WO2006091188A1 - Printed circuit board with integral strain gage - Google Patents

Printed circuit board with integral strain gage Download PDF

Info

Publication number
WO2006091188A1
WO2006091188A1 PCT/US2005/005363 US2005005363W WO2006091188A1 WO 2006091188 A1 WO2006091188 A1 WO 2006091188A1 US 2005005363 W US2005005363 W US 2005005363W WO 2006091188 A1 WO2006091188 A1 WO 2006091188A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
layer
printed circuit
circuit board
insulating layer
Prior art date
Application number
PCT/US2005/005363
Other languages
French (fr)
Inventor
Thomas P. Kieffer
Robert B. Watson
Original Assignee
Vishay Measurements Group, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vishay Measurements Group, Inc. filed Critical Vishay Measurements Group, Inc.
Priority to PCT/US2005/005363 priority Critical patent/WO2006091188A1/en
Publication of WO2006091188A1 publication Critical patent/WO2006091188A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0266Marks, test patterns or identification means
    • H05K1/0268Marks, test patterns or identification means for electrical inspection or testing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10151Sensor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/1028Thin metal strips as connectors or conductors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

An integral strain measurement layer for use in an assembly printed circuit board to provide for strain measurement on the printed circuit board. The strain measurement layer includes an insulating layer having a top surface and a bottom surface, a strain sensitive layer of metallic foil adhered to the top surface of the insulating layer for measuring strain associated with the printed circuit board, and a copper coating disposed on the strain sensitive layer of metallic foil.

Description

PRINTED CIRCUIT BOARD WITH INTEGRAL STRAIN GAGE
BACKGROUND OF THE INVENTION The present invention relates to a printed circuit board with an integral strain gage.
Although the present invention addresses numerous problems, specific problems related to the manufacturing of printed circuit boards are discussed herein to provide a background of the invention.
During printed circuit board manufacturing, it is advantageous to measure strain associated with a printed circuit boards. Strain measurements can be used for stress analysis purposes. During the manufacturing processes printed circuit boards undergo a variety of operations that can be stressful. For example populating a board during one manufacturing operation may cause damage to connections made in a previous manufacturing operation. Locating and monitoring areas where strain is being produced on a printed circuit board is desirable. Knowledge regarding strain can be used to assess electronic component failure modes within a printed circuit board to thereby alter or improve the manufacturing process as necessary to reduce or eliminate defects and/or otherwise improve quality.
This problem has been addressed in the prior art by using conventional discrete strain gages attached to the surface of the printed circuit board with separate signal lead wires attached to the strain gage. In such an approach discrete strain gage sensors are glued to the top surface of the printed circuit board and attached to electrical circuitry via leadwires attached to the sensors.
In the case of prior art strain gages, there is a significant installation cost associated with placing a strain gage on a printed circuit board. This step is performed by a technician which is time-consuming and costly. This type of labor intensive installation process is not consistent with the goals of an automated assembly process or a high volume PCB manufacturing environment. Moreover, because an automated process is not used the results obtained from strain gages installed in this manner may not be as accurate or useful as desired due to inconsistencies between installations. An alternative prior art approach has been to use strain-sensitive material applied by metal deposition directly to the board. This approach has allowed some use of printed circuit board manufacturing techniques, however there are significant disadvantages. In particular deposited metal does not provide the requisite strain-sensitive properties that may be required in more sensitive applications. Also, although printed circuit board manufacturing techniques are used, the use of a metal deposition step for the strain gage is a significant addition to the manufacturing process that may be cost prohibitive in particular applications.
A further problem is that with the prior art approaches there are numerous limitations as to where strain can be measured. Strain sensors can not be located in positions which are not readily accessible. Every place where it may be advantageous or appropriate to measure strain is simply not accessible with a discrete sensor.
Thus, despite these varying approaches used in the prior art, problems remain. Therefore, it is a primary object, feature or advantage of the present invention to improve upon the state of the art.
Another object, feature, or advantage of the present invention is to provide for accurately and efficiently locating areas of stress in a printed circuit board.
It is a further object, feature or advantage of the present invention to provide a printed circuit board with an integral strain gage as opposed to a discrete strain gage. It is a still further object, feature or advantage of the present invention is to provide an integral strain gage that does not require deposition of material directly on the printed circuit board.
Another object, feature or advantage of the present invention is to provide an integral strain gage that is compatible with a multi-layer printed circuit board. Yet another object, feature or advantage of the present invention is to provide an integral strain gage for use in a printed circuit board that allows for flexibility with respect to where in the printed circuit board the strain gage is placed.
A further object, feature or advantage of the present invention is to provide an integral strain gage that does not require using discrete sensors attached to the top surface of the printed circuit board. A still further object, feature, or advantage of the present invention is to provide an integral strain gage in a printed circuit board suitable for transducer purposes such as measuring deflection or force.
Another object, feature, or advantage of the present invention is to provide an integral strain gage in a printed circuit board that is accurate.
One or more of these and/or other objects, features, or advantages of the present invention will become apparent from the specification and claims that follow.
SUMMARY OF THE INVENTION According to one aspect of the present invention a strain measurement layer for use in assembling a printed circuit board to provide for strain measurement on the printed circuit board is provided. The strain measurement layer includes an insulating layer having a top surface and a bottom surface. There is a strain sensitive layer of metallic foil adhered to the top surface of the insulating layer for measuring strain associated with the printed circuit board. There is a copper coating disposed on the strain-sensitive layer of metallic foil. The layer may also include a second strain sensitive layer on the bottom surface of the insulating layer and a second copper coating on the second strain sensitive layer. The strain sensitive layer may be patterned to provide one or more strain gage features. The copper coating may be patterned to provide for circuit features. According to another aspect of the invention, a printed circuit board includes a plurality of layers where at least one of the layers is a strain measurement layer adapted to provide for strain measurement of the printed circuit board. The strain measurement layer includes an insulating layer having a top surface and a bottom surface, a strain sensitive layer of metallic foil adhered to the top surface of the insulating layer for measuring strain associated with the printed circuit board and a copper coating disposed on the strain sensitive layer of metallic foil. The strain sensitive layer may be an outer layer or an inner layer. Also more than one strain sensitive layer can be used. Both the strain sensitive layer may be patterned to form various strain gage features. Similarly, the copper coating may be patterned to provide various circuit features. According to another aspect of the invention, a method for strain measurement on a printed circuit board is provided. The method includes providing a printed circuit board having a plurality of layers where at least one of the layers is a strain measurement layer having an insulating layer and a strain sensitive metallic foil adhered to the insulating layer for measuring strain associated with the printed circuit board. According to the method, strain is associated with the strain sensitive metallic foil as measured. The method allows for locating an area of high stress based on the strain. For example, the method provides for locating an area of high stress associated with solder connection failure in the printed circuit board. The resulting strain measurements can be used to provide information necessary to appropriately modify manufacturing process based on location of the areas of high stress.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 illustrates one embodiment of a side view of a printed circuit board according to the present invention.
Figure 2 illustrates one embodiment of a strain measurement layer according to one embodiment of the present invention.
Figure 3 illustrates a view of one embodiment of a strain measurement layer which is an internal layer according to one embodiment of the present invention.
Figure 4 illustrates a top view of one embodiment of a printed circuit board of the present invention having multiple strain measurement layers. Figure 5 illustrates a side view of a strain measurement layer according to one embodiment of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
The invention provides for an integral strain-sensitive layer in a printed circuit board. The integral strain-sensitive layer addresses the problems of strain measurement on a printed circuit board while allowing the use of printed circuit board manufacturing techniques to locate the point of strain measurement and to connect the strain sensor to the appropriate electrical circuitry.
Figure 1 illustrates a side view one embodiment of a printed circuit board 10 having multiple layers. The multiple layers include an outer layer 12, an inner layer 14 and a second outer layer 16, the inner layer 14 sandwiched between the outer layer 12 and the second outer layer 16. Although only three layers are shown, the present invention contemplates that printed circuit boards may have any number of layers, one or more of which may be strain measurement layers. To assist in describing the invention, Figure 2 illustrates a strain measurement layer which is an outer layer, Figure 3 illustrates a strain measurement layer which is an inner layer, and Figure 4 illustrates that a multi-layer board can have multiple strain measurement layers.
Figure 2 illustrates a top view of one embodiment of a strain measurement layer 12. The strain measurement layer 12 includes a number of different features. The features include high resistance strain sensor features such as strain sensitive grids 18 and 26. In addition, there are conventional features such as circuit traces 20, 21, 22, 24 for low resistance electrical signal transmission to each of the strain sensitive grids 18, 26. Another conventional feature includes low resistance attachment points 28, 30, 32 for non-strain sensitive components. There is also a plurality of pads 34, 36 for low resistance attachment to non-strain sensitive components. The features 20, 21, 22, 24, 28, 30, 32, 34, and 36 are preferably copper features. The various features are shown are merely illustrative as the strain measurement layer is configurable to whatever circuit design and combination of features desired by its users through removal processes.
Figure 3 illustrates one embodiment of an inner layer having strain sensor features. It should be apparent that the strain measurement layer of the present invention can be either an outer layer or an inner layer. As shown in Figure 3, inner layer 14 has a strain sensor feature 40. Also, there are conventional circuit features such as circuit traces 42 for low resistance electrical signal transmission to the strain sensitive grid 40. Other features shown include low resistance drilled attachment via 44, 46 for routing electrical signals from the strain sensitive feature 40. Other features shown also include low resistance drilled attachment via 48, 52 for routing electrical signals from non-strain sensitive components. A circuit trace 50 is also shown as is a low resistance attachment point 54 for non-strain sensitive components. A low resistance drilled attachment via 56 for routing electrical signals from non-strain sensitive components is also shown. The various features shown are merely illustrative. Figure 4 is a top view of one embodiment of the printed circuit board having multiple strain measurement layers. Figure 4 illustrates both the layers shown in Figures 2 and 3 combined with the features shown in Figure 3 provided in hidden lines.
Thus, it is apparent that the present invention is consistent with printed circuit board manufacturing processes as a strain measurement layer can be inserted as a layer in a multilayer printed circuit board. The same strain measurement layer can include strain sensor features as well as conventional features made of a conductor such as copper and can include via for interfacing with adjacent layers. Where the strain sensitive layer is an inner or subsurface layer any strain sensor features on the strain sensitive layer can be connected to electrical circuits via holes drilled through the strain sensor feature directly under or over electrical traces that are joined by conventional printed circuit board manufacturing techniques using plated and solder via, for example.
Figure 5 illustrates a side view of a strain measurement layer 80. Each strain measurement layer 80 is formed from an insulating layer 82 having a top surface and a bottom surface. There is a strain sensitive layer of metallic foil 84 adhered to the top surface of the insulating layer 82 for measuring strain associated with the printed circuit board. There is also a conductive coating 86, preferably of copper, disposed on the strain sensitive layer 84 of metallic foil. A strain measurement layer 80 may have the strain sensitive layer of metallic foil and the copper coating on one side or both sides as maybe appropriate for a particular use. For example Figure 5 illustrates a strain sensitive layer 88 adhered to the bottom surface of the insulating layer 82 with a conductive coating 90, disposed on the strain sensitive layer 88.
The insulating layer 82 is preferably of a polyimide material. The conductive coating 86, 90 is preferably copper coating. Preferably the strain sensitive layer is of a metallic foil of a material such as a nickel chromium alloy. Examples of suitable materials for the metallic foil include Karma or Constantan depending upon the particular properties desired. The metallic foil is preferably a rolled metallic foil. Preferably the strain sensitive layer is bonded to the insulating substrate with an epoxy adhesive, although the present invention contemplates that other types of adhesives maybe used depending upon the particular properties desired. The strain measurement layer is typically less than about 2 mils in thickness. During the printed board manufacturing process, the present invention contemplates using essentially standard printed circuit board techniques. It is observed that the strain measurement layer of the present invention may be somewhat more flexible than the types of layers normally used in printed circuit boards so some alterations in handling may be required in appropriate circumstances. The strain measurement layers of the present invention can be patterned using normal processes including etching. Where the strain measurement layer is etched to form strain sensor patterns, it is observed that typical chemicals used for removing copper may take longer to remove the portions of metallic foil than the copper coating, therefore other chemicals may be desirable to speed the process. It is further observed that the integral strain gage of the present invention is not limited to use for detecting strains associated with manufacturing process. The integral strain gage of the present invention also has other applications as a sensor. For example, force and deflection can be sensed in any number of applications.
Therefore an integral strain gage has been disclosed. The present invention contemplates numerous alternative embodiments, modifications, substitutions, and additions within the intended spirit and scope of the invention. Thus, the present invention is not to be limited to the specific embodiments described herein.

Claims

What is claimed is:
1. A layer for use in an assembly printed circuit board to provide for strain measurement on the printed circuit board, the layer comprising: an insulating layer having a top surface and a bottom surface; a strain sensitive layer of metallic foil adhered to the top surface of the insulating layer for measuring strain associated with the printed circuit board; a conductive coating disposed on the strain sensitive layer of metallic foil.
2. The layer of claim 1 wherein the layer has a thickness of less than 2 mils.
3. The layer of claim 1 further comprising a second strain sensitive layer on the bottom surface of the insulating layer and a second conductive coating on the second strain sensitive layer.
4. The layer of claim 1 wherein the strain sensitive layer is patterned to provide at least one strain gage feature and wherein the conductive coating is patterned to provide at least one conductive feature.
5. The layer of claim 1 wherein the insulating layer is polyimide.
6. The layer of claim 1 wherein the conductive coating is a copper coating.
7. A printed circuit board comprising: a plurality of layers; wherein at least one of the plurality of layers is a strain measurement layer adapted to provide for strain measurement of the printed circuit board.
8. The printed circuit board of claim 7 wherein the at least one strain measurement layer comprises:
(a) an insulating layer having a top surface and a bottom surface;
(b) a strain sensitive layer of metallic foil adhered to the top surface of the insulating layer for measuring strain associated with the printed circuit board; (c) a conductive coating disposed on the strain sensitive layer of metallic foil.
9. The printed circuit board of claim 8 wherein at least one strain sensitive layer includes an outer layer.
10. The printed circuit board of claim 8 wherein the at least one strain sensitive layer includes an inner layer.
11. The printed circuit board of claim 8 wherein the copper coating is patterned to form at least one feature.
12. The printed circuit board of claim 8 wherein the strain sensitive layer is patterned to form at least one feature.
13. The printed circuit board of claim 8 wherein the insulating layer comprises polyimide.
14. The printed circuit board of claim 8 wherein the conductive coating is a copper coating.
15. A method for strain measurement on a printed circuit board, comprised of a plurality of layers wherein at least one of the plurality of layers is a strain measurement layer comprising of an insulating layer and a strain sensitive metallic foil adhered to the insulating layer for measuring strain associated with the printed circuit board, comprising: measuring strain associated with the strain sensitive metallic foil.
16. The method of claim 15 further comprising locating an area of high stress based on the strain.
17. The method of claim 15 wherein the area of high stress is associated with solder connection failure in the printed circuit board.
18. The method of claim 15 further comprising modifying a manufacturing process based on location of the area of high stress.
PCT/US2005/005363 2005-02-22 2005-02-22 Printed circuit board with integral strain gage WO2006091188A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2005/005363 WO2006091188A1 (en) 2005-02-22 2005-02-22 Printed circuit board with integral strain gage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2005/005363 WO2006091188A1 (en) 2005-02-22 2005-02-22 Printed circuit board with integral strain gage

Publications (1)

Publication Number Publication Date
WO2006091188A1 true WO2006091188A1 (en) 2006-08-31

Family

ID=34960904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/005363 WO2006091188A1 (en) 2005-02-22 2005-02-22 Printed circuit board with integral strain gage

Country Status (1)

Country Link
WO (1) WO2006091188A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017024097A (en) * 2015-07-17 2017-02-02 ファナック株式会社 Automatic assembly system by robot
JP2021081363A (en) * 2019-11-21 2021-05-27 三菱電機株式会社 Substrate warpage detector and substrate warpage detection program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276003A (en) * 1990-03-27 1991-12-06 Kyowa Electron Instr Co Ltd Strain gage and its manufacture
US5328551A (en) * 1992-10-28 1994-07-12 Eaton Corporation Method of making high output strain gage
JP2001015882A (en) * 1999-07-02 2001-01-19 Nec Corp Circuit board incorporating strain gauge and manufacture of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276003A (en) * 1990-03-27 1991-12-06 Kyowa Electron Instr Co Ltd Strain gage and its manufacture
US5328551A (en) * 1992-10-28 1994-07-12 Eaton Corporation Method of making high output strain gage
JP2001015882A (en) * 1999-07-02 2001-01-19 Nec Corp Circuit board incorporating strain gauge and manufacture of the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MARS, J.R.: "New strain gages are similar to thin film resistors, permit analysis of multilayer boards", INSULATION/CIRCUITS, vol. 19, no. 11, 1 October 1973 (1973-10-01), pages 35 - 37, XP009047141 *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 096 (P - 1322) 10 March 1992 (1992-03-10) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 16 8 May 2001 (2001-05-08) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017024097A (en) * 2015-07-17 2017-02-02 ファナック株式会社 Automatic assembly system by robot
JP2021081363A (en) * 2019-11-21 2021-05-27 三菱電機株式会社 Substrate warpage detector and substrate warpage detection program
JP7186690B2 (en) 2019-11-21 2022-12-09 三菱電機株式会社 Board warp detector and board warp detection program

Similar Documents

Publication Publication Date Title
US7094061B1 (en) Printed circuit board with integral strain gage
US20060021453A1 (en) Embedded strain gauge in printed circuit boards
US8640549B2 (en) Strain gage and manufacturing method thereof
KR101148317B1 (en) Multi-layered circuit board and manufacturing method of multi-layered circuit board
US6948377B2 (en) Method and apparatus for detecting the strain levels imposed on a circuit board
EP0424696B1 (en) Structure for testing the operability of a completed printed circuit board, process for fabricating same and process for testing same.
US9593991B2 (en) Printed circuits with embedded strain gauges
JP4910143B2 (en) Wear gauge
US20040183648A1 (en) Strain sensors and housings and circuit boards with integrated strain sensors
GB2414116A (en) Printed circuit board with integrated strain gauge
JP2009079976A (en) Apparatus for measuring road surface strain
EP3430643B1 (en) Component carrier with integrated strain gauge
WO2006091188A1 (en) Printed circuit board with integral strain gage
JPH06123604A (en) Bending sensor
US20200225107A1 (en) Sensor Unit And Method Of Interconnecting A Substrate And A Carrier
JP2000340916A (en) Printed wiring board
CN107835559B (en) Printed Circuit Board (PCB) manufacturing method and PCB
US7333346B2 (en) Circuit board having test coupon and method for evaluating the circuit board
US20080017508A1 (en) Non-contact type single side probe structure
JP4089555B2 (en) Circuit board layer thickness measurement method
JP2020072122A (en) Wiring board and method for inspecting wiring board
JP3191205B2 (en) Printed circuit board inspection equipment
TWI753476B (en) Printed circuit and testing method of copper thickness
JP4860761B2 (en) Adapter board, semiconductor device using the same, and method for measuring input / output signals between printed circuit boards
CN117729687A (en) Pressure-sensitive flexible circuit board and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05713842

Country of ref document: EP

Kind code of ref document: A1