WO2006025433A1 - Photoelectric transduction material, photoelectric transduction apparatus and process for producing photoelectric transduction material - Google Patents

Photoelectric transduction material, photoelectric transduction apparatus and process for producing photoelectric transduction material Download PDF

Info

Publication number
WO2006025433A1
WO2006025433A1 PCT/JP2005/015876 JP2005015876W WO2006025433A1 WO 2006025433 A1 WO2006025433 A1 WO 2006025433A1 JP 2005015876 W JP2005015876 W JP 2005015876W WO 2006025433 A1 WO2006025433 A1 WO 2006025433A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
fullerene
electron
encapsulated
fullerenes
Prior art date
Application number
PCT/JP2005/015876
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiko Kasama
Kenji Omote
Original Assignee
Ideal Star Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ideal Star Inc. filed Critical Ideal Star Inc.
Publication of WO2006025433A1 publication Critical patent/WO2006025433A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Photoelectric conversion material photoelectric conversion device, and method for manufacturing photoelectric conversion material
  • the present invention relates to a photoelectric conversion material made of an organic semiconductor and a photoelectric conversion device using the photoelectric conversion material.
  • Non-Patent Document 1 Fullerene Chemistry and Physics Nagoya University Press
  • Non-Patent Document 2 Current Status and Prospects of Organic Solar Cells p.425-428 Applied Physics No. 71 ⁇ No. 4 (200 2)
  • Solar cells are classified into an inorganic solar cell using an inorganic material such as a silicon semiconductor as a photoelectric conversion material and an organic solar cell using an organic material such as an organic semiconductor.
  • inorganic solar cells with high energy conversion efficiency have been mainly developed (conversion efficiency is about 25% for single crystal silicon and about 12% for amorphous silicon), but inorganic solar cells are made of materials. Is expensive, and the manufacturing process is complicated, so it is difficult to reduce costs, which has been a major obstacle to the spread of solar cells.
  • Gratzel-type dye-sensitized solar cells use an electrolytic solution containing iodine, and have many problems to be solved in terms of stability and durability.
  • An organic solar cell called an unction-type organic thin-film solar cell, has a simple structure in which a thin film made of a photoelectric conversion material consisting of a uniform mixture of electron donor and electron acceptor organic molecules is sandwiched between different electrodes. It is easy to fabricate, does not require high-temperature processes, has excellent stability and durability, and dislikes attention.
  • FIG. 6 is a cross-sectional view of a conventional bulk heterojunction type organic thin film solar cell.
  • the organic thin-film solar cell shown in FIG. 6 includes a glass substrate 101, a positive electrode 102 made of a transparent material such as ITO, a photoelectric conversion material film in which an electron-donating organic material 103 is doped with fullerene 105, A 1
  • the negative electrode 104 is made up of.
  • the fluorescence intensity due to light irradiation is remarkably attenuated and the photocurrent is enhanced.
  • the electrons excited in the conductive polymer by light irradiation are trapped by fullerene having a high electron affinity, so the probability of recombination with holes generated simultaneously with the electrons is reduced.
  • the generated electrons move between the fullerenes which are electron acceptors by hopping, and the generated holes move between the conductive polymers which are electron donors by hopping.
  • the lifetime of electrons and holes, which are photoconductive carriers, is increased, so that the photocurrent increases.
  • the present invention (1) is a photoconductivity enhancer that also has the power of endohedral fullerenes.
  • the atoms encapsulated in the atom-encapsulated fullerenes are alkali metals.
  • the photoconductivity enhancer of the invention (1).
  • the atom encapsulated in the atom-encapsulated fullerene is Li.
  • the fullerene is C 1, C 2 or a mixed fullerene thereof.
  • the present invention (5) is a photoelectric conversion material comprising the photoconductivity enhancer of the above inventions (1) to (4).
  • the present invention (6) is the photoelectric conversion material according to the invention (5) comprising at least the above-described photoconductivity enhancer and an electron donating organic material.
  • the present invention (7) is a photoelectric conversion device comprising at least a substrate, the photoelectric conversion material of the invention (5), and an electrode.
  • the present invention (8) is the photoelectric conversion device of the invention (7), wherein the photoelectric conversion device is a photovoltaic cell or a photosensor.
  • the present invention (9) is a step of mixing and stirring a solution obtained by dissolving the photoconductivity enhancer according to the invention (1) to the invention (4) and a solution obtained by dissolving an electron donating organic material.
  • a method for producing a photoelectric conversion material comprising
  • a photoelectric conversion material composed of an electron acceptor made of an endohedral fullerene and an electron donor made of an electron-donating organic material comprises a photoelectric conversion material using empty fullerene as an electron acceptor. In comparison, photoconductivity is significantly enhanced.
  • the photoelectric conversion enhancement effect of the photoelectric conversion material is particularly high.
  • the photoelectric conversion efficiency can be improved by constituting a photoelectric conversion device using the photoelectric conversion material of the present invention. For example, it is highly effective in improving the sensitivity of photosensors and improving the energy conversion efficiency of photovoltaic cells.
  • a photoelectric conversion material can be produced by mixing and stirring a solution in which a photoconductive enhancer is dissolved and a solution in which an electron-donating organic material is dissolved. This is effective in reducing strikes.
  • FIG. 1 (a) and (b) are cross-sectional views of the organic thin film solar cell of the present invention.
  • FIG. 2 (a) and (b) are a plan view and a cross-sectional view of a photoelectric conversion characteristic measurement sample.
  • C is a plan view and a cross-sectional view of a photoelectric conversion characteristic measurement sample.
  • FIG. 4 (a) and (b) are cross-sectional views of an endohedral fullerene production apparatus.
  • FIG. 6 is a cross-sectional view of a conventional organic thin film solar cell.
  • Fullerene is a concept including repetitive bonds (ionic bonds, covalent bonds, etc.) of fullerenes such as fullerenes, heterofullerenes, chemically modified fullerenes, and fullerene dimers.
  • atoms may be included in all fullerene units (for example, in the case of a dimer, an embodiment in which only one fullerene is included) can be mentioned.
  • Atomic inclusion is defined as a state in which atoms other than carbon are confined in a hollow portion of a cage-like fullerene molecule.
  • the number of atoms to be included may be one or plural, but the maximum number of atoms to be included is limited to the size of the fullerene molecule and the size of the included atoms.
  • C includes Li, it is preferable to include one or two atoms.
  • “Empty fullerene” is a fullerene in which atoms are not encapsulated in the hollow part of a cage-like fullerene molecule.
  • Mated fullerene is a single carbon cluster material in which a plurality of different types of fullerenes are mixed. According to Non-Patent Document 1, when fullerene is produced by resistance heating method or arc discharge method, 70 to 85% of the fullerene produced is C, 10-1
  • an endohedral fullerene in which Li is encapsulated in the mixed fullerene as an encapsulated atom can be used as the photoconductive enhancer.
  • Photoelectric conduction refers to electric conduction caused by irradiating light.
  • the photoconductivity enhancer is preferably an electron acceptor, an electron acceptor, a photoconductivity enhancer, or a combination thereof.
  • the photoconductivity enhancer according to the present invention (1) may contain components other than the endohedral fullerenes.
  • Electron donor is a substance having a property (electron donating property) that allows electrons to be transferred to another substance.
  • Electron donating organic materials include polythiophene such as poly-3-hexylthiophene (P3HT), poly p-phenylene, poly p-phenylene vinylene, polyaniline, polypyrrole, PEDOT, P30T, POPT, MDMO -High molecular weight polymers such as PPV and MEH-PPV and their derivatives are used.
  • the electron-donating organic material is not limited to a polymer, for example, porphyrin compounds such as ZnPC, porphyrin, tetraphenylporphine copper, phthalocyanine, copper phthalocyanine, titanium phthalocyanine oxide, 1,1-bis ⁇ 4- (Di-P-tolylamino) phenol ⁇ cyclohexane, 4,4 ', 4 "-trimethyltriphenyl-lamine, ⁇ , ⁇ , ⁇ ', ⁇ '-tetrakis (P-tolyl)-P -Phenylenediamine, 1- ( ⁇ , ⁇ -di- ⁇ -triramino) naphthalene, 4,4'-bis (dimethylamino) -2-2'-dimethyltrimethane, ⁇ , ⁇ , ⁇ ', ⁇ '-Tetraphenyl-4,4'-diaminobiphenyl, ⁇ , ⁇ '-diphenyl
  • An "electron acceptor” is a substance that has the property (electron acceptability) that can easily accept electrons. According to Non-Patent Document 2, as an electron-accepting organic material, conventionally, C
  • Photoelectric conversion material refers to a material that converts an optical signal or optical energy into an electrical signal or electrical energy.
  • Bulk Heterojunction type photoelectric conversion materials are produced by uniformly mixing an electron donor and an electron-accepting organic material. Electrons and holes are excited by light irradiation. Excited electrons are captured by the electron acceptor and move between the electron acceptors, and holes move between the electron donors to cause electrical conduction.
  • a “photoelectric conversion device” is a device that converts an optical signal or optical energy into an electrical signal or electrical energy using a photoelectric conversion material.
  • Substrate refers to a member that has a function of supporting a photoelectric conversion material
  • electrode refers to an electrical signal or energy generated when light is applied to the photoelectric conversion material. It is an interface that outputs to.
  • a photoelectric conversion device that converts an optical signal or optical energy into an electrical signal is specifically defined as “one optical sensor”.
  • the optical sensor include a digital camera, a light receiving sensor for optical communication, and a light detection switch.
  • a photoelectric conversion device that converts light energy into electrical energy is particularly defined as a "photocell”.
  • Photovoltaic cells include solar cells.
  • the endohedral fullerenes according to the present invention for example, generate plasma by injecting encapsulated atomic vapor onto a hot plate heated in a vacuum vessel, and irradiate the generated plasma flow to a deposition plate disposed downstream of the plasma flow. It can be produced by a method of depositing endohedral fullerenes.
  • an endohedral fullerene production apparatus includes a plasma generating unit, a fullerene introducing unit, a tubular vacuum vessel 31 having an encapsulating fullerene depositing unit, a vacuum pump 32 for exhausting the vacuum vessel 31, and a magnetic field generating coil 33 for confining plasma.
  • encapsulated atomic materials such as Li are heated in an oven 34 and sublimated.
  • the generated encapsulated atom vapor is introduced into the plasma generation section through the introduction pipe 35 and the encapsulated atom plasma is generated on the hot plate 36.
  • the generated internal atomic plasma flows in the direction of the tube axis along a uniform magnetic field.
  • fullerenes such as C are removed by the oven 38.
  • the endohedral fullerenes according to the present invention can also be produced by the production apparatus shown in Fig. 4 (b).
  • the apparatus for producing endohedral fullerenes consists of a tubular vacuum vessel 51 consisting of a plasma generation unit, fullerenes introduction unit, inclusion fullerenes deposition unit, a vacuum pump 52 for exhausting the vacuum vessel 51, and a magnetic field generating coil for confining the plasma. 53.
  • the encapsulated atomic material such as Li is heated in an oven 54 and sublimated.
  • the generated encapsulated atomic vapor is introduced into the plasma generator through the introduction pipe 55, and the encapsulated atomic plasma is generated on the hot plate 56.
  • the generated encapsulated atomic plasma flows in the tube axis direction along a uniform magnetic field, and is applied to the deposition plate 60.
  • steam obtained by sublimating fullerenes such as C by the oven 58 is introduced in the fullerene introduction section disposed in front of the deposition plate 60.
