WO2006082986A1 - Fuel cell and method of producing fuel cell - Google Patents

Fuel cell and method of producing fuel cell Download PDF

Info

Publication number
WO2006082986A1
WO2006082986A1 PCT/JP2006/302097 JP2006302097W WO2006082986A1 WO 2006082986 A1 WO2006082986 A1 WO 2006082986A1 JP 2006302097 W JP2006302097 W JP 2006302097W WO 2006082986 A1 WO2006082986 A1 WO 2006082986A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
electrolyte membrane
joined body
fuel
cylindrical
Prior art date
Application number
PCT/JP2006/302097
Other languages
French (fr)
Japanese (ja)
Inventor
Yuichiro Hama
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2006082986A1 publication Critical patent/WO2006082986A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a fuel cell, in particular, a cylindrical fuel cell and a method for manufacturing the same.
  • a fuel cell has a fuel electrode (an anode catalyst layer) on one side of the electrolyte membrane and an air electrode (forced sword catalyst layer) on the other side of the electrolyte membrane with the electrolyte membrane in between.
  • a diffusion layer is further provided on the outside of each catalyst layer that sandwiches the catalyst, and these are sandwiched by separators provided with passages for supplying raw materials.
  • a battery is configured by supplying raw materials such as hydrogen and oxygen to each catalyst layer to generate electricity. .
  • the raw material supplied to the fuel electrode is hydrogen gas and the raw material supplied to the air electrode is air
  • hydrogen ions and electrons are generated from the hydrogen gas at the fuel electrode.
  • the electrons reach the air electrode from the external terminal through the external circuit.
  • water is generated by oxygen in the supplied air, hydrogen ions that have passed through the electrolyte membrane, and electrons that have reached the air electrode through an external circuit.
  • This fuel cell has a variety of sources of clean energy due to the abundance of raw material gas and liquid fuel used for power generation and the fact that the substance discharged from the power generation principle is water. Considered.
  • a tubular fuel cell As such a fuel cell, a tubular (cylindrical) fuel cell is known.
  • a tubular fuel cell has a feature that it can be easily downsized as compared with a planar fuel cell.
  • a fuel electrode is provided on one of the inner and outer surfaces of a tubular polymer electrolyte membrane, and an air electrode is provided on the other surface.
  • a tube-shaped fuel cell is described in which a carbon fiber carrying a catalyst is disposed on one or both of a fuel electrode and an air electrode.
  • JP-A-11-1 1 1 3 1 3 discloses that a tube-shaped polymer electrolyte membrane is provided with a fuel electrode on one of the inner and outer surfaces and an air electrode on the other surface.
  • the first layer of conductive felt with fuel reforming function is lined, and a coiled elastic support material is inserted inside the first layer to press the first layer in close contact with the inner peripheral surface of the tube by expansion force.
  • a tubular fuel cell is formed by lining a second layer of a conductive film having a fuel reforming function inside a coiled elastic support material and inserting a fuel supply conductive tube inside the second layer. Is described.
  • Patent Document 2 by using a conductive felt and a coiled elastic support material as a diffusion layer that plays the role of a current collector, the diffusion layer is packed inside in close contact with the electrode without damaging the electrode. It can be done.
  • spherical titanium powder is used as a current collector in a polymer electrolyte fuel cell. It describes the use of a porous conductive plate that has been sintered and has a smooth surface. As a result, damage to adjacent electrodes can be suppressed.
  • a conductive felt as a current collector is used even though a coil-shaped elastic support material is used. It is necessary to pack it softly with a force that does not damage the electrode, which may damage the electrode. In addition, after packing the first layer of conductive felt, it is necessary to insert a coil-like elastic support material and pack the second layer of conductive felt, which complicates the process. Furthermore, the porous conductive plate described in Japanese Patent Application Laid-Open Nos. 2000-0 6 8 1 1 2 and 2 0 4-7 7 1 4 5 6 lacks flexibility and has a tubular shape. It is difficult to use it as a current collector by inserting it into the fuel cell.
  • the present invention relates to a cylindrical electrolyte membrane, a fuel electrode provided on one of the inner and outer surfaces of the electrolyte membrane, and a void provided on the other surface of the inner and outer surfaces of the electrolyte membrane so as to face the fuel electrode.
  • a cylindrical fuel cell having a cylindrical joined body having an air electrode a cylindrical fuel cell capable of easily forming a current collector while suppressing damage to electrodes inside the cylinder, and a method for manufacturing the same It is.
  • the present invention is a tubular fuel cell, comprising a tubular electrolyte membrane, a fuel electrode provided on one of the inner and outer surfaces of the electrolyte membrane, and the other surface of the inner and outer surfaces of the electrolyte membrane.
  • An air electrode provided; a cylindrical joined body having: a housing portion for housing the tubular joined body; and inner and outer sides of the tubular joined body filled with conductive beads.
  • the conductive beads have an average particle diameter that changes stepwise along the long axis direction of the cylindrical joined body.
  • the present invention is also a method for manufacturing a cylindrical fuel cell, comprising a cylindrical electrolyte membrane, a fuel electrode provided on one of the inner and outer surfaces of the electrolyte membrane, and inner and outer surfaces of the electrolyte membrane.
  • a current collector is formed by filling inner and outer sides of a joined body having an air electrode provided on the other surface of the air electrode so as to face the fuel electrode, and a conductive bead.
  • the conductive beads are filled with vibration.
  • the conductive beads are filled so that the average particle diameter changes stepwise along the long axis direction of the cylindrical assembly.
  • the present invention relates to a cylindrical electrolyte membrane, a fuel electrode provided on one of the inner and outer surfaces of the electrolyte membrane, and a void provided on the other surface of the inner and outer surfaces of the electrolyte membrane so as to face the fuel electrode.
  • a cylindrical fuel cell having a cylindrical joined body having an air electrode a tubular joined body
  • a fuel cell and a method of manufacturing the fuel cell can be formed by filling conductive beads on the inside and outside of the tube to suppress damage to the electrodes inside the cylinder and easily forming a current collector.
  • FIG. 1 is a diagram showing an example of the configuration of a fuel cell according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an axial cross section of an example of a fuel cell according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing a method for manufacturing a fuel cell according to an embodiment of the present invention.
  • FIG. 4 is a diagram showing an axial cross section of another example of the fuel cell according to the embodiment of the present invention.
  • FIG. 5 is a graph showing the relationship between the current density and voltage of the fuel cells in Example 1 and Comparative Example 1 of the present invention.
  • FIG. 6 is a view showing a cross section in the axial direction of a conventional tubular fuel cell using carbon fiber as a current collector.
  • a fuel cell according to an embodiment of the present invention includes a cylindrical electrolyte membrane, a fuel electrode provided on one of the inner and outer surfaces of the electrolyte membrane, and air provided on the other surface of the inner and outer surfaces of the electrolyte membrane.
  • a cylindrical joined body having a pole, a storage portion for housing the tubular joined body, and a current collector formed by filling the inside and outside of the tubular joined body with conductive beads. Yes.
  • the fuel cell 1 includes an electrolyte membrane 10, a fuel electrode (anode catalyst layer) 12, an air electrode (cathode catalyst layer) 14, current collectors 16 a and 16 b, and a storage unit 18.
  • the fuel cell 1 includes an electrolyte membrane 10, a fuel electrode (anode catalyst layer) 12, an air electrode (cathode catalyst layer) 14, current collectors 16 a and 16 b, and a storage unit 18.
  • a fuel electrode 1 2 is provided on the inner surface of a cylindrical electrolyte membrane 10
  • an air electrode 14 is provided on the outer surface of the electrolyte membrane 10
  • a cylindrical assembly (MEA: M em brane E lectrode As s emb ly) 20 has been established.
  • the cylindrical joined body 20 is housed in the housing portion 18, and the current collectors 16 a and 16 b are formed by filling the inside and outside spaces of the joined body 20 with conductive beads.
  • the fuel electrode 12 may be provided on the outer surface of the cylindrical electrolyte membrane 10
  • the air electrode 14 may be provided on the inner surface of the electrolyte membrane 10.
  • the outer surface of the cylindrical electrolyte membrane 10 may be provided.
  • the air electrode 14 is provided on the inner surface of the electrolyte membrane 10, and the fuel electrode 12 is provided on the inner surface of the electrolyte membrane 10.
  • the current collector 16a formed inside the joined body 20 and the current collector 16b formed outside the joined body 20 are electrically connected to an external circuit, If a raw material is supplied to the inside and outside of the joined body 20 and operated, it can function as a battery.
  • the electrolyte membrane 10 is not particularly limited as long as it is a material having high ion conductivity such as proton (H +) or oxygen ion (O 2 —). Examples thereof include a solid polymer electrolyte membrane and a stabilized zirconia membrane. However, a solid polymer electrolyte membrane such as perfluorosulfonic acid is preferably used. Specifically, Goreselect (registered trademark) of Japan Gore-Tex Co., Ltd., Nafion (registered trademark) of Du Pont (Du Pont), and Aciplex (A) of Asahi Kasei Co., Ltd.
  • Perfluorosulfonic acid solid polymer electrolyte membranes such as cip 1 e X (registered trademark) and Flemion (registered trademark) of Asahi Glass Co., Ltd. can be used.
  • the thickness of the electrolyte membrane 10 is, for example, 10 m to 200 m, preferably 30 ⁇ m to 50 m.
  • the fuel electrode 12 includes, for example, a catalyst such as carbon carrying platinum (Pt) or the like together with another metal such as ruthenium (R U ) dispersed in a resin such as a solid polymer electrolyte such as naphthion (registered trademark).
  • the film was formed.
  • the film thickness of the fuel electrode 12 is, for example, 1 ⁇ ! ⁇ 100 ⁇ m, preferably 1 ⁇ ! The range is ⁇ 2 ⁇ m.
  • the air electrode 14 is formed, for example, by dispersing a catalyst such as carbon carrying platinum (Pt) or the like in a resin such as a solid polymer electrolyte such as naphthion (registered trademark).
  • the film thickness of the air electrode 14 is, for example, in the range of 1 ⁇ m to 100 m, preferably 1 m to 20; um.
  • the joined body 20 including the electrolyte membrane 10, the fuel electrode 1 2, and the air electrode 1 4 may be in a cylindrical shape, for example, a cylindrical shape; a polygonal cylindrical shape such as a triangular cylinder, a square cylinder, a pentagonal cylinder, a hexagonal cylinder, or the like. It may be any shape such as an elliptical cylinder, but is usually cylindrical.
  • tubular includes a solid body in addition to a hollow body.
  • Fig. 2 shows an enlarged view of the AA 'cross section of fuel cell 1 in Fig. 1.
  • the current collector 16 is composed of conductive 1 and raw beads 2 2.
  • the conductive beads 22 include metal-coated particles such as carbon or titanium whose surface is coated with a metal such as gold or platinum, and metal particles such as gold or platinum.
  • the shape of the conductive beads 22 is not particularly limited as long as the bonded body 20 does not need to be damaged or pierced. However, in order to suppress the bonded body 20 from being damaged or pierced, the conductive beads 22 should be filled uniformly. For this purpose, a spherical shape or an elliptical shape is preferable, and a spherical shape is more preferable for close packing.
  • the average particle size of the conductive beads 2 2 is preferably in the range of 10 ⁇ m to 500 ⁇ m, 5 0 ⁇ ⁇ ! Les, more preferred to be in the range of ⁇ 2 0 0 iz m. If the particle size is smaller than 10 zm, the packing density increases, and the raw material supply efficiency may be reduced. If the particle size is larger than 50 in, the packing density is lowered, the contact area with the joined body 20 is lowered, and the current collection efficiency may be lowered.
  • average particle size is the average value of 100 particle sizes measured on a microscope image.
  • average particle diameter of the conductive beads 22 is the long diameter of the particle on the microscope image when the particle is observed with a microscope (the maximum between any two points on the particle outline). Value).
  • “Spherical” is expressed by the circularity SF obtained by the following method.
  • the conductive beads 22 in this embodiment are preferably “spherical” having an average circularity F in the range of 0.9 to 1.0.
  • the circularity F can be obtained by image analysis or the like based on a microscopic image.
  • the ratio of the length of the major axis to the minor axis is preferably 1 (spherical) to 15 (elliptical). The ratio is not particularly limited unless the bonded body 20 is scratched or pierced.
  • the current collector is required to have diffusivity such as gas diffusibility as a supply path for raw materials such as raw material gas as well as electron conductivity for passing electrons during power generation in the joined body.
  • the current collector 16 according to the present embodiment is filled with the conductive beads 22 so that the conductive beads 22 are in contact with the bonded body 20, and thus has electronic conductivity and is filled with the conductive beads 22. In addition, it has diffusibility due to the gap after being pressed.
  • the storage section 18 in FIG. 1 is not particularly limited as long as it has a bottomed shape capable of storing the entire joined body 20.
  • a bottomed cylindrical shape a triangular cylinder, a square cylinder, a pentagonal cylinder
  • the shape may be any shape such as a polygonal cylinder such as a hexagonal cylinder or an elliptical cylinder, but is usually a cylindrical shape.
  • the material of the storage portion 18 include a resin such as polyether imide, a metal such as titanium, and the like.
  • a metal mesh material: titanium can be used.
  • the fuel electrode film is formed by a coating method such as a spray method or a dipping method.
  • the catalyst powder for the fuel electrode 12 is dispersed in a solution obtained by dissolving a resin such as a solid polymer electrolyte such as naphthion (registered trademark) in an alcohol solvent such as methanol, ethanol, or isopropanol.
  • a resin such as a solid polymer electrolyte such as naphthion (registered trademark)
  • an alcohol solvent such as methanol, ethanol, or isopropanol.
  • the substrate 24 is dipped in the paste 26 and pulled up (FIG. 3 (a)) to form a film having a desired thickness, and then dried.
  • the shape of the support 24 may be selected according to the shape of the cylindrical joined body 20 to be manufactured.
  • the drying temperature may be a temperature that does not cause alteration of the catalyst, the electrolyte membrane, etc., depending on the boiling point of the solvent used. When isopropanol or the like is used, the temperature should be 80 to 100 ° C.
  • an electrolyte membrane is formed on a support 24 on which a fuel electrode membrane is formed, using a paste 26 in which a solid polymer electrolyte or the like is dissolved in the solvent.
  • a resin such as a solid polymer electrolyte such as naphthion (registered trademark) is dissolved in the above alcohol solvent on the support 24 on which the fuel electrode and the electrolyte membrane are formed.
  • an air electrode film is formed to form a joined body 20.
  • the thus formed joined body 20 is taken out from the support 24 (FIG. 3 (b)), and a cylindrical joined body 20 having a fuel electrode on the inner surface of the electrolyte membrane and an air electrode on the outer surface. Is obtained.
  • the thus obtained cylindrical joined body 20 is accommodated in a bottomed cylindrical accommodating portion 18 such as a metal mesh with its central axis aligned.
  • the conductive beads 22 are filled into the inside of the joined body 20, and between the outside of the joined body 20 and the inside of the storage portion 18 (FIG. 3 (c)).
  • the inside of the joined body 20, the outside of the joined body 20, and the inside of the housing portion 18 may be filled simultaneously, or may be filled separately.
  • the conductive beads 22 are filled with a predetermined amount so as to contact a predetermined portion of the surface of the bonded body 20.
  • the container 1 8 is vibrated and filled while applying vibration to the conductive beads 2 2.
  • the vibration of the storage unit 18 is preferably performed so as to vibrate in the horizontal direction with respect to the central axis direction of the storage unit 18 and the joined body 20.
  • the conductive beads 22 are pressed from the outside of the storage unit 18 using a stainless wire or the like (FIG. 3 (d)).
  • a stainless wire or the like By pressing, it is possible to prevent the conductive beads 22 from moving inside and outside the bonded body 20, and to further reduce the contact resistance between the bonded body 20 and the conductive beads 22.
  • the conductive beads 22 can be sufficiently functioned as a current collector without being sintered after being filled and pressed to form a sintered body. Since there is no need to sinter, it is not necessary to take into account the deterioration of the bonded body 20 due to sintering.
  • the pressure when pressing the conductive beads 2 2 is the catalyst layer (fuel electrode 1 2 and air electrode 1 4) is not particularly limited as long as the pressure does not damage or the conductive beads 22 do not break.
  • the pressure is preferably.
  • the current collector 16 a formed inside the joined body 20 and the current collector 16 b formed outside the joined body 20 are removed. If it is electrically connected to the partial circuit and supplied with the raw material gas to the inside and outside of the joined body 20, it can be operated as a battery.
  • Examples of the raw material supplied to the fuel electrode 1 or 2 include reducing gas (fuel gas) such as hydrogen and methane or liquid fuel such as methanol.
  • Examples of the raw material supplied to the air electrode 14 include oxidative gases such as oxygen and air.
  • the raw material supplied to the fuel electrode 1 2 is operated as hydrogen gas
  • the raw material supplied to the air electrode 14 is operated as air
  • the hydrogen ion (H +) and the electron (e1) are generated from the hydrogen gas (H 2 ) through the reaction formula shown in FIG.
  • the electron (e1) passes from the current collector 16 a through the external circuit and reaches the air electrode 14 from the current collector 16 b.
  • oxygen (0 2 ) in the supplied air hydrogen ions (H +) that have passed through the electrolyte membrane 10, and electrons (e 1) that have reached the air electrode 14 through an external circuit
  • the conductive beads 22 are filled so that the average particle diameter changes stepwise along the long axis direction of the cylindrical joined body 20, that is, along the flow direction of the source gas. Sile,.
  • the source gas can be efficiently catalyzed. It can be distributed to the layers (fuel electrode 12 and air electrode 14).
  • the average particle diameter of the conductive beads 22 is changed stepwise along the long axis direction of the cylindrical joined body 20 according to the pressure state of the raw material gas inside the current collector 16. It only needs to be filled, and it can be changed to two stages or can be changed to three or more stages.
  • the above method is used to first fill a predetermined amount of the conductive beads 22 with the smallest average particle size, and then add the second conductive beads 22 with the second average particle size. A predetermined amount is filled, and then a predetermined amount of conductive beads 22 having the largest average particle diameter is filled. Finally, the conductive beads 22 are pressed from the outside of the storage portion 18.
  • the conductive beads 22 are filled, thereby collecting current without causing such a problem.
  • the body 16 can be easily formed.
  • the porosity is substantially constant with respect to the flow direction of the source gas.
  • the current collector 1 6 is configured by changing the particle size of the conductive beads 22 to be filled in stages, the current collector 1 Since the porosity of 6 can be changed arbitrarily, Therefore, the diffusibility of the raw material can be controlled, and the raw material gas can be efficiently distributed to the catalyst layer.
  • the fuel cell according to the present embodiment can obtain necessary current and voltage by collecting a plurality of cylindrical fuel cells (single cells) and connecting them in series.
  • a plurality of cylindrical fuel cells may be assembled and connected in parallel.
  • the fuel cell according to the present embodiment has a simple structure and can be reduced in size and weight, it can be used as a small power source for mopile equipment such as a mobile phone and a portable personal computer;
  • a fuel electrode Using a cylindrical Teflon (registered trademark) rod (diameter l mni, length 20 O mm) as a support, a fuel electrode, an electrolyte membrane, and an air electrode were formed in this order by an immersion method.
  • a cylindrical Teflon (registered trademark) rod (diameter l mni, length 20 O mm) as a support, a fuel electrode, an electrolyte membrane, and an air electrode were formed in this order by an immersion method.
  • a paste in which carbon carrying platinum (P t) and ruthenium (R u) as a catalyst is dispersed in a 2-propanol solution of resin (Naphion, registered trademark) for the fuel electrode, electrolyte For membranes, perfluorosulfonic acid solid polymer electrolyte (Naphion, registered trademark) dissolved in 2_propanol Paste for air electrode, resin (Naphion, registered trademark) 2-propanol solution
  • pastes in which carbon carrying platinum (Pt) was dispersed were used as catalysts. After each film formation, the film was dried in an oven at 80 ° C. for 60 minutes.
  • the film thickness was 10 m for the fuel electrode, 4 ° m for the electrolyte film, and 10 ⁇ m for the air electrode.
  • the joined body thus formed was taken out of the Teflon rod, and a cylindrical joined body having a fuel electrode on the inner surface of the electrolyte membrane and an air electrode on the outer surface was obtained.
  • the joined body obtained in Example 1 was stored in a cylindrical metal mesh with a bottom (material stainless steel, diameter 2 mm, height 200 mm, mesh diameter 25 m) with the center axis aligned. After that, spherical conductive beads (material titanium, average particle size 30 111, circularity 0.999) are placed on the inside of the joined body, between the outside of the joined body and the inside of the metal mesh, Each was filled up to 50mm from the bottom. Next, spherical conductive beads (material titanium, average particle size 100 ⁇ , circularity 0.9.9) are placed on the inside of the joined body, between the outside of the joined body and the inside of the metal mesh. Each was filled up to 150 mm from the bottom.
  • spherical conductive beads material titanium, average particle size 30 111, circularity 0.999
  • a spherical conductive bead material titanium, average particle size 1 50 ⁇ , circularity 0.9.9 is applied to the inside of the joint and between the outside of the joint and the inside of the metal mesh.
  • a spherical conductive bead material titanium, average particle size 1 50 ⁇ , circularity 0.9.9 is applied to the inside of the joint and between the outside of the joint and the inside of the metal mesh.
  • Each of the metal meshes was filled up to 200 mm from the bottom.
  • step 1 After filling a predetermined amount of conductive beads, finally press the conductive beads using a stainless wire from the outside of the metal mesh (pressure 30 kgf / cm 2 ), and set the average particle size of the conductive beads to 3 levels.
  • the fuel cell changed in step 1 was obtained. No damage was seen in the fuel electrode and air electrode. Supply hydrogen gas inside the assembly and air outside the assembly However, the difference (pressure loss) in gas pressure between the current supply port of the current collector and the current outlet of the current collector is
  • a porous metal wire material: stainless steel
  • a current collector was inserted into the joined body obtained in Example 1 between the inside of the joined body and between the outside of the joined body and the inside of the metal mesh. . Damage was seen in the fuel electrode and air electrode.
  • Figure 5 shows the results of evaluating the battery performance of the obtained fuel cells.
  • the fuel cell of Example 1 has improved current-voltage characteristics compared to the fuel cell of Comparative Example 1, and in particular, a decrease of about 20% in concentration overvoltage is observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

A tubular fuel cell having a tubular joint body, a reception section for receiving the tubular joint body, and a collector formed by filling the inside and outside of the tubular joint body with electrically conductive beads. The tubular joint body is composed of a tubular electrolyte film, a fuel electrode provided on one of the inner and outer surfaces of the electrolyte film, and an air electrode provided on the other of the inner and outer surfaces.

Description

明 細 書 燃料電池及び燃料電池の製造方法 [技術分野]  Description Fuel cell and fuel cell manufacturing method [Technical Field]
本発明は、 燃料電池、 特に筒状の燃料電池及びその製造方法に関する。 [背景技術]  The present invention relates to a fuel cell, in particular, a cylindrical fuel cell and a method for manufacturing the same. [Background]
環境問題や資源問題への対策の一つとして、 酸素や空気等の酸化性ガスと、 水 素やメタン等の還元性ガス (燃料ガス) あるいはメタノール等の液体燃料等とを 原料として電気化学反応により化学エネルギーを電気エネルギーに変換して発電 する燃料電池が'注目されている。 燃科電池は、 電解質膜の一方の面に燃料極 (ァ ノード触媒層) と、 もう一方の面に空気極 (力ソード触媒層) とを電解質膜を挟 んで対向するように設け、 電解質膜を挟持した各触媒層の外側に拡散層をさらに 設け、 これらを原料供給用の通路を設けたセパレータで挟んで電池が構成され、 各触媒層に水素、 酸素等の原料を供給して発電する。  As one of the countermeasures against environmental problems and resource problems, electrochemical reaction using oxidizing gas such as oxygen and air and reducing gas such as hydrogen and methane (fuel gas) or liquid fuel such as methanol as raw materials Fuel cells that generate chemical power by converting chemical energy into electrical energy are attracting attention. A fuel cell has a fuel electrode (an anode catalyst layer) on one side of the electrolyte membrane and an air electrode (forced sword catalyst layer) on the other side of the electrolyte membrane with the electrolyte membrane in between. A diffusion layer is further provided on the outside of each catalyst layer that sandwiches the catalyst, and these are sandwiched by separators provided with passages for supplying raw materials. A battery is configured by supplying raw materials such as hydrogen and oxygen to each catalyst layer to generate electricity. .
燃料電池の発電時には、 燃料極に供給する原料を水素ガス、 空気極に供給する 原料を空気とした場合、 燃料極において、 水素ガスから水素イオンと電子とが発 生する。 電子は外部端子から外部回路を通じて空気極に到達する。 空気極におい て、 供給される空気中の酸素と、 電解質膜を通過した水素イオンと、 外部回路を 通じて空気極に到達した電子により、 水が生成する。 このように燃料極及ぴ空気 極において化学反応が起こり、 電荷が発生して電池として機能することになる。 この燃料電池は、 発電に使用される原料のガスや液体燃料が豊富に存在すること 、 また、 その発電原理より排出される物質が水であること等より、 クリーンなェ ネルギ一源として様々な検討がされている。  During power generation of the fuel cell, if the raw material supplied to the fuel electrode is hydrogen gas and the raw material supplied to the air electrode is air, hydrogen ions and electrons are generated from the hydrogen gas at the fuel electrode. The electrons reach the air electrode from the external terminal through the external circuit. At the air electrode, water is generated by oxygen in the supplied air, hydrogen ions that have passed through the electrolyte membrane, and electrons that have reached the air electrode through an external circuit. In this way, a chemical reaction occurs at the fuel electrode and the air electrode, generating electric charge and functioning as a battery. This fuel cell has a variety of sources of clean energy due to the abundance of raw material gas and liquid fuel used for power generation and the fact that the substance discharged from the power generation principle is water. Considered.
このような燃料電池として、 チューブ状 (円筒型) の燃料電池が知られている 。 チューブ状の燃料電池は、 平面型の燃料電池に比べて小型化が容易であるとい う特徴を有する。 例えば、 特開 2 0 0 3— 2 9 7 3 7 2号公報には、 チューブ状 の高分子電解質膜の内外面の一方の面に燃料極を、 もう一方の面に空気極を設け 、 燃料極、 空気極の一方あるいは両方に触媒を担持した炭素繊維を配置したチュ ーブ状の燃料電池が、 記載されている。 As such a fuel cell, a tubular (cylindrical) fuel cell is known. A tubular fuel cell has a feature that it can be easily downsized as compared with a planar fuel cell. For example, in Japanese Patent Application Laid-Open No. 2 093-2 9 7 3 7 2, a fuel electrode is provided on one of the inner and outer surfaces of a tubular polymer electrolyte membrane, and an air electrode is provided on the other surface. A tube-shaped fuel cell is described in which a carbon fiber carrying a catalyst is disposed on one or both of a fuel electrode and an air electrode.
また、 特開平 1 1— 1 1 1 3 1 3号公報には、 チューブ状の高分子電解質膜の 内外面の一方の面に燃料極を、 もう一方の面に空気極を設け、 チューブの内側に 燃料改質機能を持つ導電性フェルトの第 1層を内張りし、 第 1層の内側に拡張力 によって第 1層をチューブの内周面に密着するように押し付けるコイル状弾性支 持材を挿入し、 コイル状弾性支持材の内側に燃料改質機能を持つ導電性フ ルト の第 2層を内張りし、 第 2層の内側に燃料供給用導電性チューブを挿入してなる チューブ状の燃料電池が記載されている。 特許文献 2においては、 集電体の役割 を果たす拡散層として導電性フェルト及びコイル状弾性支持材を使用することに より、 電極を損傷することなく、 電極に密着させて内側に拡散層を詰め込むこと ができるとしている。  JP-A-11-1 1 1 3 1 3 discloses that a tube-shaped polymer electrolyte membrane is provided with a fuel electrode on one of the inner and outer surfaces and an air electrode on the other surface. The first layer of conductive felt with fuel reforming function is lined, and a coiled elastic support material is inserted inside the first layer to press the first layer in close contact with the inner peripheral surface of the tube by expansion force. A tubular fuel cell is formed by lining a second layer of a conductive film having a fuel reforming function inside a coiled elastic support material and inserting a fuel supply conductive tube inside the second layer. Is described. In Patent Document 2, by using a conductive felt and a coiled elastic support material as a diffusion layer that plays the role of a current collector, the diffusion layer is packed inside in close contact with the electrode without damaging the electrode. It can be done.
一方、 特開 2 0 0 4— 6 8 1 1 2号公報, 特開 2 0 0 4— 7 1 4 5 6号公報に は、 固体高分子型燃料電池における集電体として、 球状チタン粉末を焼結し、 表 面を平滑化した多孔質導電板を使用することが記載されている。 これにより、 隣 接する電極の損傷を抑制できるとしている。  On the other hand, in Japanese Patent Application Laid-Open Nos. 2000-0 6 8 1 12 and 2 0 4-7 7 1 4 5 6, spherical titanium powder is used as a current collector in a polymer electrolyte fuel cell. It describes the use of a porous conductive plate that has been sintered and has a smooth surface. As a result, damage to adjacent electrodes can be suppressed.
[発明の開示] [Disclosure of the Invention]
し力 しながら、 特開 2 0 ひ 3— 2 9 7 3 7 2号公報に記載されたチューブ状燃 料電池では、 集電体として炭素繊維をチューブ中に挿入する必要があり、 チュー ブ内部の電極を傷つけてしまう。 また、 図 6に示すように、 炭素繊維の形状によ り炭素繊維 3 0が電解質膜 3 2や触媒層 3 4に突き刺さり、 発電時のクロスリー クが発生して発電ができなくなってしまう。  However, in the tubular fuel cell described in Japanese Patent Laid-Open No. 20-2973 72, it is necessary to insert carbon fiber into the tube as a current collector. Will damage the electrode. In addition, as shown in FIG. 6, the carbon fiber 30 pierces the electrolyte membrane 32 and the catalyst layer 34 due to the shape of the carbon fiber, causing cross-leakage during power generation, which makes it impossible to generate power.
また、 特開平 1 1— 1 1 1 3 1 3号公報に記載されたチューブ状の燃料電池で は、 コイル状弾性支持材を使用しているとはいえ、 集電体である導電性フェルト を電極が損傷しない程度の力でソフトに詰め込むことが必要であり、 電極を損傷 してしまう可能性がある。 また、 1層目の導電性フェルトを詰め込んだ後、 コィ ル状弾性支持材を揷入して 2層目の導電性フェルトを詰め込む必要があり、 工程 が複雑となる。 さらに、 特開 2 0 0 4— 6 8 1 1 2号公報, 特開 2 0 0 4— 7 1 4 5 6号公報 に記載されている多孔質導電板は、 フレキシビリティ性に欠け、 チューブ状の燃 料電池の内部に挿入して集電体として使用することは困難である。 In addition, in the tubular fuel cell described in JP-A-11-1 1 1 3 1 3, a conductive felt as a current collector is used even though a coil-shaped elastic support material is used. It is necessary to pack it softly with a force that does not damage the electrode, which may damage the electrode. In addition, after packing the first layer of conductive felt, it is necessary to insert a coil-like elastic support material and pack the second layer of conductive felt, which complicates the process. Furthermore, the porous conductive plate described in Japanese Patent Application Laid-Open Nos. 2000-0 6 8 1 1 2 and 2 0 4-7 7 1 4 5 6 lacks flexibility and has a tubular shape. It is difficult to use it as a current collector by inserting it into the fuel cell.
本発明は、 筒状の電解質膜と、 電解質膜の内外面の一方の面に設けられた燃料 極と、 電解質膜の内外面のもう一方の面に燃料極と対向するように設けられた空 気極と、 を有する筒状の接合体を有する筒状の燃料電池において、 筒内部の電極 の損傷を抑制して、 集電体を容易に形成することができる筒燃料電池及びその製 造方法である。  The present invention relates to a cylindrical electrolyte membrane, a fuel electrode provided on one of the inner and outer surfaces of the electrolyte membrane, and a void provided on the other surface of the inner and outer surfaces of the electrolyte membrane so as to face the fuel electrode. In a cylindrical fuel cell having a cylindrical joined body having an air electrode, a cylindrical fuel cell capable of easily forming a current collector while suppressing damage to electrodes inside the cylinder, and a method for manufacturing the same It is.
本発明は、 筒状の燃料電池であって、 筒状の電解質膜と、 前記電解質膜の内外 面の一方の面に設けられた燃料極と、 前記電解質膜の内外面のもう一方の面に設 けられた空気極と、 を有する筒状の接合体と、 前記筒状の接合体を収納する収納 部と、 前記筒状の接合体の内側及び外側に導電性ビーズが充填されて形成された 集電体と、 を有する。  The present invention is a tubular fuel cell, comprising a tubular electrolyte membrane, a fuel electrode provided on one of the inner and outer surfaces of the electrolyte membrane, and the other surface of the inner and outer surfaces of the electrolyte membrane. An air electrode provided; a cylindrical joined body having: a housing portion for housing the tubular joined body; and inner and outer sides of the tubular joined body filled with conductive beads. A current collector;
また、 前記燃料電池において、 前記導電性ビーズは、 前記筒状の接合体の長軸 方向に沿って平均粒径が段階的に変わることが好まし.い。  In the fuel cell, it is preferable that the conductive beads have an average particle diameter that changes stepwise along the long axis direction of the cylindrical joined body.
また、 本発明は、 筒状の燃料電池の製造方法であって、 筒状の電解質膜と、 前 記電解質膜の内外面の一方の面に設けられた燃料極と、 前記電解質膜の内外面の もう一方の面に前記燃料極と対向するように設けられた空気極と、 を有する接合 体の内側及び外側に導電性ビーズを充填して集電体を形成する。  The present invention is also a method for manufacturing a cylindrical fuel cell, comprising a cylindrical electrolyte membrane, a fuel electrode provided on one of the inner and outer surfaces of the electrolyte membrane, and inner and outer surfaces of the electrolyte membrane. A current collector is formed by filling inner and outer sides of a joined body having an air electrode provided on the other surface of the air electrode so as to face the fuel electrode, and a conductive bead.
また、 前記燃料電池の製造方法において、 前記導電性ビーズに振動を加えなが ら充填することが好ましい。  In the method for manufacturing a fuel cell, it is preferable that the conductive beads are filled with vibration.
また、 前記燃料電池の製造方法において、 前記導電性ビーズを充填した後に導 電性ビーズを押圧することが好ましい。  In the fuel cell manufacturing method, it is preferable to press the conductive beads after filling the conductive beads.
また、 前記燃料電池の製造方法において、 前記導電性ビーズを、 前記筒状の接 合体の長軸方向に沿って平均粒径が段階的に変わるように充填することが好まし い。  In the fuel cell manufacturing method, it is preferable that the conductive beads are filled so that the average particle diameter changes stepwise along the long axis direction of the cylindrical assembly.
本発明は、 筒状の電解質膜と、 電解質膜の内外面の一方の面に設けられた燃料 極と、 電解質膜の内外面のもう一方の面に燃料極と対向するように設けられた空 気極と、 を有する筒状の接合体を有する筒状の燃料電池において、 筒状の接合体 の内側及び外側に導電性ビーズを充填することにより、 筒内部の電極の損傷を抑 制して、 集電体を容易に形成することができる燃料電池及び燃料電池の製造方法 である。 The present invention relates to a cylindrical electrolyte membrane, a fuel electrode provided on one of the inner and outer surfaces of the electrolyte membrane, and a void provided on the other surface of the inner and outer surfaces of the electrolyte membrane so as to face the fuel electrode. In a cylindrical fuel cell having a cylindrical joined body having an air electrode, a tubular joined body A fuel cell and a method of manufacturing the fuel cell can be formed by filling conductive beads on the inside and outside of the tube to suppress damage to the electrodes inside the cylinder and easily forming a current collector.
[図面の簡単な説明] [Brief description of drawings]
図 1は、 本発明の実施形態に係る燃料電池の構成の一例を示す図である。 .図 2は、 本発明の実施形態に係る燃料電池の一例の軸方向の断面を示す図であ る。  FIG. 1 is a diagram showing an example of the configuration of a fuel cell according to an embodiment of the present invention. FIG. 2 is a diagram showing an axial cross section of an example of a fuel cell according to an embodiment of the present invention.
図 3は、 本発明の実施形態に係る燃料電池の製造方法を示す図である。  FIG. 3 is a diagram showing a method for manufacturing a fuel cell according to an embodiment of the present invention.
図 4は、 本発明の実施形態に係る燃料電池の他の例の軸方向の断面を示す図で める。  FIG. 4 is a diagram showing an axial cross section of another example of the fuel cell according to the embodiment of the present invention.
図 5は、 本発明の実施例 1及ぴ比較例 1における燃料電池セルの電流密度と電 圧との関係を示す図である。  FIG. 5 is a graph showing the relationship between the current density and voltage of the fuel cells in Example 1 and Comparative Example 1 of the present invention.
図 6は、 従来の、 集電体として炭素繊維を使用したチューブ状燃料電池の軸方 向の断面を示す図である。  FIG. 6 is a view showing a cross section in the axial direction of a conventional tubular fuel cell using carbon fiber as a current collector.
[発明を実施するための最良の形態] [Best Mode for Carrying Out the Invention]
以下、 本発明の実施形態に係る燃料電池について説明する。  Hereinafter, a fuel cell according to an embodiment of the present invention will be described.
本発明の実施形態に係る燃料電池は、 筒状の電解質膜と、 電解質膜の内外面の 一方の面に設けられた燃料極と、 電解質膜の内外面のもう一方の面に設けられた 空気極と、 を有する筒状の接合体と、 筒状の接合体を収納する収納部と、 筒状の 接合体の内側及び外側に導電性ビーズが充填されて形成された集電体と、 を有す る。  A fuel cell according to an embodiment of the present invention includes a cylindrical electrolyte membrane, a fuel electrode provided on one of the inner and outer surfaces of the electrolyte membrane, and air provided on the other surface of the inner and outer surfaces of the electrolyte membrane. A cylindrical joined body having a pole, a storage portion for housing the tubular joined body, and a current collector formed by filling the inside and outside of the tubular joined body with conductive beads. Yes.
本発明の実施形態に係る燃料電池 1の一例の概略を図 1に示し、 その構成につ いて説明する。 燃料電池 1は、 電解質膜 1 0、 燃料極 (アノード触媒層) 1 2、 空気極 (カソ一ド触媒層) 1 4、 集電体 1 6 a, 1 6 b、 収納部 1 8により構成 される。  An outline of an example of a fuel cell 1 according to an embodiment of the present invention is shown in FIG. 1, and the configuration will be described. The fuel cell 1 includes an electrolyte membrane 10, a fuel electrode (anode catalyst layer) 12, an air electrode (cathode catalyst layer) 14, current collectors 16 a and 16 b, and a storage unit 18. The
燃料電池 1において、 円筒状の電解質膜 1 0の内面に燃料極 1 2が設けられ、 電解質膜 1 0の外面に空気極 1 4が設けられ、 円筒状の接合体 (M E A: M e m b r a n e E l e c t r o d e As s emb l y) 20が开成されている。 円筒状の接合体 20は、 収納部 18に収納され、 接合体 20の内側及び外側の空 間に導電性ビーズが充填されて集電体 1 6 a及び 1 6 bが形成されている。 なお 、 接合体 20において、 円筒状の電解質膜 10の外面に燃料極 12が設けられ、 電解質膜 10の内面に空気極 14が設けられてもよいが、 通常は円筒状の電解質 膜 10の外面に空気極 14が設けられ、 電解質膜 1 0の内面に燃料極 1 2が設け られる。 In the fuel cell 1, a fuel electrode 1 2 is provided on the inner surface of a cylindrical electrolyte membrane 10, an air electrode 14 is provided on the outer surface of the electrolyte membrane 10, and a cylindrical assembly (MEA: M em brane E lectrode As s emb ly) 20 has been established. The cylindrical joined body 20 is housed in the housing portion 18, and the current collectors 16 a and 16 b are formed by filling the inside and outside spaces of the joined body 20 with conductive beads. In the joined body 20, the fuel electrode 12 may be provided on the outer surface of the cylindrical electrolyte membrane 10, and the air electrode 14 may be provided on the inner surface of the electrolyte membrane 10. Normally, the outer surface of the cylindrical electrolyte membrane 10 may be provided. The air electrode 14 is provided on the inner surface of the electrolyte membrane 10, and the fuel electrode 12 is provided on the inner surface of the electrolyte membrane 10.
このような燃科電池 1において、 接合体 20の内側に形成された集電体 1 6 a と接合体 20の外側に形成された集電体 16 bとを外部回路に電気的に接続し、 接合体 20の内側及び外側に原料を供給して運転すれば、 電池として機能させる ことができる。  In such a fuel cell 1, the current collector 16a formed inside the joined body 20 and the current collector 16b formed outside the joined body 20 are electrically connected to an external circuit, If a raw material is supplied to the inside and outside of the joined body 20 and operated, it can function as a battery.
電解質膜 10としては、 プロトン (H+) や酸素イオン (O2— ) 等のイオン伝 導性の高い材料であれば特に制限はなく、 例えば、 固体高分子電解質膜、 安定化 ジルコニァ膜等が挙げられるが、 好ましくはパーフルォロスルホン酸系等の固体 高分子電解質膜が用いられる。 具体的には、 ジャパンゴァテックス (株) のゴァ セレクト (Go r e s e l e c t、 登録商標)、 デュポン社 (Du P o n t社 ) のナフイオン (Na f i o n、 登録商標)、 旭化成 (株) のァシプレックス ( A c i p 1 e X、 登録商標)、 旭硝子 (株) のフレミオン (F l em i o n、 登 録商標) 等のパーフルォロスルホン酸系固体高分子電解質膜を使用することがで きる。 電解質膜 10の膜厚は例えば、 1 0 m〜 200 m、 好ましくは 30 ^ m〜 50 mの範囲である。 The electrolyte membrane 10 is not particularly limited as long as it is a material having high ion conductivity such as proton (H +) or oxygen ion (O 2 —). Examples thereof include a solid polymer electrolyte membrane and a stabilized zirconia membrane. However, a solid polymer electrolyte membrane such as perfluorosulfonic acid is preferably used. Specifically, Goreselect (registered trademark) of Japan Gore-Tex Co., Ltd., Nafion (registered trademark) of Du Pont (Du Pont), and Aciplex (A) of Asahi Kasei Co., Ltd. (A) Perfluorosulfonic acid solid polymer electrolyte membranes such as cip 1 e X (registered trademark) and Flemion (registered trademark) of Asahi Glass Co., Ltd. can be used. The thickness of the electrolyte membrane 10 is, for example, 10 m to 200 m, preferably 30 ^ m to 50 m.
燃料極 12は、 例えば、 白金 (P t) 等をルテニウム (RU) 等の他の金属と 共に担持したカーボン等の触媒をナフイオン (登録商標) 等の固体高分子電解質 等の樹脂に分散させて成膜されたものである。 燃料極 12の膜厚は例えば、 1 π!〜 100 μ m、 好ましくは 1 μ π!〜 2◦ mの範囲である。 The fuel electrode 12 includes, for example, a catalyst such as carbon carrying platinum (Pt) or the like together with another metal such as ruthenium (R U ) dispersed in a resin such as a solid polymer electrolyte such as naphthion (registered trademark). The film was formed. The film thickness of the fuel electrode 12 is, for example, 1π! ~ 100 μm, preferably 1 μπ! The range is ~ 2◦ m.
空気極 14としては、 例えば、 白金 (P t) 等を担持したカーボン等の触媒を ナフイオン (登録商標) 等の固体高分子電解質等の樹脂に分散させて成膜された ものである。 空気極 14の膜厚は例えば、 1 μ m〜 1 00 m、 好ましくは 1 m〜20; umの範囲である。 電解質膜 1 0、 燃料極 1 2、 空気極 1 4を備える接合体 2 0は、 筒状であれば よく、 例えば、 円筒状;三角筒、 四角筒、 五角筒、 六角筒等の多角筒状;楕円筒 状等いずれの形状であってもよいが、 通常は円筒状である。 なお、 ここで本明細 書において、 「筒状」 とは、 中空体の他にも中実体を含む。 The air electrode 14 is formed, for example, by dispersing a catalyst such as carbon carrying platinum (Pt) or the like in a resin such as a solid polymer electrolyte such as naphthion (registered trademark). The film thickness of the air electrode 14 is, for example, in the range of 1 μm to 100 m, preferably 1 m to 20; um. The joined body 20 including the electrolyte membrane 10, the fuel electrode 1 2, and the air electrode 1 4 may be in a cylindrical shape, for example, a cylindrical shape; a polygonal cylindrical shape such as a triangular cylinder, a square cylinder, a pentagonal cylinder, a hexagonal cylinder, or the like. It may be any shape such as an elliptical cylinder, but is usually cylindrical. Here, in this specification, “tubular” includes a solid body in addition to a hollow body.
図 1における燃料電池 1の A— A ' 断面の拡大図を図 2に示す。 図 2のように 、 集電体 1 6は導電 1·生ビーズ 2 2を含んで構成されている。 導電性ビーズ 2 2と しては、 金または白金等の金属で表面をコーティングしたカーボンまたはチタン 等の金属被覆粒子や、 金、 白金等の金属粒子等が挙げられる。  Fig. 2 shows an enlarged view of the AA 'cross section of fuel cell 1 in Fig. 1. As shown in FIG. 2, the current collector 16 is composed of conductive 1 and raw beads 2 2. Examples of the conductive beads 22 include metal-coated particles such as carbon or titanium whose surface is coated with a metal such as gold or platinum, and metal particles such as gold or platinum.
導電性ビーズ 2 2の形状は、 接合体 2 0の傷付けや突き刺さり等が発生しなけ ればよく特に制限はないが、 接合体 2 0の傷付けや突き刺さり等を抑制するため 、 また均一に充填するためには、 球形または楕円形であることが好ましく、 最密 に充填するために球形であることがより好ましい。  The shape of the conductive beads 22 is not particularly limited as long as the bonded body 20 does not need to be damaged or pierced. However, in order to suppress the bonded body 20 from being damaged or pierced, the conductive beads 22 should be filled uniformly. For this purpose, a spherical shape or an elliptical shape is preferable, and a spherical shape is more preferable for close packing.
導電性ビーズ 2 2の平均粒径は、 1 0 μ m〜 5 0 0 μ mの範囲であることが好 ましく、 5 0 ί π!〜 2 0 0 iz mの範囲であることがより好ましレ、。 1 0 z mより 小さ 、粒径であると充填密度が高くなり、 原料の供給効率が低減する場合がある 。 また 5 0 0 inより大きい粒径であると充填密度が低くなり、 接合体 2 0との 接触面積が低下し、 集電効率が低下する場合がある。  The average particle size of the conductive beads 2 2 is preferably in the range of 10 μm to 500 μm, 5 0 ί π! Les, more preferred to be in the range of ~ 2 0 0 iz m. If the particle size is smaller than 10 zm, the packing density increases, and the raw material supply efficiency may be reduced. If the particle size is larger than 50 in, the packing density is lowered, the contact area with the joined body 20 is lowered, and the current collection efficiency may be lowered.
ここで、 「平均粒径」 は、 まず顕微鏡画像上の 1 0 0個の粒径を測定し、 その 平均値とする。 また、 楕円形粒子の場合には、 導電性ビーズ 2 2の平均粒径は、 粒子を顕微鏡で観察した場合の顕微鏡画像上の粒子の長径 (粒子の輪郭線上の任 意の 2点間の最大値) のことをいう。  Here, “average particle size” is the average value of 100 particle sizes measured on a microscope image. In the case of an elliptical particle, the average particle diameter of the conductive beads 22 is the long diameter of the particle on the microscope image when the particle is observed with a microscope (the maximum between any two points on the particle outline). Value).
また、 「球状」 とは、 以下の方法により求められる円形度 S Fによって表され る。 円形度は、 粒子を顕微鏡で観察した場合の粒子の投影面積と同一の円相当径 から求めた円の周囲長 Lを、 粒子の投影像の周囲長 Dで割った値 (S F = L ZD ) として定義され、 真球の場合には S F = 1となり、 楕円形になると 1より小さ い値となる。 本実施形態における導電性ビーズ 2 2は、 円形度 Fの平均が 0 . 9 〜1 . 0の範囲の 「球状」 のものであることが好ましい。 この円形度 Fは、 顕微 鏡画像に基づき画像解析等により求めることができる。 また、 長径と短径との長 さの比 (短径 長径) が 1 (球状) 〜1 5 (楕円状) であることが好ましいが 、 接合体 2 0の傷付けや突き刺さり等が発生しなければその比は特に限定されな レ、。 “Spherical” is expressed by the circularity SF obtained by the following method. The degree of circularity is the value obtained by dividing the circumference L of the circle obtained from the same circle equivalent diameter as the projected area of the particle when observed with a microscope by the circumference D of the projected image of the particle (SF = L ZD) In the case of a true sphere, SF = 1, and in the case of an ellipse, the value is less than 1. The conductive beads 22 in this embodiment are preferably “spherical” having an average circularity F in the range of 0.9 to 1.0. The circularity F can be obtained by image analysis or the like based on a microscopic image. Further, the ratio of the length of the major axis to the minor axis (minor axis / major axis) is preferably 1 (spherical) to 15 (elliptical). The ratio is not particularly limited unless the bonded body 20 is scratched or pierced.
集電体は、 接合体における発電時に電子を通すための電子伝導性とともに、 原 料ガス等の原料の供給路としてガス拡散性等の拡散性が必要とされる。 本実施形 態に係る集電体 1 6は、 導電性ビーズ 2 2が接合体 2 0に接触するように充填さ れているために、 電子伝導性を有し、 導電性ビーズ 2 2を充填して押圧された後 の空隙部により拡散性を併せ持つ。  The current collector is required to have diffusivity such as gas diffusibility as a supply path for raw materials such as raw material gas as well as electron conductivity for passing electrons during power generation in the joined body. The current collector 16 according to the present embodiment is filled with the conductive beads 22 so that the conductive beads 22 are in contact with the bonded body 20, and thus has electronic conductivity and is filled with the conductive beads 22. In addition, it has diffusibility due to the gap after being pressed.
図 1の収納部 1 8は、 接合体 2 0全体を収納することができる有底の形状のも のであれば特に制限はなく、 例えば、 有底の円筒状;三角筒、 四角筒、 五角筒、 六角筒等の多角筒状;楕円筒状等いずれの形状であってもよいが、 通常は円筒状 である。 収納部 1 8の材質としては、 ポリエーテルイミ ド等の樹脂、 チタン等の 金属等が挙げられ、 例えば、 金属メッシュ (材質:チタン) を用いることができ る。  The storage section 18 in FIG. 1 is not particularly limited as long as it has a bottomed shape capable of storing the entire joined body 20. For example, a bottomed cylindrical shape; a triangular cylinder, a square cylinder, a pentagonal cylinder The shape may be any shape such as a polygonal cylinder such as a hexagonal cylinder or an elliptical cylinder, but is usually a cylindrical shape. Examples of the material of the storage portion 18 include a resin such as polyether imide, a metal such as titanium, and the like. For example, a metal mesh (material: titanium) can be used.
次に、 本実施形態に係る燃料電池の製造方法について、 図 3を参照しながら説 明する。  Next, a method for manufacturing the fuel cell according to the present embodiment will be described with reference to FIG.
まず、 テフロン (登録商標) 等の離型性のよい樹脂の棒、 テフロン (登録商標 ) 等の離型性のよい樹脂でコーティングした金属の棒等の円柱状等の支持体 2 4 上に、 例えば、 スプレー法、 浸漬法等の塗布方法により、 燃料極の膜を形成する 。 スプレー法では、 ナフイオン (登録商標) 等の固体高分子電解質等の樹脂をメ タノール、 エタノール、 イソプロパノール等のアルコール系溶媒等に溶解させた 溶液に燃料極用の触媒粉末を分散させたペースト 2 6を、 支持体 2 4上に噴霧し て所望の厚さの膜を形成した後、 乾燥させる。 また、 浸漬法では、 ナフイオン ( 登録商標) 等の固体高分子電解質等の樹脂をメタノール、 エタノール、 イソプロ パノール等のアルコール系溶媒等に溶解させた溶液に燃料極 1 2用の触媒粉末を 分散させたペース ト 2 6中に、 支持体 2 4を浸漬し引き上げて (図 3 ( a ) ) 所 望の厚さの膜を形成した後、 乾燥させる。  First, on a cylindrical support body 2 4 such as a Teflon (registered trademark) or other resin rod with good releasability, a metal rod coated with a Teflon (registered trademark) or other resin having good releasability, For example, the fuel electrode film is formed by a coating method such as a spray method or a dipping method. In the spray method, a paste in which a catalyst powder for a fuel electrode is dispersed in a solution obtained by dissolving a resin such as a solid polymer electrolyte such as naphthion (registered trademark) in an alcohol solvent such as methanol, ethanol or isopropanol. Is sprayed onto the support 24 to form a film having a desired thickness, and then dried. In the immersion method, the catalyst powder for the fuel electrode 12 is dispersed in a solution obtained by dissolving a resin such as a solid polymer electrolyte such as naphthion (registered trademark) in an alcohol solvent such as methanol, ethanol, or isopropanol. The substrate 24 is dipped in the paste 26 and pulled up (FIG. 3 (a)) to form a film having a desired thickness, and then dried.
なお、 支持体 2 4の形状は、 製造する筒状の接合体 2 0の形状に応じて選択す ればよい。 また、 乾燥温度は使用する溶媒の沸点等に応じて、 触媒、 電解質膜等 の変質等がないような温度とすればよく、 例えば、 上記メタノール、 エタノール 、 イソプロパノール等を使用した場合、 8 0〜1 0 0 °Cとする。 Note that the shape of the support 24 may be selected according to the shape of the cylindrical joined body 20 to be manufactured. Further, the drying temperature may be a temperature that does not cause alteration of the catalyst, the electrolyte membrane, etc., depending on the boiling point of the solvent used. When isopropanol or the like is used, the temperature should be 80 to 100 ° C.
次に、 同じようにして、 燃料極の膜が形成された支持体 2 4上に、 固体高分子 電解質等を上記溶媒に溶解させたペースト 2 6を使用して、 電解質膜を形成する 。 さらに次に、 同じようにして、 燃料極及び電解質膜の膜が形成された支持体 2 4上に、 ナフイオン (登録商標) 等の固体高分子電解質等の樹脂を上記アルコー ル系溶媒等に溶解させた溶液に空気極用の触媒粉末を分散させたペースト 2 6を 使用して、 空気極の膜を形成し、 接合体 2 0とする。  Next, in the same manner, an electrolyte membrane is formed on a support 24 on which a fuel electrode membrane is formed, using a paste 26 in which a solid polymer electrolyte or the like is dissolved in the solvent. In the same manner, a resin such as a solid polymer electrolyte such as naphthion (registered trademark) is dissolved in the above alcohol solvent on the support 24 on which the fuel electrode and the electrolyte membrane are formed. Using the paste 26 in which the air electrode catalyst powder is dispersed in the solution thus prepared, an air electrode film is formed to form a joined body 20.
このように形成した接合体 2 0は、 支持体 2 4から取り出され (図 3 ( b ) )、 電解質膜の内面に燃料極、 外面に空気極が形成された、 円筒状の接合体 2 0が得 られる。  The thus formed joined body 20 is taken out from the support 24 (FIG. 3 (b)), and a cylindrical joined body 20 having a fuel electrode on the inner surface of the electrolyte membrane and an air electrode on the outer surface. Is obtained.
次に、 このように得られた円筒状の接合体 2 0を、 金属メッシュ等の有底円筒 状の収納部 1 8に中心軸を合わせて収納する。 その後、 導電性ビーズ 2 2を、 接 合体 2 0の内側と、 接合体 2 0の外側と収納部 1 8の内側との間と、 に充填する (図 3 ( c ) )。 なお、 このとき、 接合体 2 0の内側と、 接合体 2 0の外側と収納 部 1 8の内側との間と、 に同時に充填してもよいし、 別々に充填してもよい。 導 電性ビーズ 2 2は、 接合体 2 0の表面の所定の部分に接触するように、 所定量充 填される。  Next, the thus obtained cylindrical joined body 20 is accommodated in a bottomed cylindrical accommodating portion 18 such as a metal mesh with its central axis aligned. Thereafter, the conductive beads 22 are filled into the inside of the joined body 20, and between the outside of the joined body 20 and the inside of the storage portion 18 (FIG. 3 (c)). At this time, the inside of the joined body 20, the outside of the joined body 20, and the inside of the housing portion 18 may be filled simultaneously, or may be filled separately. The conductive beads 22 are filled with a predetermined amount so as to contact a predetermined portion of the surface of the bonded body 20.
また、 導電性ビーズ 2 2を充填するときに、 導電性ビーズ 2 2を最密に充填す るために、 収納部 1 8を振動させて導電性ビーズ 2 2に振動を加えながら充填す ることが好ましい。 また、 収納部 1 8の振動は、 収納部 1 8及び接合体 2 0の中 心軸方向に対して水平方向に振動するように行われることが好ましい。  In addition, when filling the conductive beads 2 2, in order to fill the conductive beads 2 2 in a close-packed manner, the container 1 8 is vibrated and filled while applying vibration to the conductive beads 2 2. Is preferred. The vibration of the storage unit 18 is preferably performed so as to vibrate in the horizontal direction with respect to the central axis direction of the storage unit 18 and the joined body 20.
導電性ビーズ 2 2を所定の量充填した後、 最後に、 収納部 1 8の外側からステ ンレスワイヤ等を用いて導電性ビーズ 2 2を押圧する (図 3 ( d ) )。 押圧するこ とにより、 接合体 2 0の内部及び外部で導電性ビーズ 2 2が移動しないようにし 、 さらに接合体 2 0と導電性ビーズ 2 2の接触抵抗を下げることができる。 また 、 導電性ビーズ 2 2の充填、 押圧後に焼結を行い焼結体とすることなく、 集電体 として十分機能させることができる。 焼結する必要がないので、 接合体 2 0の焼 結による劣化等を考慮する必要がなレ、。  After filling a predetermined amount of the conductive beads 22, finally, the conductive beads 22 are pressed from the outside of the storage unit 18 using a stainless wire or the like (FIG. 3 (d)). By pressing, it is possible to prevent the conductive beads 22 from moving inside and outside the bonded body 20, and to further reduce the contact resistance between the bonded body 20 and the conductive beads 22. Further, the conductive beads 22 can be sufficiently functioned as a current collector without being sintered after being filled and pressed to form a sintered body. Since there is no need to sinter, it is not necessary to take into account the deterioration of the bonded body 20 due to sintering.
導電性ビーズ 2 2を押圧するときの圧力は、 触媒層 (燃料極 1 2及ぴ空気極 1 4) が損傷しない程度、 あるいは導電性ビーズ 22が破砕しない程度の圧力であ れば特に制限はないが、 例えば、 ステンレスワイヤを使用して押圧する場合、 1 O k g f Zcm2〜 50 k g f Zcm2の圧力であることが好ましい。 The pressure when pressing the conductive beads 2 2 is the catalyst layer (fuel electrode 1 2 and air electrode 1 4) is not particularly limited as long as the pressure does not damage or the conductive beads 22 do not break. For example, when pressing using stainless steel wire, 1 O kgf Zcm 2 to 50 kgf Zcm 2 The pressure is preferably.
このようにして製造した、 図 1に示す燃料電池 1において、 接合体 20の内側 に形成された集電体 1 6 aと接合体 20の外側に形成された集電体 1 6 bとを外 部回路に電気的に接続し、 接合体 20の内側及び外側に原料ガスを供給して運転 すれば、 電池として機能させることができる。  In the fuel cell 1 shown in FIG. 1 manufactured as described above, the current collector 16 a formed inside the joined body 20 and the current collector 16 b formed outside the joined body 20 are removed. If it is electrically connected to the partial circuit and supplied with the raw material gas to the inside and outside of the joined body 20, it can be operated as a battery.
燃料極 1 2側に供給する原料としては、 水素やメタン等の還元性ガス (燃料ガ ス) あるいはメタノール等の液体燃料等が挙げられる。 空気極 14側に供給する 原料としては、 酸素や空気等の酸化性ガス等が挙げられる。  Examples of the raw material supplied to the fuel electrode 1 or 2 include reducing gas (fuel gas) such as hydrogen and methane or liquid fuel such as methanol. Examples of the raw material supplied to the air electrode 14 include oxidative gases such as oxygen and air.
燃料電池 1において、 例えば、 燃料極 1 2に供給する原料を水素ガス、 空気極 14に供給する原料を空気として運転した場合、 燃料極 1 2において、  In the fuel cell 1, for example, when the raw material supplied to the fuel electrode 1 2 is operated as hydrogen gas, and the raw material supplied to the air electrode 14 is operated as air,
2H2 → 4H + +4 e— 2H 2 → 4H + +4 e—
で示される反応式を経て、 水素ガス (H2) から水素イオン (H+) と電子 (e一 ) とが発生する。 電子 (e一) は集電体 1 6 aから外部回路を通り、 集電体 1 6 bから空気極 14に到達する。 空気極 14において、 供給される空気中の酸素 ( 02) と、 電解質膜 1 0を通過した水素イオン (H + ) と、 外部回路を通じて空 気極 14に到達した電子 ( e一) により、 The hydrogen ion (H +) and the electron (e1) are generated from the hydrogen gas (H 2 ) through the reaction formula shown in FIG. The electron (e1) passes from the current collector 16 a through the external circuit and reaches the air electrode 14 from the current collector 16 b. In the air electrode 14, oxygen (0 2 ) in the supplied air, hydrogen ions (H +) that have passed through the electrolyte membrane 10, and electrons (e 1) that have reached the air electrode 14 through an external circuit,
4H + +02 + 4 e— → 2H20 4H + +0 2 + 4 e— → 2H 2 0
で示される反応式を経て、 水が生成する。 このように燃料極 1 2及ぴ空気極 14 において化学反応が起こり、 電荷が発生して電池として機能することになる。 そ して、 一連の反応において排出される成分は氷であるので、 クリーンな電池が構 成されることになる。 Water is generated through the reaction formula shown in FIG. In this way, a chemical reaction occurs in the fuel electrode 12 and the air electrode 14, and electric charges are generated to function as a battery. And since the component discharged | emitted in a series of reaction is ice, a clean battery will be comprised.
燃料電池 1の集電体 1 6を通して原料を供給するときに、 特に原料がガスの場 合、 集電体 16の原料供給口と、 集電体 1 6の原料出口とのガス圧力の差 (圧損 ) が小さいときは、 原料供給口から原料出口へのガスの流れ方向に沿って供給さ れる原料ガスの濃度差ができてしまう場合があるが、 その場合は、 図 4に示すよ うに、 筒状の接合体 20の長軸方向に沿って、 すなわち原料ガスの流れ方向に沿 つて、 導電性ビーズ 22の平均粒径が段階的に変わるように充填することが好ま しレ、。 例えば、 集電体 1 6の原料供給口に近い部分の空隙を大きくし、 集電体 1 6の原料出口に近い部分の空隙を小さくし、 圧損を大きくすることにより、 効率 よく原料ガスを触媒層 (燃料極 1 2及び空気極 1 4 ) に分配することができる。 この場合、 集電体 1 6内部の原料ガスの圧力の状態に応じて、 導電性ビーズ 2 2の平均粒径を筒状の接合体 2 0の長軸方向に沿って段階的に変わるように充填 すればよく、 2段階に変えてもよいし、 3段階以上に変えてもよい。 When the raw material is supplied through the current collector 16 of the fuel cell 1, especially when the raw material is a gas, the difference in gas pressure between the raw material supply port of the current collector 16 and the raw material outlet of the current collector 16 ( When the pressure loss is small, there may be a difference in the concentration of the raw material gas supplied along the flow direction of the gas from the raw material supply port to the raw material outlet. In this case, as shown in FIG. It is preferable that the conductive beads 22 are filled so that the average particle diameter changes stepwise along the long axis direction of the cylindrical joined body 20, that is, along the flow direction of the source gas. Sile,. For example, by enlarging the gap in the portion near the material supply port of the current collector 16 and reducing the gap in the portion near the material outlet of the current collector 16 to increase the pressure loss, the source gas can be efficiently catalyzed. It can be distributed to the layers (fuel electrode 12 and air electrode 14). In this case, the average particle diameter of the conductive beads 22 is changed stepwise along the long axis direction of the cylindrical joined body 20 according to the pressure state of the raw material gas inside the current collector 16. It only needs to be filled, and it can be changed to two stages or can be changed to three or more stages.
例えば、 集電体 1 6の原料供給口に近い部分の空隙を大きくし、 集電体 1 6の 原料出口に近い部分の空隙を小さくし、 圧損を大きくするように、 導電性ビーズ 2 2の平均粒径を 3段階に変える場合、 上記方法により、 まず平均粒径が 1番小 さい導電性ビーズ 2 2を所定量充填し、 次に' 2番目の平均粒径の導電性ビーズ 2 2を所定量充填し、 次に平均粒径が 1番大きい導電性ビーズ 2 2を所定量充填し 、 最後に収納部 1 8の外側から導電性ビーズ 2 2を押圧する。  For example, in order to increase the pressure loss, increase the gap in the portion near the raw material supply port of the current collector 16 and decrease the gap in the portion near the raw material outlet of the current collector 16 to increase the pressure loss. When changing the average particle size to three stages, the above method is used to first fill a predetermined amount of the conductive beads 22 with the smallest average particle size, and then add the second conductive beads 22 with the second average particle size. A predetermined amount is filled, and then a predetermined amount of conductive beads 22 having the largest average particle diameter is filled. Finally, the conductive beads 22 are pressed from the outside of the storage portion 18.
以上のように、 本実施形態に係る燃料電池及ぴ燃料電池の製造方法によって、 筒状の接合体 2 0の内側及び外側に導電性ビーズ 2 2を充填することにより、 筒 内部の電極の損傷を抑制して、 集電体を容易に形成することができる。 またこれ により、 図 6に示すような、 炭素繊維 3 0が電解質膜 3 2や触媒層 3 4に突き刺 さり、 発電時のクロスリークが発生して発電ができなくなってしまうことを防止 することができる。 また、 従来、 集電体である多孔質金属棒、 金属ワイヤ等に直 接、 触媒層、 電解質膜を上記ペース ト等を使用して浸漬法、 スプレー法等により 形成する方法もあるが、 多孔質金属棒、 金属ワイヤ等の空孔内へペース トが滲み 込み、 均一な接合体を形成することが困難であった。 しかし、 本実施形態に係る 燃料電池及び燃料電池の製造方法によって均一な接合体 2 0を形成した後に、 導 電性ビーズ 2 2を充填することにより、 そのような問題を起こすことなく、 集電 体 1 6を容易に形成することができる。  As described above, by filling the inner and outer sides of the cylindrical joined body 20 with the conductive beads 22 by the fuel cell and fuel cell manufacturing method according to the present embodiment, damage to the electrodes inside the cylinder is achieved. Thus, the current collector can be easily formed. This also prevents the carbon fiber 30 from sticking into the electrolyte membrane 32 and the catalyst layer 34 as shown in FIG. 6 and causing cross-leakage during power generation, thereby preventing power generation. Can do. Conventionally, there is also a method in which a catalyst layer and an electrolyte membrane are formed directly on a porous metal rod or metal wire as a current collector by the above-described paste or the like by a dipping method, a spray method, or the like. It was difficult to form a uniform joined body because the paste soaked into the pores of the solid metal rod and metal wire. However, after forming the uniform joined body 20 by the fuel cell and the fuel cell manufacturing method according to the present embodiment, the conductive beads 22 are filled, thereby collecting current without causing such a problem. The body 16 can be easily formed.
また、 従来のような多孔質金属、 金属メッシュ、 金属繊維布、 導電性フェルト を集電体 1 6として使用した場合は、 原料ガスの流れ方向に対して空隙率がほぼ 一定であるために、 上記圧力の状態を制御することは困難であつたが、 上記のよ うに、 充填する導電性ビーズ 2 2の粒径を段階的に変えて集電体 1 6を構成すれ ば、 集電体 1 6の空隙率を任意に変えることができるため、 容易に上記圧力の状 態、 すなわち原料の拡散性を制御することができ、 効率よく原料ガスを触媒層に 分配することができる。 In addition, when a conventional porous metal, metal mesh, metal fiber cloth, or conductive felt is used as the current collector 16, the porosity is substantially constant with respect to the flow direction of the source gas. Although it was difficult to control the state of the pressure, as described above, if the current collector 1 6 is configured by changing the particle size of the conductive beads 22 to be filled in stages, the current collector 1 Since the porosity of 6 can be changed arbitrarily, Therefore, the diffusibility of the raw material can be controlled, and the raw material gas can be efficiently distributed to the catalyst layer.
本実施形態に係る燃料電池は、 1つの筒状の燃料電池 (単セル) を複数個集合 させて、 直列に接続することにより、 必要とする電流、 電圧を得ることができる The fuel cell according to the present embodiment can obtain necessary current and voltage by collecting a plurality of cylindrical fuel cells (single cells) and connecting them in series.
。 また、 1つの筒状の燃料電池 (単セル) を複数個集合させて、 並列に接続して あよい。 . A plurality of cylindrical fuel cells (single cells) may be assembled and connected in parallel.
本実施形態に係る燃料電池は、 構造がシンプルで小型化、 軽量化が可能なため 、 携帯電話、 携帯用パソコン等のモパイル機器用小型電源; 自動車用電源等とし て用いることができる。  Since the fuel cell according to the present embodiment has a simple structure and can be reduced in size and weight, it can be used as a small power source for mopile equipment such as a mobile phone and a portable personal computer;
[実施例] [Example]
以下、 実施例及び比較例を挙げ、 本発明をより具体的に詳細に説明するが、 本 発明は以下の実施例に限定されるものではない。  EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail more concretely, this invention is not limited to a following example.
(実施例 1 ) (Example 1)
ぐ接合体の作製 > Glued body fabrication>
支持体として、 円柱状のテフロン (登録商標) 製の棒 (直径 l mni、 長さ 2 0 O mm) を使用して、 浸漬法により燃料極、 電解質膜、 空気極の順番で成膜した 。 成膜には、 燃料極用として、 樹脂 (ナフイオン、 登録商標) の 2—プロパノー ル溶液に、 触媒として白金 (P t ) をルテニウム (R u ) と共に担持したカーボ ンを分散させたペースト、 電解質膜用として、 パーフルォロスルホン酸某の固体 高分子電解質 (ナフイオン、 登録商標) を 2 _プロパノールに溶解させたペース ト、 空気極用として、 樹脂 (ナフイオン、 登録商標) の 2—プロパノール溶液に 、 触媒として白金 (P t ) を担持したカーボンを分散させたペーストをそれぞれ 使用した。 それぞれの成膜後には、 オーブン中 8 0 °Cで 6 0分乾燥させた。 形成 した膜の膜厚は、 燃料極 1 0 m、 電解質膜 4◦ μ m、 空気極 1 0 μ mであった 。 このように形成した接合体は、 テフロン棒から取り出され、 電解質膜の内面に 燃料極、 外面に空気極が形成された円筒状の接合体が得られた。  Using a cylindrical Teflon (registered trademark) rod (diameter l mni, length 20 O mm) as a support, a fuel electrode, an electrolyte membrane, and an air electrode were formed in this order by an immersion method. For film formation, a paste in which carbon carrying platinum (P t) and ruthenium (R u) as a catalyst is dispersed in a 2-propanol solution of resin (Naphion, registered trademark) for the fuel electrode, electrolyte For membranes, perfluorosulfonic acid solid polymer electrolyte (Naphion, registered trademark) dissolved in 2_propanol Paste for air electrode, resin (Naphion, registered trademark) 2-propanol solution In addition, pastes in which carbon carrying platinum (Pt) was dispersed were used as catalysts. After each film formation, the film was dried in an oven at 80 ° C. for 60 minutes. The film thickness was 10 m for the fuel electrode, 4 ° m for the electrolyte film, and 10 μm for the air electrode. The joined body thus formed was taken out of the Teflon rod, and a cylindrical joined body having a fuel electrode on the inner surface of the electrolyte membrane and an air electrode on the outer surface was obtained.
<導電性ビーズの充填 > 次に、 このように得られた円筒状の接合体を、 有底円筒状の金属メッシュ (材 質ステンレス、 直径 2min、 高さ 200mm、 メッシュ径 25 m) に中心軸を 合わせて収納した。 その後、 球状の導電性ビーズ (材質チタン、 平均粒径 30 μ m、 円形度 0. 99) を、 接合体の内側と、 接合体の外側と金属メッシュの内側 との間と、 に接合体の内面及ぴ外面がほぼ埋まるようにそれぞれ充填した。 導電性ビーズを所定の量充填した後、 最後に、 金属メッシュの外側からステン レスワイヤを用いて導電性ビーズを押圧 (圧力 30 k g f Zc m2) して、 燃料 電池セルを得た。 燃料極及び空気極には損傷は見られなかった。 接合体の内側に 水素ガス、 接合体の外側に空気を供給したが、 集電体の原料供給口と、 集電体の 原料出口とのガス圧力の差 (圧損) は l O k P aであった。 また、 得られた燃料 電池セルの電池性能を評価した結果を図 5に示す。 <Filling with conductive beads> Next, the cylindrical joined body thus obtained was stored in a bottomed cylindrical metal mesh (material stainless steel, diameter 2 min, height 200 mm, mesh diameter 25 m) with the center axis aligned. After that, spherical conductive beads (material titanium, average particle size 30 μm, circularity of 0.99) are placed on the inside of the joined body, between the outside of the joined body and the inside of the metal mesh, Each of the inner and outer surfaces was filled so as to be almost filled. After filling a predetermined amount of conductive beads, finally, the conductive beads were pressed from the outside of the metal mesh using a stainless wire (pressure 30 kgf Zcm 2 ) to obtain a fuel cell. No damage was observed on the fuel electrode and the air electrode. Hydrogen gas was supplied to the inside of the assembly, and air was supplied to the outside of the assembly. there were. Figure 5 shows the results of evaluating the battery performance of the obtained fuel cells.
(実施例 2 ) (Example 2)
く導電性ビーズの充填 > Filling with conductive beads>
実施例 1で得た接合体を、 有底円筒状の金属メッシュ (材質ステンレス、 直径 2mm、 高さ 200mm、 メッシュ径 25 m) に中心軸を合わせて収納した。 その後、 球状の導電性ビーズ (材質チタン、 平均粒径 30 111、 円形度 0. 99 ) を、 接合体の内側と、 接合体の外側と金属メッシュの内側との間と、 に金属メ ッシュの底面から 50mmまでが埋まるようにそれぞれ充填した。 次に、 球状の 導電性ビーズ (材質チタン、 平均粒径 100 μιη、 円形度 0. 99) を、 接合体 の内側と、 接合体の外側と金属メッシュの内側との間と、 に金属メッシュの底面 から 1 50mmまでが埋まるようにそれぞれ充填した。 最後に、 球状の導電性ビ ーズ (材質チタン、 平均粒径 1 50 μπι、 円形度 0. 99) を、 接合体の内側と 、 接合体の外側と金属メッシュの内側との間と、 に金属メッシュの底面から 20 0mmまでが埋まるようにそれぞれ充填した。  The joined body obtained in Example 1 was stored in a cylindrical metal mesh with a bottom (material stainless steel, diameter 2 mm, height 200 mm, mesh diameter 25 m) with the center axis aligned. After that, spherical conductive beads (material titanium, average particle size 30 111, circularity 0.999) are placed on the inside of the joined body, between the outside of the joined body and the inside of the metal mesh, Each was filled up to 50mm from the bottom. Next, spherical conductive beads (material titanium, average particle size 100 μιη, circularity 0.9.9) are placed on the inside of the joined body, between the outside of the joined body and the inside of the metal mesh. Each was filled up to 150 mm from the bottom. Finally, a spherical conductive bead (material titanium, average particle size 1 50 μπι, circularity 0.9.9) is applied to the inside of the joint and between the outside of the joint and the inside of the metal mesh. Each of the metal meshes was filled up to 200 mm from the bottom.
導電性ビーズを所定の量充填した後、 最後に、 金属メッシュの外側からステン レスワイヤを用いて導電性ビーズを押圧 (圧力 30 k g f /cm2) して、 導電 性ビーズの平均粒径を 3段階で変えた燃料電池セルを得た。 燃料極及ぴ空気極に は損傷は見られなかった。 接合体の内側に水素ガス、 接合体の外側に空気を供給 したが、 集電体の原料供給口と、 集電体の原料出口とのガス圧力の差 (圧損) はAfter filling a predetermined amount of conductive beads, finally press the conductive beads using a stainless wire from the outside of the metal mesh (pressure 30 kgf / cm 2 ), and set the average particle size of the conductive beads to 3 levels. The fuel cell changed in step 1 was obtained. No damage was seen in the fuel electrode and air electrode. Supply hydrogen gas inside the assembly and air outside the assembly However, the difference (pressure loss) in gas pressure between the current supply port of the current collector and the current outlet of the current collector is
2 0 k P aであり、 実施例 1より大きくなっていた。 It was 2 0 k Pa, which was larger than Example 1.
(比較例 1 ) (Comparative Example 1)
く導電性ビーズの充填 > Filling with conductive beads>
実施例 1で得た接合体に、 集電体として多孔質金属のワイヤ (材質:ステンレ ス) を、 接合体の内側と、 接合体の外側と金属メッシュの内側との間と、 に挿入 した。 燃料極及び空気極に損傷が見られた。 また、 得られた燃料電池セルの電池 性能を評価した結果を図 5に示す。  A porous metal wire (material: stainless steel) as a current collector was inserted into the joined body obtained in Example 1 between the inside of the joined body and between the outside of the joined body and the inside of the metal mesh. . Damage was seen in the fuel electrode and air electrode. Figure 5 shows the results of evaluating the battery performance of the obtained fuel cells.
このように、 比較例 1の燃料電池セルに比べて実施例 1の燃料電池セルは、 電 流一電圧特性が向上し、 特に濃度過電圧の 2 0 %程度の低下が見られる。  Thus, the fuel cell of Example 1 has improved current-voltage characteristics compared to the fuel cell of Comparative Example 1, and in particular, a decrease of about 20% in concentration overvoltage is observed.

Claims

1 . 筒状の燃料電池であって、 1. A cylindrical fuel cell,
筒状の電解質膜と、 前記電解質膜の内外面の一方の面に設けられた燃料極と、 前記電解質膜の内外面のもう一方の面に設けられた空気極と、 を有する筒状の接 合体と、  A cylindrical electrolyte membrane, a fuel electrode provided on one of the inner and outer surfaces of the electrolyte membrane, and an air electrode provided on the other surface of the inner and outer surfaces of the electrolyte membrane. Coalesce,
前記筒状の接合体を収納する収納部と、  A storage section for storing the tubular joined body;
前記筒状の接合体の内側及び外側に導電性ビーズが充填されて形成された集電 請  A current collector formed by filling inside and outside of the cylindrical joined body with conductive beads.
体と、 Body,
を有することを特徴とする燃料電池。  A fuel cell comprising:
 of
2 . 請求項 1に記載の燃料鼋池であって、 2. A fuel pond as claimed in claim 1,
 Surrounding
前記導電性ビーズは、 前記筒状の接合体の長軸方向に沿って平均粒径が段階的 に変わることを特徴とする燃料電池。  The fuel cell according to claim 1, wherein the conductive beads have an average particle diameter that changes stepwise along a long axis direction of the cylindrical joined body.
3 . 筒状の燃料電池の製造方法であって、 . 3. A method of manufacturing a tubular fuel cell, comprising:
筒状の電解質膜と、 前記電解質膜の内外面の一方の面に設けられた燃料極と、 前記電解質膜の内外面のもう一方の面に前記燃料極と対向するように設けられた 空気極と、 を有する接合体の内側及び外側に導電性ビーズを充填して集電体を形 成することを特徴とする燃料電池の製造方法。  A cylindrical electrolyte membrane, a fuel electrode provided on one of the inner and outer surfaces of the electrolyte membrane, and an air electrode provided on the other surface of the inner and outer surfaces of the electrolyte membrane so as to face the fuel electrode A method of manufacturing a fuel cell, comprising forming a current collector by filling conductive beads on the inside and outside of a joined body having:
4 . 請求項 3に記載の燃料電池の製造方法であって、 4. A method of manufacturing a fuel cell according to claim 3,
前記導電性ビーズに振動を加えながら充填することを特徴とする燃料電池の製 造方法。  A method of manufacturing a fuel cell, wherein the conductive beads are filled while applying vibration.
5 . 請求項 3または 4に記載の燃料電池の製造方法であって、 5. A method of manufacturing a fuel cell according to claim 3 or 4,
前記導電性ビーズを充填した後に導電性ビーズを押圧することを特徴とする燃 料電池の製造方法。 A method for producing a fuel cell, comprising pressing the conductive beads after filling the conductive beads.
6 . 請求項 3〜 5のいずれか 1項に記載の燃料電池の製造方法であって、 前記導電性ビーズを、 前記筒状の接合体の長軸方向に沿って平均粒径が段階的 に変わるように充填することを特徴とする燃料電池の製造方法。 6. The method of manufacturing a fuel cell according to any one of claims 3 to 5, wherein the conductive beads are stepped in an average particle size along a major axis direction of the cylindrical joined body. A fuel cell manufacturing method, wherein filling is performed in a changing manner.
PCT/JP2006/302097 2005-02-01 2006-02-01 Fuel cell and method of producing fuel cell WO2006082986A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-025630 2005-02-01
JP2005025630A JP2006216281A (en) 2005-02-01 2005-02-01 Fuel cell and manufacturing method of the same

Publications (1)

Publication Number Publication Date
WO2006082986A1 true WO2006082986A1 (en) 2006-08-10

Family

ID=36777360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302097 WO2006082986A1 (en) 2005-02-01 2006-02-01 Fuel cell and method of producing fuel cell

Country Status (2)

Country Link
JP (1) JP2006216281A (en)
WO (1) WO2006082986A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010071A (en) * 2008-06-30 2010-01-14 Hitachi Ltd Solid oxide fuel cell and method of manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2920594B1 (en) * 2007-09-03 2009-12-11 Commissariat Energie Atomique COAXIAL FUEL CELL MODULE OR ELECTROLYSER WITH BALL INTERCONNECTORS
US8652707B2 (en) * 2011-09-01 2014-02-18 Watt Fuel Cell Corp. Process for producing tubular ceramic structures of non-circular cross section

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH034456A (en) * 1989-05-31 1991-01-10 Fujikura Ltd Solid electrolyte fuel cell
JPH10223239A (en) * 1997-02-05 1998-08-21 Osaka Gas Co Ltd Cylindrical solid oxide electrolyte fuel cell
JPH11111313A (en) * 1997-10-01 1999-04-23 Kansai Electric Power Co Inc:The Cylindrical solid electrolyte type fuel cell
JP2000182652A (en) * 1998-12-15 2000-06-30 Kansai Electric Power Co Inc:The Solid electrolyte fuel cell assemby and solid electrolyte fuel cell module
JP2002260685A (en) * 2001-03-02 2002-09-13 National Institute Of Advanced Industrial & Technology Small fuel cell
JP2003500802A (en) * 1999-05-18 2003-01-07 ヌベラ・フュエル・セルズ・ヨーロッパ・ソチエタ・ア・レスポンサビリタ・リミタータ Humidifier for polymer membrane fuel cells
JP2004071456A (en) * 2002-08-08 2004-03-04 Sumitomo Titanium Corp Porous conductive plate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH034456A (en) * 1989-05-31 1991-01-10 Fujikura Ltd Solid electrolyte fuel cell
JPH10223239A (en) * 1997-02-05 1998-08-21 Osaka Gas Co Ltd Cylindrical solid oxide electrolyte fuel cell
JPH11111313A (en) * 1997-10-01 1999-04-23 Kansai Electric Power Co Inc:The Cylindrical solid electrolyte type fuel cell
JP2000182652A (en) * 1998-12-15 2000-06-30 Kansai Electric Power Co Inc:The Solid electrolyte fuel cell assemby and solid electrolyte fuel cell module
JP2003500802A (en) * 1999-05-18 2003-01-07 ヌベラ・フュエル・セルズ・ヨーロッパ・ソチエタ・ア・レスポンサビリタ・リミタータ Humidifier for polymer membrane fuel cells
JP2002260685A (en) * 2001-03-02 2002-09-13 National Institute Of Advanced Industrial & Technology Small fuel cell
JP2004071456A (en) * 2002-08-08 2004-03-04 Sumitomo Titanium Corp Porous conductive plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010071A (en) * 2008-06-30 2010-01-14 Hitachi Ltd Solid oxide fuel cell and method of manufacturing the same

Also Published As

Publication number Publication date
JP2006216281A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
TW200541146A (en) An air electrode constituted by multilayer sintered structure and manufacturing method thereof
WO2010126767A2 (en) Single wall carbon nanotube based air cathodes
JP2003100315A (en) Fuel cell power generator and unit using its generator
JP2002343378A (en) Fuel cell, fuel cell electricity generating device, and equipment using the same
JP2009059524A (en) Fuel cell, gas diffusion layer for the same, method of manufacturing the same
US20120074908A1 (en) Dual-function air cathode nanoarchitectures for metal-air batteries with pulse-power capability
JP2006216280A (en) Manufacturing method of fuel cell and manufacturing equipment of the same
JP2006019300A (en) Electrode for fuel cell, fuel cell, and manufacturing method therefor
WO2003105265A1 (en) Liquid fuel feed type fuel cell
JP2009054570A (en) Power source provided with capacitor
WO2006082986A1 (en) Fuel cell and method of producing fuel cell
JP5425441B2 (en) FORMING MATERIAL FOR FUEL CELL ELECTRODE LAYER, MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL, FUEL CELL, METHOD FOR PRODUCING FORMING MATERIAL FOR ELECTRODE LAYER FOR CELL CELL,
JP2006216407A (en) Cell module assembly and fuel cell
JP2007207679A (en) Hollow platinum catalyst particle for fuel cell, membrane electrode assembly, manufacturing method of them, and fuel cell
Müller et al. Micro-structured flow fields for small fuel cells
JP2007273218A (en) Solid electrolyte fuel cell and its manufacturing method
EP2273589B1 (en) Membrane electrode assembly and fuel cell
JP4945887B2 (en) Cell module and solid polymer electrolyte fuel cell
JP2006332018A (en) Fuel cell system and electric apparatus
JP4802458B2 (en) Fuel cell
JPH06295728A (en) Electrode for solid high polymer type fuel cell and fuel cell using it
US9537167B2 (en) Methods and apparatus of an anode/cathode (A/C) junction fuel cell with solid electrolyte
KR20030014895A (en) Portable fuel cell system
JP2006216402A (en) Manufacturing method of cell module for fuel cell
JP2003331860A (en) Unit cell structure, fuel cell, and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713240

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6713240

Country of ref document: EP