WO2004013915A1 - Optical sensor, method for manufacturing and driving optical sensor, and method for measuring light intensity - Google Patents

Optical sensor, method for manufacturing and driving optical sensor, and method for measuring light intensity Download PDF

Info

Publication number
WO2004013915A1
WO2004013915A1 PCT/JP2003/009577 JP0309577W WO2004013915A1 WO 2004013915 A1 WO2004013915 A1 WO 2004013915A1 JP 0309577 W JP0309577 W JP 0309577W WO 2004013915 A1 WO2004013915 A1 WO 2004013915A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical sensor
layer
carbon nanotube
drain electrode
source electrode
Prior art date
Application number
PCT/JP2003/009577
Other languages
French (fr)
Japanese (ja)
Inventor
Yukihiro Sugiyama
Original Assignee
Sanyo Electric Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co.,Ltd. filed Critical Sanyo Electric Co.,Ltd.
Priority to JP2004525794A priority Critical patent/JP3933664B2/en
Priority to AU2003252283A priority patent/AU2003252283A1/en
Publication of WO2004013915A1 publication Critical patent/WO2004013915A1/en
Priority to US11/003,355 priority patent/US20050093425A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/60Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation in which radiation controls flow of current through the devices, e.g. photoresistors
    • H10K30/65Light-sensitive field-effect devices, e.g. phototransistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an optical sensor, a method for manufacturing and driving the optical sensor, and a method for detecting light intensity.
  • the present inventor has proceeded with the development of a sensor that uses a molecule that is polarized by light irradiation (hereinafter appropriately referred to as a photosensitive molecule) as a photodetection substance. If such photosensitive molecules can be used as the light detection part of an optical sensor, it is expected that optical information can be detected with high sensitivity and high accuracy.
  • a photosensitive molecule a molecule that is polarized by light irradiation
  • Bacteriorhodopsin a protein that constitutes the purple membrane (Purpiemmembrane) of halophilic bacteria together with lipids, is a photoreceptor protein and shows a differential response to light irradiation (Fig. 1).
  • the image recognition device described in Patent Document 1 uses the response of bacteriococcal dopsin for an image sensor that extracts the contour of a moving object, etc. It detects the induced current induced in the electrode. According to this image recognition device, since the induced current is detected, the noise is smaller than that of the image recognition device that detects the induced voltage. Thus, a signal can be detected even when the electrode is miniaturized. In addition, by using an alignment film of bacteriorhodopsin, it is possible to make the photodetector ultra-thin. it can.
  • Patent Literature 1 Japanese Patent Application Laid-Open No. 2000-002 6 7 2 2 3
  • Non-Patent Document 1 M e t o o d s i n En z y m o 1 o g y, 31, A, p p. 6 6 7-6 7 8 (1 9 7 4)
  • the signal due to the electric polarization of photosensitive molecules such as bacteriophage dopsin is small, and even when detecting the induced current, a sufficient induced current value is not necessarily obtained. Therefore, when using this signal as an optical sensor, amplification to obtain a sufficient current value may be necessary. Conventionally, since this amplification system requires a large-scale device, it was necessary to incorporate an optical sensor into a large-scale device.
  • an object of the present invention is to provide a small and highly sensitive optical sensor, a method for manufacturing and driving the optical sensor, and a method for detecting light intensity.
  • a substrate a source electrode and a drain electrode formed on the substrate; a carbon nanotube electrically connecting the source electrode and the drain electrode; and a carbon nanotube provided on the carbon nanotube.
  • polarization occurs in a layer in which polarization is generated by light reception, and an induced charge is generated.
  • the carbon nanotube has the property that the conductance changes depending on the strength of the electric field, and thus the induced charge triggers the change in the conductance of the carbon nanotube, and the current flowing between the source and drain electrodes. The value changes. By detecting the change in the current value, the intensity of the received light can be detected.
  • the electrode is minute.
  • a sufficient current value can be obtained.
  • the size of the optical sensor can be reduced. This makes it possible to increase the number of source and drain electrodes per unit area, that is, the number of pixels.
  • a step of forming a source electrode and a drain electrode on a surface of a substrate a step of connecting the source electrode and the drain electrode with a force-pont nanotube, Forming a layer in which polarization occurs, and a method for manufacturing an optical sensor.
  • the source electrode and the drain electrode are connected by the carbon nanotube, and a layer in which polarization occurs due to light reception is formed on the carbon nanotube. Therefore, it is possible to stably manufacture a high-precision, small-sized optical sensor having a large number of pixels.
  • a predetermined current is caused to flow between the source electrode and the drain electrode, and a change in the current value is detected.
  • the method for driving an optical sensor according to the present invention is characterized in that a predetermined current is flowing between a source electrode and a drain electrode, and the conductance of a carbon nanotube is changed according to the degree of polarization generated by light reception. It detects the change in the current value accompanying the current. The intensity of the received light is detected based on the magnitude of the change in the current value. Since the change in the current value is larger than when the polarization of the photosensitive molecule is directly detected, measurement with high sensitivity and high accuracy is possible.
  • a method for detecting light intensity using a layer including a layer polarized by light reception and a carbon nanotube provided in the vicinity of the layer comprising applying a voltage to the carbon nanotube, A light intensity detection method is provided, wherein a change in a current value in the carbon nanotube caused by light reception of the layer is detected, and a light intensity is detected from the change in the current value.
  • the layer that is polarized by light reception by light irradiation is separated. And induces induced charge. Triggered by this induced charge, the conductance of the carbon nanotube changes, and the current flowing through the carbon nanotube changes.
  • the light intensity can be detected by detecting the change in the current value. According to the method of the present invention, a relatively large change in current value can be obtained from a relatively small polarization signal, and the light intensity can be measured with high accuracy and sensitivity.
  • the layer polarized by the light reception may be configured to include pateriorhodopsin. This makes it possible to stably and reliably generate polarization in the layer that is polarized by light reception. Therefore, a light detection method with high accuracy and sensitivity can be provided.
  • an insulating layer may be provided on a surface of the carbon nanotube.
  • the insulating layer may be a polymer layer.
  • the polymer layer can be, for example, an organic polymer layer.
  • the insulating layer may be a layer in which a polymer is wound around a side surface of the carbon nanotube.
  • the coating layer can be a strong and stable layer. Therefore, the operation stability of the optical sensor can be improved, and the reliability can be improved.
  • the thickness of the coating layer can be reduced. For this reason, the conductance of the carbon nanotube can be more reliably changed.
  • the “polymer” refers to a molecule having a skeleton chain length sufficient to be wound around a carbon nanotube. Also, the polymer is carbon "Wound" on the side surface of the nanotube means that the molecular chain of the polymer wraps around the side surface of the tube and wraps around the surface of the carbon nanotube.
  • the step of forming an alignment film of carbon nanotubes may include a step of forming an insulating layer containing the coating molecules on a surface of the carbon nanotubes. By doing so, it is possible to reliably insulate the carbon nanotube from the layer polarized by light reception.
  • a polymer may be used as the coating molecule, and a polymer layer may be formed on the surface of the carbon nanotube. In this case, the coverage of the insulating layer can be improved. Therefore, the surface of the carbon nanotube can be more stably insulated.
  • the protein is modified by spreading the dispersion in which the protein is dispersed as the coating molecule on a liquid surface, and the modified protein is wound around a side surface of the carbon nanotube. May be.
  • a polymer can be wound on the surface of a carbon nanotube by a simple method. Therefore, the surface of the carbon nanotube can be coated by a simple method. Therefore, the insulating property of the surface of the carbon nanotube can be further ensured. .
  • the polymer can be a polypeptide.
  • the skeleton chain can be stably coated on the carbon nanotube.
  • the polypeptide may be a denatured protein.
  • the protein is denatured by using a protein as the polymer, and the dispersion is spread on a liquid surface to denature the protein.
  • the denatured protein is wound around a side surface of the carbon nanotube. Can be made.
  • the polypeptide may be a membrane protein. Since the membrane protein often has a region with high hydrophobicity, by using this, the protein can be efficiently adsorbed on the side surface of the carbon nanotube and can be stably wound.
  • the optical sensor of the present invention comprises: a substrate; a source electrode and a drain electrode formed on the substrate; a carbon nanotube for electrically connecting the source electrode and the drain electrode; And a layer in which polarization is generated by light reception. For this reason, a small signal due to polarization in the layer where polarization occurs due to light reception is used as a trigger, and a large electrical signal, that is, a change in the current value between the source and drain electrodes is obtained, and this change in the current value is detected. As a result, an optical sensor capable of detecting light with high accuracy and sensitivity and a driving method thereof are realized.
  • an optical sensor capable of stably manufacturing an optical sensor having high accuracy, sensitivity, small size, and a large number of pixels.
  • a voltage is applied to the carbon nanotube, a change in a current value in the carbon nanotube caused by light reception of the layer where polarization occurs due to light reception is detected, and the light intensity is determined from the change in the current value.
  • a relatively large change in the current value can be obtained from a relatively small polarization signal, and a light intensity detection method capable of measuring light intensity with high accuracy and sensitivity is realized.
  • Fig. 1 is a diagram showing light irradiation to pateriorhodopsin and its electrical response.
  • FIG. 2 is a sectional view showing an example of the optical sensor according to the embodiment.
  • FIG. 3 is a schematic diagram showing an example of the optical sensor according to the embodiment.
  • FIG. 4 is a cross-sectional view schematically showing a manufacturing process of the optical sensor according to the embodiment.
  • FIG. 5 is a perspective view schematically showing a part of the structure of the optical sensor according to the embodiment.
  • FIG. 6 is a diagram showing a method for producing an alignment film of carbon nanotubes.
  • FIG. 7 is a top view schematically showing a method of connecting a source electrode and a drain electrode using a carbon nanotube.
  • FIG. 8 is a cross-sectional view schematically illustrating a method of connecting a source electrode and a drain electrode using carbon nanotubes.
  • FIG. 9 is a cross-sectional view showing a method for producing a protein monolayer and a method for laminating the same.
  • FIG. 10 is a cross-sectional view showing a method for producing a denatured protein monolayer and a method for laminating the same.
  • FIG. 11 is a sectional view showing an example of the image recognition element according to the embodiment.
  • Fig. 12 is a diagram showing the electric polarization characteristics of bacteriorhodopsin by light irradiation.
  • FIG. 13 is a diagram schematically showing an output image of the image recognition element according to the embodiment.
  • Fig. 14 is a diagram showing a A-A plot of the LB film of the purple film.
  • FIG. 15 is a cross-sectional view schematically showing a connection method using a carbon nanotube for a source electrode and a drain electrode.
  • FIG. 16 is a diagram showing an example of the configuration of the electrode according to the embodiment.
  • Fig. 17 is a diagram showing an AFM image of an alignment film of carbon nanotubes using a purple film as a support.
  • Fig. 18 is a diagram showing an AFM image of an alignment film of carbon nanotubes produced without using a support.
  • FIG. 19 is a view illustrating a method of manufacturing a carbon nanotube structure according to an example.
  • FIG. 20 is a diagram showing a TEM image of the carbon nanotube structure according to the example.
  • FIG. 21 is a sectional view showing an example of the optical sensor according to the embodiment.
  • FIG. 22 is a cross-sectional view schematically showing a manufacturing process of the optical sensor according to the embodiment.
  • FIG. 23 is a top view schematically showing a method of connecting a source electrode and a drain electrode using carbon nanotubes.
  • FIG. 24 is a cross-sectional view schematically illustrating a method of connecting a source electrode and a drain electrode using a force-feed nanotube.
  • FIG. 25 is a cross-sectional view schematically illustrating a method of connecting a source electrode and a drain electrode using a carbon nanotube.
  • FIG. 26 is a sectional view showing an example of the image recognition element according to the embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 2 is a diagram showing an example of the configuration of the optical sensor according to the present invention.
  • a substrate 3 a source electrode 5 a and a drain electrode 5 b provided on the substrate 3, a carbon nanotube 7 connecting them, and an insulation formed on the carbon nanotube 7 It includes a layer 11 and a layer 13 which is formed on the insulating layer 11 and is polarized by light reception.
  • photosensitive molecules molecules that are polarized by light reception
  • the induced charge changes the conductance of the carbon nanotube 7, so that the current flowing between the source electrode 5a and the drain electrode 5b The value changes.
  • FIG. 3 is a diagram schematically showing how the conductance of the carbon nanotube 7 changes.
  • the electric charge generated by the photoelectric polarization of the photosensitive molecule changes the 7T electron field of the carbon nanotube 7, so that the conductance of the force tube 11 changes. Due to the change in the conductance of the carbon nanotube, the value of the current flowing through the carbon nanotube 7 changes.
  • the carbon nanotubes 7 are used to connect the source electrode 5 a and the drain electrode 5 b, and the carbon nanotubes 7 have a layer 13 on the upper side of which the polarization is generated by receiving light. The value of the current flowing between the source electrode 5a and the drain electrode 5b via the gate electrode changes.
  • a small signal by the photoelectric polarization of photosensitive molecules can be detected as a current value changes in the order of nano amperes (1 0 _ 9 A). Therefore, a high-sensitivity optical sensor that converts an optical signal into an electric signal can be provided.
  • the source electrode and the drain electrode are two-dimensionally arranged on the surface of the substrate.
  • the source and drain electrodes can be arranged as shown in FIG.
  • FIG. 16 is a diagram showing another example of the arrangement of the source electrode and the drain electrode.
  • the arrangement of FIG. 16 includes a first electrode 101 and a second electrode 102 provided to be spaced from the first electrode 101 and to surround the periphery of the first electrode 101. And.
  • One of the first electrode 101 and the second electrode 102 is a source electrode, and the other is a drain electrode. With such an electrode arrangement, it is relatively easy to connect the source electrode and the drain electrode with carbon nanotubes, and the productivity is improved.
  • an insulating layer may be provided between the carbon nanotube and a layer in which polarization is generated by light reception.
  • the insulating layer can mainly contain proteins. By doing so, the thickness of the insulating layer can be reduced, so that the polarization generated in the layer where polarization occurs due to light reception can effectively lead to a change in the conductance of the carbon nanotube.
  • the insulating layer may mainly contain denatured proteins.
  • the isolated layer contains modified bacteriorhodopsin.
  • a layer in which polarization is generated by light reception may be configured to mainly include molecules that are polarized by light reception.
  • a layer in which polarization is generated by receiving light may include a molecular alignment film that is polarized by receiving light.
  • the layer in which polarization is generated by light reception may be a layer containing oriented Bacterio-mouth dopsin.
  • Bacterial oral dopsin is a photosensitive molecule, has high structural stability among proteins, and accurately polarizes optical signals. Therefore, the accuracy and sensitivity of the optical sensor can be further improved. Further, the durability of the optical sensor can be improved.
  • an oriented purple membrane can be exemplified.
  • FIG. 3 is a schematic configuration diagram of an optical sensor using a purple film.
  • the layer 13 in which polarization occurs upon light reception is made of a purple membrane, and is composed of a photosensitive molecule, bacteriorhodopsin 41, and a lipid bilayer.
  • the protein monomolecular film 51 and the layer 13 where polarization is generated by light reception are appropriately illustrated in FIG. 2 including the case where the photosensitive molecule and other components are contained as described above. It is to be expressed in a way.
  • the layer in which the polarization is generated by the light reception is formed by the oriented pateriorhodopsi. 03009577
  • the sensitivity of the optical sensor can be improved.
  • the photosensitive molecule for example, a synthetic polymer having a photoelectric conversion function or a biological substance can be used.
  • a biological substance for example, a molecule having a porphyrin ring such as chlorophyll a can be used.
  • the carbon nanotube may be any of a single-walled carbon nanotube (SWCNT) and a multi-walled carbon nanotube (MWCNT).
  • SWCNT single-walled carbon nanotube
  • MWCNT multi-walled carbon nanotube
  • SWCNT having metallic properties has a property that conductance is easily changed by the surrounding electronic environment, and thus can be suitably used as a wiring member for electrically connecting a source electrode and a drain electrode.
  • FIGS. 2 and 3 show the optical sensor according to the present embodiment.
  • a source electrode 5a and a drain electrode 5b connected by a carbon nanotube 7 are provided on the substrate 3, and an insulating layer 11 is formed on the surface of the source electrode 5a and the drain electrode 5b connected by the carbon nanotube 7. Is formed.
  • the carbon nanotube 7 is SWCNT.
  • a protein monomolecular film 51 is provided as a layer 13 where polarization is generated by light reception.
  • a protective layer 15 is provided on the upper part of the layer 13 where polarization is generated by light reception.
  • the transparent conductive layer 17 and the transparent substrate 19 are provided on the protective layer 15. They are provided in order.
  • an offset voltage may be applied to the transparent conductive layer 17. In this case, for example, the substrate 3 can be grounded.
  • the optical sensor according to the present embodiment operates as follows. That is,
  • a current is not applied while a voltage is applied between the source electrode 5a and the drain electrode 5b.
  • the trigger signal in step II) may be used as a switch so that a current flows between the source electrode 5a and the drain electrode 5b. That is, it is assumed that no current flows when light is not received, and the current is turned on when light is received. By measuring this current value, the light intensity is detected.
  • the photoinduced charge of the photosensitive molecule is not taken out as it is as a detection signal, but is used as a trigger signal for changing the source-drain current. That is, the photo-induced charge of the photosensitive molecule is used as a trigger signal for a change in the conductance of the carbon nanotube disposed between the source and the drain, and the source electrode 5a and the drain electrode 5b changed by the trigger signal. It is configured so that the current value between them is detected.
  • the carbon nanotubes 7 used in the optical sensor of the present embodiment are single-walled carbon nanotubes (SWCNTs).
  • SWCNTs single-walled carbon nanotubes
  • the conductance significantly changes according to the surrounding electronic state. Accordingly, in the optical sensor of the present embodiment, more to connect the source electrode 5 a and the drain electrode 5 b by SWCNT, a signal by photoelectric polarization of photosensitive molecule, nanoampere (1 0- 9 A) current of about It can be detected as a change.
  • the sensitivity of the optical sensor can be improved as compared with the case where the photoelectron polarization of the photosensitive molecule is directly detected. Monkey,
  • the polarization speed (reciprocal of the delay time) of bacteriorhodopsin monotonically increases in accordance with the increase in the intensity of light applied to the optical sensor. . Also, as the intensity of the irradiated light increases, the drain current flowing through the carbon nanotube increases due to the polarization of bacteriorhodopsin.
  • multi-walled carbon nanotubes can be used as the carbon nanotubes 7.
  • MW CN T multi-walled carbon nanotubes
  • the substrate and the source electrode 5a and the drain electrode 5b can be composed of a semiconductor.
  • the optical sensor according to the present embodiment is manufactured by the following steps.
  • Step of forming source electrode 5 a and drain electrode 5 b on substrate 3 As shown in FIG. 4 (a), an electrode pair serving as source electrode 5 a and drain electrode 5 b is formed on one surface of substrate 3. To form When the source electrode 5 a and the drain electrode 5 b are two-dimensionally arranged on the surface of the substrate 3, for example, the configuration shown in FIG. 5 can be used.
  • the substrate 3 for example, an insulating material such as silicon, SiC, MgO, or quartz or a semiconductor material can be used.
  • Photolithography and dry etching or ⁇ A mask is formed by, for example, etching.
  • the source electrode 5a and the drain electrode 5b are formed by a method of bonding a thin metal plate on the substrate 3 provided with the mask, a method of depositing a metal on the substrate 3, a sputtering method, or the like.
  • the metal constituting the source electrode 5a and the drain electrode 5b include metals that can form carbides such as Ti and Cr, low-resistance metals such as Au, Pt, and Cu, and alloys thereof.
  • an Au—Cr alloy can be used.
  • a metal capable of forming a carbide since the contact resistance between the source electrode 5a and the drain electrode 5b and the carbon nanotube 7 can be reduced.
  • Au is preferable because it is a noble metal and has a low specific electric resistance.
  • the source electrode 5 a When a noble metal such as Au or Pt or a metal having a low affinity for carbon is used for the source electrode 5 a and the drain electrode 5 b, the source electrode 5 a Preferably, an adhesive layer containing a metal capable of forming a carbide such as Ti or Cr is provided on the surfaces of a and the drain electrode 5b.
  • a metal capable of forming a carbide such as Ti or Cr
  • an electrode in which a Ti layer is formed on Au can be used. By doing so, it is possible to reduce the contact resistance between the carbon nanotubes 7 and the source electrode 5a and the drain electrode 5b.
  • a method of forming the adhesive layer a method of depositing a metal capable of forming a carbide on the surfaces of the source electrode 5a and the drain electrode 5b can be cited.
  • the thickness of the source electrode 5a and the drain electrode 5b can be, for example, 0.5 nm or more and 100 nm or less.
  • the distance between the source electrode and the drain electrode of the source electrode 5 a and the drain electrode 5 b is appropriately designed according to the length of the carbon nanotube 7. For example, it is 50 nm or more and 10 tm or less.
  • the source electrode 5a and the drain electrode 5b provided on the surface of the substrate 3 are connected to the current detecting means via wiring from the back side of the substrate 3 as described later in the fifth embodiment. can do. By doing so, the current value flowing between each source electrode 5a and the drain electrode 5b can be detected. Can be
  • the source electrode 5a and the drain electrode 5b formed on the surface of the substrate are electrically connected by a carbon nanotube 7, as shown in FIG. 4B.
  • the carbon nanotubes 7, for example, those having a length of 50 nm or more and 10 nm or less can be used. Also, SWCNT or MWCNT can be used.
  • Examples of a method of connecting the source electrode 5a and the drain electrode 5b with the carbon nanotubes 7 include a method of attaching a carbon nanotube alignment film to the surface of the substrate 3 and a method of AFM (atomic force microscope). There is a method of moving the carbon nanotube 7 using a probe or the like, and a method of growing the carbon nanotube 7 horizontally on the substrate 3 from the side surfaces of the source electrode 5a and the drain electrode 5b.
  • a method for attaching an alignment film of carbon nanotubes to the surface of the substrate 3 will be described. Other methods will be described later in the third embodiment and the fourth embodiment.
  • the step of connecting the source electrode 5a and the drain electrode 5b with the carbon nanotubes 7 includes the step of forming an alignment film of the carbon nanotubes 7, and the step of connecting the alignment film of the carbon nanotubes 7 to the source electrodes 5a and 5b. Attaching to the surface of the substrate on which the drain electrode 5 is provided. After that, a step of selectively removing the carbon nanotubes 7 attached to regions other than the source electrode 5a, the drain electrode 5b, and the region between the source electrode 5a and the drain electrode 5b is performed.
  • the alignment film of the carbon nanotubes 7 can be manufactured as follows. First, carbon nanotubes 7 and proteins are dispersed in a dispersion medium. As the dispersion medium, an aqueous solution of an organic solvent or the like can be used. For example, a 33 v / VDMF (dimethylformamide) aqueous solution can be used.
  • the protein is a support that keeps the carbon nanotubes 7 oriented. You. As such a support, for example, purple membrane or doptic bacterium contained in purple membrane is used. Purple membranes can be isolated from halophilic bacteria such as Halobacterium salinar urn.
  • the method described in Methodsin Enzymo 1 ogy, 31, A, pp. 667-678 (1974) can be used.
  • An excessive amount of carbon nanotubes 7 is added to the dispersion of the support, and dispersed using an ultrasonic disperser or the like. Aggregates of carbon nanotubes 7 remaining in the dispersion are removed.
  • the dispersion of the carbon nanotubes 7 and the support obtained above is gently spread using a syringe or the like on the liquid surface of the lower layer liquid stretched in the water tank.
  • a monomolecular film of the carbon nanotube 7 is obtained.
  • Langmuir trough 61 is used as the water tank, and pure water adjusted to pH 3.5 with HC 1 is used as the lower layer liquid.
  • the monomolecular film of the carbon nanotube 7 is allowed to stand, and the protein is interfacially denatured by the interfacial tension of the lower layer solution.
  • the protein is interfacially denatured by the interfacial tension of the lower layer solution.
  • the bacteriorhodopsin in the purple membrane it is preferable to allow the bacteriorhodopsin in the purple membrane to stand at room temperature for 5 hours or more until the interface is denatured.
  • the aggregate of the denatured protein becomes a support for the carbon nanotubes 7, and the carbon nanotubes 7 can be maintained in an oriented state.
  • the monomolecular film in which the carbon nanotubes 7 are arranged substantially in parallel is obtained by compressing using a movable barrier 63 of Langmuir Trough as a partition plate.
  • FIG. 6 is an AFM photograph of the alignment film of carbon nanotubes 7, and each carbon nanotube 7 is shown in a white circle.
  • FIG. 17 is a diagram showing an AFM image of a carbon nanotube oriented film produced using a purple film as a support.
  • FIG. 18 is a diagram showing an AFM image when an alignment film of carbon nanotubes was similarly prepared without using a support.
  • a biomolecule visualization / measurement apparatus B MVM-X1 (Nano Scope IIIa manufactured by Digital Instruments) was used for AFM observation. Silicon single crystal (NCH) was used as a probe, and the measurement mode was tapping AFM. The measurement range was 4 mX 4 m (Z 10 nm).
  • the alignment film of the carbon nanotubes 7 thus obtained is attached to the electrode surface obtained in the step (i) by a horizontal attachment method.
  • the horizontal deposition method is a method in which the substrate is brought into contact with the liquid surface so that the substrate surface is horizontal to the alignment film on the water surface, and the substrate is pulled up, so that the alignment film on the water surface is attached to the surface of the substrate.
  • an alignment film of carbon nanotubes 7 is formed on the surface of the substrate 3 provided with the source electrode 5a and the drain electrode 5b.
  • FIGS. 7 (a) to 7 (f) correspond to the steps in FIGS. 8 (a) to 8 (f).
  • a source electrode 5a and a drain electrode 5b are formed on the surface of the substrate 3.
  • an insulating film 21 is formed on the surface of the carbon nanotube alignment film by using a plasma CVD method or the like.
  • the insulating film 2 for example, it can be used as S I_ ⁇ 2.
  • the thickness of the insulating film 21 can be, for example, not less than l nm and not more than 1 m.
  • a resist film 25 is formed on the substrate.
  • the insulating film 21 and the carbon nanotubes 7 where the resist film 25 is not applied are removed by a method such as dry etching or wet etching. .
  • the resist film 25 is removed using a solution that dissolves the resist film 25 without dissolving the insulating film 21.
  • the carbon nanotube 7 is provided between the source electrode 5a and the drain electrode 5b as shown in FIGS. 7 (f) and 8 (f), and unnecessary portions of the carbon nanotube 7 are removed.
  • the obtained substrate 3 is obtained.
  • the process (iii) can be performed without removing the insulating film 21, and a mask other than the insulator is applied.
  • the manufacturing method can be simplified as compared with the case in which it is performed.