  • a negative bias voltage is applied to the deposition plate 60 by a bias power source 61. Li positive ions composing the plasma by the negative noise voltage are accelerated. Then, the fullerenes deposited on the deposition plate 60 collide with each other and are contained in the fullerene molecules, and the inclusion fullerenes are deposited on the surface of the deposition plate 60.
  • the resulting film deposited on the deposition plate includes encapsulated atoms that are not encapsulated in empty fullerenes or fullerenes.
  • a method for increasing the purity of the endohedral fullerenes is to peel off the produced film from the deposition plate and form a powder, and then in the solution due to the difference in solubility between the endohedral fullerenes and substances other than the endohedral fullerenes in a specific solution.
  • a method of concentrating the endohedral fullerene in a residue insoluble in the solution is used. For example, for fullerene, empty fullerene has higher solubility than Li-encapsulated fullerene, and Li-encapsulated fullerene can be concentrated by repeating the work of dissolving in toluene and collecting the residue.
  • FIGS. 1 (a) and 1 (b) are cross-sectional views of the organic thin-film solar cell of the present invention.
  • the organic thin-film solar cell shown in Fig. 1 (a) is composed of a glass substrate 1, a positive electrode 2 made of a transparent material such as ITO, an electron-donating organic material 3 made of P3HT, and an endohedral fullerene that has Li-containing fullerene force 4 It is composed of a photoelectric conversion material film doped with a negative electrode 5 having A1 force.
  • Fig. 1 (b) As shown in Fig. 1 (b), light represented by hV is incident on a photoelectric conversion material made of P3HT doped with Li-containing fullerene through a glass substrate 1 and a transparent positive electrode 2. .
  • P3HT an electron-hole pair is generated when excited by light energy.
  • the generated electrons have an electron affinity. Since it is trapped by the large Li-encapsulated fullerene, the probability of recombination with holes generated simultaneously with electrons is reduced. Li @ C LUMO is lower than C LUMO, so excited electrons are
  • Li-encapsulated fullerene Efficiently captured by Li-encapsulated fullerene.
  • the trapped electrons move by hopping between the Li-encapsulated fullerene molecules.
  • the generated holes move between the P3HT electron donors by hobbing.
  • the lifetime of electrons and holes, which are carriers for photoconduction, is increased, so that photoconduction is promoted and photocurrent is increased.
  • An organic solar cell is manufactured by sandwiching a thin film made of a photoelectric conversion material composed of an electron donor and an electron acceptor between an electrode 2 made of ITO and an electrode 5 made of A1. Due to the difference in the band structure of the ITO electrode 2, the photoelectric conversion film, and the A1 electrode 5, the holes generated in the photoelectric conversion film move to the ITO electrode 2 side, and the generated electrons move to the A1 electrode 5 side.
  • an external load (not shown) is connected between the ITO electrode 2 and the A1 electrode 5 via the wirings 6 and 7, current flows from the ITO electrode 2 to the A1 electrode 5 through the external load.
  • Li-encapsulated fullerene is used as an electron acceptor, Li-encapsulated fullerene has higher electron mobility than empty fullerene, and can increase photocurrent.
  • a photoelectric conversion film using the photoelectric conversion material of the present invention can be produced by an extremely simple process.
  • the powdered endohedral fullerenes produced and separated by the above-described endohedral fullerene production method and purification method are dissolved in a solvent such as carbon disulfide.
  • the electron-donating organic material is dissolved in a solvent such as toluene.
  • the endohedral fullerene solution and the electron donating organic material solution are agitated ultrasonically to disperse the endohedral fullerene sufficiently uniformly in the electron donating organic material.
  • the amount of endohedral fullerene doped is, for example, the weight percentage of Li @ C relative to P3HT.
  • Lwt% or more and 60 wt% or less is preferable. If the endohedral fullerene is too small, electrons excited by light irradiation are not efficiently captured by the endohedral fullerene, and the photocurrent cannot be increased sufficiently. In addition, the endohedral fullerene is an expensive material as compared with the electron donating organic material, and when the amount of the endohedral fullerene is increased, there is a problem that the production cost increases. Even if the number of electron donors is too small compared to the electron acceptor, the number of electron-hole pairs excited by light irradiation decreases, so that photoconductivity occurs. Of endohedral fullerenes and electron-donating organic materials It is possible to optimize the photoelectric conversion efficiency by setting the ratio within the appropriate range described above.
  • a photovoltaic cell such as a solar cell can be fabricated by sandwiching the photoelectric conversion film between a positive electrode and a negative electrode.
  • the positive electrode it is preferable to use an electrode material having the same or larger work function than the HOMO level of the photoelectric conversion film. Further, in view of the use as a photovoltaic cell, it is preferable that at least one of the positive electrode and the negative electrode is transparent or translucent. Examples of such electrode materials include gold (for example, in the form of a semipermeable membrane) and ITO (Indium Tin Oxide).
  • the negative electrode it is preferable to use a stable electrode material having a smaller work function than the work function of the anode.
  • a stable electrode material having a smaller work function than the work function of the anode For example, alloys such as aluminum, silver, Mg-In, Mg-Ag can be cited. Note that, as described above, it is preferable that at least one of the positive electrode and the negative electrode is transparent or semi-transmissive in relation to the use of the photovoltaic cell.
  • An optical sensor using a bulk heterojunction type photoelectric conversion film is an optical sensor that operates on a principle similar to that of animal photoreceptors, and functions as an extremely sensitive optical sensor.
  • the number of carriers, which are excited electrons and hole power, is controlled by the difference in the light intensity incident on the optical sensor. Therefore, the electrodes arranged between the electrodes arranged at a certain interval on the photoelectric conversion film or the photoelectric conversion film are vertically moved.
  • the incident light intensity can be measured by measuring the current, voltage, or resistance between the sandwiched electrodes.
  • the optical sensor manufactured using the photoelectric conversion material using the endohedral fullerene of the present invention as an electron acceptor is an optical sensor manufactured using a conventional photoelectric conversion material using an empty fullerene as an electron acceptor.
  • the endohedral fullerene has a higher efficiency of capturing electrons and the mobility of the electron in the endohedral fullerene is larger, so that it is possible to detect light with higher sensitivity than a conventional photosensor.
  • the method for manufacturing the photoelectric conversion device of the present invention is manufactured by a well-known conventional method. Those skilled in the art can appropriately set various conditions.
  • the raw material Li is Lid made by Aldrich
  • the raw material C is C made by Frontier Carbon.
  • the vacuum vessel was evacuated to a vacuum degree of 4.2 X 10- 5 Pa, by the electromagnetic coil, to generate a magnetic field having a field strength 0.2 T.
  • the encapsulated atom sublimation oven was filled with solid Li and heated to a temperature of 480 ° C to sublimate Li and generate Li gas.
  • the generated Li gas was introduced through a gas inlet tube heated to 500 ° C and injected onto a hot plate heated to 2500 ° C.
  • a plasma flow consisting of positive ions of Li ionized on the hot plate surface and electron force was generated, and the deposition plate was irradiated with the plasma flow.
  • the deposition plate was irradiated with C vapor heated and sublimated to 610 ° C in a fullerene oven. -20V bias for deposition plate
  • a voltage was applied to deposit a thin film containing endohedral fullerene on the surface of the deposition plate. After about 1 hour of deposition, a thin film with a thickness of 0.9 m was deposited.
  • the deposited thin film is peeled off from the deposition plate, and the powdered thin film is dissolved in a solvent containing carbon dioxide, and Li is encapsulated using HPLC !, NA! /, Fullerene and Li inclusion Fullerenes were separated.
  • FIG. 5 shows mass spectrometry data of Li-encapsulated fullerene produced by the above-described method for producing endohedral fullerene.
  • 2 (a) and 2 (b) are a plan view and a cross-sectional view of a sample for measuring photoelectric conversion characteristics.
  • samples A and B conductive polymer doped with Li-containing fullerene
  • sample C empty fullerene was doped
  • Conductive polymer Conductive polymer
  • Sample D non-doped conductive polymer
  • the measurement sample was prepared according to the following procedure.
  • Samples A to D A glass substrate 13 (18 mm X 18 mm, thickness 0.12 to 0.17 mm) was prepared, and a plurality of rectangular A1 patterns were formed on the glass substrate by vapor deposition.
  • the no-turn interval L was set to 0.5 mm.
  • the prepared solution was dropped onto the A1 pattern deposition substrate prepared in (1) and spin coated at a rotational speed of 2000 rpm for 20 seconds to form a photoelectric conversion film.
  • the prepared solution was dropped onto the A1 pattern deposition substrate prepared in (1) and spin coated at a rotational speed of 2000 rpm for 20 seconds to form a photoelectric conversion film.
  • Sample C was added to 2 ml of toluene lwt% solution in which P3HT (poly-3-hexylthiophene) was dissolved.
  • the prepared solution was dropped onto the patterned vapor deposition substrate prepared in (1) and spin coated at a rotational speed of 2000 rpm for 20 seconds to form a photoelectric conversion film.
  • Sample D 2 ml of toluene lwt% solution in which P3HT (poly 3 hexylthiophene) is dissolved is dropped onto the pattern deposition substrate prepared in (1) and spin coated at a rotational speed of 2000 rpm for 20 seconds to form a photoelectric conversion film. Formed.
  • P3HT poly 3 hexylthiophene
  • FIG. 2 (c) is a cross-sectional view of a photoelectric conversion characteristic measuring apparatus.
  • Spectral light source 15 JASCO CT10T
  • optical system 16 for controlling the wavelength of irradiation light
  • sample 18 are placed in dark room 14.
  • A1 putter next to each other A 100 V noise voltage was applied between the two electrodes using a semiconductor parameter measurement device 19 (Agilent 4155), and the value of the current flowing between the A1 patterns was measured.
  • the irradiation light intensity was 25.3 W at a wavelength of 400 nm. Irradiation light intensity at each wavelength was measured, and the measured photocurrent value was corrected so that the irradiation light intensity was constant.
  • the current value (light current) when light irradiation is not performed is measured, the dark current is subtracted from the current measurement value during light irradiation, and the current value (photocurrent) generated by light irradiation is calculated.
  • the wavelength dependence of photocurrent was plotted.
  • FIG. 3 shows measurement data of the photocurrent spectrum. All of the measured photoelectric conversion films were found to have a photocurrent spectrum having a peak between 600 nm and 650 nm. For example, comparing the photocurrent at 6 OOnm,
  • P3HT doped with 10 wt% Li @ C has a photocurrent increased approximately 20 times compared to undoped P3HT.
  • P3HT doped with 10 wt% Li @ C has a photocurrent higher than that of P3HT doped with 10 wt% C.
  • a photoelectric conversion material composed of an electron acceptor composed of an atom-encapsulated fullerene and an electron donor composed of an electron-donating organic material is a photoelectric conversion material using empty fullerene as an electron acceptor. In comparison, photoconductivity is significantly enhanced.
  • the photoelectric conversion enhancement effect of the photoelectric conversion material is particularly high.
  • the photoelectric conversion efficiency can be improved by constituting a photoelectric conversion device using the photoelectric conversion material of the present invention. For example, it is highly effective in improving the sensitivity of photosensors and improving the energy conversion efficiency of photovoltaic cells.
  • a photoelectric conversion material can be manufactured by mixing and stirring a solution in which a photoconductive enhancer is dissolved and a solution in which an electron-donating organic material is dissolved. This simplifies the manufacturing process and reduces manufacturing costs. Is effective.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Hybrid Cells (AREA)

