WO2006043559A1 - Power supply device for vehicle - Google Patents

Power supply device for vehicle Download PDF

Info

Publication number
WO2006043559A1
WO2006043559A1 PCT/JP2005/019133 JP2005019133W WO2006043559A1 WO 2006043559 A1 WO2006043559 A1 WO 2006043559A1 JP 2005019133 W JP2005019133 W JP 2005019133W WO 2006043559 A1 WO2006043559 A1 WO 2006043559A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
semiconductor
heat receiving
receiving block
cooling device
Prior art date
Application number
PCT/JP2005/019133
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuyuki Inada
Masaki Miyairi
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004308136A external-priority patent/JP4202999B2/en
Priority claimed from JP2004308429A external-priority patent/JP4208814B2/en
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Publication of WO2006043559A1 publication Critical patent/WO2006043559A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/11Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/112Mixed assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a vehicle power supply device that is installed under a floor of a railway vehicle and supplies electric power for driving the vehicle, and more particularly to a cooling device that cools a semiconductor element group used in the power supply device.
  • a power conversion device shown in FIG. 26 is used as a power supply device for a vehicle installed under the floor of a railway vehicle.
  • This power converter includes a three-phase bridge-connected semiconductor switching element (hereinafter abbreviated as a semiconductor element) 1, a phase capacitor 2 connected between each phase AK (anode's power sword), and a DC terminal
  • a circuit having a filter capacitor 3 connected between the PNs converts the DC power input from the railway overhead line to the DC terminal PN into AC power by switching of the semiconductor element 1, and this AC power is converted to the AC terminal UVW.
  • the circuit is provided in the semiconductor element cooling unit 4 in order to efficiently remove the heat generated from the semiconductor element 1.
  • FIG. 27 is a side view partially showing in cross section the configuration of a conventional semiconductor element cooling unit 4 (see, for example, Japanese Patent Laid-Open No. 2003-235112).
  • the semiconductor element cooling unit 4 is attached to the box 6 suspended under the floor of the vehicle body 5, and the semiconductor element 1, phase capacitor 2, filter capacitor 3, gate amplifier 7, etc. are in the box 6.
  • the electrical connection between the semiconductor element cooling unit 4 and the box 6 side is also made by connecting both terminals or conductors (not shown) with bolts or the like.
  • the semiconductor element 1 has a straight heat pipe 8, a heat radiating fin 9, and a boundary plate 16 through a heat receiving block 21,
  • the heat transfer stack 12 is assembled integrally. That is, the semiconductor element 1 for one phase is mounted on, for example, the front surface of the heat receiving block 21, and the phase capacitor 2 is mounted on the back surface thereof.
  • Each end of the heat receiving block 21 is joined so that a plurality of straight pipe heat pipes 8 protrude substantially in parallel.
  • the straight heat pipe 8 has a predetermined interval in its longitudinal direction.
  • the radiating fins 9 are fitted at.
  • a boundary plate 16 having a packing 17 attached to a circumferentially formed packing guide 19 is fixed to the radiating fin 9a closest to the heat receiving block 21 by waterproofing.
  • the semiconductor element 1 constitutes the heat generating part 10
  • the straight pipe heat pipe 8 and the heat radiation fin 9 constitute the heat radiating part 11
  • the heat conducting part 10 and the heat radiating part 11 constitute the heat conduction stack 12.
  • the semiconductor element cooling unit frame 15 is formed with three mounting windows 18 with the inner edge 15a protruding outward.
  • the heat generating portion 10 of the heat conductive stack 12 is inserted into each of these mounting windows 18 from the vehicle side, and the boundary plate 16 is attached to the semiconductor element cooling unit frame 15 using the mounting holes 20 formed in the boundary plate 16.
  • the packing 17 attached to the boundary plate 16 is pressed by the inner edge portion 15a, and the heat conduction stack 12 is made of semiconductor so as to maintain the water tightness of the boundary with the semiconductor element cooling unit frame 15.
  • the radiating fins 9 While being fixed to the element cooling unit frame 15, the radiating fins 9 are arranged in an open portion outside the box body 6.
  • FIG. 30 is a cross-sectional view taken along the line Y—Y showing this state.
  • the mounting surface of the semiconductor element cooling unit frame 15 is formed to be inclined as shown in the figure.
  • the heat generating part 10 side of the straight pipe heat pipe 8 is directed downward, and the refrigerant sealed inside the straight pipe heat pipe 8 evaporates due to the heat generated from the semiconductor element 1 on the heat generating part 10 side, thereby radiating fins. It condenses on the 9th side and dissipates heat to the atmosphere. The condensed refrigerant repeats a cycle of returning to the heating unit 10 side by gravity inside the straight pipe 8. Since the heat dissipating fins 9 dissipate heat to the atmosphere by natural cooling, they are installed almost perpendicularly to the ground, and it is easy for upward airflow to pass through between the heat dissipating fins 9.
  • FIGS. 31 to 33 show an example of a semiconductor power conversion device that is installed under the floor of a railway vehicle and performs conversion from direct current alternating current or alternating current to direct current.
  • FIG. 31 shows a power conversion circuit.
  • FIG. 22 is a side sectional view of the semiconductor power converter, and
  • FIG. 33 is a sectional view taken along line AA in FIG.
  • This semiconductor power conversion device includes two inverter circuits (power conversion circuits) independent of each other, and each inverter circuit includes six semiconductors connected in a three-phase bridge as shown in FIG. Filter capacitor connected between element 201 and the positive and negative terminals. Have 202 and!
  • a semiconductor cooling device for efficiently removing heat generated from the semiconductor element 201 is provided.
  • this semiconductor cooling device 204 is partially housed in a box 206 attached to the side edge of the bottom of the vehicle body 205, and has a frame-like boundary. It is fixed to an opening (not shown) formed in the plate 207.
  • the semiconductor cooling device 204 is provided on one side of the boundary plate 207, accommodates the semiconductor element 201 and the gate amplifier 209 therein, and seals the opening, and the other of the boundary plate 207 And an open portion 211 for dissipating heat.
  • a plate is attached to the bottom of a frame formed of angle steel, and two groups of filter capacitors 202 are respectively mounted on the plate, and are introduced into the box 206.
  • the conductor is connected to the filter capacitor 202!
  • the semiconductor element 201 is attached to three plate-shaped heat receiving blocks 212 provided for each phase in the sealed portion 10.
  • a semiconductor element 201 constituting one inverter circuit is attached to one surface of each heat receiving block 212, and a semiconductor element 201 constituting the other inverter circuit is attached to the other surface of each heat receiving block 212.
  • the mounting of the semiconductor element 201 is the same for the three phases. In such a structure, the semiconductor element 201 on the central heat receiving block 212 is in a state of facing and close to the semiconductor elements 201 on the heat receiving blocks 212 on both sides.
  • Each heat receiving block 212 is attached with a heat pipe radiator 213.
  • the heat noise radiator 213 has one end connected to one side of the heat receiving block 212 and a heat pipe 214 protruding toward the opening 211, and a plurality of heat pipes 214 mounted on the heat pipe 214 at intervals in the longitudinal direction.
  • the sheet-like heat radiation fins 215 are provided.
  • the heat pipe 214 passes through the heat radiating fins 215, and each heat radiating fin 215 is fixed in a state of being fitted on the outer peripheral surface of the heat pipe 214! Speak.
  • the heat pipe radiator 213 is attached so as to be inclined so that the heat receiving block 212 side is downward, and the refrigerant enclosed in the heat pipe 214 is generated in the semiconductor element 201 and is conducted to the heat receiving block 212. It evaporates due to the heat generated and dissipates heat to the atmosphere on the radiating fin 215 side to condense. The condensed refrigerant flows downward in the heat pipe 214 due to gravity and returns to the heat receiving block 212 side.
  • the heat radiation fins 215 dissipate heat to the atmosphere by natural cooling, so that they are installed almost perpendicular to the ground, and an upward airflow is generated between the heat radiation fins 215.
  • the vehicle power supply device Since the above-described conventional vehicle power supply device is provided with one heat conduction stack for each phase of the three-phase bridge-connected semiconductor elements, the vehicle power supply device including a plurality of power conversion devices In this case, a semiconductor element cooling unit has to be installed for each power converter, and there is a problem that the under-floor structure of the vehicle is complicated.
  • a semiconductor element is mounted on one surface of the heat receiving block, and a phase capacitor is mounted on the other surface.
  • packaging technology that reduces the inductance component by shortening the wiring or using reciprocating wiring eliminates the need for a phase capacitor connected close to the semiconductor element. Since one side of the lock becomes an empty space and the mounting density is reduced, another semiconductor element of the power conversion device can be configured on the empty space surface to increase the mounting density. At the time of destruction, there is a problem of adversely affecting the other semiconductor element that is not destroyed.
  • the semiconductor cooling device provided in such a power supply device, when the semiconductor element 201 constituting one inverter circuit is physically damaged, the debris of the damaged semiconductor element 201 is removed. There is a possibility that the other inverter circuit may be adversely affected by contacting the semiconductor element 201 constituting the other inverter circuit.
  • the present invention has been made in consideration of the above points, and an object of the present invention is to provide a vehicle in which destruction of one semiconductor element does not adversely affect the other semiconductor element when two power conversion devices are provided. It is to provide a power supply apparatus. Means for solving the problem
  • the present application provides the following first to fifth inventions.
  • the first invention is a first invention.
  • a power supply device for a vehicle having two power conversion devices, the first and second component mounting surfaces that are in a front-back relationship, and the first and second component mounting surfaces that correspond to the side end surfaces of the first and second component mounting surfaces.
  • the first component mounting surface is equipped with one of the two power conversion devices, and the two component power conversion devices are mounted on the second component mounting surface.
  • the heat receiving block on which one of the other semiconductor elements is mounted and the base end of the heat receiving block are joined so that the third component mounting surface force of the heat receiving block protrudes, and the heat of the heat receiving block is transferred to the tip.
  • the second invention is:
  • One heat receiving block having first and second element mounting surfaces to which the first and second semiconductor element groups constituting two power conversion circuits independent from each other are mounted; and a heat radiating section connected to the heat receiving block;
  • the first and second element mounting surfaces are provided in the same plane.
  • the third invention provides
  • One heat receiving block having first and second element mounting surfaces to which the first and second semiconductor element groups constituting two power conversion circuits independent from each other are mounted; and a heat radiating section connected to the heat receiving block;
  • the first and second element mounting surfaces are provided so as to have a front-back relationship.
  • the fourth invention provides
  • the first and second semiconductor element groups constituting two power conversion circuits independent of each other are A semiconductor cooling device comprising a plurality of heat receiving blocks having first and second element mounting surfaces to be attached, and a heat radiating portion connected to each of the heat receiving blocks, wherein the plurality of heat receiving blocks are the first heat receiving blocks.
  • These element mounting surfaces or the second element mounting surfaces are arranged so as to face each other.
  • the fifth invention provides:
  • a plurality of heat receiving blocks having first and second element mounting surfaces to which the first and second semiconductor element groups constituting two power conversion circuits independent of each other are mounted, and a heat radiating portion connected to each of the heat receiving blocks
  • the plurality of heat receiving blocks are provided so that the first and second element mounting surfaces are in a front-back relationship, and the first element mounting surface and the first The semiconductor element on the first element mounting surface and the semiconductor element on the second element mounting surface are disposed between the two adjacent heat receiving blocks. It is characterized by the provision of a collision prevention member that prevents collision!
  • the debris of the damaged semiconductor element may come into contact with the semiconductor element constituting another power conversion circuit. Therefore, other power conversion circuits are not adversely affected.
  • FIG. 1 is an electric circuit diagram of Embodiment 1 of the present invention.
  • FIG. 2 is a side view partially showing a storage state of the power conversion device constituting Embodiment 1 in cross section.
  • FIG. 3A is a side view of a heat conductive stack constituting Embodiment 1.
  • FIG. 3B is a front view of a heat conductive stack constituting Embodiment 1.
  • FIG. 4 is a cross-sectional view showing a mounted state of three heat conductive stacks constituting Embodiment 1.
  • FIG. 5 is a partial cross-sectional view showing a specific mounting structure of a heat conductive stack constituting Embodiment 1.
  • FIG. 6 is a front view of the semiconductor cooling device according to the second embodiment of the present invention.
  • FIG. 8 Right side of the semiconductor cooling device in FIG.
  • FIG. 9 is a front view of the semiconductor cooling device according to the third embodiment of the present invention.
  • FIG. 10 is a plan view of the semiconductor cooling device of FIG.
  • FIG. 12 is a front view of a semiconductor cooling device according to Embodiment 4 of the present invention.
  • FIG. 13 is a left side view of the semiconductor cooling device of FIG.
  • FIG. 14 is a front view of a semiconductor cooling device according to Embodiment 5 of the present invention.
  • FIG. 15 is a left side view of the semiconductor cooling device of FIG.
  • FIG. 16 is a front view of a semiconductor cooling device according to Embodiment 6 of the present invention.
  • FIG. 18 is a front view of a semiconductor cooling device according to Embodiment 7 of the present invention.
  • FIG. 20 is a front view of a semiconductor cooling device according to an eighth embodiment of the present invention.
  • FIG. 21 is a right side view of the semiconductor cooling device of FIG.
  • FIG. 22 is a plan view of the semiconductor cooling device of FIG.