  • annealing is performed as appropriate in the steps after FIG. 7 (b) and FIG. 8 (b).
  • carbide is formed at the interface between the carbon nanotubes 7 and the source electrode 5a and the drain electrode 5b, and electrical contact can be increased.
  • a mask is formed on the surface of the substrate 3 so that only the upper part of the electrode is used as an opening, and a metal layer serving as an electrode is further formed on each of the source electrode 5a and the drain electrode 5b.
  • the formation of the metal layer is gold
  • the method can be performed in the same manner as (i), such as a metal deposition method or a sputtering method. By doing so, the carbon nanotubes 7 connecting the source electrode 5a and the drain electrode 5b are sandwiched between the upper and lower metal layers, so that better electrical contact can be obtained. it can.
  • the source electrode 5a and the drain electrode 5b can be easily and efficiently connected by using the oriented monomolecular film of the carbon nanotubes 7. Then, as shown in FIG. 5, a set of the source electrode 5 a and the drain electrode 5 b is used as a pixel 9 to detect a current flowing between the pixels 9. Therefore, the pixel 9 can be miniaturized. For example, 100 million pixels Z cm 2 can be obtained.
  • Step of forming insulating layer 11 on carbon nanotubes 7 As shown in FIG. 4 (c), the carbon nanotubes formed on the source electrode 5a and the drain electrode 5b in the step (ii) An insulating layer 11 is formed on the surface of 7.
  • the insulating layer 11 As a method for forming the insulating layer 11, for example, there is a method in which a polymer such as polyimide is spin-coated on the surface of the substrate 3 on which the carbon nanotubes 7 are provided.
  • a film made of denatured protein is formed, and the film is attached to the surface of the substrate 3 provided with the source electrode 5a, the drain electrode 5b, and the carbon nanotube 7 on the surface by a horizontal attachment method or the like, and is insulated. It can also be used as layer 11.
  • An example of a membrane composed of denatured protein is a denatured membrane of bacteriorhodopsin.
  • a purple membrane containing bacteriorhodopsin can be used. The purple membrane can be isolated from a halophilic bacterium such as Halobacterium salinarum (Halobabacterium salinarum) as in the step (ii).
  • the purple membrane containing rhodopsin 341 is dispersed in a dispersion medium 342 to prepare a protein developing solution 350.
  • a dispersion medium 342 In a water tank filled with lower layer liquid 360? On the surface, spread it gently using a syringe 362 or the like. In the present embodiment, a Langmuir trough 361 is used as the water tank.
  • a 33 v / v% aqueous solution of dimethylformamide (DMF) can be used as the dispersion medium 342.
  • the lower layer solution 360 for example, pure water adjusted to pH 3.5 with HC1 can be used.
  • the protein monolayer obtained above the lower layer solution 360 By allowing the protein monolayer obtained above the lower layer solution 360 to stand for a predetermined time, the protein is interface-denatured by interfacial tension, and a denatured protein monolayer 352 is obtained. In the case of bacteriorhodopsin 341, it is better to leave it at room temperature for at least 5 hours.
  • the monomolecular film formed on the liquid surface of the lower layer liquid 360 is compressed until a predetermined surface pressure is reached.
  • bacteriorhodopsin 341 it is compressed, for example, to a surface pressure of 15 mNZm.
  • the surface pressure is a one-dimensional pressure and is expressed as the force per unit length.
  • the monomolecular film is formed in a sheet shape on the liquid surface of the lower layer liquid, and when compressed from the side, a one-dimensional force acts from the side of the film. At this time, the value obtained by dividing the force by the one-dimensional length in the lateral direction of the monolayer to which the force is applied is the surface pressure.
  • the modified protein monomolecular film 352 is attached to the surface of the substrate 3 obtained in the step (ii) by the horizontal attachment method. Further, by repeating the horizontal attachment method, the denatured protein monolayer 352 can be accumulated. By changing the number of accumulated layers, the thickness of the insulating layer 11 can be changed. For example, since the thickness of one layer of the denatured protein monolayer 352 is about 1.5 nm, the thickness of the insulating layer 11 can be set to a predetermined thickness in units of 1.5 nm.
  • (iv) Form a layer 13 on the insulating layer 11 where polarization occurs due to light reception.
  • a layer 13 in which polarization is generated by receiving light is formed on the surface of the insulating layer 11 obtained in the step (iii).
  • the layer 13 in which polarization is generated by light reception can be a monomolecular film or a stacked film of molecules in which polarization is generated by light reception.
  • the layer 13 in which polarization is generated by light reception can be, for example, a bacteriorhodopsin orientation film.
  • the bacteriorhodopsin alignment film is preferably used because it causes stable polarization upon receiving light.
  • purple membrane contains bacteriorhodopsin, which has relatively excellent durability, and is preferably used.
  • the purple membrane can be isolated from a halophilic bacterium such as Halobacterium salinarum (Ha1 ob ct ter i urn sa lin a urn) in the same manner as in the step (ii).
  • the step of forming the layer 13 in which polarization is generated by light reception includes the steps of: spreading a dispersion liquid containing molecules that are polarized by light reception on a liquid surface to form an alignment film of molecules that are polarized by light reception; and polarizing by light reception.
  • the step of attaching an alignment film of molecules that are polarized by light reception to the surface of the transparent substrate 19 will be described later in step (V).
  • a purple membrane containing bacteriorhodopsin 41 as a protein component is dispersed in a dispersion medium 42 to prepare a protein developing solution 50.
  • the obtained protein developing solution 50 is gently developed using a syringe 62 or the like on the liquid surface of a water tank filled with the lower layer solution 60.
  • a Langmuir trough 61 is used as a water tank.
  • bacteriorhodopsin 41 for example, a 33 vZv% dimethylformamide (DMF) aqueous solution is used as the dispersion medium 42. Can be.
  • DMF dimethylformamide
  • the lower layer solution 60 for example, an acidic solution such as an aqueous solution of hydrochloric acid having a pH of 3.5 can be used.
  • an acidic solution such as an aqueous solution of hydrochloric acid having a pH of 3.5
  • a protein monolayer 51 is obtained above the lower layer solution 60.
  • the orientation of the molecules forming the protein monolayer 51 becomes almost the same due to the effect of the interfacial tension of the lower layer solution 60.
  • the dispersion medium 42 is quiescent to volatilize. If a protein is used as the photosensitive molecule, set the standing time so that interface denaturation does not occur. For example, when using bacteriorhodopsin 41, the standing time is about 10 minutes.
  • the protein monomolecular film 51 formed on the liquid surface of the lower layer solution 60 is compressed until it reaches a predetermined surface pressure.
  • bacteriorhodopsin 41 for example, compress at a compression rate of 20 cm 2 / min until the surface pressure reaches 15 in NZm.
  • a monomolecular film is attached to the surface of the insulating layer 11 by a horizontal attachment method.
  • a horizontal attachment method For example, when bacteriorhodopsin is used, the thickness of one monolayer is about 5 nm.
  • a monomolecular film can be laminated on the surface of the insulating layer 11.
  • each time one layer is laminated rinse with pure water and dry under N 2 gas atmosphere.
  • the thickness of the layer 13 where polarization occurs due to light reception can be changed, so that the sensitivity of the optical sensor can be adjusted.
  • C i is an index relating to the initial concentration of bacteriophage dopsin in the protein monolayer 51
  • 11.5 nm 2 is the area per one molecule of bacteriophage dopsin obtained by X-ray diffraction.
  • a transparent conductive layer 17 and a protective layer 15 are provided in this order on one surface of the transparent substrate 19.
  • a transparent material such as resin or glass can be used.
  • a light-transmitting conductive layer such as indium tin oxide (ITO) can be used.
  • ITO indium tin oxide
  • the protective layer 15 for example, a transparent insulating material such as glass, resin, or a denatured protein film same as the insulating layer 11 can be used.
  • the conductance of the carbon nanotube 7 changes due to the polarization due to the light reception of the protein molecule, and the current flowing between the source electrode 5a and the drain electrode 5b changes. . By detecting this change, the presence / absence and intensity of light reception can be detected.
  • the value of the current flowing between the source electrode 5a and the drain electrode 5b is larger than that of the signal due to the polarization due to the light reception of the protein molecule, which is necessary for the conventional optical sensor. It is not necessary to connect to the large-sized amplifying device.
  • the layer 13 in which polarization is generated by receiving light is a thin film of a photosensitive molecule, and therefore, is thin and has high sensitivity. Since a pair of the source electrode 5a and the drain electrode 5b connected by the carbon nanotubes 7 are used as the pixels 9, the number of pixels per unit area is high (FIG. 5). Further, the optical sensor according to the present embodiment is an element that converts an optical signal into an electric signal, and can change a current value between the source electrode and the drain electrode by light irradiation.
  • the source electrode and the drain electrode are formed two-dimensionally on the substrate surface as shown in FIG. 5, but they may be formed so as to be arranged in a line.
  • Such a one-dimensional optical sensor can be used, for example, for non-contact dimension measurement, position measurement, facsimile pattern reading, and the like.
  • step of connecting the source electrode 5a and the drain electrode 5b with the carbon nanotubes 7 may be performed by the following method.
  • a force is applied to the substrate 3 on which the source electrode 5a and the drain electrode 5b are provided.
  • the alignment film of the carbon nanotube 7 is adsorbed.
  • a resist film 25 having openings above the source electrode 5a and the drain electrode 5b is formed.
  • the resist film 25 can be formed by, for example, a photoresist method.
  • a metal layer 27 is formed on the entire substrate on which the resist film 25 is provided.
  • the metal layer 27 is appropriately selected from metals or alloys used for the source electrode 5a and the drain electrode 5b.
  • the metal layer 27, the source electrode 5a, and the drain electrode 5b may use the same metal or different metals.
  • the formation of the metal layer can be performed in the same manner as (i) production of the source electrode 5a and the drain electrode 5b on the substrate 3, such as a metal vapor deposition method and a sputtering method.
  • the resist film 25 is removed with a stripper.
  • the metal layer 27 provided on the surface of the resist film 25 other than the upper portions of the source electrode 5a and the drain electrode 5b is removed.
  • the source electrode 5a or the drain electrode 5b and the metal layer 27 are provided on the upper and lower portions of the carbon nanotube 7, respectively.
  • the contact between the carbon nanotubes 7 and the metal constituting each electrode can be further improved. Therefore, the contact resistance between the carbon nanotube 7 and the source electrode 5a and the drain electrode 5b can be reduced, and the value of the current flowing between the source electrode 5a and the drain electrode 5b can be increased.
  • step of connecting the source electrode 5a and the drain electrode 5b with the carbon nanotubes 7 may be performed by the following method.
  • a dispersion of the carbon nanotube 7 is applied to the substrate 3 provided with the source electrode 5a and the drain electrode 5b.
  • a method in which the carbon nanotube 7 is moved to a predetermined position using an AFM probe or the like may be used.
  • the carbon nanotube 7 can be more precisely arranged between the source electrode and the drain electrode.
  • step of connecting the source electrode 5a and the drain electrode 5b by the carbon nanotube 7 may be performed by the following method.
  • the catalyst metal is not particularly limited as long as it serves as a catalyst for the growth of carbon nanotubes.
  • a metal containing at least one of Fe, Co, and Ni is preferably used.
  • An alloy such as Fe—Ni alloy or Ni—Co alloy may be used.
  • vapor deposition, lithography, sputtering, patterning using a solution of the catalyst metal, or the like can be performed. At this time, it is effective to appropriately adjust the deposition temperature, the substrate material, the method of depositing the catalyst metal, and the like. Further, the catalyst metal can be patterned by, for example, a lift-off method.
  • a film formed by a chemical vapor deposition method is preferably used as a method for growing carbon nanotubes in a horizontal direction on a substrate with a catalyst metal as a growth starting point.
  • CVD method a plasma CVD method, a thermal CVD method, or the like can be used.
  • a plasma CVD method capable of growing carbon nanotubes at a relatively low temperature is preferably used.
  • Source gases used for growth by the CVD method include saturated hydrocarbons such as methane, ethane, propane, butane, pentane, hexane, and cyclohexane; and unreacted gases such as ethylene, acetylene, propylene, benzene, and toluene.
  • saturated hydrocarbons such as methane, ethane, propane, butane, pentane, hexane, and cyclohexane
  • unreacted gases such as ethylene, acetylene, propylene, benzene, and toluene.
  • Saturated hydrocarbons; raw materials containing oxygen such as acetone, methanol, ethanol, carbon monoxide, or carbon dioxide; raw materials containing nitrogen such as benzonitrile; these may be used alone or in combination of two or more. it can.
  • the carrier gas flowing into the reactor together with the raw material gas for example, hydrogen or helium can be used, but its use is not essential.
  • the source electrode and the drain electrode can be connected by the carbon nanotube. Thereafter, an electrode can be formed on the carbon nanotubes by appropriately bonding a metal plate to the electrode surface or vapor-depositing a metal. By doing so, the carbon nanotube and the source electrode and the drain electrode are more appropriately bonded, so that the contact resistance can be reduced.
  • an alignment film of carbon nanotubes is formed, and the source electrode 5a and the drain electrode 5b are connected by a carbon nanotube.
  • the support component is wound around the surface of the carbon nanotube to have a uniform thickness. It was found that a coating was formed.
  • FIG. 21 is a diagram showing a configuration of the optical sensor of the present embodiment.
  • the basic configuration of the optical sensor of FIG. 21 is the same as that of the sensor of the first embodiment (FIG. 2).
  • the same components as those of the nanocarbon manufacturing apparatus 125 described in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the optical sensor of FIG. 21 has a carbon nanotube structure composed of a carbon nanotube 105 whose surface is coated with a modifying molecule 125 instead of the carbon nanotube 7 of the optical sensor described in the first embodiment.
  • the optical sensor of FIG. 2 is different from the optical sensor of FIG. 2 in that it has a body 131, and does not have an insulating layer 11 between the force-feeding nanotube 7 and a layer 13 in which polarization is generated by light reception.
  • the optical sensor shown in FIG. 21 schematically shows a state in which the modifying molecule 1229 is wound around the surface of the carbon nanotube 105 to form an insulating layer. Covers the surface of the carbon nanotubes 105 uniformly. Further, the insulating layer only needs to uniformly cover the surface of the carbon nanotube 105, and is not limited to a mode wound around the carbon nanotube 105.
  • FIG. 22 is a cross-sectional view showing a manufacturing process of the optical sensor of FIG.
  • the source electrode 5a and the drain electrode 5b are formed on the substrate 3 (FIG. 22 (a)).
  • the source electrode 5a and the drain electrode 5b are connected by the carbon nanotube structure 13 1 (FIG. 22 (b)), and a layer 13 on which polarization occurs due to light reception is formed thereon (FIG. 22 (b)).
  • Figure 22 (c) a laminate is formed by joining the substrate 3 and the transparent substrate 19 (FIG. 22 (e)).
  • a transparent conductive layer 17 and a protective layer 15 are provided in this order (FIG. 22 (d)).
  • the optical sensor shown in FIG. 21 is obtained.
  • the method described in the first embodiment can be used for forming the source electrode 5a and the drain electrode 5b on the substrate 3 (FIG. 22A).
  • connection of the source electrode 5a and the drain electrode 5b by the carbon nanotube structure 13 1 was obtained by forming an alignment film of the carbon nanotube structure 13 1. After the alignment film is attached to the surface of the substrate 3 and unnecessary portions of the carbon nanotube structure 131 are removed, the modifying molecules 129 on the source electrode 5a and the drain electrode 5b are removed. This method will be described later.
  • the alignment film of the carbon nanotube structure 13 1 is manufactured by using the method described in the first embodiment (FIG. 6).
  • the thickness of the insulating layer covering the carbon nanotube 105 is For example, it can be 0.1 nm or more and 100 nm or less, and preferably 10 nm or less. By doing so, the thickness of the insulating layer can be reduced. For this reason, the conductance change of the carbon nanotube 105 due to the induced charge generated by the polarization of the layer 13 where the polarization is generated by the light reception can be increased. Therefore, an optical sensor with higher sensitivity can be obtained.
  • the alignment film is attached to the surface of the substrate 3 by a method such as a horizontal attachment method.
  • FIGS. 23 (a) to 23 (e) are top views of the respective steps, and the corresponding sectional views are FIGS. 24 (a) to 24 (e).
  • FIGS. 23 (b) and 24 (b) show the structure of the carbon nanotube structure 1 on the substrate 3 (FIGS. 23 (a) and 24 (a)) on which the source electrode 5a and the drain electrode 5b are formed.
  • FIG. 3 is a diagram showing a state in which an alignment film of No. 31 is adsorbed.
  • Patterning was performed to remove only the carbon nanotube structure 131 adsorbed to unnecessary portions, leaving only the carbon nanotube structure 131 adsorbed above the source electrode 5a and the drain electrode 5b and between the electrodes.
  • a resist film 25 is formed (FIGS. 23C and 24C).
  • the carbon nanotube structure 131 in a region not having the resist film 25 on the upper portion is removed (FIGS. 23D and 24D).
  • the resist film 25 is removed using a solution that dissolves the resist film 25 without dissolving the modifying molecules 129 and the carbon nanotubes 105 (FIGS. 23 (e) and 24 (e)).
  • FIG. 25 is a cross-sectional view showing a step of removing the modifying molecule 129 on the electrode.
  • the source electrode 5a and the drain electrode are formed on the entire surface of the substrate 3 (Fig. 25 (a)) from which the unnecessary carbon nanotube A resist film 31 having an opening at the top of the electrode 5b is formed (FIG. 25 (b)). As a result, both ends of the carbon nanotube structure 13 1 are exposed.
  • the carbon nanotubes 105 have no coating only on the electrodes.
  • Oxygen plasma can be used for atshing.
  • a plasma of nitrogen or a nitrogen-containing gas can be used.
  • the resist film 31 is removed using a solution that dissolves the resist film 31 without dissolving the carbon nanotubes 105 (FIG. 25 (d)).
  • the modifying molecule 129 on the electrode is removed.
  • the electrical connection between the carbon nanotube 105 and the electrode can be improved by removing the modifying molecule 125 on the electrode.
  • annealing is performed as appropriate in the steps after FIG. 23 (b) and FIG. 24 (b), for example, under vacuum.
  • a carbide is formed at the interface between the source electrode 5a and the drain electrode 5b and the carbon nanotube 105, thereby increasing electrical contact.
  • a mask is formed on the surface of the substrate 3 so that only the upper part of the electrode is an opening, and a metal layer to be an electrode is further formed on each of the source electrode 5a and the drain electrode 5b. You can also. By doing so, a structure in which the source nanotube 105 connecting the source electrode 5a and the drain electrode 5b is sandwiched between the upper and lower metal layers is obtained. Therefore, the electrical contact can be further improved.
  • a thin insulating film may be formed on the source electrode 5a and the drain electrode 5b by applying a mask on the surface of the substrate 3 so that only the upper part of the electrode is an opening. This can prevent direct contact between the source electrode 5a, the drain electrode 5b, and the carbon nanotube 105 exposed on these electrodes and the layer 13 where polarization occurs due to light reception. Also, as mentioned above, Even if a metal layer serving as an electrode is further formed on each of the source electrode 5a and the drain electrode 5b, the metal layer and the layer 13 where polarization occurs due to light reception should not be in direct contact. it can. Therefore, the accuracy of the optical sensor can be further improved.
  • the modifying molecule 129 is wound around the outer periphery of the side surface of the carbon nanotube 105, the modifying molecule 129 is evenly distributed on the surface of the carbon nanotube structure 131. Insulating film is formed. Therefore, without forming an insulating film on the carbon nanotube 105, it is possible to attach the layer 13 where polarization is generated by direct light reception on the carbon nanotube structure 131. . Therefore, it is possible to stably supply an optical sensor having a simpler configuration.
  • the insulating layer on the surface of the carbon nanotube 105 that is, the layer of the modifying molecule 125 is uniform on the surface of the carbon nanotube 105 as a thin film having a thickness of, for example, about 0.1 nm or more and 100 nm or less. Is formed. For this reason, the polarization in the layer 13 where the polarization occurs due to the light reception is ensured while the insulation between the layer 13 where the polarization occurs due to the light reception and the carbon nanotube 105 is ensured. It can be accurately converted to a change in conductance.
  • the periphery of the carbon nanotube 105 is covered with the modifier molecule 129 with a uniform thickness, the operation stability of the optical sensor is improved.
  • such a coating of the modifying molecule 129 suppresses the influence of the surrounding water from affecting the conductivity of the carbon nanotube 105. Therefore, the accuracy and sensitivity of the optical sensor can be further improved.
  • the optical sensor according to the present embodiment has a configuration in which a plurality of electrode pairs including a source electrode and a drain electrode are two-dimensionally arranged on a substrate surface.
  • the structure of each sensor unit is the same as in the first embodiment.
  • the optical sensor of the present embodiment can be suitably applied to an image recognition element, an image sensor of a television camera, and the like.
  • an example in which the optical sensor according to the present embodiment is used as an image recognition element will be described. I will tell.
  • FIG. 11 shows an image recognition element 100 according to the present embodiment.
  • the image recognition device 100 shown in FIG. 11 is manufactured in the same manner as in the first embodiment.
  • single crystal silicon is used for the substrate 3.
  • a purple film is used for the layer 13 where polarization is generated by light reception.
  • a protein monomolecular film 51 containing bacteriorhodopsin 41 and lipid is obtained, and this is laminated to form a layer 13 in which polarization is generated by light reception.
  • a purple film is used for the insulating layer 11.
  • the current value flowing through the source electrode 5a and the drain electrode 5b of each pixel 9 is detected by the current detecting means 23. Therefore, the resolution is high and the sensitivity is high.
  • a difference image obtained by calculating a temporary difference between consecutive frame images of an image acquired by an input device such as a CCD is used.
  • This method is hereinafter referred to as the “de-one-time difference method”.
  • the overnight difference method takes advantage of the fact that the difference between two consecutive frame images is generally due to the portion of the image that corresponds to the contour of the moving object.
  • the contour data of the moving object extracted by the data difference method depends on the background image data of the moving object. In other words, even if the light intensity of the moving object is constant, if the light intensity of the background around the moving object changes, the contour data, which is the difference value, will not be constant. For this reason, it was difficult to detect the contour with high accuracy under the condition where the light intensity of the background image changes.
  • the image recognition element 100 according to the present embodiment can extract the outline of the moving object without taking a data difference, as described below.
  • FIG. 13 shows an output image obtained by the image recognition element when a moving image including a moving object is irradiated on the image recognition element 100 in FIG.
  • 1 1 1 is the input image at time t
  • 1 13 is the straight line ⁇ of the output image for the input image at t.
  • the output current value of each is shown.
  • the output current values on the straight line A ⁇ in the image are shown.
  • the induced current value corresponding to the contour on the front side in the moving direction is a predetermined constant value (+8 in Figs. 13 (a) and 13 (b)) corresponding to the light intensity of the moving object.
  • the induced current value corresponding to the portion of the moving object that is no longer irradiated with light, that is, the contour on the rear side in the moving direction of the moving object is a predetermined constant value according to the light intensity of the moving object (see FIG. In 1 3 (b), it is 1 5).
  • the induced current value of the contour is constant. Further, the induced current value corresponding to the portion of the moving object that has been continuously irradiated with light and the portion that has been no longer irradiated becomes zero with the passage of time.
  • the in-contour image of the moving object extracted by the image recognition element 100 of the present embodiment is a real image. For this reason, even if the background of the input moving image is a complicated image with a pattern or the like, only the outline of the moving object in the moving image can be extracted and does not depend on the background image. Further, by searching for the contour of the moving object, the moving direction of the object can be extracted.
  • the image recognition element 100 of the present embodiment since the pixels 9 are minute, the number of pixels per unit area can be increased to about 100 million. Therefore, the contour of the moving object can be extracted more precisely.
  • the pixel 9 constituting the image recognition element 100 of the present embodiment has a current value flowing between the source electrode 5a and the drain electrode 5b due to a change in the conductance of the carbon nanotube 7 due to the polarization of the bacterial rhodopsin 41. Therefore, the change in the current value is relatively large, and the contour of the moving object can be detected with high sensitivity.
  • FIG. 26 is a diagram showing the image recognition element 29.
  • the same components as those of the image recognition element 100 described in the first embodiment are denoted by the same reference numerals, and the description will be appropriately omitted.
  • the modification molecule 1 29 is coated around the carbon nanotube 105 in a similar manner.
  • a thin insulating layer of a modified molecule 129 is formed around the carbon nanotube structure 13 1. Therefore, polarization can be generated accurately and stably in the protein monomolecular film 51 without providing the insulating layer 11 between the layer 13 where polarization is generated by light reception and the carbon nanotube 105. .
  • a purple film can be used for the layer 13 in which polarization is generated by light reception.
  • the method described in the fifth and sixth embodiments can be used for manufacturing the image recognition element 29.
  • FIG. 19 is a diagram showing a method for manufacturing such a carbon nanotube structure 1 17.
  • a purple membrane containing pacteriorhodopsin 102 was dispersed in a dispersion medium (FIG. 19 (a)).
  • a purple membrane or a bacteriococcal dopsin 102 contained in the purple membrane can be used.
  • Purple membranes can be isolated from halophilic bacteria, such as Halobacterium um salinar um.
  • the method described in Methodsin Enzymology, 31, A, p. 667-678 (1974) was used.
  • As the dispersion medium 103 a 33 vZv% DMF (dimethylformamide) aqueous solution was used.
  • 33 vZv% DMF dimethyl Formamide
  • pacteriorhodopsin 102 To the dispersion of pacteriorhodopsin 102 was added an excess amount of force-pon nanotube 105, and the dispersion was performed for at least 1 hour using an ultrasonic disperser (Fig. 19 (b)). After the dispersion, remaining aggregates of carbon nanotubes 105 were removed.
  • As the carbon nanotube a multi-layer carbon nanotube manufactured by MTR Ltd. (Closeddendtpepe, diameter: 10 to 200 nm, purification purity: about 95%) was used.
  • the thus obtained dispersion liquid 107 (FIG. 19 (c)) was gently spread on the liquid surface of the lower liquid liquid 111 set in the water tank using the syringe 109 (FIG. 19 (d)). As a result, a monomolecular film of carbon nanotube 105 was obtained.
  • Langmuir Trough 113 was used as the water tank, and pure water adjusted to pH 3.5 with HC1 was used as the lower layer liquid 111.
  • the monomolecular film of the carbon nanotube 105 was allowed to stand still, and the bacteriorhodopsin 102 was interfacially denatured by the interfacial tension of the lower solution 111.
  • the membrane In the case of using purple membrane, it is preferable to leave the membrane at room temperature for 5 hours or more until bacteriorhodopsin in the purple membrane is interface-denatured. . In this way, the modified bacteriorhodopsin 115 is wound around the side surface of the force-feeding nanotube 105 (Fig. 19 (f)).
  • FIG. 20 is a view showing a TEM image of the carbon nanotube structure 1 17.
  • a layer of denatured bacterial mouth dopsin 115 was uniformly formed on the surface of carbon nanotube 105.
  • the layer thickness was about 3 nm.
  • bacteriorhodopsin 102 and carbon nanotubes 105 were dispersed and developed on a liquid surface by a simple method.
  • a carbon nanotube structure 1 17 was successfully produced.
  • An optical sensor can be stably manufactured by attaching the obtained carbon nanotube structure 117 on a substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Thin Film Transistor (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

An optical sensor using molecules polarized when receiving light, wherein a pair of source electrode (5a) and drain electrode (5b) on a substrate is electrically connected to each other by a carbon nanotube (7). When photosensitive molecules constituting a layer (13) polarizable by receiving light are polarized by receiving light, the conductance of the carbon nanotube (7) is changed. With the change of the conductance, the value of current flowing between the source electrode (5a) and the drain electrode (5b) is changed, thereby allowing the current change to be detected. By manufacturing an oriented film of the carbon nanotube (7), connection between the source electrode (5a) and the drain electrode (5b) is made easy and excellent. An optical sensor small and having high precision and sensitivity, methods for manufacturing and driving an optical sensor, and a method for measuring light intensity are realized.

Description

明 細 書 光センサ、 光センサの製造方法および駆動方法、 ならびに光強度検出方法 技術分野  Description Optical sensor, method for manufacturing and driving optical sensor, and method for detecting light intensity
本発明は、 光センサ、 光センサの製造方法および駆動方法、 ならびに光強 度検出方法に関する。 背景技術  The present invention relates to an optical sensor, a method for manufacturing and driving the optical sensor, and a method for detecting light intensity. Background art
近年、 光センサに対し、 小型化および高感度化の要請がとみに高まってお り、 光信号を効率よく電気信号に変換し、 検出することのできるセンサの実 現が強く望まれている。  In recent years, demands for downsizing and high sensitivity of optical sensors have been increasing enormously, and there is a strong demand for a sensor that can efficiently convert optical signals into electrical signals and detect them.
本発明者は、 こうした要請に鑑み、 光照射によって分極する分子 (以下適 宜感光性分子と呼ぶ) を光検出物質として利用するセンサの開発を進めてき た。 こうした感光性分子を光センサの光検知部として用いることができれば、 光情報を高感度、 高精度で検出できることが期待される。  In view of these requirements, the present inventor has proceeded with the development of a sensor that uses a molecule that is polarized by light irradiation (hereinafter appropriately referred to as a photosensitive molecule) as a photodetection substance. If such photosensitive molecules can be used as the light detection part of an optical sensor, it is expected that optical information can be detected with high sensitivity and high accuracy.
こうした観点から、 本発明者は、 すでにバクテリオロドプシンを用いた画 像認識素子について公表している (特許文献 1参照)。 好塩菌の紫膜 (P u r p i e m e m b r a n e ) を脂質とともに構成するタンパク質であるバク テリオロドプシンは、 光受容タンパク質であり、 光照射に対し微分型の応答 を示す (図 1 )。  From such a viewpoint, the present inventors have already published an image recognition element using bacteriorhodopsin (see Patent Document 1). Bacteriorhodopsin, a protein that constitutes the purple membrane (Purpiemmembrane) of halophilic bacteria together with lipids, is a photoreceptor protein and shows a differential response to light irradiation (Fig. 1).
特許文献 1に記載の画像認識素子は、 このバクテリオ口ドプシンの応答を、 移動物体の輪郭などを抽出する画像センサに利用したものであり、 バクテリ ォロドプシンの配向膜が光によって電気分極した際に画素電極に誘導される 誘導電流を検出するものである。 この画像認識素子によれば、 誘導電流を検 出するため、 誘導電圧を検出する画像認識素子に比べノイズが少ない。 よつ て、 電極を微小化した際にも信号を検出することができる。 また、 バクテリ ォロドプシンの配向膜を用いることにより、 光検出部を超薄膜化することが できる。 The image recognition device described in Patent Document 1 uses the response of bacteriococcal dopsin for an image sensor that extracts the contour of a moving object, etc. It detects the induced current induced in the electrode. According to this image recognition device, since the induced current is detected, the noise is smaller than that of the image recognition device that detects the induced voltage. Thus, a signal can be detected even when the electrode is miniaturized. In addition, by using an alignment film of bacteriorhodopsin, it is possible to make the photodetector ultra-thin. it can.
特許文献 1 特開 2 0 0 0— 2 6 7 2 2 3号公報  Patent Literature 1 Japanese Patent Application Laid-Open No. 2000-002 6 7 2 2 3
非特許文献 1 M e t h o d s i n E n z y m o 1 o g y , 3 1 , A, p p . 6 6 7 - 6 7 8 ( 1 9 7 4 )  Non-Patent Document 1 M e t o o d s i n En z y m o 1 o g y, 31, A, p p. 6 6 7-6 7 8 (1 9 7 4)
発明の開示  Disclosure of the invention
ところが、 バクテリオ口ドプシン等の感光性分子の電気分極に起因する信 号は小さく、 誘導電流を検出する場合においても、 必ずしも十分な誘導電流 値が得られない。 従って、 この信号を光センサとして用いる際に、 十分な電 流値を得るための増幅が必要な場合がある。 従来、 この増幅系は大がかりな 装置を必要とするため、 光センサを大型装置に組み込む必要があった。  However, the signal due to the electric polarization of photosensitive molecules such as bacteriophage dopsin is small, and even when detecting the induced current, a sufficient induced current value is not necessarily obtained. Therefore, when using this signal as an optical sensor, amplification to obtain a sufficient current value may be necessary. Conventionally, since this amplification system requires a large-scale device, it was necessary to incorporate an optical sensor into a large-scale device.
上記事情に鑑み、 本発明は、 小型で高感度の光センサ、 光センサの製造方 法および駆動方法、 ならびに光強度検出方法を提供することを目的とする。 本発明によれば、 基板と、 該基板上に形成されたソース電極およびドレイ ン電極と、 前記ソース電極およびドレイン電極を電気的に接続するカーボン ナノチューブと、 前記カーボンナノチューブの上部に設けられた、 受光によ り分極が発生する層と、 を備えることを特徴とする光センサが提供される。 本発明の光センサは、 光が照射されると、 受光により分極が発生する層で 分極が起こり、 誘起電荷が生じる。 ここで、 力一ボンナノチューブは、 電界 の強弱によってコンダクタンスが変化する性質を有しているため、 上記誘起 電荷がトリガ一となってカーボンナノチューブのコンダクタンスが変化し、 ソース · ドレイン電極間に流れる電流値が変化する。 この電流値の変化を検 出することによって、 受光した光の強度等を検出することができる。  In view of the above circumstances, an object of the present invention is to provide a small and highly sensitive optical sensor, a method for manufacturing and driving the optical sensor, and a method for detecting light intensity. According to the present invention, a substrate; a source electrode and a drain electrode formed on the substrate; a carbon nanotube electrically connecting the source electrode and the drain electrode; and a carbon nanotube provided on the carbon nanotube. A layer in which polarization is generated by light reception. In the optical sensor of the present invention, when light is irradiated, polarization occurs in a layer in which polarization is generated by light reception, and an induced charge is generated. Here, the carbon nanotube has the property that the conductance changes depending on the strength of the electric field, and thus the induced charge triggers the change in the conductance of the carbon nanotube, and the current flowing between the source and drain electrodes. The value changes. By detecting the change in the current value, the intensity of the received light can be detected.
受光により分極が発生する層での分極による信号は小さくても、 この信号 がトリガ一となって生じるソース · ドレイン電極間の電流値の変化は大きな 値となる。 したがって、 受光の有無を検知するために十分大きな電気的信号 を得ることができる。  Even though the signal due to polarization in the layer where polarization occurs due to light reception is small, the change in the current value between the source and drain electrodes caused by this signal is a large value. Therefore, an electric signal large enough to detect the presence or absence of light reception can be obtained.
また、 本発明の光センサは、 ソース電極およびドレイン電極を接続する配 線部材に導電性の高いカーボンナノチューブを用いているため、 電極を微小 化しても充分な電流値を得ることができる。 この結果、 光センサのサイズを 小型化することができる。 これにより、 単位面積あたりのソース電極および ドレイン電極数、 すなわち画素数を大きくすることができる。 Further, in the optical sensor of the present invention, since the highly conductive carbon nanotube is used for the wiring member connecting the source electrode and the drain electrode, the electrode is minute. However, a sufficient current value can be obtained. As a result, the size of the optical sensor can be reduced. This makes it possible to increase the number of source and drain electrodes per unit area, that is, the number of pixels.
本発明によれば、 基板の表面にソース電極およびドレイン電極を形成する 工程と、 前記ソース電極およびドレイン電極を力一ポンナノチューブによつ て接続する工程と、 前記カーボンナノチューブの上部に、 受光により分極が 発生する層を形成する工程と、 を含むことを特徴とする光センサの製造方法 が提供される。  According to the present invention, a step of forming a source electrode and a drain electrode on a surface of a substrate, a step of connecting the source electrode and the drain electrode with a force-pont nanotube, Forming a layer in which polarization occurs, and a method for manufacturing an optical sensor.
本発明の光センサの製造方法によれば、 ソース電極およびドレイン電極が カーボンナノチューブによって接続され、 カーボンナノチューブの上部に受 光により分極が発生する層が形成される。 したがって、 高精度で小型、 かつ 画素数の多い光センサを安定的に製造することができる。  According to the method for manufacturing an optical sensor of the present invention, the source electrode and the drain electrode are connected by the carbon nanotube, and a layer in which polarization occurs due to light reception is formed on the carbon nanotube. Therefore, it is possible to stably manufacture a high-precision, small-sized optical sensor having a large number of pixels.
本発明によれば、 前記の光センサの駆動方法であって、 前記ソース電極と 前記ドレイン電極との間に所定の電流を流し、 電流値の変化を検知すること を特徴とする光センサの駆動方法が提供される。  According to the present invention, in the above-described method for driving an optical sensor, a predetermined current is caused to flow between the source electrode and the drain electrode, and a change in the current value is detected. A method is provided.
本発明の光センサの駆動方法は、 ソース電極とドレイン電極との間に所定 の電流が流れている状態とし、 受光により発生した分極の程度に応じて力一 ボンナノチューブのコンダクタンスを変化させ、 これにともなう電流値の変 化を検知するものである。 この電流値の変化の大きさにより、 受光した光の 強度が検出される。 電流値の変化は感光性分子の分極を直接検知する場合に 比べて大きいため、 感度 ·精度の高い測定が可能となる。  The method for driving an optical sensor according to the present invention is characterized in that a predetermined current is flowing between a source electrode and a drain electrode, and the conductance of a carbon nanotube is changed according to the degree of polarization generated by light reception. It detects the change in the current value accompanying the current. The intensity of the received light is detected based on the magnitude of the change in the current value. Since the change in the current value is larger than when the polarization of the photosensitive molecule is directly detected, measurement with high sensitivity and high accuracy is possible.
本発明によれば、 受光により分極する層および該層に近接して設けられた カーボンナノチューブを含むセンサを用いて光強度の検出を行う方法であつ て、 前記カーボンナノチューブに電圧を印加し、 前記層の受光によって引き 起こされる前記カーボンナノチューブ中の電流値の変化を検出し、 この電流 値の変化から光強度を検出することを特徴とする光強度検出方法が提供され る。  According to the present invention, there is provided a method for detecting light intensity using a layer including a layer polarized by light reception and a carbon nanotube provided in the vicinity of the layer, comprising applying a voltage to the carbon nanotube, A light intensity detection method is provided, wherein a change in a current value in the carbon nanotube caused by light reception of the layer is detected, and a light intensity is detected from the change in the current value.
本発明の光検出方法においては、 光照射により受光により分極する層が分 極し、 誘起電荷を生じる。 この誘起電荷がトリガーとなって、 カーボンナノ チューブのコンダクタンスが変化し、 カーボンナノチューブを流れる電流値 が変化する。 この電流値の変化を検出することによって、 光強度を検出する ことができる。 本発明の方法によれば、 比較的小さな分極信号から、 比較的 大きな電流値変化が得られ、 光強度を高い精度 ·感度で測定することができ る。 In the photodetection method of the present invention, the layer that is polarized by light reception by light irradiation is separated. And induces induced charge. Triggered by this induced charge, the conductance of the carbon nanotube changes, and the current flowing through the carbon nanotube changes. The light intensity can be detected by detecting the change in the current value. According to the method of the present invention, a relatively large change in current value can be obtained from a relatively small polarization signal, and the light intensity can be measured with high accuracy and sensitivity.
本発明の光検出方法において、 前記受光により分極する層がパクテリォロ ドプシンを含む構成とすることができる。 こうすることにより、 受光により 分極する層での分極を安定で確実に生じさせることができる。 したがって、 精度、 感度の高い光検出方法とすることができる。  In the photodetection method according to the present invention, the layer polarized by the light reception may be configured to include pateriorhodopsin. This makes it possible to stably and reliably generate polarization in the layer that is polarized by light reception. Therefore, a light detection method with high accuracy and sensitivity can be provided.
本発明の光センサにおいて、 前記カーボンナノチューブの表面に絶縁層を 有してもよい。 こうすることにより、 カーボンナノチューブと受光により分 極する層との間を確実に絶縁することができる。 よって、 光センサの動作安 定性を向上させることができる。  In the optical sensor of the present invention, an insulating layer may be provided on a surface of the carbon nanotube. By doing so, it is possible to reliably insulate between the carbon nanotube and the layer that is polarized by light reception. Therefore, the operation stability of the optical sensor can be improved.
本発明の光センサにおいて、 前記絶縁層は、 高分子層であってもよい。 こ うすることにより、 カーボンナノチューブの表面が良好に被覆され、 絶縁性 を安定的に確保することができる。 高分子層は、 たとえば有機高分子層とす ることができる。  In the optical sensor according to the aspect of the invention, the insulating layer may be a polymer layer. By doing so, the surface of the carbon nanotube is covered well, and the insulating property can be secured stably. The polymer layer can be, for example, an organic polymer layer.
本発明の光センサにおいて、 前記絶縁層は、 前記カーボンナノチューブの 側面に高分子が巻回してなる層であってもよい。 こうすることにより、 カー ボンナノチューブの表面を均一に被覆することができる。 また、 被覆層を強 固で安定な層とすることができる。 このため、 光センサの動作安定性を向上 させ、 信頼性を向上させることができる。 また、 高分子が巻回してなる層と することにより、 被覆層の膜厚を減少させることができる。 このため、 より 一層確実にカーボンナノチューブのコンダクタンスを変化させることができ る。  In the optical sensor of the present invention, the insulating layer may be a layer in which a polymer is wound around a side surface of the carbon nanotube. By doing so, the surface of the carbon nanotube can be uniformly coated. Further, the coating layer can be a strong and stable layer. Therefore, the operation stability of the optical sensor can be improved, and the reliability can be improved. In addition, by forming a layer in which the polymer is wound, the thickness of the coating layer can be reduced. For this reason, the conductance of the carbon nanotube can be more reliably changed.
なお、 本発明において、 「高分子」 とは、 カーボンナノチューブに巻回する ために充分な骨格鎖長を有する分子のことをいう。 また、 高分子がカーボン ナノチューブの側面に 「卷回」 するとは、 高分子の分子鎖がカ- ユーブ側面を周回して巻き付き、 カーボンナノチューブの表面を被覆するこ とをいう。 In the present invention, the “polymer” refers to a molecule having a skeleton chain length sufficient to be wound around a carbon nanotube. Also, the polymer is carbon "Wound" on the side surface of the nanotube means that the molecular chain of the polymer wraps around the side surface of the tube and wraps around the surface of the carbon nanotube.
本発明に係る光センサの製造方法において、 カーボンナノチューブの配向 膜を作製する前記工程は、 前記カーボンナノチューブの表面に前記被覆分子 を含む絶縁層を形成する工程を含んでもよい。 こうすることにより、 カーボ ンナノチューブと受光により分極する層とを確実に絶縁することができる。 本発明の光センサの製造方法において、 前記被覆分子として高分子を用い、 前記カーボンナノチューブの表面に高分子層を形成してもよい。 こうすれば、 絶縁層の被覆性を向上させることができる。 よって、 カーボンナノチューブ の表面をさらに安定的に絶縁することができる。  In the method for manufacturing an optical sensor according to the present invention, the step of forming an alignment film of carbon nanotubes may include a step of forming an insulating layer containing the coating molecules on a surface of the carbon nanotubes. By doing so, it is possible to reliably insulate the carbon nanotube from the layer polarized by light reception. In the method for manufacturing an optical sensor according to the present invention, a polymer may be used as the coating molecule, and a polymer layer may be formed on the surface of the carbon nanotube. In this case, the coverage of the insulating layer can be improved. Therefore, the surface of the carbon nanotube can be more stably insulated.
本発明の光センサの製造方法において、 前記被覆分子としてタンパク質を 分散させた前記分散液を液体表面に展開することにより前記タンパク質を変 性させ、 変性した前記タンパク質を前記カーボンナノチューブの側面に巻回 させてもよい。  In the method of manufacturing an optical sensor according to the present invention, the protein is modified by spreading the dispersion in which the protein is dispersed as the coating molecule on a liquid surface, and the modified protein is wound around a side surface of the carbon nanotube. May be.
本発明に係る製造方法によれば、 簡便な方法によりカーボンナノチューブ の表面に高分子を巻回させることができる。 このため、 カーボンナノチュー ブの表面を簡便な方法で被覆することができる。 よって、 カーボンナノチュ ーブ表面の絶縁性をさらに確実とすることができる。 .  According to the production method of the present invention, a polymer can be wound on the surface of a carbon nanotube by a simple method. Therefore, the surface of the carbon nanotube can be coated by a simple method. Therefore, the insulating property of the surface of the carbon nanotube can be further ensured. .
本発明において、 前記高分子はポリペプチドとすることができる。 ポリべ プチドを用いることにより、 その骨格鎖をカーボンナノチューブに安定的に 被覆することができる。 また、 本発明において、 前記ポリペプチドは変性夕 ンパク質とすることができる。  In the present invention, the polymer can be a polypeptide. By using the polypeptide, the skeleton chain can be stably coated on the carbon nanotube. In the present invention, the polypeptide may be a denatured protein.
また本発明の光センサの製造方法において、 前記高分子としてタンパク質 を用い、 前記分散液を液体表面に展開することにより前記タンパク質を変性 させ、 変性した前記タンパク質を前記カーボンナノチューブの側面に巻回さ せることができる。  In the method for producing an optical sensor according to the present invention, the protein is denatured by using a protein as the polymer, and the dispersion is spread on a liquid surface to denature the protein. The denatured protein is wound around a side surface of the carbon nanotube. Can be made.
変性タンパク質は、 未変性タンパク質と異なり、 一般に疎水部が露出しが ちになる。 このため、 カーボンナノチューブ側面への巻回がより一層容易、 確実になる。 また、 タンパク質の分散液を液体表面に展開することにより、 分散液と液体との界面張力によってタンパク質を効率よく変性させ、 疎水部 を露出させることができる。なお本発明においてタンパク質の「変性」 とは、 当該タンパク質分子の立体構造の崩壊と機能の失活、 または当該タンパク質 分子を構成する一次構造すなわちアミノ酸配列の切断以外のコンフオメーシ ョン変化のことをいい、 コンフオメーシヨン変化の程度に特に制限はない。 本発明において、 前記ポリペプチドは膜タンパク質とすることができる。 膜タンパク質は多くの場合疎水性の高い領域を有しているため、 これを用い ることにより、 カーボンナノチューブ側面に効率よく吸着し、 安定的に巻回 させることができる。 Denatured proteins, unlike native proteins, generally have exposed hydrophobic Become For this reason, the winding on the side surface of the carbon nanotube is more easily and reliably performed. Further, by spreading the protein dispersion on the liquid surface, the protein can be efficiently denatured by the interfacial tension between the dispersion and the liquid, and the hydrophobic portion can be exposed. In the present invention, “denaturation” of a protein refers to a collapse of the three-dimensional structure and inactivation of the function of the protein molecule, or a conformational change other than the cleavage of the primary structure constituting the protein molecule, that is, the amino acid sequence. The degree of conformational change is not particularly limited. In the present invention, the polypeptide may be a membrane protein. Since the membrane protein often has a region with high hydrophobicity, by using this, the protein can be efficiently adsorbed on the side surface of the carbon nanotube and can be stably wound.
以上説明したように本発明の光センサは、 基板と、 基板上に形成されたソ ース電極およびドレイン電極と、 ソース電極およびドレイン電極を電気的に 接続するカーボンナノチューブと、 カーボンナノチューブの上部に設けられ た、 受光により分極が発生する層と、 を備える。 このため、 受光により分極 が発生する層での分極による小さな信号がトリガーとなって、 ソース ' ドレ ィン電極間の電流値の変化という大きな電気的信号が得られ、 この電流値の 変化を検知することによって高い精度 ·感度で光の検出が可能な光センサお よびその駆動方法が実現される。  As described above, the optical sensor of the present invention comprises: a substrate; a source electrode and a drain electrode formed on the substrate; a carbon nanotube for electrically connecting the source electrode and the drain electrode; And a layer in which polarization is generated by light reception. For this reason, a small signal due to polarization in the layer where polarization occurs due to light reception is used as a trigger, and a large electrical signal, that is, a change in the current value between the source and drain electrodes is obtained, and this change in the current value is detected. As a result, an optical sensor capable of detecting light with high accuracy and sensitivity and a driving method thereof are realized.
また、 本発明によれば、 高精度 ·感度で小型、 かつ画素数の多い光センサ を安定的に製造することができる光センサの製造方法が提供される。  Further, according to the present invention, there is provided a method for manufacturing an optical sensor capable of stably manufacturing an optical sensor having high accuracy, sensitivity, small size, and a large number of pixels.
さらに、 本発明によれば、 カーボンナノチューブに電圧を印加し、 受光に より分極が発生する層の受光によって引き起こされるカーボンナノチューブ 中の電流値の変化を検出し、 この電流値の変化から光強度を検出するため、 比較的小さな分極信号から、 比較的大きな電流値変化が得られ、 光強度を高 い精度 ·感度で測定することができる光強度検出方法が実現される。 図面の簡単な説明 図 1 パクテリォロドプシンへの光照射とその電気的応答を示す図であ る。 Further, according to the present invention, a voltage is applied to the carbon nanotube, a change in a current value in the carbon nanotube caused by light reception of the layer where polarization occurs due to light reception is detected, and the light intensity is determined from the change in the current value. For detection, a relatively large change in the current value can be obtained from a relatively small polarization signal, and a light intensity detection method capable of measuring light intensity with high accuracy and sensitivity is realized. BRIEF DESCRIPTION OF THE FIGURES Fig. 1 is a diagram showing light irradiation to pateriorhodopsin and its electrical response.
図 2 実施の形態に係る光センサの一例を示す断面図である。  FIG. 2 is a sectional view showing an example of the optical sensor according to the embodiment.
図 3 実施の形態に係る光センサの一例を示す概略図である。  FIG. 3 is a schematic diagram showing an example of the optical sensor according to the embodiment.
図 4 実施の形態に係る光センサの製造工程を模式的に示す断面図であ る。  FIG. 4 is a cross-sectional view schematically showing a manufacturing process of the optical sensor according to the embodiment.
図 5 実施の形態に係る光センサの構造の一部を模式的に示す斜視図で ある。  FIG. 5 is a perspective view schematically showing a part of the structure of the optical sensor according to the embodiment.
図 6 カーボンナノチューブの配向膜の作製方法を示す図である。  FIG. 6 is a diagram showing a method for producing an alignment film of carbon nanotubes.
図 7 力一ボンナノチューブを用いたソース電極およびドレイン電極の 接続方法について模式的に示す上面図である。  FIG. 7 is a top view schematically showing a method of connecting a source electrode and a drain electrode using a carbon nanotube.
図 8 カーボンナノチューブを用いたソース電極およびドレイン電極の 接続方法について模式的に示す断面図である。  FIG. 8 is a cross-sectional view schematically illustrating a method of connecting a source electrode and a drain electrode using carbon nanotubes.
図 9 タンパク質単分子膜の作製方法および積層方法を示す断面図であ る。  FIG. 9 is a cross-sectional view showing a method for producing a protein monolayer and a method for laminating the same.
図 1 0 変性タンパク質単分子膜の作製方法および積層方法を示す断面 図である。  FIG. 10 is a cross-sectional view showing a method for producing a denatured protein monolayer and a method for laminating the same.
図 1 1 実施の形態に係る画像認識素子の一例を示す断面図である。 図 1 2 バクテリオロドプシンへの光照射による電気分極特性を示す図 である。  FIG. 11 is a sectional view showing an example of the image recognition element according to the embodiment. Fig. 12 is a diagram showing the electric polarization characteristics of bacteriorhodopsin by light irradiation.
図 1 3 実施の形態に係る画像認識素子の出力画像を模式的に示す図で ある。  FIG. 13 is a diagram schematically showing an output image of the image recognition element according to the embodiment.
図 1 4 紫膜の L B膜の Π— Aプロットを示す図である。  Fig. 14 is a diagram showing a A-A plot of the LB film of the purple film.
図 1 5 ソース電極およびドレイン電極のカーボンナノチューブを用い た接続方法について模式的に示す断面図である。  FIG. 15 is a cross-sectional view schematically showing a connection method using a carbon nanotube for a source electrode and a drain electrode.
図 1 6 実施の形態に係る電極の構成の一例を示す図である。  FIG. 16 is a diagram showing an example of the configuration of the electrode according to the embodiment.
図 1 7 紫膜を支持体としたカーボンナノチューブの配向膜の A F M像 を示す図である。 図 1 8 支持体を用いずに作製したカーボンナノチューブの配向膜の A F M像を示す図である。 Fig. 17 is a diagram showing an AFM image of an alignment film of carbon nanotubes using a purple film as a support. Fig. 18 is a diagram showing an AFM image of an alignment film of carbon nanotubes produced without using a support.
図 1 9 実施例に係るカーボンナノチューブ構造体の製造方法を示す図 である。  FIG. 19 is a view illustrating a method of manufacturing a carbon nanotube structure according to an example.
図 2 0 実施例に係るカーボンナノチューブ構造体の T E M像を示す図 である。  FIG. 20 is a diagram showing a TEM image of the carbon nanotube structure according to the example.
図 2 1 実施の形態に係る光センサの一例を示す断面図である。  FIG. 21 is a sectional view showing an example of the optical sensor according to the embodiment.
図 2 2 実施の形態に係る光センサの製造工程を模式的に示す断面図で ある。  FIG. 22 is a cross-sectional view schematically showing a manufacturing process of the optical sensor according to the embodiment.
図 2 3 カーボンナノチューブを用いたソ一ス電極およびドレイン電極 の接続方法について模式的に示す上面図である。  FIG. 23 is a top view schematically showing a method of connecting a source electrode and a drain electrode using carbon nanotubes.
図 2 4 力一ポンナノチューブを用いたソース電極およびドレイン電極 の接続方法について模式的に示す断面図である。  FIG. 24 is a cross-sectional view schematically illustrating a method of connecting a source electrode and a drain electrode using a force-feed nanotube.
図 2 5 力一ボンナノチューブを用いたソース電極およびドレイン電極 の接続方法について模式的に示す断面図である。  FIG. 25 is a cross-sectional view schematically illustrating a method of connecting a source electrode and a drain electrode using a carbon nanotube.
図 2 6 実施の形態に係る画像認識素子の一例を示す断面図である。 発明を実施するための最良の形態  FIG. 26 is a sectional view showing an example of the image recognition element according to the embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明に係る光センサの好ましい実施形態について説明する。 図 2 は、 本発明に係る光センサの構成の一例を示す図である。 図 2において、 基 板 3と、 基板 3の上に設けられたソース電極 5 aおよびドレイン電極 5 bと、 これらの間を接続するカーボンナノチューブ 7と、 力一ボンナノチューブ 7 上に形成された絶縁層 1 1と、 絶縁層 1 1上に形成された受光により分極が 発生する層 1 3とを含む。  Hereinafter, preferred embodiments of the optical sensor according to the present invention will be described. FIG. 2 is a diagram showing an example of the configuration of the optical sensor according to the present invention. In FIG. 2, a substrate 3, a source electrode 5 a and a drain electrode 5 b provided on the substrate 3, a carbon nanotube 7 connecting them, and an insulation formed on the carbon nanotube 7 It includes a layer 11 and a layer 13 which is formed on the insulating layer 11 and is polarized by light reception.
受光により分極が発生する層 1 3には、 受光によって分極する分子 (以下 適宜感光性分子と呼ぶ) が存在し、 受光によって感光性分子が分極し、 誘起 電荷が生じる。 この誘起電荷により力一ボンナノチューブ 7のコンダク夕ン スが変化するため、 ソース電極 5 aとドレイン電極 5 bとの間を流れる電流 値が変化する。 In the layer 13 in which polarization is generated by light reception, molecules that are polarized by light reception (hereinafter, appropriately referred to as photosensitive molecules) exist, and the photosensitive molecules are polarized by light reception to generate induced charges. The induced charge changes the conductance of the carbon nanotube 7, so that the current flowing between the source electrode 5a and the drain electrode 5b The value changes.
図 3は、 カーボンナノチューブ 7のコンダクタンスが変化する様子を模式 的に示した図である。 図 3において、 感光性分子の光電分極によって生じる 電荷は、 カーボンナノチューブ 7の 7T電子場を変化させるため、 力一ポンナ ノチューブ 7のコンダクタンスが変化すると推定される。 このカーボンナノ チューブのコンダクタンス変化により、 力一ボンナノチューブ 7を流れる電 流値が変化する。 図 2の光センサでは、 ソース電極 5 aおよびドレイン電極 5 bの接続に、 カーボンナノチューブ 7を用い、 カーボンナノチューブ 7の 上部に受光により分極が発生する層 1 3を有するので、 カーボンナノチュー ブ 7を介してソース電極 5 aおよびドレイン電極 5 bの間を流れる電流値が 変化する。  FIG. 3 is a diagram schematically showing how the conductance of the carbon nanotube 7 changes. In FIG. 3, it is presumed that the electric charge generated by the photoelectric polarization of the photosensitive molecule changes the 7T electron field of the carbon nanotube 7, so that the conductance of the force tube 11 changes. Due to the change in the conductance of the carbon nanotube, the value of the current flowing through the carbon nanotube 7 changes. In the optical sensor of FIG. 2, the carbon nanotubes 7 are used to connect the source electrode 5 a and the drain electrode 5 b, and the carbon nanotubes 7 have a layer 13 on the upper side of which the polarization is generated by receiving light. The value of the current flowing between the source electrode 5a and the drain electrode 5b via the gate electrode changes.
この電流値の変化を検知することにより、 感光性分子の光電分極による小 さな信号を、 ナノアンペア (1 0 _9A) 程度の電流値変化として検出すること ができる。 したがって、 光信号を電気信号に変換する高感度な光センサとす ることができる。 By detecting a change in current value, a small signal by the photoelectric polarization of photosensitive molecules, can be detected as a current value changes in the order of nano amperes (1 0 _ 9 A). Therefore, a high-sensitivity optical sensor that converts an optical signal into an electric signal can be provided.
本発明の光センサにおいて、 ソース電極およびドレイン電極が、 前記基板 表面に二次元的に配列された構成とすることができる。 たとえば、 ソース電 極およびドレイン電極を、 図 5に示すように配列することができる。  In the optical sensor of the present invention, a configuration may be employed in which the source electrode and the drain electrode are two-dimensionally arranged on the surface of the substrate. For example, the source and drain electrodes can be arranged as shown in FIG.
また、 図 1 6は、 ソース電極およびドレイン電極の配置の他の例を示す図 である。 図 1 6の配置は、 第 1の電極 1 0 1と、 第 1の電極 1 0 1と離間し て第 1の電極 1 0 1の周辺を囲むように設けられた第 2の電極 1 0 2と、 を 備えている。 第 1の電極 1 0 1および第 2の電極 1 0 2のうち、 いずれか一 方をソース電極とし、 他方をドレイン電極とする。 このような電極配置とす れば、 ソース電極およびドレイン電極をカーボンナノチューブで接続するこ とが、 比較的容易になり、 生産性が良好となる。  FIG. 16 is a diagram showing another example of the arrangement of the source electrode and the drain electrode. The arrangement of FIG. 16 includes a first electrode 101 and a second electrode 102 provided to be spaced from the first electrode 101 and to surround the periphery of the first electrode 101. And. One of the first electrode 101 and the second electrode 102 is a source electrode, and the other is a drain electrode. With such an electrode arrangement, it is relatively easy to connect the source electrode and the drain electrode with carbon nanotubes, and the productivity is improved.
本発明の光センサにおいて、 図 2の光センサのように、 カーボンナノチュ —ブと、 受光により分極が発生する層との間に、 絶縁層を備えることとして もよい。 こうすることにより、 カーボンナノチューブと、 受光により分極が 発生する層との間に電流がリークすることを防止できる。 In the optical sensor of the present invention, as in the optical sensor of FIG. 2, an insulating layer may be provided between the carbon nanotube and a layer in which polarization is generated by light reception. By doing so, the polarization due to the carbon nanotube and the light reception It is possible to prevent a current from leaking to a layer where the current is generated.
たとえば、 絶縁層がタンパク質を主として含むことができる。 こうするこ とにより、 絶縁層を薄膜化することができるため、 受光により分極が発生す る層で生じた分極が、 カーボンナノチューブのコンダクタンス変化を効果的 に導くことができる。  For example, the insulating layer can mainly contain proteins. By doing so, the thickness of the insulating layer can be reduced, so that the polarization generated in the layer where polarization occurs due to light reception can effectively lead to a change in the conductance of the carbon nanotube.
また、 絶縁層は、 変性タンパク質を主として含んでもよい。 たとえば、 絶 緣層が変性バクテリオロドプシンを含む構成とすることができる。  Further, the insulating layer may mainly contain denatured proteins. For example, it is possible to adopt a configuration in which the isolated layer contains modified bacteriorhodopsin.
本発明の光センサにおいて、 受光により分極が発生する層が、 受光により 分極する分子を主として含む構成とすることができる。 たとえば、 本発明の 光センサにおいて、 受光により分極が発生する層が、 受光により分極する分 子の配向膜を含む構成とすることができる。 こうすることにより、 光信号を 効率的に集約することができるため光センサの精度、 感度を向上させること ができる。 また、 光信号を微小な面積ごとに検出することが可能となり、 光 センサを小型化することができる。  In the optical sensor of the present invention, a layer in which polarization is generated by light reception may be configured to mainly include molecules that are polarized by light reception. For example, in the optical sensor of the present invention, a layer in which polarization is generated by receiving light may include a molecular alignment film that is polarized by receiving light. By doing so, the optical signals can be efficiently collected, so that the accuracy and sensitivity of the optical sensor can be improved. Further, it becomes possible to detect an optical signal for each minute area, and the optical sensor can be downsized.
本発明の光センサにおいて、 受光により分極が発生する層は、 配向したバ クテリオ口ドプシンを含む層とすることもできる。 バクテリオ口ドプシンは 感光性分子であり、 かつタンパク質の中では構造安定性が高く、 光信号に対 して精度よく分極を生じる。 したがって、 光センサの精度、 感度をより一層 向上させることができる。 また、 光センサの耐久性を向上させることができ る。 配向したバクテリオロドプシンを含む層の具体例としては、 配向した紫 膜を例示することができる。  In the optical sensor of the present invention, the layer in which polarization is generated by light reception may be a layer containing oriented Bacterio-mouth dopsin. Bacterial oral dopsin is a photosensitive molecule, has high structural stability among proteins, and accurately polarizes optical signals. Therefore, the accuracy and sensitivity of the optical sensor can be further improved. Further, the durability of the optical sensor can be improved. As a specific example of the layer containing the oriented bacteriorhodopsin, an oriented purple membrane can be exemplified.
図 3は、 紫膜を用いた光センサの概略構成図である。 受光により分極が発 生する層 1 3は紫膜からなり、 感光性分子であるバクテリオロドプシン 4 1 および脂質二重膜により構成されている。 なお、 本明細書においては、 この ように感光性分子と他の成分とが含まれる場合も含め、 タンパク質単分子膜 5 1、 受光により分極が発生する層 1 3を適宜図 2のように模式的に表すこ ととする。  FIG. 3 is a schematic configuration diagram of an optical sensor using a purple film. The layer 13 in which polarization occurs upon light reception is made of a purple membrane, and is composed of a photosensitive molecule, bacteriorhodopsin 41, and a lipid bilayer. In this specification, the protein monomolecular film 51 and the layer 13 where polarization is generated by light reception are appropriately illustrated in FIG. 2 including the case where the photosensitive molecule and other components are contained as described above. It is to be expressed in a way.
また、 前記受光により分極が発生する層は、 配向したパクテリオロドプシ 03009577 Further, the layer in which the polarization is generated by the light reception is formed by the oriented pateriorhodopsi. 03009577
11 ンを含む層が複数積層された層とすることができる。 こうすることにより、 光センサの感度を向上させることができる。  11 may be a layer in which a plurality of layers including a layer are stacked. By doing so, the sensitivity of the optical sensor can be improved.
感光性分子として、 たとえば、 光電変換機能を有する合成高分子や、 生体 由来物質を用いることができる。 生体由来物質として、 たとえば、 クロロフ ィル aなどのポルフィリン環を有する分子などを用いることもできる。  As the photosensitive molecule, for example, a synthetic polymer having a photoelectric conversion function or a biological substance can be used. As the biological substance, for example, a molecule having a porphyrin ring such as chlorophyll a can be used.
本発明の光センサにおいて、 カーボンナノチューブは、 単層力一ボンナノ チューブ (SWCNT) および多層カーボンナノチューブ (MWCNT) の いずれを用いてもよい。 このうち金属的性質の SWCNTは、 周囲の電子環 境によりコンダクタンスが変化しやすい性質を有するため、 ソース電極およ びドレイン電極を電気的に接続する配線部材として好適に用いることができ る。  In the optical sensor of the present invention, the carbon nanotube may be any of a single-walled carbon nanotube (SWCNT) and a multi-walled carbon nanotube (MWCNT). Among them, SWCNT having metallic properties has a property that conductance is easily changed by the surrounding electronic environment, and thus can be suitably used as a wiring member for electrically connecting a source electrode and a drain electrode.
以下、 本発明に係る光センサおよびその製造方法を実施形態により詳細に 説明する。  Hereinafter, an optical sensor and a method of manufacturing the same according to the present invention will be described in detail with reference to embodiments.
(第 1の実施形態)  (First Embodiment)
本実施形態に係る光センサを、 図 2、 図 3に示す。 基板 3上に、 カーボン ナノチューブ 7により接続されたソース電極 5 aおよびドレイン電極 5 bが 設けられており、 カーボンナノチューブ 7により接続されたソース電極 5 a およびドレイン電極 5 bの表面に絶縁層 1 1が形成されている。 カーボンナ ノチューブ 7は SWCNTである。 絶縁層 1 1上に、 受光により分極が発生 する層 1 3として、 タンパク質単分子膜 5 1が設けられている。 受光により 分極が発生する層 1 3の上部には、 これを保護するための保護層 1 5が設け られており、 この保護層 1 5上部に、 透明導電層 1 7および透明基板 1 9が この順で設けられている。 図 2においては、 透明導電層 1 7が接地されてい るが、 オフセット電圧を透明導電層 1 7に印加してもよい。 この場合、 たと えば基板 3を接地することができる。  FIGS. 2 and 3 show the optical sensor according to the present embodiment. A source electrode 5a and a drain electrode 5b connected by a carbon nanotube 7 are provided on the substrate 3, and an insulating layer 11 is formed on the surface of the source electrode 5a and the drain electrode 5b connected by the carbon nanotube 7. Is formed. The carbon nanotube 7 is SWCNT. On the insulating layer 11, a protein monomolecular film 51 is provided as a layer 13 where polarization is generated by light reception. A protective layer 15 is provided on the upper part of the layer 13 where polarization is generated by light reception. The transparent conductive layer 17 and the transparent substrate 19 are provided on the protective layer 15. They are provided in order. Although the transparent conductive layer 17 is grounded in FIG. 2, an offset voltage may be applied to the transparent conductive layer 17. In this case, for example, the substrate 3 can be grounded.
本実施形態に係る光センサは以下のように動作する。 すなわち、  The optical sensor according to the present embodiment operates as follows. That is,
( I ) ソース電極 5 aとドレイン電極 5 bとの間に電流を流す。  (I) A current flows between the source electrode 5a and the drain electrode 5b.
( I I ) 受光により分極が発生する層 1 3に含まれる感光性分子が、 受光 により分極する。 (II) The photosensitive molecules contained in the layer 13 where polarization occurs due to light reception Polarized by
( I I I ) 上記分極をトリガー信号として、 ソース電極 5 aとドレイン電 極 5 bとの間を接続するカーボンナノチューブ 7のコンダクタンスが変化す る。 このコンダクタンス変化により、 ソース電極 5 aとドレイン電極 5 bと の間に流れる電流値が変化する。  (I I I) The conductance of the carbon nanotube 7 connecting the source electrode 5a and the drain electrode 5b changes with the above polarization as a trigger signal. Due to this change in conductance, the value of the current flowing between the source electrode 5a and the drain electrode 5b changes.
( I V) ソース電極 5 aとドレイン電極 5 bとの間に流れる電流値の変化 を測定することにより、 光強度を検出する。  (IV) The light intensity is detected by measuring the change in the value of the current flowing between the source electrode 5a and the drain electrode 5b.
あるいは、 第 2の実施形態で後述するように、 上記 ( I ) のステップに代 え、 ソース電極 5 aとドレイン電極 5 bとの間に電圧を印加しつつ電流は流 さないものとし、 (I I ) のステップでのトリガー信号をスィッチとしてソー ス電極 5 aとドレイン電極 5 bとの間に電流が流れるようにすることもでき る。 すなわち、 光を受光していない状態では電流が流れないものとし、 受光 したときに電流がオンとなる動作とすることもできる。 この電流値を測定す ることにより、 光強度が検出される。  Alternatively, as described later in the second embodiment, instead of the step (I), a current is not applied while a voltage is applied between the source electrode 5a and the drain electrode 5b. The trigger signal in step II) may be used as a switch so that a current flows between the source electrode 5a and the drain electrode 5b. That is, it is assumed that no current flows when light is not received, and the current is turned on when light is received. By measuring this current value, the light intensity is detected.
以上のように本実施形態の光センサにおいては、 感光性分子の光誘起電荷 は、 そのまま検出信号として取り出されるのではなく、 ソース ' ドレイン間 電流を変化させるトリガ一信号として利用される。 すなわち、 感光性分子の 光誘起電荷は、 ソース ' ドレイン間に配置されたカーボンナノチューブのコ ンダク夕ンス変化のトリガ一信号として用いられ、 このトリガー信号により 変化するソース電極 5 aおよびドレイン電極 5 b間の電流値が検出されるよ うに構成されている。  As described above, in the photosensor of the present embodiment, the photoinduced charge of the photosensitive molecule is not taken out as it is as a detection signal, but is used as a trigger signal for changing the source-drain current. That is, the photo-induced charge of the photosensitive molecule is used as a trigger signal for a change in the conductance of the carbon nanotube disposed between the source and the drain, and the source electrode 5a and the drain electrode 5b changed by the trigger signal. It is configured so that the current value between them is detected.
本実施形態の光センサに用いるカーボンナノチューブ 7を、 単層力一ボン ナノチューブ (S W C N T ) とした場合、 周囲の電子状態に応じてコンダク 夕ンスが顕著に変化する。 したがって、 本実施形態の光センサにおいて、 S W C N Tによってソース電極 5 aおよびドレイン電極 5 bを接続することに より、 感光性分子の光電分極による信号を、 ナノアンペア (1 0— 9 A) 程度 の電流変化として検出することが可能となる。 これにより、 感光性分子の光 電分極を直接検出する場合に比べて、 光センサの感度を向上させることがで さる, When the carbon nanotubes 7 used in the optical sensor of the present embodiment are single-walled carbon nanotubes (SWCNTs), the conductance significantly changes according to the surrounding electronic state. Accordingly, in the optical sensor of the present embodiment, more to connect the source electrode 5 a and the drain electrode 5 b by SWCNT, a signal by photoelectric polarization of photosensitive molecule, nanoampere (1 0- 9 A) current of about It can be detected as a change. As a result, the sensitivity of the optical sensor can be improved as compared with the case where the photoelectron polarization of the photosensitive molecule is directly detected. Monkey,
なお、 本実施形態の光センサにおいて、 光センサに照射される光強度の増 加に応じて、 バクテリオロドプシンの分極の速度 (遅延時間の逆数) が単調 増加することが実験的に確かめられている。 また、 照射される光強度が大き いほど、 バクテリオロドプシンの分極によりカーボンナノチューブを介して 流れるドレイン電流が増加する。  In the optical sensor of the present embodiment, it has been experimentally confirmed that the polarization speed (reciprocal of the delay time) of bacteriorhodopsin monotonically increases in accordance with the increase in the intensity of light applied to the optical sensor. . Also, as the intensity of the irradiated light increases, the drain current flowing through the carbon nanotube increases due to the polarization of bacteriorhodopsin.
また、 カーボンナノチューブ 7として多層カーボンナノチューブ (MW C N T ) を用いることもできる。 たとえば、 半導体の MW C N Tを用いる場合、 受光により感光性分子が分極した際にソース電極 5 aおよびドレイン電極 5 bが通電すると推定される。 また、 基板およびソース電極 5 aおよびドレイ ン電極 5 bを半導体により構成することができる。  In addition, multi-walled carbon nanotubes (MW CN T) can be used as the carbon nanotubes 7. For example, when a semiconductor MWCNT is used, it is estimated that the source electrode 5a and the drain electrode 5b conduct when the photosensitive molecule is polarized by light reception. Further, the substrate and the source electrode 5a and the drain electrode 5b can be composed of a semiconductor.
次に、 図 2に示す光センサの作製方法を説明する。 本実施形態の光センサ は、 以下の工程により作製される。  Next, a method for manufacturing the optical sensor illustrated in FIG. 2 will be described. The optical sensor according to the present embodiment is manufactured by the following steps.
( i ) 基板 3にソース電極 5 aおよびドレイン電極 5 bを形成する工程、 ( i i ) カーボンナノチューブ 7によりソース電極 5 aおよびドレイン電 極 5 bを接続する工程、  (i) a step of forming a source electrode 5a and a drain electrode 5b on the substrate 3, (ii) a step of connecting the source electrode 5a and the drain electrode 5b with the carbon nanotubes 7,
( i i i ) カーボンナノチューブ 7上に絶縁層 1 1を形成する工程、 (ii) forming an insulating layer 11 on the carbon nanotubes 7;
( i v ) 絶縁層 1 1上に、 受光により分極が発生する層 1 3を形成するェ 程、 (iv) forming a layer 13 on the insulating layer 11 where polarization occurs due to light reception,
( V ) 基板 3と透明基板 1 9との接合により積層体を形成する工程。  (V) A step of forming a laminate by bonding the substrate 3 and the transparent substrate 19.
以下、 これらの各工程について図 4に示す断面図を用いて説明する。 Hereinafter, each of these steps will be described with reference to the cross-sectional view shown in FIG.
( i ) 基板 3にソース電極 5 aおよびドレイン電極 5 bを形成する工程 図 4 ( a ) に示すように、 基板 3の一方の表面に、 ソース電極 5 aおよび ドレイン電極 5 bとなる電極対を形成する。 ソース電極 5 aおよびドレイン 電極 5 bを基板 3の表面に二次元的に配置する場合、 たとえば図 5に示す構 成とすることができる。 基板 3として、 たとえば、 シリコン、 S i C、 M g O、 石英等の絶縁体材料あるいは半導体材料を用いることができる。  (i) Step of forming source electrode 5 a and drain electrode 5 b on substrate 3 As shown in FIG. 4 (a), an electrode pair serving as source electrode 5 a and drain electrode 5 b is formed on one surface of substrate 3. To form When the source electrode 5 a and the drain electrode 5 b are two-dimensionally arranged on the surface of the substrate 3, for example, the configuration shown in FIG. 5 can be used. As the substrate 3, for example, an insulating material such as silicon, SiC, MgO, or quartz or a semiconductor material can be used.
基板 3の表面に、 フォトリソグラフィーおよびドライエッチングまたはゥ エツトエッチング等によってマスクを作製する。 ソース電極 5 aおよびドレ イン電極 5 bは、 マスクの設けられた基板 3上に、 金属の薄板を接着する方 法、 基板 3上に金属を蒸着する方法や、 スパッタ法等により形成される。 ソ ース電極 5 aおよびドレイン電極 5 bを構成する金属として、 たとえば T i、 C rなどの炭化物を形成しうる金属、 A u、 P t、 C uなどの低抵抗金属や、 これらの合金、 たとえば A u— C r合金、 などを用いることができる。特に、 炭化物を形成しうる金属を用いることにより、 ソース電極 5 aおよびドレイ ン電極 5 bとカーボンナノチューブ 7との接触抵抗を低下させることができ るため、 好ましい。 また、 A uは貴金属であり、 比電気抵抗も低いため、 好 ましい。 Photolithography and dry etching or ゥ A mask is formed by, for example, etching. The source electrode 5a and the drain electrode 5b are formed by a method of bonding a thin metal plate on the substrate 3 provided with the mask, a method of depositing a metal on the substrate 3, a sputtering method, or the like. Examples of the metal constituting the source electrode 5a and the drain electrode 5b include metals that can form carbides such as Ti and Cr, low-resistance metals such as Au, Pt, and Cu, and alloys thereof. For example, an Au—Cr alloy can be used. In particular, it is preferable to use a metal capable of forming a carbide since the contact resistance between the source electrode 5a and the drain electrode 5b and the carbon nanotube 7 can be reduced. Au is preferable because it is a noble metal and has a low specific electric resistance.
また、 ソース電極 5 aおよびドレイン電極 5 bに A u、 P tなどの貴金属 や炭素との親和性が低い金属を用いる場合、 カーボンナノチューブ 7との接 触抵抗を低下させるために、 ソース電極 5 aおよびドレイン電極 5 bの表面 に、 T iや C rなどの炭化物を形成しうる金属を含む接着層が設けられてい ることが好ましい。 このような電極として、 たとえば、 A u上に T i層が形 成された電極を用いることができる。 こうすることにより、 ソース電極 5 a およびドレイン電極 5 bとカーボンナノチューブ 7との接触抵抗を低下させ ることが可能である。 接着層を形成する方法は、 ソース電極 5 aおよびドレ ィン電極 5 bの表面に、 炭化物を形成しうる金属を蒸着する方法があげられ る。  When a noble metal such as Au or Pt or a metal having a low affinity for carbon is used for the source electrode 5 a and the drain electrode 5 b, the source electrode 5 a Preferably, an adhesive layer containing a metal capable of forming a carbide such as Ti or Cr is provided on the surfaces of a and the drain electrode 5b. As such an electrode, for example, an electrode in which a Ti layer is formed on Au can be used. By doing so, it is possible to reduce the contact resistance between the carbon nanotubes 7 and the source electrode 5a and the drain electrode 5b. As a method of forming the adhesive layer, a method of depositing a metal capable of forming a carbide on the surfaces of the source electrode 5a and the drain electrode 5b can be cited.
ソース電極 5 aおよびドレイン電極 5 bの厚さは、 たとえば 0 . 5 n m以 上 1 0 0 n m以下とすることができる。 ソース電極 5 aおよびドレイン電極 5 bのソース電極とドレイン電極との間隔は、 力一ボンナノチューブ 7の長 さに応じて適宜設計される。 たとえば、 5 0 n m以上 1 0 t m以下とする。 なお、 基板 3の表面に設けられた各ソース電極 5 aおよびドレイン電極 5 bは、 第 5の実施形態にて後述するように、 基板 3の裏面側などから配線を 介して電流検出手段に接続することができる。 こうすることにより、 各ソー ス電極 5 aおよびドレイン電極 5 bの間を流れるそれぞれの電流値を検出す ることができる。 The thickness of the source electrode 5a and the drain electrode 5b can be, for example, 0.5 nm or more and 100 nm or less. The distance between the source electrode and the drain electrode of the source electrode 5 a and the drain electrode 5 b is appropriately designed according to the length of the carbon nanotube 7. For example, it is 50 nm or more and 10 tm or less. The source electrode 5a and the drain electrode 5b provided on the surface of the substrate 3 are connected to the current detecting means via wiring from the back side of the substrate 3 as described later in the fifth embodiment. can do. By doing so, the current value flowing between each source electrode 5a and the drain electrode 5b can be detected. Can be
( i i ) カーボンナノチューブ 7によりソース電極 5 aおよびドレイン電 極 5 bを接続する工程  (ii) Step of connecting source electrode 5a and drain electrode 5b by carbon nanotube 7
図 4 ( a ) において、 基板の表面に形成されたソース電極 5 aおよびドレ イン電極 5 bは、 図 4 ( b ) に示すように、 力一ボンナノチューブ 7によつ て電気的に接続される。 カーボンナノチューブ 7は、 たとえば長さ 5 0 n m 以上 1 0 t m以下のものを用いることができる。 また、 S W C N Tまたは M W C N Tを用いることができる。  In FIG. 4A, the source electrode 5a and the drain electrode 5b formed on the surface of the substrate are electrically connected by a carbon nanotube 7, as shown in FIG. 4B. You. As the carbon nanotubes 7, for example, those having a length of 50 nm or more and 10 nm or less can be used. Also, SWCNT or MWCNT can be used.
ソース電極 5 aとドレイン電極 5 bとの間をカーボンナノチューブ 7によ つて接続する方法として、 たとえば、 力一ボンナノチューブ配向膜を基板 3 の表面に付着させる方法、 A F M (原子間力顕微鏡) の探針などを用いて力 一ボンナノチューブ 7を移動させる方法、 ソース電極 5 aおよびドレイン電 極 5 bの側面から基板 3に水平方向に成長させる方法、 が挙げられる。 本実 施形態および第 2の実施形態においては、 力一ボンナノチューブの配向膜を 基板 3の表面に付着させる方法について説明する。 他の方法については、 第 3の実施形態、 第 4の実施形態において後述する。  Examples of a method of connecting the source electrode 5a and the drain electrode 5b with the carbon nanotubes 7 include a method of attaching a carbon nanotube alignment film to the surface of the substrate 3 and a method of AFM (atomic force microscope). There is a method of moving the carbon nanotube 7 using a probe or the like, and a method of growing the carbon nanotube 7 horizontally on the substrate 3 from the side surfaces of the source electrode 5a and the drain electrode 5b. In the present embodiment and the second embodiment, a method for attaching an alignment film of carbon nanotubes to the surface of the substrate 3 will be described. Other methods will be described later in the third embodiment and the fourth embodiment.
ソース電極 5 aおよびドレイン電極 5 bを力一ボンナノチューブ 7によつ て接続する工程は、 カーボンナノチューブ 7の配向膜を作製する工程と、 力 —ボンナノチューブ 7の配向膜をソース電極 5 aおよびドレイン電極 5 の 設けられた基板表面に付着させる工程と、 を含む。 また、 その後、 ソース電 極 5 a、 ドレイン電極 5 b、 およびソース電極 5 aとドレイン電極 5 bとの 間の領域以外に付着したカーボンナノチューブ 7を選択的に除去する工程を 実施する。  The step of connecting the source electrode 5a and the drain electrode 5b with the carbon nanotubes 7 includes the step of forming an alignment film of the carbon nanotubes 7, and the step of connecting the alignment film of the carbon nanotubes 7 to the source electrodes 5a and 5b. Attaching to the surface of the substrate on which the drain electrode 5 is provided. After that, a step of selectively removing the carbon nanotubes 7 attached to regions other than the source electrode 5a, the drain electrode 5b, and the region between the source electrode 5a and the drain electrode 5b is performed.
カーボンナノチューブ 7の配向膜は、 以下のようにして作製することがで きる。 まず、 力一ボンナノチューブ 7およびタンパク質を分散媒に分散させ る。 分散媒として、 有機溶媒の水溶液等を用いることができ、 たとえば 3 3 v / V D M F (ジメチルフオルムアミド) 水溶液を用いることができる。 タンパク質は、 カーボンナノチューブ 7を配向させた状態に保つ支持体とな る。 このような支持体として、 たとえば、 紫膜または紫膜に含まれるバクテ リオ口ドプシンを用いる。 紫膜は、 ハロバクテリゥム ·サリナルム (Ha 1 o b a c t e r i um s a l i n a r urn) などの好塩菌から分離するこ とができる。 紫膜の分離には、 たとえば、 Me t h o d s i n E n z y mo 1 o g y , 3 1, A, p p. 667 - 67 8 ( 1 974) に記載の方法 を用いることができる。 支持体の分散液に、 過剰量のカーボンナノチューブ 7を加え、 超音波分散機などを用いて分散させる。 分散液中に残存するカー ボンナノチューブ 7の凝集物を除去する。 The alignment film of the carbon nanotubes 7 can be manufactured as follows. First, carbon nanotubes 7 and proteins are dispersed in a dispersion medium. As the dispersion medium, an aqueous solution of an organic solvent or the like can be used. For example, a 33 v / VDMF (dimethylformamide) aqueous solution can be used. The protein is a support that keeps the carbon nanotubes 7 oriented. You. As such a support, for example, purple membrane or doptic bacterium contained in purple membrane is used. Purple membranes can be isolated from halophilic bacteria such as Halobacterium salinar urn. For the separation of the purple membrane, for example, the method described in Methodsin Enzymo 1 ogy, 31, A, pp. 667-678 (1974) can be used. An excessive amount of carbon nanotubes 7 is added to the dispersion of the support, and dispersed using an ultrasonic disperser or the like. Aggregates of carbon nanotubes 7 remaining in the dispersion are removed.
上記により得られた力一ボンナノチューブ 7および支持体の分散液を、 図 6に示すように、 水槽に張った下層液の液面上に、 シリンジなどを用いて静 かに展開する。 こうすることにより、 カーボンナノチューブ 7の単分子膜が 得られる。 本実施形態では、 水槽としてラングミュアトラフ 6 1を用いてお り、 下層液として HC 1で pH 3. 5に調製した純水を用いている。  As shown in FIG. 6, the dispersion of the carbon nanotubes 7 and the support obtained above is gently spread using a syringe or the like on the liquid surface of the lower layer liquid stretched in the water tank. Thus, a monomolecular film of the carbon nanotube 7 is obtained. In this embodiment, Langmuir trough 61 is used as the water tank, and pure water adjusted to pH 3.5 with HC 1 is used as the lower layer liquid.
次に、 カーボンナノチューブ 7の単分子膜を静置し、 タンパク質を下層液 の界面張力によって界面変性させる。 たとえば支持体として紫膜を用いる場 合、 紫膜中のバクテリオロドプシンが界面変性するまで、 室温で 5時間以上 静置することが好ましい。 こうすることにより、 変性したタンパク質の凝集 物が、 カーボンナノチューブ 7の支持体となり、 カーボンナノチューブ 7が 配向された状態を維持できるようになる。 力一ボンナノチューブ 7が略平行 に配列された単分子膜は、 しきり板としてラングミュアトラフの可動式バリ ァ 63を用いて圧縮して得られる。 たとえば支持体として紫膜を用いる場合、 表面圧力が 1 5mNZmになるまで圧縮速度 20 c m2Zm i nで圧縮する ことが好ましい。 力一ボンナノチューブ 7の配向は、 AFMなどを用いて確 認される。 図 6は、 力一ボンナノチューブ 7の配向膜の AFM写真であり、 白抜きの円内が各カーボンナノチューブ 7を示している。 Next, the monomolecular film of the carbon nanotube 7 is allowed to stand, and the protein is interfacially denatured by the interfacial tension of the lower layer solution. For example, when a purple membrane is used as a support, it is preferable to allow the bacteriorhodopsin in the purple membrane to stand at room temperature for 5 hours or more until the interface is denatured. By doing so, the aggregate of the denatured protein becomes a support for the carbon nanotubes 7, and the carbon nanotubes 7 can be maintained in an oriented state. The monomolecular film in which the carbon nanotubes 7 are arranged substantially in parallel is obtained by compressing using a movable barrier 63 of Langmuir Trough as a partition plate. For example, when a purple membrane is used as the support, it is preferable to compress at a compression rate of 20 cm 2 Zmin until the surface pressure becomes 15 mNZm. The orientation of the carbon nanotube 7 is confirmed using AFM or the like. FIG. 6 is an AFM photograph of the alignment film of carbon nanotubes 7, and each carbon nanotube 7 is shown in a white circle.
また、 図 1 7は、 紫膜を支持体として作製したカーボンナノチューブの配 向膜の AFM像を示す図である。 一方、 図 1 8は支持体を用いずにカーボン ナノチューブの配向膜を同様に作製した場合の A FM像を示す図である。 図 17および図 18において、 AFM観察には、 生体分子可視化 ·計測装置 B MVM-X 1 (D i g i t a l I n s t r u m e n t s社製 N a n o S c op e I I I aを改造) を用いた。 シリコン単結晶 (NCH) をプローブと して用い、 測定モードはタッピング AFMとした。 また、 測定範囲は、 4 mX 4 m(Z 10 nm)とした。 FIG. 17 is a diagram showing an AFM image of a carbon nanotube oriented film produced using a purple film as a support. On the other hand, FIG. 18 is a diagram showing an AFM image when an alignment film of carbon nanotubes was similarly prepared without using a support. Figure In FIG. 17 and FIG. 18, a biomolecule visualization / measurement apparatus B MVM-X1 (Nano Scope IIIa manufactured by Digital Instruments) was used for AFM observation. Silicon single crystal (NCH) was used as a probe, and the measurement mode was tapping AFM. The measurement range was 4 mX 4 m (Z 10 nm).
図 17および図 18より、 紫膜を支持体として用いた場合、 力一ボンナノ チューブの表面に支持体成分が付着していることがわかる。 そして、 図 17 に示すように支持を用いることにより、 カーボンナノチューブの配向性が向 上し、 カーボンナノチューブは略平行に配列していることが確認された。 図 18のように、 カーボンナノチューブのみを用いた場合、 ある程度は配向す るものの、 成膜時に配向性が低下した。 これに対し、 図 17の場合、 カーボ ンナノチューブの配向状態が変性バクテリオ口ドプシンを主として含む支持 体によって保持されるため、 成膜後も高い配向性を維持することができた。 なお、 図 6、 図 17、 図 18において、 カーボンナノチューブとして、 CN I社製単層カーボンナノチューブ (O p e n e n d t y p e、 直径約 1 nm、 精製純度約 93%) を用いた。  From FIGS. 17 and 18, it can be seen that when the purple membrane was used as the support, the support component was attached to the surface of the carbon nanotube. Then, as shown in FIG. 17, it was confirmed that the use of the support improved the orientation of the carbon nanotubes, and the carbon nanotubes were arranged substantially in parallel. As shown in FIG. 18, when only the carbon nanotubes were used, although the alignment was performed to some extent, the orientation was lowered during the film formation. On the other hand, in the case of FIG. 17, the orientation state of the carbon nanotubes was maintained by the support mainly containing denatured bacterial mouth dopsin, so that high orientation could be maintained after the film formation. In FIG. 6, FIG. 17, and FIG. 18, single-walled carbon nanotubes manufactured by CNI (Oppen en dtype, diameter of about 1 nm, purification purity of about 93%) were used as the carbon nanotubes.
こうして得られた力一ボンナノチューブ 7の配向膜を、 (i) の工程で得ら れた電極表面に、 水平付着法により付着させる。 水平付着法とは、 基板表面 が水面上の配向膜に水平になるよう、 基板を液面に接触させ、 引き上げるこ とによって、 水面上の配向膜を基板の表面に付着させる方法である。 ' 以上により、 ソース電極 5 aおよびドレイン電極 5 bの設けられた基板 3 の表面に、 力一ボンナノチューブ 7の配向膜が作製される。  The alignment film of the carbon nanotubes 7 thus obtained is attached to the electrode surface obtained in the step (i) by a horizontal attachment method. The horizontal deposition method is a method in which the substrate is brought into contact with the liquid surface so that the substrate surface is horizontal to the alignment film on the water surface, and the substrate is pulled up, so that the alignment film on the water surface is attached to the surface of the substrate. As described above, an alignment film of carbon nanotubes 7 is formed on the surface of the substrate 3 provided with the source electrode 5a and the drain electrode 5b.
以降の工程を、図 7の上面図および図 8の断面図を用いて説明する。なお、 図 7 (a) 〜図 7 ( f ) の各工程は、 図 8 (a) 〜図 8 ( f ) の各工程に対 応している。  The following steps will be described with reference to the top view of FIG. 7 and the cross-sectional view of FIG. The steps in FIGS. 7 (a) to 7 (f) correspond to the steps in FIGS. 8 (a) to 8 (f).
まず、 図 7 (a) および図 8 (a) に示すように、 基板 3の表面にソース 電極 5 aおよびドレイン電極 5 bを形成する。 次いで、 図 7 (b) および図 8 (b) に示すように、 ソース電極 5 aおよびドレイン電極 5 b上にカーボ ユーブ 7の配向膜を吸着させる。次いで、 図 7 (c)および図 8 (c) のように、 力一ボンナノチューブ配向膜の表面に、 プラズマ CVD法などを 用いて、 絶縁膜 2 1を形成する。 絶縁膜 2 1として、 たとえば S i〇2などを 用いることができる。 また、 絶縁膜 2 1の膜厚は、 たとえば l nm以上 1 m以下とすることができる。 First, as shown in FIG. 7A and FIG. 8A, a source electrode 5a and a drain electrode 5b are formed on the surface of the substrate 3. Next, as shown in FIGS. 7 (b) and 8 (b), the carbon Adsorb the alignment film of Ube7. Next, as shown in FIGS. 7 (c) and 8 (c), an insulating film 21 is formed on the surface of the carbon nanotube alignment film by using a plasma CVD method or the like. As the insulating film 2 1, for example, it can be used as S I_〇 2. The thickness of the insulating film 21 can be, for example, not less than l nm and not more than 1 m.
次に、 ソース電極 5 aおよびドレイン電極 5 bの上部、 および電極間に吸 着したカーボンナノチューブ 7のみを残し、 不要な部分に吸着したカーボン ナノチューブ 7を除去するため、 図 7 (d) および図 8 (d) に示すように、 にレジスト膜 25を形成する。 次に、 図 7 (e) および図 8 (e) のように、 ドライエッチングやウエットエッチングなどの方法により、 レジスト膜 25 の施されていない部分の絶縁膜 2 1およびカーボンナノチューブ 7を除去す る。 そして、 絶縁膜 21を溶解せずレジスト膜 2 5を溶解する溶液を用いて レジスト膜 25を除去する。  Next, only the carbon nanotubes 7 adsorbed on the source electrode 5a and the drain electrode 5b and between the electrodes are left, and the carbon nanotubes 7 adsorbed on unnecessary portions are removed. 8 (d), a resist film 25 is formed on the substrate. Next, as shown in FIGS. 7 (e) and 8 (e), the insulating film 21 and the carbon nanotubes 7 where the resist film 25 is not applied are removed by a method such as dry etching or wet etching. . Then, the resist film 25 is removed using a solution that dissolves the resist film 25 without dissolving the insulating film 21.
以上により、 図 7 ( f ) および図 8 ( f ) のように、 ソース電極 5 aとド レイン電極 5 bとの間に力一ボンナノチューブ 7を設け、 不要な部分のカー ボンナノチューブ 7は除去された基板 3が得られる。  As described above, the carbon nanotube 7 is provided between the source electrode 5a and the drain electrode 5b as shown in FIGS. 7 (f) and 8 (f), and unnecessary portions of the carbon nanotube 7 are removed. The obtained substrate 3 is obtained.
本実施形態では、 上述のように、 カーボンナノチューブ 7上部に絶縁膜 2 1が設けられているため、 これを除去せずに ( i i i ) の工程に進むことが でき、 絶縁体以外のマスクを施した場合に比べ、 製法を簡略化することがで きる。  In the present embodiment, as described above, since the insulating film 21 is provided on the carbon nanotubes 7, the process (iii) can be performed without removing the insulating film 21, and a mask other than the insulator is applied. The manufacturing method can be simplified as compared with the case in which it is performed.
なお、 ソース電極 5 aおよびドレイン電極 5 bの表面に、 炭化物を形成し うる金属が含まれる場合、 図 7 (b) および図 8 (b) 以降の工程で、 適宜 アニーリング、 たとえば真空下で 100 0°C以上に加熱する方法、 を行うこ とにより、 ソース電極 5 aおよびドレイン電極 5 bとカーボンナノチューブ 7との界面に炭化物が形成され、 電気的接触を高めることができる。  When the surface of the source electrode 5a and the drain electrode 5b contains a metal capable of forming a carbide, annealing is performed as appropriate in the steps after FIG. 7 (b) and FIG. 8 (b). By performing the method of heating to 0 ° C. or more, carbide is formed at the interface between the carbon nanotubes 7 and the source electrode 5a and the drain electrode 5b, and electrical contact can be increased.
また、 絶縁膜 2 1を除去した後、 基板 3の表面に電極上部のみを開口部と するマスクを施し、 ソース電極 5 aおよびドレイン電極 5 bそれぞれの上部 に、 さらに電極となる金属層を形成することもできる。 金属層の形成は、 金 属蒸着法やスパッタリング法など、 ( i) と同様にして行うことができる。 こ うすることにより、 ソース電極 5 aおよびドレイン電極 5 bを接続するカー ボンナノチューブ 7が、 上下の金属層で挾まれた構成となるため、 電気的接 触をより良好なものとすることができる。 After removing the insulating film 21, a mask is formed on the surface of the substrate 3 so that only the upper part of the electrode is used as an opening, and a metal layer serving as an electrode is further formed on each of the source electrode 5a and the drain electrode 5b. You can also. The formation of the metal layer is gold The method can be performed in the same manner as (i), such as a metal deposition method or a sputtering method. By doing so, the carbon nanotubes 7 connecting the source electrode 5a and the drain electrode 5b are sandwiched between the upper and lower metal layers, so that better electrical contact can be obtained. it can.
以上のように、 本実施形態においては、 カーボンナノチューブ 7の配向し た単分子膜を用いることにより、 簡便に効率よくソース電極 5 aおよびドレ イン電極 5 bを接続することができる。 そして、 図 5に示すように、 一組の ソース電極 5 aおよびドレイン電極 5 bを画素 9として、 各画素 9の間を流 れる電流の検出が可能である。 したがって、 画素 9を微小化することができ る。 たとえば、 1億画素 Z cm2とすることが可能となる。 As described above, in the present embodiment, the source electrode 5a and the drain electrode 5b can be easily and efficiently connected by using the oriented monomolecular film of the carbon nanotubes 7. Then, as shown in FIG. 5, a set of the source electrode 5 a and the drain electrode 5 b is used as a pixel 9 to detect a current flowing between the pixels 9. Therefore, the pixel 9 can be miniaturized. For example, 100 million pixels Z cm 2 can be obtained.
( i i i ) カーボンナノチューブ 7上に絶縁層 1 1を形成する工程 図 4 (c) に示すように、 ( i i ) の工程でソース電極 5 aおよびドレイン 電極 5 b上に形成された力一ボンナノチューブ 7の表面に絶縁層 1 1を形成 する。  (iii) Step of forming insulating layer 11 on carbon nanotubes 7 As shown in FIG. 4 (c), the carbon nanotubes formed on the source electrode 5a and the drain electrode 5b in the step (ii) An insulating layer 11 is formed on the surface of 7.
絶縁層 1 1を形成する方法として、 たとえば、 ポリイミド等のポリマ一を 力一ボンナノチューブ 7の設けられた基板 3の表面にスピンコートする方法 がある。  As a method for forming the insulating layer 11, for example, there is a method in which a polymer such as polyimide is spin-coated on the surface of the substrate 3 on which the carbon nanotubes 7 are provided.
また、 たとえば、 ポリイミドなどのポリマ一を単分子膜の累積膜として形 成する方法がある。  Further, for example, there is a method in which a polymer such as polyimide is formed as a monolayer film.
あるいは、 変性タンパク質からなる膜を形成し、 これを水平付着法などに より表面にソース電極 5 a、 ドレイン電極 5 b、 および力一ボンナノチュー ブ 7が設けられた基板 3の表面に付着させ、 絶縁層 1 1として用いることも できる。 変性タンパク質からなる膜として、 たとえばバクテリオロドプシン の変性膜がある。 また、 バクテリオロドプシンを含む紫膜を用いることもで きる。 紫膜は、 ( i i ) の工程と同様に、 ハロバクテリウム ·サリナルム (H a l o b a c t e r i um s a l i n a r urn) などの好塩菌から分離す ることができる。  Alternatively, a film made of denatured protein is formed, and the film is attached to the surface of the substrate 3 provided with the source electrode 5a, the drain electrode 5b, and the carbon nanotube 7 on the surface by a horizontal attachment method or the like, and is insulated. It can also be used as layer 11. An example of a membrane composed of denatured protein is a denatured membrane of bacteriorhodopsin. Also, a purple membrane containing bacteriorhodopsin can be used. The purple membrane can be isolated from a halophilic bacterium such as Halobacterium salinarum (Halobabacterium salinarum) as in the step (ii).
以下、 紫膜を用いた場合を例に、 図 1 0を参照して説明する。 バクテリオ ロドプシン 341を含む紫膜を、 分散媒 342に分散させ、 タンパク質展開 液 3 50を調製する。 下層液 360を張った水槽の? 面上に、 シリンジ 36 2などを用いて静かに展開する。 本実施形態では、 水槽としてラングミュア トラフ 36 1を用いている。 また、 タンパク質としてパクテリオロドプシン 34 1を用いる場合、 分散媒 342としてたとえば 3 3 v/v%ジメチルフ オルムアミド (DMF) 水溶液を用いることができる。 このとき下層液 36 0として、 たとえば HC 1で pH3. 5に調製した純水を用いることができ る。 Hereinafter, an example using a purple film will be described with reference to FIG. Bacterio The purple membrane containing rhodopsin 341 is dispersed in a dispersion medium 342 to prepare a protein developing solution 350. In a water tank filled with lower layer liquid 360? On the surface, spread it gently using a syringe 362 or the like. In the present embodiment, a Langmuir trough 361 is used as the water tank. When pateriorhodopsin 341 is used as the protein, for example, a 33 v / v% aqueous solution of dimethylformamide (DMF) can be used as the dispersion medium 342. At this time, as the lower layer solution 360, for example, pure water adjusted to pH 3.5 with HC1 can be used.
下層液 360の上部に得られたタンパク質の単分子膜を所定の時間静置す ることにより、 界面張力によりタンパク質を界面変性させ、 変性タンパク質 単分子膜 352が得られる。 バクテリオロドプシン 341の場合、 室温にて 5時間以上静置するのがよい。  By allowing the protein monolayer obtained above the lower layer solution 360 to stand for a predetermined time, the protein is interface-denatured by interfacial tension, and a denatured protein monolayer 352 is obtained. In the case of bacteriorhodopsin 341, it is better to leave it at room temperature for at least 5 hours.
次に、 しきり板としてラングミュアトラフ 3 6 1の可動式バリァ 363を 用い、 下層液 360の液面上に形成された単分子膜を、 所定の表面圧力とな るまで圧縮する。 バクテリオロドプシン 341の場合は、 たとえば表面圧力 が 1 5mNZmになるまで圧縮する。  Next, using the movable barrier 363 of the Langmuir Trough 361 as a partition plate, the monomolecular film formed on the liquid surface of the lower layer liquid 360 is compressed until a predetermined surface pressure is reached. In the case of bacteriorhodopsin 341 it is compressed, for example, to a surface pressure of 15 mNZm.
なお、 表面圧力とは 1次元圧力であり、 単位長さ当たりの力で表される。 単分子膜は下層液の液面上にシート状に形成されており、 側面から圧縮され ると、 膜の側面方向から 1次元の力が作用する。 このとき、 その力を力が加 わった単分子膜の側面方向の 1次元長さで割った値が表面圧力である。  The surface pressure is a one-dimensional pressure and is expressed as the force per unit length. The monomolecular film is formed in a sheet shape on the liquid surface of the lower layer liquid, and when compressed from the side, a one-dimensional force acts from the side of the film. At this time, the value obtained by dividing the force by the one-dimensional length in the lateral direction of the monolayer to which the force is applied is the surface pressure.
圧縮後、 水平付着法により、 ( i i ) の工程で得られた基板 3の表面に、 変 性タンパク質単分子膜 3 52を付着させる。 また、 水平付着法を繰り返すこ とにより、 変性タンパク質単分子膜 352を累積することができる。 累積層 数を変化させることにより、 絶縁層 1 1の厚さを変化させることができる。 たとえば、 変性タンパク質単分子膜 352の一層の厚さは約 1. 5 nmであ るため、 絶縁層 1 1の厚さを 1. 5 nm単位の所定の厚さとすることができ る。  After the compression, the modified protein monomolecular film 352 is attached to the surface of the substrate 3 obtained in the step (ii) by the horizontal attachment method. Further, by repeating the horizontal attachment method, the denatured protein monolayer 352 can be accumulated. By changing the number of accumulated layers, the thickness of the insulating layer 11 can be changed. For example, since the thickness of one layer of the denatured protein monolayer 352 is about 1.5 nm, the thickness of the insulating layer 11 can be set to a predetermined thickness in units of 1.5 nm.
( i v) 絶縁層 1 1上に、 受光により分極が発生する層 1 3を形成するェ 図 4 (d)に示すように、 ( i i i )の工程で得られた絶縁層 1 1の表面に、 受光により分極が発生する層 1 3を形成する。 受光により分極が発生する層 1 3は、 受光により分極が発生する分子の単分子膜または積層膜とすること ができる。 (iv) Form a layer 13 on the insulating layer 11 where polarization occurs due to light reception. As shown in FIG. 4D, on the surface of the insulating layer 11 obtained in the step (iii), a layer 13 in which polarization is generated by receiving light is formed. The layer 13 in which polarization is generated by light reception can be a monomolecular film or a stacked film of molecules in which polarization is generated by light reception.
受光により分極が発生する層 1 3は、 たとえばバクテリオロドプシンの配 向膜とすることができる。 バクテリオロドプシンの配向膜は、 受光により安 定的に分極を起こすため、 好適に用いられる。 なかでも、 紫膜は、 比較的耐 久性に優れるバクテリオロドプシンを含んでおり、 好ましく用いられる。 紫 膜は、 ( i i) の工程と同様に、 ハロバクテリウム ·サリナルム (Ha 1 ob a c t e r i urn s a l i n a r urn) などの好塩菌から分離することが できる。  The layer 13 in which polarization is generated by light reception can be, for example, a bacteriorhodopsin orientation film. The bacteriorhodopsin alignment film is preferably used because it causes stable polarization upon receiving light. Above all, purple membrane contains bacteriorhodopsin, which has relatively excellent durability, and is preferably used. The purple membrane can be isolated from a halophilic bacterium such as Halobacterium salinarum (Ha1 ob ct ter i urn sa lin a urn) in the same manner as in the step (ii).
受光により分極が発生する層 1 3を形成する工程は、 受光により分極する 分子を含む分散液を、 液体表面に展開し、 受光により分極する分子の配向膜 を作製する工程と、 受光により分極する分子の配向膜と、 カーボンナノチュ ーブ 7とを、 直接または絶縁層 1 1を介して付着させる工程と、 受光により 分極する分子の配向膜を透明基板 1 9の表面に付着させる工程と、 を含む。 このうち、 受光により分極する分子の配向膜を透明基板 1 9の表面に付着さ せる工程については、 (V) の工程で後述する。  The step of forming the layer 13 in which polarization is generated by light reception includes the steps of: spreading a dispersion liquid containing molecules that are polarized by light reception on a liquid surface to form an alignment film of molecules that are polarized by light reception; and polarizing by light reception. A step of attaching a molecular alignment film and a carbon nanotube 7 directly or via an insulating layer 11; and a step of attaching an alignment film of a molecule which is polarized by receiving light to the surface of the transparent substrate 19; including. The step of attaching an alignment film of molecules that are polarized by light reception to the surface of the transparent substrate 19 will be described later in step (V).
以下、 紫膜の L a n g umu i r一 B l o d g e t t (LB)膜を作製し、 受光により分極が発生する層 1 3を形成する場合を例に、 図 9の工程断面図 を参照して説明する。  Hereinafter, an example of forming a purple Langumumuir-Blodgett (LB) film and forming a layer 13 in which polarization is generated by light reception will be described with reference to a process cross-sectional view of FIG.
まず、 タンパク質成分としてバクテリオロドプシン 41を含む紫膜を、 分 散媒 42に分散させ、 タンパク質展開液 50を調製する。 得られたタンパク 質展開液 50を、 下層液 60を張った水槽の液面上に、 シリンジ 62などを 用いて静かに展開する。 本実施形態では水槽としてラングミュアトラフ 61 を用いている。 また、 バクテリオロドプシン 41を用いる場合、 分散媒 42 としてたとえば 33 vZv%ジメチルフオルムアミド (DMF) 水溶液を用 いることができる。 このとき、 下層液 6 0として、 たとえば p H 3 . 5の塩 酸水溶液等の酸性溶液を用いることができる。 こうすることにより、 下層液 6 0の上部にタンパク質単分子膜 5 1が得られる。 このとき、 タンパク質単 分子膜 5 1を形成している分子の配向は、 下層液 6 0の界面張力の効果によ り、 ほぼ同一となる。 ここで、 分散媒 4 2を揮発させるために静箧する。 感 光性分子にタンパク質などを用いた場合には、 界面変性が生じないよう静置 時間を設定する。 たとえば、 バクテリオロドプシン 4 1を用いる場合、 静置 時間を 1 0分程度とする。 First, a purple membrane containing bacteriorhodopsin 41 as a protein component is dispersed in a dispersion medium 42 to prepare a protein developing solution 50. The obtained protein developing solution 50 is gently developed using a syringe 62 or the like on the liquid surface of a water tank filled with the lower layer solution 60. In this embodiment, a Langmuir trough 61 is used as a water tank. When bacteriorhodopsin 41 is used, for example, a 33 vZv% dimethylformamide (DMF) aqueous solution is used as the dispersion medium 42. Can be. At this time, as the lower layer solution 60, for example, an acidic solution such as an aqueous solution of hydrochloric acid having a pH of 3.5 can be used. By doing so, a protein monolayer 51 is obtained above the lower layer solution 60. At this time, the orientation of the molecules forming the protein monolayer 51 becomes almost the same due to the effect of the interfacial tension of the lower layer solution 60. Here, the dispersion medium 42 is quiescent to volatilize. If a protein is used as the photosensitive molecule, set the standing time so that interface denaturation does not occur. For example, when using bacteriorhodopsin 41, the standing time is about 10 minutes.
次に、 しきり板としてラングミュアトラフ 6 1の可動式バリア 6 3を用い、 下層液 6 0の液面上に形成されたタンパク質単分子膜 5 1を、 所定の表面圧 力となるまで圧縮する。 バクテリオロドプシン 4 1の場合、 たとえば表面圧 力が 1 5 in NZmになるまで圧縮速度 2 0 c m2/m i nで圧縮する。 Next, using the movable barrier 63 of the Langmuir trough 61 as a partition plate, the protein monomolecular film 51 formed on the liquid surface of the lower layer solution 60 is compressed until it reaches a predetermined surface pressure. For bacteriorhodopsin 41, for example, compress at a compression rate of 20 cm 2 / min until the surface pressure reaches 15 in NZm.
その後、水平付着法により、絶縁層 1 1の表面に、単分子膜を付着させる。 たとえば、 バクテリオロドプシンを用いた場合、 一層の単分子膜の厚さは約 5 n mとなる。  Thereafter, a monomolecular film is attached to the surface of the insulating layer 11 by a horizontal attachment method. For example, when bacteriorhodopsin is used, the thickness of one monolayer is about 5 nm.
また、 水平付着法を繰り返すことにより、 絶縁層 1 1の表面に単分子膜を 積層することができ 。 積層する際には、 1層積層するごとに、 純水による リンスおよび N 2ガス雰囲気下での乾燥を施す。 積層数を変化させると、 受光 により分極が発生する層 1 3の厚さを変化させることができるため、 光セン サの感度を調整することができる。 Further, by repeating the horizontal attachment method, a monomolecular film can be laminated on the surface of the insulating layer 11. When laminating, each time one layer is laminated, rinse with pure water and dry under N 2 gas atmosphere. When the number of layers is changed, the thickness of the layer 13 where polarization occurs due to light reception can be changed, so that the sensitivity of the optical sensor can be adjusted.
なお、 下層液に p H 3 . 5の塩酸水溶液を用いた場合、 紫膜の L B膜の Π 一 Aプロットは図 1 4のようになる。 図 1 4において、 C iはタンパク質単分 子膜 5 1中のバクテリオ口ドプシンの初期濃度に関する指標であり、  When a hydrochloric acid aqueous solution having a pH of 3.5 is used as the lower layer solution, a first A plot of the purple LB film is as shown in FIG. In FIG. 14, C i is an index relating to the initial concentration of bacteriophage dopsin in the protein monolayer 51,
C i = (下層液上のバクテリオロドプシン分子数) X I I . S n m2,圧縮前の 気液界面の面積) C i = (number of bacteriorhodopsin molecules on the lower liquid) XII. S nm 2 , area of gas-liquid interface before compression
なる式で示される。 上式において、 1 1 . 5 n m2とは、 X線回折により得ら れたバクテリオ口ドプシン一分子あたりの面積である。 It is shown by the following formula. In the above formula, 11.5 nm 2 is the area per one molecule of bacteriophage dopsin obtained by X-ray diffraction.
( V ) 基板 3と透明基板 1 9との接合により積層体を形成する工程 上述した工程により得られた基板 3と透明基板 1 9とを、 図 4 ( g ) に示 すようにそれぞれの基板表面を外側にして当接した状態で固定することによ り基板間が接合し、 図 2の光センサが得られる。 (V) Step of forming a laminate by bonding substrate 3 and transparent substrate 19 As shown in FIG. 4 (g), the substrates 3 and the transparent substrate 19 obtained by the above-described process are fixed in a state where the substrates are brought into contact with the respective substrate surfaces facing outward, thereby joining the substrates. Then, the optical sensor of FIG. 2 is obtained.
なお、 図 4 ( e ) および図 4 ( f ) に示すように、 透明基板 1 9の一方の 表面には透明導電層 1 7および保護層 1 5がこの順で設けられている。 透明 基板 1 9として、樹脂やガラスなどの透明材料を用いることができる。また、 透明導電層 1 7として、 たとえばインジウム錫酸化物 ( I T O ) などの光透 過性導電層を用いることができる。 保護層 1 5としては、 たとえばガラス、 樹脂、 または絶縁層 1 1と同じ変性タンパク質膜など、 透明の絶縁材料を用 いることができる。  As shown in FIGS. 4 (e) and 4 (f), a transparent conductive layer 17 and a protective layer 15 are provided in this order on one surface of the transparent substrate 19. As the transparent substrate 19, a transparent material such as resin or glass can be used. Further, as the transparent conductive layer 17, for example, a light-transmitting conductive layer such as indium tin oxide (ITO) can be used. As the protective layer 15, for example, a transparent insulating material such as glass, resin, or a denatured protein film same as the insulating layer 11 can be used.
以上のようにして得られた光センサは、 タンパク質分子の受光による分極 により、 力一ボンナノチューブ 7のコンダクタンスが変化し、 ソース電極 5 aとドレイン電極 5 bとの間を流れる電流値が変化する。 この変化を検知す ることによって、 受光の有無および強度を検出することができる。 本実施形 態の光センサにおいては、 タンパク質分子の受光による分極による信号に比 ベ、 ソース電極 5 aとドレイン電極 5 bとの間を流れる電流値が変化は大き く、 従来の光センサで必要とされた大型の増幅装置への接続が不要となる。 また本実施形態の光センサは、 受光により分極が発生する層 1 3は感光性分 子の薄膜であるため、 薄型かつ高感度である。 そして、 カーボンナノチュー ブ 7によって接続された一対のソース電極 5 aおよびドレイン電極 5 bを画 素 9とするため、 単位面積あたりの画素数が高い (図 5 )。 さらに、 本実施形 態の光センサは、 光信号を電気信号に変換する素子であり、 光照射によって ソース電極およびドレイン電極間の電流値を変化させることができる。  In the optical sensor obtained as described above, the conductance of the carbon nanotube 7 changes due to the polarization due to the light reception of the protein molecule, and the current flowing between the source electrode 5a and the drain electrode 5b changes. . By detecting this change, the presence / absence and intensity of light reception can be detected. In the optical sensor of the present embodiment, the value of the current flowing between the source electrode 5a and the drain electrode 5b is larger than that of the signal due to the polarization due to the light reception of the protein molecule, which is necessary for the conventional optical sensor. It is not necessary to connect to the large-sized amplifying device. Further, in the optical sensor of the present embodiment, the layer 13 in which polarization is generated by receiving light is a thin film of a photosensitive molecule, and therefore, is thin and has high sensitivity. Since a pair of the source electrode 5a and the drain electrode 5b connected by the carbon nanotubes 7 are used as the pixels 9, the number of pixels per unit area is high (FIG. 5). Further, the optical sensor according to the present embodiment is an element that converts an optical signal into an electric signal, and can change a current value between the source electrode and the drain electrode by light irradiation.
なお、 本実施形態に記載の光センサでは、 図 5に示すように基板表面にソ —ス電極およびドレイン電極を二次元的に形成したが、 一列に配置するよう に形成することもできる。 このような一次元の光センサは、 たとえば、 非接 触寸法計測、 位置計測、 ファクシミリのパターン読み取り、 などに用いるこ とができる。 (第 2の実施形態) In the optical sensor according to the present embodiment, the source electrode and the drain electrode are formed two-dimensionally on the substrate surface as shown in FIG. 5, but they may be formed so as to be arranged in a line. Such a one-dimensional optical sensor can be used, for example, for non-contact dimension measurement, position measurement, facsimile pattern reading, and the like. (Second embodiment)
第 1の実施形態における、 ( i i ) カーボンナノチューブ 7によりソース電 極 5 aおよびドレイン電極 5 bを接続する工程、 を以下の方法で行うことも できる。  In the first embodiment, (ii) the step of connecting the source electrode 5a and the drain electrode 5b with the carbon nanotubes 7 may be performed by the following method.
まず、 図 1 5 ( a )、 図 1 5 ( b ) に示すように、 第 1の実施形態と同様に して、 ソース電極 5 aおよびドレイン電極 5 bの設けられた基板 3上に、 力 一ボンナノチューブ 7の配向膜を吸着させる。  First, as shown in FIGS. 15 (a) and 15 (b), as in the first embodiment, a force is applied to the substrate 3 on which the source electrode 5a and the drain electrode 5b are provided. The alignment film of the carbon nanotube 7 is adsorbed.
次に、 図 1 5 ( c ) に示すように、 ソース電極 5 aおよびドレイン電極 5 bの上部を開口部とするレジスト膜 2 5を形成する。 レジスト膜 2 5の形成 は、 たとえばフォトレジスト法などにより行うことができる。  Next, as shown in FIG. 15 (c), a resist film 25 having openings above the source electrode 5a and the drain electrode 5b is formed. The resist film 25 can be formed by, for example, a photoresist method.
次いで、 図 1 5 ( d ) に示すように、 レジスト膜 2 5の設けられた基板全 体に、 金属層 2 7を形成する。 金属層 2 7は、 ソース電極 5 aおよびドレイ ン電極 5 bに用いる金属または合金などから適宜選択される。 金属層 2 7と ソース電極 5 aおよびドレイン電極 5 bは同じ金属を用いても、 異なる金属 を用いてもよい。 また、 金属層の形成は、 金属蒸着法やスパッタリング法な ど、 ( i ) 基板 3へのソース電極 5 aおよびドレイン電極 5 bの作製、 と同様 にして行うことができる。  Next, as shown in FIG. 15D, a metal layer 27 is formed on the entire substrate on which the resist film 25 is provided. The metal layer 27 is appropriately selected from metals or alloys used for the source electrode 5a and the drain electrode 5b. The metal layer 27, the source electrode 5a, and the drain electrode 5b may use the same metal or different metals. The formation of the metal layer can be performed in the same manner as (i) production of the source electrode 5a and the drain electrode 5b on the substrate 3, such as a metal vapor deposition method and a sputtering method.
そして、 図 1 5 ( e ) に示すように、 レジスト膜 2 5を、 剥離液により除 去する。 こうすることにより、 ソース電極 5 aおよびドレイン電極 5 bの上 部以外、 すなわちレジスト膜 2 5の表面に設けられた金属層 2 7が、 除去さ れる。  Then, as shown in FIG. 15 (e), the resist film 25 is removed with a stripper. By doing so, the metal layer 27 provided on the surface of the resist film 25 other than the upper portions of the source electrode 5a and the drain electrode 5b is removed.
以上の工程により、 力一ボンナノチューブ 7の上部および底部に、 ソース 電極 5 aまたはドレイン電極 5 b、 および金属層 2 7、 がそれぞれ設けられ る。 こうすることによりカーボンナノチューブ 7とそれぞれの電極を構成す る金属との接触をより一層良好なものとすることができる。 したがって、 力 一ボンナノチューブ 7とソース電極 5 aおよびドレイン電極 5 bとの接触抵 抗を低下させ、 ソース電極 5 aおよびドレイン電極 5 bの間を流れる電流値 を増大させることができる。 (第 3の実施形態) Through the above steps, the source electrode 5a or the drain electrode 5b and the metal layer 27 are provided on the upper and lower portions of the carbon nanotube 7, respectively. By doing so, the contact between the carbon nanotubes 7 and the metal constituting each electrode can be further improved. Therefore, the contact resistance between the carbon nanotube 7 and the source electrode 5a and the drain electrode 5b can be reduced, and the value of the current flowing between the source electrode 5a and the drain electrode 5b can be increased. (Third embodiment)
第 1の実施形態における、 ( i i ) カーボンナノチューブ 7によりソース電 極 5 aおよびドレイン電極 5 bを接続する工程、 を以下の方法で行うことも できる。  In the first embodiment, (ii) the step of connecting the source electrode 5a and the drain electrode 5b with the carbon nanotubes 7 may be performed by the following method.
すなわち、 ソース電極とドレイン電極とをカーボンナノチューブ 7によつ て接続するさらに別の方法として、 力一ボンナノチューブ 7の分散液をソ一 ス電極 5 aおよびドレイン電極 5 bの設けられた基板 3の上に流し、 A F M の探針などを用いてカーボンナノチューブ 7を所定の位置まで移動させる方 法を用いることもできる。  That is, as another method of connecting the source electrode and the drain electrode with the carbon nanotubes 7, a dispersion of the carbon nanotube 7 is applied to the substrate 3 provided with the source electrode 5a and the drain electrode 5b. A method in which the carbon nanotube 7 is moved to a predetermined position using an AFM probe or the like may be used.
こうすることにより、 力一ボンナノチューブ 7をソース電極とドレイン電 極との間に、 より一層精密に配置することができる。  By doing so, the carbon nanotube 7 can be more precisely arranged between the source electrode and the drain electrode.
(第 4の実施形態)  (Fourth embodiment)
第 1の実施形態における、 ( i i ) 力一ボンナノチューブ 7によりソース電 極 5 aおよびドレイン電極 5 bを接続する工程、 を以下の方法で行うことも できる。  In the first embodiment, (ii) the step of connecting the source electrode 5a and the drain electrode 5b by the carbon nanotube 7 may be performed by the following method.
すなわち、 ソース電極とドレイン電極とをカーボンナノチューブによって 接続するさらに別の方法として、 電極側面に付着させ、 触媒金属を成長起点 としてカーボンナノチューブを基板に水平方向に成長させ、 電極間を接続す る方法がある。  In other words, as another method of connecting the source electrode and the drain electrode with carbon nanotubes, a method of attaching carbon nanotubes to the side surfaces of the electrodes, growing the carbon nanotubes horizontally on the substrate with the catalyst metal as a growth starting point, and connecting the electrodes. There is.
触媒金属は、 カーボンナノチューブの成長の触媒となるものであれば特に 制限されないが、 たとえば、 F e、 C o、 または N iのうちの少なくとも 1 種を含むものが好ましく用いられる。 F e— N i合金、 または N i — C o合 金などの合金を用いてもよい。 触媒金属をソース電極 5 aおよびドレイン電 極 5 bの一部に選択的に付着させるためには、 蒸着、 リソグラフィー、 スパ ッタリングや、 触媒金属の溶液を用いたパターニングなどを行うことができ る。 このとき、 蒸着温度や基板材料、 触媒金属の堆積方法等を適切に調整す ることが有効である。 また、 たとえばリフトオフ法により触媒金属をパター ニングすることもできる。 また、 触媒金属を成長起点として力一ボンナノチューブを基板に水平な方 向に成長させる方法として、 化学気相成長方法 (C V D法) によるによる成 膜が好ましく用いられる。 C V D法としては、 プラズマ C V D法や熱 C V D 法等が利用可能である。 比較的低温でカーボンナノチューブを成長させるこ とのできるプラズマ C V D法が好ましく用いられる。 The catalyst metal is not particularly limited as long as it serves as a catalyst for the growth of carbon nanotubes. For example, a metal containing at least one of Fe, Co, and Ni is preferably used. An alloy such as Fe—Ni alloy or Ni—Co alloy may be used. In order to selectively attach the catalyst metal to a part of the source electrode 5a and the drain electrode 5b, vapor deposition, lithography, sputtering, patterning using a solution of the catalyst metal, or the like can be performed. At this time, it is effective to appropriately adjust the deposition temperature, the substrate material, the method of depositing the catalyst metal, and the like. Further, the catalyst metal can be patterned by, for example, a lift-off method. As a method for growing carbon nanotubes in a horizontal direction on a substrate with a catalyst metal as a growth starting point, a film formed by a chemical vapor deposition method (CVD method) is preferably used. As the CVD method, a plasma CVD method, a thermal CVD method, or the like can be used. A plasma CVD method capable of growing carbon nanotubes at a relatively low temperature is preferably used.
C V D法により成長を行う際の原料ガスとしては、 メタン、 ェタン、 プロ パン、 ブタン、 ペンタン、 へキサン、 またはシクロへキサンなどの飽和炭化 水素;エチレン、 アセチレン、 プロピレン、 ベンゼン、 またはトルエンなど の不飽和炭化水素;アセトン、 メタノール、 エタノール、 一酸化炭素、 また は二酸化炭素などの酸素を含む原料;ベンゾニトリルなどの窒素を含む原料 が例示され、 これらを単独または二種以上を組み合わせて用いることができ る。  Source gases used for growth by the CVD method include saturated hydrocarbons such as methane, ethane, propane, butane, pentane, hexane, and cyclohexane; and unreacted gases such as ethylene, acetylene, propylene, benzene, and toluene. Saturated hydrocarbons; raw materials containing oxygen such as acetone, methanol, ethanol, carbon monoxide, or carbon dioxide; raw materials containing nitrogen such as benzonitrile; these may be used alone or in combination of two or more. it can.
原料ガスとともに反応装置内に流すキヤリァガスは、 たとえば水素または ヘリゥムを用いることができるが、 その使用は必須ではない。  As the carrier gas flowing into the reactor together with the raw material gas, for example, hydrogen or helium can be used, but its use is not essential.
また、 カーボンナノチューブが基板の水平方向に成長した構造を安定的に 得るためには、 原料ガスの供給方向や成長温度を適切に制御する方法や、 磁 場あるいは電場を印加した状態でカーボンナノチューブを成長させる方法を 適宜に採用することが有効である。  In order to stably obtain a structure in which the carbon nanotubes grow in the horizontal direction of the substrate, there is a method of appropriately controlling the supply direction of the source gas and the growth temperature, and the method of forming the carbon nanotubes while applying a magnetic field or an electric field. It is effective to appropriately adopt a growth method.
以上の方法により、 ソース電極およびドレイン電極間をカーボンナノチュ ーブにより接続することができる。 その後、 適宜、 電極表面に金属板を接着 したり、 金属を蒸着したりする方法により、 カーボンナノチューブ上部にも 電極を形成することができる。 こうすることにより、 カーボンナノチューブ とソース電極およびドレイン電極とがより良好に接着されるため、 接触抵抗 を低下させることができる。  According to the above method, the source electrode and the drain electrode can be connected by the carbon nanotube. Thereafter, an electrode can be formed on the carbon nanotubes by appropriately bonding a metal plate to the electrode surface or vapor-depositing a metal. By doing so, the carbon nanotube and the source electrode and the drain electrode are more appropriately bonded, so that the contact resistance can be reduced.
(第 5の実施形態)  (Fifth embodiment)
第 1または第 2の本実施形態においては、 力一ボンナノチューブの配向膜 を形成し、 ソース電極 5 aおよびドレイン電極 5 bの間をカーボンナノチュ —ブで接続した。 ここで、 第 1の実施形態で説明したように、 図 1 7および 図 1 8より、 紫膜を支持体として用いた場合、 カーボンナノチューブの表面 に支持体成分が付着していることがわかった。 本発明者がさらに検討を行つ たところ、 後述する実施例で詳細に説明するように、 配向膜を形成する過程 において、 カーボンナノチューブの表面に支持体成分が巻回されて、 均一な 厚さの被覆が形成されることが明らかになった。 In the first or second embodiment, an alignment film of carbon nanotubes is formed, and the source electrode 5a and the drain electrode 5b are connected by a carbon nanotube. Here, as described in the first embodiment, FIG. From FIG. 18, it was found that when the purple membrane was used as the support, the support component was attached to the surface of the carbon nanotube. As a result of further study by the present inventor, as will be described in detail in the examples described later, in the process of forming the alignment film, the support component is wound around the surface of the carbon nanotube to have a uniform thickness. It was found that a coating was formed.
本実施形態では、 こうした被覆カーボンナノチューブを用いて構成した光 センサの例を示す。図 2 1は、本実施形態の光センサの構成を示す図である。 図 2 1の光センサの基本構成は、 第 1の実施形態のセンサ (図 2 ) と同様で ある。 図 2 1の光センサにおいて、 第 1の実施形態に記載のナノ力一ボン製 造装置 1 2 5と同様の構成要素には同様の符号を付し、 適宜説明を省略する。 図 2 1の光センサは、 第 1の実施形態に記載の光センサのカーボンナノチ ユーブ 7に代えて、 表面が修飾分子 1 2 9で被覆された力一ボンナノチュー ブ 1 0 5からなるカーボンナノチューブ構造体 1 3 1を有しており、 力一ポ ンナノチューブ 7と受光により分極が発生する層 1 3との間に絶縁層 1 1を 有しない点が図 2の光センサと異なる。  In the present embodiment, an example of an optical sensor configured using such a coated carbon nanotube will be described. FIG. 21 is a diagram showing a configuration of the optical sensor of the present embodiment. The basic configuration of the optical sensor of FIG. 21 is the same as that of the sensor of the first embodiment (FIG. 2). In the optical sensor of FIG. 21, the same components as those of the nanocarbon manufacturing apparatus 125 described in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate. The optical sensor of FIG. 21 has a carbon nanotube structure composed of a carbon nanotube 105 whose surface is coated with a modifying molecule 125 instead of the carbon nanotube 7 of the optical sensor described in the first embodiment. The optical sensor of FIG. 2 is different from the optical sensor of FIG. 2 in that it has a body 131, and does not have an insulating layer 11 between the force-feeding nanotube 7 and a layer 13 in which polarization is generated by light reception.
なお、 図 2 1の光センサでは、 カーボンナノチューブ 1 0 5の表面に修飾 分子 1 2 9が巻回して絶縁層を形成している様子を模式的に示しているが、 実際には、 絶縁層は、 カーボンナノチューブ 1 0 5の表面を均一に被覆して いる。 また、 絶縁層はカーボンナノチューブ 1 0 5の表面を均一に被覆して いればよく、 力一ボンナノチューブ 1 0 5に巻回している態様には限定され ない。  The optical sensor shown in FIG. 21 schematically shows a state in which the modifying molecule 1229 is wound around the surface of the carbon nanotube 105 to form an insulating layer. Covers the surface of the carbon nanotubes 105 uniformly. Further, the insulating layer only needs to uniformly cover the surface of the carbon nanotube 105, and is not limited to a mode wound around the carbon nanotube 105.
修飾分子 1 2 9がカーボンナノチューブ 1 0 5の表面に巻回した構成とす ることにより、 カーボンナノチューブ 1 0 5の表面に、 巻回層からなる均一 な厚みの薄い被覆層を形成することができる。 均一な厚みの被覆層が形成さ れるため、 光センサの動作安定性を向上させることができる。 よって、 光セ ンサの信頼性を向上させることができる。 また、 薄い被覆層が形成されるた め、 受光により分極が発生する層 1 3の分極を、 カーボンナノチューブのコ ンダクタンス変化に正確に変換することができる。 次に、 図 2 1の光センサの製造方法について説明する。 図 22は、 図 2 1 の光センサの製造工程を示す断面図である。 With the configuration in which the modifying molecule 129 is wound on the surface of the carbon nanotube 105, a uniform thin coating layer consisting of a wound layer can be formed on the surface of the carbon nanotube 105. it can. Since the coating layer having a uniform thickness is formed, the operation stability of the optical sensor can be improved. Therefore, the reliability of the optical sensor can be improved. In addition, since the thin coating layer is formed, the polarization of the layer 13 in which polarization occurs upon receiving light can be accurately converted into a change in conductance of the carbon nanotube. Next, a method for manufacturing the optical sensor of FIG. 21 will be described. FIG. 22 is a cross-sectional view showing a manufacturing process of the optical sensor of FIG.
図 22に示すように、 まず、 基板 3にソース電極 5 aおよびドレイン電極 5 bを形成する (図 22 (a))。 次に、 カーボンナノチューブ構造体 1 3 1 によりソ一ス電極 5 aおよびドレイン電極 5 bを接続し (図 22 (b))、 そ の上に受光により分極が発生する層 1 3を形成する (図 22 (c))。そして、 基板 3と透明基板 1 9とを接合することにより積層体を形成する (図 22 (e))。 ここで、 透明基板 1 9の一方の表面には透明導電層 1 7および保護 層 1 5がこの順で設けられている (図 22 (d))。 こうして、 図 2 1の光セ ンサが得られる。  As shown in FIG. 22, first, the source electrode 5a and the drain electrode 5b are formed on the substrate 3 (FIG. 22 (a)). Next, the source electrode 5a and the drain electrode 5b are connected by the carbon nanotube structure 13 1 (FIG. 22 (b)), and a layer 13 on which polarization occurs due to light reception is formed thereon (FIG. 22 (b)). Figure 22 (c)). Then, a laminate is formed by joining the substrate 3 and the transparent substrate 19 (FIG. 22 (e)). Here, on one surface of the transparent substrate 19, a transparent conductive layer 17 and a protective layer 15 are provided in this order (FIG. 22 (d)). Thus, the optical sensor shown in FIG. 21 is obtained.
以上の各工程のうち、 基板 3へのソース電極 5 aおよびドレイン電極 5 b の形成 (図 22 (a)) には、 第 1の実施形態に記載の方法を利用することが できる。  In the above steps, the method described in the first embodiment can be used for forming the source electrode 5a and the drain electrode 5b on the substrate 3 (FIG. 22A).
また、 カーボンナノチューブ構造体 1 3 1によるソ一ス電極 5 aおよびド レイン電極 5 bの接続 (図 22 (b)) は、 カーボンナノチューブ構造体 1 3 1の配向膜を作製し、 得られた配向膜を基板 3表面に付着させ、 不要な部分 のカーボンナノチューブ構造体 13 1を除去した後、 ソース電極 5 aおよび ドレイン電極 5 b上の修飾分子 129を除去することにより行う。 この方法 については後述する。  In addition, the connection of the source electrode 5a and the drain electrode 5b by the carbon nanotube structure 13 1 (FIG. 22 (b)) was obtained by forming an alignment film of the carbon nanotube structure 13 1. After the alignment film is attached to the surface of the substrate 3 and unnecessary portions of the carbon nanotube structure 131 are removed, the modifying molecules 129 on the source electrode 5a and the drain electrode 5b are removed. This method will be described later.
また、 カーボンナノチューブ構造体 1 3 1上への受光により分極が発生す る層 1 3の形成 (図 22 (c)) および基板 3と透明基板 1 9との接合による 積層体の形成 (図 22 (e)) には、 第 1の実施形態に記載の方法を用いるこ とができる。  In addition, the formation of a layer 13 where polarization occurs upon light reception on the carbon nanotube structure 13 1 (FIG. 22 (c)) and the formation of a laminate by bonding the substrate 3 and the transparent substrate 19 (FIG. 22) For (e)), the method described in the first embodiment can be used.
以下、 力一ボンナノチューブ構造体 1 3 1によるソース電極 5 aおよびド レイン電極 5 bの接続 (図 22 (b)) の各工程について詳細に説明する。 まず、 カーボンナノチューブ構造体 1 3 1の配向膜の作製は、 第 1の実施 形態に記載の方法 (図 6) を用いて行う。 力一ボンナノチューブ構造体 1 3 1において、 カーボンナノチューブ 1 0 5を被覆する絶縁層の膜厚は、 たと えば 0. 1 nm以上 1 00 nm以下とすることができ、 1 0 nm以下とする ことが好ましい。 こうすることにより、 絶縁層の厚さを薄くすることができ る。 このため、 受光により分極が発生する層 1 3が分極して生じる誘導電荷 によるカーボンナノチューブ 1 0 5のコンダクタンス変化を大きくすること ができる。 よって、 さらに感度の高い光センサとすることができる。 Hereinafter, the steps of connecting the source electrode 5a and the drain electrode 5b with the carbon nanotube structure 13 1 (FIG. 22 (b)) will be described in detail. First, the alignment film of the carbon nanotube structure 13 1 is manufactured by using the method described in the first embodiment (FIG. 6). In the carbon nanotube structure 131, the thickness of the insulating layer covering the carbon nanotube 105 is For example, it can be 0.1 nm or more and 100 nm or less, and preferably 10 nm or less. By doing so, the thickness of the insulating layer can be reduced. For this reason, the conductance change of the carbon nanotube 105 due to the induced charge generated by the polarization of the layer 13 where the polarization is generated by the light reception can be increased. Therefore, an optical sensor with higher sensitivity can be obtained.
配向膜の基板 3表面への付着は、 水平付着法などの方法により行う。  The alignment film is attached to the surface of the substrate 3 by a method such as a horizontal attachment method.
不要な部分の力一ボンナノチューブ構造体 1 3 1の除去は、 図 23および 図 24に示す工程により行う。 なお、 図 23 (a) 〜図 23 (e) は各工程 の上面図であり、 それぞれに対応する断面図が図 24 (a) 〜図 24 (e) である。  The removal of unnecessary portions of the carbon nanotube structure 1311 is performed by the steps shown in FIGS. FIGS. 23 (a) to 23 (e) are top views of the respective steps, and the corresponding sectional views are FIGS. 24 (a) to 24 (e).
図 23 (b) および図 24 (b) は、 ソース電極 5 aおよびドレイン電極 5 bが形成された基板 3 (図 23 (a)、 図 24 (a)) 上に力一ボンナノチ ユーブ構造体 1 3 1の配向膜を吸着させた状態を示す図である。  FIGS. 23 (b) and 24 (b) show the structure of the carbon nanotube structure 1 on the substrate 3 (FIGS. 23 (a) and 24 (a)) on which the source electrode 5a and the drain electrode 5b are formed. FIG. 3 is a diagram showing a state in which an alignment film of No. 31 is adsorbed.
ソース電極 5 aおよびドレイン電極 5 bの上部、 および電極間に吸着した カーボンナノチューブ構造体 1 3 1のみを残し、 不要な部分に吸着したカー ボンナノチューブ構造体 13 1を除去するため、 パターニングされたレジス ト膜 25を形成する (図 23 (c)、 図 24 (c))。  Patterning was performed to remove only the carbon nanotube structure 131 adsorbed to unnecessary portions, leaving only the carbon nanotube structure 131 adsorbed above the source electrode 5a and the drain electrode 5b and between the electrodes. A resist film 25 is formed (FIGS. 23C and 24C).
次に、 ドライエッチングやウエットエッチングなどの方法により、 上部に レジスト膜 2 5を有しない領域のカーボンナノチューブ構造体 1 3 1を除去 する (図 23 (d)、 図 24 (d))。 そして、 修飾分子 129やカーボンナノ チューブ 1 0 5を溶解せず、 レジスト膜 25を溶解する溶液を用いてレジス ト膜 25を除去する (図 23 (e)、 図 24 (e))。  Next, by a method such as dry etching or wet etching, the carbon nanotube structure 131 in a region not having the resist film 25 on the upper portion is removed (FIGS. 23D and 24D). Then, the resist film 25 is removed using a solution that dissolves the resist film 25 without dissolving the modifying molecules 129 and the carbon nanotubes 105 (FIGS. 23 (e) and 24 (e)).
こうして不要な部分の力一ボンナノチュ一ブ構造体 1 31は除去される。 次に、 ソース電極 5 aおよびドレイン電極 5 b上の修飾分子 1 29の除去 は、 以下のようにして行う。 図 2 5は、 電極上の修飾分子 1 29を除去する 工程を示す断面図である。 ,  Thus, unnecessary portions of the carbon nanotube structure 131 are removed. Next, the removal of the modifying molecules 129 on the source electrode 5a and the drain electrode 5b is performed as follows. FIG. 25 is a cross-sectional view showing a step of removing the modifying molecule 129 on the electrode. ,
不要な力一ボンナノチューブ構造体 1 3 1を除去した基板 3 (図 2 5 (a)) の全面に、 プラズマ CVD法などを用いて、 ソース電極 5 aおよびドレイン 電極 5 bの上部が開口したレジスト膜 3 1を形成する (図 2 5 ( b ) )。 こう すると、 カーボンナノチューブ構造体 1 3 1の両末端が露出する。 The source electrode 5a and the drain electrode are formed on the entire surface of the substrate 3 (Fig. 25 (a)) from which the unnecessary carbon nanotube A resist film 31 having an opening at the top of the electrode 5b is formed (FIG. 25 (b)). As a result, both ends of the carbon nanotube structure 13 1 are exposed.
そして、 露出したカーボンナノチューブ構造体 1 3 1側面の修飾分子 1 2 9の少なくとも一部を、アツシングなどの方法により除去する(図 2 5 ( c ) )。 これにより、 カーボンナノチューブ 1 0 5が電極上でのみ被覆を有しない状 態となる。 アツシングには、 酸素プラズマを用いることができる。 また、 窒 素または窒素含有ガスのプラズマを用いることもできる。  Then, at least a part of the modified molecule 12 9 on the exposed side surface of the carbon nanotube structure 13 1 is removed by a method such as assing (FIG. 25 (c)). As a result, the carbon nanotubes 105 have no coating only on the electrodes. Oxygen plasma can be used for atshing. Alternatively, a plasma of nitrogen or a nitrogen-containing gas can be used.
その後、 カーボンナノチューブ 1 0 5を溶解せずレジスト膜 3 1を溶解す る溶液を用いてレジスト膜 3 1を除去する (図 2 5 ( d ) )。  After that, the resist film 31 is removed using a solution that dissolves the resist film 31 without dissolving the carbon nanotubes 105 (FIG. 25 (d)).
こうして、 電極上の修飾分子 1 2 9が除去される。 電極上の修飾分子 1 2 9を除去することにより、 カーボンナノチューブ 1 0 5と電極との電気的接 続を向上させることができる。  Thus, the modifying molecule 129 on the electrode is removed. The electrical connection between the carbon nanotube 105 and the electrode can be improved by removing the modifying molecule 125 on the electrode.
なお、 ソース電極 5 aおよびドレイン電極 5 bの表面に、 炭化物を形成し うる金属が含まれる場合、 図 2 3 ( b ) および図 2 4 ( b ) 以降の工程で、 適宜アニーリング、 たとえば真空下で 1 0 0 ο 以上に加熱する方法、 を行 うことにより、 ソース電極 5 aおよびドレイン電極 5 bと力一ボンナノチュ —ブ 1 0 5との界面に炭化物が形成され、 電気的接触を高めることができる。 また、 第 1の実施形態と同様に、 基板 3の表面に電極上部のみを開口部と するマスクを施し、 ソース電極 5 aおよびドレイン電極 5 bそれぞれの上部 に、 さらに電極となる金属層を形成することもできる。 こうすることにより、 ソース電極 5 aおよびドレイン電極 5 bを接続する力一ボンナノチュ一ブ 1 0 5が、 上下の金属層で挟まれた構成となる。 よって、 電気的接触をより一 層良好なものとすることができる。  When the surface of the source electrode 5a and the drain electrode 5b contains a metal capable of forming a carbide, annealing is performed as appropriate in the steps after FIG. 23 (b) and FIG. 24 (b), for example, under vacuum. By heating at a temperature of at least 100 °, a carbide is formed at the interface between the source electrode 5a and the drain electrode 5b and the carbon nanotube 105, thereby increasing electrical contact. Can be. Similarly to the first embodiment, a mask is formed on the surface of the substrate 3 so that only the upper part of the electrode is an opening, and a metal layer to be an electrode is further formed on each of the source electrode 5a and the drain electrode 5b. You can also. By doing so, a structure in which the source nanotube 105 connecting the source electrode 5a and the drain electrode 5b is sandwiched between the upper and lower metal layers is obtained. Therefore, the electrical contact can be further improved.
さらに、 基板 3の表面に電極上部のみを開口部とするマスクを施し、 ソ一 ス電極 5 aおよびドレイン電極 5 bそれぞれの上部に薄い絶縁膜を形成して もよい。 こうすれば、 ソース電極 5 a、 ドレイン電極 5 bおよびこれらの電 極上に露出したカーボンナノチューブ 1 0 5と受光により分極が発生する層 1 3とが直接接触しないようにすることができる。 また、 上述のように、 ソ ース電極 5 aおよびドレイン電極 5 bそれぞれの上部に、 さらに電極となる 金属層を形成した場合にも、 金属層と受光により分極が発生する層 1 3とが 直接接触しないようにすることができる。 よって、 光センサの精度をより一 層向上させることができる。 Furthermore, a thin insulating film may be formed on the source electrode 5a and the drain electrode 5b by applying a mask on the surface of the substrate 3 so that only the upper part of the electrode is an opening. This can prevent direct contact between the source electrode 5a, the drain electrode 5b, and the carbon nanotube 105 exposed on these electrodes and the layer 13 where polarization occurs due to light reception. Also, as mentioned above, Even if a metal layer serving as an electrode is further formed on each of the source electrode 5a and the drain electrode 5b, the metal layer and the layer 13 where polarization occurs due to light reception should not be in direct contact. it can. Therefore, the accuracy of the optical sensor can be further improved.
以上のように、 本実施形態では、 カーボンナノチューブ 1 0 5の側面外周 に修飾分子 1 2 9が巻回されているため、 修飾分子 1 2 9がカーボンナノチ ユーブ構造体 1 3 1の表面に均一な絶縁膜が形成されている。 このため、 力 一ボンナノチューブ 1 0 5の上部に絶縁膜を形成することなく、 力一ポンナ ノチューブ構造体 1 3 1上に直接受光により分極が発生する層 1 3を付着さ せることができる。 このため、 より簡易な構成の光センサを安定的に供給す ることができる。  As described above, in the present embodiment, since the modifying molecule 129 is wound around the outer periphery of the side surface of the carbon nanotube 105, the modifying molecule 129 is evenly distributed on the surface of the carbon nanotube structure 131. Insulating film is formed. Therefore, without forming an insulating film on the carbon nanotube 105, it is possible to attach the layer 13 where polarization is generated by direct light reception on the carbon nanotube structure 131. . Therefore, it is possible to stably supply an optical sensor having a simpler configuration.
また、 力一ボンナノチューブ 1 0 5表面の絶縁層、 すなわち修飾分子 1 2 9の層が力一ボンナノチューブ 1 0 5の表面において、 たとえば 0 . 1 n m 以上 1 0 0 n m以下程度の薄膜として均一に形成されている。 このため、 受 光により分極が発生する層 1 3とカーボンナノチューブ 1 0 5との間を確実 に絶縁しつつ、 受光により分極が発生する層 1 3における分極を力一ポンナ ノチューブ 1 0 5のコンダクタンス変化に正確に変換することができる。 ま た、 カーボンナノチューブ 1 0 5の周囲が修飾分子 1 2 9によって均一な厚 みで被覆されているため、 光センサの動作安定性が向上する。 また、 このよ うな修飾分子 1 2 9の被覆は、 周囲の水分がカーボンナノチューブ 1 0 5の 導電性に影響を与えることを抑制する。 よって、 光センサの精度および感度 をより一層向上させることができる。  In addition, the insulating layer on the surface of the carbon nanotube 105, that is, the layer of the modifying molecule 125 is uniform on the surface of the carbon nanotube 105 as a thin film having a thickness of, for example, about 0.1 nm or more and 100 nm or less. Is formed. For this reason, the polarization in the layer 13 where the polarization occurs due to the light reception is ensured while the insulation between the layer 13 where the polarization occurs due to the light reception and the carbon nanotube 105 is ensured. It can be accurately converted to a change in conductance. In addition, since the periphery of the carbon nanotube 105 is covered with the modifier molecule 129 with a uniform thickness, the operation stability of the optical sensor is improved. In addition, such a coating of the modifying molecule 129 suppresses the influence of the surrounding water from affecting the conductivity of the carbon nanotube 105. Therefore, the accuracy and sensitivity of the optical sensor can be further improved.
(第 6の実施形態)  (Sixth embodiment)
本実施形態に係る光センサは、 基板表面に、 ソース電極およびドレイン電 極からなる複数の電極対が二次元的に配列した構成を有する。 個々のセンサ 単位の構造は第 1の実施形態と同様である。 本実施形態の光センサは、 画像 認識素子や、 テレビカメラの画像センサなどに好適に応用することができる。 以下、 本実施形態に係る光センサを画像認識素子として用いた例について説 明する。 The optical sensor according to the present embodiment has a configuration in which a plurality of electrode pairs including a source electrode and a drain electrode are two-dimensionally arranged on a substrate surface. The structure of each sensor unit is the same as in the first embodiment. The optical sensor of the present embodiment can be suitably applied to an image recognition element, an image sensor of a television camera, and the like. Hereinafter, an example in which the optical sensor according to the present embodiment is used as an image recognition element will be described. I will tell.
本実施形態に係る画像認識素子 1 0 0を図 1 1に示す。 第 1の実施形態と 同様にして、 図 1 1の画像認識素子 1 0 0を作製する。 図 1 1において、 基 板 3にはたとえば単結晶シリコンを用いる。 受光により分極が発生する層 1 3に、 紫膜を用いる。 こうすることにより、 バクテリオロドプシン 4 1と脂 質とを含むタンパク質単分子膜 5 1が得られるため、 これを積層して受光に より分極が発生する層 1 3とする。 また、 絶縁層 1 1には、 紫膜を用いる。 バクテリオロドプシン 4 1に光を照射すると、 電気分極が生じ、 この電気 分極特性は、 図 1 2に示すようになる。 つまり、 時刻 t iにおいて光が照射さ れると電気分極が起こり、 時間の経過とともにこの分極は徐々に減衰する。 そして、 時刻 1 2において光の照射を中止すると、 光照射時と逆極性の電気分 極が起こり、 時間の経過とともに分極は徐々に減衰する。 FIG. 11 shows an image recognition element 100 according to the present embodiment. The image recognition device 100 shown in FIG. 11 is manufactured in the same manner as in the first embodiment. In FIG. 11, for example, single crystal silicon is used for the substrate 3. A purple film is used for the layer 13 where polarization is generated by light reception. By doing so, a protein monomolecular film 51 containing bacteriorhodopsin 41 and lipid is obtained, and this is laminated to form a layer 13 in which polarization is generated by light reception. Also, a purple film is used for the insulating layer 11. When bacteriorhodopsin 41 is irradiated with light, electric polarization occurs, and the electric polarization characteristics are as shown in FIG. That is, when light is irradiated at time ti, electric polarization occurs, and this polarization gradually decreases with time. When to stop irradiation of light at time 1 2, it occurs electric component electrode during light irradiation and opposite polarity, polarization with time gradually attenuated.
本実施形態の画像認識素子 1 0 0では、 それぞれの画素 9のソース電極 5 aおよびドレイン電極 5 bを流れる電流値を、 電流検出手段 2 3により検出 する。 したがって、 解像度が高く、 高感度である。  In the image recognition element 100 of the present embodiment, the current value flowing through the source electrode 5a and the drain electrode 5b of each pixel 9 is detected by the current detecting means 23. Therefore, the resolution is high and the sensitivity is high.
また、 本実施形態の画像認識素子 1 0 0を用いて移動物体の輪郭を検出す る場合、 従来の画像認識素子に比べ、 より精密に輪郭を認識することが可能 となる。  Further, when detecting the contour of a moving object using the image recognition element 100 of the present embodiment, it is possible to recognize the contour more precisely than in a conventional image recognition element.
従来の画像中の移動物体の輪郭抽出は、 C C D等の入力デバイスによって 取得された画像の連続したフレーム画像間のデ一夕差分をとることによって 得られる差分画像を用いる。 この方法を、 以下デ一夕差分法とよぶ。 デ一夕 差分法は、 2つの連続したフレーム画像の違いが、 一般的に画像中の移動物 体の輪郭に相当する部分に起因していることを利用している。  In the conventional extraction of the outline of a moving object in an image, a difference image obtained by calculating a temporary difference between consecutive frame images of an image acquired by an input device such as a CCD is used. This method is hereinafter referred to as the “de-one-time difference method”. The overnight difference method takes advantage of the fact that the difference between two consecutive frame images is generally due to the portion of the image that corresponds to the contour of the moving object.
したがって、 データ差分法で抽出された移動物体の輪郭データは移動物体 の背景画像データに依存する。 すなわち、 移動物体の光強度が一定であると しても、 移動物体周辺の背景の光強度が変化すれば、 差分値である輪郭デー 夕が一定とならなくなる。 このため、背景画像の光強度が変化する条件では、 精度よく輪郭を検出することが困難であつた。 これに対し、 本実施形態に係る画像認識素子 1 00では、 以下に述べるよ うに、データ差分をとることなく、移動物体の輪郭を抽出することができる。 図 1 3は、 移動物体を含む動画像を図 1 1の画像認識素子 1 00に照射し た場合に、 画像認識素子によって得られる出力画像を示している。 Therefore, the contour data of the moving object extracted by the data difference method depends on the background image data of the moving object. In other words, even if the light intensity of the moving object is constant, if the light intensity of the background around the moving object changes, the contour data, which is the difference value, will not be constant. For this reason, it was difficult to detect the contour with high accuracy under the condition where the light intensity of the background image changes. On the other hand, the image recognition element 100 according to the present embodiment can extract the outline of the moving object without taking a data difference, as described below. FIG. 13 shows an output image obtained by the image recognition element when a moving image including a moving object is irradiated on the image recognition element 100 in FIG.
図 1 3 (a) において、 1 1 1は時刻 t における入力画像を、 1 1 2 は t =Ί\における入力画像に対する出力画像を、 1 1 3は t における 入力画像に対する出力画像の直線 ΑΒ上の出力電流値を、 それぞれ示してい る。 なお、 入力画像とは光情報をさし、 セ =1\において、 移動物体の光が画 像認識素子 1 00に最初に照射されたとする。  In FIG. 13 (a), 1 1 1 is the input image at time t, 1 1 2 is the output image for the input image at t = Ί \, and 1 13 is the straight line の of the output image for the input image at t. The output current value of each is shown. Note that the input image refers to optical information, and it is assumed that the light of the moving object is first irradiated on the image recognition element 100 in section = 1 \.
また、 図 1 3 (b) において、 12 1は t =T2における入力画像を、 12 2は t =Τ2における入力画像に対する出力画像を、 123は t =Τ2におけ る入力画像に対する出力画像の直線 A Β上の出力電流値を、 それぞれ示して いる。 Further, in FIG. 1 3 (b), 12 1 is the input image at t = T 2, 12 2 is the output image for the input image in t = T 2, 123 is the output for the input image that put in t = T 2 The output current values on the straight line A の in the image are shown.
1: =1\においては、画像認識素子 100の受光により分極が発生する層 1 3の電気分極特性 (図 1 2) によって、 移動物体の光が照射された部分に対 応する画素 9に移動物体の光強度に応じた所定値 (図 1 3 (a) においては + 8) の誘導電流が発生する。  1: = 1 \ moves to the pixel 9 corresponding to the light-irradiated part of the moving object due to the electric polarization characteristics of the layer 13 (Fig. 12) where polarization occurs due to the light received by the image recognition element 100 An induced current of a predetermined value (+8 in Fig. 13 (a)) corresponding to the light intensity of the object is generated.
次に、 t =T2では、 移動物体の光が新たに照射された部分に対応する画素 9には、 所定値 (図 1 3 (b) においては + 8) の誘導電流が発生する。 一 方、移動物体の光が時刻 t =1\から引き続いて照射されている部分に対応す る画素 9への誘導電流は、 画像認識素子 1 00の受光により分極が発生する 層 1 3の電気分極特性によって、 所定値へと低下する (図 1 3 (b) におい ては + 8から + 5)。そして、 t =1^では移動物体の光が照射されていたが、 t =T2では移動物体の光が照射されなくなった部分に対応する画素 9への 誘導電流は、 受光により分極が発生する層 1 3の電気分極特性によって、 移 動物体の光強度に応じた逆極性の所定値 (図 1 3 (b) においては一 5) へ と変化する。 Next, the t = T 2, the pixels 9 which light moving object corresponding to the newly irradiated portions (in FIG. 1 3 (b) + 8) predetermined value induced current is generated in. On the other hand, the induced current to the pixel 9 corresponding to the portion where the light of the moving object is continuously irradiated from the time t = 1 \ is the electric current of the layer 13 where polarization occurs due to the light received by the image recognition element 100. It decreases to a predetermined value depending on the polarization characteristics (+8 to +5 in Fig. 13 (b)). Then, t = 1 ^ but the light of the moving object has been irradiated, the induced current to the pixel 9 corresponding to the portion where the light is no longer illuminated for t = T 2 the mobile object, polarization is generated by the light-receiving Due to the electric polarization characteristics of the layer 13, the polarity changes to a predetermined value (15 in FIG. 13 (b)) of the reverse polarity according to the light intensity of the animal.
したがって、 移動物体の光が新たに照射された部分、 すなわち移動物体の 移動方向に向かって前方側の輪郭に対応する誘導電流値は、 移動物体の光強 度に応じた所定の一定値 (図 1 3 ( a )、 図 1 3 ( b ) においては + 8 ) とな る。 また、 移動物体の光が照射されなくなった部分、 すなわち、 移動物体の 移動方向に向かって後方側の輪郭に対応する誘導電流値は、 移動物体の光強 度に応じた所定の一定値 (図 1 3 ( b ) においては一 5 ) となる。 このよう に、 画像認識素子 1 0 0を用いて移動物体を検出した場合には、 背景の輝度 が一定であるならば、 その輪郭の誘導電流値は一定となる。 さらに、 移動物 体の光が照射され続けた部分、 及び照射されなくなった部分に対応する誘導 電流値は、 時間の経過とともに 0となる。 Therefore, the part of the moving object that is newly irradiated with light, The induced current value corresponding to the contour on the front side in the moving direction is a predetermined constant value (+8 in Figs. 13 (a) and 13 (b)) corresponding to the light intensity of the moving object. Become. In addition, the induced current value corresponding to the portion of the moving object that is no longer irradiated with light, that is, the contour on the rear side in the moving direction of the moving object, is a predetermined constant value according to the light intensity of the moving object (see FIG. In 1 3 (b), it is 1 5). As described above, when a moving object is detected using the image recognition element 100, if the luminance of the background is constant, the induced current value of the contour is constant. Further, the induced current value corresponding to the portion of the moving object that has been continuously irradiated with light and the portion that has been no longer irradiated becomes zero with the passage of time.
以上のように、 本実施形態の画像認識素子 1 0 0によって抽出された移動 物体の輪郭内画像は実画像である。 このため、 入力される動画像の背景が、 模様等の形成された複雑な画像であっても、 動画像中の移動物体の輪郭のみ を抽出することができ、 背景画像に依存しない。 また、 移動物体の輪郭を追 求することにより、 物体の移動方向も抽出することができる。  As described above, the in-contour image of the moving object extracted by the image recognition element 100 of the present embodiment is a real image. For this reason, even if the background of the input moving image is a complicated image with a pattern or the like, only the outline of the moving object in the moving image can be extracted and does not depend on the background image. Further, by searching for the contour of the moving object, the moving direction of the object can be extracted.
また、 本実施形態の画像認識素子 1 0 0は、 画素 9が微小であるため、 単 位面積あたりの画素数を 1億個程度まで増加させることができる。 したがつ て、 移動物体の輪郭をより精密に抽出することができる。  Further, in the image recognition element 100 of the present embodiment, since the pixels 9 are minute, the number of pixels per unit area can be increased to about 100 million. Therefore, the contour of the moving object can be extracted more precisely.
さらに、 本実施形態の画像認識素子 1 0 0を構成する画素 9は、 バクテリ ォロドプシン 4 1の分極によってカーボンナノチューブ 7のコンダクタンス が変化し、 ソース電極 5 aおよびドレイン電極 5 bの間を流れる電流値が変 化するため、 電流値の変化が比較的大きく、 移動物体の輪郭を感度よく検出 することができる。  Further, the pixel 9 constituting the image recognition element 100 of the present embodiment has a current value flowing between the source electrode 5a and the drain electrode 5b due to a change in the conductance of the carbon nanotube 7 due to the polarization of the bacterial rhodopsin 41. Therefore, the change in the current value is relatively large, and the contour of the moving object can be detected with high sensitivity.
(第 7の実施形態)  (Seventh embodiment)
本実施形態は、 第 5の実施形態に記載の光センサを用いた画像認識素子に 関する。 図 2 6は、 画像認識素子 2 9を示す図である。 画像認識素子 2 9に おいて、 第 1の実施形態に記載の画像認識素子 1 0 0と同様の構成要素には 同様の符号を付し、 適宜説明を省略する。  The present embodiment relates to an image recognition element using the optical sensor according to the fifth embodiment. FIG. 26 is a diagram showing the image recognition element 29. In the image recognition element 29, the same components as those of the image recognition element 100 described in the first embodiment are denoted by the same reference numerals, and the description will be appropriately omitted.
画像認識素子 2 9は、 ソース電極 5 aとドレイン電極 5 bとがカーボンナ P2003/009577 In the image recognition element 29, the source electrode 5a and the drain electrode 5b P2003 / 009577
35 ノチューブ構造体 1 31によって接続されている。 力一ボンナノチューブ構 造体 1 3 1において、 カーボンナノチューブ 1 05の周囲に修飾分子 1 29 がー様に被覆している。 力一ボンナノチューブ構造体 1 3 1の周囲に修飾分 子 1 29の薄い絶縁層が形成されている。 このため、 受光により分極が発生 する層 1 3とカーボンナノチューブ 1 0 5との間に絶縁層 1 1を設けること なく、 タンパク質単分子膜 5 1において精度よく安定的に分極を生じさせる ことができる。 受光により分極が発生する層 1 3には、 たとえば紫膜を用い ることができる。  35 are connected by a tube structure. In the carbon nanotube structure 13 1, the modification molecule 1 29 is coated around the carbon nanotube 105 in a similar manner. A thin insulating layer of a modified molecule 129 is formed around the carbon nanotube structure 13 1. Therefore, polarization can be generated accurately and stably in the protein monomolecular film 51 without providing the insulating layer 11 between the layer 13 where polarization is generated by light reception and the carbon nanotube 105. . For example, a purple film can be used for the layer 13 in which polarization is generated by light reception.
なお、 画像認識素子 29の作製には、 第 5および第 6の実施形態に記載の 方法を利用することができる。  The method described in the fifth and sixth embodiments can be used for manufacturing the image recognition element 29.
以上、本発明を実施の形態に基づいて説明した。実施の形態は例示であり、 それらの各構成要素や各製造工程の組合せにいろいろな変形例が可能なこと、 またそうした変形例も本発明の範囲にあることは当業者に理解されるところ である。  The present invention has been described based on the embodiments. The embodiments are exemplifications, and it is understood by those skilled in the art that various modifications can be made to the combination of each component and each manufacturing process, and that such modifications are also within the scope of the present invention. is there.
(実施例)  (Example)
本実施例では、 力一ボンナノチューブの表面に変性バクテリオ口ドプシン の絶縁層が被覆されたカーボンナノチューブ構造体を作成した例を示す。 図 1 9は、 このようなカーボンナノチューブ構造体 1 1 7の製造方法を示す図 である。  In this embodiment, an example is shown in which a carbon nanotube structure in which the surface of a carbon nanotube is covered with an insulating layer of denatured bacterioporous dopsin is formed. FIG. 19 is a diagram showing a method for manufacturing such a carbon nanotube structure 1 17.
まず、 パクテリオロドプシン 1 02を含む紫膜を分散媒に分散させた (図 1 9 (a))。 バクテリオ口ドプシン 102として、 たとえば、 紫膜または紫 膜に含まれるバクテリオ口ドプシン 1 02を用いるこどができるが、 本実施 例では紫膜を用いた。 紫膜は、 ハロバクテリウム ·サリナルム (Ha l o b a c t e r i um s a l i n a r um) などの好塩菌から分離することが できる。 紫膜の分離には、 Me t h o d s i n E n z ymo l o gy, 3 1, A, p . 667 - 678 ( 1 974) に記載の方法を用いた。 また、 分散媒 1 03として、 33 vZv%DMF (ジメチルフオルムアミド) 水溶 液を用いた。 なお、 分散媒 1 0 3としては、 3 3 vZv%DMF (ジメチル フオルムアミド) 水溶液に限らず、 有機溶媒の水溶液等を用いることができ る。 First, a purple membrane containing pacteriorhodopsin 102 was dispersed in a dispersion medium (FIG. 19 (a)). As the bacteriococcal dopsin 102, for example, a purple membrane or a bacteriococcal dopsin 102 contained in the purple membrane can be used. Purple membranes can be isolated from halophilic bacteria, such as Halobacterium um salinar um. For separation of the purple membrane, the method described in Methodsin Enzymology, 31, A, p. 667-678 (1974) was used. As the dispersion medium 103, a 33 vZv% DMF (dimethylformamide) aqueous solution was used. As the dispersion medium 103, 33 vZv% DMF (dimethyl Formamide) Not only an aqueous solution but also an aqueous solution of an organic solvent can be used.
パクテリォロドプシン 1 02の分散液に過剰量の力一ポンナノチューブ 1 05を加え、 超音波分散器を用いて 1時間以上分散化処理を行った (図 1 9 (b))。分散後、残存するカーボンナノチューブ 1 05の凝集物を除去した。 カーボンナノチューブとして、 MTR L t d. 社製多層カーボンナノチュ ーブ (C l o s e d e n d t y p e、 直径数 1 0〜 200 n m、 精製純 度約 9 5 %) を用いた。  To the dispersion of pacteriorhodopsin 102 was added an excess amount of force-pon nanotube 105, and the dispersion was performed for at least 1 hour using an ultrasonic disperser (Fig. 19 (b)). After the dispersion, remaining aggregates of carbon nanotubes 105 were removed. As the carbon nanotube, a multi-layer carbon nanotube manufactured by MTR Ltd. (Closeddendtpepe, diameter: 10 to 200 nm, purification purity: about 95%) was used.
こうして得られた分散液 107 (図 1 9 (c)) を、 シリンジ 109を用い て、 水槽に張った下層液 1 1 1の液面上に静かに展開した (図 1 9 (d))。 こうすることにより、 カーボンナノチューブ 1 05の単分子膜が得られた。 なお、 本実施例では、 水槽としてラングミュアトラフ 1 1 3を用い、 下層液 1 1 1として HC 1で pH 3. 5に調製した純水を用いた。  The thus obtained dispersion liquid 107 (FIG. 19 (c)) was gently spread on the liquid surface of the lower liquid liquid 111 set in the water tank using the syringe 109 (FIG. 19 (d)). As a result, a monomolecular film of carbon nanotube 105 was obtained. In this example, Langmuir Trough 113 was used as the water tank, and pure water adjusted to pH 3.5 with HC1 was used as the lower layer liquid 111.
次に、 力一ボンナノチューブ 1 05の単分子膜を静置し、 バクテリオロド プシン 1 02を下層液 1 1 1の界面張力によって界面変性させた。 紫膜を用 いる場合、 紫膜中のバクテリオロドプシンが界面変性するまで、 室温で 5時 間以上静置することが好ましいため、 本実施例でも 5時間静置した (図 1 9 (e))。 こうすることにより、 変性バクテリオロドプシン 1 1 5が、 力一ポ ンナノチューブ 10 5の側面に巻回するようになる (図 1 9 ( f))。  Next, the monomolecular film of the carbon nanotube 105 was allowed to stand still, and the bacteriorhodopsin 102 was interfacially denatured by the interfacial tension of the lower solution 111. In the case of using purple membrane, it is preferable to leave the membrane at room temperature for 5 hours or more until bacteriorhodopsin in the purple membrane is interface-denatured. . In this way, the modified bacteriorhodopsin 115 is wound around the side surface of the force-feeding nanotube 105 (Fig. 19 (f)).
上記水面上に形成されたカーボンナノチューブ構造体 1 1.7を、 その支持 単分子膜ごと TEM観察用グリッドに転写し、 乾燥後に TEM (透過型電子 顕微鏡) でそのまま観察した。 図 20は、 カーボンナノチューブ構造体 1 1 7の TEM像を示す図である。  The carbon nanotube structure 11.7 formed on the water surface was transferred to a TEM observation grid together with the supporting monomolecular film, dried, and observed as it was by a TEM (transmission electron microscope). FIG. 20 is a view showing a TEM image of the carbon nanotube structure 1 17.
図 20より、 カーボンナノチューブ 1 0 5の表面に変性バクテリオ口ドプ シン 1 1 5の層が均一に形成されていた。 また、 その層厚は、 3 nm程度で あった。  As shown in FIG. 20, a layer of denatured bacterial mouth dopsin 115 was uniformly formed on the surface of carbon nanotube 105. The layer thickness was about 3 nm.
このように、 本実施例では、 バクテリオロドプシン 1 02とカーボンナノ チューブ 1 0 5とを分散させ、 液面上に展開するという簡便な方法により、 力一ボンナノチューブ構造体 1 1 7を作製することができた。 Thus, in this example, bacteriorhodopsin 102 and carbon nanotubes 105 were dispersed and developed on a liquid surface by a simple method. A carbon nanotube structure 1 17 was successfully produced.
得られたカーボンナノチューブ構造体 1 1 7を基板上に付着させること により、 光センサを安定的に製造することができる。  An optical sensor can be stably manufactured by attaching the obtained carbon nanotube structure 117 on a substrate.

Claims

請 求 の 範 囲 The scope of the claims
1 . 基板と、  1. The substrate and
該基板上に形成されたソース電極およびドレイン電極と、  A source electrode and a drain electrode formed on the substrate,
前記ソース電極おょぴドレイン電極を電気的に接続するカーボンナノチュ ーブと、  A carbon nanotube for electrically connecting the source electrode and the drain electrode,
前記カーボンナノチューブの上部に設けられた、 受光により分極が発生す る層と、  A layer provided on top of the carbon nanotube, the polarization being generated by light reception;
を備えることを特徴とする光センサ。  An optical sensor comprising:
2 . 請求の範囲 1に記載の光センサにおいて、 前記受光により分極が発生 する層が、 受光により分極する分子を主として含むことを特徴とする光セン サ。  2. The optical sensor according to claim 1, wherein the layer in which polarization is generated by receiving light mainly includes molecules that are polarized by receiving light.
3 . 請求の範囲 1または 2に記載の光センサにおいて、 前記受光により分 極が発生する層は、 バクテリオ口ドプシンを含むことを特徴とする光センサ。 3. The optical sensor according to claim 1, wherein the layer in which polarization is generated by the light reception includes bacteriococcal dopsin.
4 . 請求の範囲 1乃至 3いずれかに記載の光センサにおいて、 前記カーボ ンナノチューブの表面に絶縁層を有することを特徴とする光センサ。 4. The optical sensor according to claim 1, further comprising an insulating layer on a surface of the carbon nanotube.
5 . 請求の範囲 4に記載の光センサにおいて、 前記絶縁層が高分子層であ ることを特徴とする光センサ。  5. The optical sensor according to claim 4, wherein the insulating layer is a polymer layer.
6 . 請求の範囲 4または 5に記載の光センサにおいて、 前記絶縁層は、 前 記カーボンナノチューブの側面に高分子が巻回してなる層であることを特徴 とする光センサ。  6. The optical sensor according to claim 4, wherein the insulating layer is a layer in which a polymer is wound around a side surface of the carbon nanotube.
7 . 基板の表面にソース電極およびドレイン電極を形成する工程と、 前記ソース電極およびドレイン電極をカーボンナノチューブによって接続 する工程と、  7. forming a source electrode and a drain electrode on the surface of the substrate; connecting the source electrode and the drain electrode with carbon nanotubes;
前記カーボンナノチューブの上部に、 受光により分極が発生する層を形成 する工程と、  Forming a layer on the carbon nanotube on which polarization is generated by light reception;
を含むことを特徴とする光センサの製造方法。  A method for manufacturing an optical sensor, comprising:
8 . 請求の範囲 7に記載の光センサの製造方法において、 ソース電極およ ぴドレイン電極をカーボンナノチューブによって接続する前記工程は、 カーボンナノチューブの配向膜を作製する工程と、 8. The method for manufacturing an optical sensor according to claim 7, wherein the step of connecting the source electrode and the drain electrode with carbon nanotubes comprises: Producing an alignment film of carbon nanotubes,
前記カーボンナノチューブの配向膜を前記ソース電極およびドレイン電極 表面に付着させる工程と、  Attaching the alignment film of the carbon nanotubes to the surface of the source electrode and the drain electrode;
前記ソース電極、 ドレイン電極、 およびソース電極とドレイン電極との間 の領域以外に付着した力一ボンナノチューブを選択的に除去する工程と、 を含むことを特徴とする光センサの製造方法。  Selectively removing carbon nanotubes adhering to regions other than the source electrode, the drain electrode, and a region between the source electrode and the drain electrode.
9 . 請求の範囲 8に記載の光センサの製造方法において、 力一ボンナノチ ュ一ブの配向膜を作製する前記工程は、  9. The method for manufacturing an optical sensor according to claim 8, wherein the step of producing an alignment film of a carbon nanotube comprises:
前記カーボンナノチューブおよび被覆分子を分散媒に分散させた分散液を 液体表面に展開することにより、 前記カーボンナノチューブの表面に前記被 覆分子を含む絶縁層を形成する工程を含むことを特徴とする光センサの製造 方法。  A step of forming, on a liquid surface, a dispersion liquid in which the carbon nanotubes and the coating molecules are dispersed in a dispersion medium to form an insulating layer containing the coating molecules on the surface of the carbon nanotubes. Manufacturing method of the sensor.
1 0 . 請求の範囲 9に記載の光センサの製造方法において、 前記被覆分子 として高分子を用い、 前記カーボンナノチューブの表面に高分子層を形成す ることを特徴とする光センサの製造方法。  10. The method for manufacturing an optical sensor according to claim 9, wherein a polymer is used as the coating molecule, and a polymer layer is formed on a surface of the carbon nanotube.
1 1 . 請求の範囲 9または 1 0に記載の光センサの製造方法において、 前記被覆分子としてタンパク質を分散させた前記分散液を液体表面に展開 することにより前記タンパク質を変性させ、 変性した前記タンパク質を前記 カーボンナノチューブの側面に巻回させることを特徴とする光センサの製造 方法。  11. The method for manufacturing an optical sensor according to claim 9 or 10, wherein the protein is denatured by spreading the dispersion in which the protein is dispersed as the coating molecule on a liquid surface, and the denatured protein. Is wound around the side surface of the carbon nanotube.
1 2 . 請求の範囲 1 1に記載の光センサの製造方法において、 前記タンパ ク質が膜タンパク質であることを特徴とする光センサの製造方法。  12. The method for manufacturing an optical sensor according to claim 11, wherein the protein is a membrane protein.
1 3 . 請求の範囲 8乃至 1 2いずれかに記載の光センサの製造方法におい て、 カーボンナノチューブの配向膜を作製する前記工程は、 カーボンナノチ ユーブとバクテリオロドプシンとを含む分散液を、 液体表面に展開してカー ボンナノチューブの配向膜を形成する工程を含むことを特徴とする光センサ の製造方法。  13. The method for producing an optical sensor according to any one of claims 8 to 12, wherein the step of forming an alignment film of carbon nanotubes comprises: dispersing a dispersion liquid containing carbon nanotubes and bacteriorhodopsin on a liquid surface. A method for manufacturing an optical sensor, comprising the steps of:
1 4 . 請求の範囲 7乃至 1 3いずれかに記載の光センサの製造方法におい て、 受光により分極が発生する層を形成する前記工程は、 受光により分極が 発生する分子の単分子膜または積層膜を形成する工程を含むことを特徴とす る光センサの製造方法。 14. The method for manufacturing an optical sensor according to any one of claims 7 to 13. The method of manufacturing an optical sensor, wherein the step of forming a layer in which polarization is generated by light reception includes a step of forming a monomolecular film or a stacked film of molecules in which polarization is generated by light reception.
1 5 . 請求の範囲 7乃至 1 4いずれかに記載の光センサの製造方法におい て、 受光により分極が発生する層を形成する前記工程は、 バクテリオロドプ シンの配向膜を形成する工程を含むことを特徴とする光センサの製造方法。  15. In the method of manufacturing an optical sensor according to any one of claims 7 to 14, the step of forming a layer in which polarization occurs by light reception includes a step of forming an alignment film of bacteriorhodopsin. A method for manufacturing an optical sensor, comprising:
1 6 . 請求の範囲 1 4または 1 5に記載の光センサの製造方法において、 受光により分極が発生する層を形成する前記工程は、 16. The method of manufacturing an optical sensor according to claim 14 or 15, wherein the step of forming a layer in which polarization is generated by light reception includes:
受光により分極する分子を含む分散液を液体表面に展開し、 受光により分 極する分子の配向膜を作製する工程と、  Developing a dispersion containing molecules that are polarized by light reception on the surface of the liquid, and forming an alignment film of molecules that are polarized by light reception;
前記受光により分極する分子の配向膜と、 前記力一ボンナノチューブとを、 直接または絶縁層を介して付着させる工程と、  Attaching the alignment film of molecules polarized by the light reception and the carbon nanotubes, directly or via an insulating layer;
を含むことを特徴とする光センサの製造方法。 A method for manufacturing an optical sensor, comprising:
1 7 . 請求の範囲 1乃至 5いずれかに記載の光センサを駆動する方法であ つて、 前記ソース電極と前記ドレイン電極との間に所定の電^を流し、 電流 値の変化を検知することにより受光した光の強度を検出することを特徴とす る光センサの駆動方法。  17. A method for driving the optical sensor according to any one of claims 1 to 5, wherein a predetermined current is applied between the source electrode and the drain electrode to detect a change in a current value. A method for driving an optical sensor, comprising detecting the intensity of light received by the optical sensor.
1 8 . 受光により分極する層および該層に近接して設けられたカーボンナ ノチューブを含むセンサを用いて光強度の検出を行う方法であって、 前記力 —ボンナノチューブに電圧を印加し、 前記層の受光によって引き起こされる 前記カーボンナノチューブ中の電流値の変化を検出し、 この電流値の変化か ら光強度を検出することを特徴とする光強度検出方法。  18. A method for detecting light intensity using a sensor including a layer polarized by light reception and a carbon nanotube provided in close proximity to the layer, comprising applying a voltage to the force-bon nanotube, A light intensity detection method comprising: detecting a change in a current value in the carbon nanotube caused by light reception of a layer; and detecting a light intensity from the change in the current value.
1 9 . 請求の範囲 1 8に記載の光強度検出方法において、 前記受光により 分極する層がバクテリオ口ドプシンを含むことを特徴とする光強度検出方法 c 1 9. In the light intensity detecting method according to claim 1 8 claims, the light intensity layers polarized by the light receiving is characterized in that it comprises a bacteriophage port Dopushin detection method c
PCT/JP2003/009577 2002-08-01 2003-07-29 Optical sensor, method for manufacturing and driving optical sensor, and method for measuring light intensity WO2004013915A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004525794A JP3933664B2 (en) 2002-08-01 2003-07-29 Optical sensor, optical sensor manufacturing method and driving method, and optical intensity detection method
AU2003252283A AU2003252283A1 (en) 2002-08-01 2003-07-29 Optical sensor, method for manufacturing and driving optical sensor, and method for measuring light intensity
US11/003,355 US20050093425A1 (en) 2002-08-01 2004-12-06 Optical sensor, method of manufacturing and driving an optical sensor, method of detecting light intensity

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002225291 2002-08-01
JP2002-225291 2002-08-01
JP2002-261244 2002-09-06
JP2002261244 2002-09-06
JP2002324373 2002-11-07
JP2002-324373 2002-11-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/003,355 Continuation-In-Part US20050093425A1 (en) 2002-08-01 2004-12-06 Optical sensor, method of manufacturing and driving an optical sensor, method of detecting light intensity

Publications (1)

Publication Number Publication Date
WO2004013915A1 true WO2004013915A1 (en) 2004-02-12

Family

ID=31499105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009577 WO2004013915A1 (en) 2002-08-01 2003-07-29 Optical sensor, method for manufacturing and driving optical sensor, and method for measuring light intensity

Country Status (3)

Country Link
JP (1) JP3933664B2 (en)
AU (1) AU2003252283A1 (en)
WO (1) WO2004013915A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008787A1 (en) * 2003-07-18 2005-01-27 Japan Science And Technology Agency Optical sensor
JP2005229019A (en) * 2004-02-16 2005-08-25 Univ Nagoya Electrode forming method for carbon nano-tube, and carbon nano-tube fet using same forming method
WO2005117251A1 (en) * 2004-05-25 2005-12-08 Gennady Mikhailovich Mikheev Optoelectronic device
JP2007022873A (en) * 2005-07-20 2007-02-01 National Institute Of Advanced Industrial & Technology Water-dispersible protein/carbon nanotube composite and its production method and use
JP2007043150A (en) * 2005-07-29 2007-02-15 Interuniv Micro Electronica Centrum Vzw Wavelength-sensitive detector with elongated nanostructure
WO2008023373A2 (en) * 2006-08-22 2008-02-28 Ramot At Tel Aviv University Ltd. Optoelectronic device and method of fabricating the same
US7524929B2 (en) 2005-02-22 2009-04-28 Ramot At Tel Aviv University Ltd. Optoelectronic device and method of fabricating the same
JP2010040783A (en) * 2008-08-05 2010-02-18 Sony Corp Photoelectric conversion device and photoelectric conversion element
JP2010232683A (en) * 2010-07-05 2010-10-14 Sony Corp Photoelectric conversion device and photoelectric conversion element
WO2011052781A1 (en) * 2009-11-02 2011-05-05 株式会社村田製作所 Photoelectric conversion element and photoelectric conversion device
CN101656298B (en) * 2008-08-19 2012-06-13 鸿富锦精密工业(深圳)有限公司 Infrared detector
KR101216124B1 (en) 2004-02-20 2012-12-27 유니버시티 오브 플로리다 리서치 파운데이션, 인크. Semiconductor device and method using nanotube contacts
US8624227B2 (en) 2005-02-22 2014-01-07 Ramot At Tel-Aviv University Ltd. Optoelectronic device and method of fabricating the same
TWI427277B (en) * 2008-08-29 2014-02-21 Hon Hai Prec Ind Co Ltd Infrared detector
KR101439407B1 (en) * 2013-05-20 2014-09-15 한국과학기술연구원 Photo-receptor protein-based spectrophotometer, method for manufacturing the same and methd for light detection using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06294682A (en) * 1993-04-12 1994-10-21 Fuji Photo Film Co Ltd Photoelectric conversion element
US5438192A (en) * 1993-12-09 1995-08-01 The United States Of America As Represented By The Secretary Of The Army Photodynamic protein-based photodetector and photodetector system for image detection and processing
JP2000156423A (en) * 1998-11-18 2000-06-06 Internatl Business Mach Corp <Ibm> Microminiature electronic element including field effect transistor
JP2000267223A (en) * 1999-03-17 2000-09-29 Sanyo Electric Co Ltd Optical information processing device
WO2002054505A2 (en) * 2001-01-03 2002-07-11 International Business Machines Corporation System and method for electrically induced breakdown of nanostructures
JP2002334986A (en) * 2001-03-08 2002-11-22 Sanyo Electric Co Ltd Light transmission type image recognition element and image recognition sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06294682A (en) * 1993-04-12 1994-10-21 Fuji Photo Film Co Ltd Photoelectric conversion element
US5438192A (en) * 1993-12-09 1995-08-01 The United States Of America As Represented By The Secretary Of The Army Photodynamic protein-based photodetector and photodetector system for image detection and processing
JP2000156423A (en) * 1998-11-18 2000-06-06 Internatl Business Mach Corp <Ibm> Microminiature electronic element including field effect transistor
JP2000267223A (en) * 1999-03-17 2000-09-29 Sanyo Electric Co Ltd Optical information processing device
WO2002054505A2 (en) * 2001-01-03 2002-07-11 International Business Machines Corporation System and method for electrically induced breakdown of nanostructures
JP2002334986A (en) * 2001-03-08 2002-11-22 Sanyo Electric Co Ltd Light transmission type image recognition element and image recognition sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MARTEL R. ET AL.: "Single- and multi-wall carbon nanotube field-effect transistors", APPLIED PHYSICS LETTERS, vol. 73, no. 17, 26 October 2000 (2000-10-26), pages 2447 - 2449, XP000996900 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008787A1 (en) * 2003-07-18 2005-01-27 Japan Science And Technology Agency Optical sensor
JP2005229019A (en) * 2004-02-16 2005-08-25 Univ Nagoya Electrode forming method for carbon nano-tube, and carbon nano-tube fet using same forming method
KR101216124B1 (en) 2004-02-20 2012-12-27 유니버시티 오브 플로리다 리서치 파운데이션, 인크. Semiconductor device and method using nanotube contacts
WO2005117251A1 (en) * 2004-05-25 2005-12-08 Gennady Mikhailovich Mikheev Optoelectronic device
US8212005B2 (en) 2005-02-22 2012-07-03 Ramot At Tel-Aviv University Ltd. Optoelectronic device and method of fabricating the same
US7524929B2 (en) 2005-02-22 2009-04-28 Ramot At Tel Aviv University Ltd. Optoelectronic device and method of fabricating the same
US8624227B2 (en) 2005-02-22 2014-01-07 Ramot At Tel-Aviv University Ltd. Optoelectronic device and method of fabricating the same
JP2007022873A (en) * 2005-07-20 2007-02-01 National Institute Of Advanced Industrial & Technology Water-dispersible protein/carbon nanotube composite and its production method and use
JP2007043150A (en) * 2005-07-29 2007-02-15 Interuniv Micro Electronica Centrum Vzw Wavelength-sensitive detector with elongated nanostructure
WO2008023373A2 (en) * 2006-08-22 2008-02-28 Ramot At Tel Aviv University Ltd. Optoelectronic device and method of fabricating the same
WO2008023373A3 (en) * 2006-08-22 2008-06-26 Univ Ramot Optoelectronic device and method of fabricating the same
TWI400809B (en) * 2008-08-05 2013-07-01 Sony Corp Photoelectric converter and photoelectric conversion element
US8212201B2 (en) 2008-08-05 2012-07-03 Sony Corporation Photoelectric converter and photoelectric conversion element
JP2010040783A (en) * 2008-08-05 2010-02-18 Sony Corp Photoelectric conversion device and photoelectric conversion element
CN101656298B (en) * 2008-08-19 2012-06-13 鸿富锦精密工业(深圳)有限公司 Infrared detector
TWI427277B (en) * 2008-08-29 2014-02-21 Hon Hai Prec Ind Co Ltd Infrared detector
WO2011052781A1 (en) * 2009-11-02 2011-05-05 株式会社村田製作所 Photoelectric conversion element and photoelectric conversion device
JP2010232683A (en) * 2010-07-05 2010-10-14 Sony Corp Photoelectric conversion device and photoelectric conversion element
KR101439407B1 (en) * 2013-05-20 2014-09-15 한국과학기술연구원 Photo-receptor protein-based spectrophotometer, method for manufacturing the same and methd for light detection using the same
US9903761B2 (en) 2013-05-20 2018-02-27 Korea Institute Of Science And Technology Photoreceptor protein-based spectrophotometer, method for manufacturing the same and method for light detection using the same

Also Published As

Publication number Publication date
AU2003252283A1 (en) 2004-02-23
JPWO2004013915A1 (en) 2006-08-24
JP3933664B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
WO2004013915A1 (en) Optical sensor, method for manufacturing and driving optical sensor, and method for measuring light intensity
Camilli et al. Advances on sensors based on carbon nanotubes
US9091648B2 (en) Carbon based biosensors and processes of manufacturing the same
US10247689B2 (en) Low concentration ammonia nanosensor
EP1247089B1 (en) Carbon nanotube devices
Maruccio et al. Towards protein field‐effect transistors: report and model of a prototype
US20060263255A1 (en) Nanoelectronic sensor system and hydrogen-sensitive functionalization
Wu et al. Free‐standing and eco‐friendly polyaniline thin films for multifunctional sensing of physical and chemical stimuli
US20100176822A1 (en) Nanowire sensor
Van Chuc et al. Electrochemical immunosensor for detection of atrazine based on polyaniline/graphene
WO2005022134A1 (en) Field-effect transistor, single electron transistor, and sensor using same
US9995719B2 (en) Methods and devices for selective deposition of materials including mechanical abrasion
JP5062697B2 (en) Chemical substance sensing element, gas analyzer, and method for detecting ethanol concentration using chemical substance sensing element
US11982637B2 (en) Sensors comprising electrically-conductive protein nanowires
JP2010071906A (en) Organic semiconductor apparatus, and detection apparatus and method
Kamarchuk et al. New chemical sensors based on point heterocontact between single wall carbon nanotubes and gold wires
KR100858325B1 (en) Microorganism detection sensor using carbon nanotube transister array and method of detecting microorganism using thereof
US20050093425A1 (en) Optical sensor, method of manufacturing and driving an optical sensor, method of detecting light intensity
US20120012901A1 (en) Selective Functionalization by Joule Effect Thermal Activation
Lee et al. Bias modulated highly sensitive NO2 gas detection using carbon nanotubes
Khan et al. Characterization of a wake-up nano-gap gas sensor for ultra low power operation
Jose et al. Restoring adsorption properties of graphene sensor with printable glass encapsulation using UV illumination
Lyuleeva et al. Functionalized and oxidized silicon nanosheets: Customized design for enhanced sensitivity towards relative humidity
Wang et al. Development of a disposable impedance biosensor and its application for determination of Escherichia coli O157: H7
KR101331021B1 (en) Biosensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004525794

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11003355

Country of ref document: US

122 Ep: pct application non-entry in european phase