WO2006054444A1 - Multioutput switching power supply - Google Patents

Multioutput switching power supply Download PDF

Info

Publication number
WO2006054444A1
WO2006054444A1 PCT/JP2005/020119 JP2005020119W WO2006054444A1 WO 2006054444 A1 WO2006054444 A1 WO 2006054444A1 JP 2005020119 W JP2005020119 W JP 2005020119W WO 2006054444 A1 WO2006054444 A1 WO 2006054444A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
power supply
transformer
switching power
voltage
Prior art date
Application number
PCT/JP2005/020119
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshikazu Mizuno
Seiji Oda
Original Assignee
Cosel Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosel Co., Ltd. filed Critical Cosel Co., Ltd.
Publication of WO2006054444A1 publication Critical patent/WO2006054444A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33561Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having more than one ouput with independent control

Definitions

  • the present invention relates to a switching power supply device that converts a DC input voltage into a desired voltage and supplies it to an electronic device, and particularly relates to a multi-output switching power supply device having a plurality of outputs.
  • a flyback-type multi-output switching power supply device has a circuit configuration as shown in FIG. 6, for example.
  • a DC power supply 1 is connected to a series circuit composed of a primary winding F1 of a transformer 2 and a switching element 3.
  • the switching element 3 also has a semiconductor switch element force such as a MOS-FET.
  • the gate of the switching element 3 is connected to the output of the control circuit 8 that controls the on-duty of switching to control the output voltage.
  • the transformer 2 is provided with two secondary windings Sl and S2, and the terminals of the secondary windings Sl and S2 that have no dots are connected to the anodes of the rectifying diodes 4 and 5, respectively.
  • the force sword of one rectifying diode 4 is connected to the output terminal 21 and to one end of the smoothing capacitor 6.
  • the other end of the smoothing capacitor 6 is connected to the terminal on the side of the secondary winding S 2 with dots, and is connected to the output terminal 22.
  • the force sword of the other rectifying diode 5 is connected to the output terminal 22 and is connected to one end of the smoothing capacitor 7, and the other end of the smoothing capacitor 7 is attached with a dot of the secondary winding S1. Is connected to the output terminal 23 and connected to the output terminal 23. Outputs from the output terminals 21 and 23 are fed back to the control circuit 8 via the amplifier 11.
  • flyback multi-output power supply circuit shown in FIG. 6 energy is stored in the transformer 2 during the ON period of the switching element 3 on the primary side, and the rectifying diode 4 is stored during the OFF period of the switching element 3. Energy is supplied to the output through 5.
  • the flyback voltages El and E2 of the secondary windings SI and S2 generated during the off period of the switching element 3 are generated in proportion to the respective power numbers with respect to the input voltage Vin.
  • secondary flyback SI, S2 flyback From the voltages El and E2, the smoothing capacitors 6 and 7 are charged through the rectifying diodes 4 and 5, and the output voltages Vol and Vo2 are supplied to the output terminals 21, 22, and 23.
  • This output voltage is controlled by a combined voltage obtained by rectifying and smoothing the voltage generated at each secondary winding SI and S2 through the amplifier 11 with the output terminal 22 on the power sword side of the rectifying diode 5 being a negative potential. Input to control circuit 8 to stabilize the output.
  • Patent Document 1 JP-A-60-35957
  • Patent Document 2 JP-A-6-54532
  • the leakage inductance between the transformer 2 and the rectifying diodes 4 and 5 depends on the wiring pattern of the circuit board, etc.
  • a leakage inductance component 9, 10 such as a parasitic inductance is inserted in series.
  • a rectified current flows through the leakage inductance components 9 and 10 every time the switching element 3 is switched. For this reason, when a load current is applied only to the output on one side or when an imbalance occurs in the load, the voltage drop generated by leakage inductance components such as leakage inductance increases on the output side where the load current flows. For this reason, the voltage on the output side that allows current to flow through the load decreases, the voltage on the output side that does not carry current or little increases, and the load fluctuation increases. This occurs because the combined voltage of the output is fed back to control the output voltage!
  • the voltage drop Ve generated by the leakage inductance component Le is expressed as follows.
  • (diZdt) is the slope of the current flowing in the leakage inductance component.
  • Patent Documents 1 and 2 a configuration in which the magnetic cores of the coils of the multi-output switching power supply circuit are shared is proposed in order to suppress the loss due to the dummy resistance.
  • a sufficient effect on the above-mentioned problem has not been obtained.
  • the present invention has been made in view of the above-described problems of the conventional technology. With a simple configuration, the load variation is reduced, and the loss due to the dummy resistor for suppressing the load variation is reduced.
  • An object of the present invention is to provide a multi-output switching power supply device capable of improving the efficiency of the power supply.
  • the present invention includes a primary circuit in which a primary winding of a transformer and a main switching element are connected in series to a DC power source, and a plurality of secondary windings are provided in the transformer, and the switching is performed.
  • the flyback voltage generated in the secondary windings of the transformer is rectified by rectifying elements such as diodes, and the rectified outputs are connected in series to smooth the outputs.
  • a flyback type multi-output switching power supply device that controls the output voltage by feed-knocking the combined voltage of the plurality of output voltages, and each secondary winding of the transformer
  • a multi-output comprising a positive terminal of each rectifying element connected to each positive terminal of a flyback voltage generated in the circuit, and a positive terminal connected to each rectifying element via a capacitor.
  • the present invention includes a primary circuit in which a primary winding of a transformer and a main switching element are connected in series to a DC power source, the transformer is provided with a plurality of secondary windings, and the switch Switching elements, and a plurality of rectifying elements such as diodes for rectifying the AC voltages generated on the plurality of secondary windings of the transformer, respectively, and one end of the secondary winding on the side where the dots are located.
  • a choke coil connected and connected to the output terminal at the other end, a plurality of return elements connected between one end of the choke coil and the non-dotted side of the secondary winding, and smoothing each output And a smoothing capacitor that performs a feedback operation on the combined voltage of the plurality of output voltages.
  • the forward type multi-output switching power supply device that controls the output voltage by clicking, and the midpoint between each minus terminal of each rectifying element and each choke coil is connected via a capacitor. This is a multi-output switching power supply device connected.
  • the rectifying element is a diode, and the capacitor is formed by connecting the anode terminal of each diode.
  • a synchronous rectification may be performed using a transistor for the rectification-requiring element.
  • the magnetic core may be shared by a plurality of choke coils connected to each of the rectifying elements.
  • the multi-output switching power supply device of the present invention reduces load fluctuations and suppresses losses due to dummy resistors for reducing load fluctuations by simply connecting a capacitor between rectifying elements, and improves the efficiency of the power supply device. Can be increased. In addition, since the number of dummy resistance elements can be reduced, the circuit mounting area can be reduced, the components of the power supply device can be made smaller, and the power supply device as a whole can be reduced in size and cost. It contributes.
  • FIG. 1 is a schematic circuit diagram of a multi-output switching power supply device according to a first embodiment of the present invention.
  • FIG. 2 is an equivalent circuit diagram of the multi-output switching power supply device according to the first embodiment of the present invention.
  • FIG. 3 is a graph showing output current and output voltage of the multi-output switching power supply device according to the first embodiment of the present invention.
  • FIG. 4 is a schematic circuit diagram of a multi-output switching power supply device according to a second embodiment of the present invention.
  • FIG. 5 is an equivalent circuit diagram of the multi-output switching power supply device according to the second embodiment of the present invention.
  • FIG. 6 is a schematic circuit diagram of a conventional flyback multi-output switching power supply device.
  • FIG. 7 is an equivalent circuit diagram of a conventional flyback type multi-output switching power supply device.
  • FIG. 8 is a graph showing output current and output voltage of a conventional flyback multi-output switching power supply.
  • FIG. 1 shows a power supply circuit of a flyback type multi-output switching power supply apparatus according to the first embodiment of the present invention.
  • a DC power supply 1 is connected to a series circuit composed of a primary winding F1 of a transformer 2 and a switching element 3.
  • the switching element 3 is composed of a semiconductor switch element such as a MOS-FET.
  • the gate of the switching element 3 is connected to the output of the control circuit 8 that controls the on-duty of switching to control the output voltage.
  • the transformer 2 is provided with two secondary windings Sl and S2.
  • the terminals without secondary dots of the secondary windings Sl and S2 are respectively connected to the positive side terminals which are the anodes of the rectifying elements 14 and 15 such as the rectifying diode.
  • a negative side terminal, which is a force sword of one rectifying element 14, is connected to an output terminal 21 and to one end of one smoothing capacitor 6.
  • the other end of the smoothing capacitor 6 is connected to the terminal on the side where the dot of the secondary winding S2 is attached and also connected to the output terminal 22.
  • the force of the other rectifying element 15 The negative terminal, which is a sword, is connected to the output terminal 22 and to one end of the other smoothing capacitor 7.
  • the other end of the smoothing capacitor 7 is connected to a terminal on the side where the secondary winding S1 is attached, and is connected to the output terminal 23. Outputs from the output terminals 21 and 23 are fed back to the control circuit 8 via the amplifier 11.
  • a capacitor 12 is provided between each terminal of the secondary winding Sl, S2, which has no dot, and the positive terminal, which is each of the rectifying elements 14, 15, is connected! / A capacitor 12 is provided.
  • rectifying elements 14 and 15 of this embodiment for example, a Schottky diode, a first tricano diode, or the like may be used, and a transistor may be used.
  • a ceramic capacitor, an aluminum electrolytic capacitor, a functional polymer electrolytic capacitor, or the like can be used as appropriate.
  • flyback multi-output power supply circuit shown in Fig. 1, energy is stored in the transformer 2 during the ON period of the primary side switching element 3, and the secondary winding Sl is stored during the OFF period of the switching element 3.
  • the flyback voltage due to S2 is applied to the output side through the rectifying elements 14 and 15, and energy is supplied.
  • the flyback voltages El and E2 of the secondary windings S1 and S2 generated during the OFF period of the switching element 3 are generated in proportion to the respective power numbers with respect to the input voltage Vin.
  • the flyback voltages El and E2 of the secondary windings SI and S 2 are applied to the positive side terminals of the rectifying elements 14 and 15, the smoothing capacitors 6 and 7 are charged, and the output terminals 21, 22 and 23 Are supplied with output voltages Vol and Vo2.
  • This output voltage is controlled by combining the voltage generated on the secondary windings SI and S2 with the output terminal 22 on the negative side of the rectifying element 15 on the negative side, and a combined voltage obtained by rectifying and smoothing the voltage via the amplifier 11. Input to 8 stabilizes output.
  • the flyback multi-output power supply circuit of this embodiment also has a leakage inductance between the transformer 2 and the rectifying elements 14 and 15, a parasitic inductance due to a pattern, etc., as in the equivalent circuit shown in FIG.
  • Leakage inductance component of 9, 10 force It becomes a circuit inserted in series.
  • a rectified current flows through the leakage inductance components 9 and 10 every time the switching element 3 is switched. Therefore, when a load current is applied only to the output on one side or when an imbalance occurs in the load, the output side where the load current is flowing has a voltage drop caused by leakage inductance components 9, 10 such as leakage inductance. big Become.
  • the switching element 3 is turned off, and the voltage drop caused by the leakage inductance components 9 and 10 is corrected by the capacitor 12 connected to the positive side terminals of the rectifying elements 14 and 15, Load fluctuation is suppressed.
  • the rated load current of the power supply device flows through the load of the output voltage Vol between the output terminals 22 and 23, and the load current flows through the output voltage Vo2 between the output terminals 21 and 22.
  • the load current flows through the output voltage Vo2 between the output terminals 21 and 22.
  • switching element 3 is turned off and a flyback voltage is generated on secondary winding Sl, S2 of transformer 2, rectified current flows between output terminals 22 and 23, and point A in Fig. 2 is a leakage inductance component from point B 9 , 10 composite value Le ⁇ The voltage Ve is reduced.
  • current II flows through capacitor 12 as shown in Fig. 2 to increase the voltage at point A and suppress the increase in voltage at point B, as shown in Fig. 3. Reduces load fluctuations compared to the configuration.
  • the multi-output power supply device of this embodiment by connecting the positive side terminals of the rectifying elements 14, 15 via the capacitor 12, the load fluctuation of the power supply device is reduced, and the dummy resistor Can reduce power loss and increase power supply efficiency.
  • the dummy resistor Can reduce power loss and increase power supply efficiency.
  • dummy resistance can be reduced, which contributes to downsizing of the power supply device.
  • the multiple output switching power supply of this embodiment is for a forward type multiple output switching power supply.
  • the terminal with the secondary windings Sl and S2 is connected to the positive terminal which is the anode of the rectifying elements 14 and 15 such as the rectifying diode.
  • the negative terminal, which is the cathode of one of the rectifying elements 14, is connected to one terminal of the cooperative choke coil 13 connected in series, and the other terminal of the cooperative choke coil 13 is connected to the output terminal 21.
  • Both are connected to one end of one smoothing capacitor 6.
  • the other end of the smoothing capacitor 6 is connected to the terminal of the secondary winding S2 where no dot is present, and is connected to the output terminal 22.
  • the negative side terminal of the other rectifying element 15 is connected to one terminal of the cooperative choke coil 17 connected in series, and the other terminal of the cooperative choke coil 17 is connected to the output terminal 22. And is connected to one end of the other smoothing capacitor 7. The other end of the smoothing capacitor 7 is connected to the terminal of the secondary winding S1 where no dot is present, and is connected to the output terminal 23. Further, the cooperative choke coils 13 and 17 share the magnetic core 16.
  • a return element 18 such as a return diode is connected between the negative terminal of the rectifier element 14 and the terminal on the secondary winding S2 where no dot is present.
  • the positive terminal that is the anode is connected to the other terminal of the secondary winding S2, and the negative terminal that is the force sword is connected to the negative terminal of the rectifying element 14.
  • a freewheeling diode 19 is connected between the negative terminal of the rectifying element 15 and the terminal of the secondary winding S1 that has no dot.
  • the freewheeling diode 19 has an anode with a positive terminal connected to the terminal without the dot of the secondary winding S1, and a negative terminal with a force sword connected to the negative terminal of the rectifying element 15. Yes.
  • capacitors 12 are provided between the negative terminals of the rectifying elements 14 and 15 and the secondary winding SI and S2 terminals of the cooperative choke coils 13 and 17, respectively! /
  • the forward type multi-output power supply circuit of this embodiment also has a parasitic inductance due to a leakage inductance between the transformer 2 and the rectifying elements 14 and 15 as in the equivalent circuit shown in FIG.
  • This is a circuit in which leakage inductance components 9 and 10 are inserted in series. Therefore, when a load current is applied to only one output or when an unbalance occurs in the load, the voltage drop generated by leakage inductance components 9 and 10 such as leakage inductance increases on the output side where the load current flows. The voltage on the output side that causes current to flow to the load decreases, and if current is supplied to the load, the voltage on the output side increases or decreases, and the load fluctuation increases.
  • the voltage drop caused by the leakage inductance components 9 and 10 is alleviated to some extent by the cooperative choke coils 13 and 17 sharing the magnetic core 16, but the effect is not sufficient.
  • Condensers connected to the positive terminals of rectifier elements 14, 15 The voltage between the outputs is corrected by the sensor 12, and the load fluctuation is suppressed more effectively.
  • the rated load current of the power supply device flows through the load of the output voltage Vol between the output terminals 22 and 23, and the load current flows through the output voltage Vo2 between the output terminals 21 and 22.
  • the rectified current flows between the output terminals 22 and 23 due to the voltage generated on the secondary windings Sl and S2 of the transformer 2, and the point A in Fig. 5 is the combined value of the leakage inductance components 9 and 10 from the point B Voltage due to Le is reduced by Ve.
  • the current 13 flows through the capacitor 12, the voltage at the point A is increased, the voltage at the point B is suppressed from increasing, and the load fluctuation is reduced.
  • the multi-output switching power supply apparatus of the present invention is not limited to the above embodiment, and the number of multi-outputs can be set as appropriate, and the rectifying element is synchronized using various transistors in addition to the diode.
  • a power supply circuit that can be rectified is also applicable to an appropriate circuit.

Abstract

A multioutput switching power supply having an improved efficiency by reducing the load variation through a simple arrangement and reducing the loss due to the dummy resistor for suppressing the load variation. A primary circuit is provided by connecting the primary winding (F1) of a transformer (2) and a main switching element (3) in series to a DC power supply (1), and the transformer (2) is provided with a plurality of secondary windings (S1) and (S2). The switching element (3) is switched and fly-back voltages induced in the plurality of secondary windings (S1) and (S2) of the transformer (2) are rectified by rectification elements (14, 15), respectively. The rectified outputs are connected in series and smoothed, thus supplying an output voltage. The plus-side terminals of the fly-back voltages induced in the secondary windings (S1, S2) of the transformer (2) are connected to the respective plus-side terminals of the rectification elements (14, 15) which are connected through a capacitor (12).

Description

明 細 書  Specification
多出力スイッチング電源装置  Multi-output switching power supply
技術分野  Technical field
[0001] この発明は、直流入力電圧を所望の電圧に変換し、電子機器に供給するスィッチ ング電源装置であって、特に複数の出力を備えた多出力スイッチング電源装置に関 する。  The present invention relates to a switching power supply device that converts a DC input voltage into a desired voltage and supplies it to an electronic device, and particularly relates to a multi-output switching power supply device having a plurality of outputs.
背景技術  Background art
[0002] 従来、フライバック型の多出力スイッチング電源装置は、例えば図 6に示すような回 路構成であった。このスイッチング電源装置の回路は、直流電源 1に、トランス 2の 1 次卷線 F1とスイッチング素子 3より成る直列回路が接続されている。スイッチング素子 3は、 MOS— FET等の半導体スィッチ素子力もなる。スイッチング素子 3のゲートに は、スイッチングのオンデューティを制御して出力電圧を制御する制御回路 8の出力 が接続されている。  Conventionally, a flyback-type multi-output switching power supply device has a circuit configuration as shown in FIG. 6, for example. In the circuit of this switching power supply device, a DC power supply 1 is connected to a series circuit composed of a primary winding F1 of a transformer 2 and a switching element 3. The switching element 3 also has a semiconductor switch element force such as a MOS-FET. The gate of the switching element 3 is connected to the output of the control circuit 8 that controls the on-duty of switching to control the output voltage.
[0003] トランス 2には 2個の 2次卷線 Sl、 S2が設けられ、 2次卷線 Sl、 S2のドットのない方 の端子は、各々整流用ダイオード 4, 5のアノードに接続されている。一方の整流用ダ ィオード 4の力ソードは、出力端子 21に接続されているとともに、平滑コンデンサ 6の 一端に接続されている。平滑コンデンサ 6の他端は、 2次卷線 S 2のドットを付した側 の端子に接続されているとともに、出力端子 22に繋がっている。また、他方の整流用 ダイオード 5の力ソードは、出力端子 22に接続されているとともに、平滑コンデンサ 7 の一端に接続され、平滑コンデンサ 7の他端が、 2次卷線 S1のドットを付した側の端 子に接続され、出力端子 23に繋がっている。出力端子 21, 23の出力は、アンプ 11 を介して制御回路 8にフィードバックされている。  [0003] The transformer 2 is provided with two secondary windings Sl and S2, and the terminals of the secondary windings Sl and S2 that have no dots are connected to the anodes of the rectifying diodes 4 and 5, respectively. Yes. The force sword of one rectifying diode 4 is connected to the output terminal 21 and to one end of the smoothing capacitor 6. The other end of the smoothing capacitor 6 is connected to the terminal on the side of the secondary winding S 2 with dots, and is connected to the output terminal 22. Further, the force sword of the other rectifying diode 5 is connected to the output terminal 22 and is connected to one end of the smoothing capacitor 7, and the other end of the smoothing capacitor 7 is attached with a dot of the secondary winding S1. Is connected to the output terminal 23 and connected to the output terminal 23. Outputs from the output terminals 21 and 23 are fed back to the control circuit 8 via the amplifier 11.
[0004] 図 6に示すフライバック型の多出力電源回路においては、 1次側のスイッチング素 子 3のオン期間にトランス 2にエネルギーを蓄え、スイッチング素子 3のオフ期間に、 整流用ダイオード 4, 5を通って出力側にエネルギーが供給される。スイッチング素子 3のオフ期間に発生する 2次卷線 SI, S2のフライバック電圧 El, E2は、入力電圧 Vi nに対して各々の卷数に比例して発生する。そして、 2次卷線 SI, S2のフライバック 電圧 El, E2〖こより、各整流用ダイオード 4, 5を介して平滑コンデンサ 6, 7が充電さ れ、出力端子 21, 22, 23に出力電圧 Vol, Vo2が供給される。この出力電圧の制 御は、整流用ダイオード 5の力ソード側の出力端子 22をマイナス電位として、各 2次 卷線 SI, S2に発生する電圧を整流平滑した合成電圧が、アンプ 11を介して制御回 路 8に入力され、出力の安定化を図っている。 In the flyback multi-output power supply circuit shown in FIG. 6, energy is stored in the transformer 2 during the ON period of the switching element 3 on the primary side, and the rectifying diode 4 is stored during the OFF period of the switching element 3. Energy is supplied to the output through 5. The flyback voltages El and E2 of the secondary windings SI and S2 generated during the off period of the switching element 3 are generated in proportion to the respective power numbers with respect to the input voltage Vin. And secondary flyback SI, S2 flyback From the voltages El and E2, the smoothing capacitors 6 and 7 are charged through the rectifying diodes 4 and 5, and the output voltages Vol and Vo2 are supplied to the output terminals 21, 22, and 23. This output voltage is controlled by a combined voltage obtained by rectifying and smoothing the voltage generated at each secondary winding SI and S2 through the amplifier 11 with the output terminal 22 on the power sword side of the rectifying diode 5 being a negative potential. Input to control circuit 8 to stabilize the output.
特許文献 1:特開昭 60 - 35957号公報  Patent Document 1: JP-A-60-35957
特許文献 2:特開平 6 - 54532号公報  Patent Document 2: JP-A-6-54532
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] このフライバック型の多出力スイッチング電源装置の場合、図 7に示す等価回路の ように、トランス 2と整流用ダイオード 4, 5の間の漏れインダクタンスゃ、回路基板の配 線パターンなどによる寄生インダクタンス等のリーケージインダクタンス成分 9, 10が、 直列に挿入された回路となる。このリーケージインダクタンス成分 9, 10には、スィッチ ング素子 3がスイッチングする毎に整流電流が流れる。そのため、片側の出力だけに 負荷電流を流す場合や負荷にアンバランスが生じると、負荷電流を流している出力 側は、漏れインダクタンス等のリーケージインダクタンス成分により発生する電圧降下 が大きくなる。このため、負荷に電流を流す出力側の電圧が減少し、電流を流してい ないまたは少ない出力側の電圧が上昇し、負荷変動が大きくなる。これは、出力の合 成電圧をフィードバックして、出力電圧を制御して!/、るために生じる。  In the case of this flyback type multi-output switching power supply, as shown in the equivalent circuit shown in FIG. 7, the leakage inductance between the transformer 2 and the rectifying diodes 4 and 5 depends on the wiring pattern of the circuit board, etc. A leakage inductance component 9, 10 such as a parasitic inductance is inserted in series. A rectified current flows through the leakage inductance components 9 and 10 every time the switching element 3 is switched. For this reason, when a load current is applied only to the output on one side or when an imbalance occurs in the load, the voltage drop generated by leakage inductance components such as leakage inductance increases on the output side where the load current flows. For this reason, the voltage on the output side that allows current to flow through the load decreases, the voltage on the output side that does not carry current or little increases, and the load fluctuation increases. This occurs because the combined voltage of the output is fed back to control the output voltage!
[0006] このトランス 2の漏れインダクタンスゃ寄生インダクタンスによるリーケージインダクタ ンス成分の合成値を Leとすると、リーケージインダクタンス成分 Leで発生する電圧降 下 Veは、以下のように表される。  [0006] If the leakage inductance of the transformer 2 is a combined value of the leakage inductance component due to the parasitic inductance, the voltage drop Ve generated by the leakage inductance component Le is expressed as follows.
[0007] Ve = Le X (di/dt)  [0007] Ve = Le X (di / dt)
ここで、(diZdt)は、リーケージインダクタンス成分に流れる電流の傾きである。  Here, (diZdt) is the slope of the current flowing in the leakage inductance component.
[0008] そこで、出力電圧が負荷により目標電圧より大きく上昇してしまわな!/、ように、出力 端子 21, 22間および 22, 23間にダミー抵抗を接続して、必要最低限の負荷電流 a をダミー抵抗により消費させ、図 8に示すように軽負荷時の出力上昇を防ぐようにして いる。 [0009] 従って、上記従来の場合、ダミー抵抗による損失が電源の効率を下げて 、ると!/、う 問題があった。また、このようなリーケージ成分を少なくするように、トランスの卷線部 を積層基板で作成するものもあるが、構成が複雑になるとともにコストも上昇するとい う問題があった。 [0008] Therefore, the output voltage will not rise significantly above the target voltage due to the load! As shown in Fig. 8, output resistance at light load is increased by connecting a dummy resistor between output terminals 21, 22 and 22, 23, and consuming the minimum load current a by the dummy resistor. It is trying to prevent. [0009] Therefore, in the above conventional case, there is a problem that the loss due to the dummy resistor reduces the efficiency of the power supply! In addition, some transformers are made of a laminated substrate so as to reduce such leakage components, but there is a problem that the configuration becomes complicated and the cost increases.
[0010] また、特許文献 1、 2に開示されているように、ダミー抵抗による損失を抑えるために 、多出力スイッチング電源回路の各コイルの磁心を共有させる構成も提案されて 、る 力 この場合も、上述の問題に対して十分な効果が得られていないものであった。  [0010] Further, as disclosed in Patent Documents 1 and 2, a configuration in which the magnetic cores of the coils of the multi-output switching power supply circuit are shared is proposed in order to suppress the loss due to the dummy resistance. However, a sufficient effect on the above-mentioned problem has not been obtained.
[0011] この発明は、上記の従来の技術の問題点に鑑みてなされたもので、簡単な構成で 、負荷変動を減少させ、負荷変動を抑えるためのダミー抵抗による損失を減らし、電 源装置の効率を向上させることができる多出力スイッチング電源装置を提供すること を目的とする。  [0011] The present invention has been made in view of the above-described problems of the conventional technology. With a simple configuration, the load variation is reduced, and the loss due to the dummy resistor for suppressing the load variation is reduced. An object of the present invention is to provide a multi-output switching power supply device capable of improving the efficiency of the power supply.
課題を解決するための手段  Means for solving the problem
[0012] この発明は、直流電源に対してトランスの 1次卷線と主スイッチング素子を直列に接 続した 1次側回路を有し、前記トランスに複数の 2次卷線を設け、前記スイッチング素 子をスイッチングして、前記トランスの複数の 2次卷線に発生するフライバック電圧を 各々ダイオード等の整流用素子により整流し、この整流した各出力を直列に接続し、 各出力を平滑化して出力電圧を供給し、前記複数の出力電圧の合成電圧をフィード ノ ックして出力電圧を制御しているフライバック型の多出力スイッチング電源装置で あって、前記トランスの各 2次卷線に発生するフライバック電圧のプラス側の各端子に 、前記各整流用素子のプラス側端子を各々接続し、前記各整流用素子の各プラス側 端子間をコンデンサを介して接続して成る多出力スイッチング電源装置である。  [0012] The present invention includes a primary circuit in which a primary winding of a transformer and a main switching element are connected in series to a DC power source, and a plurality of secondary windings are provided in the transformer, and the switching is performed. By switching the elements, the flyback voltage generated in the secondary windings of the transformer is rectified by rectifying elements such as diodes, and the rectified outputs are connected in series to smooth the outputs. A flyback type multi-output switching power supply device that controls the output voltage by feed-knocking the combined voltage of the plurality of output voltages, and each secondary winding of the transformer A multi-output comprising a positive terminal of each rectifying element connected to each positive terminal of a flyback voltage generated in the circuit, and a positive terminal connected to each rectifying element via a capacitor. Sui A quenching power supply.
[0013] またこの発明は、直流電源に対してトランスの 1次卷線と主スイッチング素子を直列 に接続した 1次側回路を有し、前記トランスに複数の 2次卷線を設け、前記スィッチン グ素子をスイッチングして、前記トランスの複数の 2次卷線に発生する交流電圧を各 々整流するダイオード等の複数の整流用素子と、前記 2次卷線のドットのある側に一 端が接続され他端が出力端子に接続されたチョークコイルと、前記チョークコイルの 一端と前記 2次卷線のドットのない側との間に接続された複数の還流用素子と、各出 力を平滑する平滑コンデンサを備え、前記複数の出力電圧の合成電圧をフィードバ ックして出力電圧を制御しているフォワード型の多出力スイッチング電源装置であつ て、前記各整流用素子の各マイナス側の端子と前記各チョークコイルとの中点同士 を、コンデンサを介して接続して成る多出力スイッチング電源装置である。 [0013] Further, the present invention includes a primary circuit in which a primary winding of a transformer and a main switching element are connected in series to a DC power source, the transformer is provided with a plurality of secondary windings, and the switch Switching elements, and a plurality of rectifying elements such as diodes for rectifying the AC voltages generated on the plurality of secondary windings of the transformer, respectively, and one end of the secondary winding on the side where the dots are located. A choke coil connected and connected to the output terminal at the other end, a plurality of return elements connected between one end of the choke coil and the non-dotted side of the secondary winding, and smoothing each output And a smoothing capacitor that performs a feedback operation on the combined voltage of the plurality of output voltages. The forward type multi-output switching power supply device that controls the output voltage by clicking, and the midpoint between each minus terminal of each rectifying element and each choke coil is connected via a capacitor. This is a multi-output switching power supply device connected.
[0014] 前記整流要用素子は、ダイオードであり、前記コンデンサは各ダイオードのアノード 端子を接続して成るものである。または、前記整流要用素子にトランジスタを用いて、 同期整流するものでも良い。さらに、フォワード型の多出力スイッチング電源装置で は、前記各整流用素子に接続された複数のチョークコイルで、磁芯を共有しても良い 発明の効果  [0014] The rectifying element is a diode, and the capacitor is formed by connecting the anode terminal of each diode. Alternatively, a synchronous rectification may be performed using a transistor for the rectification-requiring element. Furthermore, in the forward type multi-output switching power supply device, the magnetic core may be shared by a plurality of choke coils connected to each of the rectifying elements.
[0015] この発明の多出力スイッチング電源装置は、整流用素子間にコンデンサを接続す るだけで、負荷変動を減少させ、負荷変動を減少させるためのダミー抵抗による損失 を抑え、電源装置の効率を高めることができるものである。また、ダミー抵抗素子を減 らすことができることにより、回路の実装面積を減らすことができ、電源装置の構成部 品の小型化を可能にし、電源装置全体の小型化や低コスト化にも大きく寄与するも のである。  [0015] The multi-output switching power supply device of the present invention reduces load fluctuations and suppresses losses due to dummy resistors for reducing load fluctuations by simply connecting a capacitor between rectifying elements, and improves the efficiency of the power supply device. Can be increased. In addition, since the number of dummy resistance elements can be reduced, the circuit mounting area can be reduced, the components of the power supply device can be made smaller, and the power supply device as a whole can be reduced in size and cost. It contributes.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]この発明の第一実施形態の多出力スイッチング電源装置の概略回路図である  FIG. 1 is a schematic circuit diagram of a multi-output switching power supply device according to a first embodiment of the present invention.
[図 2]この発明の第一実施形態の多出力スイッチング電源装置の等価回路図である FIG. 2 is an equivalent circuit diagram of the multi-output switching power supply device according to the first embodiment of the present invention.
[図 3]この発明の第一実施形態の多出力スイッチング電源装置の出力電流と出力電 圧を示すグラフである。 FIG. 3 is a graph showing output current and output voltage of the multi-output switching power supply device according to the first embodiment of the present invention.
[図 4]この発明の第二実施形態の多出力スイッチング電源装置の概略回路図である  FIG. 4 is a schematic circuit diagram of a multi-output switching power supply device according to a second embodiment of the present invention.
[図 5]この発明の第二実施形態の多出力スイッチング電源装置の等価回路図である FIG. 5 is an equivalent circuit diagram of the multi-output switching power supply device according to the second embodiment of the present invention.
[図 6]従来のフライバック型の多出力スイッチング電源装置の概略回路図である。 FIG. 6 is a schematic circuit diagram of a conventional flyback multi-output switching power supply device.
[図 7]従来のフライバック型の多出力スイッチング電源装置の等価回路図である。 [図 8]従来のフライバック型の多出力スイッチング電源装置の出力電流と出力電圧を 示すグラフである。 FIG. 7 is an equivalent circuit diagram of a conventional flyback type multi-output switching power supply device. FIG. 8 is a graph showing output current and output voltage of a conventional flyback multi-output switching power supply.
符号の説明  Explanation of symbols
[0017] 1 直流電源 [0017] 1 DC power supply
2 卜ランス  2 lance
3 スイッチング素子  3 Switching element
6, 7 平滑コンデンサ  6, 7 Smoothing capacitor
8 制御回路  8 Control circuit
9, 10 リーケージインダクタンス成分  9, 10 Leakage inductance component
12 コンデンサ  12 capacitors
14, 15 整流用素子  14, 15 Rectifier element
21, 22, 23 出力端子  21, 22, 23 Output terminal
Fl 1次卷線  Fl Primary shoreline
SI, S2 2次卷線  SI, S2 secondary cable
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、この発明の実施の形態について図面に基づいて説明する。図 1は、この発明 の第一実施形態のフライバック型の多出力スイッチング電源装置の電源回路を示す もので、図 6に示す電源回路と同様の構成は同一の符号を付す。この実施形態の多 出力スイッチング電源装置は、直流電源 1に、トランス 2の 1次卷線 F1とスイッチング 素子 3より成る直列回路が接続されている。スイッチング素子 3は、 MOS—FET等の 半導体スィッチ素子からなる。スイッチング素子 3のゲートには、スイッチングのオンデ ユーティを制御して出力電圧を制御する制御回路 8の出力が接続されている。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a power supply circuit of a flyback type multi-output switching power supply apparatus according to the first embodiment of the present invention. The same components as those of the power supply circuit shown in FIG. In the multi-output switching power supply device of this embodiment, a DC power supply 1 is connected to a series circuit composed of a primary winding F1 of a transformer 2 and a switching element 3. The switching element 3 is composed of a semiconductor switch element such as a MOS-FET. The gate of the switching element 3 is connected to the output of the control circuit 8 that controls the on-duty of switching to control the output voltage.
[0019] トランス 2には 2個の 2次卷線 Sl、 S2が設けられている。 2次卷線 Sl、 S2のドットの ない方の端子は、各々整流用ダイオード等の整流用素子 14, 15のアノードであるプ ラス側端子に接続されている。一方の整流用素子 14の力ソードであるマイナス側端 子は、出力端子 21に接続されているとともに、一方の平滑コンデンサ 6の一端に接続 されている。平滑コンデンサ 6の他端は、 2次卷線 S2のドットを付した側の端子に接 続されているとともに、出力端子 22に繋がっている。また、他方の整流用素子 15の力 ソードであるマイナス側端子は、出力端子 22に接続されているとともに、他方の平滑 コンデンサ 7の一端に接続されている。平滑コンデンサ 7の他端は、 2次卷線 S1のド ットを付した側の端子に接続され、出力端子 23に繋がっている。出力端子 21, 23の 出力は、アンプ 11を介して制御回路 8にフィードバックされている。 [0019] The transformer 2 is provided with two secondary windings Sl and S2. The terminals without secondary dots of the secondary windings Sl and S2 are respectively connected to the positive side terminals which are the anodes of the rectifying elements 14 and 15 such as the rectifying diode. A negative side terminal, which is a force sword of one rectifying element 14, is connected to an output terminal 21 and to one end of one smoothing capacitor 6. The other end of the smoothing capacitor 6 is connected to the terminal on the side where the dot of the secondary winding S2 is attached and also connected to the output terminal 22. The force of the other rectifying element 15 The negative terminal, which is a sword, is connected to the output terminal 22 and to one end of the other smoothing capacitor 7. The other end of the smoothing capacitor 7 is connected to a terminal on the side where the secondary winding S1 is attached, and is connected to the output terminal 23. Outputs from the output terminals 21 and 23 are fed back to the control circuit 8 via the amplifier 11.
[0020] また、 2次卷線 Sl、 S2のドットのない方の各端子と各整流用素子 14, 15の各ァノ ードであるプラス側端子との間をつな!/、で、コンデンサ 12が設けられて 、る。  [0020] In addition, between each terminal of the secondary winding Sl, S2, which has no dot, and the positive terminal, which is each of the rectifying elements 14, 15, is connected! / A capacitor 12 is provided.
[0021] この実施形態の整流用素子 14, 15は、例えばショットキノ リアダイオード、ファース トリカノ リダイオード等を用いることができ、またトランジスタを用いても良い。コンデン サ 12は、セラミックコンデンサ、アルミ電解コンデンサ、機能性高分子電解コンデンサ 等を適宜用いることができる。  [0021] As the rectifying elements 14 and 15 of this embodiment, for example, a Schottky diode, a first tricano diode, or the like may be used, and a transistor may be used. As the capacitor 12, a ceramic capacitor, an aluminum electrolytic capacitor, a functional polymer electrolytic capacitor, or the like can be used as appropriate.
[0022] 図 1に示すフライバック型の多出力電源回路においては、 1次側のスイッチング素 子 3のオン期間にトランス 2にエネルギーを蓄え、スイッチング素子 3のオフ期間に、 2 次卷線 Sl、 S2によるフライバック電圧が整流用素子 14, 15を通って出力側に印加 され、エネルギーが供給される。スイッチング素子 3のオフ期間に発生する 2次卷線 S 1, S2のフライバック電圧 El, E2は、入力電圧 Vinに対して各々の卷数に比例して 発生する。そして、 2次卷線 SI, S 2のフライバック電圧 El, E2が、各整流用素子 14 , 15のプラス側端子に印加され、平滑コンデンサ 6, 7が充電され、出力端子 21, 22 , 23に出力電圧 Vol, Vo2が供給される。この出力電圧の制御は、整流用素子 15 のマイナス側の出力端子 22をマイナス側として、各 2次卷線 SI, S2に発生する電圧 を整流平滑した合成電圧が、アンプ 11を介して制御回路 8に入力されることにより、 出力の安定化を図っている。  [0022] In the flyback multi-output power supply circuit shown in Fig. 1, energy is stored in the transformer 2 during the ON period of the primary side switching element 3, and the secondary winding Sl is stored during the OFF period of the switching element 3. The flyback voltage due to S2 is applied to the output side through the rectifying elements 14 and 15, and energy is supplied. The flyback voltages El and E2 of the secondary windings S1 and S2 generated during the OFF period of the switching element 3 are generated in proportion to the respective power numbers with respect to the input voltage Vin. Then, the flyback voltages El and E2 of the secondary windings SI and S 2 are applied to the positive side terminals of the rectifying elements 14 and 15, the smoothing capacitors 6 and 7 are charged, and the output terminals 21, 22 and 23 Are supplied with output voltages Vol and Vo2. This output voltage is controlled by combining the voltage generated on the secondary windings SI and S2 with the output terminal 22 on the negative side of the rectifying element 15 on the negative side, and a combined voltage obtained by rectifying and smoothing the voltage via the amplifier 11. Input to 8 stabilizes output.
[0023] この実施形態のフライバック型の多出力電源回路も、図 2に示す等価回路のように 、トランス 2と整流用素子 14, 15の間の漏れインダクタンスゃ、パターンなどによる寄 生インダクタンス等のリーケージインダクタンス成分 9, 10力 直列に挿入された回路 となる。そして、このリーケージインダクタンス成分 9, 10には、スイッチング素子 3がス イッチングする毎に整流電流が流れる。そのため、片側の出力だけに負荷電流を流 す場合や、負荷にアンバランスが生じると、負荷電流を流している出力側は、漏れィ ンダクタンス等のリーケージインダクタンス成分 9, 10により発生する電圧降下が大き くなる。このため、負荷に電流を流す出力側の電圧が減少し、電流を流していない又 は少ない出力側の電圧が上昇し、負荷変動が大きくなる。これは、前述の通り出力の 合成電圧をフィードバックして出力電圧を制御して ヽるために生じる。 [0023] The flyback multi-output power supply circuit of this embodiment also has a leakage inductance between the transformer 2 and the rectifying elements 14 and 15, a parasitic inductance due to a pattern, etc., as in the equivalent circuit shown in FIG. Leakage inductance component of 9, 10 force It becomes a circuit inserted in series. A rectified current flows through the leakage inductance components 9 and 10 every time the switching element 3 is switched. Therefore, when a load current is applied only to the output on one side or when an imbalance occurs in the load, the output side where the load current is flowing has a voltage drop caused by leakage inductance components 9, 10 such as leakage inductance. big Become. For this reason, the voltage on the output side that allows current to flow through the load decreases, the voltage on the output side that does not pass current or little increases, and the load fluctuation increases. This occurs because the output voltage is controlled by feeding back the combined voltage of the output as described above.
[0024] この実施形態では、スイッチング素子 3がオフし、リーケージインダクタンス成分 9, 1 0に起因する電圧降下を、整流用素子 14, 15のプラス側の端子に接続したコンデン サ 12によって補正し、負荷変動を抑制している。  In this embodiment, the switching element 3 is turned off, and the voltage drop caused by the leakage inductance components 9 and 10 is corrected by the capacitor 12 connected to the positive side terminals of the rectifying elements 14 and 15, Load fluctuation is suppressed.
[0025] この動作は、例えば出力端子 22, 23間の出力電圧 Volの負荷にこの電源装置の 定格負荷電流が流れており、出力端子 21, 22間の出力電圧 Vo2には、負荷電流が 流れていない場合について考える。スイッチング素子 3がオフし、フライバック電圧が トランス 2の 2次卷線 Sl、 S2に発生すると、整流電流が出力端子 22, 23間に流れ、 図 2の A点は B点よりリーケージインダクタンス成分 9 , 10の合成値 Le〖こよる電圧 Ve 分の電圧が低くなる。これにより、図 2に示すように、コンデンサ 12を経て電流 IIが流 れ、 A点の電圧を上昇させ B点の電圧が上昇するのを抑えて、図 3に示すように、従 来の回路構成の場合と比較して負荷変動を軽減する。  [0025] In this operation, for example, the rated load current of the power supply device flows through the load of the output voltage Vol between the output terminals 22 and 23, and the load current flows through the output voltage Vo2 between the output terminals 21 and 22. Think about when not. When switching element 3 is turned off and a flyback voltage is generated on secondary winding Sl, S2 of transformer 2, rectified current flows between output terminals 22 and 23, and point A in Fig. 2 is a leakage inductance component from point B 9 , 10 composite value Le 〖The voltage Ve is reduced. As a result, current II flows through capacitor 12 as shown in Fig. 2 to increase the voltage at point A and suppress the increase in voltage at point B, as shown in Fig. 3. Reduces load fluctuations compared to the configuration.
[0026] この実施形態の多出力電源装置によれば、整流用素子 14, 15の各プラス側端子 間を、コンデンサ 12を介して接続することにより、電源装置の負荷変動を減少させ、 ダミー抵抗による損失を抑え、電源効率を高めることができる。また、リーケージ成分 を減らすために積層基板によりトランスを形成する必要もなぐコストの上昇を抑え効 率の良い電源装置を提供することができる。さらに、ダミー抵抗を減らすことができ、 電源装置の小型化にも寄与する。  [0026] According to the multi-output power supply device of this embodiment, by connecting the positive side terminals of the rectifying elements 14, 15 via the capacitor 12, the load fluctuation of the power supply device is reduced, and the dummy resistor Can reduce power loss and increase power supply efficiency. In addition, it is possible to provide an efficient power supply device that suppresses the increase in cost because it is not necessary to form a transformer with a multilayer substrate in order to reduce the leakage component. Furthermore, dummy resistance can be reduced, which contributes to downsizing of the power supply device.
[0027] 次にこの発明の第二実施形態の多出力スイッチング電源装置について、図 4,図 5 を基にして説明する。ここで、上記実施形態と同様の部材は同一符号を付して説明 を省略する。この実施形態の多出力スイッチング電源装置は、フォワード型多出カス イッチング電源装置についてのものである。この多出力スイッチング電源装置は、 2次 卷線 Sl、 S2のドットのある方の端子が、各々整流用ダイオード等の整流用素子 14, 15のアノードであるプラス側端子に接続されている。一方の整流用素子 14のカソー ドであるマイナス側端子は、直列に接続された協調チョークコイル 13の一方の端子 に接続され、協調チョークコイル 13の他方の端子が出力端子 21に接続されていると ともに、一方の平滑コンデンサ 6の一端に接続されている。平滑コンデンサ 6の他端 は、 2次卷線 S2のドットのない側の端子に接続され、出力端子 22に繋がっている。 Next, a multi-output switching power supply device according to a second embodiment of the present invention will be described with reference to FIGS. Here, the same members as those in the above embodiment are denoted by the same reference numerals and the description thereof is omitted. The multiple output switching power supply of this embodiment is for a forward type multiple output switching power supply. In this multi-output switching power supply, the terminal with the secondary windings Sl and S2 is connected to the positive terminal which is the anode of the rectifying elements 14 and 15 such as the rectifying diode. The negative terminal, which is the cathode of one of the rectifying elements 14, is connected to one terminal of the cooperative choke coil 13 connected in series, and the other terminal of the cooperative choke coil 13 is connected to the output terminal 21. When Both are connected to one end of one smoothing capacitor 6. The other end of the smoothing capacitor 6 is connected to the terminal of the secondary winding S2 where no dot is present, and is connected to the output terminal 22.
[0028] また、他方の整流用素子 15のマイナス側端子は、直列に接続された協調チョーク コイル 17の一方の端子に接続され、協調チョークコイル 17の他方の端子が出力端 子 22に接続されているとともに、他方の平滑コンデンサ 7の一端に接続されている。 平滑コンデンサ 7の他端は、 2次卷線 S1のドットのない側の端子に接続され、出力端 子 23に繋がっている。さらに、協調チョークコイル 13, 17は磁芯 16を共有している。  [0028] The negative side terminal of the other rectifying element 15 is connected to one terminal of the cooperative choke coil 17 connected in series, and the other terminal of the cooperative choke coil 17 is connected to the output terminal 22. And is connected to one end of the other smoothing capacitor 7. The other end of the smoothing capacitor 7 is connected to the terminal of the secondary winding S1 where no dot is present, and is connected to the output terminal 23. Further, the cooperative choke coils 13 and 17 share the magnetic core 16.
[0029] 整流用素子 14のマイナス側端子と 2次卷線 S 2のドットのない方の端子との間には、 還流用ダイオード等の還流用素子 18が接続されている。還流用素子 18は、アノード であるプラス側端子が 2次卷線 S2のドットのな 、方の端子に接続され、力ソードであ るマイナス側端子が整流用素子 14のマイナス側端子に接続されている。また、整流 用素子 15のマイナス側端子と 2次卷線 S1のドットのない方の端子との間に、還流用 ダイオード 19が接続されている。還流用ダイオード 19は、アノードであるプラス側端 子が 2次卷線 S1のドットのない方の端子に接続され、力ソードであるマイナス側端子 が整流用素子 15のマイナス側端子に接続されている。さらに、各整流用素子 14, 15 の各マイナス側端子と各協調チョークコイル 13, 17の 2次卷線 SI, S2側の端子との 間同士をつな 、で、コンデンサ 12が設けられて!/、る。  [0029] A return element 18 such as a return diode is connected between the negative terminal of the rectifier element 14 and the terminal on the secondary winding S2 where no dot is present. In the reflux element 18, the positive terminal that is the anode is connected to the other terminal of the secondary winding S2, and the negative terminal that is the force sword is connected to the negative terminal of the rectifying element 14. ing. Further, a freewheeling diode 19 is connected between the negative terminal of the rectifying element 15 and the terminal of the secondary winding S1 that has no dot. The freewheeling diode 19 has an anode with a positive terminal connected to the terminal without the dot of the secondary winding S1, and a negative terminal with a force sword connected to the negative terminal of the rectifying element 15. Yes. In addition, capacitors 12 are provided between the negative terminals of the rectifying elements 14 and 15 and the secondary winding SI and S2 terminals of the cooperative choke coils 13 and 17, respectively! /
[0030] この実施形態のフォワード型の多出力電源回路も、図 5に示す等価回路のように、 トランス 2と整流用素子 14, 15の間の漏れインダクタンスゃ回路基板の配線パターン などによる寄生インダクタンス等のリーケージインダクタンス成分 9, 10が直列に挿入 された回路となる。そのため、片出力だけに負荷電流を流す場合や、負荷にアンバラ ンスが生じると、負荷電流を流している出力側は漏れインダクタンス等のリーケージィ ンダクタンス成分 9, 10により発生する電圧降下が大きくなるため、負荷に電流を流 す出力側の電圧が減少し、電流を流して 、な 、または少ない出力側の電圧が上昇し 、負荷変動が大きくなる。  [0030] The forward type multi-output power supply circuit of this embodiment also has a parasitic inductance due to a leakage inductance between the transformer 2 and the rectifying elements 14 and 15 as in the equivalent circuit shown in FIG. This is a circuit in which leakage inductance components 9 and 10 are inserted in series. Therefore, when a load current is applied to only one output or when an unbalance occurs in the load, the voltage drop generated by leakage inductance components 9 and 10 such as leakage inductance increases on the output side where the load current flows. The voltage on the output side that causes current to flow to the load decreases, and if current is supplied to the load, the voltage on the output side increases or decreases, and the load fluctuation increases.
[0031] このとき、この実施形態では、リーケージインダクタンス成分 9, 10に起因する電圧 降下は、磁芯 16を共有した協調チョークコイル 13, 17によりある程度は緩和されるが 、その効果が十分ではなぐ整流用素子 14, 15のプラス側端子に接続したコンデン サ 12によって出力間の電圧が補正され、より効果的に負荷変動を抑制している。 At this time, in this embodiment, the voltage drop caused by the leakage inductance components 9 and 10 is alleviated to some extent by the cooperative choke coils 13 and 17 sharing the magnetic core 16, but the effect is not sufficient. Condensers connected to the positive terminals of rectifier elements 14, 15 The voltage between the outputs is corrected by the sensor 12, and the load fluctuation is suppressed more effectively.
[0032] この動作は、例えば出力端子 22, 23間の出力電圧 Volの負荷にこの電源装置の 定格負荷電流が流れており、出力端子 21, 22間の出力電圧 Vo2には、負荷電流が 流れていない場合、トランス 2の 2次卷線 Sl、 S2に発生した電圧により整流電流が出 力端子 22, 23間に流れ、図 5の A点は B点よりリーケージインダクタンス成分 9, 10の 合成値 Leによる電圧 Ve分の電圧が低くなる。これにより、コンデンサ 12を介して図 5 に示すように、コンデンサ 12を経て電流 13が流れ、 A点の電圧を上昇させ B点の電 圧が上昇するのを抑えて負荷変動を軽減する。 [0032] In this operation, for example, the rated load current of the power supply device flows through the load of the output voltage Vol between the output terminals 22 and 23, and the load current flows through the output voltage Vo2 between the output terminals 21 and 22. Otherwise, the rectified current flows between the output terminals 22 and 23 due to the voltage generated on the secondary windings Sl and S2 of the transformer 2, and the point A in Fig. 5 is the combined value of the leakage inductance components 9 and 10 from the point B Voltage due to Le is reduced by Ve. As a result, as shown in FIG. 5 through the capacitor 12, the current 13 flows through the capacitor 12, the voltage at the point A is increased, the voltage at the point B is suppressed from increasing, and the load fluctuation is reduced.
[0033] この実施形態の多出力電源装置によれば、整流用素子 14, 15のマイナス側端子 間にコンデンサ 12を接続することにより、電源装置の負荷変動を減少させ、上記実 施形態と同様の効果を得ることができる。 [0033] According to the multi-output power supply device of this embodiment, by connecting the capacitor 12 between the negative side terminals of the rectifying elements 14, 15, the load fluctuation of the power supply device is reduced, and the same as in the above embodiment. The effect of can be obtained.
[0034] なお、この発明の多出力スイッチング電源装置は上記実施形態に限定されるもの ではなぐ多出力の数は適宜設定可能なものであり、整流用素子はダイオード以外 に各種トランジスタを用いて同期整流するものでも良ぐ電源回路も適宜の回路に利 用可能なものである。 Note that the multi-output switching power supply apparatus of the present invention is not limited to the above embodiment, and the number of multi-outputs can be set as appropriate, and the rectifying element is synchronized using various transistors in addition to the diode. A power supply circuit that can be rectified is also applicable to an appropriate circuit.

Claims

請求の範囲 The scope of the claims
[1] 直流電源に対してトランスの 1次卷線と主スイッチング素子を直列に接続した 1次側 回路を有し、前記トランスに複数の 2次卷線を設け、前記スイッチング素子をスィッチ ングして、前記トランスの複数の 2次卷線に発生するフライバック電圧を各々整流用 素子により整流し、この整流した各出力を直列に接続し、各出力を平滑ィ匕して出力 電圧を供給し、前記複数の出力電圧の合成電圧をフィードバックして出力電圧を制 御して 、るフライバック型の多出力スイッチング電源装置にぉ 、て、  [1] A primary side circuit in which a primary winding of a transformer and a main switching element are connected in series to a DC power supply, a plurality of secondary windings are provided in the transformer, and the switching element is switched. Then, the flyback voltages generated in the plurality of secondary windings of the transformer are rectified by rectifying elements, the rectified outputs are connected in series, and the outputs are smoothed to supply an output voltage. The flyback type multi-output switching power supply device that controls the output voltage by feeding back the combined voltage of the plurality of output voltages,
前記トランスの各 2次卷線に発生するフライバック電圧のプラス側の各端子に、前記 各整流用素子のプラス側端子を各々接続し、前記各整流用素子の各プラス側端子 間を、コンデンサを介して接続して成ることを特徴とする多出力スイッチング電源装置  A positive side terminal of each rectifying element is connected to each positive side terminal of a flyback voltage generated on each secondary winding of the transformer, and a capacitor is connected between each positive side terminal of each rectifying element. A multi-output switching power supply device characterized by being connected via
[2] 前記整流要用素子は、ダイオードであり、前記コンデンサは各ダイオードのアノード 端子を接続して成る請求項 1記載の多出力スイッチング電源装置。 2. The multi-output switching power supply device according to claim 1, wherein the rectifying element is a diode, and the capacitor is connected to an anode terminal of each diode.
[3] 前記整流要用素子にトランジスタを用いて、同期整流する請求項 1記載の多出カス イッチング電源装置。  [3] The multiple output switching power supply device according to [1], wherein a transistor is used as the rectifying element for synchronous rectification.
[4] 直流電源に対してトランスの 1次卷線と主スイッチング素子を直列に接続した 1次側 回路を有し、前記トランスに複数の 2次卷線を設け、前記スイッチング素子をスィッチ ングして、前記トランスの複数の 2次卷線に発生する交流電圧を各々整流する複数 の整流用素子と、前記 2次卷線のドットのある側に一端が接続され他端が出力端子 に接続されたチョークコイルと、前記チョークコイルの一端と前記 2次卷線のドットのな い側との間に接続された複数の還流用素子と、各出力を平滑する平滑コンデンサを 備え、前記複数の出力電圧の合成電圧をフィードバックして出力電圧を制御している フォワード型の多出力スイッチング電源装置において、  [4] A primary side circuit in which a primary primary winding of a transformer and a main switching element are connected in series to a DC power supply, a plurality of secondary windings are provided in the transformer, and the switching element is switched. A plurality of rectifying elements that respectively rectify AC voltages generated in a plurality of secondary windings of the transformer, and one end connected to the dot side of the secondary winding and the other end connected to an output terminal. A plurality of recirculation elements connected between one end of the choke coil and the non-dotted side of the secondary winding, and a smoothing capacitor for smoothing each output. In the forward type multi-output switching power supply that controls the output voltage by feeding back the combined voltage of the voltage,
前記各整流用素子の各マイナス側の端子と前記各チョークコイルとの中点同士を、 コンデンサを介して接続して成ることを特徴とする多出力スイッチング電源装置。  A multi-output switching power supply device comprising: a negative terminal of each rectifying element and a midpoint of each choke coil connected via a capacitor.
[5] 前記整流要用素子は、ダイオードであり、前記コンデンサは各ダイオードの力ソード 端子を接続して成る請求項 4記載の多出力スイッチング電源装置。  5. The multi-output switching power supply apparatus according to claim 4, wherein the rectifying element is a diode, and the capacitor is connected to a force sword terminal of each diode.
[6] 前記整流要用素子にトランジスタを用いて、同期整流する請求項 4記載の多出カス イッチング電源装置。 6. The multiple output cascade according to claim 4, wherein a synchronous rectification is performed using a transistor as the rectifying element. Switching power supply.
前記各整流用素子に接続された各チョークコイルは、複数のチョークコイルで磁芯 を共有したことを特徴とする請求項 4記載の多出力スイッチング電源装置。  5. The multi-output switching power supply device according to claim 4, wherein each choke coil connected to each rectifying element shares a magnetic core with a plurality of choke coils.
PCT/JP2005/020119 2004-11-19 2005-11-01 Multioutput switching power supply WO2006054444A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-335782 2004-11-19
JP2004335782A JP2006149092A (en) 2004-11-19 2004-11-19 Multiple-output switching power supply unit

Publications (1)

Publication Number Publication Date
WO2006054444A1 true WO2006054444A1 (en) 2006-05-26

Family

ID=36406989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020119 WO2006054444A1 (en) 2004-11-19 2005-11-01 Multioutput switching power supply

Country Status (2)

Country Link
JP (1) JP2006149092A (en)
WO (1) WO2006054444A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175947A (en) * 2011-03-18 2011-09-07 扬州双鸿电子有限公司 Multi-path flow equalizing capacitor durability tester
CN102638181A (en) * 2012-03-19 2012-08-15 深圳麦格米特电气股份有限公司 Rectifier circuit
CN104143918A (en) * 2013-05-06 2014-11-12 Tdk株式会社 Power circuit
CN106533212A (en) * 2016-12-03 2017-03-22 中国电子科技集团公司第四十三研究所 Circuit topological structure of low-voltage input isolation type multi-circuit output switching power supply
CN112119578A (en) * 2018-07-13 2020-12-22 赤多尼科两合股份有限公司 Power supply circuit, control method and electric device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5006840B2 (en) * 2008-05-29 2012-08-22 三菱電機株式会社 Light emitting device and lighting device
JP5006856B2 (en) * 2008-10-07 2012-08-22 三菱電機株式会社 Light emitting device and lighting device
JP2013223328A (en) * 2012-04-16 2013-10-28 Sanyo Denki Co Ltd Switching power-supply device
JP6292006B2 (en) * 2013-05-06 2018-03-14 Tdk株式会社 Power circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58218870A (en) * 1982-06-15 1983-12-20 Toshiba Corp Multi-output switching regulator type power supply device
JPH0549257A (en) * 1991-08-08 1993-02-26 Matsushita Electric Ind Co Ltd Switching power supply
JPH06335244A (en) * 1993-05-20 1994-12-02 Cosel Usa Inc Switching regulator
JPH1028376A (en) * 1996-07-11 1998-01-27 Matsushita Electric Ind Co Ltd Switching power supply and television receiver using it
JP2003319649A (en) * 2002-02-22 2003-11-07 Ricoh Co Ltd Power circuit for image forming device, and power control method for image forming device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58218870A (en) * 1982-06-15 1983-12-20 Toshiba Corp Multi-output switching regulator type power supply device
JPH0549257A (en) * 1991-08-08 1993-02-26 Matsushita Electric Ind Co Ltd Switching power supply
JPH06335244A (en) * 1993-05-20 1994-12-02 Cosel Usa Inc Switching regulator
JPH1028376A (en) * 1996-07-11 1998-01-27 Matsushita Electric Ind Co Ltd Switching power supply and television receiver using it
JP2003319649A (en) * 2002-02-22 2003-11-07 Ricoh Co Ltd Power circuit for image forming device, and power control method for image forming device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175947A (en) * 2011-03-18 2011-09-07 扬州双鸿电子有限公司 Multi-path flow equalizing capacitor durability tester
CN102175947B (en) * 2011-03-18 2013-01-09 扬州双鸿电子有限公司 Multi-path flow equalizing capacitor durability tester
CN102638181A (en) * 2012-03-19 2012-08-15 深圳麦格米特电气股份有限公司 Rectifier circuit
CN104143918A (en) * 2013-05-06 2014-11-12 Tdk株式会社 Power circuit
CN106533212A (en) * 2016-12-03 2017-03-22 中国电子科技集团公司第四十三研究所 Circuit topological structure of low-voltage input isolation type multi-circuit output switching power supply
CN112119578A (en) * 2018-07-13 2020-12-22 赤多尼科两合股份有限公司 Power supply circuit, control method and electric device
CN112119578B (en) * 2018-07-13 2024-02-06 赤多尼科两合股份有限公司 Power supply circuit, control method, and electric device

Also Published As

Publication number Publication date
JP2006149092A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
WO2006054444A1 (en) Multioutput switching power supply
US7463498B1 (en) Apparatus for isolated switching power supply with coupled output inductors
US6501193B1 (en) Power converter having regulated dual outputs
Jeong et al. Analysis on half-bridge LLC resonant converter by using variable inductance for high efficiency and power density server power supply
US7623362B2 (en) Switching power supply unit
US8068355B1 (en) Apparatus for isolated switching power supply with coupled output inductors
US7012817B2 (en) Converter with integrated active clamp circuit and bias circuit
US20100067263A1 (en) Dual interleaved flyback converter for high input voltage
US9071161B2 (en) Single stage PFC power supply
US8742295B2 (en) Inverter output rectifier circuit
US20140071716A1 (en) High efficient single switch single stage power factor correction power supply
US7388761B1 (en) High efficiency parallel post regulator for wide range input DC/DC converter
US8711588B1 (en) Power supply device
TWI328918B (en) Multi-output dc-dc converter with improved cross-regulation performance
US6760233B2 (en) Low-power low-voltage power supply
JP2000152615A (en) Power supply for using circulation capacitor and its operation method
JP6380895B2 (en) Power circuit
US7816895B2 (en) Power supplying device
JP2009171829A (en) Insulating-type switching power supply
JP2006280118A (en) Switching power supply unit
JP2007267450A (en) Multiple-output power supply
US20240007006A1 (en) High-efficiency phase shift full-bridge converter
US20230207188A1 (en) Differential transformer based voltage converter and method thereof
JP2009189144A (en) Transformer and switching power supply unit having the same
JP2003289670A (en) Switching power supply

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05805404

Country of ref document: EP

Kind code of ref document: A1