  • FIG. 24 is a right side view of the semiconductor cooling device of FIG.
  • FIG. 25 is a plan view of the semiconductor cooling device of FIG.
  • FIG. 26 is an electric circuit diagram showing a configuration of a power conversion device in a conventional device.
  • FIG. 27 is a side view partially showing a storage state of a power conversion device constituting a conventional device.
  • FIG. 28A A side view of a heat conductive stack in a conventional apparatus.
  • FIG. 28B Front view of a heat conduction stack in a conventional apparatus.
  • FIG. 29 is a side view showing a configuration of a semiconductor element cooling unit frame in a conventional apparatus.
  • FIG. 30 is a cross-sectional view showing a mounted state of three heat conductive stacks in a conventional device.
  • FIG. 31 is a configuration diagram of a power conversion circuit of a conventional semiconductor cooling device.
  • FIG. 32 is a side sectional view of a conventional semiconductor power conversion device.
  • FIG. 33 is a sectional view taken along line AA in FIG.
  • FIG. 1 is an electric circuit diagram of Embodiment 1 of the present invention, in which DC power input to DC terminals PI and N1 is converted into three-phase AC power and supplied to devices (not shown) such as air conditioners.
  • the power conversion device 30A and the power conversion device 30B that converts the DC power input to the DC terminals P2 and N2 into three-phase AC power and supplies it to each device (not shown) (air conditioning etc.) are the semiconductor element cooling unit 4 is provided.
  • the power conversion device 30A is connected to the DC capacitors PI and N1, and the filter capacitor 3A is connected to a three-phase bridge, the DC side is connected to the DC terminals PI and N1, and the AC side is shown in the figure. It consists of six semiconductor elements 1A connected to each omitted device (air conditioner, etc.).
  • the power conversion device 30B includes a filter capacitor 3B connected to the DC terminals P2 and N2, a three-phase bridge connection, and its DC side is connected to the DC terminals P2 and N2, and the AC side is not shown. It consists of six semiconductor elements 1B connected to equipment (air conditioning, etc.).
  • FIG. 2 is a side view partially showing a cross-sectional view of a configuration example of the semiconductor element cooling unit 4 in which the power conversion devices 30A and 30B are provided.
  • a heat conduction stack 12A in which semiconductor elements are mounted on both sides of the front and back are incorporated and fixed in the semiconductor element cooling unit frame 15, and the conventional device.
  • the filter capacitor 3 is mounted, but in this embodiment, both the filter capacitors 3A and 3B are mounted in the semiconductor element cooling unit 4.
  • FIG. 3A is a side view of the heat conductive stack 12A
  • FIG. 3B is a front view thereof.
  • the semiconductor component 1A for one phase of the power conversion device 30A is mounted on the first component mounting surface of the heat receiving block 21 that has a front / back relationship, and the power conversion is performed on the second component mounting surface.
  • the semiconductor element 1B for one phase of the device 30B is mounted. The first and second parts are removed.
  • a total of three heat conduction stacks 12A described above are assembled corresponding to the U, V, and W phases, and each heat generating portion 10 is attached to the mounting window 18 (see FIG. 29) of the semiconductor element cooling unit frame 15. Although it is fixed to the boundary plate 16 in the inserted state, the state is different from the conventional device.
  • FIG. 4 is a cross-sectional view taken along arrows Y—Y showing a state in which the three heat conductive stacks 12A are fixed.
  • the three heat conduction stacks 12A are configured so that the component mounting surfaces of the heat receiving block 21 are parallel to each other, and are arranged and fixed so as to maintain a predetermined fixed interval.
  • the remaining heat conduction stack 12A is fixed so that the first component mounting surfaces face each other, and the other heat conduction stack 12A is fixed so that the second component mounting surfaces face each other. Has been.
  • the two-phase semiconductor elements 1A constituting the power conversion device 30A face each other, the remaining one-phase semiconductor elements 1A face outward, and similarly, the two-phase semiconductors constituting the power conversion device 30B
  • the elements 1B face each other and the remaining one-phase semiconductor element 1B faces outward, and the semiconductor element 1A and the semiconductor element 1B are separated from each other by the heat receiving block 21.
  • the semiconductor element 1A constituting the power conversion device 30A is physically damaged, the influence on the semiconductor element 1B can be reduced. Similarly, the semiconductor constituting the power conversion device 30B can be reduced. Even if the element 1B is physically damaged, the influence on the semiconductor element 1A can be reduced.Therefore, even if one of the power converters 30A and 30B is damaged, the other element is adversely affected. Almost no effect.
  • FIG. 5 is a partial cross-sectional view showing a specific mounting structure in which the semiconductor elements 1 A and 1 B are attached to the heat receiving block 21 in the heat conducting stack 12 A, and a through-hole formed in the heat receiving block 21. Using the holes, the semiconductor elements 1A and 1B are fastened together with bolts 23 and fixed. As a result, the number of bolts for mounting the semiconductor elements 1A and 1B can be reduced, and the number of bolt mounting steps can be reduced.
  • the semiconductor elements for one phase of either one of the power conversion devices are mounted on the first component mounting surface of the heat receiving block, Since the semiconductor element for one phase of the other power converter is mounted on the second component mounting surface of the heat receiving block, it is possible to suppress the complexity of the underfloor structure and increase the mounting density of the semiconductor elements.
  • the remaining one of the heat conduction stacks is opposed to the first component mounting surface with respect to the heat conduction stack arranged at the center. Since the other heat conduction stack is fixed so that the mounting surfaces of the second parts face each other, even if element destruction occurs in one of the two power converters, it will adversely affect the other Therefore, reliability can be improved.
  • FIG. 6 is a front view of the semiconductor cooling device according to the second embodiment of the present invention
  • FIG. 7 is a plan view of the semiconductor cooling device of FIG. 1
  • FIG. 8 is a right side view of the semiconductor cooling device of FIG. It is.
  • one surface of one heat receiving block 62 that is formed in a plate shape and arranged substantially perpendicular to the ground is an element mounting surface of two inverter circuits. It is said that. That is, the first element mounting surface 62a is on the left side and the second element mounting surface 62b is on the right side with a center line C.L that vertically cuts one surface of the heat receiving block.
  • a first semiconductor element group G1 composed of six semiconductor elements 51 corresponding to the U, V, and W phases of one inverter circuit is attached to the first element mounting surface 62a, and the second element A second semiconductor element group G2 having six semiconductor elements 51 corresponding to the U, V, and W phases of the other inverter circuit is attached to the attachment surface 62b.
  • a large number of plate-like heat radiating fins 65 are vertically attached to the other surface of the heat receiving block 62 at regular intervals in the lateral direction.
  • FIG. 9 is a front view of the semiconductor cooling device according to the third embodiment of the present invention
  • FIG. 10 is a plan view of the semiconductor cooling device of FIG. 9
  • FIG. 11 is a right side view of the semiconductor cooling device of FIG.
  • one surface of one heat receiving block 62 that is formed in a plate shape and arranged substantially perpendicular to the ground is an element mounting surface of two inverter circuits. It is said that. That is, the upper side is the first element mounting surface 62a and the lower side is the second element mounting surface 62b, with a center line C.L crossing one surface of the heat receiving block 62 as a boundary.
  • a first semiconductor element group G1 composed of six semiconductor elements 51 corresponding to the U, V, and W phases of one inverter circuit is attached to the first element mounting surface 62a, and the second element A second semiconductor element group G2 having six semiconductor elements 51 corresponding to the U, V, and W phases of the other inverter circuit is attached to the attachment surface 62b.
  • FIG. 12 is a front view of the semiconductor cooling device according to the fourth embodiment of the present invention
  • FIG. 13 is a left side view of the semiconductor cooling device of FIG.
  • one surface of one heat receiving block 62 that is formed in a plate shape and is arranged substantially perpendicular to the ground is the first element mounting surface 62a.
  • the six semiconductor elements 51 constituting the first semiconductor element group G1 are attached, and the other surface of the heat receiving block 62 is used as the second element attachment surface 62b.
  • Six semiconductor elements 51 to be configured are attached.
  • one end of a heat pipe 64 formed in a substantially L-shape is attached to one side surface of the heat receiving block 62, and a plurality of plate-like radiating fins 65 are axially disposed on the other end side of the heat pipe 64. Are attached at intervals.
  • FIG. 14 is a front view of the semiconductor cooling device of Embodiment 5 of the present invention
  • FIG. 15 is a left side view of the semiconductor cooling device of FIG.
  • the outer surface of one side wall of one heat receiving block 62 formed in the shape of a rectangular tube is defined as a first element mounting surface 62a, and the first semiconductor element group Six semiconductor elements 51 constituting G1 are attached, and the outer surface of the other side wall on the back side is set as a second element attachment face 62b, and the six semiconductor elements 51 constituting the second semiconductor element group G2 Is attached.
  • a plurality of plate-like radiating fins 65 extending in the longitudinal direction are provided horizontally and vertically spaced inside the heat receiving block 62, and each radiating fin 65 is provided on both side walls of the heat receiving block 62. Connected between the inner surfaces of.
  • Reference numeral 66 denotes a cooling fan that blows cooling air toward the inside of the heat receiving block 62 and promotes heat radiation by the heat radiation fins 65.
  • FIG. 16 is a front view of the semiconductor cooling device according to the sixth embodiment of the present invention
  • FIG. 17 is a right side view of the semiconductor cooling device of FIG.
  • the sixth embodiment includes a pair of upper and lower heat receiving blocks 62 that are formed in a plate shape and are inclined with respect to the ground.
  • the lower surface of the block 62 and the upper surface of the lower heat receiving block 62 serve as the first element mounting surface 62a, and the first semiconductor element group G1 is mounted and arranged so as to face each other.
  • the upper surface of the upper heat receiving block 62 and the lower surface of the lower heat receiving block 62 are used as the second element mounting surface 62b to mount the second semiconductor element group G2. It is
  • One end of the straight-shaft heat pipe 64 is attached to one side surface of the heat receiving block 62 and protrudes obliquely upward, and a plurality of plate-like heat radiating fins 6 5 are provided on the heat pipe 64. Are attached at intervals in the axial direction.
  • a cooler composed of the heat receiving block 62 and the radiation fin 65 may be provided separately for each of the U, V, and W phases. There is an advantage that assembly workability is improved.
  • FIG. 18 is a front view of the semiconductor cooling device according to the seventh embodiment of the present invention
  • FIG. 19 is a right side view of the semiconductor cooling device of FIG.
  • the upper surface of one heat receiving block 62 that is formed in a plate shape and is inclined with respect to the ground is the first element.
  • the first semiconductor element group G1 is attached as the mounting surface 62a, and the lower surface of the heat receiving block 62 is used as the second element attachment surface 62b, and the second semiconductor element group G2 is attached.
  • one end of the straight-axis heat pipe 64 is attached to one side surface of the heat receiving block 62 and protrudes obliquely upward, and a plurality of plate-like heat radiation fins 6 5 are projected on the heat pipe 64. Are attached at intervals in the axial direction.
  • FIG. 20 is a front view of the semiconductor cooling device according to the eighth embodiment of the present invention
  • FIG. 21 is a right side view of the semiconductor cooling device of FIG. 20
  • FIG. 22 is a semiconductor of FIG. It is a top view of a body cooling device.
  • the eighth embodiment includes a plurality of heat receiving blocks 62 that are formed in a plate shape and are arranged perpendicular to the ground.
  • Each heat receiving block 62 has one surface serving as the first element mounting surface 62a and two semiconductor elements 51 constituting the first semiconductor element group G1 are mounted, and the other surface is the second element mounting surface.
  • Each heat receiving block 62 is arranged in parallel with a distance so that the first element mounting surface 62a and the second element mounting surface 62b face each other.
  • a metal conductor 67 having a U-shaped cross section is fixed to the surface of each semiconductor element 51 by bonding or the like, and the surfaces of the two adjacent semiconductor elements 51 straddle between them.
  • a U-shaped conductor 68 having a U-shaped cross section is fixed by bonding or the like.
  • one end of the straight-axis heat pipe 64 is attached to one side surface of the heat receiving block 62 and protrudes obliquely upward, and a plurality of plate-like heat radiation fins 6 5 are projected on the heat pipe 64. Are attached at intervals in the axial direction.
  • FIG. 23 is a front view of the semiconductor cooling device according to the ninth embodiment of the present invention
  • FIG. 24 is a right side view of the semiconductor cooling device of FIG. 23
  • FIG. 25 is a plan view of the semiconductor cooling device of FIG.
  • the ninth embodiment includes a plurality of heat receiving blocks 62 that are formed in a plate shape and are arranged perpendicular to the ground.
  • Each heat receiving block 62 has one surface serving as the first element mounting surface 62a and two semiconductor elements 51 constituting the first semiconductor element group G1 are mounted, and the other surface is the second element mounting surface.
  • 62b and second semiconductor Two semiconductor elements 51 constituting the element group G2 are attached.
  • Each heat receiving block 62 is arranged in parallel with a distance so that the first element mounting surface 62a and the second element mounting surface 62b face each other.
  • a partition wall 69 is installed between two adjacent heat receiving blocks 62.
  • one end of the straight-axis heat pipe 64 is attached to one side surface of the heat receiving block 62 and protrudes obliquely upward, and a plurality of plate-like heat radiating fins 6 are provided on the heat pipe 64.
  • the semiconductor element 51 on the first element mounting surface 62a and the semiconductor element 51 on the second element mounting surface 62b Since collision can be prevented, even when the semiconductor element 51 of one inverter circuit is physically damaged, the semiconductor element 51 of the other inverter circuit is not affected.

Abstract

A power supply device for vehicle is provided for preventing an underfloor structure from being complicated even when two power converters are provided and for increasing mounting density of a semiconductor element. On a heat receiving block (21), semiconductor elements (1A, 1B) of the power converters are provided on first and second component attaching planes. Three heat conducting stacks (12A) are integrally provided with a straight heat pipe (8) and a radiating film (9) on the heat receiving block (21). The heat conducting stacks are mounted on a frame.

Description

明 細 書  Specification
車両用の電源装置  Power supply for vehicle
技術分野  Technical field
[0001] 本発明は、鉄道車両の床下に設置されて車両駆動用の電力を供給する車両用の 電源装置に係わり、とくにこの電源装置に使用される半導体素子群を冷却する冷却 装置に関する。  TECHNICAL FIELD [0001] The present invention relates to a vehicle power supply device that is installed under a floor of a railway vehicle and supplies electric power for driving the vehicle, and more particularly to a cooling device that cools a semiconductor element group used in the power supply device.
背景技術  Background art
[0002] 鉄道車両の床下に設置される車両用の電源装置として、図 26に示す電力変換装 置が用いられる。この電力変換装置は、 3相ブリッジ接続された半導体スイッチング素 子 (以下、半導体素子と略記する) 1と、各相の AK (アノード '力ソード)間に接続され た相コンデンサ 2と、直流端子 PN間に接続されたフィルタコンデンサ 3とを備えた回 路によって、鉄道架線から直流端子 PNに入力される直流電力を半導体素子 1のスィ ツチングにより交流電力に変換し、この交流電力を交流端子 UVWから出力して図示 省略の各機器 (電灯、空調等)に供給する。上記回路は、半導体素子 1から発生する 熱を効率よく除去するために半導体素子冷却ユニット 4内に設けられる。  A power conversion device shown in FIG. 26 is used as a power supply device for a vehicle installed under the floor of a railway vehicle. This power converter includes a three-phase bridge-connected semiconductor switching element (hereinafter abbreviated as a semiconductor element) 1, a phase capacitor 2 connected between each phase AK (anode's power sword), and a DC terminal A circuit having a filter capacitor 3 connected between the PNs converts the DC power input from the railway overhead line to the DC terminal PN into AC power by switching of the semiconductor element 1, and this AC power is converted to the AC terminal UVW. To supply to each device (light, air conditioning, etc.) not shown. The circuit is provided in the semiconductor element cooling unit 4 in order to efficiently remove the heat generated from the semiconductor element 1.
[0003] 図 27は、従来の半導体素子冷却ユニット 4の構成を部分的に断面で示した側面図 である(例えば、日本特開 2003— 235112号公報参照)。図 27において、半導体素 子冷却ユニット 4は、車体 5の床下に吊設された箱体 6に取り付けられ、半導体素子 1 、相コンデンサ 2、フィルタコンデンサ 3、ゲートアンプ 7等は箱体 6の中の密閉部に配 置され、半導体素子冷却ユニット 4と箱体 6側との電気的接続もこの密閉部で双方の 端子あるいは図示を省略した導体をボルト等で接続することで行われる。  FIG. 27 is a side view partially showing in cross section the configuration of a conventional semiconductor element cooling unit 4 (see, for example, Japanese Patent Laid-Open No. 2003-235112). In FIG. 27, the semiconductor element cooling unit 4 is attached to the box 6 suspended under the floor of the vehicle body 5, and the semiconductor element 1, phase capacitor 2, filter capacitor 3, gate amplifier 7, etc. are in the box 6. The electrical connection between the semiconductor element cooling unit 4 and the box 6 side is also made by connecting both terminals or conductors (not shown) with bolts or the like.
[0004] 半導体素子 1は、図 28Aにその側面図を、図 28Bにその正面図を示したように、受 熱ブロック 21を介して直管ヒートパイプ 8、放熱フィン 9および境界板 16と共に、熱伝 導スタック 12として一体的に組み立てられる。すなわち、 1相分の半導体素子 1は受 熱ブロック 21の、例えば、表面に装着され、その裏面に相コンデンサ 2が装着されて いる。受熱ブロック 21の側端面には複数の直管ヒートパイプ 8がほぼ平行に突出する ように各一端が接合されている。直管ヒートパイプ 8にはその長手方向に所定の間隔 にて放熱フィン 9が嵌着されている。最も受熱ブロック 21寄りの放熱フィン 9aに、周状 に形成したパッキンガイド 19にパッキン 17を取り付けた境界板 16が防水処理を施し て固定される。このうち、半導体素子 1が発熱部 10を構成し、直管ヒートパイプ 8と放 熱フィン 9とが放熱部 11を構成し、発熱部 10と放熱部 11によって熱伝導スタック 12 が構成されている。 [0004] As shown in FIG. 28A and a front view thereof in FIG. 28A, the semiconductor element 1 has a straight heat pipe 8, a heat radiating fin 9, and a boundary plate 16 through a heat receiving block 21, The heat transfer stack 12 is assembled integrally. That is, the semiconductor element 1 for one phase is mounted on, for example, the front surface of the heat receiving block 21, and the phase capacitor 2 is mounted on the back surface thereof. Each end of the heat receiving block 21 is joined so that a plurality of straight pipe heat pipes 8 protrude substantially in parallel. The straight heat pipe 8 has a predetermined interval in its longitudinal direction. The radiating fins 9 are fitted at. A boundary plate 16 having a packing 17 attached to a circumferentially formed packing guide 19 is fixed to the radiating fin 9a closest to the heat receiving block 21 by waterproofing. Among them, the semiconductor element 1 constitutes the heat generating part 10, the straight pipe heat pipe 8 and the heat radiation fin 9 constitute the heat radiating part 11, and the heat conducting part 10 and the heat radiating part 11 constitute the heat conduction stack 12. .
[0005] 半導体素子冷却ユニットフレーム 15には、図 29に示したように、内縁部 15aを外側 に突出させた 3個の取付窓 18が並べて形成されている。これらの取付窓 18にそれぞ れ車側サイドより熱伝導スタック 12の発熱部 10を挿入し、境界板 16に形成された取 付孔 20を利用して境界板 16を半導体素子冷却ユニットフレーム 15にボルト止めす ることにより、境界板 16に取り付けられたパッキン 17が内縁部 15aによって押圧され 、半導体素子冷却ユニットフレーム 15との境界の水密性を保つようにして熱伝導スタ ック 12が半導体素子冷却ユニットフレーム 15に固定されると共に、放熱フィン 9は箱 体 6の外の開放部に配置される。図 30は、その状態を示した Y— Y矢視断面図であ る。  [0005] As shown in FIG. 29, the semiconductor element cooling unit frame 15 is formed with three mounting windows 18 with the inner edge 15a protruding outward. The heat generating portion 10 of the heat conductive stack 12 is inserted into each of these mounting windows 18 from the vehicle side, and the boundary plate 16 is attached to the semiconductor element cooling unit frame 15 using the mounting holes 20 formed in the boundary plate 16. As a result of the bolting, the packing 17 attached to the boundary plate 16 is pressed by the inner edge portion 15a, and the heat conduction stack 12 is made of semiconductor so as to maintain the water tightness of the boundary with the semiconductor element cooling unit frame 15. While being fixed to the element cooling unit frame 15, the radiating fins 9 are arranged in an open portion outside the box body 6. FIG. 30 is a cross-sectional view taken along the line Y—Y showing this state.
[0006] ここで、半導体素子冷却ユニットフレーム 15の被取付面は、図示したように傾けて 形成される。これによつて直管ヒートパイプ 8の発熱部 10側が下方となり、直管ヒート パイプ 8の内部に封入された冷媒は発熱部 10側で半導体素子 1から発生する熱によ り蒸発し、放熱フィン 9側で凝縮して大気へ熱放散を行う。凝縮した冷媒は直管ヒート パイプ 8の内部で重力により発熱部 10側へ戻るサイクルを繰り返す。放熱フィン 9は 自然冷却により大気へ熱放散を行うため、地面に対してほぼ垂直に設置され、放熱 フィン 9の間から上昇気流が通り易くなつている。  Here, the mounting surface of the semiconductor element cooling unit frame 15 is formed to be inclined as shown in the figure. As a result, the heat generating part 10 side of the straight pipe heat pipe 8 is directed downward, and the refrigerant sealed inside the straight pipe heat pipe 8 evaporates due to the heat generated from the semiconductor element 1 on the heat generating part 10 side, thereby radiating fins. It condenses on the 9th side and dissipates heat to the atmosphere. The condensed refrigerant repeats a cycle of returning to the heating unit 10 side by gravity inside the straight pipe 8. Since the heat dissipating fins 9 dissipate heat to the atmosphere by natural cooling, they are installed almost perpendicularly to the ground, and it is easy for upward airflow to pass through between the heat dissipating fins 9.
[0007] 図 31ないし図 33は、鉄道車両の床下に設置されている、直流力 交流あるいは交 流から直流への変換を行う半導体電力変換装置の一例を示しており、図 31は電力 変換回路の構成図、図 22は半導体電力変換装置の側面断面図、図 33は図 32の A -A線断面図である。  [0007] FIGS. 31 to 33 show an example of a semiconductor power conversion device that is installed under the floor of a railway vehicle and performs conversion from direct current alternating current or alternating current to direct current. FIG. 31 shows a power conversion circuit. FIG. 22 is a side sectional view of the semiconductor power converter, and FIG. 33 is a sectional view taken along line AA in FIG.
[0008] この半導体電力変換装置は、互いに独立した 2つのインバータ回路 (電力変換回 路)を備えており、各インバータ回路は、図 31に示すように、 3相ブリッジ接続された 6 個の半導体素子 201と、正極端子および負極端子間に接続されたフィルタコンデン サ 202とを有して!/ヽる。 [0008] This semiconductor power conversion device includes two inverter circuits (power conversion circuits) independent of each other, and each inverter circuit includes six semiconductors connected in a three-phase bridge as shown in FIG. Filter capacitor connected between element 201 and the positive and negative terminals. Have 202 and!
[0009] この電力変換装置は、図示しない鉄道架線から直流側の端子 P, N間に直流電力 が入力されると、半導体素子 201を所定の順序でオン'オフ制御することにより交流 電力に変換し、交流側の端子 U, V, Wから出力して電動機 203へ供給する。  [0009] In this power conversion device, when DC power is input between a DC overhead side terminal P and N from a railway overhead line (not shown), the semiconductor element 201 is converted into AC power by ON / OFF control in a predetermined order. And output from the terminals U, V, W on the AC side and supplied to the motor 203.
[0010] この電力変換装置では、半導体素子 201から発生する熱を効率良く除去するため の半導体冷却装置を設けて 、る。  In this power conversion device, a semiconductor cooling device for efficiently removing heat generated from the semiconductor element 201 is provided.
[0011] 図 32および図 33〖こ示すよう〖こ、この半導体冷却装置 204は、車体 205の底部の側 端に取り付けられた箱体 206内に一部が収納されており、額縁状の境界板 207に形 成された開口(図示せず)に固定されている。  [0011] As shown in Figs. 32 and 33, this semiconductor cooling device 204 is partially housed in a box 206 attached to the side edge of the bottom of the vehicle body 205, and has a frame-like boundary. It is fixed to an opening (not shown) formed in the plate 207.
[0012] 半導体冷却装置 204は、境界板 207の一方の側に設けられ半導体素子 201およ びゲートアンプ 209を内部に収容するとともに前記開口を封閉する密閉部 210と、境 界板 207の他方の側に設けられ熱放散させるための開放部 211とを備えている。  The semiconductor cooling device 204 is provided on one side of the boundary plate 207, accommodates the semiconductor element 201 and the gate amplifier 209 therein, and seals the opening, and the other of the boundary plate 207 And an open portion 211 for dissipating heat.
[0013] 密閉部 210では、例えば山形鋼で形成された枠体の底部に板が取り付けられ、そ の上に二群のフィルタコンデンサ 202がそれぞれ装着され、箱体 206内に導入され た図示しな!、導体がフィルタコンデンサ 202に接続されて!、る。  [0013] In the sealed portion 210, for example, a plate is attached to the bottom of a frame formed of angle steel, and two groups of filter capacitors 202 are respectively mounted on the plate, and are introduced into the box 206. The conductor is connected to the filter capacitor 202!
[0014] 半導体素子 201は、密閉部 10内に各相毎に設けられた 3個の板状の受熱ブロック 212に取り付けられている。各受熱ブロック 212の一方の面には一方のインバータ回 路を構成する半導体素子 201が取り付けられ、各受熱ブロック 212の他方の面には 他方のインバータ回路を構成する半導体素子 201が取り付けられる。半導体素子 20 1の取り付けは 3相とも同様である。このような構造では、中央の受熱ブロック 212上 の半導体素子 201が両側の受熱ブロック 212上の半導体素子 201と対向して近接し た状態となる。  The semiconductor element 201 is attached to three plate-shaped heat receiving blocks 212 provided for each phase in the sealed portion 10. A semiconductor element 201 constituting one inverter circuit is attached to one surface of each heat receiving block 212, and a semiconductor element 201 constituting the other inverter circuit is attached to the other surface of each heat receiving block 212. The mounting of the semiconductor element 201 is the same for the three phases. In such a structure, the semiconductor element 201 on the central heat receiving block 212 is in a state of facing and close to the semiconductor elements 201 on the heat receiving blocks 212 on both sides.