Abstract

Hollow fullerenes have been used as an electron acceptor being a constituent of photoelectric transduction material. However, satisfactorily high photocurrent intensifying effect has not been realized. There is provided production of a photoelectric transduction material comprising employing an atom-confining endohedral fullerene as an electron acceptor and doping an electron donating organic material with the atom-confining endohedral fullerene. A striking increase of photocurrent as compared with that of conventional photoelectric transduction material has been achieved.

Description

光電変換材料、光電変換装置、及び、光電変換材料の製造方法 技術分野  Photoelectric conversion material, photoelectric conversion device, and method for manufacturing photoelectric conversion material
[0001] 本発明は、有機半導体からなる光電変換材料と、それを用いた光電変換装置に関 する。  The present invention relates to a photoelectric conversion material made of an organic semiconductor and a photoelectric conversion device using the photoelectric conversion material.
背景技術  Background art
[0002] 非特許文献 1 :フラーレンの化学と物理 名古屋大学出版会  [0002] Non-Patent Document 1: Fullerene Chemistry and Physics Nagoya University Press
非特許文献 2 :有機太陽電池の現状と展望 p.425〜428応用物理第 71卷第 4号 (200 2)  Non-Patent Document 2: Current Status and Prospects of Organic Solar Cells p.425-428 Applied Physics No. 71 卷 No. 4 (200 2)
[0003] 資源枯渴ゃ大気汚染などの問題を抱える石油エネルギーに代わるクリーンなエネ ルギ一源として、太陽発電や風力発電などの代替エネルギーの利用が進められてい る。特に、太陽電池を用いた発電方式は大規模な発電施設が不要で、どこでも利用 でき、安全性や静粛性に優れていることから、代替エネルギーとしての期待が大きい  [0003] The use of alternative energy sources such as solar power generation and wind power generation has been promoted as a source of clean energy to replace petroleum energy that has problems such as air pollution. In particular, the power generation method using solar cells does not require a large-scale power generation facility, can be used anywhere, and is excellent in safety and quietness.
[0004] 太陽電池は、光電変換材料としてシリコン半導体などの無機材料を用いた無機太 陽電池と、有機半導体などの有機材料を用いた有機太陽電池に分類される。従来、 エネルギー変換効率が高い無機太陽電池の開発が主に行われてきた (単結晶シリコ ンで変換効率が 25%程度、アモルファスシリコンで変換効率が 12%程度)が、無機太陽 電池は、材料が高価であり、また、製造工程が複雑であることから、コスト削減が困難 で、太陽電池の普及を妨げる大きな要因となっていた。 [0004] Solar cells are classified into an inorganic solar cell using an inorganic material such as a silicon semiconductor as a photoelectric conversion material and an organic solar cell using an organic material such as an organic semiconductor. Conventionally, inorganic solar cells with high energy conversion efficiency have been mainly developed (conversion efficiency is about 25% for single crystal silicon and about 12% for amorphous silicon), but inorganic solar cells are made of materials. Is expensive, and the manufacturing process is complicated, so it is difficult to reduce costs, which has been a major obstacle to the spread of solar cells.
[0005] 近年、有機太陽電池の中でも、 Gratzel型の色素増感型太陽電池において、無機 太陽電池にせまる 10%程度の高 、エネルギー変換効率が得られた。有機太陽電池は 、無機太陽電池に比べ、製造コストが 1/5から 1/10と低コストで、資源的な制約が少な ぐ製造プロセスが簡単であるという利点があり、エネルギー変換効率向上など実用 化に向けた研究が進められて 、る。  [0005] In recent years, among organic solar cells, Gratzel-type dye-sensitized solar cells have obtained energy conversion efficiencies as high as 10%, which is equivalent to inorganic solar cells. Compared to inorganic solar cells, organic solar cells have the advantage of low manufacturing costs of 1/5 to 1/10, simple manufacturing processes with fewer resource constraints, and practical use such as improved energy conversion efficiency. Research is progressing toward the realization.
[0006] Gratzel型の色素増感型太陽電池は、ヨウ素を含む電解液を用いており、安定性、 耐久性の点で解決すべき問題が多い。一方、有機太陽電池の中でも、 Bulk Heteroj unction型有機薄膜太陽電池と呼ばれる有機太陽電池は、電子供与体と電子受容体 の有機分子を均一に混合した光電変換材料カゝらなる薄膜を異種電極で挟んだシン プルな構造をしており、作製が容易、高温プロセスが不要、安定性、耐久性に優れて いるという特徴を持ち、注目嫌めている。 [0006] Gratzel-type dye-sensitized solar cells use an electrolytic solution containing iodine, and have many problems to be solved in terms of stability and durability. Meanwhile, among organic solar cells, Bulk Heteroj An organic solar cell, called an unction-type organic thin-film solar cell, has a simple structure in which a thin film made of a photoelectric conversion material consisting of a uniform mixture of electron donor and electron acceptor organic molecules is sandwiched between different electrodes. It is easy to fabricate, does not require high-temperature processes, has excellent stability and durability, and dislikes attention.
[0007] 図 6は、従来の Bulk Heterojunction型有機薄膜太陽電池の断面図である。図 6に 示す有機薄膜太陽電池は、ガラス基板 101と、 ITOなどの透明材料カゝらなる正電極 1 02と、電子供与性有機材料 103にフラーレン 105をドープした光電変換材料膜と、 A 1からなる負電極 104とから構成されて 、る。  FIG. 6 is a cross-sectional view of a conventional bulk heterojunction type organic thin film solar cell. The organic thin-film solar cell shown in FIG. 6 includes a glass substrate 101, a positive electrode 102 made of a transparent material such as ITO, a photoelectric conversion material film in which an electron-donating organic material 103 is doped with fullerene 105, A 1 The negative electrode 104 is made up of.
[0008] 光電変換材料のホスト材料となる導電性高分子にフラーレン (C )をドープすること  [0008] Doping fullerene (C) into a conductive polymer serving as a host material of a photoelectric conversion material
60  60
により、光照射による蛍光強度が著しく減衰し、光電流を増強する効果がある。これ は、光照射により導電性高分子において励起された電子が電子親和力の大きいフラ 一レンに捕捉されるため、電子と同時に生成した正孔と再結合する確率力 、さくなる ためである。生成した電子は電子受容体であるフラーレン間をホッピングにより移動し 、生成した正孔は電子供与体である導電性高分子間をホッピングで移動する。光電 導のキャリアとなる電子と正孔の寿命が長くなるので、光電流が増加する。  Thus, the fluorescence intensity due to light irradiation is remarkably attenuated and the photocurrent is enhanced. This is because the electrons excited in the conductive polymer by light irradiation are trapped by fullerene having a high electron affinity, so the probability of recombination with holes generated simultaneously with the electrons is reduced. The generated electrons move between the fullerenes which are electron acceptors by hopping, and the generated holes move between the conductive polymers which are electron donors by hopping. The lifetime of electrons and holes, which are photoconductive carriers, is increased, so that the photocurrent increases.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 従来のフラーレン (空のフラーレン)を電子受容体とする光電変換材料を用いた太陽 電池は、無機太陽電池を置き換えるほど十分高い光電流の増強効果が得られなか つた o [0009] Conventional solar cells using photoelectric conversion materials with fullerenes (empty fullerenes) as electron acceptors did not have a sufficiently high photocurrent enhancement effect to replace inorganic solar cells.
課題を解決するための手段  Means for solving the problem
[0010] 光電変換材料を構成する電子供与体として電子供与性の有機材料を用い、電子受 容体として原子内包フラーレン類を用いることにした。  [0010] It was decided to use an electron-donating organic material as the electron donor constituting the photoelectric conversion material, and to use atom-encapsulated fullerenes as the electron acceptor.
[0011] 本発明(1)は、原子内包フラーレン類力もなる光電導増強剤である。  [0011] The present invention (1) is a photoconductivity enhancer that also has the power of endohedral fullerenes.
[0012] 本発明(2)は、前記原子内包フラーレン類に内包される原子がアルカリ金属である In the present invention (2), the atoms encapsulated in the atom-encapsulated fullerenes are alkali metals.
、前記発明(1)の光電導増強剤である。 The photoconductivity enhancer of the invention (1).
[0013] 本発明(3)は、前記原子内包フラーレン類に内包される原子が Liである、前記発明 [0013] In the present invention (3), the atom encapsulated in the atom-encapsulated fullerene is Li.
(1)の光電導増強剤である。 [0014] 本発明(4)は、フラーレン類が C 、C 又はこれらの混合フラーレンである、前記発 It is a photoconductivity enhancer of (1). [0014] In the present invention (4), the fullerene is C 1, C 2 or a mixed fullerene thereof.
60 70  60 70
明(1)乃至前記発明(3)の光電導増強剤である。  The photoconductivity enhancer according to the invention (1) to the invention (3).
[0015] 本発明(5)は、前記発明(1)乃至前記発明 (4)の光電導増強剤を含む光電変換 材料である。 [0015] The present invention (5) is a photoelectric conversion material comprising the photoconductivity enhancer of the above inventions (1) to (4).
[0016] 本発明(6)は、少なくとも前記光電導増強剤と電子供与性の有機材料とからなる前 記発明(5)の光電変換材料である。  [0016] The present invention (6) is the photoelectric conversion material according to the invention (5) comprising at least the above-described photoconductivity enhancer and an electron donating organic material.
[0017] 本発明(7)は、少なくとも、基板と、前記発明(5)の光電変換材料と、電極とから構 成される光電変換装置である。 The present invention (7) is a photoelectric conversion device comprising at least a substrate, the photoelectric conversion material of the invention (5), and an electrode.
[0018] 本発明(8)は、前記光電変換装置が、光電池又は光センサーである前記発明(7) の光電変換装置である。 [0018] The present invention (8) is the photoelectric conversion device of the invention (7), wherein the photoelectric conversion device is a photovoltaic cell or a photosensor.
[0019] 本発明(9)は、前記発明(1)乃至前記発明 (4)記載の光電導増強剤を溶かした溶 液と電子供与性の有機材料を溶カゝした溶液を混合攪拌する工程を含む光電変換材 料の製造方法である。 [0019] The present invention (9) is a step of mixing and stirring a solution obtained by dissolving the photoconductivity enhancer according to the invention (1) to the invention (4) and a solution obtained by dissolving an electron donating organic material. Is a method for producing a photoelectric conversion material comprising
発明の効果  The invention's effect
[0020] 1.原子内包フラーレンからなる電子受容体と、電子供与性の有機材料からなる電子 供与体とから構成される光電変換材料は、空のフラーレンを電子受容体として用いた 光電変換材料と比較して、光電導が著しく増強される。  [0020] 1. A photoelectric conversion material composed of an electron acceptor made of an endohedral fullerene and an electron donor made of an electron-donating organic material comprises a photoelectric conversion material using empty fullerene as an electron acceptor. In comparison, photoconductivity is significantly enhanced.
2.原子内包フラーレンに内包される原子としてアルカリ金属を用いることにより、特に 光電変換材料の光電導増強効果が高 、。  2. By using alkali metal as an atom encapsulated in the atomic inclusion fullerene, the photoelectric conversion enhancement effect of the photoelectric conversion material is particularly high.
3. Liを内包原子として用いると、内包フラーレンの生成効率が高ぐ内包フラーレン の大量生成による工業的利用の促進、製造コストの低減に効果がある。  3. When Li is used as an encapsulated atom, the production efficiency of endohedral fullerene is increased, and industrial use is promoted by mass production of endohedral fullerene, and the production cost is reduced.
4. C 、 C 又はこれらの混合フラーレンは、他の高次フラーレンと比較して入手が容 4. C, C or mixed fullerenes are available in comparison with other higher order fullerenes.
60 70 60 70
易でかつ安価である。  Easy and inexpensive.
5.本発明の光電変換材料を用い、光電変換装置を構成することにより光電変換効 率を向上できる。例えば、光センサーの感度向上や、光電池のエネルギー変換効率 の向上に効果が高い。  5. The photoelectric conversion efficiency can be improved by constituting a photoelectric conversion device using the photoelectric conversion material of the present invention. For example, it is highly effective in improving the sensitivity of photosensors and improving the energy conversion efficiency of photovoltaic cells.
6.光電導増強剤を溶カゝした溶液と電子供与性の有機材料を溶かした溶液を混合攪 拌することにより光電変換材料を製造できるので、製造プロセスが簡単になり、製造コ ストの低減に効果がある。 6. A photoelectric conversion material can be produced by mixing and stirring a solution in which a photoconductive enhancer is dissolved and a solution in which an electron-donating organic material is dissolved. This is effective in reducing strikes.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 l](a)及び (b)は、本発明の有機薄膜太陽電池の断面図である。  [FIG. 1] (a) and (b) are cross-sectional views of the organic thin film solar cell of the present invention.
[図 2](a)及び (b)は、光電変換特性測定用試料の平面図、及び、断面図である。(c)は FIG. 2 (a) and (b) are a plan view and a cross-sectional view of a photoelectric conversion characteristic measurement sample. (C)
、光電変換特性の測定装置の断面図である。 It is sectional drawing of the measuring apparatus of a photoelectric conversion characteristic.
[図 3]光電流スペクトルの測定データである。  [Fig. 3] Photocurrent spectrum measurement data.
[図 4](a)及び (b)は、内包フラーレンの製造装置の断面図である。  FIG. 4 (a) and (b) are cross-sectional views of an endohedral fullerene production apparatus.
[図 5]内包フラーレンの質量分析データである。  [Fig. 5] Mass spectrometry data of endohedral fullerenes.
[図 6]従来の有機薄膜太陽電池の断面図である。  FIG. 6 is a cross-sectional view of a conventional organic thin film solar cell.
符号の説明  Explanation of symbols
[0022] 1、 13 ガラス基板 [0022] 1, 13 Glass substrate
2 正電極  2 Positive electrode
3 電子供与性有機材料  3 Electron donating organic materials
4 内包フラーレン類  4 Encapsulated fullerenes
5 負電極  5 Negative electrode
6、 7 配線  6, 7 Wiring
11 アルミニウム電極  11 Aluminum electrode
12 光電変換材料膜  12 Photoelectric conversion material film
14 暗室  14 Dark room
15 分光光源  15 Spectral light source
16 光学系  16 optics
17 照射光  17 Irradiation light
18 測定試料  18 Measurement sample
19 半導体パラメータ測定装置  19 Semiconductor parameter measuring device
31、 51 真空容器  31, 51 Vacuum container
32、 52 真空ポンプ  32, 52 Vacuum pump
33、 53 磁界発生コイル  33, 53 Magnetic field generating coil
34、 54 アルカリ金属昇華用オーブン 35、 55 アルカリ金属蒸気導入管 34, 54 Alkali metal sublimation oven 35, 55 Alkaline metal vapor inlet pipe
36、 56 ホッ卜プレー卜  36, 56 Hot play
37、 57 プラズマ流  37, 57 Plasma flow
38、 58 フラーレン昇華用オーブン  38, 58 Fullerene Sublimation Oven
39 再昇華用円筒  39 Resublimation cylinder
59 フラーレン蒸気導入管  59 Fullerene steam inlet pipe
40、 60 堆積プレート  40, 60 deposition plate
41、 61 ノィァス電源  41, 61 Noise power supply
42、 62 堆積膜  42, 62 Deposited film
101 ガラス基板  101 glass substrate
102 正電極  102 Positive electrode
103 電子供与性有機材料  103 Electron donating organic materials
104 負電極  104 Negative electrode
105 フラーレン  105 Fullerene
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 以下、本発明に係る各用語の意義について明らかにすると共に、本発明の最良形 態について説明する。 Hereinafter, the meaning of each term according to the present invention will be clarified, and the best mode of the present invention will be described.
[0024] 「フラーレン類」とは、フラーレン、ヘテロフラーレン、化学修飾フラーレン、フラーレ ンダイマーのようなフラーレン同士の繰り返し結合体 (イオン結合、共有結合等)を包 含する概念であり、ここで、「フラーレン」とは、 C (n=60, 70, 76, 78, · · · )で示さ れる中空の炭素クラスター物質であり、例えば、 C やじ を挙げることができる。また、  [0024] "Fullerenes" is a concept including repetitive bonds (ionic bonds, covalent bonds, etc.) of fullerenes such as fullerenes, heterofullerenes, chemically modified fullerenes, and fullerene dimers. “Fullerene” is a hollow carbon cluster material represented by C (n = 60, 70, 76, 78,...), And examples thereof include C 2. Also,
60 70  60 70
繰り返し結合体の場合、すべてのフラーレン単位中に原子が内包されて 、なくともよ い(例えばダイマーの場合、一方のフラーレンのみ原子が内包されている態様を挙げ ることができる)。  In the case of a repeated bond, atoms may be included in all fullerene units (for example, in the case of a dimer, an embodiment in which only one fullerene is included) can be mentioned.
[0025] 「原子内包」とは、篕状のフラーレン分子の中空部に炭素以外の原子を閉じ込めた 状態として定義される。内包される原子の数は、一個でもよいし、複数個でもよいが、 内包される原子の最大数は、フラーレン分子の大きさと内包原子の大きさに制限され る。 C に Liを内包する場合は、 1個または 2個の原子を内包するのが好ましい。 [0026] 「空のフラーレン」とは、篕状のフラーレン分子の中空部に原子が内包されていない フラーレンのことである。 [0025] "Atomic inclusion" is defined as a state in which atoms other than carbon are confined in a hollow portion of a cage-like fullerene molecule. The number of atoms to be included may be one or plural, but the maximum number of atoms to be included is limited to the size of the fullerene molecule and the size of the included atoms. When C includes Li, it is preferable to include one or two atoms. [0026] "Empty fullerene" is a fullerene in which atoms are not encapsulated in the hollow part of a cage-like fullerene molecule.
[0027] 「混合フラーレン」とは、種類の異なる複数のフラーレンが混合した炭素クラスタ一物 質のことである。非特許文献 1によると、抵抗加熱法やアーク放電法でフラーレンを製 造する場合、生成されたフラーレンの中で、重量比にして、 70〜85%が C 、 10〜1  [0027] "Mixed fullerene" is a single carbon cluster material in which a plurality of different types of fullerenes are mixed. According to Non-Patent Document 1, when fullerene is produced by resistance heating method or arc discharge method, 70 to 85% of the fullerene produced is C, 10-1
60  60
5%が C 、残りが C 、C 、C などの高次フラーレンとなる。燃焼法によるフラーレン 5% is C, and the rest is higher order fullerene such as C, C, C, etc. Fullerene by combustion method
70 76 78 84 70 76 78 84
の製造においても、 C 、C の重量比は高次フラーレンよりも大きい。従って、 C 、C  Also in the production of C, the weight ratio of C 1 and C 2 is larger than that of higher-order fullerene. Therefore, C, C
60 70 60 70 は、他の高次フラーレンと比較して入手が容易でかつ安価である。また、 C  60 70 60 70 is easily available and inexpensive compared with other higher-order fullerenes. C
60とじ 70力も なる混合フラーレンも、フロンティアカーボンなど力 市販されている。 C とじ 力もな  Mixed fullerenes with a strength of 60 and 70 are available on the market, including frontier carbon. C binding power
60 70 る混合フラーレンに、内包原子として、例えば、 Liを内包させた内包フラーレンを光電 導増強剤に用いることが可能である。  For example, an endohedral fullerene in which Li is encapsulated in the mixed fullerene as an encapsulated atom can be used as the photoconductive enhancer.
[0028] 「光電導」とは、光を照射することにより生じる電気伝導のことである。当該光電導増 強剤は、電子供与体若しくは電子受容体又は光電導増強体或いはこれらの組み合 わせのいずれでもよぐ好適には、電子受容体である。 “Photoelectric conduction” refers to electric conduction caused by irradiating light. The photoconductivity enhancer is preferably an electron acceptor, an electron acceptor, a photoconductivity enhancer, or a combination thereof.
[0029] 「からなる」とは、「のみ力もなる」 t 、う概念と「含む」と 、う概念を意味する。従って、 本発明(1)に係る光電導増強剤は、原子内包フラーレン類以外の成分を含有してい てもよい。 “Consisting” means “contains” t and “contains”. Therefore, the photoconductivity enhancer according to the present invention (1) may contain components other than the endohedral fullerenes.
[0030] 「電子供与体」とは、電子を他の物質に渡しやす 、性質 (電子供与性)を持つ物質 のことである。電子供与性有機材料としては、ポリ- 3-へキシルチオフェン(P3HT)な どのポリチォフェン、ポリ p-フエ二レン、ポリ p-フエ二レンビニレン、ポリア二リン、ポリピ ロール、 PEDOT、 P30T、 POPT、 MDMO- PPV、 MEH- PPVなどの高分子重合体や、 その誘導体が用いられる。また、電子供与性有機材料としては、高分子に限定される ものではなぐ例えば、 ZnPC、ポルフィリン、テトラフエ-ルポルフィン銅、フタロシア- ン、銅フタロシアニン、チタニウムフタロシアニンオキサイドなどのポルフィリン化合物 、 1,1-ビス {4- (ジ- P-トリルァミノ)フエ-ル}シクロへキサン、 4,4',4"-トリメチルトリフエ -ルァミン、 Ν,Ν,Ν',Ν'-テトラキス(P-トリル)- P-フエ-レンジァミン、 1- (Ν,Ν-ジ- Ρ-トリ ルァミノ)ナフタレン、 4,4'-ビス(ジメチルァミノ)- 2- 2'-ジメチルトリフエ-ルメタン、 Ν,Ν, Ν',Ν'-テトラフエニル- 4,4'-ジアミノビフエニル、 Ν,Ν'-ジフエニル- Ν,Ν'-ジ- m-トリル- 4 ,4'-ジアミノビフエ-ル、 N-フエ-ルカルバゾールなどの芳香族第三級ァミンや、 4-ジ -P-トリルアミノスチルベン、 4- (ジ- P-トリルァミノ)- 4し {4- (ジ- P-トリルァミノ)スチリル }ス チルベンなどのスチルベン化合物、トリァゾール誘導体、ォキサジザゾール誘導体、 イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導 体、フ -レンジァミン誘導体、ァニールアミン誘導体、ァミノ置換カルコン誘導体、 ォキサゾール誘導体、スチリルアントラセン誘導体、フルォレノン誘導体、ヒドラゾン誘 導体、シラザン誘導体、ポリシラン系ァ-リン系共重合体、高分子オリゴマー、スチリ ルァミン化合物、芳香族ジメチリディン系化合物や、ポリメチルチオフェンなども用い られる。 [0030] An "electron donor" is a substance having a property (electron donating property) that allows electrons to be transferred to another substance. Electron donating organic materials include polythiophene such as poly-3-hexylthiophene (P3HT), poly p-phenylene, poly p-phenylene vinylene, polyaniline, polypyrrole, PEDOT, P30T, POPT, MDMO -High molecular weight polymers such as PPV and MEH-PPV and their derivatives are used. In addition, the electron-donating organic material is not limited to a polymer, for example, porphyrin compounds such as ZnPC, porphyrin, tetraphenylporphine copper, phthalocyanine, copper phthalocyanine, titanium phthalocyanine oxide, 1,1-bis {4- (Di-P-tolylamino) phenol} cyclohexane, 4,4 ', 4 "-trimethyltriphenyl-lamine, Ν, Ν, Ν', Ν'-tetrakis (P-tolyl)-P -Phenylenediamine, 1- (Ν, Ν-di-Ρ-triramino) naphthalene, 4,4'-bis (dimethylamino) -2-2'-dimethyltrimethane, Ν, Ν, Ν ', Ν '-Tetraphenyl-4,4'-diaminobiphenyl, Ν, Ν'-diphenyl-Ν, Ν'-di-m-tolyl-4 , 4'-diaminobiphenyl, N-phenolcarbazole and other aromatic tertiary amines, 4-di-P-tolylaminostilbene, 4- (di-P-tolylamino) -4 and {4- ( Di-P-tolylamino) styryl} stilbene compounds such as stilbene, triazole derivatives, oxazizazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, furanyleneamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole Derivatives, styryl anthracene derivatives, fluorenone derivatives, hydrazone derivatives, silazane derivatives, polysilane-based phosphorus-based copolymers, polymer oligomers, styrylamine compounds, aromatic dimethylidin-based compounds, and polymethylthiophene are also used.
[0031] 「電子受容体」とは、電子を他の物質力 受け取りやす 、性質 (電子受容性)を持つ 物質のことである。非特許文献 2によれば、電子受容性有機材料としては、従来、 C  [0031] An "electron acceptor" is a substance that has the property (electron acceptability) that can easily accept electrons. According to Non-Patent Document 2, as an electron-accepting organic material, conventionally, C
60 60
、 PCBM、 MEHCN-PPV, MPP力 ^用!ヽられて!ヽた。 For PCBM, MEHCN-PPV, MPP power ^!
[0032] 「光電変換材料」とは、光信号または光エネルギーを電気信号または電気工ネルギ 一に変換する材料のことである。 Bulk Heterojunction型の光電変換材料は、電子供 与体と電子受容性の有機材料を均一に混合して作製される。光照射により電子と正 孔が励起される。励起された電子が電子受容体に捕捉され電子受容体間を移動し、 正孔が電子供与体間を移動することにより電気伝導が生じる。 [0032] "Photoelectric conversion material" refers to a material that converts an optical signal or optical energy into an electrical signal or electrical energy. Bulk Heterojunction type photoelectric conversion materials are produced by uniformly mixing an electron donor and an electron-accepting organic material. Electrons and holes are excited by light irradiation. Excited electrons are captured by the electron acceptor and move between the electron acceptors, and holes move between the electron donors to cause electrical conduction.
[0033] 「光電変換装置」とは、光電変換材料を用いて、光信号または光エネルギーを電気 信号または電気エネルギーに変換する装置のことである。 A “photoelectric conversion device” is a device that converts an optical signal or optical energy into an electrical signal or electrical energy using a photoelectric conversion material.
「基板」とは、光電変換材料を支持する機能を持つ部材のことであり、「電極」とは光 電変換材料に光を照射したときに発生する電気信号や電気エネルギーを外部の電 気回路に出力するインターフェースのことである。  “Substrate” refers to a member that has a function of supporting a photoelectric conversion material, and “electrode” refers to an electrical signal or energy generated when light is applied to the photoelectric conversion material. It is an interface that outputs to.
[0034] 光信号または光エネルギーを電気信号に変換する光電変換装置を特に「光センサ 一」と定義する。光センサーとしては、例えば、デジタルカメラ、光通信用受光センサ 一、光検出スィッチなどが含まれる。 A photoelectric conversion device that converts an optical signal or optical energy into an electrical signal is specifically defined as “one optical sensor”. Examples of the optical sensor include a digital camera, a light receiving sensor for optical communication, and a light detection switch.
[0035] また、光エネルギーを電気工ネルギ一に変換する光電変換装置を特に「光電池」と 定義する。光電池としては、太陽電池などが含まれる。 [0035] A photoelectric conversion device that converts light energy into electrical energy is particularly defined as a "photocell". Photovoltaic cells include solar cells.
[0036] (内包フラーレン類の製造方法) 本発明に係る内包フラーレン類は、例えば、真空容器中で加熱したホットプレート に対し内包原子蒸気を噴射してプラズマを発生させ、発生したプラズマ流をプラズマ 流の下流に配置した堆積プレートに照射し、内包フラーレン類を堆積させる方法によ り製造可能である。 [0036] (Method for producing endohedral fullerenes) The endohedral fullerenes according to the present invention, for example, generate plasma by injecting encapsulated atomic vapor onto a hot plate heated in a vacuum vessel, and irradiate the generated plasma flow to a deposition plate disposed downstream of the plasma flow. It can be produced by a method of depositing endohedral fullerenes.
[0037] 例えば、本発明に係る内包フラーレン類は、図 4(a)に示す製造装置で製造すること が可能である。内包フラーレン類の製造装置は、プラズマ発生部、フラーレン類導入 部、内包フラーレン類堆積部を有する管状の真空容器 31、真空容器 31を排気する 真空ポンプ 32、プラズマを閉じ込めるための磁界発生コイル 33により構成される。最 初に、 Liなどの内包原子材料をオーブン 34で加熱し昇華させる。発生した内包原子 蒸気をプラズマ発生部に導入管 35を通して導入し、ホットプレート 36上で内包原子 プラズマを発生させる。発生した内包原子プラズマは、均一磁場に沿って管軸方向 に流れる。フラーレン類導入部において、オーブン 38により C などのフラーレン類を  [0037] For example, the endohedral fullerenes according to the present invention can be produced by the production apparatus shown in FIG. 4 (a). An endohedral fullerene production apparatus includes a plasma generating unit, a fullerene introducing unit, a tubular vacuum vessel 31 having an encapsulating fullerene depositing unit, a vacuum pump 32 for exhausting the vacuum vessel 31, and a magnetic field generating coil 33 for confining plasma. Composed. First, encapsulated atomic materials such as Li are heated in an oven 34 and sublimated. The generated encapsulated atom vapor is introduced into the plasma generation section through the introduction pipe 35 and the encapsulated atom plasma is generated on the hot plate 36. The generated internal atomic plasma flows in the direction of the tube axis along a uniform magnetic field. In the fullerene introduction section, fullerenes such as C are removed by the oven 38.
60  60
昇華させた蒸気をプラズマ流 37に対し噴射することにより、プラズマ流を構成する電 子が C に付着して C の負イオンが発生する。内包原子の正イオンと発生した C の By injecting the sublimated vapor into the plasma flow 37, the electrons that make up the plasma flow attach to the C and negative C ions are generated. Of positive atoms of encapsulated atoms and generated C
60 60 60 負イオン力 なるプラズマ流は、内包フラーレン類堆積部において、バイアス電源 41 により正のノ ィァス電圧を印加した堆積プレート 40前面で衝突し、堆積プレート 40表 面に内包フラーレン類が堆積する。 60 60 60 The plasma flow of negative ion force collides with the front surface of the deposition plate 40 to which a positive noise voltage is applied by the bias power source 41 in the inclusion fullerene deposition part, and the inclusion fullerenes accumulate on the surface of the deposition plate 40. .
[0038] また、本発明に係る内包フラーレン類は、図 4(b)に示す製造装置でも製造が可能 である。内包フラーレン類の製造装置は、プラズマ発生部、フラーレン類導入部、内 包フラーレン類堆積部からなる管状の真空容器 51、真空容器 51を排気する真空ポ ンプ 52、プラズマを閉じ込めるための磁界発生コイル 53により構成される。最初に、 Liなどの内包原子材料をオーブン 54で加熱し昇華させる。発生した内包原子蒸気を プラズマ発生部に導入管 55を通して導入し、ホットプレート 56上で内包原子プラズ マを発生させる。発生した内包原子プラズマは、均一磁場に沿って管軸方向に流れ 、堆積プレート 60に照射される。同時に、堆積プレート 60の前面に配置したフラーレ ン類導入部において、オーブン 58により C などのフラーレン類を昇華させた蒸気を [0038] The endohedral fullerenes according to the present invention can also be produced by the production apparatus shown in Fig. 4 (b). The apparatus for producing endohedral fullerenes consists of a tubular vacuum vessel 51 consisting of a plasma generation unit, fullerenes introduction unit, inclusion fullerenes deposition unit, a vacuum pump 52 for exhausting the vacuum vessel 51, and a magnetic field generating coil for confining the plasma. 53. First, the encapsulated atomic material such as Li is heated in an oven 54 and sublimated. The generated encapsulated atomic vapor is introduced into the plasma generator through the introduction pipe 55, and the encapsulated atomic plasma is generated on the hot plate 56. The generated encapsulated atomic plasma flows in the tube axis direction along a uniform magnetic field, and is applied to the deposition plate 60. At the same time, steam obtained by sublimating fullerenes such as C by the oven 58 is introduced in the fullerene introduction section disposed in front of the deposition plate 60.
60  60
堆積プレートに噴射する。堆積プレート 60には、バイアス電源 61により負のバイアス 電圧を印加する。負のノ ィァス電圧によりプラズマを構成する Liの正イオンは加速さ れ、堆積プレート 60上に蒸着されたフラーレン類に衝突して、フラーレン分子に内包 され、堆積プレート 60表面に内包フラーレン類が堆積する。 Spray onto the deposition plate. A negative bias voltage is applied to the deposition plate 60 by a bias power source 61. Li positive ions composing the plasma by the negative noise voltage are accelerated. Then, the fullerenes deposited on the deposition plate 60 collide with each other and are contained in the fullerene molecules, and the inclusion fullerenes are deposited on the surface of the deposition plate 60.
[0039] (内包フラーレン類の精製) [0039] (Purification of endohedral fullerenes)
堆積プレート上に堆積した生成膜には、内包フラーレン類以外に空のフラーレンや フラーレンに内包されな力つた内包原子も含まれて 、る。内包フラーレン類を電子受 容体として用い光電変換材料を作製する場合に、光電導増強の効果を高めるために は、内包フラーレン類以外の物質をできるだけ除去し、内包フラーレン類の純度を高 めることが好ましい。  In addition to the endohedral fullerenes, the resulting film deposited on the deposition plate includes encapsulated atoms that are not encapsulated in empty fullerenes or fullerenes. When producing a photoelectric conversion material using endohedral fullerenes as an electron acceptor, in order to increase the photoelectric conduction effect, remove substances other than endohedral fullerenes as much as possible to increase the purity of the endohedral fullerenes. Is preferred.
[0040] 内包フラーレン類の純度を高める方法は、生成膜を堆積プレートから剥離し、粉末 状にした後、特定の溶液に対する内包フラーレン類と内包フラーレン類以外の物質 の溶解度の違いにより溶液中、または、溶液に不溶の残渣中で内包フラーレンを濃 縮する方法を用いる。例えば、トルエンに対しては、空のフラーレンは、 Li内包フラー レンよりも溶解度が大き 、ので、トルエンに溶解し残渣を回収する作業を繰り返すこと で、 Li内包フラーレンを濃縮することができる。  [0040] A method for increasing the purity of the endohedral fullerenes is to peel off the produced film from the deposition plate and form a powder, and then in the solution due to the difference in solubility between the endohedral fullerenes and substances other than the endohedral fullerenes in a specific solution. Alternatively, a method of concentrating the endohedral fullerene in a residue insoluble in the solution is used. For example, for fullerene, empty fullerene has higher solubility than Li-encapsulated fullerene, and Li-encapsulated fullerene can be concentrated by repeating the work of dissolving in toluene and collecting the residue.
[0041] 濃縮した内包フラーレン類を含む生成物から、最終的に HPLC (高速液体クロマトグ ラフィ一法)を用いてカラムにおける保持時間の違いにより内包フラーレン類を単離 する。  [0041] From the product containing concentrated endohedral fullerenes, the endohedral fullerenes are finally isolated by HPLC (high performance liquid chromatography method) according to the difference in retention time in the column.
[0042] (内包フラーレン類と電子供与性有機材料力 なる光電変換膜)  [0042] (Encapsulated fullerenes and photoelectric conversion film consisting of an electron-donating organic material)
以下、本発明に係る光電導増強剤の最良形態を、電子受容性内包フラーレン類と 電子供与性有機材料を例にとり説明する。尚、本発明の技術的範囲は以下の形態 に限定されるものではない。  Hereinafter, the best mode of the photoconductive enhancement agent according to the present invention will be described by taking electron-accepting endohedral fullerenes and electron-donating organic materials as examples. The technical scope of the present invention is not limited to the following embodiments.
[0043] 図 1(a)及び (b)は、本発明の有機薄膜太陽電池の断面図である。図 1(a)に示す有機 薄膜太陽電池は、ガラス基板 1と、 ITOなどの透明材料からなる正電極 2と、 P3HTか らなる電子供与性有機材料 3に Li内包フラーレン力もなる内包フラーレン類 4をドー プした光電変換材料膜と、 A1力もなる負電極 5とから構成されて ヽる。  [0043] FIGS. 1 (a) and 1 (b) are cross-sectional views of the organic thin-film solar cell of the present invention. The organic thin-film solar cell shown in Fig. 1 (a) is composed of a glass substrate 1, a positive electrode 2 made of a transparent material such as ITO, an electron-donating organic material 3 made of P3HT, and an endohedral fullerene that has Li-containing fullerene force 4 It is composed of a photoelectric conversion material film doped with a negative electrode 5 having A1 force.
[0044] 図 1(b)に示すように、ガラス基板 1と透明な正電極 2を通って、 h Vで表される光が Li 内包フラーレンをドープした P3HTからなる光電変換材料に入射される。 P3HTにお ヽ て光エネルギーに励起されて電子正孔対が生成する。生成した電子は、電子親和力 の大きい Li内包フラーレンに捕捉されるため、電子と同時に生成した正孔と再結合す る確率力 、さくなる。 Li@C の LUMOは C の LUMOよりも低いので、励起した電子は [0044] As shown in Fig. 1 (b), light represented by hV is incident on a photoelectric conversion material made of P3HT doped with Li-containing fullerene through a glass substrate 1 and a transparent positive electrode 2. . In P3HT, an electron-hole pair is generated when excited by light energy. The generated electrons have an electron affinity. Since it is trapped by the large Li-encapsulated fullerene, the probability of recombination with holes generated simultaneously with electrons is reduced. Li @ C LUMO is lower than C LUMO, so excited electrons are
60 60  60 60
効率的に Li内包フラーレンに捕捉される。捕捉された電子は、 Li内包フラーレンの分 子間をホッピングで移動する。また、生成した正孔は電子供与体である P3HT間をホ ッビングで移動する。光電導のキャリアとなる電子と正孔の寿命が長くなるので、光電 導が促進され、光電流が増加する。  Efficiently captured by Li-encapsulated fullerene. The trapped electrons move by hopping between the Li-encapsulated fullerene molecules. The generated holes move between the P3HT electron donors by hobbing. The lifetime of electrons and holes, which are carriers for photoconduction, is increased, so that photoconduction is promoted and photocurrent is increased.
[0045] 電子供与体と電子受容体により構成された光電変換材料からなる薄膜を、 ITOから なる電極 2と A1カゝらなる電極 5で挟むことにより有機太陽電池を作製する。 ITO電極 2 、光電変換膜、 A1電極 5のバンド構造の違いにより、光電変換膜において生成した正 孔は ITO電極 2側に移動し、生成した電子は A1電極 5側に移動する。 ITO電極 2と A1 電極 5の間に配線 6、 7を介して図示しない外部負荷を接続すると、 ITO電極 2から外 部負荷を通って A1電極 5に向力つて電流が流れる。 Li内包フラーレンを電子受容体と して用いると、 Li内包フラーレンは空のフラーレンよりも電子の移動度が大き!/、ので、 光電流を増加することが可能である。  [0045] An organic solar cell is manufactured by sandwiching a thin film made of a photoelectric conversion material composed of an electron donor and an electron acceptor between an electrode 2 made of ITO and an electrode 5 made of A1. Due to the difference in the band structure of the ITO electrode 2, the photoelectric conversion film, and the A1 electrode 5, the holes generated in the photoelectric conversion film move to the ITO electrode 2 side, and the generated electrons move to the A1 electrode 5 side. When an external load (not shown) is connected between the ITO electrode 2 and the A1 electrode 5 via the wirings 6 and 7, current flows from the ITO electrode 2 to the A1 electrode 5 through the external load. When Li-encapsulated fullerene is used as an electron acceptor, Li-encapsulated fullerene has higher electron mobility than empty fullerene, and can increase photocurrent.
[0046] (光電変換膜の製造方法)  [0046] (Method for producing photoelectric conversion film)
本発明の光電変換材料を用いた光電変換膜は極めて簡単なプロセスにより製造す ることが可能である。上述した内包フラーレンの製造方法及び精製方法により生成単 離した粉末状の内包フラーレンを二硫化炭素などの溶媒に溶解する。電子供与性有 機材料はトルエンなどの溶媒に溶解する。内包フラーレン溶液と電子供与性有機材 料溶液を超音波攪拌し、内包フラーレンを電子供与性有機材料中に十分均一に分 散させる。  A photoelectric conversion film using the photoelectric conversion material of the present invention can be produced by an extremely simple process. The powdered endohedral fullerenes produced and separated by the above-described endohedral fullerene production method and purification method are dissolved in a solvent such as carbon disulfide. The electron-donating organic material is dissolved in a solvent such as toluene. The endohedral fullerene solution and the electron donating organic material solution are agitated ultrasonically to disperse the endohedral fullerene sufficiently uniformly in the electron donating organic material.
内包フラーレンのドープ量としては、例えば、 P3HTに対する Li@C の重量%として  The amount of endohedral fullerene doped is, for example, the weight percentage of Li @ C relative to P3HT.
60  60
、 lwt%以上、 60wt%以下とするのが好ましい。内包フラーレンが少なすぎると光照射に より励起した電子が効率的に内包フラーレンに捕捉されず、光電流を十分増加させ ることができない。また、内包フラーレンは、電子供与性有機材料と比較し高価な材 料であり、内包フラーレンの量を多くする場合、製造コストが増加する問題がある。電 子供与体が電子受容体に比べ少なすぎても光照射により励起される電子正孔対の 数が減少するので光電導が生じに《なる。内包フラーレンと電子供与性有機材料の 比を上述した適切な範囲にすることにより光電変換効率を最適化することが可能であ る。 Lwt% or more and 60 wt% or less is preferable. If the endohedral fullerene is too small, electrons excited by light irradiation are not efficiently captured by the endohedral fullerene, and the photocurrent cannot be increased sufficiently. In addition, the endohedral fullerene is an expensive material as compared with the electron donating organic material, and when the amount of the endohedral fullerene is increased, there is a problem that the production cost increases. Even if the number of electron donors is too small compared to the electron acceptor, the number of electron-hole pairs excited by light irradiation decreases, so that photoconductivity occurs. Of endohedral fullerenes and electron-donating organic materials It is possible to optimize the photoelectric conversion efficiency by setting the ratio within the appropriate range described above.
[0047] (光電池)  [0047] (Photo battery)
光電変換膜を正電極と負電極で挟むことにより、太陽電池などの光電池を作製す ることがでさる。  A photovoltaic cell such as a solar cell can be fabricated by sandwiching the photoelectric conversion film between a positive electrode and a negative electrode.
[0048] 正電極は、光電変換膜の HOMO準位と比較し、仕事関数が同程度か、より大きい 電極材料を用いることが好適である。また、光電池という用途との関係上、正電極又 は負電極の少なくともいずれか一方は、透明乃至は半透過性であることが好適であ る。このような電極材料として、金(例えば半透過膜の形態)や ITO (Indium Tin Oxide )を挙げることがでさる。  [0048] For the positive electrode, it is preferable to use an electrode material having the same or larger work function than the HOMO level of the photoelectric conversion film. Further, in view of the use as a photovoltaic cell, it is preferable that at least one of the positive electrode and the negative electrode is transparent or translucent. Examples of such electrode materials include gold (for example, in the form of a semipermeable membrane) and ITO (Indium Tin Oxide).
[0049] 次に、負電極は、陽極の仕事関数と比較し、仕事関数がより小さぐかつ、安定な電 極材料を用いることが好適である。例えば、アルミニウム、銀、 Mg— In, Mg— Agな どの合金を挙げることができる。尚、前記のように、光電池という用途との関係上、正 電極又は負電極の少なくともいずれか一方は、透明乃至は半透過性であることが好 適である。  Next, for the negative electrode, it is preferable to use a stable electrode material having a smaller work function than the work function of the anode. For example, alloys such as aluminum, silver, Mg-In, Mg-Ag can be cited. Note that, as described above, it is preferable that at least one of the positive electrode and the negative electrode is transparent or semi-transmissive in relation to the use of the photovoltaic cell.
[0050] (光センサー)  [0050] (Light sensor)
Bulk Heterojunction型の光電変換膜を用いた光センサーは、動物の視細胞と類似 した原理で動作する光センサーであり、極めて高感度の光センサーとして機能する。 光センサーに入射した光強度の違いにより、励起される電子、正孔力 なるキャリア 数が制御されるので、光電変換膜上に一定の間隔で配置した電極間、または、光電 変換膜を上下カゝら挟んだ電極間の電流、電圧、または、抵抗値を測定することにより 入射した光強度を測定することができる。  An optical sensor using a bulk heterojunction type photoelectric conversion film is an optical sensor that operates on a principle similar to that of animal photoreceptors, and functions as an extremely sensitive optical sensor. The number of carriers, which are excited electrons and hole power, is controlled by the difference in the light intensity incident on the optical sensor. Therefore, the electrodes arranged between the electrodes arranged at a certain interval on the photoelectric conversion film or the photoelectric conversion film are vertically moved. The incident light intensity can be measured by measuring the current, voltage, or resistance between the sandwiched electrodes.
[0051] 本発明の内包フラーレンを電子受容体とする光電変換材料を用いて作製した光セ ンサ一は、従来の空のフラーレンを電子受容体とする光電変換材料を用いて作製し た光センサーに比べ、内包フラーレンが電子を捕捉する効率が高いことと、内包フラ 一レンにおける電子の移動度が大き 、ことから、従来の光センサーよりも高感度で光 検出を行うことが可能である。  [0051] The optical sensor manufactured using the photoelectric conversion material using the endohedral fullerene of the present invention as an electron acceptor is an optical sensor manufactured using a conventional photoelectric conversion material using an empty fullerene as an electron acceptor. In contrast, the endohedral fullerene has a higher efficiency of capturing electrons and the mobility of the electron in the endohedral fullerene is larger, so that it is possible to detect light with higher sensitivity than a conventional photosensor.
[0052] なお、本発明の光電変換装置の製造方法については、周知慣用の方法により製造 し得るものであり、諸条件については、当業者であれば適宜設定可能である。 [0052] The method for manufacturing the photoelectric conversion device of the present invention is manufactured by a well-known conventional method. Those skilled in the art can appropriately set various conditions.
実施例  Example
[0053] 以下、実施例を挙げて本発明について詳細に説明する力 本発明は以下の実施 例に限定されるものではない。  [0053] Hereinafter, the present invention will be described in detail with reference to examples. The present invention is not limited to the following examples.
[0054] <製造例 1 > <Production Example 1>
(Li内包フラーレン製造例)  (Li-included fullerene production example)
Liを内包した内包フラーレンの製造には、円筒形状のステンレス製容器の周囲に電 磁コイルを配置した、図 4(b)に示す構造の製造装置を用いた。使用原料である Liは、 アルドリッチ製の Liを用い、また、使用原料である C は、フロンティアカーボン製の C  For the production of the endohedral fullerene containing Li, a production apparatus having a structure shown in FIG. 4 (b) in which an electromagnetic coil was arranged around a cylindrical stainless steel container was used. The raw material Li is Lid made by Aldrich, and the raw material C is C made by Frontier Carbon.
60 60 を用いた。真空容器を真空度 4.2 X 10— 5Paに排気し、電磁コイルにより、磁場強度 0.2 Tの磁界を発生させた。内包原子昇華オーブンに固体状の Liを充填し、 480°Cの温 度に加熱して Liを昇華させ、 Liガスを発生させた。発生した Liガスを 500°Cに加熱し たガス導入管を通して導入し、 2500°Cに加熱したホットプレートに噴射した。ホットプ レート表面で電離した Liの正イオンと電子力 なるプラズマ流を発生させ、堆積プレ ートに対しプラズマ流を照射した。同時に、堆積プレートに対し、フラーレンオーブン で 610°Cに加熱、昇華させた C 蒸気を照射した。堆積プレートには、 -20Vのバイアス 60 60 was used. The vacuum vessel was evacuated to a vacuum degree of 4.2 X 10- 5 Pa, by the electromagnetic coil, to generate a magnetic field having a field strength 0.2 T. The encapsulated atom sublimation oven was filled with solid Li and heated to a temperature of 480 ° C to sublimate Li and generate Li gas. The generated Li gas was introduced through a gas inlet tube heated to 500 ° C and injected onto a hot plate heated to 2500 ° C. A plasma flow consisting of positive ions of Li ionized on the hot plate surface and electron force was generated, and the deposition plate was irradiated with the plasma flow. At the same time, the deposition plate was irradiated with C vapor heated and sublimated to 610 ° C in a fullerene oven. -20V bias for deposition plate
60  60
電圧を印加し、堆積プレート表面に内包フラーレンを含む薄膜を堆積した。約 1時間 の堆積を行い、厚さ 0.9 mの薄膜が堆積した。  A voltage was applied to deposit a thin film containing endohedral fullerene on the surface of the deposition plate. After about 1 hour of deposition, a thin film with a thickness of 0.9 m was deposited.
[0055] 堆積した薄膜を堆積プレートから剥離し、粉末状にした薄膜を二硫ィ匕炭素力 なる 溶媒に溶解し、 HPLCを用いて Liが内包されて!、な!/、フラーレンと Li内包フラーレンを 分離した。 [0055] The deposited thin film is peeled off from the deposition plate, and the powdered thin film is dissolved in a solvent containing carbon dioxide, and Li is encapsulated using HPLC !, NA! /, Fullerene and Li inclusion Fullerenes were separated.
[0056] 図 5は、上記内包フラーレンの製造方法で生成した Li内包フラーレンの質量分析デ ータである。 C に対応する質量数 720のピークと、 7Li@C に対応する質量数 727のピ [0056] FIG. 5 shows mass spectrometry data of Li-encapsulated fullerene produced by the above-described method for producing endohedral fullerene. The 720 peak corresponding to C and the 727 peak corresponding to 7 Li @ C
60 60  60 60
ークが観測された。質量数 727のピークが確認された測定試料を、さらに、塩酸溶液 に溶解し、塩酸溶液に不溶の残渣を再度質量分析したところ、質量数 727のピークが 、塩酸溶液に溶解させる前と同程度の強度で現れた。このことから、 Liは C 分子の外  Observed. The measurement sample in which the peak at mass number 727 was confirmed was further dissolved in a hydrochloric acid solution, and the residue insoluble in the hydrochloric acid solution was subjected to mass spectrometry again. Appeared in the intensity. From this, Li is outside the C molecule.
60 に付カ卩しているのではなぐ C 分子の内部に内包されていることが確認できた。  It was confirmed that it was encapsulated in the interior of the C molecule.
60  60
[0057] <製造例 2〉 (光電流特性測定試料の作製) [0057] <Production example 2> (Preparation of photocurrent characteristics measurement sample)
図 2 (a)及び (b)は、光電変換特性測定用試料の平面図、及び、断面図である。本発 明の光電変換材料と従来の光電変換材料を比較するために、試料 A、 B (Li内包フラ 一レンをドープした導電性高分子)の他に、試料 C (空のフラーレンをドープした導電 性高分子)、試料 D (ノンドープの導電性高分子)を作製した。  2 (a) and 2 (b) are a plan view and a cross-sectional view of a sample for measuring photoelectric conversion characteristics. In order to compare the photoelectric conversion material of the present invention with a conventional photoelectric conversion material, in addition to samples A and B (conductive polymer doped with Li-containing fullerene), sample C (empty fullerene was doped) Conductive polymer) and Sample D (non-doped conductive polymer) were prepared.
測定用試料の作製は以下に示す手順で行った。  The measurement sample was prepared according to the following procedure.
(1)試料 A〜D共通:ガラス基板 13 (18mm X 18mm、厚さ 0.12〜0.17mm)を用意し、ガ ラス基板上に複数の長方形の A1パターンを蒸着により形成した。ノターン間隔 Lは 0. 5mmとした。  (1) Samples A to D: A glass substrate 13 (18 mm X 18 mm, thickness 0.12 to 0.17 mm) was prepared, and a plurality of rectangular A1 patterns were formed on the glass substrate by vapor deposition. The no-turn interval L was set to 0.5 mm.
(2)試料 A: P3HT (ポリ 3へキシルチオフェン)を溶解したトルエン lwt%溶液 2mlに Li®C を 2mg溶解した CS2溶液 0.4mlを混入し (Li@C 濃度: 10wt%)、 60分間超音波攪拌し (2) Sample A: Toluene lwt% in which P3HT (poly 3 hexylthiophene) is dissolved 2 ml of Li2C dissolved in CS2 solution 0.4 ml (Li @ C concentration: 10 wt%), over 60 minutes Sonic stirring
60 60 60 60
た。作製した溶液を(1)で作製した A1パターン蒸着基板に滴下し、回転速度 2000rpm で 20秒間スピンコートし、光電変換膜を形成した。 It was. The prepared solution was dropped onto the A1 pattern deposition substrate prepared in (1) and spin coated at a rotational speed of 2000 rpm for 20 seconds to form a photoelectric conversion film.
(3)試料 B: P3HT (ポリ 3へキシルチオフェン)を溶解したトルエン lwt%溶液 2mlに Li®C を lmg溶解した CS2溶液 0.4mlを混入し (Li@C 濃度: 5wt%)、 60分間超音波攪拌し (3) Sample B: 2 ml of toluene lwt% solution in which P3HT (poly 3 hexylthiophene) is dissolved 0.4 ml of CS2 solution in which 1 mg of Li®C is dissolved (Li @ C concentration: 5 wt%) for more than 60 minutes Sonic stirring
60 60 60 60
た。作製した溶液を(1)で作製した A1パターン蒸着基板に滴下し、回転速度 2000rpm で 20秒間スピンコートし、光電変換膜を形成した。 It was. The prepared solution was dropped onto the A1 pattern deposition substrate prepared in (1) and spin coated at a rotational speed of 2000 rpm for 20 seconds to form a photoelectric conversion film.
(4)試料 C: P3HT (ポリ 3へキシルチオフェン)を溶解したトルエン lwt%溶液 2mlに C を  (4) Sample C: C was added to 2 ml of toluene lwt% solution in which P3HT (poly-3-hexylthiophene) was dissolved.
60 60
2mg溶解した CS2溶液 0.4mlを混入し (C 濃度: 10wt%)、 60分間超音波攪拌した。作 0.4 ml of CS2 solution in which 2 mg was dissolved was mixed (C concentration: 10 wt%) and ultrasonically stirred for 60 minutes. Product
60  60
製した溶液を(1)で作製した パターン蒸着基板に滴下し、回転速度 2000rpmで 20 秒間スピンコートし、光電変換膜を形成した。 The prepared solution was dropped onto the patterned vapor deposition substrate prepared in (1) and spin coated at a rotational speed of 2000 rpm for 20 seconds to form a photoelectric conversion film.
(5)試料 D: P3HT (ポリ 3へキシルチオフェン)を溶解したトルエン lwt%溶液 2mlを(1) で作製した パターン蒸着基板に滴下し、回転速度 2000rpmで 20秒間スピンコートし 、光電変換膜を形成した。  (5) Sample D: 2 ml of toluene lwt% solution in which P3HT (poly 3 hexylthiophene) is dissolved is dropped onto the pattern deposition substrate prepared in (1) and spin coated at a rotational speed of 2000 rpm for 20 seconds to form a photoelectric conversion film. Formed.
<光電流特性の測定試験 > <Photocurrent characteristics measurement test>
図 2(c)は、光電変換特性の測定装置の断面図である。暗室 14の中に分光光源 15 (日本分光製 CT10T)、照射光の波長を制御する光学系 16、試料 18を配置し、分光 光源 15力ら試料 18〖こ、波長 400nmから 800nmの範囲の光を照射し、隣りあう A1パター ン間に半導体パラメータ測定装置 19 (アジレント製 4155)により 100Vのノ ィァス電圧 を印加し、 A1パターン間を流れる電流値を測定した。照射光強度は、波長 400nmの時 に 25.3 Wであった。各波長における照射光強度を測定し、照射光強度が一定とな るように、測定した光電流値を補正した。また、光照射を行わない時の電流値(喑電 流)を測定し、光照射時の電流測定値から、暗電流を引いて、光照射により発生する 電流値 (光電流)を算出し、光電流の波長依存性をプロットした。 FIG. 2 (c) is a cross-sectional view of a photoelectric conversion characteristic measuring apparatus. Spectral light source 15 (JASCO CT10T), optical system 16 for controlling the wavelength of irradiation light, and sample 18 are placed in dark room 14. A1 putter next to each other A 100 V noise voltage was applied between the two electrodes using a semiconductor parameter measurement device 19 (Agilent 4155), and the value of the current flowing between the A1 patterns was measured. The irradiation light intensity was 25.3 W at a wavelength of 400 nm. Irradiation light intensity at each wavelength was measured, and the measured photocurrent value was corrected so that the irradiation light intensity was constant. In addition, the current value (light current) when light irradiation is not performed is measured, the dark current is subtracted from the current measurement value during light irradiation, and the current value (photocurrent) generated by light irradiation is calculated. The wavelength dependence of photocurrent was plotted.
[0059] 図 3は、光電流スペクトルの測定データである。測定した光電変換膜はいずれも 600 nmから 650nmの間にピークを持つ光電流スペクトルを持つことがわかった。例えば、 6 OOnmにおける光電流を比較すると、 FIG. 3 shows measurement data of the photocurrent spectrum. All of the measured photoelectric conversion films were found to have a photocurrent spectrum having a peak between 600 nm and 650 nm. For example, comparing the photocurrent at 6 OOnm,
光電変換膜 光電流  Photoelectric conversion film Photocurrent
Li@C 10wt% doped P3HT 45.8nA  Li @ C 10wt% doped P3HT 45.8nA
60  60
Li@C 5wt% doped P3HT 29.9nA  Li @ C 5wt% doped P3HT 29.9nA
60  60
C 10wt% doped P3HT 18.5nA  C 10wt% doped P3HT 18.5nA
60  60
non-doped P3HT 2.3nA  non-doped P3HT 2.3nA
であること力ゝら、  The power of being
(1) Li@C を 10wt%ドープした P3HTは未ドープの P3HTに対し、光電流が約 20倍に増  (1) P3HT doped with 10 wt% Li @ C has a photocurrent increased approximately 20 times compared to undoped P3HT.
60  60
加する。  Add.
(2) Li@C を 10wt%ドープした P3HTは C を 10wt%ドープした P3HTに対し、光電流が  (2) P3HT doped with 10 wt% Li @ C has a photocurrent higher than that of P3HT doped with 10 wt% C.
60 60  60 60
約 2.5倍に増加する。  Increase by about 2.5 times.
(3) Li@C の P3HTに対するドープ量を増やすと光電流も増加する。  (3) Increasing the doping amount of Li @ C for P3HT increases the photocurrent.
60  60
ことがわかった。  I understood it.
産業上の利用可能性  Industrial applicability
[0060] 1.原子内包フラーレンからなる電子受容体と、電子供与性の有機材料からなる電子 供与体とから構成される光電変換材料は、空のフラーレンを電子受容体として用いた 光電変換材料と比較して、光電導が著しく増強される。  [0060] 1. A photoelectric conversion material composed of an electron acceptor composed of an atom-encapsulated fullerene and an electron donor composed of an electron-donating organic material is a photoelectric conversion material using empty fullerene as an electron acceptor. In comparison, photoconductivity is significantly enhanced.
2.原子内包フラーレンに内包される原子としてアルカリ金属を用いることにより、特に 光電変換材料の光電導増強効果が高 、。  2. By using alkali metal as an atom encapsulated in the atomic inclusion fullerene, the photoelectric conversion enhancement effect of the photoelectric conversion material is particularly high.
3. Liを内包原子として用いると、内包フラーレンの生成効率が高ぐ内包フラーレン の大量生成による工業的利用の促進、製造コストの低減に効果がある。 3. Inclusion fullerene with high generation efficiency of inclusion fullerene when Li is used as the inclusion atom It is effective in promoting industrial use and producing costs by mass production.
4. C 、 C 又はこれらの混合フラーレンは、他の高次フラーレンと比較して入手が容 4. C, C or mixed fullerenes are available in comparison with other higher order fullerenes.
60 70 60 70
易でかつ安価である。 Easy and inexpensive.
5.本発明の光電変換材料を用い、光電変換装置を構成することにより光電変換効 率を向上できる。例えば、光センサーの感度向上や、光電池のエネルギー変換効率 の向上に効果が高い。  5. The photoelectric conversion efficiency can be improved by constituting a photoelectric conversion device using the photoelectric conversion material of the present invention. For example, it is highly effective in improving the sensitivity of photosensors and improving the energy conversion efficiency of photovoltaic cells.
6.光電導増強剤を溶カゝした溶液と電子供与性の有機材料を溶かした溶液を混合攪 拌することにより光電変換材料を製造できるので、製造プロセスが簡単になり、製造コ ストの低減に効果がある。  6. A photoelectric conversion material can be manufactured by mixing and stirring a solution in which a photoconductive enhancer is dissolved and a solution in which an electron-donating organic material is dissolved. This simplifies the manufacturing process and reduces manufacturing costs. Is effective.

Claims

請求の範囲 The scope of the claims
[1] 原子内包フラーレン類力 なる光電導増強剤。  [1] Photoconductivity enhancer with the power of endohedral fullerenes.
[2] 前記原子内包フラーレン類に内包される原子がアルカリ金属である、請求項 1記載の 光電導増強剤。  [2] The photoconductivity enhancer according to [1], wherein the atom encapsulated in the atom-encapsulated fullerene is an alkali metal.
[3] 前記原子内包フラーレン類に内包される原子が Liである、請求項 2記載の光電導増 強剤。  3. The photoconductive enhancer according to claim 2, wherein the atom encapsulated in the atom-encapsulated fullerene is Li.
[4] フラーレン類が、 C 、C 又はこれらの混合フラーレンである、請求項 1乃至 3のいず  [4] The fullerene according to any one of claims 1 to 3, wherein the fullerene is C 1, C 2 or a mixed fullerene thereof.
60 70  60 70
れか一項記載の光電導増強剤。  A photoconductivity enhancer according to any one of the preceding claims.
[5] 請求項 1乃至 4の ヽずれか一項記載の光電導増強剤を含む光電変換材料。 [5] A photoelectric conversion material comprising the photoelectric conductivity enhancer according to any one of claims 1 to 4.
[6] 少なくとも前記光電導増強剤と電子供与性の有機材料とからなる請求項 5記載の光 電変換材料。 6. The photoelectric conversion material according to claim 5, comprising at least the photoelectric conductivity enhancer and an electron donating organic material.
[7] 少なくとも、基板と、請求項 5記載の光電変換材料と、電極とから構成される光電変換 装置。  [7] A photoelectric conversion device comprising at least a substrate, the photoelectric conversion material according to claim 5, and an electrode.
[8] 前記光電変換装置が、光電池又は光センサーである請求項 7記載の光電変換装置  8. The photoelectric conversion device according to claim 7, wherein the photoelectric conversion device is a photovoltaic cell or a photosensor.
[9] 請求項 1乃至 4記載の光電導増強剤を溶カゝした溶液と電子供与性の有機材料を溶 かした溶液を混合攪拌する工程を含む光電変換材料の製造方法。 [9] A method for producing a photoelectric conversion material, comprising a step of mixing and stirring a solution in which the photoelectric enhancement agent according to any one of claims 1 to 4 is dissolved and a solution in which an electron-donating organic material is dissolved.
PCT/JP2005/015876 2004-08-31 2005-08-31 Photoelectric transduction material, photoelectric transduction apparatus and process for producing photoelectric transduction material WO2006025433A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-251206 2004-08-31
JP2004251206A JP2006073201A (en) 2004-08-31 2004-08-31 Photoelectric conversion material, photoelectric conversion device and manufacturing method of photoelectric conversion material

Publications (1)

Publication Number Publication Date
WO2006025433A1 true WO2006025433A1 (en) 2006-03-09

Family

ID=36000083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015876 WO2006025433A1 (en) 2004-08-31 2005-08-31 Photoelectric transduction material, photoelectric transduction apparatus and process for producing photoelectric transduction material

Country Status (2)

Country Link
JP (1) JP2006073201A (en)
WO (1) WO2006025433A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444670A (en) * 2019-07-24 2019-11-12 暨南大学 A kind of Ca-Ti ore type solar cell and preparation method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8367033B2 (en) 2006-04-20 2013-02-05 Hiroyuki Kaneko Fullerene-based material and process for producing fullerene-based material
JP2008091575A (en) * 2006-09-29 2008-04-17 Dainippon Printing Co Ltd Organic thin film solar cell element and coating liquid for forming photoelectric conversion layer
JP2008091467A (en) * 2006-09-29 2008-04-17 Dainippon Printing Co Ltd Organic thin film solar cell element and coating liquid for forming photoelectric conversion layer
JP5568972B2 (en) * 2009-12-11 2014-08-13 コニカミノルタ株式会社 Organic photoelectric conversion element, solar cell using the same, and optical sensor array
JP5435508B2 (en) * 2011-08-25 2014-03-05 独立行政法人科学技術振興機構 Photoelectric conversion element and solar cell using the element
JP6283795B2 (en) 2012-06-22 2018-02-28 国立大学法人東北大学 Electrolyte for capacitor and capacitor
JP6303234B2 (en) * 2013-09-26 2018-04-04 国立大学法人大阪大学 Photoelectric conversion device using endohedral fullerene
JP2014159364A (en) * 2014-02-12 2014-09-04 National Institute For Materials Science Fullerene structure, and application using the same
JP2018110252A (en) * 2018-02-16 2018-07-12 国立大学法人大阪大学 Photoelectric conversion device using inclusion fullerene

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766470A (en) * 1991-07-30 1995-03-10 At & T Corp Manufacture of electronic part
JPH0973180A (en) * 1994-12-01 1997-03-18 Toshiba Corp Photoconductive body and photosensitive body
JPH09102314A (en) * 1995-07-31 1997-04-15 Matsushita Electric Ind Co Ltd Negative electrode for alkaline storage battery and battery using the same
JPH09274931A (en) * 1996-04-03 1997-10-21 Matsushita Electric Ind Co Ltd Metal oxide/fullerenee storage battery
JP2002335004A (en) * 2001-02-08 2002-11-22 Osaka Gas Co Ltd Photoelectric conversion material and photoelectric cell
JP2005289755A (en) * 2004-04-01 2005-10-20 Kyoto Univ Method of manufacturing atom- or molecule-including fullerene and including fullerene obtained by the manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766470A (en) * 1991-07-30 1995-03-10 At & T Corp Manufacture of electronic part
JPH0973180A (en) * 1994-12-01 1997-03-18 Toshiba Corp Photoconductive body and photosensitive body
JPH09102314A (en) * 1995-07-31 1997-04-15 Matsushita Electric Ind Co Ltd Negative electrode for alkaline storage battery and battery using the same
JPH09274931A (en) * 1996-04-03 1997-10-21 Matsushita Electric Ind Co Ltd Metal oxide/fullerenee storage battery
JP2002335004A (en) * 2001-02-08 2002-11-22 Osaka Gas Co Ltd Photoelectric conversion material and photoelectric cell
JP2005289755A (en) * 2004-04-01 2005-10-20 Kyoto Univ Method of manufacturing atom- or molecule-including fullerene and including fullerene obtained by the manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHANDT J ET AL: "Electron-spectroscopy study of LiC 60 : Charge transfer and dimer formation.", PHYSICAL REVIEW B., vol. 62, 2000, pages 4253 - 4256, XP002993900 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444670A (en) * 2019-07-24 2019-11-12 暨南大学 A kind of Ca-Ti ore type solar cell and preparation method thereof
CN110444670B (en) * 2019-07-24 2022-06-03 麦耀华 Perovskite type solar cell and preparation method thereof

Also Published As

Publication number Publication date
JP2006073201A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
WO2006025433A1 (en) Photoelectric transduction material, photoelectric transduction apparatus and process for producing photoelectric transduction material
Hadipour et al. Organic tandem and multi‐junction solar cells
Dayal et al. Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency
Sgobba et al. Carbon nanotubes as integrative materials for organic photovoltaic devices
Hau et al. Effect of chemical modification of fullerene-based self-assembled monolayers on the performance of inverted polymer solar cells
Oey et al. Polymer–TiO2 solar cells: TiO2 interconnected network for improved cell performance
WO2010114116A1 (en) Organic photoelectric conversion element, solar cell using same, and light sensor array
JP5573066B2 (en) Organic photoelectric conversion element, solar cell and optical sensor array using the same
Kumar et al. Broad spectral sensitivity and improved efficiency in CuPc/Sub-Pc organic photovoltaic devices
Singh et al. Polymer solar cells: an overview
Sharma et al. A mono (carboxy) porphyrin-triazine-(bodipy) 2 triad as a donor for bulk heterojunction organic solar cells
JP6674948B2 (en) Photoelectric conversion element
Oh et al. Enhanced air stability of polymer solar cells with a nanofibril-based photoactive layer
Ghosekar et al. Impact of concentration variation and thermal annealing on performance of multilayer OSC consisting of sandwiched P3HT layer between PEDOT: PSS and P3HT: PCBM
Zhu et al. Solution-processed polymeric thin film as the transparent electrode for flexible perovskite solar cells
Qin et al. Composition-dependent phase separation effects of organic solar cells using P3HT: PCBM as active layer and chromium oxide as hole transporting layer
Zeng et al. The use of nanoimprint lithography to improve efficiencies of bilayer organic solar cells based on P3HT and a small molecule acceptor
Wang et al. Efficient ternary organic photovoltaic cells with better trade-off photon harvesting and phase separation by doping DIB-SQ
Sreejith et al. A review on P3HT: PCBM material based organic solar cells
Ismail et al. Photovoltaic properties of bulk heterojunction organic solar cell composed of coumarin 6 dye as light harvester and donor material
Wang et al. Organic photovoltaic materials and thin-film solar cells
JP2012094858A (en) Photovoltaic device
Sharma et al. Effect of functional groups of acceptor material on photovoltaic response of bulk hetero-junction organic devices based on tin phthalocyanine (SnPc)
Ghosekar et al. Thermal stability analysis of buffered layer P3HT/P3HT: PCBM organic solar cells
JP6697816B2 (en) Photoelectric conversion element

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase