temperature at which glass is softened by heating, and is preferably 550 ° C. or lower, for example. Further, the lower limit temperature can be freely set within this range as long as it is a temperature at which the carbon nanotube grows by the catalyst.
  • a catalyst for producing carbon nano-nanotubes containing the element as an alloy is provided. Therefore, Fe and Al, Co and Ti are uniformly mixed and Single-bonn nanotubes can be uniformly grown at a high density.
  • each element of the catalyst is contained as a metal compound, various compounds such as metal oxides, metal nitrides, and organometallic compounds can be used. Therefore, there is an advantage that the target catalyst can be freely prepared by a known chemical formulation.
  • the catalyst surface is carbonized, particulate carbide is formed, and carbon nanotubes can be efficiently grown by this carbide catalyst. Therefore, low temperature synthesis at 550 ° C or lower can be efficiently realized.
  • the field emission can be achieved simply by growing carbon nanotubes in the through holes by the catalyst and stopping the growth so that the tips of the carbon nanotubes exist in the through holes.
  • An electron source can be configured. Since the tip of the carbon nanotube is located at a lower position than the gate electrode film, the electron current (current) emitted from the tip of the carbon nanotube can be adjusted by varying the gate voltage, and an effective field emission electron source can be provided.
  • the CoZTi catalyst and the FeZAl catalyst have the advantage that a carbon nanotube can be grown at a low temperature below the softening point of the glass layer, so that a high-performance field emission electron source without any structural deformation of the glass layer can be provided.
  • the field emission electron source before growing the carbon nanotubes in the tenth aspect is arranged in the reaction chamber to expose the catalyst film in the reaction chamber, and this catalyst A method of growing a carbon nanotube by bringing a film into contact with a source gas under heating, wherein the source gas is preheated at a stage before adjusting the film thickness of the catalyst film and before the source gas contacts the catalyst film.
  • the tip of the carbon nanotube after growth can be present in the through-hole only by adopting at least one of the condition group that also has the condition force that adjusts the temperature of the reaction chamber and the condition that the temperature of the reaction chamber is adjusted. It becomes possible. Therefore, the tip of the carbon nanotube can be easily present at an arbitrary position lower than the position of the gate electrode film, and the intensity of the field-emission electron current can be freely adjusted by the gate voltage. There is an advantage that a field emission electron source can be manufactured.
  • the field emission electron source of the seventh aspect is disposed, the anode electrode is disposed opposite to the gate electrode film, and the fluorescent material is disposed on the anode electrode side.
  • Simply forming the layers can provide a high-performance field emission display (FED).
  • FED field emission display
  • a field emission display that can freely adjust the strength of the electron current emitted from the carbon nanotube tip by the gate voltage is provided. it can.
  • FIG. 1 is a process diagram for explaining an example of a method for producing an FeZAl catalyst or a CoZTi catalyst according to the present invention.
  • FIG. 2 is a configuration diagram of a two-way catalyst carbonization apparatus according to the present invention.
  • FIG. 3 is a schematic configuration diagram of a carbon nanotube production apparatus according to the present invention.
  • FIG. 4 SEM image of carbon nanotubes grown at 550 ° C with CoZTi catalyst without carbonization.
  • FIG. 5 is an AFM image of a CoZTi catalyst carbonized at 500 ° C.
  • FIG. 9 Particle distribution diagram of FeZAl catalyst that has been carbonized at 450 ° C and 500 ° C.
  • FIG. 10 SEM image of carbon nanotubes grown at 550 ° C with carbonized FeZAl catalyst.
  • FIG. 11 SEM image of carbon nanotubes grown at 550 ° C with FeZAl catalyst without carbonization.
  • FIG. 12 is a Raman spectroscopic view of the produced carbon nanotube.
  • FIG. 13 is an SEM image of carbon nanotubes grown when the CoZTi catalyst film thickness is set to 0.5 nm / 0.5 nm.
  • FIG. 14 is an SEM image of a carbon nanotube grown when the CoZTi catalyst film thickness is set to InmZlnm.
  • FIG. 15 is an SEM image of a carbon nanotube grown when the CoZTi catalyst film thickness is 2 nmZ2 nm.
  • FIG. 16 is an SEM image of a carbon nanotube grown when the CoZTi catalyst film thickness is 4 nmZ4 nm.
  • FIG. 17 SEM image of carbon nanotubes grown by pre-heat treatment, when the CoZTi catalyst film thickness is InmZlOnm and the reactor wall temperature in reaction chamber B is 550 ° C.
  • FIG. 18 is an SEM image of carbon nanotubes grown by preheating, when the CoZTi catalyst film thickness is 4 nmZ10 nm, and the furnace wall temperature in reaction chamber B is 550 ° C.
  • FIG. 19 is an SEM image of carbon nanotubes grown without pre-heat treatment, with a CoZTi catalyst film thickness of 0.5 nm / 0.5 nm and a furnace wall temperature in reaction chamber B of 450 ° C. .
  • FIG. 20 is an SEM image of carbon nanotubes grown when pre-heat treatment was not performed and the CoZTi catalyst film thickness was 0.5 nm / 0.5 nm and the furnace wall temperature in reaction chamber B was 500 ° C. .
  • FIG.21 SEM image of carbon nanotubes grown without pre-heat treatment, CoZTi catalyst film thickness 0.5nm / 0.5nm, and reactor chamber B wall temperature at 550 ° C .
  • FIG. 22 is an SEM image of carbon nanotubes grown by pre-heat treatment, when the CoZTi catalyst film thickness is 0.5 nm / 0.5 nm and the furnace wall temperature in reaction chamber B is 450 ° C.
  • FIG. 23 is an SEM image of carbon nanotubes grown by pre-heat treatment, when the CoZTi catalyst film thickness is 0.5 nm / 0.5 nm and the furnace wall temperature in reaction chamber B is 500 ° C.
  • FIG. 24 is a characteristic diagram showing the growth characteristics of carbon nanotubes in the carbon nanotube production method using the CoZTi catalyst according to the present invention.
  • FIG. 25 is a schematic cross-sectional view for explaining a field emission electron source and FED manufacturing process by a carbon nanotube manufacturing method using a CoZTi catalyst according to the present invention.
  • FIG. 1 illustrates an example of a method for producing an FeZAl catalyst or a CoZTi catalyst according to the present invention. It is process drawing.
  • a mask 4 is placed on the upper surface of the glass substrate 2 and A1 or Ti is evaporated. As a result, an A1 or Ti metal film is formed on the open surface 5.
  • Fe or Co is vapor-deposited thereon, and a second metal film is formed on the metal film.
  • the lower metal film is A1
  • the upper metal film is Fe.
  • CoZTi the lower metal film is Ti and the upper metal film is Co. This upside down may be reversed
  • the catalyst body 6 in which the catalyst 8 is formed as a double film on the glass substrate 2 is completed.
  • the catalyst membrane width was designed to be 2 mm and the depth was 10 mm.
  • (1D) a cross section of the main part of the catalyst body 6 is shown.
  • a first catalyst 8a (A1 or Ti) and a second catalyst (Fe or Co) are laminated on the upper surface of the glass substrate 2.
  • the first catalyst thickness h and the second catalyst thickness H are preferably adjusted to a range of 0.1 to 15 nm, more preferably 0.3 to 7 nm.
  • FIG. 2 is a configuration diagram of a two-way catalyst carbonization apparatus used in the present embodiment.
  • the gas transport pipe 10 is made of a heat-resistant quartz tube, and a carbonized heater 12 is disposed on the outer periphery thereof, and a carbonized chamber 14 is formed on the inner side.
  • a catalyst body 6 is arranged in the carbonization chamber 14, and the catalyst 8 is configured to be exposed to the raw material gas.
  • the carrier gas is a gas that feeds the raw material gas, and examples of the carrier gas include He, Ar, and N.
  • the source gas is a carbon supply gas for growing carbon nanotubes, and is suitable because hydrocarbon gas does not contain unnecessary elements.
  • Anolecan such as H, alkyne, and anoleken are used.
  • Carrier gas and raw material gas are used.
  • the carbonization temperature is preferably 550 ° C or less, but can be set freely to a temperature at which carbonization occurs effectively.
  • the carbonization temperature is adjusted to 450 ° C, 500 ° C, and 550 ° C
  • the He flow rate is adjusted to 230 sccm
  • the CH flow rate is adjusted to 30 sccm
  • the carbonization time is adjusted to 30 minutes.
  • FIG. 3 is a schematic configuration diagram of a carbon nanotube production apparatus according to the present invention.
  • a carbon nanotube synthesis test was conducted using the carbonized CoZTi catalyst or FeZAl catalyst.
  • the gas transport pipe 20 is divided into a preheating chamber A and a reaction chamber B in the former stage.
  • the preheating chamber A is heated by the first preheating heater 22a and the second preheating heater 22b.
  • This implementation Although the preheating chamber A is divided into two in the form, it may be configured in one stage, so that the first preheating heater 22a and the second preheating heater 22b can be combined by the preheating heater 22.
  • the reaction chamber B is heated by the reaction heater 26, and the catalyst body 6 is disposed in the reaction chamber B.
  • the furnace wall temperatures in preheating chamber A and reaction chamber B are measured by three temperature sensors 28. Via the valve 30, a source gas (C H) and a carrier gas (He) are supplied in the direction of arrow a. C H flow
  • the amount of 2 2 2 2 was set to 60 sccm, and the flow rate of He was set to 200 sccm.
  • the furnace wall temperature in the preheating chamber A was adjusted to 700 ° C, and the furnace wall temperature in the reaction chamber B was adjusted to 550 ° C.
  • the raw material gas is heated to increase the gas activity.
  • the furnace wall temperature is 700 ° C. 1S
  • the temperature exceeds 100 ° C the reactivity with the catalyst increases and the efficiency of decomposition of the raw material gas increases, so the gas temperature of the raw material gas itself reaches 100 ° C or higher.
  • the reaction chamber B is set to a low temperature of 550 ° C., and is configured so as to realize low-temperature synthesis of carbon nanotubes without softening the glass substrate 2.
  • the supply time of source gas was set to 10 minutes.
  • the exhaust gas is published from the exhaust pipe 32 into the oil 34 and discharged in the direction of arrow b.
  • FIG. 4 is an SEM image of carbon nanotubes grown at 550 ° C. using a CoZTi catalyst without carbonization.
  • the first catalyst thickness h (Ti) was set to 4 nm
  • the second catalyst thickness H (Co) was also set to 4 nm.
  • Carbon nanotubes are produced using the equipment shown in Fig. 3, and the gas is preheated at 700 ° C. With the CoZTi catalyst, carbon nanotubes could be vertically grown at high density without carbonization.
  • FIG. 5 is an AFM image of a CoZTi catalyst carbonized at 500 ° C. It was confirmed that the CoZTi catalyst was made into particles by carbonization. Next, a carbon nanotube synthesis test was performed using the carbonized CoZTi catalyst with the apparatus shown in FIG.
  • Fig. 6 is an SEM image of carbon nanotubes grown with a CoZTi catalyst carbonized at 500 ° C. The growth conditions are the same as described in FIG. It was found that amorphous carbon was deposited on the front end surface of the carbon nanotube. However, it has been demonstrated that carbon nanotubes can grow vertically at a high density to produce brush-like carbon nanotubes. [0050] In order to oxidize the amorphous carbon, the catalyst substrate was thermally oxidized at 600 ° C for 1 minute in the atmosphere. As a result, it was found that amorphous carbon was removed and high-purity, single-bonn nanotubes could be produced.
  • Figure 7 shows the FE-SEM and AFM images of the FeZAl catalyst carbonized at 450 ° C.
  • the FE-SEM image shown in (7A) is a field emission scanning electron microscope image, and the AFM image is an atomic force microscope image. The surface of the catalyst is made fine by carbonization, and the FE-SEM image power in the left figure is understood.
  • (7B) is an AFM image, and a cross-sectional view of the straight line is shown on the lower side.
  • both the first catalyst thickness h and the second catalyst thickness H are designed to be 4 nm.
  • Figure 8 shows the FE-SEM and AFM images of the FeZAl catalyst carbonized at 500 ° C. It can be clearly understood that the catalyst surface is finely divided by the carbonization treatment.
  • (8A) is an FE-S EM image
  • (8B) is an AFM image, and a cross-sectional view of the straight line is shown on the lower side. Compared with Fig. 7, it can be seen that the diameter and height of the particles are increasing because the carbonization temperature is 50 ° C higher.
  • Fig. 9 is a particle distribution diagram of the FeZAl catalyst that has been carbonized at 450 ° C and 500 ° C.
  • the horizontal axis indicates the particle size (Size), and the vertical axis indicates the number of particles (Number).
  • (9A) is a particle distribution map at 450 ° C, with 12 nm being the approximate median value.
  • (9B) is a particle distribution map at 500 ° C, with 18nm being the approximate median value. It can be understood that as the carbonization temperature increases, the particle height increases and the force tends to be uniform in particle size.
  • FIG. 10 is an SEM image of carbon nanotubes grown at 550 ° C. using a carbonized FeZAl catalyst.
  • (10A) shows a vertically grown carbon nanotube immediately after synthesis. It can be seen that amorphous carbon is deposited on the surface and part of the tip of the carbon nanotube. The perpendicularity grows with high force and high density, and it was demonstrated that the present invention can produce brush-like carbon nanotubes.
  • (10B) is an SEM image of carbon nanotubes of (10A) thermally oxidized at 600 ° C in the atmosphere.
  • the catalyst of carbon nanotube growth (10A) was heated in the atmosphere at 600 ° C for 1 minute, the amorphous component was oxidized and removed, and high purity carbon nanotubes could be realized. Therefore, it has been found that amorphous components can be removed by hot acid. It was.
  • FIG. 11 is an SEM image of carbon nanotubes grown at 550 ° C. using an FeZAl catalyst not subjected to carbonization. Manufactured by the equipment shown in Fig. 3, the gas is preheated at 700 ° C. However, carbon nanotubes have grown in all directions and have a low vertical growth potential. For FeZAl catalysts, it has been demonstrated that vertical growth is significantly improved by carbonization.
  • the FeZAl catalyst can produce brush-like carbon nanotubes when carbonized, and can produce carbon nanotubes that are not brush-like when not carbonized.
  • a CoZTi catalyst brush-like carbon nanotubes can be produced with or without carbonization.
  • amorphous carbon can be removed by thermal oxidation.
  • FIG. 12 is a Raman spectroscopic diagram of the produced carbon nanotube.
  • the horizontal axis is Raman shift, and the vertical axis is intensity in arbitrary units.
  • the solid line is a Raman spectrograph of carbon nanotubes preheated at 550 ° C with carbonized FeZAl catalyst, and the long dashed line is the carbon nanotubes preheated at 550 ° C with non-carbonized CoZTi catalyst.
  • the Raman spectrograph and the short dashed line are the Raman spectrographs of carbon nanotubes grown at 700 ° C with Fe catalyst for comparison.
  • the ratio (GZD ratio) of Gband (about 1600cm-), which shows the crystallinity of graphite, to Dband (about 1350cm-1), which is the peak of amorphous carbon, is 1.15 for the solid line and 1.37 for the long dashed line.
  • the short dashed line was 1.26.
  • the carbon nanotubes (solid line and long broken line) according to the catalyst of the present invention are not so different from the carbon nanotubes (short broken line) with the normal Fe catalyst, and it is proved that the method of the present invention is effective for the production method of brush-like carbon nanotubes. It was.
  • the present inventors use the carbon nanotube production apparatus of FIG. 3 for the ease of control over the growth conditions relating to the length and the like of the produced carbon nanotubes in the carbon nanotube production method using the CoZTi catalyst. And verified.
  • Figures 13 to 16 show the results of synthesizing a single-bonn nanotube by supplying a source gas in reaction chamber B for 5 minutes under these experimental conditions.
  • Figures 13 to 16 show SEM of synthetic carbon nanotubes corresponding to the setting conditions of CoZTi catalyst film thickness (HZh) force 0.5nm / 0.5nm, lnm / lnm, 2nm mZ2nm, 4nmZ4nm, respectively. It is a statue. Under the setting conditions in Fig.
  • the average length of the total length (height) of the synthetic carbon nanotube is about 12 / zm.
  • Fig. 14 Fig. 15, and Fig. 16 about 7 / zm and about 4 respectively.
  • m about 3 m.
  • the length of the carbon nanotube is increased to several micron force to several tens of microns by reducing the film thickness H, h of the catalyst CoZTi from 4 nm to 2 nm, lnm, and 0.5 nm.
  • the strength and vertical orientation are improved by reducing the strength and the amorphous component. Therefore, in the carbon nanotube production method using CoZTi catalyst, as shown in (24A) of Fig.
  • the average total length L of the synthetic carbon nanotubes is dependent on the film thickness H (h). It was found that the conditions for adjusting the thickness of the catalyst film can be a control factor for controlling the growth of carbon nanotubes. In this experiment, the Co film thickness H and the Ti film thickness h were set to be the same, but they may be substantially the same level.
  • FIG. 17 is an SEM image of carbon nanotubes grown when the Co film thickness is In m
  • Fig. 18 is an SEM image of carbon nanotubes grown when the film thickness is 4 nm. In the case of Fig.
  • the average measurement length of the total length (height) of the synthetic carbon nanotube is about 2 m , whereas in the case of Fig. 18, it is about. Therefore, in the carbon nanotube production method using a CoZTi catalyst, as shown in FIG. 24 (24C), the total length L of the synthetic carbon nanotube is recognized to be dependent on the Co catalyst film thickness H.
  • the condition for adjusting the film thickness is carbon It has also become a component that can be a control factor for controlling the growth of carbon nanotubes.
  • the influence on the growth of carbon nanotubes by the presence or absence of source gas preheating was verified.
  • the thickness (HZh) of the CoZTi catalyst film in the catalyst body 6 was set to a constant value of 0.5 nm / 0.5 nm, and the case where the preheat treatment in the preheating chamber A was not performed was performed.
  • the furnace wall temperature in preheating chamber A was set to 700 ° C.
  • the production conditions of the carbon nanotube production equipment are as follows.
  • the gas He flow rate was 230 sccm, and the furnace wall temperature in reaction chamber B was adjusted to 450 ° C, 500 ° C, and 550 ° C.
  • FIGS. 19 to 23 and FIG. Figures 19 to 21 show the case where the preheat treatment in the preheating chamber A is not performed, and the furnace wall temperatures in the reaction chamber B are 450 ° C (Fig. 19), 500 ° C (Fig. 20), and 550 °, respectively.
  • Figures 22, 23, and 13 show the case where preheat treatment was performed in preheating chamber A, and the furnace wall temperatures in reaction chamber B were 450 ° C (Fig. 22), 500 ° C (Fig. 23), and 550, respectively.
  • the conditions for adjusting the time for the source gas to contact the Co ZTi catalyst film or the FeZAl catalyst film in seconds and the conditions for adjusting the flow rate of the source gas are control factor groups (condition groups) that control the growth of carbon nanotubes. It was confirmed that it could be one of
  • the conditions for adjusting the film thickness of the catalyst film Adjust the conditions for whether or not the source gas is preheated before contacting the membrane, the furnace wall temperature T in the reaction chamber B, in other words, the temperature conditions in the reaction chamber, and the time for the source gas to contact the catalyst membrane
  • the conditions for adjusting the flow rate of the raw material gas can be used as a group of control conditions for controlling the growth of the carbon nanotubes, and at least one of these conditions is employed to increase the growth of the carbon nanotubes. This is a method for producing carbon nanotubes that is easy to control and can be accurately controlled, and that is suitable for production of FEDs and the like.
  • a cathode electrode film 52 such as aluminum is formed on the surface layer of the glass substrate 50 by a film forming apparatus (not shown). After an insulating film and a gate electrode film are formed on the force sword electrode film 52, a through hole 57 is formed in a required portion with respect to the insulating film and the gate electrode film to form an insulating layer 54 and a gate electrode 55.
  • a CoZTi catalyst film was applied in the through-hole 57, and the carbon of FIG. Carbon nanotubes are grown in the reaction chamber B of the carbon nanotube production equipment, using the CoZTi catalyst film as a seed. Thereby, the vertically aligned carbon nanotubes 56 are formed in the through holes 57.
  • the synthesis of high-quality carbon nanotubes on the substrate and the length thereof can be controlled to several microns without deformation of the glass substrate.
  • the vertical carbon nanotube 56 having a predetermined height can be erected at a position where the tip end of the field emission carbon nanotube 56 is lower than the gate electrode 55.
  • the field emission electron source 58 comprising the force sword electrode film 52, the insulating layer 54, the gate electrode 55, and the carbon nanotube 56 for field emission in the through hole 57 is manufactured on the glass substrate 50. Can do.
  • an anode glass 53 and an anode glass sheet in which a fluorescent material layer 53a is formed on the surface of the anode electrode 53 are formed on a glass substrate 51. Then, the fluorescent material layer 53a and the anode electrode 53 are arranged with an interval e of several tens of microns so as to face the force sword electrode film 52 and the gate electrode 55. As a result, the FED 59 that emits visible light g by the electrons f emitted from the gate electrode 55 and the carbon nanotube 56 colliding with the fluorescent material layer 53a can be obtained.
  • the manufacturing method of the single-bonn nanotube according to the present invention it is possible to control the growth length of carbon nanotubes 56 by the number / zm order that is not accompanied by quality degradation.
  • Source 58 can be formed. Then, a high-performance FED capable of performing high-density light emission using the field emission electron source 58 can be manufactured.
  • the reactor wall temperature is 550 ° C or lower in the reaction chamber. Carbon nanotubes can be grown substantially vertically on the catalyst with high efficiency.
  • the combined catalyst of Co element and Ti element, Fe element and A1 element was discovered for the first time by the present inventors and succeeded in synthesizing carbon nanotubes for the first time by this combination.
  • the substrate for the catalyst film in the present invention is a glass substrate, the substrate temperature is adjusted to 550 ° C. or lower, and the glass substrate does not soften. Therefore, the glass substrate on which the carbon nanotubes produced by this method are grown remains as it is.
  • the substrate is a heat-resistant substrate
  • carbon nanotubes that can be adjusted to a desired temperature of 550 ° C. or higher can be grown with high efficiency.
  • the conditions for adjusting the thickness of the catalyst film, the conditions for whether or not the source gas is preheated before the source gas contacts the catalyst film, and the temperature of the reaction chamber are adjusted. Since the growth of carbon nanotubes is controlled by adopting at least one of the conditional force groups, the growth conditions such as the quality, length and density of carbon nanotubes can be controlled accurately, and field emission It is possible to provide a manufacturing method suitable for manufacturing an FED without an electron source.
  • the length of the carbon nanotube after growth is adjusted according to the condition for adjusting the time for the source gas to contact the catalyst film and the condition for adjusting the flow rate of Z or the source gas.
  • the length full length
  • the catalyst film is formed by stacking a Co film and a Ti film or an Fe film and an A1 film, By adjusting the thickness of the catalyst film, the thickness of the catalyst film is adjusted. Therefore, in the metal film formation process of CoZTi or FeZAl, the growth conditions of the carbon nanotubes can be controlled with high accuracy by controlling the layer formation and adjusting the film thickness. I can do it.
  • various PVD methods (physical vapor deposition methods) and CVD methods (chemical vapor deposition methods) such as a vapor deposition method, a sputtering method, and an ion plating method can be used as the metal film lamination method.
  • the Co film thickness and the Ti film thickness or the Fe film and the A1 film are set substantially the same, and the film thickness of each metal film is set. Therefore, the growth condition of the carbon nanotube can be controlled with high accuracy by adjusting the film thickness value that can be controlled in the metal film forming process of CoZTi or FeZAl.
  • the preheating temperature of the raw material gas is adjusted as a furnace wall temperature in the range of 200 ° C to 1000 ° C.
  • the raw material gas having a preheating temperature set to a gas temperature of at least 100 ° C. or more can be supplied to the reaction chamber, and carbon nanotubes can be efficiently grown on the catalyst.
  • the growth conditions of carbon nanotubes by a catalyst can be easily controlled by the furnace wall temperature, and there can be provided a carbon nanotube production method suitable for industrial production of FED without a field emission electron source.
  • the temperature of the reaction chamber is adjusted to a range below the glass soft spot as the furnace wall temperature.
  • the raw material gas is supplied to the chamber so that the carbon nanotubes can be efficiently grown on the catalyst, and the growth conditions of the carbon nanotubes by the catalyst can be easily controlled by the furnace wall temperature.
  • the glass soft spot is a temperature at which glass is softened by heating, and is preferably 550 ° C. or lower, for example. Further, the lower limit temperature can be freely set within this range as long as it is a temperature at which the carbon nanotube grows by the catalyst.
  • a catalyst for producing carbon nano-nanotubes containing the element as an alloy Therefore, Fe and Al, or Co and Ti are uniformly mixed and Bonn nanotubes can be uniformly and densely grown.
  • a carbon nanotube manufacturing catalyst containing each of the elements as a metal compound As the metal compound, various compounds such as metal oxides, metal nitrides, and organometallic compounds can be used. Therefore, there is an advantage that the target catalyst can be freely prepared by a known chemical formulation.
  • the catalyst for carbon nanotube production is obtained by carbonizing the catalyst.
  • the catalyst surface is carbonized, particulate carbides are formed, and carbon nanotubes can be efficiently grown by the carbide catalyst. Therefore, low temperature synthesis below 550 ° C can be realized efficiently.
  • field emission can be achieved simply by growing carbon nanotubes in the through-holes using the catalyst and stopping the growth so that the tips of the carbon nanotubes exist in the through-holes.
  • An electron source can be configured. Since the tip of the carbon nanotube is located at a lower position than the gate electrode film, the electron current (current) emitted from the tip of the carbon nanotube can be adjusted by changing the gate voltage, and an effective field emission electron source.
  • the CoZTi catalyst and the FeZAl catalyst have the advantage that a carbon nanotube can be grown at a low temperature below the softening point of the glass layer, so that a high-performance field emission electron source without any structural deformation of the glass layer can be provided.
  • the field emission electron source before growing the carbon nanotubes in the tenth aspect is arranged in the reaction chamber to expose the catalyst film in the reaction chamber, and this catalyst A method of growing a carbon nanotube by bringing a film into contact with a source gas under heating, wherein the source gas is preheated at a stage before adjusting the film thickness of the catalyst film and before the source gas contacts the catalyst film.
  • the tip of the carbon nanotube after growth can be present in the through-hole only by adopting at least one of the condition group that also has the condition force that adjusts the temperature of the reaction chamber and the condition that the temperature of the reaction chamber is adjusted. It becomes possible. Therefore, the tip of the carbon nanotube can be easily present at an arbitrary position lower than the position of the gate electrode film, and the intensity of the field-emission electron current can be freely adjusted by the gate voltage. There is an advantage that a field emission electron source can be manufactured.
  • the field emission electron source of the seventh aspect is disposed, the anode electrode is disposed opposite to the gate electrode film, and the fluorescent material is disposed on the anode electrode side.
  • Simply forming the layers can provide a high-performance field emission display (FED).
  • the total length of the grown carbon nanotubes can be adjusted as much as possible by forming high-quality carbon nanotubes with the above-mentioned catalyst.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

This invention provides a method for manufacturing carbon nanotubes, which can accurately control conditions for the growth of carbon nanotubes for electric field emission suitable for the manufacture of electric field emission electron sources or FEDs, a method for manufacturing an electric field emission electron source, an electric field emission electron source, and an electric field emission display. In the method for manufacturing carbon nanotubes in the presence of a Co/Ti catalyst or an Fe/Al catalyst, conditions for the regulation of the thickness of a catalyst film, conditions for the regulation of the thickness of catalyst film per se, conditions for whether or not a raw material gas is preheated at a stage before the contact of the raw material gas with the catalyst film, conditions for the temperature of wall of a reaction chamber, and conditions for the regulation of the catalyst contact time of the raw material gas and the flow rate of a raw material gas are used as a group of conditions for the control of the growth of carbon nanotubes to grow the carbon nanotubes at a low temperature at or below the glass softening point. In this case, the growth can be controlled with high accuracy, and this contributes to the production of high-performance FEDs and the like.

Description

明 細 書  Specification
触媒によるカーボンナノチューブの製造方法、電界放出電子源の製造方 法、電界放出電子源及び電界放出型ディスプレイ  Production method of carbon nanotube by catalyst, production method of field emission electron source, field emission electron source and field emission display
技術分野  Technical field
[0001] 本発明は、カーボンナノチューブの製造方法、カーボンナノチューブを用いた電界 放出電子源の製造方法、電界放出電子源及び電界放出型ディスプレイに関し、更 に詳細には、ガラス基板などのように軟ィ匕温度や融点の低い基体に触媒を保持し、 基体を軟化させない程度の低温度で触媒上にカーボンナノチューブを効率的に成 長させることができる触媒によるカーボンナノチューブの製造方法、それを用いた電 界放出電子源の製造方法、同製造方法により製造される電界放出電子源及び電界 放出型ディスプレイに関する。  The present invention relates to a carbon nanotube production method, a field emission electron source production method using carbon nanotubes, a field emission electron source, and a field emission display, and more specifically, a soft material such as a glass substrate. A method for producing carbon nanotubes using a catalyst that can hold a catalyst on a substrate having a low temperature or melting point and efficiently grow carbon nanotubes on the catalyst at a low temperature that does not soften the substrate. The present invention relates to a method for manufacturing a field emission electron source, a field emission electron source manufactured by the method, and a field emission display.
背景技術  Background art
[0002] 1991年に炭素のアーク放電堆積物の中にカーボンナノチューブが発見され、この 発見に触発されて、カーボンナノチューブの量産研究が開始された。アーク放電で はカーボンナノチューブ以外にカーボンパーティクルなどの不純物が生成され、しか も大量合成は困難であることが認識されつつある。  [0002] In 1991, carbon nanotubes were discovered in arc discharge deposits of carbon, and inspired by this discovery, mass production research on carbon nanotubes was started. In arc discharge, impurities such as carbon particles are generated in addition to carbon nanotubes, and it has been recognized that mass synthesis is difficult.
[0003] 1994年にァメリンクス等(Amelinckx, X. B. Zhang.D. Bernaerts, X. F. Zhang, V. I vanov and J. B. Nagy, SCIENCE, 265 (1994) 635:非特許文献 1)が、触媒を用いて力 一ボンナノチューブの合成に成功した。彼らの製造方法は、 Co、 F e、 Niのような金 属触媒を微小粉に形成し、この触媒近傍を 700°C以上に加熱し、この触媒に接触す るようにアセチレンやベンゼンのような有機ガスを流通させ、これらの有機分子を分解 する方法である。しかし、生成されたカーボンナノチューブの形状は様々で、直線状 、曲線状、平面スパイラル状、コイル状などのカーボンナノチューブが混在していた。  [0003] In 1994, Amerinckx et al. (Amelinckx, XB Zhang. We succeeded in synthesizing Bonn nanotube. Their production method is to form a metal catalyst such as Co, Fe, or Ni into a fine powder, heat the vicinity of the catalyst to 700 ° C or higher, and contact the catalyst like acetylene or benzene. It is a method of decomposing these organic molecules by circulating a simple organic gas. However, the shape of the produced carbon nanotubes was various, and carbon nanotubes such as linear, curved, planar spiral, and coil were mixed.
[0004] 一方、直線状のカーボンナノチューブの生成効率を向上させる研究が行われた。 1 994年【こセフフイン等 (Supapan beraphin and Dan Zhou, Applied Physics Letters, Vo 1.64(1994)pp.2087-2089 :非特許文献 2)は、混合触媒を用いてカーボンナノチューブ の生成実験を行った。彼らの混合触媒は、 FeZNi、 Ni/Mg, m T Co/Ni, C oZCuの 5種類である。製造されたカーボンナノチューブは主として単層カーボンナ ノチューブであり、生成効率はそれ程上昇しないことが分力つた。 [0004] On the other hand, research has been conducted to improve the production efficiency of linear carbon nanotubes. 1 994 [Supapan beraphin and Dan Zhou, Applied Physics Letters, Vo 1.64 (1994) pp. 2087-2089: Non-Patent Document 2] conducted a carbon nanotube production experiment using a mixed catalyst. Their mixed catalysts are FeZNi, Ni / Mg, m T Co / Ni, C There are 5 types of oZCu. The produced carbon nanotubes were mainly single-walled carbon nanotubes, and it was found that the production efficiency did not increase so much.
[0005] これらの研究以後、触媒 CVD法を用いてカーボンナノチューブの大量合成の研究 が行われている。これらの研究の殆どは、アセチレンなどの原料ガスを 700°C以上に 加熱された触媒で分解し、触媒上にカーボンナノチューブを生成させる方法である。 従って、触媒を保持する基体は 700°C以上の耐熱性を有することが前提になって!/ヽ る。 [0005] Since these studies, research on mass synthesis of carbon nanotubes using catalytic CVD has been conducted. Most of these studies are methods in which a raw material gas such as acetylene is decomposed with a catalyst heated to 700 ° C or higher to produce carbon nanotubes on the catalyst. Therefore, it is assumed that the substrate holding the catalyst has a heat resistance of 700 ° C. or higher.
[0006] ところで、カーボンナノチューブの利用法は各種検討されている力 その中でも力 一ボンナノチューブの電界放出特性を利用した電界放出型ディスプレイ(以後 FED という。 Field Emission Display)が有力視されている。電界放出は、固体表面に強い 電界がかかると、固体表面に閉じ込められていた電子力 表面のポテンシャル障壁 が低くなるためにトンネル効果により真空中に飛び出しやすくなる現象を 、う。この F EDはガラス基板にナノチューブを立設させ、電界放出により放出された電子を蛍光 体に衝突させて画像表示するものである。  [0006] By the way, the use of carbon nanotubes has been studied in various ways. Among them, the field emission display (hereinafter referred to as FED) using the field emission characteristics of single-bonn nanotubes is considered promising. Field emission is a phenomenon in which when a strong electric field is applied to the solid surface, the potential barrier on the surface of the electron force confined on the solid surface is lowered, and the tunnel effect makes it easier to jump out into the vacuum. This FEED displays a picture by placing a nanotube on a glass substrate and causing electrons emitted by field emission to collide with a phosphor.
[0007] ガラス基板にカーボンナノチューブを立設する技術として、ガラス基板上にカーボ ンナノチューブ製造用触媒を固定し、この触媒を種にして熱化学気相成長法 (以下、 熱化学気相成長法を熱 CVD法という。 )により触媒上にカーボンナノチューブを垂直 成長させる方法が考えられて!/、る。  [0007] As a technology for standing carbon nanotubes on a glass substrate, a carbon nanotube production catalyst is fixed on the glass substrate, and this catalyst is used as a seed for thermal chemical vapor deposition (hereinafter referred to as thermochemical vapor deposition method). Is called a thermal CVD method.) A method of vertically growing carbon nanotubes on a catalyst is conceivable!
非特干文献 1: Amelinckx, X. B. Znang.D. Bernaerts, X. F. Zhang, V. Ivanov and J. B. Nagy, SCIENCE, 265 (1994) 635  Non-patent literature 1: Amelinckx, X. B. Znang. D. Bernaerts, X. F. Zhang, V. Ivanov and J. B. Nagy, SCIENCE, 265 (1994) 635
非特許文献 2 : Supapan Seraphin and Dan Zhou, Applied Physics Letters, Vol.64(199 4)pp.2087-2089  Non-Patent Document 2: Supapan Seraphin and Dan Zhou, Applied Physics Letters, Vol. 64 (199 4) pp. 2087-2089
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 熱 CVD法によりガラス基板上にカーボンナノチューブを形成する場合、ガラス基板 の軟化点(軟化温度)以下でカーボンナノチューブを成長させることが必要になる。 一方、ガラスの軟ィ匕点はガラスの種類により変化するが、例えば耐熱ガラスでも 69 0°C、 745°C、 900°Cなどである。非耐熱ガラスになると、軟ィ匕点は更に低下し、 570 °Cなどの例がある。従って、低い軟ィ匕点を有するガラス基板に触媒を固定して、 700 °C以上の炉壁温度でカーボンナノチューブを成長させると、カーボンナノチューブが 成長してもガラスが軟ィ匕するため、とても FED用に用いることができな ヽと 、う問題を 生じている。つまり、ガラスを軟ィ匕させないでカーボンナノチューブを製造するために は、ガラスを軟ィ匕させない臨界温度として 550°Cを設定し、この臨界温度以下でカー ボンナノチューブを成長させる方法を発見する必要がある。 [0008] When carbon nanotubes are formed on a glass substrate by a thermal CVD method, it is necessary to grow the carbon nanotubes below the softening point (softening temperature) of the glass substrate. On the other hand, the soft spot of glass varies depending on the type of glass. For example, it is 690 ° C, 745 ° C, 900 ° C, etc. even for heat-resistant glass. When non-heat-resistant glass is used, the soft spot is further reduced. Examples include ° C. Therefore, when a catalyst is fixed to a glass substrate having a low soft spot and carbon nanotubes are grown at a furnace wall temperature of 700 ° C or higher, the glass softens even if the carbon nanotubes grow. There is a problem that can not be used for FED. In other words, in order to produce carbon nanotubes without softening the glass, it is necessary to set a critical temperature that does not soften the glass at 550 ° C and find a method for growing carbon nanotubes below this critical temperature. There is.
[0009] また、カーボンナノチューブを用いて FEDを製造する場合、約数 10〜数 100 μ m の間隔おいて形成される、一対のアノード電極と力ソード電極の電極間に電界放出 用カーボンナノチューブを立設した電界放出電子源を多数形成する必要がある。各 電界放出電子源においては、上記の一対の電極間に設けられる電界放出調整用ゲ ート電極の位置より低い位置に電界放出用ナノチューブの先端を配置する必要があ る。したがって、高性能の電界放出電子源ないし FEDをカーボンナノチューブを用 いて製造するためには、電界放出用ナノチューブの品質、長さ、さらに形成密度等の 成長条件を正確に制御して成長させる必要があるといった課題があった。殊に、品質 上の問題としては、熱 CVD法によりカーボンナノチューブを形成する場合にァモル ファス成分も形成され、カーボンナノチューブの純度を低下させるが、純度を高める ためには、加熱処理を再度行う酸ィヒ処理によりアモルファス成分を低減させる工程を 必要とし、 FED生産プロセスの効率低下を招 ヽてしまう問題がある。  [0009] In addition, when manufacturing FED using carbon nanotubes, a field emission carbon nanotube is formed between a pair of anode electrodes and force sword electrodes formed at intervals of about several tens to several hundreds μm. It is necessary to form many standing field emission electron sources. In each field emission electron source, it is necessary to dispose the tip of the field emission nanotube at a position lower than the position of the field emission adjusting gate electrode provided between the pair of electrodes. Therefore, in order to produce high-performance field emission electron sources or FEDs using carbon nanotubes, it is necessary to grow the field emission nanotubes with precise control of growth conditions such as quality, length, and formation density. There was a problem that there was. In particular, as a quality problem, when carbon nanotubes are formed by the thermal CVD method, amorphous components are also formed, which lowers the purity of the carbon nanotubes. There is a problem in that the process of reducing the amorphous component by the tig treatment is necessary, leading to a decrease in the efficiency of the FED production process.
[0010] 従って、本発明の目的は、基板として使用されるガラスなどを軟ィ匕させずにカーボ ンナノチューブを 550°C以下の温度で成長させる触媒を用いて高効率に垂直成長さ せることができると共に、電界放出電子源な 、し FEDの製造に用いる電界放出用力 一ボンナノチューブの品質、長さ及び形成密度等の成長条件を正確に制御すること のできる、カーボンナノチューブの製造方法、電界放出電子源の製造方法、電界放 出電子源及び電界放出型ディスプレイを提供することである。  [0010] Therefore, an object of the present invention is to perform vertical growth with high efficiency using a catalyst for growing carbon nanotubes at a temperature of 550 ° C or lower without softening glass or the like used as a substrate. Field emission electron source, field emission force used in FED production, carbon nanotube production method, electric field that can accurately control growth conditions such as quality, length and formation density of single-bonn nanotube An emission electron source manufacturing method, a field emission electron source, and a field emission display are provided.
課題を解決するための手段  Means for solving the problem
[0011] 本発明は上記課題を解決するためになされたものであり、本発明の第 1の形態は、 基体上に少なくとも Co元素と Ti元素を含有する CoZTi触媒膜又は少なくとも Fe元 素と A1元素を含有する FeZAl触媒膜を成膜し、反応室に前記触媒膜を配置して原 料ガスを加熱下で接触させてカーボンナノチューブを製造する方法であって、前記 触媒膜の膜厚を調整する条件、原料ガスが前記触媒膜に接触する前の段階で原料 ガスが予熱される有無の条件及び前記反応室の温度を調整する条件からなる条件 群のうち、少なくとも一つの条件を採用して、カーボンナノチューブの成長を制御する 触媒によるカーボンナノチューブの製造方法である。 [0011] The present invention has been made to solve the above-mentioned problems. The first aspect of the present invention is a CoZTi catalyst film containing at least Co element and Ti element on a substrate, or at least Fe element and A1. An FeZAl catalyst film containing elements is formed, and the catalyst film is placed in the reaction chamber to A method for producing carbon nanotubes by bringing a raw material gas into contact with heating, the conditions for adjusting the film thickness of the catalyst film, whether the raw material gas is preheated at a stage before the raw material gas contacts the catalyst film And a method for producing carbon nanotubes using a catalyst that controls the growth of carbon nanotubes by adopting at least one of the above conditions and a condition group consisting of conditions for adjusting the temperature of the reaction chamber.
[0012] 本発明の第 2の形態は、前記第 1の形態において、前記原料ガスが前記触媒膜に 接触する時間を調整する条件及び Z又は前記原料ガスの流量を調整する条件が、 前記条件群に加えられる触媒によるカーボンナノチューブの製造方法である。  [0012] In a second aspect of the present invention, in the first aspect, the condition for adjusting the time for the source gas to contact the catalyst film and the condition for adjusting the flow rate of Z or the source gas are the above conditions. It is a manufacturing method of the carbon nanotube by the catalyst added to a group.
[0013] 本発明の第 3の形態は、前記第 1又は第 2の形態において、前記触媒膜は前記各 元素の金属膜を積層して構成され、前記各金属膜の膜厚を調整することにより、前 記触媒膜の膜厚を調整する触媒によるカーボンナノチューブの製造方法である。  [0013] In a third aspect of the present invention, in the first or second aspect, the catalyst film is configured by stacking metal films of the respective elements, and the film thickness of each of the metal films is adjusted. Thus, a carbon nanotube production method using a catalyst for adjusting the film thickness of the catalyst film.
[0014] 本発明の第 4の形態は、前記第 3の形態において、前記各金属膜の膜厚を略同一 に設定し、前記各膜厚を調整する触媒によるカーボンナノチューブの製造方法であ る。  [0014] A fourth aspect of the present invention is a method for producing carbon nanotubes using a catalyst that, in the third aspect, sets the thickness of each metal film to be substantially the same and adjusts the thickness. .
[0015] 本発明の第 5の形態は、前記第 1又は第 2の形態において、前記原料ガスの予熱 温度が炉壁温度として 200°C〜1000°Cの範囲力も調整される触媒によるカーボン ナノチューブの製造方法である。  [0015] A fifth aspect of the present invention is the carbon nanotube by the catalyst according to the first or second aspect, wherein the preheating temperature of the raw material gas is adjusted as a furnace wall temperature in a range of 200 ° C to 1000 ° C. It is a manufacturing method.
[0016] 本発明の第 6の形態は、前記第 1又は第 2の形態において、前記反応室の温度が 炉壁温度としてガラス軟ィヒ点以下の範囲に調整される触媒によるカーボンナノチュー ブの製造方法である。 [0016] A sixth aspect of the present invention is the carbon nanotube by the catalyst according to the first or second aspect, wherein the temperature of the reaction chamber is adjusted to a range below the glass soft point as the furnace wall temperature. It is a manufacturing method.
[0017] 本発明の第 7の形態は、前記第 1又は第 2の形態において、前記触媒膜は前記各 元素が合金として含有される請求項 1又は 2に記載の触媒によるカーボンナノチュー ブの製造方法。  [0017] In a seventh aspect of the present invention, in the first or second aspect, the catalyst film comprises the catalyst according to claim 1 or 2, wherein the catalyst element contains the element as an alloy. Production method.
[0018] 本発明の第 8の形態は、前記第 1又は第 2の形態において、前記触媒膜は前記各 元素が金属化合物として含有される触媒によるカーボンナノチューブの製造方法で ある。  [0018] An eighth aspect of the present invention is a method for producing carbon nanotubes using a catalyst according to the first or second aspect, wherein the catalyst film contains each element as a metal compound.
[0019] 本発明の第 9の形態は、前記第 1〜8の形態において、前記触媒膜が炭化されて 配置される触媒によるカーボンナノチューブの製造方法である。 [0020] 本発明の第 10の形態は、ガラス層上に力ソード電極膜を形成し、この力ソード電極 膜上に透孔を所要部に形成した絶縁層を配置し、前記透孔内に電界放出用の力一 ボンナノチューブを配置し、前記絶縁層上にゲート電極膜を形成した電界放出電子 源において、前記透孔内の電極膜上に少なくとも Co元素と Ti元素を含有する CoZ Ti触媒又は少なくとも Fe元素と Al元素を含有する FeZAl触媒を配置し、この触媒に よりカーボンナノチューブを前記透孔内に形成し、カーボンナノチューブの先端を前 記透孔内に存在させる電界放出電子源である。 [0019] A ninth aspect of the present invention is a method for producing carbon nanotubes using a catalyst in which the catalyst film is carbonized in the first to eighth aspects. [0020] In a tenth aspect of the present invention, a force sword electrode film is formed on a glass layer, and an insulating layer in which a through hole is formed in a required portion is disposed on the force sword electrode film, and the inside of the through hole is disposed. In a field emission electron source in which a carbon nanotube is arranged and a gate electrode film is formed on the insulating layer, a CoZ Ti catalyst containing at least Co element and Ti element on the electrode film in the through hole. Or a field emission electron source in which a FeZAl catalyst containing at least Fe element and Al element is disposed, and by using this catalyst, a carbon nanotube is formed in the through hole, and the tip of the carbon nanotube is present in the through hole. .
[0021] 本発明の第 11の形態は、ガラス層上に力ソード電極膜を形成し、この力ソード電極 膜上に透孔を所要部に形成した絶縁層を配置し、前記透孔内に電界放出用の力一 ボンナノチューブを配置し、前記絶縁層上にゲート電極膜を形成した電界放出電子 源において、前記透孔内の電極膜上に少なくとも Co元素と Ti元素を含有する CoZ Ti触媒膜又は少なくとも Fe元素と Al元素を含有する FeZAl触媒膜を配置し、反応 室内に前記触媒膜を曝露させ原料ガスと加熱下で接触させてカーボンナノチューブ を成長させる方法であって、前記 CoZTi触媒膜の膜厚を調整する条件、原料ガスが 前記触媒膜に接触する前の段階で原料ガスが予熱される有無の条件及び前記反応 室の温度を調整する条件力 なる条件群のうち、少なくとも一つの条件を採用して、 成長後のカーボンナノチューブの先端を前記透孔内に存在させる電界放出電子源 の製造方法である。  In an eleventh aspect of the present invention, a force sword electrode film is formed on a glass layer, and an insulating layer having a through hole formed in a required portion is disposed on the force sword electrode film, and the inside of the through hole is disposed. In a field emission electron source in which a carbon nanotube is arranged and a gate electrode film is formed on the insulating layer, a CoZ Ti catalyst containing at least Co element and Ti element on the electrode film in the through hole. A film or a FeZAl catalyst film containing at least Fe element and Al element is disposed, and the catalyst film is exposed in a reaction chamber and brought into contact with a raw material gas under heating to grow carbon nanotubes, the CoZTi catalyst film At least one of a group of conditions including a condition for adjusting the film thickness, a condition for whether the source gas is preheated before the source gas contacts the catalyst film, and a condition force for adjusting the temperature of the reaction chamber. Adopt the conditions Is a manufacturing method of a field emission electron source is present in the through hole of the tip of the carbon nanotubes after.
[0022] 本発明の第 12の形態は、前記第 10形態の電界放出電子源を配置し、このゲート 電極膜に対向してアノード電極を配置し、このアノード電極側に蛍光物質層を形成し 、前記カーボンナノチューブにより放出された電子が前記蛍光物質層に衝突して発 光する電界放出型ディスプレイ (FED)である。  [0022] In a twelfth aspect of the present invention, the field emission electron source of the tenth aspect is disposed, an anode electrode is disposed opposite to the gate electrode film, and a phosphor layer is formed on the anode electrode side. A field emission display (FED) in which electrons emitted from the carbon nanotubes collide with the fluorescent material layer to emit light.
発明の効果  The invention's effect
[0023] 本発明者らは、高性能カーボンナノチューブ合成用に CoZTi又は FeZAlの二元 素形触媒を用いて、従来よりも低温でカーボンナノチューブを生成することを見出し た。これにつ 、ては既に特許出願を行って 、る(出願番号:特願 2004— 127395)。  [0023] The present inventors have found that carbon nanotubes are produced at a lower temperature than before by using a CoZTi or FeZAl binary catalyst for the synthesis of high-performance carbon nanotubes. In this regard, a patent application has already been filed (Application No .: Japanese Patent Application No. 2004-127395).
[0024] 更に、本発明者らは、 CoZTi又は FeZAlの二元素形触媒を用いて形成される力 一ボンナノチューブの、 FED用電子源の製造への適応可能性を検証した。その検証 の結果、触媒の膜厚、成長条件を制御することにより、さらに反応ガスの予熱効果を 利用し、垂直配向した高品質のカーボンナノチューブを合成できると同時に、その膜 厚を制御できることを見出した。この知見はガラス基板が変形することなく規定の長さ をもつ高品質カーボンナノチューブを基板上に生成させ、高性能 FED用電子源の 製造を実現可能とするものである。 [0024] Furthermore, the present inventors have verified the applicability of force-bonn nanotubes formed by using a two-element catalyst of CoZTi or FeZAl to manufacture an electron source for FED. Verification As a result, it was found that by controlling the catalyst film thickness and growth conditions, it was possible to synthesize vertically aligned high-quality carbon nanotubes and at the same time to control the film thickness using the preheating effect of the reaction gas. This finding makes it possible to produce high-quality FED electron sources by generating high-quality carbon nanotubes with a specified length on the substrate without deformation of the glass substrate.
[0025] 本発明の第 1の形態によれば、 Co元素と Ti元素又は Fe元素と A1元素を含有する カーボンナノナノチューブ製造用触媒を用いるため、炉壁温度が 550°C以下の反応 室でこの触媒上にカーボンナノチューブを略垂直に高効率に成長させることができる 。 Co元素と Ti元素、 Fe元素と A1元素の組み合わせ触媒は本発明者等によって初め て発見されたものであり、この組み合わせにより初めてカーボンナノチューブを低温 合成することに成功した。本発明における触媒膜用の基体がガラス基板の場合には 、基板温度は 550°C以下に調整され、ガラス基板が軟ィ匕することは無い。従って、こ の方法によって製造されたカーボンナノチューブが成長したガラス基板は、そのまま FED用の電子源として利用することができる。勿論、基体が耐熱性基板の場合には 、 550°C以上の所望温度に調整されてもよぐカーボンナノチューブを高効率に成長 させることがでさる。 [0025] According to the first embodiment of the present invention, since the catalyst for producing carbon nano-nanotubes containing Co element and Ti element or Fe element and A1 element is used, the reactor wall temperature is 550 ° C or lower in the reaction chamber. Carbon nanotubes can be grown substantially vertically on the catalyst with high efficiency. The combined catalyst of Co element and Ti element, Fe element and A1 element was discovered for the first time by the present inventors and succeeded in synthesizing carbon nanotubes for the first time by this combination. When the substrate for the catalyst film in the present invention is a glass substrate, the substrate temperature is adjusted to 550 ° C. or lower, and the glass substrate does not soften. Therefore, the glass substrate on which the carbon nanotubes produced by this method are grown can be used as it is as an electron source for FED. Of course, when the substrate is a heat-resistant substrate, carbon nanotubes that can be adjusted to a desired temperature of 550 ° C. or higher can be grown with high efficiency.
さらに、本形態によれば、前記触媒膜の膜厚を調整する条件、原料ガスが触媒膜 に接触する前の段階で原料ガスが予熱される有無の条件及び前記反応室の温度を 調整する条件力 なる条件群のうち、少なくとも一つの条件を採用してカーボンナノ チューブの成長を制御するため、カーボンナノチューブの品質、長さ及び形成密度 等の成長条件を正確に制御することができ、電界放出電子源な 、し FEDの製造に 好適な製造方法を提供することができる。  Furthermore, according to the present embodiment, conditions for adjusting the film thickness of the catalyst film, conditions for whether or not the source gas is preheated before the source gas contacts the catalyst film, and conditions for adjusting the temperature of the reaction chamber Since the growth of carbon nanotubes is controlled by adopting at least one of the powerful conditions, the growth conditions such as the quality, length and density of carbon nanotubes can be controlled accurately, and field emission It is possible to provide a manufacturing method suitable for manufacturing an FED without an electron source.
[0026] 本発明の第 2の形態によれば、前記原料ガスが前記触媒膜に接触する時間を調整 する条件及び Z又は前記原料ガスの流量を調整する条件により、成長後のカーボン ナノチューブの長さ(全長)制御とともにアモルファス成分の大幅な低減化も可能とな り、電界放出電子源ないし FEDの量産化に好適な、触媒によるカーボンナノチュー ブの製造方法を提供することができる。 [0026] According to the second aspect of the present invention, the length of the grown carbon nanotubes is adjusted according to the condition for adjusting the time for the source gas to contact the catalyst film and the condition for adjusting the flow rate of Z or the source gas. In addition to controlling the length (full length), it is possible to significantly reduce the amorphous component, and it is possible to provide a method for producing carbon nanotubes using a catalyst suitable for mass production of field emission electron sources or FEDs.
[0027] 本発明の第 3の形態によれば、前記第 1又は第 2の形態において、前記触媒膜は C o膜と Ti膜又は Fe膜と Al膜を積層して構成され、各膜厚を調整することにより、前記 触媒膜の膜厚を調整するので、 CoZTi又は FeZAlの金属膜形成処理にお 、て制 御可能な積層形成と膜厚調整によりカーボンナノチューブの成長条件を高精度に制 御することができる。また、前記金属膜の積層方法として、蒸着法、スパッタリング法、 イオンプレーティング法など各種の PVD法 (物理的蒸着法)や CVD法 (化学的蒸着 法)が使用できる。 [0027] According to a third aspect of the present invention, in the first or second aspect, the catalyst film is C. o The film is composed of a Ti film or a Fe film and an Al film, and the film thickness of the catalyst film is adjusted by adjusting each film thickness. Therefore, in the process of forming a metal film of CoZTi or FeZAl, Carbon nanotube growth conditions can be controlled with high precision through controllable layer formation and film thickness adjustment. In addition, various PVD methods (physical vapor deposition) and CVD methods (chemical vapor deposition) such as vapor deposition, sputtering, and ion plating can be used as the method for laminating the metal film.
[0028] 本発明の第 4の形態によれば、前記第 3の形態において、前記 Co膜厚と前記 Ti膜 厚又は Fe膜と A1膜を略同一に設定し、各金属膜の膜厚を調整するので、 CoZTi又 は FeZAlの金属膜形成処理において制御可能な膜厚値調整によりカーボンナノチ ユーブの成長条件を高精度に制御することができる。  [0028] According to a fourth aspect of the present invention, in the third aspect, the Co film thickness and the Ti film thickness or the Fe film and the A1 film are set substantially the same, and the film thickness of each metal film is set. Therefore, the growth condition of the carbon nanotube can be controlled with high accuracy by adjusting the film thickness value that can be controlled in the metal film forming process of CoZTi or FeZAl.
[0029] 本発明の第 5の形態によれば、前記第 1又は第 2の形態において、前記原料ガスの 予熱温度が炉壁温度として 200°C〜1000°Cの範囲力も調整されるため、予熱温度 が少なくとも 100°C以上のガス温度に設定された前記原料ガスを前記反応室に供給 して、前記触媒にカーボンナノチューブを効率的に成長させることができるとともに、 触媒によるカーボンナノチューブの成長条件を前記炉壁温度により簡易に制御でき 、電界放出電子源な 、し FEDの工業的製造に好適なカーボンナノチューブの製造 方法を提供することができる。  [0029] According to the fifth aspect of the present invention, in the first or second aspect, since the preheating temperature of the source gas is adjusted as a furnace wall temperature, a range force of 200 ° C to 1000 ° C is also adjusted. The raw material gas whose preheating temperature is set to at least 100 ° C. or more can be supplied to the reaction chamber to efficiently grow carbon nanotubes in the catalyst, and the conditions for growing carbon nanotubes by the catalyst Can be easily controlled by the furnace wall temperature, and there can be provided a method for producing a carbon nanotube suitable for industrial production of FED without a field emission electron source.
[0030] 本発明の第 6の形態によれば、前記第 1又は第 2の形態において、前記反応室の 温度が炉壁温度としてガラス軟ィ匕点以下の範囲に調整されるため、前記反応室に原 料ガスを供給して、前記触媒にカーボンナノチューブを効率的に成長させることがで きるとともに、触媒によるカーボンナノチューブの成長条件を前記炉壁温度により簡 易に制御でき、電界放出電子源な 、し FEDの工業的製造に好適なカーボンナノチ ユーブの製造方法を提供することができる。ガラス軟ィ匕点とは加熱によってガラスが 軟化する温度であり、例えば 550°C以下が好ましい。また、下限温度としては、触媒 によりカーボンナノチューブが成長する温度であればよぐこの範囲内で自在に設定 される。  [0030] According to the sixth aspect of the present invention, in the first or second aspect, the temperature of the reaction chamber is adjusted to a range below the glass soft spot as the furnace wall temperature. The raw material gas is supplied to the chamber so that the carbon nanotubes can be efficiently grown on the catalyst, and the growth conditions of the carbon nanotubes by the catalyst can be easily controlled by the furnace wall temperature. In addition, it is possible to provide a method for producing a carbon nanotube suitable for industrial production of FED. The glass soft spot is a temperature at which glass is softened by heating, and is preferably 550 ° C. or lower, for example. Further, the lower limit temperature can be freely set within this range as long as it is a temperature at which the carbon nanotube grows by the catalyst.
[0031] 本発明の第 7の形態によれば、前記元素が合金として含有されるカーボンナノナノ チューブ製造用触媒が提供されるから、 Feと Al、また Coと Tiが均一に混ざり合い、力 一ボンナノチューブを均一に高密度成長させることができる。 [0031] According to the seventh aspect of the present invention, a catalyst for producing carbon nano-nanotubes containing the element as an alloy is provided. Therefore, Fe and Al, Co and Ti are uniformly mixed and Single-bonn nanotubes can be uniformly grown at a high density.
[0032] 本発明の第 8の形態によれば、前記触媒の各元素が金属化合物として含有される から、金属酸化物、金属窒化物、有機金属化合物など各種の化合物を利用できる。 従って、目的触媒を公知の化学的処方により自在に調製できる利点がある。  [0032] According to the eighth embodiment of the present invention, since each element of the catalyst is contained as a metal compound, various compounds such as metal oxides, metal nitrides, and organometallic compounds can be used. Therefore, there is an advantage that the target catalyst can be freely prepared by a known chemical formulation.
[0033] 本発明の第 9の形態によれば、触媒表面を炭化するから、粒子状の炭化物が形成 され、この炭化物触媒によりカーボンナノチューブが効率的に成長できる。従って、 5 50°C以下の低温合成を効率的に実現できる。  [0033] According to the ninth embodiment of the present invention, since the catalyst surface is carbonized, particulate carbide is formed, and carbon nanotubes can be efficiently grown by this carbide catalyst. Therefore, low temperature synthesis at 550 ° C or lower can be efficiently realized.
[0034] 本発明の第 10の形態によれば、前記触媒によりカーボンナノチューブを前記透孔 内に成長させ、カーボンナノチューブの先端を前記透孔内に存在させるように成長を 停止させるだけで電界放出電子源を構成できる。前記カーボンナノチューブの先端 がゲート電極膜より低 ヽ位置に存在するから、カーボンナノチューブ先端から電界放 出された電子流 (電流)をゲート電圧の可変により調整でき、有効な電界放出電子源 を提供できる。特に、 CoZTi触媒及び FeZAl触媒はガラス層の軟化点以下の低温 でカーボンナノチューブを成長させることができるから、ガラス層の構造変形が全く無 い高性能の電界放出電子源を提供できる利点がある。  [0034] According to the tenth aspect of the present invention, the field emission can be achieved simply by growing carbon nanotubes in the through holes by the catalyst and stopping the growth so that the tips of the carbon nanotubes exist in the through holes. An electron source can be configured. Since the tip of the carbon nanotube is located at a lower position than the gate electrode film, the electron current (current) emitted from the tip of the carbon nanotube can be adjusted by varying the gate voltage, and an effective field emission electron source can be provided. . In particular, the CoZTi catalyst and the FeZAl catalyst have the advantage that a carbon nanotube can be grown at a low temperature below the softening point of the glass layer, so that a high-performance field emission electron source without any structural deformation of the glass layer can be provided.
[0035] 本発明の第 11の形態によれば、前記第 10形態におけるカーボンナノチューブを 成長させる前の電界放出電子源を反応室内に配置して反応室内に前記触媒膜を曝 露させ、この触媒膜を原料ガスと加熱下で接触させてカーボンナノチューブを成長さ せる方法であって、前記触媒膜の膜厚を調整する条件、原料ガスが触媒膜に接触す る前の段階で原料ガスが予熱される有無の条件及び前記反応室の温度を調整する 条件力もなる条件群のうち、少なくとも一つの条件を採用するだけで、成長後のカー ボンナノチューブの先端を前記透孔内に存在させることが可能になる。従って、カー ボンナノチューブ先端をゲート電極膜の位置より低い任意位置に存在させることが簡 単に行え、電界放出された電子流の強度をゲート電圧により自在に調整することが 可能になり、高性能の電界放出電子源を製造できる利点を有する。  According to the eleventh aspect of the present invention, the field emission electron source before growing the carbon nanotubes in the tenth aspect is arranged in the reaction chamber to expose the catalyst film in the reaction chamber, and this catalyst A method of growing a carbon nanotube by bringing a film into contact with a source gas under heating, wherein the source gas is preheated at a stage before adjusting the film thickness of the catalyst film and before the source gas contacts the catalyst film. The tip of the carbon nanotube after growth can be present in the through-hole only by adopting at least one of the condition group that also has the condition force that adjusts the temperature of the reaction chamber and the condition that the temperature of the reaction chamber is adjusted. It becomes possible. Therefore, the tip of the carbon nanotube can be easily present at an arbitrary position lower than the position of the gate electrode film, and the intensity of the field-emission electron current can be freely adjusted by the gate voltage. There is an advantage that a field emission electron source can be manufactured.
[0036] 本発明の第 12の形態によれば、前記第 7形態の電界放出電子源を配置し、このゲ ート電極膜に対向してアノード電極を配置し、このアノード電極側に蛍光物質層を形 成するだけで、高性能の電界放出型ディスプレイ (FED)を提供できる。前記触媒に より高品質のカーボンナノチューブを形成できるだけでなぐ成長したカーボンナノチ ユーブの全長を自在に調整できるから、カーボンナノチューブ先端力 電界放出され る電子流強度をゲート電圧により自在に調整できる電界放出型ディスプレイを提供で きる。 [0036] According to the twelfth aspect of the present invention, the field emission electron source of the seventh aspect is disposed, the anode electrode is disposed opposite to the gate electrode film, and the fluorescent material is disposed on the anode electrode side. Simply forming the layers can provide a high-performance field emission display (FED). To the catalyst Since the total length of the grown carbon nanotubes can be freely adjusted as much as possible to form higher quality carbon nanotubes, a field emission display that can freely adjust the strength of the electron current emitted from the carbon nanotube tip by the gate voltage is provided. it can.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明に係る FeZAl触媒又は CoZTi触媒の製造方法の一例を説明するェ 程図である。 FIG. 1 is a process diagram for explaining an example of a method for producing an FeZAl catalyst or a CoZTi catalyst according to the present invention.
[図 2]本発明に係る二元触媒の炭化処理装置の構成図である。  FIG. 2 is a configuration diagram of a two-way catalyst carbonization apparatus according to the present invention.
[図 3]本発明に係るカーボンナノチューブ製造装置の概略構成図である。  FIG. 3 is a schematic configuration diagram of a carbon nanotube production apparatus according to the present invention.
[図 4]炭化処理を施さない CoZTi触媒により 550°Cで成長したカーボンナノチューブ の SEM像である。  [Fig. 4] SEM image of carbon nanotubes grown at 550 ° C with CoZTi catalyst without carbonization.
[図 5]500°Cで炭化処理された CoZTi触媒の AFM像である。  FIG. 5 is an AFM image of a CoZTi catalyst carbonized at 500 ° C.
[図 6]500°Cで炭化処理された CoZTi触媒により成長したカーボンナノチューブの S [Figure 6] S of carbon nanotubes grown with CoZTi catalyst carbonized at 500 ° C
EM像である。 EM image.
[図 7]450°Cで炭化処理された FeZAl触媒の FE— SEM像と AFM像である。  [Fig. 7] FE-SEM and AFM images of FeZAl catalyst carbonized at 450 ° C.
[図 8]500°Cで炭化処理された FeZAl触媒の FE— SEM像と AFM像である。 [Fig. 8] FE-SEM and AFM images of FeZAl catalyst carbonized at 500 ° C.
[図 9]450°Cと 500°Cの炭化処理を受けた FeZAl触媒の粒子分布図である。 [Fig. 9] Particle distribution diagram of FeZAl catalyst that has been carbonized at 450 ° C and 500 ° C.
[図 10]炭化処理された FeZAl触媒により 550°Cで成長したカーボンナノチューブの SEM像である。 [Fig. 10] SEM image of carbon nanotubes grown at 550 ° C with carbonized FeZAl catalyst.
[図 11]炭化処理を施さない FeZAl触媒により 550°Cで成長したカーボンナノチュー ブの SEM像である。  [Fig. 11] SEM image of carbon nanotubes grown at 550 ° C with FeZAl catalyst without carbonization.
[図 12]製造されたカーボンナノチューブのラマン分光図である。  FIG. 12 is a Raman spectroscopic view of the produced carbon nanotube.
[図 13]CoZTi触媒膜の膜厚が 0. 5nm/0. 5nmの設定条件のときに成長したカー ボンナノチューブの SEM像である。  FIG. 13 is an SEM image of carbon nanotubes grown when the CoZTi catalyst film thickness is set to 0.5 nm / 0.5 nm.
[図 14]CoZTi触媒膜の膜厚が InmZlnmの設定条件のときに成長したカーボンナ ノチューブの SEM像である。  FIG. 14 is an SEM image of a carbon nanotube grown when the CoZTi catalyst film thickness is set to InmZlnm.
[図 15]CoZTi触媒膜の膜厚が 2nmZ2nmの設定条件のときに成長したカーボンナ ノチューブの SEM像である。 [図 16]CoZTi触媒膜の膜厚が 4nmZ4nmの設定条件のときに成長したカーボンナ ノチューブの SEM像である。 FIG. 15 is an SEM image of a carbon nanotube grown when the CoZTi catalyst film thickness is 2 nmZ2 nm. FIG. 16 is an SEM image of a carbon nanotube grown when the CoZTi catalyst film thickness is 4 nmZ4 nm.
[図 17]予熱処理を実施し、 CoZTi触媒膜の膜厚が InmZlOnmかつ反応室 Bの炉 壁温度が 550°Cのときに成長したカーボンナノチューブの SEM像である。  [Fig. 17] SEM image of carbon nanotubes grown by pre-heat treatment, when the CoZTi catalyst film thickness is InmZlOnm and the reactor wall temperature in reaction chamber B is 550 ° C.
[図 18]予熱処理を実施し、 CoZTi触媒膜の膜厚が 4nmZl0nm、かつ反応室 Bの 炉壁温度が 550°Cのときに成長したカーボンナノチューブの SEM像である。 FIG. 18 is an SEM image of carbon nanotubes grown by preheating, when the CoZTi catalyst film thickness is 4 nmZ10 nm, and the furnace wall temperature in reaction chamber B is 550 ° C.
[図 19]予熱処理を実施せず、 CoZTi触媒膜の膜厚が 0. 5nm/0. 5nm、かつ反応 室 Bの炉壁温度が 450°Cのときに成長したカーボンナノチューブの SEM像である。 FIG. 19 is an SEM image of carbon nanotubes grown without pre-heat treatment, with a CoZTi catalyst film thickness of 0.5 nm / 0.5 nm and a furnace wall temperature in reaction chamber B of 450 ° C. .
[図 20]予熱処理を実施せず、 CoZTi触媒膜の膜厚が 0. 5nm/0. 5nm、かつ反応 室 Bの炉壁温度が 500°Cのときに成長したカーボンナノチューブの SEM像である。 FIG. 20 is an SEM image of carbon nanotubes grown when pre-heat treatment was not performed and the CoZTi catalyst film thickness was 0.5 nm / 0.5 nm and the furnace wall temperature in reaction chamber B was 500 ° C. .
[図 21]予熱処理を実施せず、 CoZTi触媒膜の膜厚が 0. 5nm/0. 5nm、かつ反応 室 Bの炉壁温度が 550°Cのときに成長したカーボンナノチューブの SEM像である。 [Fig.21] SEM image of carbon nanotubes grown without pre-heat treatment, CoZTi catalyst film thickness 0.5nm / 0.5nm, and reactor chamber B wall temperature at 550 ° C .
[図 22]予熱処理を実施し、 CoZTi触媒膜の膜厚が 0. 5nm/0. 5nm、かつ反応室 Bの炉壁温度が 450°Cのときに成長したカーボンナノチューブの SEM像である。 FIG. 22 is an SEM image of carbon nanotubes grown by pre-heat treatment, when the CoZTi catalyst film thickness is 0.5 nm / 0.5 nm and the furnace wall temperature in reaction chamber B is 450 ° C.
[図 23]予熱処理を実施し、 CoZTi触媒膜の膜厚が 0. 5nm/0. 5nm、かつ反応室 Bの炉壁温度が 500°Cのときに成長したカーボンナノチューブの SEM像である。 FIG. 23 is an SEM image of carbon nanotubes grown by pre-heat treatment, when the CoZTi catalyst film thickness is 0.5 nm / 0.5 nm and the furnace wall temperature in reaction chamber B is 500 ° C.
[図 24]本発明に係る CoZTi触媒を用いたカーボンナノチューブ製造方法における カーボンナノチューブの成長特性を示す特性図である。 FIG. 24 is a characteristic diagram showing the growth characteristics of carbon nanotubes in the carbon nanotube production method using the CoZTi catalyst according to the present invention.
[図 25]本発明に係る CoZTi触媒を用いたカーボンナノチューブ製造方法による電 界放出電子源及び FEDの製造工程を説明するための概略断面図である。  FIG. 25 is a schematic cross-sectional view for explaining a field emission electron source and FED manufacturing process by a carbon nanotube manufacturing method using a CoZTi catalyst according to the present invention.
符号の説明 Explanation of symbols
2 ガラス基板  2 Glass substrate
4 マスク  4 Mask
5 開放面  5 Open surface
6 触媒体  6 Catalyst body
8 触媒  8 Catalyst
8a 第 1触媒  8a 1st catalyst
8b 第 2触媒 10 ガス輸送管 8b Second catalyst 10 Gas transport pipe
12 炭化ヒータ  12 Carbonized heater
14 炭化室  14 Carbonization chamber
20 ガス輸送管  20 Gas transport pipe
22 予熱ヒータ  22 Preheater heater
22a 第 1予熱ヒータ  22a First preheater
22b 第 2予熱ヒータ  22b Second preheater
26 反応ヒータ  26 Reaction heater
30 バルブ  30 valves
32 排気管  32 Exhaust pipe
34 オイル  34 oil
50 ガラス基板  50 glass substrate
51 ガラス基板  51 Glass substrate
52 力ソード電極膜  52 Force sword electrode membrane
53 アノード電極  53 Anode electrode
53a 蛍光物質層  53a Phosphor layer
54 絶縁層  54 Insulation layer
55 ゲート電極  55 Gate electrode
56 カーボンナノチューブ  56 carbon nanotubes
57 透孔  57 Through hole
58 電界放出電子源  58 Field emission electron source
59 FED  59 FED
h 第 1触媒厚  h First catalyst thickness
H 第 2触媒厚  H Second catalyst thickness
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0039] 以下に、本発明に係るカーボンナノチューブの製造方法、それを用いた FED製造 方法及びそれにより製造された FEDの実施形態を図面に従って詳細に説明する。  [0039] Hereinafter, a carbon nanotube production method according to the present invention, a FED production method using the carbon nanotube production method, and an embodiment of the FED produced thereby will be described in detail with reference to the drawings.
[0040] 図 1は、本発明に係る FeZAl触媒又は CoZTi触媒の製造方法の一例を説明する 工程図である。(1A)では、ガラス基板 2の上面にマスク 4を配置して、 A1又は Tiを蒸 着する。その結果、開放面 5に A1又は Tiの金属膜が形成される。(1B)では、その上 から、 Fe又は Coを蒸着し、前記金属膜上に 2層目の金属膜が形成される。本形態に おいて、 FeZAlでは、下の金属膜は A1で、上の金属膜は Feである。また、 CoZTi では、下の金属膜は Tiで、上の金属膜は Coである。この上下は逆転しても構わない FIG. 1 illustrates an example of a method for producing an FeZAl catalyst or a CoZTi catalyst according to the present invention. It is process drawing. In (1A), a mask 4 is placed on the upper surface of the glass substrate 2 and A1 or Ti is evaporated. As a result, an A1 or Ti metal film is formed on the open surface 5. In (1B), Fe or Co is vapor-deposited thereon, and a second metal film is formed on the metal film. In this embodiment, in FeZAl, the lower metal film is A1, and the upper metal film is Fe. In CoZTi, the lower metal film is Ti and the upper metal film is Co. This upside down may be reversed
[0041] (1C)では、ガラス基板 2に触媒 8が二重膜として形成された触媒体 6が完成される 。この例では、触媒の膜幅は 2mm、奥行きは 10mmに設計された。(1D)では、触媒 体 6の要部断面が示されている。ガラス基板 2の上面に第 1触媒 8a (A1又は Ti)と第 2 触媒 (Fe又は Co)が積層されている。第 1触媒厚 hと第 2触媒厚 Hは、好ましくは 0. 1 〜15nmの範囲に調整され、更に好ましくは 0. 3〜7nmに調整される。 [0041] In (1C), the catalyst body 6 in which the catalyst 8 is formed as a double film on the glass substrate 2 is completed. In this example, the catalyst membrane width was designed to be 2 mm and the depth was 10 mm. In (1D), a cross section of the main part of the catalyst body 6 is shown. A first catalyst 8a (A1 or Ti) and a second catalyst (Fe or Co) are laminated on the upper surface of the glass substrate 2. The first catalyst thickness h and the second catalyst thickness H are preferably adjusted to a range of 0.1 to 15 nm, more preferably 0.3 to 7 nm.
[0042] 図 2は本実施形態に用いる二元触媒の炭化処理装置の構成図である。ガス輸送管 10は耐熱性のクォーツチューブからなり、その外周に炭化ヒータ 12が配置され、内 部に炭化室 14が形成されている。炭化室 14には触媒体 6が配置され、触媒 8が原料 ガスに曝露されるように構成される。  FIG. 2 is a configuration diagram of a two-way catalyst carbonization apparatus used in the present embodiment. The gas transport pipe 10 is made of a heat-resistant quartz tube, and a carbonized heater 12 is disposed on the outer periphery thereof, and a carbonized chamber 14 is formed on the inner side. A catalyst body 6 is arranged in the carbonization chamber 14, and the catalyst 8 is configured to be exposed to the raw material gas.
[0043] キャリアガスは原料ガスを送流するガスで、キャリアガスとしては He、 Ar、 Nなどの  [0043] The carrier gas is a gas that feeds the raw material gas, and examples of the carrier gas include He, Ar, and N.
2 不活性ガスが使用される。原料ガスは、カーボンナノチューブを成長させる炭素供給 用のガスで、炭化水素ガスが不要元素を含まない点から好適であり、 C H、 CH、 C  2 Inert gas is used. The source gas is a carbon supply gas for growing carbon nanotubes, and is suitable because hydrocarbon gas does not contain unnecessary elements. C H, CH, C
2 2 4 2 2 4
Hなどのァノレカン、アルキン、ァノレケンなどが使用される。キャリアガスや原料ガスAnolecan such as H, alkyne, and anoleken are used. Carrier gas and raw material gas
2 4 twenty four
は上記に限定されず、カーボンナノチューブを成長させる機能を有する全てのガスが 利用できる。炭化温度は 550°C以下が好適であるが、炭化を効果的に生起する温度 に自在に設定できる。本実施形態では、炭化温度は 450°C、 500°C、 550°Cに調整 され、 He流量は 230sccm、 C H流量は 30sccm、炭化時間は 30分間に調整され  Is not limited to the above, and all gases having a function of growing carbon nanotubes can be used. The carbonization temperature is preferably 550 ° C or less, but can be set freely to a temperature at which carbonization occurs effectively. In this embodiment, the carbonization temperature is adjusted to 450 ° C, 500 ° C, and 550 ° C, the He flow rate is adjusted to 230 sccm, the CH flow rate is adjusted to 30 sccm, and the carbonization time is adjusted to 30 minutes.
2 2  twenty two
た。  It was.
[0044] 図 3は、本発明に係るカーボンナノチューブ製造装置の概略構成図である。炭化処 理された前記 CoZTi触媒又は FeZAl触媒を用いてカーボンナノチューブの合成 試験が行われた。ガス輸送管 20は前段の予熱室 Aと後段の反応室 Bに二分されて いる。予熱室 Aは第 1予熱ヒータ 22aと第 2予熱ヒータ 22bにより加熱される。この実施 形態では予熱室 Aは二分割されているが、 1段に構成してもよぐ従って第 1予熱ヒー タ 22aと第 2予熱ヒータ 22bを予熱ヒータ 22でまとめることができる。 FIG. 3 is a schematic configuration diagram of a carbon nanotube production apparatus according to the present invention. A carbon nanotube synthesis test was conducted using the carbonized CoZTi catalyst or FeZAl catalyst. The gas transport pipe 20 is divided into a preheating chamber A and a reaction chamber B in the former stage. The preheating chamber A is heated by the first preheating heater 22a and the second preheating heater 22b. This implementation Although the preheating chamber A is divided into two in the form, it may be configured in one stage, so that the first preheating heater 22a and the second preheating heater 22b can be combined by the preheating heater 22.
[0045] 反応室 Bは反応ヒータ 26により加熱され、この反応室 Bに触媒体 6が配置される。予 熱室 Aと反応室 Bの炉壁温度は 3個の温度センサ 28により測定される。バルブ 30を 介して、矢印 a方向に原料ガス (C H )とキャリアガス (He)が供給される。 C Hの流 [0045] The reaction chamber B is heated by the reaction heater 26, and the catalyst body 6 is disposed in the reaction chamber B. The furnace wall temperatures in preheating chamber A and reaction chamber B are measured by three temperature sensors 28. Via the valve 30, a source gas (C H) and a carrier gas (He) are supplied in the direction of arrow a. C H flow
2 2 2 2 量は 60sccm、 Heの流量は 200sccmに設定された。  The amount of 2 2 2 2 was set to 60 sccm, and the flow rate of He was set to 200 sccm.
[0046] 予熱室 Aの炉壁温度は 700°C、反応室 Bの炉壁温度は 550°Cに調整された。予熱 室 Aでは、原料ガスを高温ィ匕して、ガス活性が高められる。炉壁温度は 700°Cである 1S 100°C以上になると、触媒との反応性が高まり、原料ガス分解が効率化するため 、原料ガス自体のガス温度は 100°C以上に到達していることが好ましぐそのような環 境を形成するためには炉壁の熱伝導性に応じて 200°C〜1000°Cの炉壁温度の設 定を行うといい。反応室 Bは 550°Cの低温に設定され、ガラス基板 2を軟ィ匕させずに、 カーボンナノチューブの低温合成が実現されるように構成されて ヽる。原料ガスの供 給時間は 10分間に設定された。排気ガスは排気管 32からオイル 34の中にパブリン グされ、矢印 b方向に排出される。  [0046] The furnace wall temperature in the preheating chamber A was adjusted to 700 ° C, and the furnace wall temperature in the reaction chamber B was adjusted to 550 ° C. In the preheating chamber A, the raw material gas is heated to increase the gas activity. The furnace wall temperature is 700 ° C. 1S When the temperature exceeds 100 ° C, the reactivity with the catalyst increases and the efficiency of decomposition of the raw material gas increases, so the gas temperature of the raw material gas itself reaches 100 ° C or higher. In order to form such an environment, it is recommended to set the furnace wall temperature between 200 ° C and 1000 ° C according to the thermal conductivity of the furnace wall. The reaction chamber B is set to a low temperature of 550 ° C., and is configured so as to realize low-temperature synthesis of carbon nanotubes without softening the glass substrate 2. The supply time of source gas was set to 10 minutes. The exhaust gas is published from the exhaust pipe 32 into the oil 34 and discharged in the direction of arrow b.
[0047] 図 4は、炭化処理を施さない CoZTi触媒により 550°Cで成長したカーボンナノチュ ーブの SEM像である。第 1触媒厚 h(Ti)は 4nm、第 2触媒厚 H (Co)も 4nmに設定さ れた。図 3の装置を用いてカーボンナノチューブが製造され、ガスを 700°Cで予熱し ている。 CoZTi触媒では、炭化処理を行わなくても、カーボンナノチューブを高密度 に垂直成長させることができた。  FIG. 4 is an SEM image of carbon nanotubes grown at 550 ° C. using a CoZTi catalyst without carbonization. The first catalyst thickness h (Ti) was set to 4 nm, and the second catalyst thickness H (Co) was also set to 4 nm. Carbon nanotubes are produced using the equipment shown in Fig. 3, and the gas is preheated at 700 ° C. With the CoZTi catalyst, carbon nanotubes could be vertically grown at high density without carbonization.
[0048] 図 5は 500°Cで炭化処理された CoZTi触媒の AFM像である。炭化処理により、 C oZTi触媒が粒子化していることが確認された。次に、この炭化された CoZTi触媒を 用いて図 3の装置でカーボンナノチューブの合成試験を行った。  [0048] FIG. 5 is an AFM image of a CoZTi catalyst carbonized at 500 ° C. It was confirmed that the CoZTi catalyst was made into particles by carbonization. Next, a carbon nanotube synthesis test was performed using the carbonized CoZTi catalyst with the apparatus shown in FIG.
[0049] 図 6は 500°Cで炭化処理された CoZTi触媒により成長したカーボンナノチューブ の SEM像である。成長条件は図 4の説明と同様である。カーボンナノチューブの先 端表面にアモルファスカーボンが堆積していることが分かった。しかし、カーボンナノ チューブが高密度に垂直成長し、ブラシ状カーボンナノチューブが製造できることが 実証された。 [0050] 前記したアモルファスカーボンを酸ィ匕するために、この触媒基板を、大気中で 600 °Cで 1分間熱酸化させた。その結果、アモルファスカーボンが除去され、高純度の力 一ボンナノチューブを製造できることが分かった。 [0049] Fig. 6 is an SEM image of carbon nanotubes grown with a CoZTi catalyst carbonized at 500 ° C. The growth conditions are the same as described in FIG. It was found that amorphous carbon was deposited on the front end surface of the carbon nanotube. However, it has been demonstrated that carbon nanotubes can grow vertically at a high density to produce brush-like carbon nanotubes. [0050] In order to oxidize the amorphous carbon, the catalyst substrate was thermally oxidized at 600 ° C for 1 minute in the atmosphere. As a result, it was found that amorphous carbon was removed and high-purity, single-bonn nanotubes could be produced.
[0051] 図 7は 450°Cで炭化処理された FeZAl触媒の FE— SEM像と AFM像である。 (7 A)に示す FE— SEM像は電界放射型の走査型電子顕微鏡像であり、 AFM像は原 子間力顕微鏡像である。炭化処理により触媒表面が微粒子化し、左図の FE— SEM 像力 その粒子状態が理解される。(7B)は AFM像で、直線部分の断面図が下側 に示されている。 FeZAl触媒の実施形態は、第 1触媒厚 hと第 2触媒厚 Hの両者が 4 nmに設計されている。  [0051] Figure 7 shows the FE-SEM and AFM images of the FeZAl catalyst carbonized at 450 ° C. The FE-SEM image shown in (7A) is a field emission scanning electron microscope image, and the AFM image is an atomic force microscope image. The surface of the catalyst is made fine by carbonization, and the FE-SEM image power in the left figure is understood. (7B) is an AFM image, and a cross-sectional view of the straight line is shown on the lower side. In the embodiment of the FeZAl catalyst, both the first catalyst thickness h and the second catalyst thickness H are designed to be 4 nm.
[0052] 図 8は 500°Cで炭化処理された FeZAl触媒の FE— SEM像と AFM像である。炭 化処理により触媒表面が微粒子化していることが明瞭に理解できる。 (8A)は FE— S EM像、(8B)は AFM像で、直線部分の断面図が下側に示されている。図 7と比較し て、炭化処理温度が 50°Cだけ高いため、粒子の直径と高さが大きくなつていることが 分かる。  [0052] Figure 8 shows the FE-SEM and AFM images of the FeZAl catalyst carbonized at 500 ° C. It can be clearly understood that the catalyst surface is finely divided by the carbonization treatment. (8A) is an FE-S EM image, (8B) is an AFM image, and a cross-sectional view of the straight line is shown on the lower side. Compared with Fig. 7, it can be seen that the diameter and height of the particles are increasing because the carbonization temperature is 50 ° C higher.
[0053] 図 9は、 450°Cと 500°Cの炭化処理を受けた FeZAl触媒の粒子分布図である。横 軸は粒子の高さ(Size)を示し、縦軸は粒子の個数 (Number)を示して!/、る。(9A)は 4 50°Cの粒子分布図で、 12nmがその略中央値である。(9B)は 500°Cの粒子分布図 で、 18nmがその略中央値である。炭化温度が上昇すると、粒子高さが大きくなり、し 力も粒度が均一化する傾向にあることが理解できる。  [0053] Fig. 9 is a particle distribution diagram of the FeZAl catalyst that has been carbonized at 450 ° C and 500 ° C. The horizontal axis indicates the particle size (Size), and the vertical axis indicates the number of particles (Number). (9A) is a particle distribution map at 450 ° C, with 12 nm being the approximate median value. (9B) is a particle distribution map at 500 ° C, with 18nm being the approximate median value. It can be understood that as the carbonization temperature increases, the particle height increases and the force tends to be uniform in particle size.
[0054] 図 10は、炭化処理された FeZAl触媒により 550°Cで成長したカーボンナノチュー ブの SEM像である。 (10A)は合成直後の垂直成長したカーボンナノチューブを示し ている。カーボンナノチューブの表面及び先端の一部にアモルファスカーボンが堆 積していることが分かる。垂直度は力なり高ぐ高密度に成長しており、本発明により ブラシ状カーボンナノチューブの製造が可能であることが実証された。  FIG. 10 is an SEM image of carbon nanotubes grown at 550 ° C. using a carbonized FeZAl catalyst. (10A) shows a vertically grown carbon nanotube immediately after synthesis. It can be seen that amorphous carbon is deposited on the surface and part of the tip of the carbon nanotube. The perpendicularity grows with high force and high density, and it was demonstrated that the present invention can produce brush-like carbon nanotubes.
[0055] (10B)は、 600°Cで大気中熱酸化された(10A)のカーボンナノチューブの SEM 像である。カーボンナノチューブが成長した(10A)の触媒を大気中で 600°Cで 1分 間加熱すると、アモルファス成分が酸ィ匕されて除去され、高純度のカーボンナノチュ ーブを実現できた。従って、アモルファス成分は熱酸ィ匕により除去できることが分かつ た。 [0055] (10B) is an SEM image of carbon nanotubes of (10A) thermally oxidized at 600 ° C in the atmosphere. When the catalyst of carbon nanotube growth (10A) was heated in the atmosphere at 600 ° C for 1 minute, the amorphous component was oxidized and removed, and high purity carbon nanotubes could be realized. Therefore, it has been found that amorphous components can be removed by hot acid. It was.
[0056] 図 11は、炭化処理を施さない FeZAl触媒により 550°Cで成長したカーボンナノチ ユーブの SEM像である。図 3の装置により製造しており、ガスを 700°Cで予熱してい る。しかし、カーボンナノチューブは成長している力 あらゆる方向に成長し、垂直成 長性が低いことが分力つた。 FeZAl触媒では、炭化処理すると垂直成長性が格段 に向上することが実証された。  FIG. 11 is an SEM image of carbon nanotubes grown at 550 ° C. using an FeZAl catalyst not subjected to carbonization. Manufactured by the equipment shown in Fig. 3, the gas is preheated at 700 ° C. However, carbon nanotubes have grown in all directions and have a low vertical growth potential. For FeZAl catalysts, it has been demonstrated that vertical growth is significantly improved by carbonization.
[0057] 以上の事実力も次のことが分力つた。 FeZAl触媒では、炭化処理された場合にブ ラシ状カーボンナノチューブが製造でき、炭化処理されない場合には、ブラシ状でな いカーボンナノチューブが製造できる。 CoZTi触媒では、炭化処理されても、炭化 処理されなくてもブラシ状カーボンナノチューブが製造できる。また、アモルファス力 一ボンが堆積した場合には、熱酸ィ匕することによりアモルファスカーボンが除去でき る。  [0057] The above facts also contributed to the following. The FeZAl catalyst can produce brush-like carbon nanotubes when carbonized, and can produce carbon nanotubes that are not brush-like when not carbonized. With a CoZTi catalyst, brush-like carbon nanotubes can be produced with or without carbonization. In addition, when an amorphous force is deposited, amorphous carbon can be removed by thermal oxidation.
[0058] 図 12は製造されたカーボンナノチューブのラマン分光図である。横軸はラマンシフ ト(Ramanshift)、縦軸は任意単位の強度(Intensity)である。実線は炭化処理された F eZAl触媒により 550°C予熱成長し、その後熱酸ィヒされたカーボンナノチューブのラ マン分光グラフ、長破線は炭化処理されない CoZTi触媒により 550°C予熱成長した カーボンナノチューブのラマン分光グラフ、短破線は比較のために Fe触媒により 700 °Cで成長したカーボンナノチューブのラマン分光グラフである。  FIG. 12 is a Raman spectroscopic diagram of the produced carbon nanotube. The horizontal axis is Raman shift, and the vertical axis is intensity in arbitrary units. The solid line is a Raman spectrograph of carbon nanotubes preheated at 550 ° C with carbonized FeZAl catalyst, and the long dashed line is the carbon nanotubes preheated at 550 ° C with non-carbonized CoZTi catalyst. The Raman spectrograph and the short dashed line are the Raman spectrographs of carbon nanotubes grown at 700 ° C with Fe catalyst for comparison.
[0059] グラフアイトの結晶性を示す Gband (約 1600cm-)とアモルファスカーボンのピークで ある Dband (約 1350cm- 1)の比率(GZD比)は、実線で 1. 15、長破線で 1. 37、短 破線で 1. 26であった。本発明触媒に係るカーボンナノチューブ (実線と長破線)は、 通常の Fe触媒によるカーボンナノチューブ (短破線)とあまり変わらず、本発明方法 がブラシ状カーボンナノチューブの製造方法に有力であることが実証された。  [0059] The ratio (GZD ratio) of Gband (about 1600cm-), which shows the crystallinity of graphite, to Dband (about 1350cm-1), which is the peak of amorphous carbon, is 1.15 for the solid line and 1.37 for the long dashed line. The short dashed line was 1.26. The carbon nanotubes (solid line and long broken line) according to the catalyst of the present invention are not so different from the carbon nanotubes (short broken line) with the normal Fe catalyst, and it is proved that the method of the present invention is effective for the production method of brush-like carbon nanotubes. It was.
[0060] 次に、本発明者達は上記の CoZTi触媒によるカーボンナノチューブ製造方法に おける、生成カーボンナノチューブの長さ等に関する成長条件に対する制御容易性 につ ヽて図 3のカーボンナノチューブ製造装置を用いて検証した。  Next, the present inventors use the carbon nanotube production apparatus of FIG. 3 for the ease of control over the growth conditions relating to the length and the like of the produced carbon nanotubes in the carbon nanotube production method using the CoZTi catalyst. And verified.
[0061] まず、 CoZTi触媒膜を成膜する場合の膜厚 H (h)の依存性を検証するために、触 媒体 6における CoZTi触媒膜の各膜厚(HZh)を 4種類(0. 5nm/0. 5nm、 lnm Zlnm、 2nmZ2nm、 4nmZ4nm)設定した。カーボンナノチューブ製造装置の製 造条件として、原料ガスの C H流量は 30sccm、キャリアガスの He流量は 230sccm [0061] First, in order to verify the dependency of the film thickness H (h) when forming a CoZTi catalyst film, four types (0.5 nm of each film thickness (HZh) of the CoZTi catalyst film in the catalyst medium 6 are used. /0.5nm, lnm Zlnm, 2nmZ2nm, 4nmZ4nm). The production conditions of the carbon nanotube production equipment are as follows: CH flow rate of source gas is 30sccm, He flow rate of carrier gas is 230sccm
2 2  twenty two
とし、反応室 Bの炉壁温度は 550°Cに調整され、予熱室 Aによる予熱処理は炉壁温 度 700°Cで実施された。この実験条件により反応室 B内で原料ガスを 5分間供給し力 一ボンナノチューブの合成を行った結果を図 13〜図 16に示す。図 13〜図 16はそ れぞれ、 CoZTi触媒膜の各膜厚(HZh)力 0. 5nm/0. 5nm、 lnm/lnm, 2n mZ2nm、 4nmZ4nmの設定条件に対応する、合成カーボンナノチューブの SEM 像である。図 13の設定条件では合成カーボンナノチューブの全長 (高さ)を平均測 定長さは約 12 /z mであり、同様に図 14、図 15、図 16の場合、それぞれ約 7 /z m、約 4 m、約 3 mである。これらの結果から、触媒 CoZTiの膜厚 H、 hを 4nmから、 2n m、 lnm、及び 0. 5nmに減少することにより、カーボンナノチューブの長さを数ミクロ ン力 十数ミクロンに遁増させることができ、し力もアモルファス成分の低減も見られ、 品質と垂直配向性が向上していく。したがって、 CoZTi触媒によるカーボンナノチュ ーブ製造方法においては、図 24の(24A)に示すように、合成カーボンナノチューブ の平均全長 Lは膜厚 H (h)と依存性が認められ、これにより CoZTi触媒膜の膜厚を 調整する条件がカーボンナノチューブの成長を制御する制御ファクタとなり得ることが 分力つた。なお、この実験においては Co膜厚 Hと Ti膜厚 hを同一に設定したが、略 同一レベルであってもよ 、。 The furnace wall temperature in reaction chamber B was adjusted to 550 ° C, and the preheat treatment in preheating chamber A was performed at a furnace wall temperature of 700 ° C. Figures 13 to 16 show the results of synthesizing a single-bonn nanotube by supplying a source gas in reaction chamber B for 5 minutes under these experimental conditions. Figures 13 to 16 show SEM of synthetic carbon nanotubes corresponding to the setting conditions of CoZTi catalyst film thickness (HZh) force 0.5nm / 0.5nm, lnm / lnm, 2nm mZ2nm, 4nmZ4nm, respectively. It is a statue. Under the setting conditions in Fig. 13, the average length of the total length (height) of the synthetic carbon nanotube is about 12 / zm. Similarly, in the case of Fig. 14, Fig. 15, and Fig. 16, about 7 / zm and about 4 respectively. m, about 3 m. From these results, the length of the carbon nanotube is increased to several micron force to several tens of microns by reducing the film thickness H, h of the catalyst CoZTi from 4 nm to 2 nm, lnm, and 0.5 nm. The strength and vertical orientation are improved by reducing the strength and the amorphous component. Therefore, in the carbon nanotube production method using CoZTi catalyst, as shown in (24A) of Fig. 24, the average total length L of the synthetic carbon nanotubes is dependent on the film thickness H (h). It was found that the conditions for adjusting the thickness of the catalyst film can be a control factor for controlling the growth of carbon nanotubes. In this experiment, the Co film thickness H and the Ti film thickness h were set to be the same, but they may be substantially the same level.
なお、 CoZTi触媒膜の各膜の膜厚を変えた場合の依存性も検証した。成長条件 は前記設定条件と同様で、 Ti触媒の膜厚 hを lOnmとし、 Co触媒の膜厚 Hを 2種類( lnm、 4nm)に変化させた。予熱室 Aの炉壁温度を 700°Cとした原料ガスの予熱処 理も同様である。この実験条件結果を図 17及び図 18に示す。図 17は Co膜厚が In mの場合に成長したカーボンナノチューブの SEM像であり、図 18は 4nmの場合に 成長したカーボンナノチューブの SEM像である。図 17の場合、合成カーボンナノチ ユーブの全長(高さ)を平均測定長さは約 2 mであり、一方図 18の場合、約 で ある。したがって、 CoZTi触媒によるカーボンナノチューブ製造方法においては、図 24の(24C)に示すように、合成カーボンナノチューブの全長 Lは Co触媒膜厚 Hとの 依存性が認められ、これにより CoZTi触媒膜自体の膜厚を調整する条件がカーボ ンナノチューブの成長を制御する制御ファクタとなり得ることも分力つた。 In addition, the dependence when the film thickness of each film of the CoZTi catalyst film was changed was also verified. The growth conditions were the same as the setting conditions described above, and the thickness h of the Ti catalyst was set to lOnm, and the thickness H of the Co catalyst was changed to two types (lnm and 4nm). The same applies to the preheating of the raw material gas with the furnace wall temperature in the preheating chamber A set to 700 ° C. The experimental condition results are shown in FIG. 17 and FIG. Fig. 17 is an SEM image of carbon nanotubes grown when the Co film thickness is In m, and Fig. 18 is an SEM image of carbon nanotubes grown when the film thickness is 4 nm. In the case of Fig. 17, the average measurement length of the total length (height) of the synthetic carbon nanotube is about 2 m , whereas in the case of Fig. 18, it is about. Therefore, in the carbon nanotube production method using a CoZTi catalyst, as shown in FIG. 24 (24C), the total length L of the synthetic carbon nanotube is recognized to be dependent on the Co catalyst film thickness H. The condition for adjusting the film thickness is carbon It has also become a component that can be a control factor for controlling the growth of carbon nanotubes.
[0063] 次に、原料ガス予熱の有無によるカーボンナノチューブの成長への影響について 検証した。この実験においては、触媒体 6における CoZTi触媒膜の膜厚 (HZh)は 0. 5nm/0. 5nmと一定に設定し、予熱室 Aによる予熱処理を実施する場合としな い場合について行った。予熱処理は予熱室 Aの炉壁温度を 700°Cとした。カーボン ナノチューブ製造装置の製造条件として、原料ガスの C H流量は 30sccm、キャリア  [0063] Next, the influence on the growth of carbon nanotubes by the presence or absence of source gas preheating was verified. In this experiment, the thickness (HZh) of the CoZTi catalyst film in the catalyst body 6 was set to a constant value of 0.5 nm / 0.5 nm, and the case where the preheat treatment in the preheating chamber A was not performed was performed. In preheating, the furnace wall temperature in preheating chamber A was set to 700 ° C. The production conditions of the carbon nanotube production equipment are as follows.
2 2  twenty two
ガスの He流量は 230sccmとし、反応室 Bの炉壁温度を 450°C、 500°C、 550°Cに調 整し、 3種類について行った。  The gas He flow rate was 230 sccm, and the furnace wall temperature in reaction chamber B was adjusted to 450 ° C, 500 ° C, and 550 ° C.
[0064] この実験条件により反応室 B内でカーボンナノチューブ合成を 5分間行った結果を 図 19〜図 23及び図 13に示す。図 19〜図 21は予熱室 Aによる予熱処理を実施しな い場合であって、それぞれ、反応室 Bの炉壁温度が 450°C (図 19)、 500°C (図 20)、 550°C (図 21)の設定条件に対応した合成カーボンナノチューブの SEM像である。 図 22、図 23、図 13は予熱室 Aによる予熱処理を実施した場合であって、それぞれ、 反応室 Bの炉壁温度が 450°C (図 22)、 500°C (図 23)、 550°C (図 13)の設定条件 に対応した合成カーボンナノチューブの SEM像である。図 19の設定条件では合成 カーボンナノチューブの全長(高さ)を平均測定長さは約 0. 8 mであり、同様に図 2 0、図 21の場合、それぞれ約 2. 6 m、約 5. 5 μ mである。また、図 22、図 23、図 13 ではそれぞれ約 1. 2 m、約 4. 2 m、約 12 mである。これらの結果を図 24の(2 4B)に示す。図中、白丸は予熱なしの場合(図 19〜図 21に対応する)、黒丸は予熱 ありの場合(図 22、図 23、図 13に対応する)である。  [0064] The results of carbon nanotube synthesis for 5 minutes in the reaction chamber B under these experimental conditions are shown in FIGS. 19 to 23 and FIG. Figures 19 to 21 show the case where the preheat treatment in the preheating chamber A is not performed, and the furnace wall temperatures in the reaction chamber B are 450 ° C (Fig. 19), 500 ° C (Fig. 20), and 550 °, respectively. This is an SEM image of a synthetic carbon nanotube corresponding to the setting condition of C (Fig. 21). Figures 22, 23, and 13 show the case where preheat treatment was performed in preheating chamber A, and the furnace wall temperatures in reaction chamber B were 450 ° C (Fig. 22), 500 ° C (Fig. 23), and 550, respectively. This is an SEM image of a synthetic carbon nanotube corresponding to the setting condition of ° C (Fig. 13). Under the setting conditions in Fig. 19, the total measured length (height) of synthetic carbon nanotubes is about 0.8 m. Similarly, in Fig. 20 and Fig. 21, about 2.6 m and about 5. 5 μm. In Fig. 22, Fig. 23 and Fig. 13, they are about 1.2 m, 4.2 m and 12 m, respectively. These results are shown in (24B) of FIG. In the figure, white circles indicate no preheating (corresponding to FIGS. 19 to 21), and black circles indicate preheating (corresponding to FIGS. 22, 23, and 13).
[0065] したがって、 CoZTi触媒によるカーボンナノチューブ製造方法においては、図 24 の(24B)に示すように、反応室 Bの炉壁温度 Tが 450°C、 500°C、 550°Cと上昇する につれて、予熱有無に関係なぐ合成カーボンナノチューブの全長 Lは伸びていくが 、予熱有無でみれば、明らかに予熱ありの場合が予熱なしの場合より長く成長してお り、合成カーボンナノチューブの全長 Lは予熱有無による依存性が認められ、これに より原料ガスが CoZTi触媒膜に接触する前の段階で原料ガスが予熱される有無の 条件がカーボンナノチューブの成長を制御する制御ファクタとなり得ることが分力つた 。特に、予熱あり場合はカーボンナノチューブは長く成長し、配向性や品質も向上す ることが認められた。また、反応室 Bの炉壁温度 T、換言すれば、反応室 Β内温度に 関しても、 CoZTi触媒の使用にお 、てカーボンナノチューブの成長を制御する制御 ファクタとなり得ることが確認された。 Therefore, in the carbon nanotube production method using a CoZTi catalyst, as shown in FIG. 24 (24B), as the furnace wall temperature T in the reaction chamber B increases to 450 ° C., 500 ° C., and 550 ° C. However, the total length L of the synthetic carbon nanotubes with or without preheating increases, but clearly with or without preheating, the total length L of the synthetic carbon nanotubes grows longer than without the preheating. Dependence on the presence or absence of preheating is recognized, so that the condition of whether or not the source gas is preheated before it contacts the CoZTi catalyst membrane can be a control factor that controls the growth of carbon nanotubes. Tsuta. In particular, with preheating, carbon nanotubes grow longer, improving orientation and quality. It was recognized that It was also confirmed that the furnace wall temperature T in the reaction chamber B, in other words, the temperature inside the reaction chamber, can be a control factor for controlling the growth of carbon nanotubes when using the CoZTi catalyst.
[0066] また、図示しな ヽが、 FeZAl触媒膜にぉ 、ても触媒膜の膜厚、予熱の有無及び反 応室の温度がカーボンナノチューブの成長を制御する制御ファクタとなり得ることを 示す実験結果が得られている。さらに、原料ガスの供給流量を変化させたり、供給時 間を秒単位で変化させた実験によれば、原料ガスの流量を減少させることにより、ま た原料ガスの供給時間を短縮させることにより、アモルファス成分の少な 、高品質の カーボンナノチューブが合成されることを確認した。殊に、原料ガス流量の遁減はァ モルファス成分生成の低減ィ匕に寄与するところが大きい。したがって、原料ガスが Co ZTi触媒膜又は FeZAl触媒膜に接触する時間を秒単位で調整する条件や原料ガ スの流量を調整する条件は、カーボンナノチューブの成長を制御する制御ファクタ群 (条件群)の一つとなり得ることが確認された。  [0066] In addition, an experiment showing that the unillustrated defects on the FeZAl catalyst film can be a control factor for controlling the growth of the carbon nanotubes even though the film thickness of the catalyst film, the presence or absence of preheating, and the temperature of the reaction chamber. The result is obtained. Furthermore, according to experiments in which the supply flow rate of the source gas is changed or the supply time is changed in units of seconds, by reducing the flow rate of the source gas and shortening the supply time of the source gas, It was confirmed that high-quality carbon nanotubes with few amorphous components were synthesized. In particular, the reduction of the raw material gas flow greatly contributes to the reduction of the formation of amorphous components. Therefore, the conditions for adjusting the time for the source gas to contact the Co ZTi catalyst film or the FeZAl catalyst film in seconds and the conditions for adjusting the flow rate of the source gas are control factor groups (condition groups) that control the growth of carbon nanotubes. It was confirmed that it could be one of
[0067] 以上の検証から、本発明にかかる触媒によるカーボンナノチューブの製造方法に おいては、触媒膜の膜厚を調整する条件、触媒膜自体の膜厚を調整する条件、原 料ガスが触媒膜に接触する前の段階で原料ガスが予熱される有無の条件、反応室 B の炉壁温度 T、換言すれば、反応室 Β内温度条件、原料ガスが触媒膜に接触する時 間を調整する条件や原料ガスの流量を調整する条件は、カーボンナノチューブの成 長を制御する制御条件群として使用でき、これらの条件群のうち、少なくとも一つの 条件を採用して、カーボンナノチューブの成長を高精度に制御することが可能となる 制御容易性を具備しており、 FED等の生産に好適なカーボンナノチューブの製造方 法である。  From the above verification, in the carbon nanotube production method using the catalyst according to the present invention, the conditions for adjusting the film thickness of the catalyst film, the conditions for adjusting the film thickness of the catalyst film itself, Adjust the conditions for whether or not the source gas is preheated before contacting the membrane, the furnace wall temperature T in the reaction chamber B, in other words, the temperature conditions in the reaction chamber, and the time for the source gas to contact the catalyst membrane The conditions for adjusting the flow rate of the raw material gas can be used as a group of control conditions for controlling the growth of the carbon nanotubes, and at least one of these conditions is employed to increase the growth of the carbon nanotubes. This is a method for producing carbon nanotubes that is easy to control and can be accurately controlled, and that is suitable for production of FEDs and the like.
[0068] 上記のカーボンナノチューブの製造方法による FED用電界放出電子源の製造方 法を図 20により説明する。  [0068] A method of manufacturing a field emission electron source for FED by the above-described method of manufacturing a carbon nanotube will be described with reference to FIG.
まず、ガラス基板 50の表面層上に成膜装置(図示せず)によりアルミニウム等のカソ ード電極膜 52を形成する。力ソード電極膜 52上に絶縁膜及びゲート電極膜を形成し た後、絶縁膜及びゲート電極膜に対して透孔 57を所要部に穿設して絶縁層 54及び ゲート電極 55を形成する。ついで、透孔 57内に CoZTi触媒膜を施し、図 3のカーボ ンナノチューブ製造装置の反応室 Bに搬入してカーボンナノチューブを CoZTi触媒 膜を種として成長させる。これにより、垂直配向されたカーボンナノチューブ 56を透 孔 57内に形成する。上述のように、本発明においては、 CoZTiの低温触媒を用いる ことにより、ガラス基板が変形することなく基板上に高品質のカーボンナノチューブの 合成とその長さを数ミクロンに制御することができるため、電界放出用カーボンナノチ ユーブ 56の先端位置がゲート電極 55より低い位置に正確に所定の高さの垂直カー ボンナノチューブ 56を立設することができる。以上のようにして、ガラス基板 50上に、 力ソード電極膜 52、絶縁層 54、ゲート電極 55、及び透孔 57内の電界放出用カーボ ンナノチューブ 56からなる電界放出電子源 58を製造することができる。 First, a cathode electrode film 52 such as aluminum is formed on the surface layer of the glass substrate 50 by a film forming apparatus (not shown). After an insulating film and a gate electrode film are formed on the force sword electrode film 52, a through hole 57 is formed in a required portion with respect to the insulating film and the gate electrode film to form an insulating layer 54 and a gate electrode 55. Next, a CoZTi catalyst film was applied in the through-hole 57, and the carbon of FIG. Carbon nanotubes are grown in the reaction chamber B of the carbon nanotube production equipment, using the CoZTi catalyst film as a seed. Thereby, the vertically aligned carbon nanotubes 56 are formed in the through holes 57. As described above, in the present invention, by using a low-temperature catalyst of CoZTi, the synthesis of high-quality carbon nanotubes on the substrate and the length thereof can be controlled to several microns without deformation of the glass substrate. In addition, the vertical carbon nanotube 56 having a predetermined height can be erected at a position where the tip end of the field emission carbon nanotube 56 is lower than the gate electrode 55. As described above, the field emission electron source 58 comprising the force sword electrode film 52, the insulating layer 54, the gate electrode 55, and the carbon nanotube 56 for field emission in the through hole 57 is manufactured on the glass substrate 50. Can do.
[0069] さらに、電界放出電子源 58を用いて FEDを製造する場合には、まずガラス基板 51 に、アノード電極 53と、アノード電極 53表面に蛍光物質層 53aを形成したアノードガ ラスシートを作成する。そして、蛍光物質層 53a及びアノード電極 53が力ソード電極 膜 52及びゲート電極 55に対向するように、数 10ミクロンの間隔 eを隔てて配置する。 これにより、ゲート電極 55とカーボンナノチューブ 56により放出された電子 fが蛍光物 質層 53aに衝突して可視光 gを発光する FED59を得ることができる。本発明に係る力 一ボンナノチューブの製法を用いることにより、品質劣化を伴うことなぐ数/ z mォー ダ一によるカーボンナノチューブ 56成長の長さ制御を行うことができるため、超小型 の電界放出電子源 58を形成できる。そして、電界放出電子源 58を用いて高密度発 光を行なえる高性能な FEDを製造することができる。 [0069] Further, when manufacturing an FED using the field emission electron source 58, first, an anode glass 53 and an anode glass sheet in which a fluorescent material layer 53a is formed on the surface of the anode electrode 53 are formed on a glass substrate 51. Then, the fluorescent material layer 53a and the anode electrode 53 are arranged with an interval e of several tens of microns so as to face the force sword electrode film 52 and the gate electrode 55. As a result, the FED 59 that emits visible light g by the electrons f emitted from the gate electrode 55 and the carbon nanotube 56 colliding with the fluorescent material layer 53a can be obtained. By using the manufacturing method of the single-bonn nanotube according to the present invention, it is possible to control the growth length of carbon nanotubes 56 by the number / zm order that is not accompanied by quality degradation. Source 58 can be formed. Then, a high-performance FED capable of performing high-density light emission using the field emission electron source 58 can be manufactured.
産業上の利用可能性  Industrial applicability
[0070] 本発明の第 1の形態によれば、 Co元素と Ti元素又は Fe元素と A1元素を含有する カーボンナノナノチューブ製造用触媒を用いるため、炉壁温度が 550°C以下の反応 室でこの触媒上にカーボンナノチューブを略垂直に高効率に成長させることができる 。 Co元素と Ti元素、 Fe元素と A1元素の組み合わせ触媒は本発明者等によって初め て発見されたものであり、この組み合わせにより初めてカーボンナノチューブを低温 合成することに成功した。本発明における触媒膜用の基体がガラス基板の場合には 、基板温度は 550°C以下に調整され、ガラス基板が軟ィ匕することは無い。従って、こ の方法によって製造されたカーボンナノチューブが成長したガラス基板は、そのまま FED用の電子源として利用することができる。勿論、基体が耐熱性基板の場合には 、 550°C以上の所望温度に調整されてもよぐカーボンナノチューブを高効率に成長 させることができる。または、本形態によれば、前記触媒膜の膜厚を調整する条件、 原料ガスが触媒膜に接触する前の段階で原料ガスが予熱される有無の条件及び前 記反応室の温度を調整する条件力 なる条件群のうち、少なくとも一つの条件を採用 してカーボンナノチューブの成長を制御するため、カーボンナノチューブの品質、長 さ及び形成密度等の成長条件を正確に制御することができ、電界放出電子源な 、し FEDの製造に好適な製造方法を提供することができる。 [0070] According to the first embodiment of the present invention, since the catalyst for producing carbon nano-nanotubes containing Co element and Ti element or Fe element and A1 element is used, the reactor wall temperature is 550 ° C or lower in the reaction chamber. Carbon nanotubes can be grown substantially vertically on the catalyst with high efficiency. The combined catalyst of Co element and Ti element, Fe element and A1 element was discovered for the first time by the present inventors and succeeded in synthesizing carbon nanotubes for the first time by this combination. When the substrate for the catalyst film in the present invention is a glass substrate, the substrate temperature is adjusted to 550 ° C. or lower, and the glass substrate does not soften. Therefore, the glass substrate on which the carbon nanotubes produced by this method are grown remains as it is. It can be used as an electron source for FED. Of course, when the substrate is a heat-resistant substrate, carbon nanotubes that can be adjusted to a desired temperature of 550 ° C. or higher can be grown with high efficiency. Alternatively, according to the present embodiment, the conditions for adjusting the thickness of the catalyst film, the conditions for whether or not the source gas is preheated before the source gas contacts the catalyst film, and the temperature of the reaction chamber are adjusted. Since the growth of carbon nanotubes is controlled by adopting at least one of the conditional force groups, the growth conditions such as the quality, length and density of carbon nanotubes can be controlled accurately, and field emission It is possible to provide a manufacturing method suitable for manufacturing an FED without an electron source.
[0071] 本発明の第 2の形態によれば、前記原料ガスが前記触媒膜に接触する時間を調整 する条件及び Z又は前記原料ガスの流量を調整する条件により、成長後のカーボン ナノチューブの長さ(全長)制御とともにアモルファス成分の大幅な低減化も可能とな り、電界放出電子源ないし FEDの量産化に好適な、触媒によるカーボンナノチュー ブの製造方法を提供することができる。 [0071] According to the second aspect of the present invention, the length of the carbon nanotube after growth is adjusted according to the condition for adjusting the time for the source gas to contact the catalyst film and the condition for adjusting the flow rate of Z or the source gas. In addition to controlling the length (full length), it is possible to significantly reduce the amorphous component, and it is possible to provide a method for producing carbon nanotubes using a catalyst suitable for mass production of field emission electron sources or FEDs.
[0072] 本発明の第 3の形態によれば、前記第 1又は第 2の形態において、前記触媒膜は C o膜と Ti膜又は Fe膜と A1膜を積層して構成され、各膜厚を調整することにより、前記 触媒膜の膜厚を調整するので、 CoZTi又は FeZAlの金属膜形成処理にお 、て制 御可能な積層形成と膜厚調整によりカーボンナノチューブの成長条件を高精度に制 御することができる。また、前記金属膜の積層方法として、蒸着法、スパッタリング法、 イオンプレーティング法など各種の PVD法 (物理的蒸着法)や CVD法 (化学的蒸着 法)が使用できる。 [0072] According to a third aspect of the present invention, in the first or second aspect, the catalyst film is formed by stacking a Co film and a Ti film or an Fe film and an A1 film, By adjusting the thickness of the catalyst film, the thickness of the catalyst film is adjusted. Therefore, in the metal film formation process of CoZTi or FeZAl, the growth conditions of the carbon nanotubes can be controlled with high accuracy by controlling the layer formation and adjusting the film thickness. I can do it. In addition, various PVD methods (physical vapor deposition methods) and CVD methods (chemical vapor deposition methods) such as a vapor deposition method, a sputtering method, and an ion plating method can be used as the metal film lamination method.
[0073] 本発明の第 4の形態によれば、前記第 3の形態において、前記 Co膜厚と前記 Ti膜 厚又は Fe膜と A1膜を略同一に設定し、各金属膜の膜厚を調整するので、 CoZTi又 は FeZAlの金属膜形成処理において制御可能な膜厚値調整によりカーボンナノチ ユーブの成長条件を高精度に制御することができる。  [0073] According to the fourth embodiment of the present invention, in the third embodiment, the Co film thickness and the Ti film thickness or the Fe film and the A1 film are set substantially the same, and the film thickness of each metal film is set. Therefore, the growth condition of the carbon nanotube can be controlled with high accuracy by adjusting the film thickness value that can be controlled in the metal film forming process of CoZTi or FeZAl.
[0074] 本発明の第 5の形態によれば、前記第 1又は第 2の形態において、前記原料ガスの 予熱温度が炉壁温度として 200°C〜1000°Cの範囲力も調整されるため、予熱温度 が少なくとも 100°C以上のガス温度に設定された前記原料ガスを前記反応室に供給 して、前記触媒にカーボンナノチューブを効率的に成長させることができるとともに、 触媒によるカーボンナノチューブの成長条件を前記炉壁温度により簡易に制御でき 、電界放出電子源な 、し FEDの工業的製造に好適なカーボンナノチューブの製造 方法を提供することができる。 [0074] According to the fifth aspect of the present invention, in the first or second aspect, the preheating temperature of the raw material gas is adjusted as a furnace wall temperature in the range of 200 ° C to 1000 ° C. The raw material gas having a preheating temperature set to a gas temperature of at least 100 ° C. or more can be supplied to the reaction chamber, and carbon nanotubes can be efficiently grown on the catalyst. The growth conditions of carbon nanotubes by a catalyst can be easily controlled by the furnace wall temperature, and there can be provided a carbon nanotube production method suitable for industrial production of FED without a field emission electron source.
[0075] 本発明の第 6の形態によれば、前記第 1又は第 2の形態において、前記反応室の 温度が炉壁温度としてガラス軟ィ匕点以下の範囲に調整されるため、前記反応室に原 料ガスを供給して、前記触媒にカーボンナノチューブを効率的に成長させることがで きるとともに、触媒によるカーボンナノチューブの成長条件を前記炉壁温度により簡 易に制御でき、電界放出電子源な 、し FEDの工業的製造に好適なカーボンナノチ ユーブの製造方法を提供することができる。ガラス軟ィ匕点とは加熱によってガラスが 軟化する温度であり、例えば 550°C以下が好ましい。また、下限温度としては、触媒 によりカーボンナノチューブが成長する温度であればよぐこの範囲内で自在に設定 される。 [0075] According to the sixth aspect of the present invention, in the first or second aspect, the temperature of the reaction chamber is adjusted to a range below the glass soft spot as the furnace wall temperature. The raw material gas is supplied to the chamber so that the carbon nanotubes can be efficiently grown on the catalyst, and the growth conditions of the carbon nanotubes by the catalyst can be easily controlled by the furnace wall temperature. In addition, it is possible to provide a method for producing a carbon nanotube suitable for industrial production of FED. The glass soft spot is a temperature at which glass is softened by heating, and is preferably 550 ° C. or lower, for example. Further, the lower limit temperature can be freely set within this range as long as it is a temperature at which the carbon nanotube grows by the catalyst.
[0076] 本発明の第 7の形態によれば、前記元素が合金として含有されるカーボンナノナノ チューブ製造用触媒が提供されるから、 Feと Al、また Coと Tiが均一に混ざり合い、力 一ボンナノチューブを均一に高密度成長させることができる。  [0076] According to the seventh aspect of the present invention, there is provided a catalyst for producing carbon nano-nanotubes containing the element as an alloy. Therefore, Fe and Al, or Co and Ti are uniformly mixed and Bonn nanotubes can be uniformly and densely grown.
[0077] 本発明の第 8の形態によれば、前記各元素が金属化合物として含有されるカーボ ンナノナノチューブ製造用触媒である。金属化合物としては、金属酸化物、金属窒化 物、有機金属化合物など各種の化合物が利用できる。従って、 目的触媒を公知の化 学的処方により自在に調製できる利点がある。  [0077] According to an eighth aspect of the present invention, there is provided a carbon nanotube manufacturing catalyst containing each of the elements as a metal compound. As the metal compound, various compounds such as metal oxides, metal nitrides, and organometallic compounds can be used. Therefore, there is an advantage that the target catalyst can be freely prepared by a known chemical formulation.
[0078] 本発明の第 9の形態によれば、第 1〜第 8形態において、前記触媒を炭化したカー ボンナノナノチューブ製造用触媒である。触媒表面を炭化すると、粒子状の炭化物 が形成され、この炭化物触媒によりカーボンナノチューブが効率的に成長できる。従 つて、 550°C以下の低温合成を効率的に実現できる。  [0078] According to a ninth aspect of the present invention, in the first to eighth aspects, the catalyst for carbon nanotube production is obtained by carbonizing the catalyst. When the catalyst surface is carbonized, particulate carbides are formed, and carbon nanotubes can be efficiently grown by the carbide catalyst. Therefore, low temperature synthesis below 550 ° C can be realized efficiently.
[0079] 本発明の第 10の形態によれば、前記触媒によりカーボンナノチューブを前記透孔 内に成長させ、カーボンナノチューブの先端を前記透孔内に存在させるように成長を 停止させるだけで電界放出電子源を構成できる。前記カーボンナノチューブの先端 がゲート電極膜より低 ヽ位置に存在するから、カーボンナノチューブ先端から電界放 出された電子流 (電流)をゲート電圧の可変により調整でき、有効な電界放出電子源 を提供できる。特に、 CoZTi触媒及び FeZAl触媒はガラス層の軟化点以下の低温 でカーボンナノチューブを成長させることができるから、ガラス層の構造変形が全く無 い高性能の電界放出電子源を提供できる利点がある。 [0079] According to the tenth aspect of the present invention, field emission can be achieved simply by growing carbon nanotubes in the through-holes using the catalyst and stopping the growth so that the tips of the carbon nanotubes exist in the through-holes. An electron source can be configured. Since the tip of the carbon nanotube is located at a lower position than the gate electrode film, the electron current (current) emitted from the tip of the carbon nanotube can be adjusted by changing the gate voltage, and an effective field emission electron source. Can provide. In particular, the CoZTi catalyst and the FeZAl catalyst have the advantage that a carbon nanotube can be grown at a low temperature below the softening point of the glass layer, so that a high-performance field emission electron source without any structural deformation of the glass layer can be provided.
[0080] 本発明の第 11の形態によれば、前記第 10形態におけるカーボンナノチューブを 成長させる前の電界放出電子源を反応室内に配置して反応室内に前記触媒膜を曝 露させ、この触媒膜を原料ガスと加熱下で接触させてカーボンナノチューブを成長さ せる方法であって、前記触媒膜の膜厚を調整する条件、原料ガスが触媒膜に接触す る前の段階で原料ガスが予熱される有無の条件及び前記反応室の温度を調整する 条件力もなる条件群のうち、少なくとも一つの条件を採用するだけで、成長後のカー ボンナノチューブの先端を前記透孔内に存在させることが可能になる。従って、カー ボンナノチューブ先端をゲート電極膜の位置より低い任意位置に存在させることが簡 単に行え、電界放出された電子流の強度をゲート電圧により自在に調整することが 可能になり、高性能の電界放出電子源を製造できる利点を有する。  [0080] According to the eleventh aspect of the present invention, the field emission electron source before growing the carbon nanotubes in the tenth aspect is arranged in the reaction chamber to expose the catalyst film in the reaction chamber, and this catalyst A method of growing a carbon nanotube by bringing a film into contact with a source gas under heating, wherein the source gas is preheated at a stage before adjusting the film thickness of the catalyst film and before the source gas contacts the catalyst film. The tip of the carbon nanotube after growth can be present in the through-hole only by adopting at least one of the condition group that also has the condition force that adjusts the temperature of the reaction chamber and the condition that the temperature of the reaction chamber is adjusted. It becomes possible. Therefore, the tip of the carbon nanotube can be easily present at an arbitrary position lower than the position of the gate electrode film, and the intensity of the field-emission electron current can be freely adjusted by the gate voltage. There is an advantage that a field emission electron source can be manufactured.
[0081] 本発明の第 12の形態によれば、前記第 7形態の電界放出電子源を配置し、このゲ ート電極膜に対向してアノード電極を配置し、このアノード電極側に蛍光物質層を形 成するだけで、高性能の電界放出型ディスプレイ (FED)を提供できる。前記触媒に より高品質のカーボンナノチューブを形成できるだけでなぐ成長したカーボンナノチ ユーブの全長を自在に調整できるから、カーボンナノチューブ先端力 電界放出され る電子流強度をゲート電圧により自在に調整できる電界放出型ディスプレイを提供で きる。  [0081] According to the twelfth aspect of the present invention, the field emission electron source of the seventh aspect is disposed, the anode electrode is disposed opposite to the gate electrode film, and the fluorescent material is disposed on the anode electrode side. Simply forming the layers can provide a high-performance field emission display (FED). The total length of the grown carbon nanotubes can be adjusted as much as possible by forming high-quality carbon nanotubes with the above-mentioned catalyst. Can provide a display.

Claims

請求の範囲 The scope of the claims
[1] 基体上に少なくとも Co元素と Ti元素を含有する CoZTi触媒膜又は少なくとも Fe元 素と A1元素を含有する FeZAl触媒膜を成膜し、反応室に前記触媒膜を配置して原 料ガスを加熱下で接触させてカーボンナノチューブを製造する方法であって、前記 触媒膜の膜厚を調整する条件、原料ガスが前記触媒膜に接触する前の段階で原料 ガスが予熱される有無の条件及び前記反応室の温度を調整する条件からなる条件 群のうち、少なくとも一つの条件を採用して、カーボンナノチューブの成長を制御する ことを特徴とする触媒によるカーボンナノチューブの製造方法。  [1] A CoZTi catalyst film containing at least Co element and Ti element or a FeZAl catalyst film containing at least Fe element and A1 element is formed on a substrate, and the catalyst film is disposed in a reaction chamber to provide a raw material gas. In which carbon nanotubes are produced by contacting them under heating, the conditions for adjusting the film thickness of the catalyst film, and the conditions for whether or not the source gas is preheated before the source gas contacts the catalyst film And a method for producing carbon nanotubes using a catalyst, wherein the growth of carbon nanotubes is controlled by adopting at least one of a group consisting of conditions for adjusting the temperature of the reaction chamber.
[2] 前記原料ガスが前記触媒膜に接触する時間を調整する条件及び Z又は前記原料 ガスの流量を調整する条件が、前記条件群に加えられる請求項 1に記載の触媒によ るカーボンナノチューブの製造方法。  [2] The carbon nanotube by the catalyst according to claim 1, wherein the condition for adjusting the time for the source gas to contact the catalyst film and the condition for adjusting the flow rate of Z or the source gas are added to the condition group. Manufacturing method.
[3] 前記触媒膜は前記各元素の金属膜を積層して構成され、前記各金属膜の膜厚を調 整することにより、前記触媒膜の膜厚を調整する請求項 1又は 2に記載の触媒による カーボンナノチューブの製造方法。  [3] The catalyst film according to claim 1 or 2, wherein the catalyst film is configured by laminating metal films of the respective elements, and the film thickness of the catalyst film is adjusted by adjusting the film thickness of each metal film. A method for producing carbon nanotubes using a catalyst.
[4] 前記各元素の膜厚を略同一に設定し、前記膜厚を調整する請求項 3に記載の触媒 によるカーボンナノチューブの製造方法。  4. The method for producing carbon nanotubes using a catalyst according to claim 3, wherein the film thickness of each element is set to be substantially the same, and the film thickness is adjusted.
[5] 前記原料ガスの予熱温度が炉壁温度として 200°C〜1000°Cの範囲力も調整される 請求項 1又は 2に記載の触媒によるカーボンナノチューブの製造方法。  [5] The method for producing carbon nanotubes using the catalyst according to [1] or [2], wherein a range force of 200 ° C. to 1000 ° C. is adjusted as the furnace wall temperature at which the preheating temperature of the source gas is adjusted.
[6] 前記反応室の温度が炉壁温度としてガラス軟ィ匕点以下の範囲に調整される請求項 1 又は 2に記載の触媒によるカーボンナノチューブの製造方法。  6. The method for producing carbon nanotubes using a catalyst according to claim 1 or 2, wherein the temperature of the reaction chamber is adjusted to a range below the glass softening point as a furnace wall temperature.
[7] 前記触媒膜は前記各元素が合金として含有される請求項 1又は 2に記載の触媒によ るカーボンナノチューブの製造方法。  7. The method for producing carbon nanotubes using a catalyst according to claim 1, wherein the catalyst film contains the elements as an alloy.
[8] 前記触媒膜は前記各元素が金属化合物として含有される請求項 1又は 2に記載の触 媒によるカーボンナノチューブの製造方法。  8. The method for producing carbon nanotubes using a catalyst according to claim 1 or 2, wherein the catalyst film contains each element as a metal compound.
[9] 前記触媒膜が炭化されて配置される請求項 1〜8のいずれかに記載の触媒による力 一ボンナノチューブの製造方法。  [9] The method for producing a single-bonn nanotube by the catalyst according to any one of [1] to [8], wherein the catalyst film is carbonized.
[10] ガラス層上に力ソード電極膜を形成し、この力ソード電極膜上に透孔を所要部に形成 した絶縁層を配置し、前記透孔内に電界放出用のカーボンナノチューブを配置し、 前記絶縁層上にゲート電極膜を形成した電界放出電子源において、前記透孔内の 電極膜上に少なくとも Co元素と Ti元素を含有する CoZTi触媒又は少なくとも Fe元 素と A1元素を含有する FeZAl触媒を配置し、この触媒によりカーボンナノチューブ を前記透孔内に形成し、カーボンナノチューブの先端を前記透孔内に存在させるこ とを特徴とする電界放出電子源。 [10] A force sword electrode film is formed on the glass layer, an insulating layer having a through hole formed in a required portion is disposed on the force sword electrode film, and a carbon nanotube for field emission is disposed in the through hole. , In a field emission electron source in which a gate electrode film is formed on the insulating layer, a CoZTi catalyst containing at least Co element and Ti element or an FeZAl catalyst containing at least Fe element and A1 element on the electrode film in the through hole. And a carbon nanotube is formed in the through-hole by the catalyst, and a tip of the carbon nanotube is present in the through-hole.
[11] ガラス層上に力ソード電極膜を形成し、この力ソード電極膜上に透孔を所要部に形成 した絶縁層を配置し、前記透孔内に電界放出用のカーボンナノチューブを配置し、 前記絶縁層上にゲート電極膜を形成した電界放出電子源において、前記透孔内の 電極膜上に少なくとも Co元素と Ti元素を含有する CoZTi触媒膜又は少なくとも Fe 元素と A1元素を含有する FeZAl触媒膜を配置し、反応室内に前記触媒膜を曝露さ せ原料ガスと加熱下で接触させてカーボンナノチューブを成長させる方法であって、 前記 CoZTi触媒膜の膜厚を調整する条件、原料ガスが前記触媒膜に接触する前 の段階で原料ガスが予熱される有無の条件及び前記反応室の温度を調整する条件 力もなる条件群のうち、少なくとも一つの条件を採用して、成長後のカーボンナノチュ ーブの先端を前記透孔内に存在させることを特徴とする電界放出電子源の製造方 法。 [11] A force sword electrode film is formed on the glass layer, an insulating layer having a through hole formed in a required portion is disposed on the force sword electrode film, and a carbon nanotube for field emission is disposed in the through hole. In a field emission electron source in which a gate electrode film is formed on the insulating layer, a CoZTi catalyst film containing at least Co element and Ti element or FeZAl containing at least Fe element and A1 element on the electrode film in the through hole. A method of growing a carbon nanotube by placing a catalyst film, exposing the catalyst film in a reaction chamber and bringing it into contact with a raw material gas under heating, the conditions for adjusting the film thickness of the CoZTi catalyst film, At least one of a group of conditions including whether or not the raw material gas is preheated in the stage before contacting the catalyst film and the condition for adjusting the temperature of the reaction chamber is adopted, so that the carbon nanocrystals after the growth are used. Chu Producing how the field emission electron source, characterized in that the presence of a tip of the probe in said hole.
[12] 請求項 10に記載の電界放出電子源を配置し、このゲート電極膜に対向してアノード 電極を配置し、このアノード電極側に蛍光物質層を形成し、前記カーボンナノチュー ブにより放出された電子が前記蛍光物質層に衝突して発光することを特徴とする電 界放出型ディスプレイ。  [12] The field emission electron source according to claim 10 is disposed, an anode electrode is disposed opposite to the gate electrode film, a fluorescent material layer is formed on the anode electrode side, and the carbon nanotube emits light. A field emission display, wherein emitted electrons collide with the phosphor layer and emit light.
PCT/JP2006/303723 2005-05-02 2006-02-28 Method for manufacturing carbon nanotubes by catalyst, method for manufacturing electric field emission electron source, electric field emission electron source, and electric field emission display WO2006120789A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005134362A JP2006128064A (en) 2004-08-31 2005-05-02 Method of manufacturing carbon nanotube using catalyst, method of manufacturing field emission electron source, field emission electron source and field emission display
JP2005-134362 2005-05-02

Publications (1)

Publication Number Publication Date
WO2006120789A1 true WO2006120789A1 (en) 2006-11-16

Family

ID=37396309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303723 WO2006120789A1 (en) 2005-05-02 2006-02-28 Method for manufacturing carbon nanotubes by catalyst, method for manufacturing electric field emission electron source, electric field emission electron source, and electric field emission display

Country Status (1)

Country Link
WO (1) WO2006120789A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2541581A1 (en) * 2011-06-29 2013-01-02 Khalid Waqas Device comprising nanostructures and method of manufacturing thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236879A (en) * 2000-01-07 2001-08-31 Samsung Sdi Co Ltd Manufacturing method of tripolar field-emission element using carbon nanotube

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236879A (en) * 2000-01-07 2001-08-31 Samsung Sdi Co Ltd Manufacturing method of tripolar field-emission element using carbon nanotube

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NISHIYAMA T.: "Fe Shokubai o Mochiita CNT Gosei no Teionka", EXTENDED ABSTRACTS; THE JAPAN SOCIETY OF APPLIED PHYSICS, vol. 64TH, no. 1, 2003, pages 433, XP003004097 *
SAWAI M.: "Burashi-jo Carbon nanotube no Keijo Seigyo", EXTENDED ABSTRACTS; THE JAPAN SOCIETY OF APPLIED PHYSICS, vol. 64TH, no. 1, 2003, pages 434, XP003004096 *
TAKEDA K.: "Suichoku Haiko shita Carbon nanotube no Teion Gosei", EXTENDED ABSTRACTS; THE JAPANA SOCIETY OF APPLIED PHYSICS, vol. 65TH, no. 1, 2004, pages 411, XP003004095 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2541581A1 (en) * 2011-06-29 2013-01-02 Khalid Waqas Device comprising nanostructures and method of manufacturing thereof
CN103650093A (en) * 2011-06-29 2014-03-19 瓦卡斯·哈立德 Device comprising nanostructures and method of manufacturing thereof
AU2012277795B2 (en) * 2011-06-29 2016-10-13 Waqas KHALID Device comprising nanostructures and method of manufacturing thereof
US10141261B2 (en) 2011-06-29 2018-11-27 Waqas Khalid Device comprising nanostructures and method of manufacturing thereof

Similar Documents

Publication Publication Date Title
CN101039873B (en) Carbon nanotube aggregate and process for producing the same
RU2437832C2 (en) Carbon nanotubes functionalised with fullerenes
US8142568B2 (en) Apparatus for synthesizing a single-wall carbon nanotube array
JP2008255003A (en) Carbon nanotube composite utilizing carbide-derived carbon, its production method, electron emission source containing it, and electron emission device provided with the electron emission source
JP2011016711A (en) Carbon nanotube and method for producing the same
WO2012057229A1 (en) Process for production of carbon nanotubes
JP2007182374A (en) Method for manufacturing single-walled carbon nanotube
JP2003277029A (en) Carbon nanotube and method for manufacturing the same
JP2005279624A (en) Catalyst, method and apparatus for producing carbon nanotube
JP2006306704A (en) Method of forming carbon film and carbon film
JP2006128064A (en) Method of manufacturing carbon nanotube using catalyst, method of manufacturing field emission electron source, field emission electron source and field emission display
WO2006120789A1 (en) Method for manufacturing carbon nanotubes by catalyst, method for manufacturing electric field emission electron source, electric field emission electron source, and electric field emission display
Bertoni et al. Growth of multi-wall and single-wall carbon nanotubes with in situ high vacuum catalyst deposition
Chen et al. Large current carbon nanotube emitter growth using nickel as a buffer layer
KR101758640B1 (en) Fabrication method of aligned carbon fiber arrays employing metal base
JP5099331B2 (en) Nanocarbon material composite, method for producing the same, and electron-emitting device using the same
JP5321880B2 (en) Nano-carbon material composite
KR20140094943A (en) Method for synthesizing carbon nano tubes
Quinton Aligned Carbon Nanotube Carpets on Carbon Substrates for High Power Electronic Applications
JP5630727B2 (en) Method for producing nanocarbon material composite
Stephen et al. Using combustion synthesis to convert emissions into useful solid materials
JP5418874B2 (en) Method for producing nanocarbon material composite and electron-emitting device using the nanocarbon material composite
JP5476883B2 (en) Nanocarbon material composite and method for producing the same
Bryan The Influence of a TiN Buffer Layer on the PECVD Growth and Field Emission Properties of Carbon Nanotubes
KR20040050355A (en) Manufacturing method of carbon nanotube by thermal chemical vapor deposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06714860

Country of ref document: EP

Kind code of ref document: A1