[0015] 各受熱ブロック 212には、ヒートパイプ放熱器 213が取り付けられている。このヒート ノイブ放熱器 213は、一端が受熱ブロック 212の一側面に接続され、開放部 211に 向けて突出したヒートパイプ 214と、このヒートパイプ 214上に長手方向に間隔をおい て取り付けられた複数枚の板状の放熱フィン 215とを有している。ヒートパイプ 214は 各放熱フィン 215を貫通しており、各放熱フィン 215はヒートパイプ 214の外周面に 嵌着された状態で固定されて!ヽる。 [0016] ヒートパイプ放熱器 213は、受熱ブロック 212側が下方となるように傾けて取り付け られ、ヒートパイプ 214内に封入された冷媒は、半導体素子 201で発生して受熱ブ口 ック 212に伝導した熱により蒸発し、放熱フィン 215側で大気へ熱放散して凝縮する 。凝縮した冷媒は、重力によりヒートパイプ 214内を下方に流れて受熱ブロック 212側 へ戻る。なお、放熱フィン 215は自然冷却により大気へ熱放散を行うため、地面に対 してほぼ垂直に設置され、放熱フィン 215間に上昇気流を生じさせるようになつてい る。 Each heat receiving block 212 is attached with a heat pipe radiator 213. The heat noise radiator 213 has one end connected to one side of the heat receiving block 212 and a heat pipe 214 protruding toward the opening 211, and a plurality of heat pipes 214 mounted on the heat pipe 214 at intervals in the longitudinal direction. The sheet-like heat radiation fins 215 are provided. The heat pipe 214 passes through the heat radiating fins 215, and each heat radiating fin 215 is fixed in a state of being fitted on the outer peripheral surface of the heat pipe 214! Speak. [0016] The heat pipe radiator 213 is attached so as to be inclined so that the heat receiving block 212 side is downward, and the refrigerant enclosed in the heat pipe 214 is generated in the semiconductor element 201 and is conducted to the heat receiving block 212. It evaporates due to the heat generated and dissipates heat to the atmosphere on the radiating fin 215 side to condense. The condensed refrigerant flows downward in the heat pipe 214 due to gravity and returns to the heat receiving block 212 side. The heat radiation fins 215 dissipate heat to the atmosphere by natural cooling, so that they are installed almost perpendicular to the ground, and an upward airflow is generated between the heat radiation fins 215.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0017] 上述した従来の車両用の電源装置は、 3相ブリッジ接続された半導体素子の相毎 に 1つの熱伝導スタックを設けていたため、複数台の電力変換装置を備えた車両用 の電源装置にあっては、電力変換装置毎に半導体素子冷却ユニットを設置しなけれ ばならず、車両の床下構造が複雑ィ匕するという問題があった。  [0017] Since the above-described conventional vehicle power supply device is provided with one heat conduction stack for each phase of the three-phase bridge-connected semiconductor elements, the vehicle power supply device including a plurality of power conversion devices In this case, a semiconductor element cooling unit has to be installed for each power converter, and there is a problem that the under-floor structure of the vehicle is complicated.
[0018] また、従来の車両用の電源装置では、受熱ブロックの一方の面に半導体素子が装 着され、他方の面に相コンデンサが装着されている。しかるに、近年は配線を短縮し たり、往復配線にしたりして、インダクタンス成分を低減する実装技術が進歩したこと により、半導体素子に近接して接続された相コンデンサが不要となることから、受熱ブ ロックの片面が空スペースとなって実装密度が低下することから、空スペース面にもう 1台の電力変換装置の半導体素子を構成し、実装密度を高めることができるが、万が 一の半導体素子破壊の際、破壊しない他方の半導体素子に悪影響を与える問題が ある。  [0018] Further, in a conventional vehicle power supply device, a semiconductor element is mounted on one surface of the heat receiving block, and a phase capacitor is mounted on the other surface. However, recent advances in packaging technology that reduces the inductance component by shortening the wiring or using reciprocating wiring eliminates the need for a phase capacitor connected close to the semiconductor element. Since one side of the lock becomes an empty space and the mounting density is reduced, another semiconductor element of the power conversion device can be configured on the empty space surface to increase the mounting density. At the time of destruction, there is a problem of adversely affecting the other semiconductor element that is not destroyed.
[0019] そして、このような電源装置に設けられた半導体冷却装置においては、一方のイン バータ回路を構成する半導体素子 201が物理的に破損した場合に、破損した半導 体素子 201の残骸が他方のインバータ回路を構成する半導体素子 201に接触する などして、他方のインバータ回路に悪影響を及ぼす可能性がある。  In the semiconductor cooling device provided in such a power supply device, when the semiconductor element 201 constituting one inverter circuit is physically damaged, the debris of the damaged semiconductor element 201 is removed. There is a possibility that the other inverter circuit may be adversely affected by contacting the semiconductor element 201 constituting the other inverter circuit.
[0020] 本発明は上記の点を考慮してなされたもので、その目的は、 2台の電力変換装置を 備える場合に、一方の半導体素子破壊が他方の半導体素子に悪影響を与えない車 両用の電源装置を提供することにある。 課題を解決するための手段 [0020] The present invention has been made in consideration of the above points, and an object of the present invention is to provide a vehicle in which destruction of one semiconductor element does not adversely affect the other semiconductor element when two power conversion devices are provided. It is to provide a power supply apparatus. Means for solving the problem
[0021] 上記目的達成のため、本願では下記第 1ないし第 5の発明を提供する。  In order to achieve the above object, the present application provides the following first to fifth inventions.
第 1の発明は、  The first invention is
2台の電力変換装置を備えた車両用の電源装置において、表裏の関係にある第 1 および第 2の部品取付面、並びに第 1および第 2の部品取付面に対して側端面にあ たる第 3の部品取付面を有し、第 1の部品取付面に 2台の電力変換装置のいずれか 一方の 1相分の半導体素子が装着され、第 2の部品取付面に 2台の電力変換装置の いずれか他方の 1相分の半導体素子が装着された受熱ブロックと、受熱ブロックの第 3の部品取付面力 突出するように受熱ブロックに基端部が接合され、受熱ブロック の熱を先端部に輸送する直管ヒートパイプと、直管ヒートパイプに嵌着された放熱フィ ンとがそれぞれ一体的に組立てられた 3個の熱伝導スタックと、 1つの熱伝導スタック が中央に配置され、残りの熱伝導スタックの一方が中央に配置された熱伝導スタック に対して第 1の部品取付面同士が所定の間隔をもって対向し、残りの熱伝導スタック の他方が中央に配置された熱伝導スタックに対して第 2の部品取付面同士が所定の 間隔をもって対向するように 3個の熱伝導スタックを取付けるフレームと、を備えたこと を特徴とする。  In a power supply device for a vehicle having two power conversion devices, the first and second component mounting surfaces that are in a front-back relationship, and the first and second component mounting surfaces that correspond to the side end surfaces of the first and second component mounting surfaces. 3 component mounting surfaces, the first component mounting surface is equipped with one of the two power conversion devices, and the two component power conversion devices are mounted on the second component mounting surface. The heat receiving block on which one of the other semiconductor elements is mounted and the base end of the heat receiving block are joined so that the third component mounting surface force of the heat receiving block protrudes, and the heat of the heat receiving block is transferred to the tip. Three heat conduction stacks in which the straight heat pipes transported to the heat pipe and the heat radiation fins fitted to the straight pipe heat pipes are integrally assembled, and one heat conduction stack is arranged in the center and the rest A heat transfer stack with one of the heat transfer stacks in the center The first component mounting surfaces face each other with a predetermined spacing, and the second component mounting surfaces are spaced by a predetermined spacing with respect to the heat conductive stack in which the other heat conduction stack is placed in the center. And a frame for mounting three heat conductive stacks so as to face each other.
[0022] 第 2の発明は、 [0022] The second invention is:
互いに独立した 2つの電力変換回路を構成する第 1および第 2の半導体素子群が 取り付けられる第 1および第 2の素子取付面を有する 1つの受熱ブロックと、前記受熱 ブロックに接続された放熱部とを備えた半導体冷却装置であって、前記第 1および第 2の素子取付面が同一面内に設けられたことを特徴としている。  One heat receiving block having first and second element mounting surfaces to which the first and second semiconductor element groups constituting two power conversion circuits independent from each other are mounted; and a heat radiating section connected to the heat receiving block; The first and second element mounting surfaces are provided in the same plane.
[0023] また、第 3の発明は、 [0023] Further, the third invention provides
互いに独立した 2つの電力変換回路を構成する第 1および第 2の半導体素子群が 取り付けられる第 1および第 2の素子取付面を有する 1つの受熱ブロックと、前記受熱 ブロックに接続された放熱部とを備えた半導体冷却装置であって、前記第 1および第 2の素子取付面が表裏の関係となるように設けられたことを特徴としている。  One heat receiving block having first and second element mounting surfaces to which the first and second semiconductor element groups constituting two power conversion circuits independent from each other are mounted; and a heat radiating section connected to the heat receiving block; The first and second element mounting surfaces are provided so as to have a front-back relationship.
[0024] また、第 4の発明は、 [0024] Further, the fourth invention provides
互いに独立した 2つの電力変換回路を構成する第 1および第 2の半導体素子群が 取り付けられる第 1および第 2の素子取付面を有する複数の受熱ブロックと、前記各 受熱ブロックに接続された放熱部とを備えた半導体冷却装置であって、前記複数の 受熱ブロックは、前記第 1の素子取付面同士あるいは前記第 2の素子取付面同士が 対向するように配置されたことを特徴として 、る。 The first and second semiconductor element groups constituting two power conversion circuits independent of each other are A semiconductor cooling device comprising a plurality of heat receiving blocks having first and second element mounting surfaces to be attached, and a heat radiating portion connected to each of the heat receiving blocks, wherein the plurality of heat receiving blocks are the first heat receiving blocks. These element mounting surfaces or the second element mounting surfaces are arranged so as to face each other.
[0025] また、第 5の発明は、 [0025] Further, the fifth invention provides:
互いに独立した 2つの電力変換回路を構成する第 1および第 2の半導体素子群が 取り付けられる第 1および第 2の素子取付面を有する複数の受熱ブロックと、前記各 受熱ブロックに接続された放熱部とを備えた半導体冷却装置であって、前記複数の 受熱ブロックは、前記第 1および第 2の素子取付面が表裏の関係となるように設けら れるとともに前記第 1の素子取付面と前記第 2の素子取付面が互いに対向するように 間隔をおいて配置され、隣接する 2つの前記受熱ブロック間に前記第 1の素子取付 面の半導体素子と前記第 2の素子取付面の半導体素子とが衝突するのを防ぐ衝突 防止部材が設けられたことを特徴として!/、る。  A plurality of heat receiving blocks having first and second element mounting surfaces to which the first and second semiconductor element groups constituting two power conversion circuits independent of each other are mounted, and a heat radiating portion connected to each of the heat receiving blocks The plurality of heat receiving blocks are provided so that the first and second element mounting surfaces are in a front-back relationship, and the first element mounting surface and the first The semiconductor element on the first element mounting surface and the semiconductor element on the second element mounting surface are disposed between the two adjacent heat receiving blocks. It is characterized by the provision of a collision prevention member that prevents collision!
発明の効果  The invention's effect
[0026] 上記のように構成したことにより、 2台の電力変換装置を備える場合に、一方の半導 体素子破壊が他方の半導体素子に悪影響を与えない車両用の電源装置が提供さ れる。  [0026] With the configuration described above, when two power conversion devices are provided, a vehicle power supply device is provided in which destruction of one semiconductor element does not adversely affect the other semiconductor element.
[0027] 本発明によれば、 1つの電力変換回路を構成する半導体素子が物理的に破損した 場合に、破損した半導体素子の残骸が他の電力変換回路を構成する半導体素子に 接触することがないため、他の電力変換回路に悪影響を及ぼすことがない。  [0027] According to the present invention, when a semiconductor element constituting one power conversion circuit is physically damaged, the debris of the damaged semiconductor element may come into contact with the semiconductor element constituting another power conversion circuit. Therefore, other power conversion circuits are not adversely affected.
図面の簡単な説明  Brief Description of Drawings
[0028] [図 1]本発明の実施形態 1の電気回路図。 FIG. 1 is an electric circuit diagram of Embodiment 1 of the present invention.
[図 2]実施形態 1を構成する電力変換装置の収納状態を部分的に断面で示した側面 図。  FIG. 2 is a side view partially showing a storage state of the power conversion device constituting Embodiment 1 in cross section.
[図 3A]実施形態 1を構成する熱伝導スタックの側面図。  FIG. 3A is a side view of a heat conductive stack constituting Embodiment 1.
[図 3B]実施形態 1を構成する熱伝導スタックの正面図。  FIG. 3B is a front view of a heat conductive stack constituting Embodiment 1.
[図 4]実施形態 1を構成する 3個の熱伝導スタックの装着状態を示した断面図。  FIG. 4 is a cross-sectional view showing a mounted state of three heat conductive stacks constituting Embodiment 1.
[図 5]実施形態 1を構成する熱伝導スタックの具体的な取付構造を示す部分断面図。 図 6]本発明の実施形態 2の半導体冷却装置の正面図。 FIG. 5 is a partial cross-sectional view showing a specific mounting structure of a heat conductive stack constituting Embodiment 1. FIG. 6 is a front view of the semiconductor cooling device according to the second embodiment of the present invention.
7]図 6の半導体冷却装置の平面図。 7] a plan view of a semiconductor cooling device of Figure 6.
図 8]図 6の半導体冷却装置の右側面。  FIG. 8] Right side of the semiconductor cooling device in FIG.
図 9]本発明の実施形態 3の半導体冷却装置の正面図。  FIG. 9 is a front view of the semiconductor cooling device according to the third embodiment of the present invention.
[図 10]図 9の半導体冷却装置の平面図。  FIG. 10 is a plan view of the semiconductor cooling device of FIG.
圆 11]図 9の半導体冷却装置の右側面図。 [11] Right side view of the semiconductor cooling device of FIG.
[図 12]本発明の実施形態 4の半導体冷却装置の正面図。  FIG. 12 is a front view of a semiconductor cooling device according to Embodiment 4 of the present invention.
[図 13]図 12の半導体冷却装置の左側面図。  FIG. 13 is a left side view of the semiconductor cooling device of FIG.
[図 14]本発明の実施形態 5の半導体冷却装置の正面図。  FIG. 14 is a front view of a semiconductor cooling device according to Embodiment 5 of the present invention.
[図 15]図 14の半導体冷却装置の左側面図。  FIG. 15 is a left side view of the semiconductor cooling device of FIG.
[図 16]本発明の実施形態 6の半導体冷却装置の正面図。  FIG. 16 is a front view of a semiconductor cooling device according to Embodiment 6 of the present invention.
圆 17]図 15の半導体冷却装置の右側面図。 圆 17] Right side view of the semiconductor cooling device of FIG.
[図 18]本発明の実施形態 7の半導体冷却装置の正面図。  FIG. 18 is a front view of a semiconductor cooling device according to Embodiment 7 of the present invention.
圆 19]図 18の半導体冷却装置の右側面図。 圆 19] Right side view of the semiconductor cooling device of FIG.
[図 20]本発明の実施形態 8の半導体冷却装置の正面図。  FIG. 20 is a front view of a semiconductor cooling device according to an eighth embodiment of the present invention.
[図 21]図 20の半導体冷却装置の右側面図。  FIG. 21 is a right side view of the semiconductor cooling device of FIG.
[図 22]図 20の半導体冷却装置の平面図。  FIG. 22 is a plan view of the semiconductor cooling device of FIG.
圆 23]本発明の実施形態 9の半導体冷却装置の正面図。 圆 23] A front view of the semiconductor cooling device of Embodiment 9 of the present invention.
[図 24]図 23の半導体冷却装置の右側面図。  FIG. 24 is a right side view of the semiconductor cooling device of FIG.
[図 25]図 23の半導体冷却装置の平面図。  FIG. 25 is a plan view of the semiconductor cooling device of FIG.
[図 26]従来装置における電力変換装置の構成を示す電気回路図。  FIG. 26 is an electric circuit diagram showing a configuration of a power conversion device in a conventional device.
[図 27]従来装置を構成する電力変換装置の収納状態を部分的に断面で示した側面 FIG. 27 is a side view partially showing a storage state of a power conversion device constituting a conventional device.
|¾| | ¾ |
図 28A]従来装置における熱伝導スタックの側面図。  FIG. 28A] A side view of a heat conductive stack in a conventional apparatus.
図 28B]従来装置における熱伝導スタックの正面図。  FIG. 28B] Front view of a heat conduction stack in a conventional apparatus.
図 29]従来装置における半導体素子冷却ユニットフレームの構成を示す側面図。 図 30]従来装置における 3個の熱伝導スタックの装着状態を示した断面図。  FIG. 29 is a side view showing a configuration of a semiconductor element cooling unit frame in a conventional apparatus. FIG. 30 is a cross-sectional view showing a mounted state of three heat conductive stacks in a conventional device.
図 31]従来の半導体冷却装置の電力変換回路の構成図。 [図 32]従来の半導体電力変換装置の側面断面図。 FIG. 31 is a configuration diagram of a power conversion circuit of a conventional semiconductor cooling device. FIG. 32 is a side sectional view of a conventional semiconductor power conversion device.
[図 33]図 27の A— A線断面図。  FIG. 33 is a sectional view taken along line AA in FIG.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 以下、本発明を図面に示す好適な実施の形態に基づいて詳細に説明する。  Hereinafter, the present invention will be described in detail based on a preferred embodiment shown in the drawings.
図 1は、本発明の実施形態 1の電気回路図であり、直流端子 PI, N1に入力される 直流電力を 3相の交流電力に変換して図示省略の各機器 (空調等)に供給する電力 変換装置 30Aと、直流端子 P2, N2に入力される直流電力を 3相の交流電力に変換 して図示省略の各機器 (空調等)に供給する電力変換装置 30Bとが半導体素子冷 却ユニット 4内に設けられる。  FIG. 1 is an electric circuit diagram of Embodiment 1 of the present invention, in which DC power input to DC terminals PI and N1 is converted into three-phase AC power and supplied to devices (not shown) such as air conditioners. The power conversion device 30A and the power conversion device 30B that converts the DC power input to the DC terminals P2 and N2 into three-phase AC power and supplies it to each device (not shown) (air conditioning etc.) are the semiconductor element cooling unit 4 is provided.
[0030] このうち、電力変換装置 30Aは、直流端子 PI, N1に接続されたフィルタコンデン サ 3Aと、 3相ブリッジ接続されてその直流側が直流端子 PI, N1に接続され、その交 流側が図示省略の各機器 (空調等)に接続された 6個の半導体素子 1Aとで構成され ている。同様に、電力変換装置 30Bは、直流端子 P2, N2に接続されたフィルタコン デンサ 3Bと、 3相ブリッジ接続されてその直流側が直流端子 P2, N2に接続され、そ の交流側が図示省略の各機器 (空調等)に接続された 6個の半導体素子 1Bとで構 成されている。  [0030] Of these, the power conversion device 30A is connected to the DC capacitors PI and N1, and the filter capacitor 3A is connected to a three-phase bridge, the DC side is connected to the DC terminals PI and N1, and the AC side is shown in the figure. It consists of six semiconductor elements 1A connected to each omitted device (air conditioner, etc.). Similarly, the power conversion device 30B includes a filter capacitor 3B connected to the DC terminals P2 and N2, a three-phase bridge connection, and its DC side is connected to the DC terminals P2 and N2, and the AC side is not shown. It consists of six semiconductor elements 1B connected to equipment (air conditioning, etc.).
[0031] 図 2は、電力変換装置 30Aおよび 30Bがその内部に設けられる半導体素子冷却ュ ニット 4の構成例を部分的に断面で示した側面図である。この実施の形態は、従来装 置の熱伝導スタック 12に替えて、表裏の両側に半導体素子が装着された熱伝導スタ ック 12Aを半導体素子冷却ユニットフレーム 15に組み込んで固定した点、従来装置 ではフィルタコンデンサ 3のみを装着したのに対して本実施の形態ではフィルタコン デンサ 3Aおよび 3Bの両方を半導体素子冷却ユニット 4内に装着した点が異なって おり、これ以外は従来装置と全  FIG. 2 is a side view partially showing a cross-sectional view of a configuration example of the semiconductor element cooling unit 4 in which the power conversion devices 30A and 30B are provided. In this embodiment, instead of the heat conduction stack 12 of the conventional device, a heat conduction stack 12A in which semiconductor elements are mounted on both sides of the front and back are incorporated and fixed in the semiconductor element cooling unit frame 15, and the conventional device. In this embodiment, only the filter capacitor 3 is mounted, but in this embodiment, both the filter capacitors 3A and 3B are mounted in the semiconductor element cooling unit 4.
く同一に構成されている。  Are configured identically.
[0032] 図 3Aは熱伝導スタック 12Aの側面図であり、図 3Bはその正面図である。この熱伝 導スタック 12Aは、表裏の関係にある受熱ブロック 21の第 1の部品取付面に電力変 換装置 30Aの 1相分の半導体素子 1Aが装着され、第 2の部品取付面に電力変換装 置 30Bの 1相分の半導体素子 1Bが装着されている。なお、第 1および第 2の部品取 付面に対して側端面にあたる第 3の部品取付面に複数の直管ヒートパイプ 8がほぼ 平行に突出するように各一端が接合された点、直管ヒートパイプ 8の長手方向に所定 の間隔にて放熱フィン 9が嵌着された点、最も受熱ブロック 21寄りの放熱フィン 9aに 、周状に形成したパッキンガイド 19にパッキン 17を取り付けた境界板 16が防水処理 を施して固定される点は、従来の熱伝導スタック 12と同一に構成されている。 [0032] FIG. 3A is a side view of the heat conductive stack 12A, and FIG. 3B is a front view thereof. In this heat transfer stack 12A, the semiconductor component 1A for one phase of the power conversion device 30A is mounted on the first component mounting surface of the heat receiving block 21 that has a front / back relationship, and the power conversion is performed on the second component mounting surface. The semiconductor element 1B for one phase of the device 30B is mounted. The first and second parts are removed. A point at which each end is joined so that a plurality of straight pipe heat pipes 8 protrude substantially parallel to the third component mounting surface, which is a side end face with respect to the attached surface, and a predetermined interval in the longitudinal direction of the straight pipe heat pipe 8 The point where the heat sink fins 9 are fitted and the boundary plate 16 with the packing 17 attached to the circumferentially formed packing guide 19 is fixed to the heat sink fins 9a closest to the heat receiving block 21 with waterproofing. Is configured identically to the conventional heat conduction stack 12.
[0033] 上述した熱伝導スタック 12Aは U, V, W相に対応して合計 3個組み立てられ、それ ぞれの発熱部 10が半導体素子冷却ユニットフレーム 15の取付窓 18 (図 29参照)に 挿入した状態で境界板 16に固定されるが、その状態が従来装置と異なっている。  [0033] A total of three heat conduction stacks 12A described above are assembled corresponding to the U, V, and W phases, and each heat generating portion 10 is attached to the mounting window 18 (see FIG. 29) of the semiconductor element cooling unit frame 15. Although it is fixed to the boundary plate 16 in the inserted state, the state is different from the conventional device.
[0034] 図 4は、 3個の熱伝導スタック 12Aが固定された状態を示す Y— Y矢視断面図であ る。ここで、 3個の熱伝導スタック 12Aは、受熱ブロック 21の部品取付面が互いに平 行で、かつ、予め定められた一定の間隔を保つように並べて固定される力 中央に配 置された熱伝導スタック 12Aに対して、残りの一方の熱伝導スタック 12Aは第 1の部 品取付面同士が対向し、残りの他方の熱伝導スタック 12Aは第 2の部品取付面同士 が対向するように固定されている。これによつて、電力変換装置 30Aを構成する 2相 の半導体素子 1A同士が対向し、残りの 1相の半導体素子 1Aが外側を向き、同様に 、電力変換装置 30Bを構成する 2相の半導体素子 1B同士が対向し、残りの 1相の半 導体素子 1Bが外側を向くことになり、半導体素子 1Aと半導体素子 1Bとは受熱ブ口 ック 21によって互いに隔てられる。  FIG. 4 is a cross-sectional view taken along arrows Y—Y showing a state in which the three heat conductive stacks 12A are fixed. Here, the three heat conduction stacks 12A are configured so that the component mounting surfaces of the heat receiving block 21 are parallel to each other, and are arranged and fixed so as to maintain a predetermined fixed interval. The remaining heat conduction stack 12A is fixed so that the first component mounting surfaces face each other, and the other heat conduction stack 12A is fixed so that the second component mounting surfaces face each other. Has been. As a result, the two-phase semiconductor elements 1A constituting the power conversion device 30A face each other, the remaining one-phase semiconductor elements 1A face outward, and similarly, the two-phase semiconductors constituting the power conversion device 30B The elements 1B face each other and the remaining one-phase semiconductor element 1B faces outward, and the semiconductor element 1A and the semiconductor element 1B are separated from each other by the heat receiving block 21.
[0035] この結果、電力変換装置 30Aを構成する半導体素子 1Aが物理的に破損した場合 でも、半導体素子 1Bに及ぼす影響を軽減することができ、同様に、電力変換装置 30 Bを構成する半導体素子 1Bが物理的に破損した場合でも、半導体素子 1Aに及ぼ す影響を軽減することができることから、電力変換装置 30Aおよび 30Bの ヽずれか 一方に素子破壊が生じた場合でも、他方に悪影響を及ぼすことが殆どなくなる。  As a result, even when the semiconductor element 1A constituting the power conversion device 30A is physically damaged, the influence on the semiconductor element 1B can be reduced. Similarly, the semiconductor constituting the power conversion device 30B can be reduced. Even if the element 1B is physically damaged, the influence on the semiconductor element 1A can be reduced.Therefore, even if one of the power converters 30A and 30B is damaged, the other element is adversely affected. Almost no effect.
[0036] 図 5は、熱伝導スタック 12Aのうち、受熱ブロック 21に対して半導体素子 1 Aおよび 1Bを装着する具体的な取付構造を示す部分断面図であり、受熱ブロック 21に形成 された貫通孔を利用して、ボルト 23により半導体素子 1Aおよび 1Bを共締めして固 定している。これによつて、半導体素子 1Aおよび 1Bを装着するためのボルトの本数 の削減と、ボルト取付工数の低減が図られる。 [0037] この実施形態 1によれば、 2台の電力変換装置を備える場合でも、いずれか一方の 電力変換装置の 1相分の半導体素子を受熱ブロックの第 1の部品取付面に装着し、 いずれか他方の電力変換装置の 1相分の半導体素子を受熱ブロックの第 2の部品取 付面に装着したので、床下構造の複雑化を抑えると共に、半導体素子の実装密度を 高めることができる。 FIG. 5 is a partial cross-sectional view showing a specific mounting structure in which the semiconductor elements 1 A and 1 B are attached to the heat receiving block 21 in the heat conducting stack 12 A, and a through-hole formed in the heat receiving block 21. Using the holes, the semiconductor elements 1A and 1B are fastened together with bolts 23 and fixed. As a result, the number of bolts for mounting the semiconductor elements 1A and 1B can be reduced, and the number of bolt mounting steps can be reduced. [0037] According to the first embodiment, even when two power conversion devices are provided, the semiconductor elements for one phase of either one of the power conversion devices are mounted on the first component mounting surface of the heat receiving block, Since the semiconductor element for one phase of the other power converter is mounted on the second component mounting surface of the heat receiving block, it is possible to suppress the complexity of the underfloor structure and increase the mounting density of the semiconductor elements.
[0038] また、 3個並べて配置される熱伝導スタックのうち、中央に配置された熱伝導スタツ クに対して、残りの一方の熱伝導スタックは第 1の部品取付面同士が対向し、残りの 他方の熱伝導スタックは第 2の部品取付面同士が対向するように固定したので、 2台 の電力変換装置のいずれか一方に素子破壊が生じた場合でも、他方に悪影響を及 ぼすことがないため、信頼性を向上させることができる。  [0038] Of the three heat conduction stacks arranged side by side, the remaining one of the heat conduction stacks is opposed to the first component mounting surface with respect to the heat conduction stack arranged at the center. Since the other heat conduction stack is fixed so that the mounting surfaces of the second parts face each other, even if element destruction occurs in one of the two power converters, it will adversely affect the other Therefore, reliability can be improved.
[0039] さらに、受熱ブロックに形成された貫通孔用いてその表と裏にそれぞれ配置される 半導体素子を共通の締付具で固定することにより、使用材料および工数の削減が可 能になると 、う効果も得られる。  [0039] Furthermore, by fixing the semiconductor elements respectively arranged on the front and back using the through holes formed in the heat receiving block with a common fastener, it is possible to reduce the materials used and the number of man-hours. The effect is also obtained.
[0040] 図 6は、本発明の実施形態 2の半導体冷却装置の正面図、図 7は、図 1の半導体冷 却装置の平面図、図 8は、図 6の半導体冷却装置の右側面図である。  6 is a front view of the semiconductor cooling device according to the second embodiment of the present invention, FIG. 7 is a plan view of the semiconductor cooling device of FIG. 1, and FIG. 8 is a right side view of the semiconductor cooling device of FIG. It is.
[0041] 図 6に示すように、実施形態 2では、板状に形成されるとともに地面に対して略垂直 に配置された 1つの受熱ブロック 62の一方の面が 2つのインバータ回路の素子取付 面とされている。すなわち、受熱ブロックの一方の面を縦断する中心線 C. Lを境に左 側が第 1の素子取付面 62a、右側が第 2の素子取付面 62bとなっている。  [0041] As shown in FIG. 6, in the second embodiment, one surface of one heat receiving block 62 that is formed in a plate shape and arranged substantially perpendicular to the ground is an element mounting surface of two inverter circuits. It is said that. That is, the first element mounting surface 62a is on the left side and the second element mounting surface 62b is on the right side with a center line C.L that vertically cuts one surface of the heat receiving block.
[0042] 第 1の素子取付面 62aには、一方のインバータ回路の U、 V、 W相に対応した 6個 の半導体素子 51から成る第 1の半導体素子群 G1が取り付けられ、第 2の素子取付 面 62bには、他方のインバータ回路の U、 V、 W相に対応した 6個の半導体素子 51 力 成る第 2の半導体素子群 G2が取り付けられて 、る。  [0042] A first semiconductor element group G1 composed of six semiconductor elements 51 corresponding to the U, V, and W phases of one inverter circuit is attached to the first element mounting surface 62a, and the second element A second semiconductor element group G2 having six semiconductor elements 51 corresponding to the U, V, and W phases of the other inverter circuit is attached to the attachment surface 62b.
[0043] また、受熱ブロック 62の他方の面には、多数の板状の放熱フィン 65が横方向に一 定間隔をお 、て垂直に取り付けられて 、る。  In addition, a large number of plate-like heat radiating fins 65 are vertically attached to the other surface of the heat receiving block 62 at regular intervals in the lateral direction.
[0044] このように、 2つのインバータ回路を構成する全ての半導体素子 51を同一面内に取 り付けたことにより、一方のインバータ回路の半導体素子 51が物理的に破損した場 合でも、他方のインバータ回路の半導体素子 51に影響を及ぼすことがない。 [0045] 次に、本発明の実施形態 3を説明する。図 9は本発明の実施形態 3の半導体冷却 装置の正面図、図 10は図 9の半導体冷却装置の平面図、図 11は図 9の半導体冷却 装置の右側面図である。 [0044] Thus, by mounting all the semiconductor elements 51 constituting the two inverter circuits on the same plane, even if the semiconductor element 51 of one inverter circuit is physically damaged, the other The semiconductor element 51 of the inverter circuit is not affected. Next, Embodiment 3 of the present invention will be described. 9 is a front view of the semiconductor cooling device according to the third embodiment of the present invention, FIG. 10 is a plan view of the semiconductor cooling device of FIG. 9, and FIG. 11 is a right side view of the semiconductor cooling device of FIG.
[0046] 図 9に示すように、実施形態 3では、板状に形成されるとともに地面に対して略垂直 に配置された 1つの受熱ブロック 62の一方の面が 2つのインバータ回路の素子取付 面とされている。すなわち、受熱ブロック 62の一方の面を横断する中心線 C. Lを境 に上側が第 1の素子取付面 62a、下側が第 2の素子取付面 62bとなっている。  As shown in FIG. 9, in the third embodiment, one surface of one heat receiving block 62 that is formed in a plate shape and arranged substantially perpendicular to the ground is an element mounting surface of two inverter circuits. It is said that. That is, the upper side is the first element mounting surface 62a and the lower side is the second element mounting surface 62b, with a center line C.L crossing one surface of the heat receiving block 62 as a boundary.
[0047] 第 1の素子取付面 62aには、一方のインバータ回路の U、 V、 W相に対応した 6個 の半導体素子 51から成る第 1の半導体素子群 G1が取り付けられ、第 2の素子取付 面 62bには、他方のインバータ回路の U、 V、 W相に対応した 6個の半導体素子 51 力 成る第 2の半導体素子群 G2が取り付けられて 、る。  [0047] A first semiconductor element group G1 composed of six semiconductor elements 51 corresponding to the U, V, and W phases of one inverter circuit is attached to the first element mounting surface 62a, and the second element A second semiconductor element group G2 having six semiconductor elements 51 corresponding to the U, V, and W phases of the other inverter circuit is attached to the attachment surface 62b.
[0048] また、受熱ブロック 62の他方の面には、多数の板状の放熱フィン 65が横方向に一 定間隔をお 、て垂直に取り付けられて 、る。  [0048] On the other surface of the heat receiving block 62, a large number of plate-like radiating fins 65 are vertically attached at regular intervals in the lateral direction.
[0049] このように、 2つのインバータ回路を構成する全ての半導体素子 51を同一面内に取 り付けたことにより、一方のインバータ回路の半導体素子 51が物理的に破損した場 合でも、他方のインバータ回路の半導体素子 51に影響を及ぼすことがない。  [0049] Thus, by mounting all the semiconductor elements 51 constituting the two inverter circuits in the same plane, even if the semiconductor element 51 of one inverter circuit is physically damaged, the other The semiconductor element 51 of the inverter circuit is not affected.
[0050] 次に、本発明の実施形態 4を説明する。図 12は本発明の実施形態 4の半導体冷却 装置の正面図、図 13は図 12の半導体冷却装置の左側面図である。  [0050] Next, Embodiment 4 of the present invention will be described. FIG. 12 is a front view of the semiconductor cooling device according to the fourth embodiment of the present invention, and FIG. 13 is a left side view of the semiconductor cooling device of FIG.
[0051] 図 12に示すように、実施形態 4では、板状に形成されるとともに地面に対して略垂 直に配置された 1つの受熱ブロック 62の一方の面が第 1の素子取付面 62aとされて 第 1の半導体素子群 G1を構成する 6個の半導体素子 51が取り付けられ、受熱ブロッ ク 62の他方の面が第 2の素子取付面 62bとされて第 2の半導体素子群 G2を構成す る 6個の半導体素子 51が取り付けられている。  As shown in FIG. 12, in the fourth embodiment, one surface of one heat receiving block 62 that is formed in a plate shape and is arranged substantially perpendicular to the ground is the first element mounting surface 62a. The six semiconductor elements 51 constituting the first semiconductor element group G1 are attached, and the other surface of the heat receiving block 62 is used as the second element attachment surface 62b. Six semiconductor elements 51 to be configured are attached.
[0052] また、略 L字形に形成されたヒートパイプ 64の一端が受熱ブロック 62の 1つの側面 に取り付けられ、このヒートパイプ 64の他端側に複数枚の板状の放熱フィン 65が軸 方向に間隔をおいて取り付けられている。  [0052] Further, one end of a heat pipe 64 formed in a substantially L-shape is attached to one side surface of the heat receiving block 62, and a plurality of plate-like radiating fins 65 are axially disposed on the other end side of the heat pipe 64. Are attached at intervals.
[0053] このように、一方のインバータ回路を構成する全ての半導体素子 51を受熱ブロック 62の一方の面に取り付け、その裏側となる他方の面に他方のインバータ回路を構成 する全ての半導体素子 51を取り付けたことにより、一方のインバータ回路の半導体 素子 51が物理的に破損した場合でも、他方のインバータ回路の半導体素子 51に影 響を及ぼすことがない。 [0053] In this way, all the semiconductor elements 51 constituting one inverter circuit are attached to one surface of the heat receiving block 62, and the other inverter circuit is constructed on the other surface on the back side. Since all the semiconductor elements 51 to be attached are attached, even if the semiconductor element 51 of one inverter circuit is physically damaged, the semiconductor element 51 of the other inverter circuit is not affected.
[0054] 次に、本発明の実施形態 5を説明する。図 14は本発明の実施形態 5の半導体冷却 装置の正面図、図 15は図 14の半導体冷却装置の左側面図である。  Next, Embodiment 5 of the present invention will be described. FIG. 14 is a front view of the semiconductor cooling device of Embodiment 5 of the present invention, and FIG. 15 is a left side view of the semiconductor cooling device of FIG.
[0055] 図 14に示すように、実施形態 5では、角筒状に形成された 1つの受熱ブロック 62の 一方の側壁の外面が第 1の素子取付面 62aとされて第 1の半導体素子群 G1を構成 する 6個の半導体素子 51が取り付けられ、その裏側となる他方の側壁の外面が第 2 の素子取付面 62bとされて第 2の半導体素子群 G2を構成する 6個の半導体素子 51 が取り付けられている。  As shown in FIG. 14, in the fifth embodiment, the outer surface of one side wall of one heat receiving block 62 formed in the shape of a rectangular tube is defined as a first element mounting surface 62a, and the first semiconductor element group Six semiconductor elements 51 constituting G1 are attached, and the outer surface of the other side wall on the back side is set as a second element attachment face 62b, and the six semiconductor elements 51 constituting the second semiconductor element group G2 Is attached.
[0056] また、受熱ブロック 62の内部には、長手方向に延びる複数枚の板状の放熱フィン 6 5が水平かつ上下に間隔をおいて設けられ、各放熱フィン 65は受熱ブロック 62の両 側壁の内面間に接続されている。なお、 66は冷却ファンであり、受熱ブロック 62の内 部に向けて冷却風を送風し、放熱フィン 65による放熱を促進する。  In addition, a plurality of plate-like radiating fins 65 extending in the longitudinal direction are provided horizontally and vertically spaced inside the heat receiving block 62, and each radiating fin 65 is provided on both side walls of the heat receiving block 62. Connected between the inner surfaces of. Reference numeral 66 denotes a cooling fan that blows cooling air toward the inside of the heat receiving block 62 and promotes heat radiation by the heat radiation fins 65.
[0057] このように、一方のインバータ回路を構成する全ての半導体素子 51を受熱ブロック 62の一方の側壁の外面に取り付け、その裏側となる他方の側壁の外面に他方のイン バータ回路を構成する全ての半導体素子 51を取り付けたことにより、一方のインバー タ回路の半導体素子 51が物理的に破損した場合でも、他方のインバータ回路の半 導体素子 51に影響を及ぼすことがない。また、放熱フィン 65に対して両側力も熱が 伝わるので、効率良く放熱することができる。  In this way, all the semiconductor elements 51 constituting one inverter circuit are attached to the outer surface of one side wall of the heat receiving block 62, and the other inverter circuit is constituted on the outer surface of the other side wall on the back side. By attaching all the semiconductor elements 51, even if the semiconductor element 51 of one inverter circuit is physically damaged, the semiconductor element 51 of the other inverter circuit is not affected. In addition, heat is also transmitted to both sides of the heat dissipating fin 65, so that heat can be dissipated efficiently.
[0058] 次に、本発明の実施形態 6を説明する。図 16は本発明の実施形態 6の半導体冷却 装置の正面図、図 17は図 15の半導体冷却装置の右側面図である。  Next, Embodiment 6 of the present invention will be described. FIG. 16 is a front view of the semiconductor cooling device according to the sixth embodiment of the present invention, and FIG. 17 is a right side view of the semiconductor cooling device of FIG.
[0059] 図 16および図 17に示すように、実施形態 6では、板状に形成されるとともに地面に 対して傾斜した状態で配置された上下一対の受熱ブロック 62を備えており、上側の 受熱ブロック 62の下側の面および下側の受熱ブロック 62の上側の面が第 1の素子取 付面 62aとされて第 1の半導体素子群 G1が取り付けられるとともに互いに対向するよ うに配置されている。また、上側の受熱ブロック 62の上側の面および下側の受熱ブ口 ック 62の下側の面が第 2の素子取付面 62bとされて第 2の半導体素子群 G2が取り付 けられている。 [0059] As shown in FIGS. 16 and 17, the sixth embodiment includes a pair of upper and lower heat receiving blocks 62 that are formed in a plate shape and are inclined with respect to the ground. The lower surface of the block 62 and the upper surface of the lower heat receiving block 62 serve as the first element mounting surface 62a, and the first semiconductor element group G1 is mounted and arranged so as to face each other. . In addition, the upper surface of the upper heat receiving block 62 and the lower surface of the lower heat receiving block 62 are used as the second element mounting surface 62b to mount the second semiconductor element group G2. It is
[0060] また、直軸状のヒートパイプ 64の一端が受熱ブロック 62の 1つの側面に取り付けら れて斜め上方に向力つて突出し、このヒートパイプ 64に複数枚の板状の放熱フィン 6 5が軸方向に間隔をお 、て取り付けられて 、る。  [0060] One end of the straight-shaft heat pipe 64 is attached to one side surface of the heat receiving block 62 and protrudes obliquely upward, and a plurality of plate-like heat radiating fins 6 5 are provided on the heat pipe 64. Are attached at intervals in the axial direction.
[0061] このように、一方のインバータ回路を構成する全ての半導体素子 51を一対の受熱 ブロック 62の互いに対向する面に取り付け、その裏側の面に他方のインバータ回路 を構成する全ての半導体素子 51を取り付けたことにより、一方のインバータ回路の半 導体素子 51が物理的に破損した場合でも、他方のインバータ回路の半導体素子 51 に影響を及ぼすことがない。  In this way, all the semiconductor elements 51 constituting one inverter circuit are attached to the mutually opposing surfaces of the pair of heat receiving blocks 62, and all the semiconductor elements 51 constituting the other inverter circuit are provided on the back surface thereof. As a result, the semiconductor element 51 of one inverter circuit is not affected even if the semiconductor element 51 of one inverter circuit is physically damaged.
[0062] なお、受熱ブロック 62および放熱フィン 65から成る冷却器を U、 V、 W相の各相毎 に分離して設けるようにしてもよぐこの場合、扱う冷却器が小型となるため、組立作 業性が向上するという利点がある。  [0062] A cooler composed of the heat receiving block 62 and the radiation fin 65 may be provided separately for each of the U, V, and W phases. There is an advantage that assembly workability is improved.
[0063] 次に、本発明の実施形態 7を説明する。図 18は本発明の実施形態 7の半導体冷却 装置の正面図、図 19は図 18の半導体冷却装置の右側面図である。  [0063] Next, Embodiment 7 of the present invention will be described. 18 is a front view of the semiconductor cooling device according to the seventh embodiment of the present invention, and FIG. 19 is a right side view of the semiconductor cooling device of FIG.
[0064] 図 18および図 19に示すように、実施形態 7では、板状に形成されるとともに地面に 対して傾斜した状態で配置された 1つの受熱ブロック 62の上側の面が第 1の素子取 付面 62aとされて第 1の半導体素子群 G1が取り付けられ、受熱ブロック 62の下側の 面が第 2の素子取付面 62bとされて第 2の半導体素子群 G2が取り付けられている。  As shown in FIGS. 18 and 19, in Embodiment 7, the upper surface of one heat receiving block 62 that is formed in a plate shape and is inclined with respect to the ground is the first element. The first semiconductor element group G1 is attached as the mounting surface 62a, and the lower surface of the heat receiving block 62 is used as the second element attachment surface 62b, and the second semiconductor element group G2 is attached.
[0065] また、直軸状のヒートパイプ 64の一端が受熱ブロック 62の 1つの側面に取り付けら れて斜め上方に向力つて突出し、このヒートパイプ 64に複数枚の板状の放熱フィン 6 5が軸方向に間隔をお 、て取り付けられて 、る。  In addition, one end of the straight-axis heat pipe 64 is attached to one side surface of the heat receiving block 62 and protrudes obliquely upward, and a plurality of plate-like heat radiation fins 6 5 are projected on the heat pipe 64. Are attached at intervals in the axial direction.
[0066] このように、一方のインバータ回路を構成する全ての半導体素子 51を 1つの受熱ブ ロック 62の一方の面に取り付け、その裏側の面に他方のインバータ回路を構成する 全ての半導体素子 51を取り付けたことにより、一方のインバータ回路の半導体素子 5 1が物理的に破損した場合でも、他方のインバータ回路の半導体素子 51に影響を及 ぼすことがない。  [0066] In this way, all the semiconductor elements 51 constituting one inverter circuit are attached to one surface of one heat receiving block 62, and all the semiconductor elements 51 constituting the other inverter circuit are arranged on the back surface thereof. As a result of mounting, even if the semiconductor element 51 of one inverter circuit is physically damaged, the semiconductor element 51 of the other inverter circuit is not affected.
[0067] 次に、本発明の実施形態 8を説明する。図 20は本発明の実施形態 8の半導体冷却 装置の正面図、図 21は図 20の半導体冷却装置の右側面図、図 22は図 20の半導 体冷却装置の平面図である。 Next, Embodiment 8 of the present invention will be described. 20 is a front view of the semiconductor cooling device according to the eighth embodiment of the present invention, FIG. 21 is a right side view of the semiconductor cooling device of FIG. 20, and FIG. 22 is a semiconductor of FIG. It is a top view of a body cooling device.
[0068] これらの図に示すように、実施形態 8では、板状に形成されるとともに地面に対して 垂直に配置された複数の受熱ブロック 62を備えている。各受熱ブロック 62は、一方 の面が第 1の素子取付面 62aとされて第 1の半導体素子群 G1を構成する半導体素 子 51が 2個取り付けられ、他方の面が第 2の素子取付面 62bとされて第 2の半導体 素子群 G2を構成する半導体素子 51が 2個取り付けられている。  [0068] As shown in these drawings, the eighth embodiment includes a plurality of heat receiving blocks 62 that are formed in a plate shape and are arranged perpendicular to the ground. Each heat receiving block 62 has one surface serving as the first element mounting surface 62a and two semiconductor elements 51 constituting the first semiconductor element group G1 are mounted, and the other surface is the second element mounting surface. Two semiconductor elements 51, which are 62b and constitute the second semiconductor element group G2, are attached.
[0069] 各受熱ブロック 62は、第 1の素子取付面 62aと第 2の素子取付面 62bとが互いに対 向するように間隔をおいて平行に配置されている。そして、各半導体素子 51の表面 には、それぞれ断面コの字形の金属製の導体 67が接着等により固定され、さら〖こ隣 接する 2個の半導体素子 51の表面には、これらの間に跨るように断面コの字形の導 体 68が接着等により固定されている。これらの導体 67、 68は電源変換回路に電圧 を供給するためのもので、金属板を折曲したり厚みを大きくすることにより剛性を高め ている。  [0069] Each heat receiving block 62 is arranged in parallel with a distance so that the first element mounting surface 62a and the second element mounting surface 62b face each other. A metal conductor 67 having a U-shaped cross section is fixed to the surface of each semiconductor element 51 by bonding or the like, and the surfaces of the two adjacent semiconductor elements 51 straddle between them. Thus, a U-shaped conductor 68 having a U-shaped cross section is fixed by bonding or the like. These conductors 67 and 68 are for supplying voltage to the power conversion circuit, and the rigidity is increased by bending the metal plate or increasing the thickness.
[0070] また、直軸状のヒートパイプ 64の一端が受熱ブロック 62の 1つの側面に取り付けら れて斜め上方に向力つて突出し、このヒートパイプ 64に複数枚の板状の放熱フィン 6 5が軸方向に間隔をお 、て取り付けられて 、る。  [0070] Further, one end of the straight-axis heat pipe 64 is attached to one side surface of the heat receiving block 62 and protrudes obliquely upward, and a plurality of plate-like heat radiation fins 6 5 are projected on the heat pipe 64. Are attached at intervals in the axial direction.
[0071] このように、各受熱ブロック 62の両面の 2個の半導体素子 51上に導体 67、 68を取 り付けたことにより、第 1の素子取付面 62aの半導体素子 51と第 2の素子取付面 62b の半導体素子 51とが衝突するのを防ぐことができるため、一方のインバータ回路の 半導体素子 51が物理的に破損した場合でも、他方のインバータ回路の半導体素子 51に影響を及ぼすことがな!、。  [0071] Thus, by attaching the conductors 67 and 68 on the two semiconductor elements 51 on both surfaces of each heat receiving block 62, the semiconductor element 51 and the second element on the first element mounting surface 62a Since it is possible to prevent the semiconductor element 51 on the mounting surface 62b from colliding, even if the semiconductor element 51 of one inverter circuit is physically damaged, the semiconductor element 51 of the other inverter circuit may be affected. Wow!
[0072] 次に、本発明の実施形態 9を説明する。図 23は本発明の実施形態 9の半導体冷却 装置の正面図、図 24は図 23の半導体冷却装置の右側面図、図 25は図 23の半導 体冷却装置の平面図である。  Next, Embodiment 9 of the present invention will be described. 23 is a front view of the semiconductor cooling device according to the ninth embodiment of the present invention, FIG. 24 is a right side view of the semiconductor cooling device of FIG. 23, and FIG. 25 is a plan view of the semiconductor cooling device of FIG.
[0073] これらの図に示すように、実施形態 9では、板状に形成されるとともに地面に対して 垂直に配置された複数の受熱ブロック 62を備えている。各受熱ブロック 62は、一方 の面が第 1の素子取付面 62aとされて第 1の半導体素子群 G1を構成する半導体素 子 51が 2個取り付けられ、他方の面が第 2の素子取付面 62bとされて第 2の半導体 素子群 G2を構成する半導体素子 51が 2個取り付けられている。 [0073] As shown in these drawings, the ninth embodiment includes a plurality of heat receiving blocks 62 that are formed in a plate shape and are arranged perpendicular to the ground. Each heat receiving block 62 has one surface serving as the first element mounting surface 62a and two semiconductor elements 51 constituting the first semiconductor element group G1 are mounted, and the other surface is the second element mounting surface. 62b and second semiconductor Two semiconductor elements 51 constituting the element group G2 are attached.
[0074] 各受熱ブロック 62は、第 1の素子取付面 62aと第 2の素子取付面 62bが互いに対 向するように間隔をおいて平行に配置されている。そして、隣接する 2個の受熱ブロッ ク 62間には隔壁 69が設置されている。 [0074] Each heat receiving block 62 is arranged in parallel with a distance so that the first element mounting surface 62a and the second element mounting surface 62b face each other. A partition wall 69 is installed between two adjacent heat receiving blocks 62.
[0075] また、直軸状のヒートパイプ 64の一端が受熱ブロック 62の 1つの側面に取り付けら れて斜め上方に向力つて突出し、このヒートパイプ 64に複数枚の板状の放熱フィン 6[0075] Further, one end of the straight-axis heat pipe 64 is attached to one side surface of the heat receiving block 62 and protrudes obliquely upward, and a plurality of plate-like heat radiating fins 6 are provided on the heat pipe 64.
5が軸方向に間隔をお 、て取り付けられて 、る。 5 are attached at intervals in the axial direction.
[0076] このように、隣接する 2個の受熱ブロック 62間に隔壁 19を設けたことにより、第 1の 素子取付面 62aの半導体素子 51と第 2の素子取付面 62bの半導体素子 51とが衝突 するのを防ぐことができるため、一方のインバータ回路の半導体素子 51が物理的に 破損した場合でも、他方のインバータ回路の半導体素子 51に影響を及ぼすことがな い。 Thus, by providing the partition wall 19 between two adjacent heat receiving blocks 62, the semiconductor element 51 on the first element mounting surface 62a and the semiconductor element 51 on the second element mounting surface 62b Since collision can be prevented, even when the semiconductor element 51 of one inverter circuit is physically damaged, the semiconductor element 51 of the other inverter circuit is not affected.

Claims

請求の範囲 The scope of the claims
[1] 2台の電力変換装置を備えた車両用の電源装置において、  [1] In a vehicle power supply device equipped with two power conversion devices,
表裏の関係にある第 1および第 2の部品取付面、並びに前記第 1および第 2の部品 取付面に対して側端面にあたる第 3の部品取付面を有し、前記第 1の部品取付面に 前記 2台の電力変換装置のいずれか一方の 1相分の半導体スイッチング素子が装着 され、前記第 2の部品取付面に前記 2台の電力変換装置のいずれか他方の 1相分の 半導体スイッチング素子が装着された受熱ブロックと、前記受熱ブロックの前記第 3の 部品取付面力 突出するように前記受熱ブロックに基端部が接合され、前記受熱ブ ロックの熱を先端部に輸送する直管ヒートパイプと、前記直管ヒートパイプに嵌着され た放熱フィンとがそれぞれ一体的に組立  There are first and second component mounting surfaces that are front and back, and a third component mounting surface that is a side end surface with respect to the first and second component mounting surfaces. A semiconductor switching element for one phase of either one of the two power converters is mounted, and a semiconductor switching element for one phase of the other of the two power converters is mounted on the second component mounting surface. And a straight pipe heat that transports the heat of the heat receiving block to the distal end portion with the base end joined to the heat receiving block so as to protrude from the third component mounting surface force of the heat receiving block. The pipe and the heat radiating fins fitted to the straight pipe heat pipe are assembled together.
てられた 3個の熱伝導スタックと、  Three heat conduction stacks created,
1つの前記熱伝導スタックが中央に配置され、残りの前記熱伝導スタックの一方が 中央に配置された前記熱伝導スタックに対して前記第 1の部品取付面同士が所定の 間隔をもって対向し、残りの前記熱伝導スタックの他方が中央に配置された前記熱 伝導スタックに対して前記第 2の部品取付面同士が所定の間隔をもって対向するよう に前記 3個の熱伝導スタックを取付けるフレームと、  One of the heat conductive stacks is disposed in the center, and the first component mounting surfaces face each other with a predetermined distance from the heat conductive stack in which one of the remaining heat conductive stacks is disposed in the center, and the remaining A frame for mounting the three heat conductive stacks so that the second component mounting surfaces face each other with a predetermined distance from the heat conductive stack in which the other one of the heat conductive stacks is disposed in the center;
を備えたことを特徴とする車両用の電源装置。  A power supply device for a vehicle, comprising:
[2] 請求項 1記載の車両用の電源装置において、 [2] In the vehicle power supply device according to claim 1,
前記受熱ブロックの前記第 1の部品取付面に装着される前記半導体スイッチング素 子と前記第 2の部品取付面に装着される前記半導体スイッチング素子とが、前記受 熱ブロックに形成された貫通孔を共用して固定されることを特徴とする車両用の電源 装置。  The semiconductor switching element mounted on the first component mounting surface of the heat receiving block and the semiconductor switching element mounted on the second component mounting surface have through holes formed in the heat receiving block. A power supply device for a vehicle characterized by being shared and fixed.
[3] 互いに独立した 2つの電力変換回路を構成する第 1および第 2の半導体素子群が 取り付けられる第 1および第 2の素子取付面を有する 1つの受熱ブロックと、前記受熱 ブロックに接続された放熱部とを備えた半導体冷却装置であって、前記第 1および第 2の素子取付面が同一面内に設けられたことを特徴とする半導体冷却装置。  [3] One heat receiving block having first and second element mounting surfaces to which the first and second semiconductor element groups constituting two power conversion circuits independent from each other are mounted, and connected to the heat receiving block A semiconductor cooling device comprising a heat dissipating part, wherein the first and second element mounting surfaces are provided in the same plane.
[4] 互いに独立した 2つの電力変換回路を構成する第 1および第 2の半導体素子群が 取り付けられる第 1および第 2の素子取付面を有する 1つの受熱ブロックと、前記受熱 ブロックに接続された放熱部とを備えた半導体冷却装置であって、前記第 1および第 2の素子取付面が表裏の関係となるように設けられたことを特徴とする半導体冷却装 置。 [4] One heat receiving block having first and second element mounting surfaces to which the first and second semiconductor element groups constituting two power conversion circuits independent from each other are mounted; and the heat receiving block A semiconductor cooling device comprising a heat radiating portion connected to a block, wherein the first and second element mounting surfaces are provided in a front-back relationship.
[5] 請求項 4記載の半導体冷却装置において、  [5] The semiconductor cooling device according to claim 4,
前記受熱ブロックが角筒状に形成されるとともにその 1つの側壁の外面が前記第 1 の素子取付面、前記側壁に対向する側壁の外面が前記第 2の素子取付面とされ、前 記放熱部は、前記両側壁の内面間に接続されたフィン力 成ることを特徴とする半導 体冷却装置。  The heat receiving block is formed in a rectangular tube shape, and the outer surface of one side wall thereof is the first element mounting surface, and the outer surface of the side wall opposite to the side wall is the second element mounting surface. Is a semiconductor cooling device characterized in that a fin force connected between the inner surfaces of both side walls is formed.
[6] 互いに独立した 2つの電力変換回路を構成する第 1および第 2の半導体素子群が 取り付けられる第 1および第 2の素子取付面を有する複数の受熱ブロックと、前記各 受熱ブロックに接続された放熱部とを備えた半導体冷却装置であって、前記複数の 受熱ブロックは、前記第 1の素子取付面同士あるいは前記第 2の素子取付面同士が 対向するように配置されたことを特徴とする半導体冷却装置。  [6] A plurality of heat receiving blocks having first and second element mounting surfaces to which the first and second semiconductor element groups constituting two power conversion circuits independent from each other are mounted, and connected to each of the heat receiving blocks The plurality of heat receiving blocks are arranged such that the first element mounting surfaces or the second element mounting surfaces are opposed to each other. A semiconductor cooling device.
[7] 請求項 6記載の半導体冷却装置において、  [7] The semiconductor cooling device according to claim 6,
前記受熱ブロックおよび前記放熱部から成る冷却器が各相毎に設けられたことを特 徴とする半導体冷却装置。  A semiconductor cooling device characterized in that a cooler comprising the heat receiving block and the heat radiating portion is provided for each phase.
[8] 互いに独立した 2つの電力変換回路を構成する第 1および第 2の半導体素子群が 取り付けられる第 1および第 2の素子取付面を有する複数の受熱ブロックと、前記各 受熱ブロックに接続された放熱部とを備えた半導体冷却装置であって、前記複数の 受熱ブロックは、前記第 1および第 2の素子取付面が表裏の関係となるように設けら れるとともに前記第 1の素子取付面と前記第 2の素子取付面が互いに対向するように 間隔をおいて配置され、隣接する 2つの前記受熱ブロック間に前記第 1の素子取付 面の半導体素子と前記第 2の素子取付面の半導体素子とが衝突するのを防ぐ衝突 防止部材が設けられたことを特徴とする半導体冷却装置。  [8] A plurality of heat receiving blocks having first and second element mounting surfaces to which the first and second semiconductor element groups constituting two power conversion circuits independent of each other are mounted, and connected to each of the heat receiving blocks The plurality of heat receiving blocks are provided so that the first and second element mounting surfaces are in a front-back relationship and the first element mounting surface And the second element mounting surface are arranged so as to be opposed to each other, and between the two adjacent heat receiving blocks, the semiconductor element on the first element mounting surface and the semiconductor on the second element mounting surface A semiconductor cooling device comprising a collision prevention member for preventing collision with an element.
[9] 請求項 8記載の半導体冷却装置において、  [9] The semiconductor cooling device according to claim 8,
前記衝突防止部材は、前記電力変換回路に電圧を供給する導体を兼ねることを特 徴する半導体冷却装置。  The semiconductor cooling device, wherein the collision preventing member also serves as a conductor for supplying a voltage to the power conversion circuit.
PCT/JP2005/019133 2004-10-22 2005-10-18 Power supply device for vehicle WO2006043559A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-308136 2004-10-22
JP2004308136A JP4202999B2 (en) 2004-10-22 2004-10-22 Power supply for vehicle
JP2004308429A JP4208814B2 (en) 2004-10-22 2004-10-22 Semiconductor cooling device
JP2004-308429 2004-10-22

Publications (1)

Publication Number Publication Date
WO2006043559A1 true WO2006043559A1 (en) 2006-04-27

Family

ID=36202974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019133 WO2006043559A1 (en) 2004-10-22 2005-10-18 Power supply device for vehicle

Country Status (1)

Country Link
WO (1) WO2006043559A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04256397A (en) * 1991-02-08 1992-09-11 Toshiba Corp Heat pipe type semiconductor stack
JPH06163770A (en) * 1992-11-25 1994-06-10 Hitachi Ltd Cooling device of inverter apparatus for electric train
JPH07283565A (en) * 1994-04-08 1995-10-27 Mitsubishi Electric Corp Semiconductor unit
JPH11171413A (en) * 1997-12-17 1999-06-29 Toshiba Corp Elevator control system
JP2002262583A (en) * 2001-03-05 2002-09-13 Toshiba Transport Eng Inc Power converter
JP2003235112A (en) * 2001-12-07 2003-08-22 Toshiba Transport Eng Inc Power converter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04256397A (en) * 1991-02-08 1992-09-11 Toshiba Corp Heat pipe type semiconductor stack
JPH06163770A (en) * 1992-11-25 1994-06-10 Hitachi Ltd Cooling device of inverter apparatus for electric train
JPH07283565A (en) * 1994-04-08 1995-10-27 Mitsubishi Electric Corp Semiconductor unit
JPH11171413A (en) * 1997-12-17 1999-06-29 Toshiba Corp Elevator control system
JP2002262583A (en) * 2001-03-05 2002-09-13 Toshiba Transport Eng Inc Power converter
JP2003235112A (en) * 2001-12-07 2003-08-22 Toshiba Transport Eng Inc Power converter

Similar Documents

Publication Publication Date Title
KR102131684B1 (en) Vehicle-mounted power converter
JP5157431B2 (en) Power converter
JP6429720B2 (en) Power converter and railway vehicle
JP6429721B2 (en) Power converter and railway vehicle
JP2008118753A (en) Power conversion device
EP3641121A1 (en) Cooling structure of power conversion device
JP3367411B2 (en) Power converter
JP2005287273A (en) Power converting device
JP2016052183A (en) Electric power conversion system
JP2012028402A (en) Power unit
JP6115430B2 (en) Power converter
WO2018173379A1 (en) Power conversion device
JP4202999B2 (en) Power supply for vehicle
JP4208814B2 (en) Semiconductor cooling device
WO2019244502A1 (en) Electric power converter
JP6081091B2 (en) Railway vehicle control system
WO2006043559A1 (en) Power supply device for vehicle
JP7319945B2 (en) power converter
JP2004201500A (en) Power conversion apparatus
JP4020833B2 (en) Power converter for vehicle
JP2021197831A (en) Electrical unit
JP7006464B2 (en) Power converter
WO2015052984A1 (en) Electrical power converter
WO2019244624A1 (en) Electric power converter
WO2019193903A1 (en) Power conversion device and capacitor module

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 200580032603.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05795820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP