WO2003100972A1 - Complex resonance circuit and filter - Google Patents

Complex resonance circuit and filter Download PDF

Info

Publication number
WO2003100972A1
WO2003100972A1 PCT/JP2003/006510 JP0306510W WO03100972A1 WO 2003100972 A1 WO2003100972 A1 WO 2003100972A1 JP 0306510 W JP0306510 W JP 0306510W WO 03100972 A1 WO03100972 A1 WO 03100972A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
resonance
resonance circuit
composite
winding
Prior art date
Application number
PCT/JP2003/006510
Other languages
French (fr)
Japanese (ja)
Inventor
Masaru Wasaki
Yoshihiro Saitoh
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Publication of WO2003100972A1 publication Critical patent/WO2003100972A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance

Definitions

  • the present invention relates to a composite resonance circuit that can be used as a filter for reducing ripple voltage and noise, and a filter including the composite resonance circuit.
  • Power electronics devices such as switching power supplies, inverters, and lighting circuits for lighting devices, have power conversion circuits that convert power.
  • This power conversion circuit usually performs power conversion using an alternating current having a frequency of 20 kHz or higher.
  • the power conversion circuit has a switching circuit that converts a direct current into a rectangular wave alternating current.
  • the power conversion circuit generates a ripple voltage having a frequency equal to the switching frequency of the switching circuit and noise associated with the switching operation of the switching circuit.
  • the ripple voltage and noise adversely affect other devices. Therefore, it is necessary to provide a means to reduce ripple voltage and noise between the power conversion circuit and other devices or lines.
  • a filter including an inductance element (inductor) and a capacitor a so-called LC filter, is used.
  • a DC or AC current for power transport flows through the filter for the power conversion circuit. Therefore, a filter for a power conversion circuit is required to obtain desired characteristics while a current for power transfer is flowing, and to take measures against a rise in temperature. Therefore, usually, a ferrite core with a gap is used as a magnetic core in an inductance element in a filter for a power conversion circuit.
  • a ferrite core with a gap is used as a magnetic core in an inductance element in a filter for a power conversion circuit.
  • such an inductance element has a problem in that its characteristics approach those of an air-core inductance element, so that the inductance element becomes large in order to achieve desired characteristics. Disclosure of the invention
  • An object of the present invention is to provide a composite resonance circuit that can be used as a filter for reducing a ripple voltage and noise generated by a power conversion circuit and that can be miniaturized, and a filter including the composite resonance circuit. .
  • the composite resonance circuit according to the present invention has a resonance characteristic different from each other, includes a plurality of composite parallel resonance circuits, and has a composite resonance characteristic obtained by combining the resonance characteristics of the respective parallel resonance circuits.
  • the resonance characteristics of the plurality of parallel resonance circuits are combined to obtain the composite resonance characteristics.
  • the plurality of parallel resonance circuits may include one inductance element including a plurality of inductance elements, and one or more capacitors connected to the inductance element.
  • the inductance element has one magnetic core and a plurality of windings wound on the magnetic core, and these form a plurality of inductance elements, each of which is connected to a separate capacitor. Is also good.
  • the inductance element has a plurality of bonded magnetic cores and a plurality of windings wound around each of the magnetic cores, and these form a plurality of inductance elements, each of which has a separate capacitor. Evening may be connected. In this case, the plurality of cores may have different characteristics from each other.
  • the inductance element has a plurality of magnetic cores having different characteristics from each other, and one winding wound around the plurality of magnetic cores, and these constitute a plurality of inductance elements. One capacity may be connected.
  • the plurality of parallel resonance circuits may include a plurality of windings and a capacitor connected to each winding in parallel.
  • a plurality of windings may be connected in series.
  • the plurality of parallel resonance circuits may further have one magnetic core on which a plurality of windings are wound.
  • the plurality of parallel resonance circuits may further include a plurality of magnetic cores each wound with a respective winding.
  • the frequency range in which the absolute value of the impedance of each of the plurality of parallel resonance circuits is equal to or more than a predetermined value partially overlaps,
  • the frequency range in which the absolute value of the impedance becomes equal to or more than a predetermined value may be wider than the above-mentioned frequency range of each parallel resonance circuit.
  • the frequency ranges in which the absolute value of the impedance of each of the plurality of parallel resonance circuits is equal to or more than a predetermined value are separated from each other, and the absolute value of the impedance of the composite resonance circuit is equal to or more than a predetermined value
  • the frequency range may include the above-mentioned frequency range of each parallel resonance circuit.
  • the absolute value of the impedance of the composite resonance circuit in a predetermined frequency range may be larger than that of each of the plurality of parallel resonance circuits in the frequency range.
  • the filter of the present invention reduces a signal in a predetermined frequency range.
  • the filter of the present invention has different resonance characteristics from each other, includes a plurality of combined parallel resonance circuits, and has a composite resonance characteristic obtained by combining the resonance characteristics of the respective parallel resonance circuits.
  • the filter of the present invention reduces a signal in a predetermined frequency range by using the composite resonance characteristic.
  • FIG. 1 is an explanatory diagram showing a configuration of a composite resonance circuit according to a first embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing an equivalent circuit of the composite resonance circuit shown in FIG.
  • FIG. 3 is a circuit diagram showing a parallel resonance circuit.
  • FIG. 4 is an explanatory diagram conceptually showing the frequency characteristic of the absolute value of the impedance of the parallel resonance circuit shown in FIG.
  • FIG. 5 is a characteristic diagram for describing a first example of a composite resonance characteristic of the composite resonance circuit according to the first embodiment of the present invention.
  • FIG. 6 is a characteristic diagram for explaining a second example of the composite resonance characteristics of the composite resonance circuit according to the first embodiment of the present invention.
  • FIG. 7 is a plan view showing a first example of a magnetic core according to the first embodiment of the present invention. is there.
  • FIG. 8 is a plan view showing a second example of the magnetic core according to the first embodiment of the present invention.
  • FIG. 9 is a plan view showing a third example of the magnetic core according to the first embodiment of the present invention.
  • FIG. 10 is an explanatory diagram showing a configuration of a composite resonance circuit according to a second embodiment of the present invention.
  • FIG. 11 is a circuit diagram showing an equivalent circuit of the composite resonance circuit shown in FIG.
  • FIG. 12 is an explanatory diagram showing a configuration of a composite resonance circuit according to a third embodiment of the present invention.
  • FIG. 13 is a circuit diagram showing an equivalent circuit of the composite resonance circuit shown in FIG.
  • FIG. 14 is an explanatory diagram showing the configuration of the composite resonance circuit according to the fourth embodiment of the present invention.
  • FIG. 15 is a circuit diagram showing an equivalent circuit of the composite resonance circuit shown in FIG.
  • FIG. 16 is a characteristic diagram showing composite resonance characteristics of the composite resonance circuit according to the fourth embodiment of the present invention.
  • FIG. 17 is an explanatory diagram showing the configuration of the composite resonance circuit according to the fifth embodiment of the present invention.
  • FIG. 18 is a block diagram showing a schematic configuration of a noise suppression circuit including a filter according to a sixth embodiment of the present invention.
  • FIG. 19 is a block diagram showing a configuration of the low-frequency noise reduction circuit in FIG.
  • FIG. 20 is a circuit diagram showing an example of the configuration of the high-frequency noise reduction circuit in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is an explanatory diagram showing the configuration of the composite resonance circuit according to the present embodiment
  • FIG. 2 is a circuit diagram showing an equivalent circuit of the composite resonance circuit shown in FIG.
  • the composite resonance circuit according to the present embodiment includes one inductance element 1 and two capacitors 2 and 3 connected to the inductance element 1.
  • the inductance element 1 has one magnetic core 10.
  • the magnetic core 10 is composed of a central leg 10a and two legs 10b, 1 arranged on both sides of the leg 10a at a predetermined distance from the leg 10a.
  • the connecting part 10d that connects each end of the legs 10 &, 10b, 10c and the other end of the legs 10a, 10b, 10c And a connecting portion 10e to be connected.
  • the inductance element 1 further includes a winding 11 wound around the leg 10a, a resonance winding 12 wound around the leg 10b, and a resonance winding wound around the leg 10c. And winding 13. Terminals 11 a and 11 b are connected to both ends of the winding 11, respectively.
  • Both ends of the resonance winding 12 are connected via a capacitor 2, and both ends of the resonance winding 13 are connected via a capacitor 3.
  • the magnetic core 10, the resonance winding 12 and the capacitor 2 constitute a first parallel resonance circuit 21, and the magnetic core 10, the resonance winding 13 and the capacitor 3 Constitutes the second parallel resonance circuit 22.
  • the magnetic core 10 and the resonance winding 12 form one inductance element, and the magnetic core 10 and the resonance winding 13 form another inductance element.
  • the winding 11 and the resonance winding 12 are magnetically coupled via the magnetic core 10.
  • the winding 11 and the resonance winding 13 are magnetically coupled via the magnetic core 10.
  • the first parallel resonance circuit 21 and the second parallel resonance circuit 22 have different resonance characteristics.
  • the resonance frequency of the first parallel resonance circuit 21 and the resonance frequency of the second parallel resonance circuit 22 are different from each other.
  • the inductances of the resonance windings 12 and 13 are made different, or the capacitance of the capacitors 2 and 3 is changed. You can make them different, or both.
  • FIG. 3 is a circuit diagram showing a parallel resonance circuit.
  • the parallel resonance circuit includes two terminals 31 and 32, and a coil 33 and a capacitor 34 connected in parallel with each other between the two terminals 31 and 32.
  • the coil 33 has a magnetic core 33a and a winding 33b wound around the magnetic core 33a.
  • reference numeral 35 denotes a virtual resistor having a resistance value equal to the internal resistance of the coil 33 due to magnetic loss or the like in the magnetic core 33a. As shown in FIG. 3, the virtual resistor 35 can be considered to be connected in series with the coil 33.
  • the resonance frequency f of the parallel resonance circuit shown in FIG. Is represented by the following equation.
  • FIG. 4 conceptually shows the frequency characteristic of the absolute value of the impedance for each of the parallel resonance circuit and the coil 33 shown in FIG.
  • reference numeral 38 indicates the characteristic of the parallel resonance circuit
  • reference numeral 39 indicates the characteristic of the coil 33 alone.
  • the absolute value of the impedance of the parallel resonance circuit is the resonance frequency f. At the peak value. The peak value is equal to the resistance value R s.
  • the absolute value of the impedance of the coil 33 alone is represented by 2 ⁇ fL, where f is the frequency.
  • the absolute value of the impedance of the parallel resonance circuit is much larger than the absolute value of the impedance of the coil 33 alone. Therefore, the parallel resonance circuit is inserted in the middle of the conductive wire, and the resonance frequency f of the parallel resonance circuit is set. It can be seen that setting the frequency near the frequency of the ripple voltage or noise to be reduced can effectively reduce the ripple voltage or noise.
  • the resonance windings 12 and 13 in the present embodiment correspond to the winding 33b in FIG.
  • Capacitors 2 and 3 in the present embodiment correspond to capacitor 34 in FIG.
  • one magnetic core 10 combines two parallel resonance circuits 21 and 22.
  • the winding 11 is connected to the resonance winding 12 of the parallel resonance circuit 21 and the resonance winding 13 of the parallel resonance circuit 22 via the magnetic core 10. And are magnetically coupled. Therefore, the winding 11 has composite resonance characteristics in which the resonance characteristics of the two parallel resonance circuits 21 and 22 are composited.
  • the composite resonance circuit according to the present embodiment is inserted in the middle of a conductive wire by connecting winding 11 to the conductive wire via terminals 11a and 11b.
  • a composite resonance circuit can be inserted in the middle of a conductive line on the input side or output side of a power conversion circuit in a switching power supply or the like.
  • Composite resonance circuits reduce ripple voltage and noise propagating on conductive lines. Therefore, the composite resonance circuit according to the present embodiment can be used as a filter for reducing a ripple voltage or noise propagating on a conductive line.
  • the composite resonance circuit according to the present embodiment is inserted into one of the pair of conductive wires, normal mode noise propagating on the conductive wire can be reduced.
  • a composite resonance circuit is inserted into each of the pair of conductive wires, common mode noise propagating on the conductive wires can be reduced.
  • FIG. 5 shows the frequency characteristics of the absolute value of the impedance of each of the parallel resonance circuits 21 and 22 as the resonance characteristics of the parallel resonance circuits 21 and 22 in the first example.
  • reference numeral 41 denotes a characteristic of the parallel resonance circuit 21
  • reference numeral 42 denotes a characteristic of the parallel resonance circuit 22.
  • f 2 represents the resonance frequency of the parallel resonance circuit 22.
  • the absolute value of the impedance of the composite resonance circuit for each frequency matches the larger of the absolute values of the impedances of the parallel resonance circuits 21 and 22 for each frequency. '
  • the frequency range in which the absolute value of the impedance of each of the parallel resonance circuits 21 and 22 is equal to or more than a predetermined value is Partially overlapping.
  • the frequency range in which the absolute value of the impedance of the composite resonance circuit is equal to or greater than the predetermined value is wider than the frequency range of each of the parallel resonance circuits 21 and 22. Therefore, according to the composite resonance circuit of the first example, the ripple voltage and noise are reduced as compared with the case of using one parallel resonance circuit.
  • the frequency range that can be reduced can be expanded.
  • the second example is an example in which the resonance frequencies of the parallel resonance circuits 21 and 22 are respectively set to desired frequencies.
  • FIG. 6 shows the frequency characteristics of the absolute value of the impedance of each of the parallel resonance circuits 21 and 22 as the resonance characteristics of the parallel resonance circuits 21 and 22 in the second example.
  • reference numeral 41 indicates the characteristics of the parallel resonance circuit 21
  • reference numeral 42 indicates the characteristics of the parallel resonance circuit 22.
  • f 2 represents the resonance frequency of the parallel resonance circuit 22.
  • the absolute value of the impedance of the composite resonance circuit for each frequency matches the larger of the absolute values of the impedances of the parallel resonance circuits 21 and 22 for each frequency.
  • the frequency range in which the absolute value of the impedance of each of the parallel resonant circuits 21 and 22 is equal to or more than a predetermined value for example, half the maximum value of the absolute value of the impedance in the composite resonant circuit
  • the frequency range in which the absolute value of the impedance of the composite resonance circuit is equal to or more than the above-described predetermined value includes the above-described frequency range of each of the parallel resonance circuits 21 and 22. Therefore, according to the composite resonance circuit of the second example, it is possible to reduce ripple voltage and noise in two frequency ranges.
  • FIG. 6 also shows a waveform of a ripple voltage having a frequency equal to the switching frequency of the switching circuit, and a waveform of a noise accompanying the switching operation of the switching circuit.
  • reference numeral 43 indicates a ripple voltage waveform
  • reference numeral 44 indicates a noise waveform.
  • the frequency of the ripple voltage is less than 500 kHz and the frequency of the noise is more than 1 MHz.
  • the resonance frequency f 2 of the parallel resonance circuit 2 combined with the frequency of the noise, the ripple voltage and noise effectively It can be reduced. Therefore, according to the second example, comprehensive measures can be taken against ripple voltage and noise generated by the power conversion circuit.
  • the magnetic core 10 of the first example is entirely formed of the same magnetic material.
  • the magnetic core 10 may be made of, for example, a ferrite amorphous magnetic material, or may be a dust core.
  • the shape of the magnetic core 10 shown in FIG. 7 is an example, and a magnetic circuit equivalent to the magnetic core 10 shown in FIG. What constitutes the path is included in the magnetic core 10 of the first example.
  • the magnetic core 10 of the first example may be configured by joining a plurality of members.
  • an EE-type magnetic core / EI-type magnetic core / pot-type magnetic core can be used as the magnetic core 10 of the first example.
  • the magnetic core 10 of the second example is formed by joining two magnetic cores 1 OA and 10 B that can form an annular magnetic circuit by themselves.
  • the magnetic cores 10A and 10B may be different in shape and size from each other.
  • the inductance element 1 shown in FIG. 1 is composed of two magnetic cores 10 A, 108 joined together, It has two windings 12 and 13 wound around 0 B, and these constitute two inductance elements.
  • the magnetic core 10 of the third example is configured by joining two magnetic cores 10 C and 10 D that can form an annular magnetic circuit by themselves.
  • the magnetic cores 10 C and 10 D have different characteristics from each other.
  • the magnetic cores 10 C and 10 D are formed of magnetic materials having different magnetic permeability from each other.
  • the material of the magnetic cores 10C and 10D any material having different characteristics from ferrite, an amorphous magnetic material, a material for a dust core, and the like can be used.
  • the inductance element 1 shown in FIG. 1 has two magnetic cores 100 C, 100 having different characteristics from each other, and each magnetic core 10 has the same characteristics.
  • the composite resonance circuit according to the present embodiment has composite resonance characteristics obtained by combining the resonance characteristics of a plurality of parallel resonance circuits. Then, in the present embodiment, the ripple voltage and noise generated by the power conversion circuit can be reduced by using the composite resonance characteristic. Further, in the present embodiment, since the composite resonance characteristic is used, it is possible to reduce noise having a certain range of frequency, and simultaneously reduce ripple voltage and noise having different frequencies. Thus, composite Resonant circuits can be used as filters to reduce ripple voltage and noise generated by power conversion circuits. Also, in the composite resonance circuit, the ripple voltage and noise are reduced by using the composite resonance characteristics, so that the inductance element can be reduced in size compared to the LC filter. As a result, the entire composite resonance circuit is also reduced in size compared to the LC filter. It can be changed.
  • a plurality of parallel resonant circuits 21, 1, 2, 1, 2, 3, and 2 is connected using one inductance element 1 including a plurality of inductance elements and capacitors 2, 3 connected to the inductance element 1. 22 can be configured. Therefore, according to the present embodiment, it is possible to further reduce the size of the composite resonance circuit as compared with a case where a plurality of parallel resonance circuits are formed using a plurality of inductance elements.
  • FIG. 10 is an explanatory diagram showing the configuration of the composite resonance circuit according to the present embodiment
  • FIG. 11 is a circuit diagram showing an equivalent circuit of the composite resonance circuit shown in FIG.
  • the composite resonance circuit according to the present embodiment includes one inductance element 51 and one capacitor 52 connected to the inductance element 51. I have.
  • the inductance element 51 has two magnetic cores 53A and 53B, each of which forms an annular magnetic circuit.
  • the two magnetic cores 53A and 53B each have a hollow portion, are arranged so that the axial directions of the two hollow portions match, and are joined to each other.
  • the magnetic cores 53A and 53B have different characteristics from each other.
  • the magnetic cores 53A and 53B are formed of magnetic materials having different magnetic permeability from each other.
  • any material having different characteristics can be used from ferrite, an amorphous magnetic material, a material for a dust core, and the like.
  • the inductance element 51 further includes a winding 54 wound around the magnetic cores 53A and 53B and a resonance winding 55 wound around the magnetic cores 53A and 53B.
  • Terminals 54a and 54b are connected to both ends of the winding 54, respectively.
  • Both ends of the resonance winding 55 are connected via a capacitor 52. Since the resonance winding 55 is wound around the magnetic cores 53 A and 53 B having different characteristics from each other, the winding wound around the magnetic core 53 A as shown in FIG. It can be regarded as including a portion 55a and a winding portion 55b wound around the magnetic core 53B. In this case, the winding portions 55a and 55b can be considered to be connected in parallel.
  • the capacitor 52 can be considered to be provided between both ends of the winding part 55a and between both ends of the winding part 55b.
  • the magnetic core 53 A, the winding part 55 a and the capacitor 52 constitute the first parallel resonance circuit
  • the magnetic core 53 B, the winding part 55 b and the capacity 52 constitute the second parallel resonance circuit.
  • one inductance element is constituted by the magnetic core 53A and the winding part 55a
  • another inductance element is constituted by the magnetic core 53B and the winding part 55b.
  • the winding 54 and the winding 55a are magnetically coupled via a magnetic core 53A
  • the winding 54 and the winding 55b are magnetically coupled via a magnetic core 53B. Is joined to.
  • the first parallel resonance circuit and the second parallel resonance circuit have different resonance characteristics from each other.
  • the resonance frequency of the first parallel resonance circuit and the resonance frequency of the second parallel resonance circuit are different from each other.
  • the winding 54 is magnetically coupled to the resonance winding 55 via the magnetic cores 53 A and 53 B. Therefore, the winding 54 has composite resonance characteristics in which the resonance characteristics of the two parallel resonance circuits are composited.
  • the composite resonance circuit according to the present embodiment is inserted in the middle of the conductive wire by connecting winding 54 to the conductive wire via terminals 54a and 54b.
  • the composite resonance circuit can be used as a filter for reducing ripple voltage and noise propagating on the conductive line.
  • FIG. 12 is an explanatory diagram showing the configuration of the composite resonance circuit according to the present embodiment
  • FIG. 13 is a circuit diagram showing an equivalent circuit of the composite resonance circuit shown in FIG.
  • the composite resonance circuit according to the present embodiment includes one inductance element 61 and one capacitor 62 connected to the inductance element 61. I have.
  • the inductance element 61 has two magnetic cores 63A and 63B, each of which forms an annular magnetic circuit.
  • the magnetic cores 63A and 63B are joined to each other.
  • the arrangement and materials of the magnetic cores 63A and 63B are the same as those of the magnetic cores 53A and 53B in the second embodiment.
  • the inductance element 61 further has a winding 65 wound around the magnetic cores 63A and 63B. Terminals 65c and 65d are connected to both ends of the winding 65, respectively. Further, both ends of the winding 65 are connected via a capacitor 62.
  • the winding 65 is wound around the magnetic cores 6 3 A and 6 3 B having different characteristics from each other, as shown in FIG. 13, the winding portion 6 5 wound around the magnetic core 6 3 A is used. a and a winding portion 65b wound around the magnetic core 63B.
  • the winding portions 65a and 65b can be considered to be connected in parallel.
  • the capacitor 62 can be considered to be provided between both ends of the winding portion 65a and between both ends of the winding portion 65b.
  • the magnetic core 63 A, the winding part 65 a and the capacitor 62 constitute the first parallel resonance circuit
  • the magnetic core 63 B, the winding part 65 b and the capacitor 62 constitute the second parallel resonance circuit. Make up the circuit.
  • the magnetic core 63A and the winding part 65a constitute one inductance element
  • the magnetic core 63B and the winding part 65 constitute another inductance element.
  • the first parallel resonance circuit and the second parallel resonance circuit have different resonance characteristics from each other.
  • the resonance frequency of the first parallel resonance circuit and the resonance frequency of the second parallel resonance circuit are different from each other.
  • one winding 65 and one capacitor 62 combine two parallel resonance circuits. Therefore, this composite resonance circuit has composite resonance characteristics in which the resonance characteristics of two parallel resonance circuits are composited.
  • the composite resonance circuit according to the present embodiment is inserted in the middle of the conductive wire by connecting winding 65 to the conductive wire via terminals 65c and 65d.
  • the composite resonance circuit can be used as a filter for reducing ripple voltage and noise propagating on the conductive line.
  • FIG. 14 is an explanatory diagram showing the configuration of the composite resonance circuit according to the present embodiment
  • FIG. 15 is a circuit diagram showing an equivalent circuit of the composite resonance circuit shown in FIG. 14,
  • FIG. FIG. 4 is a characteristic diagram illustrating composite resonance characteristics of the composite resonance circuit according to the embodiment.
  • the composite resonance circuit according to the present embodiment includes one inductance element 71, and two capacitors 72, 73 connected to the inductance element 71. It has.
  • the inductance element 71 has one magnetic core 74.
  • the magnetic core 74 is composed of a central leg 74a and two legs 74b, 7b arranged on both sides of the leg 74a at a predetermined distance from the leg 74a. 4c, a connecting portion 74d for connecting one end of each of the legs 74a, 74b, 74c and the other end of each of the legs 74a, 74b, 74c. And a connecting portion 74 e to be connected.
  • the magnetic core 74 may be entirely made of the same magnetic material, similarly to the magnetic core 10 shown in FIG. Alternatively, like the magnetic core 10 shown in FIG. 8, the magnetic core 74 may be configured by joining two magnetic cores each of which can form an annular magnetic circuit by itself. Alternatively, similarly to the magnetic core 10 shown in FIG. 9, the magnetic core 74 is configured by joining two magnetic cores that have different characteristics from each other and that can form an annular magnetic circuit by themselves. It may be.
  • the inductance element 71 further includes a winding 75 wound around the leg 74b and a winding 76 wound around the leg 74c. Both ends of the winding 75 are connected via a capacitor 72, and both ends of the winding 76 are connected via a capacitor 73.
  • a terminal 77 is connected to one end of the winding 75.
  • the other end of the winding 75 is connected to one end of the winding 76.
  • a terminal 78 is connected to the other end of the winding 76. Therefore, as shown in FIG. 15, the winding 75 and the winding 76 are connected in series.
  • the magnetic core 74, the winding 75 and the capacitor 72 constitute a first parallel resonance circuit 79
  • the magnetic core 74, the winding 76 and the capacitor 73 Constitutes the second parallel resonance circuit 80.
  • the core 74 and the winding 75 constitute one inductance element
  • the core 74 and the winding 76 constitute another inductance element.
  • the first parallel resonance circuit 79 and the second parallel resonance circuit 80 have different resonance characteristics.
  • the resonance frequency of the first parallel resonance circuit 79 and the resonance frequency of the second parallel resonance circuit 80 are different from each other.
  • the inductance of the windings 75 and 76 must be different, or the capacitance of the capacitors 72 and 73 must be changed. Either they can be different, or both can be different.
  • this composite resonance circuit has composite resonance characteristics in which the resonance characteristics of the two parallel resonance circuits 79 and 80 are composited.
  • FIG. 16 shows the frequency characteristics of the absolute value of the impedance of each of the parallel resonance circuits 79 and 80 as the resonance characteristics of the parallel resonance circuits 79 and 80.
  • reference numeral 81 indicates the characteristics of the parallel resonance circuit 79
  • reference numeral 82 indicates the characteristics of the parallel resonance circuit 80
  • reference numeral 83 indicates the characteristics of the composite resonance circuit.
  • fi denotes the resonant frequency of the parallel resonant circuit 7
  • f 2 represents the resonance frequency of the parallel resonant circuit 8 0.
  • the absolute value of the impedance of the composite resonance circuit is the sum of the absolute values of the impedances of the parallel resonance circuits 79 and 80 for each frequency.
  • the absolute value of the impedance of each of the parallel resonant circuits 79, 80 is a predetermined value (for example, one half of the maximum value of the absolute value of the impedance of any of the parallel resonant circuits 79, 80). 1)
  • the above frequency ranges partially overlap.
  • the frequency range in which the absolute value of the impedance of the composite resonance circuit is equal to or greater than the predetermined value is wider than the frequency range of each of the parallel resonance circuits 79 and 80.
  • the absolute value of the impedance of the composite resonance circuit in a predetermined frequency range (for example, the frequency range in which the absolute value of the impedance in the composite resonance circuit is equal to or more than the above-mentioned predetermined value) It is larger than that of each of the resonance circuits 79, 80.
  • the frequency range in which the ripple voltage and the noise can be reduced can be widened and the ripple voltage and the noise can be further reduced as compared with the case where one parallel resonance circuit is used. Can be.
  • the absolute value of the impedance of each of the parallel resonance circuits 79, 80 is a predetermined value (for example, the maximum value of the absolute value of the impedance of any of the parallel resonance circuits 79, 80).
  • the resonance characteristics of the parallel resonance circuits 79 and 80 may be set so that the frequency ranges that are equal to or more than 2) are separated from each other.
  • the composite resonance characteristics of the composite resonance circuit are as shown in FIG.
  • the composite resonance circuit according to the present embodiment is inserted in the middle of the conductive wire by connecting terminals 77 and 78 to the conductive wire.
  • the composite resonance circuit can be used as a filter for reducing ripple voltage and noise propagating on the conductive line.
  • FIG. 17 is an explanatory diagram showing the configuration of the composite resonance circuit according to the present embodiment.
  • the composite resonance circuit according to the present embodiment includes: two magnetic cores 91 and 92 constituting an annular magnetic circuit; windings 93 and 94 wound around the magnetic cores 91 and 92, respectively; Capacitance 95 connected in parallel with winding 93 and winding connected in parallel with winding 94 3 06510
  • the equivalent circuit of the composite resonance circuit according to the present embodiment is the same as the equivalent circuit in the fourth embodiment shown in FIG.
  • the magnetic core 91, the winding 93, and the capacitor 95 constitute a first parallel resonance circuit 101
  • the magnetic core 92, the winding 94, and the capacity 96 are the first parallel resonance circuit 101.
  • Two parallel resonance circuits 102 are formed.
  • the first parallel resonance circuit 101 and the second parallel resonance circuit 102 have different resonance characteristics from each other.
  • the resonance frequency of the first parallel resonance circuit 101 and the resonance frequency of the second parallel resonance circuit 102 are different from each other.
  • the inductances of the windings 93 and 94 should be different or the capacitances 95 and 96 should be different.
  • the capacities can be different, or both can be different.
  • this composite resonance circuit has a composite resonance characteristic obtained by combining the resonance characteristics of the two parallel resonance circuits 101 and 102.
  • the composite resonance characteristics of the composite resonance circuit according to the present embodiment are the same as those of the fourth embodiment, and are as shown in FIGS. 16 and 6, for example.
  • the filter according to the present embodiment reduces a signal in a predetermined frequency range.
  • the signal referred to here includes a ripple voltage and noise.
  • the filter according to the present embodiment includes the composite resonance circuit of the present invention. That is, the filter according to the present embodiment has different resonance characteristics from each other, includes a plurality of composite parallel resonance circuits, and has a composite resonance obtained by combining the resonance characteristics of the respective parallel resonance circuits. Has characteristics.
  • the filter according to the present embodiment uses the composite resonance characteristic to reduce a signal in a predetermined frequency range.
  • the noise suppression circuit 111 is inserted in the middle of two conductive wires 113a and 113b connected to the electronic device 112 as a noise source.
  • the conductive wires 113a and 113b are connected to a power line 114 that carries AC power or DC power.
  • the power supply line 114 includes two conductive lines 114a and 114b.
  • the conductive wires 113a and 113b are connected to the conductive wires 114a and 114b, respectively.
  • the electronic device 112 receives power supply from the power supply line 114 via the conductive wires 113a and 113b.
  • the electronic devices 112 are, for example, switching power supplies.
  • the noise suppression circuit 111 suppresses noise generated from the electronic device 112 and transmitted on the conductive lines 113a and 113b.
  • the noise suppression circuit 111 includes a low-frequency noise reduction circuit 120 as a filter according to the present embodiment, and a high-frequency noise reduction circuit 180.
  • the low-frequency noise reduction circuit 120 is connected to the electronic device 112 via conductive wires 113a and 113b.
  • the high-frequency noise reduction circuit 180 is cascaded to the low-frequency noise reduction circuit 120, and is connected to the conductive wires 114a and 114b of the power supply line 114. Note that the arrangement of the low-frequency noise reduction circuit 120 and the high-frequency noise reduction circuit 180 between the electronic device 112 and the power supply line 114 may be opposite to the arrangement shown in FIG. Good.
  • the high-frequency noise reduction circuit 180 mainly reduces noise in the first frequency range.
  • the low-frequency noise reduction circuit 120 mainly reduces noise in a second frequency range including a frequency lower than a frequency in the first frequency range.
  • the first frequency range is a range including, for example, a range of 1 MHz to 30 MHz.
  • the second frequency range is, for example, a range of 0 to 1 °, or a part of the range.
  • Low-frequency noise reduction circuit 120 as a filter according to the present embodiment reduces noise in the second frequency range as a signal in a predetermined frequency range.
  • the low-frequency noise reduction circuit 120 and the high-frequency noise reduction circuit 180 are housed in a housing 115 that functions as a ground for them.
  • the portion connected to the ground in 20 and the high-frequency noise reduction circuit 180 is connected to the ground line 113c.
  • the ground line 113c is electrically connected to the housing 115.
  • the high-frequency noise reduction circuit 180 may be arranged at a position closer to the housing 115 than the low-frequency noise reduction circuit 120.
  • the ground wire 113c is electrically connected to the ground wire of the power supply line 114. It may be.
  • the noise suppression circuit 111 may be separate from the electronic device 112 or may be integrated therewith.
  • the housing 115 is a dedicated housing for the noise suppression circuit 111.
  • the housing 1 1 5 may be the housing of the electronic device 1 1 2 or the electronic device 1 1 2 It may be a dedicated housing for the noise suppression circuit 111 housed in the housing.
  • the part of the electronic device 112 connected to the ground may be connected to the ground line 113c.
  • the low-frequency noise reduction circuit 120 reduces normal mode noise and common mode noise propagating through the conductive lines 113a and 113b.
  • the low-frequency noise reduction circuit 120 is described as being disposed between the electronic device 112 and the high-frequency noise reduction circuit 180.
  • the low-frequency noise reduction circuit 1 2 0 has two terminals 1 2 1 a and 1 2 1 b connected to the electronic device 1 1 2 and the two terminals 1 2 connected to the high-frequency noise reduction circuit 1 80 2 a and 12 2 b. Terminals 121a and 122a are connected by conductive wire 113a.
  • Terminals 121b and 122b are connected by conductive wire 113b.
  • the low-frequency noise reduction circuit 120 further includes a composite resonance circuit 1 23 inserted between the terminals 121 a and 122 a in the conductive wire 113 a, and terminals 122 b and 122 ba. And a composite resonance circuit 124 inserted between the conductive wires 113 b in between.
  • the composite resonance circuits 123 and 124 have the same configuration. As the composite resonance circuits 123 and 124, any of the composite resonance circuits of the first to fifth embodiments is used.
  • the conductive lines 113 a and 113 b The normal mode noise and the common mode noise in the second frequency range can be reduced.
  • the low-frequency noise reduction circuit 120 may include only one of the composite resonance circuits 123 and 124 to reduce only normal mode noise.
  • the high-frequency noise reduction circuit 180 shown in FIG. 20 reduces common mode noise propagating through the conductive lines 113a and 113b.
  • the high-frequency noise reduction circuit 180 is described as being disposed between the low-frequency noise reduction circuit 120 and the power supply line 114.
  • the high-frequency noise reduction circuit 180 is composed of two terminals 18 1 a and 18 1 b connected to the low-frequency noise reduction circuit 120 and the conductive lines 114 a and 1 of the power supply line 114. It has two terminals 182a and 182b connected to 14b. Terminals 18 1 a and 182 a are connected by a conductive wire 113 a.
  • Terminals 18 1 b and 182 b are connected by a conductive wire 113 b.
  • the high-frequency noise reduction circuit 180 is further disposed at a predetermined position of the conductive lines 113a and 113b, and detects common mode noise propagating through the conductive lines 113a and 113b.
  • Detection circuit 184, an anti-phase signal generation circuit 185 for generating an anti-phase signal that is an anti-phase signal to the noise detected by the detection circuit 184, and conductive lines 1 13 a, 1 13 Injection circuit 18 which is arranged at a position different from the detection circuit 184 in b, and injects the negative-phase signal generated by the negative-phase signal generation circuit 185 into the conductive lines 113 a and 113 b.
  • the phase difference between the noise input to the injection circuit 186 and the negative phase signal injected into the conductive lines 113a and 113b by the injection circuit 186 approaches 180 °. In this way, the phase of the negative phase signal is adjusted.
  • the impedance element 188 allows the peak value of the negative-phase signal injected into the conductive lines 113a and 113b by the injection circuit 186 to be a value of the noise input to the injection circuit 186. Wave height It can also be adjusted to approach the value.
  • the detection circuit 184 includes a capacitor 184a having one end connected to the conductive line 113a and the other end connected to the input terminal of the negative-phase signal generation circuit 185, and one end connected to the conductive line 113. b and a capacitor 184 b connected at the other end to the input terminal of the antiphase signal generation circuit 185. Capacitors 184a and 184b allow high-frequency components of voltage fluctuations in conductive lines 113a and 113b to pass, and block low-frequency components including the frequency of AC power.
  • the injection circuit 186 has one end connected to the output end of the impedance element 188, the other end connected to the conductive line 113a, a capacitor 186a, and one end connected to the output of the impedance element 188. And a capacitor 186 b connected to the other end and the other end connected to the conductive line 113 b. In this example, the injection circuit
  • the 186 gives the same voltage change corresponding to the negative-phase signal to the conductive lines 113a and 113b via the capacitors 186a and 186b.
  • the antiphase signal generating circuit 185 has a transformer 189.
  • One end of the primary winding of the transformer 189 is connected to the capacitors 184a and 184b.
  • the other end of the primary winding of the transformer 189 is connected to ground together with one end of the secondary winding of the transformer 189.
  • the other end of the secondary winding of the transformer 189 is connected to the impedance element 188.
  • a line choke coil 191 or an impedance element having a phase characteristic equivalent thereto is used as the impedance element 188.
  • the capacitances of the capacitors 184a, 184b, 186a, 186b are set so that, for example, the leakage current value falls within a predetermined standard value.
  • the capacities of the capacitors 184a, 184b, 186a, and 186b are, for example, in the range of 10 to 20 and OOOpF.
  • the turns ratio of the primary winding and the secondary winding of the transformer 189 is 1: 1, but the turns ratio is changed in consideration of the signal attenuation in the transformer 189. You may.
  • the operation of the high-frequency noise reduction circuit 180 shown in FIG. 20 will be described.
  • the conductive lines 113a and 113b on the detection circuit 184 side than the impedance element 187 (hereinafter simply referred to as the conductive lines 1 84 on the detection circuit 184 side)
  • the conductive lines 1 84 on the detection circuit 184 side We say 1 3 a, 1 1 3 b.
  • the noise generated above passes through the impedance element 187, and the conductive wires 1 13a and 1 13b on the injection circuit 1 86 side of the impedance element 1 87 (hereinafter simply referred to as the injection circuit).
  • the peak value of noise on the conductive lines 1 13a and 1 13b on the injection circuit 186 is detected. It becomes smaller than the peak value of the noise on the conductive wires 1 13 a and 1 13 b on the circuit 184 side.
  • the impedance element 187 causes the noise peak value on the conductive lines 113a and 113b on the detection circuit 184 side and the conductive value on the injection circuit 186 side to be higher. The state where the noise peak values on the lines 113a and 113b differ from each other can be maintained.
  • the detection circuit 184 detects the common mode noise on the conductive lines 113a and 113b. Then, the anti-phase signal generation circuit 185 generates an anti-phase signal which is a signal of an anti-phase to the noise detected by the detection circuit 184. Further, the injection circuit 186 injects the antiphase signal generated by the antiphase signal generation circuit 185 into the conductive lines 113a and 113b. As a result, the common mode noise on the conductive lines 113a and 113b on the injection circuit 186 side is canceled.
  • the peak value of the noise after passing through the impedance element 187 is smaller than the peak value of the noise before passing through the impedance element 187. Therefore, the peak value of the negative-phase signal injected into the conductive lines 113a and 113b by the injection circuit 186 is converted into the noise input to the injection circuit 186 after passing through the impedance element 187. It is necessary to make an adjustment so as to be close to the peak value.
  • the impedance input to the injection circuit 186 by the impedance element 188 and the conductive line 113 a the phase difference between the opposite phase signal injected into 113b and 180 ° can be made close to 180 °, and the reverse circuit injected into conductive lines 113a and 113b by injection circuit 186.
  • the peak value of the phase signal can be made close to the peak value of the noise input to the injection circuit 186. Therefore, according to the high-frequency noise reduction circuit 180, the noise on the conductive lines 113a and 113b on the injection circuit 186 side can be reduced more effectively.
  • a composite resonance circuit is formed by combining two parallel resonance circuits.
  • a composite resonance circuit may be formed by combining three or more parallel resonance circuits. .
  • the ripple voltage and noise generated by the power conversion circuit are reduced by using the composite resonance characteristics obtained by combining the resonance characteristics of a plurality of parallel resonance circuits. can do. Further, in the present invention, noise having a certain frequency width can be reduced, and ripple voltage and noise having different frequencies can be reduced at the same time. Further, according to the present invention, the ripple voltage and the noise are reduced by using the composite resonance characteristics, so that the size can be reduced. Therefore, according to the present invention, it is possible to realize a composite resonance circuit that can be used as a filter for reducing a ripple voltage and noise generated by a power conversion circuit and that can be reduced in size. In the above, a plurality of parallel resonance circuits may be configured using one inductance element including a plurality of inductance elements and one or more capacitors connected to the inductance element. In this case, the size of the composite resonance circuit can be further reduced.
  • the same effect as that of the composite resonance circuit of the present invention can be obtained.

Abstract

A complex resonance circuit comprises one inductance element (1) and two capacitors (2, 3) connected to the inductance element (1). The inductance element (1) has one magnetic core (10), a winding (11) wound around the magnetic core (10), and two resonance windings (12, 13). Terminals (11a, 11b) are connected to both ends of the winding (11), respectively. Both ends of the resonance winding (12) are connected via a capacitor (2), and both ends of the resonance winding (13) via a capacitor (3). The magnetic core (10), the resonance winding (12), and the capacitor (2) constitute a first parallel resonance circuit. The magnetic core (10), the resonance winding (13), and the capacitor (3) constitute a second parallel resonance circuit. The complex resonance circuit has a complex resonance characteristic determined by combining of the resonance characteristics of the two parallel resonance circuits.

Description

複合共振回路およびフィルタ 技術分野 Composite resonance circuits and filters
本発明は、 リップル電圧やノイズの低減のためのフィルタとして利用可能な複 合共振回路およびこの複合共振回路を含むフィル夕に関する。  The present invention relates to a composite resonance circuit that can be used as a filter for reducing ripple voltage and noise, and a filter including the composite resonance circuit.
 Light
背景技術 細 Background art
スイッチング電源、 インバ一夕、 照明機器の点灯回路等のパワーエレクトロニ クス機器は、電力の変換を行う電力変換回路を有している。 この電力変換回路は、 通常、 2 0 k H z以上の周波数の交流を用いて電力の変換を行っている。 また、 電力変換回路は、直流を矩形波の交流に変換するスィツチング回路を有している。 電力変換回路は、 スィツチング回路のスィツチング周波数と等しい周波数のリ ップル電圧や、スィツチング回路のスィツチング動作に伴うノイズを発生させる。 このリップル電圧やノイズは他の機器に悪影響を与える。 そのため、 電力変換回 路と他の機器あるいは線路との間には、 リップル電圧やノイズを低減する手段を 設ける必要がある。  Power electronics devices, such as switching power supplies, inverters, and lighting circuits for lighting devices, have power conversion circuits that convert power. This power conversion circuit usually performs power conversion using an alternating current having a frequency of 20 kHz or higher. The power conversion circuit has a switching circuit that converts a direct current into a rectangular wave alternating current. The power conversion circuit generates a ripple voltage having a frequency equal to the switching frequency of the switching circuit and noise associated with the switching operation of the switching circuit. The ripple voltage and noise adversely affect other devices. Therefore, it is necessary to provide a means to reduce ripple voltage and noise between the power conversion circuit and other devices or lines.
一般的に、 リップル電圧やノイズを低減する手段としては、 インダクタンス素 子 (インダクタ) とキャパシタとを含むフィルタ、 いわゆる L Cフィルタが使用 される。  Generally, as a means for reducing the ripple voltage and noise, a filter including an inductance element (inductor) and a capacitor, a so-called LC filter, is used.
しかしながら、 電力変換回路用のフィルタには、 電力輸送用の直流または交流 の電流が流れる。 従って、 電力変換回路用のフィルタには、 電力輸送用の電流が 流れている状態で所望の特性が得られることと、 温度上昇に対する対策が要求さ れる。 そのため、 通常、 電力変換回路用のフィルタにおけるインダクタンス素子 では、 磁芯として、 ギヤップ付きのフェライト磁芯が用いられる。 しかしながら、 このようなインダクタンス素子では、 その特性が、 空芯のインダクタンス素子の 特性に近づくため、 所望の特性を実現するためにはィンダクタンス素子が大型化 するという問題点がある。 発明の開示 However, a DC or AC current for power transport flows through the filter for the power conversion circuit. Therefore, a filter for a power conversion circuit is required to obtain desired characteristics while a current for power transfer is flowing, and to take measures against a rise in temperature. Therefore, usually, a ferrite core with a gap is used as a magnetic core in an inductance element in a filter for a power conversion circuit. However, such an inductance element has a problem in that its characteristics approach those of an air-core inductance element, so that the inductance element becomes large in order to achieve desired characteristics. Disclosure of the invention
本発明の目的は、 電力変換回路が発生するリップル電圧やノイズの低減のため のフィルタとして利用可能で且つ小型化が可能な複合共振回路およびこの複合共 振回路を含むフィルタを提供することにある。  An object of the present invention is to provide a composite resonance circuit that can be used as a filter for reducing a ripple voltage and noise generated by a power conversion circuit and that can be miniaturized, and a filter including the composite resonance circuit. .
本発明の複合共振回路は、 互いに異なる共振特性を有し、 且つ複合された複数 の並列共振回路を含み、 各並列共振回路の共振特性が複合されてなる複合共振特 性を有するものである。  The composite resonance circuit according to the present invention has a resonance characteristic different from each other, includes a plurality of composite parallel resonance circuits, and has a composite resonance characteristic obtained by combining the resonance characteristics of the respective parallel resonance circuits.
本発明の複合共振回路では、 複数の並列共振回路の共振特性が複合されて、 複 合共振特性が得られる。  In the composite resonance circuit of the present invention, the resonance characteristics of the plurality of parallel resonance circuits are combined to obtain the composite resonance characteristics.
本発明の複合共振回路において、 複数の並列共振回路は、 複数のインダクタン ス要素を含む 1つのインダクタンス素子と、 このィンダクタンス素子に接続され た 1以上のキャパシタとを有していてもよい。  In the composite resonance circuit of the present invention, the plurality of parallel resonance circuits may include one inductance element including a plurality of inductance elements, and one or more capacitors connected to the inductance element.
インダクタンス素子は、 1つの磁芯と、 この磁芯に巻かれた複数の巻線とを有 し、 これらによって複数のインダクタンス要素が構成され、 各巻線にはそれぞれ 別個のキャパシ夕が接続されていてもよい。  The inductance element has one magnetic core and a plurality of windings wound on the magnetic core, and these form a plurality of inductance elements, each of which is connected to a separate capacitor. Is also good.
また、 インダクタンス素子は、 接合された複数の磁芯と、 各磁芯に巻かれた複 数の巻線とを有し、 これらによって複数のインダクタンス要素が構成され、 各巻 線にはそれぞれ別個のキャパシ夕が接続されていてもよい。 この場合、 複数の磁 芯は、 互いに特性が異なっていてもよい。  The inductance element has a plurality of bonded magnetic cores and a plurality of windings wound around each of the magnetic cores, and these form a plurality of inductance elements, each of which has a separate capacitor. Evening may be connected. In this case, the plurality of cores may have different characteristics from each other.
また、 ィンダクタンス素子は、 互いに特性が異なる複数の磁芯と、 この複数の 磁芯に巻かれた 1つの巻線とを有し、 これらによって複数のィンダクタンス要素 が構成され、 巻線には 1つのキャパシ夕が接続されていてもよい。  Further, the inductance element has a plurality of magnetic cores having different characteristics from each other, and one winding wound around the plurality of magnetic cores, and these constitute a plurality of inductance elements. One capacity may be connected.
また、 本発明の複合共振回路において、 複数の並列共振回路は、複数の巻線と、 それぞれ各卷線に対して並列に接続されたキャパシタとを有していてもよい。 複 数の巻線は直列に接続されていてもよい。 この場合、 複数の並列共振回路は、 更 に、 複数の卷線が巻かれた 1つの磁芯を有していてもよい。 あるいは、 複数の並 列共振回路は、更に、それぞれ各巻線が巻かれた複数の磁芯を有していてもよい。 また、 本発明の複合共振回路において、 複数の並列共振回路の各々のインピ一 ダンスの絶対値が所定値以上となる周波数範囲は部分的に重なり、 複合共振回路 のインピーダンスの絶対値が所定値以上となる周波数範囲は各並列共振回路の上 記の周波数範囲よりも広くなつていてもよい。 In the composite resonance circuit according to the present invention, the plurality of parallel resonance circuits may include a plurality of windings and a capacitor connected to each winding in parallel. A plurality of windings may be connected in series. In this case, the plurality of parallel resonance circuits may further have one magnetic core on which a plurality of windings are wound. Alternatively, the plurality of parallel resonance circuits may further include a plurality of magnetic cores each wound with a respective winding. Further, in the composite resonance circuit of the present invention, the frequency range in which the absolute value of the impedance of each of the plurality of parallel resonance circuits is equal to or more than a predetermined value partially overlaps, The frequency range in which the absolute value of the impedance becomes equal to or more than a predetermined value may be wider than the above-mentioned frequency range of each parallel resonance circuit.
また、 本発明の複合共振回路において、 複数の並列共振回路の各々のインピー ダンスの絶対値が所定値以上となる周波数範囲は互いに離れ、 複合共振回路のィ ンピーダンスの絶対値が所定値以上となる周波数範囲は各並列共振回路の上記の 周波数範囲を含んでいてもよい。  In the composite resonance circuit of the present invention, the frequency ranges in which the absolute value of the impedance of each of the plurality of parallel resonance circuits is equal to or more than a predetermined value are separated from each other, and the absolute value of the impedance of the composite resonance circuit is equal to or more than a predetermined value The frequency range may include the above-mentioned frequency range of each parallel resonance circuit.
また、 本発明の複合共振回路において、 所定の周波数範囲における複合共振回 路のインピーダンスの絶対値は、 その周波数範囲における複数の並列共振回路の 各々のそれよりも大きくてもよい。  In the composite resonance circuit according to the present invention, the absolute value of the impedance of the composite resonance circuit in a predetermined frequency range may be larger than that of each of the plurality of parallel resonance circuits in the frequency range.
本発明のフィルタは、 所定の周波数範囲における信号を低減するものである。 本発明のフィルタは、 互いに異なる共振特性を有し、 且つ複合された複数の並列 共振回路を含み、 各並列共振回路の共振特性が複合されてなる複合共振特性を有 している。 本発明のフィルタは、 上記複合共振特性を利用して、 所定の周波数範 囲における信号を低減する。  The filter of the present invention reduces a signal in a predetermined frequency range. The filter of the present invention has different resonance characteristics from each other, includes a plurality of combined parallel resonance circuits, and has a composite resonance characteristic obtained by combining the resonance characteristics of the respective parallel resonance circuits. The filter of the present invention reduces a signal in a predetermined frequency range by using the composite resonance characteristic.
本発明のその他の目的、 特徴および利益は、 以下の説明を以つて十分明白にな るであろう。 図面の簡単な説明  Other objects, features and benefits of the present invention will become more fully apparent from the following description. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の第 1の実施の形態に係る複合共振回路の構成を示す説明図 である。  FIG. 1 is an explanatory diagram showing a configuration of a composite resonance circuit according to a first embodiment of the present invention.
第 2図は、 第 1図に示した複合共振回路の等価回路を示す回路図である。 第 3図は、 並列共振回路を示す回路図である。  FIG. 2 is a circuit diagram showing an equivalent circuit of the composite resonance circuit shown in FIG. FIG. 3 is a circuit diagram showing a parallel resonance circuit.
第 4図は、 第 3図に示した並列共振回路のインピーダンスの絶対値の周波数特 性を概念的に示す説明図である。  FIG. 4 is an explanatory diagram conceptually showing the frequency characteristic of the absolute value of the impedance of the parallel resonance circuit shown in FIG.
第 5図は、 本発明の第 1の実施の形態に係る複合共振回路の複合共振特性の第 1の例を説明するための特性図である。  FIG. 5 is a characteristic diagram for describing a first example of a composite resonance characteristic of the composite resonance circuit according to the first embodiment of the present invention.
第 6図は、 本発明の第 1の実施の形態に係る複合共振回路の複合共振特性の第 2の例を説明するための特性図である。  FIG. 6 is a characteristic diagram for explaining a second example of the composite resonance characteristics of the composite resonance circuit according to the first embodiment of the present invention.
第 7図は、 本発明の第 1の実施の形態における磁芯の第 1の例を示す平面図で ある。 FIG. 7 is a plan view showing a first example of a magnetic core according to the first embodiment of the present invention. is there.
第 8図は、 本発明の第 1の実施の形態における磁芯の第 2の例を示す平面図で ある。  FIG. 8 is a plan view showing a second example of the magnetic core according to the first embodiment of the present invention.
第 9図は、 本発明の第 1の実施の形態における磁芯の第 3の例を示す平面図で ある。  FIG. 9 is a plan view showing a third example of the magnetic core according to the first embodiment of the present invention.
第 1 0図は、 本発明の第 2の実施の形態に係る複合共振回路の構成を示す説明 図である。  FIG. 10 is an explanatory diagram showing a configuration of a composite resonance circuit according to a second embodiment of the present invention.
第 1 1図は、 第 1 0図に示した複合共振回路の等価回路を示す回路図である。 第 1 2図は、 本発明の第 3の実施の形態に係る複合共振回路の構成を示す説明 図である。  FIG. 11 is a circuit diagram showing an equivalent circuit of the composite resonance circuit shown in FIG. FIG. 12 is an explanatory diagram showing a configuration of a composite resonance circuit according to a third embodiment of the present invention.
第 1 3図は、 第 1 2図に示した複合共振回路の等価回路を示す回路図である。 第 1 4図は、 本発明の第 4の実施の形態に係る複合共振回路の構成を示す説明 図である。  FIG. 13 is a circuit diagram showing an equivalent circuit of the composite resonance circuit shown in FIG. FIG. 14 is an explanatory diagram showing the configuration of the composite resonance circuit according to the fourth embodiment of the present invention.
第 1 5図は、 第 1 4図に示した複合共振回路の等価回路を示す回路図である。 第 1 6図は、 本発明の第 4の実施の形態に係る複合共振回路の複合共振特性を 示す特性図である。  FIG. 15 is a circuit diagram showing an equivalent circuit of the composite resonance circuit shown in FIG. FIG. 16 is a characteristic diagram showing composite resonance characteristics of the composite resonance circuit according to the fourth embodiment of the present invention.
第 1 7図は、 本発明の第 5の実施の形態に係る複合共振回路の構成を示す説明 図である。  FIG. 17 is an explanatory diagram showing the configuration of the composite resonance circuit according to the fifth embodiment of the present invention.
第 1 8図は、 本発明の第 6の実施の形態に係るフィルタを含むノイズ抑制回路 の概略の構成を示すブロック図である。  FIG. 18 is a block diagram showing a schematic configuration of a noise suppression circuit including a filter according to a sixth embodiment of the present invention.
第 1 9図は、 第 1 8図における低域ノイズ低減回路の構成を示すブロック図で ある。  FIG. 19 is a block diagram showing a configuration of the low-frequency noise reduction circuit in FIG.
第 2 0図は、 第 1 8図における高域ノイズ低減回路の構成の一例を示す回路図 である。 発明を実施するための最良の形態  FIG. 20 is a circuit diagram showing an example of the configuration of the high-frequency noise reduction circuit in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について図面を参照して詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[第 1の実施の形態]  [First Embodiment]
始めに、 第 1図および第 2図を参照して、 本発明の第 1の実施の形態に係る複 合共振回路の構成について説明する。 第 1図は本実施の形態に係る複合共振回路 の構成を示す説明図、 第 2図は第 1図に示した複合共振回路の等価回路を示す回 路図である。 First, with reference to FIG. 1 and FIG. 2, a complex according to the first embodiment of the present invention will be described. The configuration of the combined resonance circuit will be described. FIG. 1 is an explanatory diagram showing the configuration of the composite resonance circuit according to the present embodiment, and FIG. 2 is a circuit diagram showing an equivalent circuit of the composite resonance circuit shown in FIG.
第 1図に示したように、 本実施の形態に係る複合共振回路は、 1つのインダク タンス素子 1と、 このインダク夕ンス素子 1に接続された 2つのキャパシタ 2 , 3とを備えている。  As shown in FIG. 1, the composite resonance circuit according to the present embodiment includes one inductance element 1 and two capacitors 2 and 3 connected to the inductance element 1.
インダクタンス素子 1は、 1つの磁芯 1 0を備えている。 磁芯 1 0は、 中央の 脚部 1 0 aと、 この脚部 1 0 aの両側において脚部 1 0 aに対して所定の間隔を 開けて配置された 2つの脚部 1 0 b, 1 0 じ と、 脚部1 0 &, 1 0 b, 1 0 cの 各一端部を連結する連結部 1 0 dと、 脚部 1 0 a, 1 0 b, 1 0 cの各他端部を 連結する連結部 1 0 eとを有している。 ィンダクタンス素子 1は、 更に、 脚部 1 0 aに巻かれた巻線 1 1と、 脚部 1 0 bに巻かれた共振用卷線 1 2と、 脚部 1 0 cに巻かれた共振用巻線 1 3とを備えている。 巻線 1 1の両端にはそれぞれ端子 1 1 a, 1 1 bが接続されている。 共振用卷線 1 2の両端はキャパシタ 2を介し て接続され、 共振用巻線 1 3の両端はキャパシタ 3を介して接続されている。 第 2図に示したように、 磁芯 1 0、 共振用卷線 1 2およびキャパシタ 2は第 1 の並列共振回路 2 1を構成し、 磁芯 1 0、 共振用巻線 1 3およびキャパシタ 3は 第 2の並列共振回路 2 2を構成している。 また、 磁芯 1 0および共振用巻線 12 によって 1つのィンダクタンス要素が構成され、 磁芯 1 0および共振用卷線 1 3 によって他の 1つのインダクタンス要素が構成される。 また、 巻線 1 1と共振用 巻線 1 2は磁芯 1 0を介して磁気的に結合されている。 同様に、 卷線 1 1と共振 用巻線 1 3は磁芯 1 0を介して磁気的に結合されている。  The inductance element 1 has one magnetic core 10. The magnetic core 10 is composed of a central leg 10a and two legs 10b, 1 arranged on both sides of the leg 10a at a predetermined distance from the leg 10a. The connecting part 10d that connects each end of the legs 10 &, 10b, 10c and the other end of the legs 10a, 10b, 10c And a connecting portion 10e to be connected. The inductance element 1 further includes a winding 11 wound around the leg 10a, a resonance winding 12 wound around the leg 10b, and a resonance winding wound around the leg 10c. And winding 13. Terminals 11 a and 11 b are connected to both ends of the winding 11, respectively. Both ends of the resonance winding 12 are connected via a capacitor 2, and both ends of the resonance winding 13 are connected via a capacitor 3. As shown in FIG. 2, the magnetic core 10, the resonance winding 12 and the capacitor 2 constitute a first parallel resonance circuit 21, and the magnetic core 10, the resonance winding 13 and the capacitor 3 Constitutes the second parallel resonance circuit 22. The magnetic core 10 and the resonance winding 12 form one inductance element, and the magnetic core 10 and the resonance winding 13 form another inductance element. The winding 11 and the resonance winding 12 are magnetically coupled via the magnetic core 10. Similarly, the winding 11 and the resonance winding 13 are magnetically coupled via the magnetic core 10.
第 1の並列共振回路 2 1と第 2の並列共振回路 22は、 互いに異なる共振特性 を有している。 特に、 第 1の並列共振回路 2 1の共振周波数と第 2の並列共振回 路 2 2の共振周波数は互いに異なっている。 第 1の並列共振回路 21と第 2の並 列共振回路 22の共振特性を異ならせるには、 共振用巻線 1 2, 1 3のインダク タンスを異ならせるか、 キャパシ夕 2, 3の容量を異ならせるか、 あるいは両方 を異ならせればよい。  The first parallel resonance circuit 21 and the second parallel resonance circuit 22 have different resonance characteristics. In particular, the resonance frequency of the first parallel resonance circuit 21 and the resonance frequency of the second parallel resonance circuit 22 are different from each other. In order to make the resonance characteristics of the first parallel resonance circuit 21 and the second parallel resonance circuit 22 different, the inductances of the resonance windings 12 and 13 are made different, or the capacitance of the capacitors 2 and 3 is changed. You can make them different, or both.
ここで、 第 3図および第 4図を参照して、 一般的な並列共振回路について説明 する。 第 3図は並列共振回路を示す回路図である。 この並列共振回路は、 2つの 端子 3 1 , 3 2と、 この 2つの端子 3 1, 3 2間において互いに並列に接続され たコイル 3 3およびキャパシタ 3 4を備えている。 コイル 3 3は、磁芯 3 3 aと、 この磁芯 3 3 aに巻かれた巻線 3 3 bとを有している。 第 3図において、 符号 3 5は、 磁芯 3 3 aにおける磁気損失等に起因するコイル 3 3の内部抵抗と等しい 抵抗値を有する仮想の抵抗器を示している。 第 3図に示したように、 仮想の抵抗 器 3 5はコイル 3 3に対して直列に接続されているとみなすことができる。 Here, a general parallel resonance circuit will be described with reference to FIGS. 3 and 4. I do. FIG. 3 is a circuit diagram showing a parallel resonance circuit. The parallel resonance circuit includes two terminals 31 and 32, and a coil 33 and a capacitor 34 connected in parallel with each other between the two terminals 31 and 32. The coil 33 has a magnetic core 33a and a winding 33b wound around the magnetic core 33a. In FIG. 3, reference numeral 35 denotes a virtual resistor having a resistance value equal to the internal resistance of the coil 33 due to magnetic loss or the like in the magnetic core 33a. As shown in FIG. 3, the virtual resistor 35 can be considered to be connected in series with the coil 33.
次に、 第 3図に示した並列共振回路の共振特性について説明する。 ここで、 第 3図におけるコイル 3 3のインダク夕ンスを L、 キャパシ夕 3 4の容量を C、 抵 抗器 3 5の抵抗値を R s とする。 第 3図に示した並列共振回路の共振周波数 f 。 は、 次の式で表わされる。  Next, the resonance characteristics of the parallel resonance circuit shown in FIG. 3 will be described. Here, let the inductance of the coil 33 in FIG. 3 be L, the capacity of the capacitor 34 be C, and the resistance of the resistor 35 be R s. The resonance frequency f of the parallel resonance circuit shown in FIG. Is represented by the following equation.
f 0 = 1 / { 2 i f ( L · C ) }  f 0 = 1 / {2 i f (L · C)}
第 4図は、 第 3図に示した並列共振回路とコイル 3 3のそれぞれについて、 ィ ンピ一ダンスの絶対値の周波数特性を概念的に示したものである。 第 4図におい て、 符号 3 8は並列共振回路の特性を示し、 符号 3 9はコイル 3 3単独の特性を 示している。第 4図に示したように、並列共振回路のインピーダンスの絶対値は、 共振周波数 f 。 においてピーク値を取る。 ピ一ク値は抵抗値 R s と等しい。 これ に対し、 コイル 3 3単独のインピーダンスの絶対値は、 周波数を f として、 2 π f Lで表わされる。 共振周波数 f Q では、 並列共振回路のインピーダンスの絶対 値は、 コイル 3 3単独のインピーダンスの絶対値よりも非常に大きくなる。 この ことから、 並列共振回路を導電線の途中に揷入し、 この並列共振回路の共振周波 数 f 。 を、 低減したいリップル電圧やノイズの周波数の近傍に設定すれば、 その リップル電圧やノィズを効果的に低減できることが分かる。 FIG. 4 conceptually shows the frequency characteristic of the absolute value of the impedance for each of the parallel resonance circuit and the coil 33 shown in FIG. In FIG. 4, reference numeral 38 indicates the characteristic of the parallel resonance circuit, and reference numeral 39 indicates the characteristic of the coil 33 alone. As shown in FIG. 4, the absolute value of the impedance of the parallel resonance circuit is the resonance frequency f. At the peak value. The peak value is equal to the resistance value R s. On the other hand, the absolute value of the impedance of the coil 33 alone is represented by 2πfL, where f is the frequency. At the resonance frequency f Q , the absolute value of the impedance of the parallel resonance circuit is much larger than the absolute value of the impedance of the coil 33 alone. Therefore, the parallel resonance circuit is inserted in the middle of the conductive wire, and the resonance frequency f of the parallel resonance circuit is set. It can be seen that setting the frequency near the frequency of the ripple voltage or noise to be reduced can effectively reduce the ripple voltage or noise.
本実施の形態における共振用巻線 1 2, 1 3は、 第 3図における巻線 3 3 bに 対応する。 本実施の形態におけるキャパシタ 2 , 3は、 第 3図におけるキャパシ タ 3 4に対応する。  The resonance windings 12 and 13 in the present embodiment correspond to the winding 33b in FIG. Capacitors 2 and 3 in the present embodiment correspond to capacitor 34 in FIG.
本実施の形態に係る複合共振回路では、 1つの磁芯 1 0によって 2つの並列共 振回路 2 1, 2 2が複合されている。 また、 巻線 1 1は、 磁芯 1 0を介して、 並 列共振回路 2 1の共振用巻線 1 2および並列共振回路 2 2の共振用卷線 1 3に対 して磁気的に結合されている。 従って、 巻線 1 1は、 2つの並列共振回路 2 1, 2 2の各共振特性が複合されてなる複合共振特性を有することになる。 In the composite resonance circuit according to the present embodiment, one magnetic core 10 combines two parallel resonance circuits 21 and 22. The winding 11 is connected to the resonance winding 12 of the parallel resonance circuit 21 and the resonance winding 13 of the parallel resonance circuit 22 via the magnetic core 10. And are magnetically coupled. Therefore, the winding 11 has composite resonance characteristics in which the resonance characteristics of the two parallel resonance circuits 21 and 22 are composited.
本実施の形態に係る複合共振回路は、 端子 1 1 a , 1 1 bを介して巻線 1 1が 導電線に接続されることによって、 導電線の途中に挿入される。 例えば、 複合共 振回路は、 スイッチング電源等における電力変換回路の入力側あるいは出力側の 導電線の途中に挿入することができる。 複合共振回路は、 導電線上を伝搬するリ ップル電圧やノイズを低減する。 従って、 本実施の形態に係る複合共振回路は、 導電線上を伝搬するリップル電圧やノイズの低減のためのフィルタとして利用可 能である。  The composite resonance circuit according to the present embodiment is inserted in the middle of a conductive wire by connecting winding 11 to the conductive wire via terminals 11a and 11b. For example, a composite resonance circuit can be inserted in the middle of a conductive line on the input side or output side of a power conversion circuit in a switching power supply or the like. Composite resonance circuits reduce ripple voltage and noise propagating on conductive lines. Therefore, the composite resonance circuit according to the present embodiment can be used as a filter for reducing a ripple voltage or noise propagating on a conductive line.
また、 本実施の形態に係る複合共振回路を、 一対の導電線のうちの一方に揷入 すれば、 導電線上を伝搬するノーマルモードノイズを低減することができる。 ま た、 一対の導電線のそれぞれに複合共振回路を挿入すれば、 導電線上を伝搬する コモンモードノイズを低減することができる。  Further, if the composite resonance circuit according to the present embodiment is inserted into one of the pair of conductive wires, normal mode noise propagating on the conductive wire can be reduced. In addition, if a composite resonance circuit is inserted into each of the pair of conductive wires, common mode noise propagating on the conductive wires can be reduced.
次に、 第 5図および第 6図を参照して、 本実施の形態に係る複合共振回路の複 合共振特性の第 1および第 2の例について説明する。 第 1の例は、 並列共振回路 2 1, 2 2の共振周波数を比較的近づけた場合の例である。 第 5図は、 第 1の例 における並列共振回路 2 1, 2 2の共振特性として、 並列共振回路 2 1, 2 2の 各々のインピーダンスの絶対値の周波数特性を示している。 第 5図において、 符 号 4 1は並列共振回路 2 1の特性を示し、 符号 4 2は並列共振回路 2 2の特性を 示している。 また、 は並列共振回路 2 1の共振周波数を表し、 f 2 は並列共 振回路 2 2の共振周波数を表している。 各周波数毎の複合共振回路のインピーダ ンスの絶対値は、 各周波数毎の並列共振回路 2 1, 2 2のインピーダンスの絶対 値のうちの大きい方と一致する。 ' Next, first and second examples of composite resonance characteristics of the composite resonance circuit according to the present embodiment will be described with reference to FIG. 5 and FIG. The first example is an example in which the resonance frequencies of the parallel resonance circuits 21 and 22 are relatively close to each other. FIG. 5 shows the frequency characteristics of the absolute value of the impedance of each of the parallel resonance circuits 21 and 22 as the resonance characteristics of the parallel resonance circuits 21 and 22 in the first example. In FIG. 5, reference numeral 41 denotes a characteristic of the parallel resonance circuit 21, and reference numeral 42 denotes a characteristic of the parallel resonance circuit 22. Represents the resonance frequency of the parallel resonance circuit 21, and f 2 represents the resonance frequency of the parallel resonance circuit 22. The absolute value of the impedance of the composite resonance circuit for each frequency matches the larger of the absolute values of the impedances of the parallel resonance circuits 21 and 22 for each frequency. '
第 1の例では、 並列共振回路 2 1 , 2 2の各々のインピーダンスの絶対値が所 定値 (例えば、 複合共振回路におけるインピーダンスの絶対値の最大値の 2分の 1 ) 以上となる周波数範囲は部分的に重なっている。 そして、 複合共振回路のィ ンピーダンスの絶対値が上記の所定値以上となる周波数範囲は、 各並列共振回路 2 1 , 2 2の上記の周波数範囲よりも広い。 従って、 第 1の例の複合共振回路に よれば、 1つの並列共振回路を用いる場合に比べて、 リップル電圧やノイズを低 減できる周波数範囲を広げることができる。 In the first example, the frequency range in which the absolute value of the impedance of each of the parallel resonance circuits 21 and 22 is equal to or more than a predetermined value (for example, one half of the maximum value of the absolute value of the impedance in the composite resonance circuit) is Partially overlapping. The frequency range in which the absolute value of the impedance of the composite resonance circuit is equal to or greater than the predetermined value is wider than the frequency range of each of the parallel resonance circuits 21 and 22. Therefore, according to the composite resonance circuit of the first example, the ripple voltage and noise are reduced as compared with the case of using one parallel resonance circuit. The frequency range that can be reduced can be expanded.
第 2の例は、 並列共振回路 2 1 , 2 2の共振周波数を、 それぞれ所望の周波数 に合わせた場合の例である。 第 6図は、 第 2の例における並列共振回路 2 1 , 2 2の共振特性として、 並列共振回路 2 1, 2 2の各々のインピーダンスの絶対値 の周波数特性を示している。 第 6図において、 符号 4 1は並列共振回路 2 1の特 性を示し、 符号 4 2は並列共振回路 2 2の特性を示している。 また、 は並列 共振回路 2 1の共振周波数を表し、 f 2 は並列共振回路 2 2の共振周波数を表し ている。 各周波数毎の複合共振回路のインピーダンスの絶対値は、 各周波数毎の 並列共振回路 2 1 , 2 2のインピーダンスの絶対値のうちの大きい方と一致する。 第 2の例では、 並列共振回路 2 1, 2 2の各々のインピーダンスの絶対値が所 定値 (例えば、 複合共振回路におけるインピーダンスの絶対値の最大値の 2分の 1 ) 以上となる周波数範囲は互いに離れている。 そして、 複合共振回路のインピ 一ダンスの絶対値が上記の所定値以上となる周波数範囲は、各並列共振回路 2 1 , 2 2の上記の周波数範囲を含む。 従って、 第 2の例の複合共振回路によれば、 2 つの周波数範囲においてリップル電圧やノイズを低減することが可能になる。 第 6図には、 スィツチング回路のスィツチング周波数と等しい周波数のリップル電 圧の波形と、 スィツチング回路のスィツチング動作に伴うノイズの波形も記載し ている。 第 6図において、 符号 4 3はリップル電圧の波形を示し、 符号 4 4はノ ィズの波形を示している。 通常、 リップル電圧の周波数は 5 0 0 k H z以下であ り、 ノイズの周波数は 1 M H z以上である。 第 2の例において、 並列共振回路 2 1の共振周波数 1^ をリップル電圧の周波数に合わせ、 並列共振回路 2 2の共振 周波数 f 2 をノイズの周波数に合わせれば、 リップル電圧やノイズを効果的に低 減することができる。 従って、 第 2の例によれば、 電力変換回路が発生するリツ プル電圧やノイズに対する総合的な対策が可能になる。 The second example is an example in which the resonance frequencies of the parallel resonance circuits 21 and 22 are respectively set to desired frequencies. FIG. 6 shows the frequency characteristics of the absolute value of the impedance of each of the parallel resonance circuits 21 and 22 as the resonance characteristics of the parallel resonance circuits 21 and 22 in the second example. In FIG. 6, reference numeral 41 indicates the characteristics of the parallel resonance circuit 21, and reference numeral 42 indicates the characteristics of the parallel resonance circuit 22. Represents the resonance frequency of the parallel resonance circuit 21, and f 2 represents the resonance frequency of the parallel resonance circuit 22. The absolute value of the impedance of the composite resonance circuit for each frequency matches the larger of the absolute values of the impedances of the parallel resonance circuits 21 and 22 for each frequency. In the second example, the frequency range in which the absolute value of the impedance of each of the parallel resonant circuits 21 and 22 is equal to or more than a predetermined value (for example, half the maximum value of the absolute value of the impedance in the composite resonant circuit) is Separated from each other. The frequency range in which the absolute value of the impedance of the composite resonance circuit is equal to or more than the above-described predetermined value includes the above-described frequency range of each of the parallel resonance circuits 21 and 22. Therefore, according to the composite resonance circuit of the second example, it is possible to reduce ripple voltage and noise in two frequency ranges. FIG. 6 also shows a waveform of a ripple voltage having a frequency equal to the switching frequency of the switching circuit, and a waveform of a noise accompanying the switching operation of the switching circuit. In FIG. 6, reference numeral 43 indicates a ripple voltage waveform, and reference numeral 44 indicates a noise waveform. Usually, the frequency of the ripple voltage is less than 500 kHz and the frequency of the noise is more than 1 MHz. In a second example, according to the frequency of the parallel resonance circuit 2 first resonant frequency 1 ^ ripple voltage, the resonance frequency f 2 of the parallel resonance circuit 2 2, combined with the frequency of the noise, the ripple voltage and noise effectively It can be reduced. Therefore, according to the second example, comprehensive measures can be taken against ripple voltage and noise generated by the power conversion circuit.
次に、 第 7図ないし第 9図を参照して、 本実施の形態における磁芯 1 0の 3つ の例について説明する。 第 1の例の磁芯 1 0は、 第 7図に示したように、 全体が 同一の磁性材料によって形成されている。 磁芯 1 0は、 例えば、 フェライトゃァ モルファス磁性材料からなるものでもよいし、 圧粉磁芯でもよい。 なお、 第 7図 に示した磁芯 1 0の形状は一例であり、 第 7図に示した磁芯 1 0と同等の磁気回 路を構成するものは第 1の例の磁芯 1 0に含まれる。 また、 第 1の例の磁芯 1 0 は、 複数の部材が接合されて構成されたものでもよい。 具体的には、 第 1の例の 磁芯 1 0としては、 例えば EE型磁芯ゃ E I型磁芯ゃポット型磁芯を用いること ができる。 Next, three examples of the magnetic core 10 in the present embodiment will be described with reference to FIGS. 7 to 9. FIG. As shown in FIG. 7, the magnetic core 10 of the first example is entirely formed of the same magnetic material. The magnetic core 10 may be made of, for example, a ferrite amorphous magnetic material, or may be a dust core. Note that the shape of the magnetic core 10 shown in FIG. 7 is an example, and a magnetic circuit equivalent to the magnetic core 10 shown in FIG. What constitutes the path is included in the magnetic core 10 of the first example. Further, the magnetic core 10 of the first example may be configured by joining a plurality of members. Specifically, as the magnetic core 10 of the first example, for example, an EE-type magnetic core / EI-type magnetic core / pot-type magnetic core can be used.
第 2の例の磁芯 1 0は、 第 8図に示したように、 それぞれ単独でも環状の磁気 回路を構成可能な 2つの磁芯 1 OA, 1 0 Bが接合されて構成されている。 磁芯 1 0 A, 1 0 Bは、 互いに形状や大きさが異なっていてもよい。 第 2の例の磁芯 1 0を用いた場合には、 第 1図に示したインダクタンス素子 1は、 接合された 2 つの磁芯 1 0 A, 1 08と、 各磁芯1 0八, 1 0 Bに巻かれた 2つの卷線 1 2, 1 3とを有し、 これらによって 2つのインダクタンス要素が構成されたものとな る。  As shown in FIG. 8, the magnetic core 10 of the second example is formed by joining two magnetic cores 1 OA and 10 B that can form an annular magnetic circuit by themselves. The magnetic cores 10A and 10B may be different in shape and size from each other. When the magnetic core 10 of the second example is used, the inductance element 1 shown in FIG. 1 is composed of two magnetic cores 10 A, 108 joined together, It has two windings 12 and 13 wound around 0 B, and these constitute two inductance elements.
第 3の例の磁芯 1 0は、 第 9図に示したように、 それぞれ単独でも環状の磁気 回路を構成可能な 2つの磁芯 1 0 C, 1 0 Dが接合されて構成されている。 磁芯 1 0 C, 1 0 Dは、 互いに特性が異なっている。 具体的には、 例えば、 磁芯 1 0 C, 1 0 Dは、 互いに透磁率が異なる磁性材料によって形成されている。 磁芯 1 0 C, 1 0Dの材料としては、 フェライト、 アモルファス磁性材料、 圧粉磁芯用 材料等のうちから、 特性の異なる任意の材料を用いることができる。 第 3の例の 磁芯 1 0を用いた場合には、 第 1図に示したインダクタンス素子 1は、 互いに特 性が異なる 2つの磁芯 1 0 C, 1 00と、 各磁芯1 0じ, 1 0Dに巻かれた 2つ の巻線 1 2, 1 3とを有し、 これらによって 2つのインダクタンス要素が構成さ れたものとなる。 第 3の例の磁芯 1 0を用いた場合には、 各磁芯 1 0 C, 1 0 D に巻かれる卷線が同様のものであっても、 各巻線のィンピ一ダンスの周波数特性 が異なることとなる。  As shown in FIG. 9, the magnetic core 10 of the third example is configured by joining two magnetic cores 10 C and 10 D that can form an annular magnetic circuit by themselves. . The magnetic cores 10 C and 10 D have different characteristics from each other. Specifically, for example, the magnetic cores 10 C and 10 D are formed of magnetic materials having different magnetic permeability from each other. As the material of the magnetic cores 10C and 10D, any material having different characteristics from ferrite, an amorphous magnetic material, a material for a dust core, and the like can be used. When the magnetic core 10 of the third example is used, the inductance element 1 shown in FIG. 1 has two magnetic cores 100 C, 100 having different characteristics from each other, and each magnetic core 10 has the same characteristics. , 10D, and two windings 12, 23, which constitute two inductance elements. When the magnetic core 10 of the third example is used, even if the windings wound on the magnetic cores 10 C and 10 D are the same, the frequency characteristic of the impedance of each winding is Will be different.
以上説明したように、 本実施の形態に係る複合共振回路は、 複数の並列共振回 路の共振特性が複合されてなる複合共振特性を有している。 そして、 本実施の形 態では、 この複合共振特性を利用して、 電力変換回路が発生するリップル電圧や ノイズを低減することができる。 また、 本実施の形態では、 複合共振特性を利用 するため、 ある程度の周波数の幅を有するノイズを低減したり、 周波数が異なる リップル電圧とノイズを同時に低減したりすることができる。 このように、 複合 共振回路は、 電力変換回路が発生するリップル電圧やノイズの低減のためのフィ ルタとして利用可能である。 また、 複合共振回路では、 複合共振特性を利用して リップル電圧やノイズを低減するので、 L Cフィルタに比べてインダクタンス素 子を小型化でき、 その結果、 複合共振回路全体も L Cフィルタに比べて小型化す ることができる。 As described above, the composite resonance circuit according to the present embodiment has composite resonance characteristics obtained by combining the resonance characteristics of a plurality of parallel resonance circuits. Then, in the present embodiment, the ripple voltage and noise generated by the power conversion circuit can be reduced by using the composite resonance characteristic. Further, in the present embodiment, since the composite resonance characteristic is used, it is possible to reduce noise having a certain range of frequency, and simultaneously reduce ripple voltage and noise having different frequencies. Thus, composite Resonant circuits can be used as filters to reduce ripple voltage and noise generated by power conversion circuits. Also, in the composite resonance circuit, the ripple voltage and noise are reduced by using the composite resonance characteristics, so that the inductance element can be reduced in size compared to the LC filter. As a result, the entire composite resonance circuit is also reduced in size compared to the LC filter. It can be changed.
また、 本実施の形態によれば、 複数のインダクタンス要素を含む 1つのインダ クタンス素子 1と、 このインダクタンス素子 1に接続されたキャパシ夕 2, 3と を用いて、 複数の並列共振回路 2 1, 2 2を構成することができる。 従って、 本 実施の形態によれば、 複数のィンダクタンス素子を用いて複数の並列共振回路を 構成する場合に比べて、 複合共振回路をより小型化することが可能になる。  Further, according to the present embodiment, a plurality of parallel resonant circuits 21, 1, 2, 1, 2, 3, and 2 is connected using one inductance element 1 including a plurality of inductance elements and capacitors 2, 3 connected to the inductance element 1. 22 can be configured. Therefore, according to the present embodiment, it is possible to further reduce the size of the composite resonance circuit as compared with a case where a plurality of parallel resonance circuits are formed using a plurality of inductance elements.
[第 2の実施の形態]  [Second embodiment]
次に、 第 1 0図および第 1 1図を参照して、 本発明の第 2の実施の形態に係る 複合共振回路について説明する。 第 1 0図は本実施の形態に係る複合共振回路の 構成を示す説明図、 第 1 1図は第 1 0図に示した複合共振回路の等価回路を示す 回路図である。  Next, a composite resonance circuit according to a second embodiment of the present invention will be described with reference to FIG. 10 and FIG. FIG. 10 is an explanatory diagram showing the configuration of the composite resonance circuit according to the present embodiment, and FIG. 11 is a circuit diagram showing an equivalent circuit of the composite resonance circuit shown in FIG.
第 1 0図に示したように、 本実施の形態に係る複合共振回路は、 1つのインダ クタンス素子 5 1と、 このィンダクタンス素子 5 1に接続された 1つのキャパシ 夕 5 2とを備えている。  As shown in FIG. 10, the composite resonance circuit according to the present embodiment includes one inductance element 51 and one capacitor 52 connected to the inductance element 51. I have.
インダクタンス素子 5 1は、 それぞれ環状の磁気回路を構成する 2つの磁芯 5 3 A , 5 3 Bを有している。 2つの磁芯 5 3 A, 5 3 Bは、 それぞれ中空部を有 し、 この 2つの中空部の軸方向が一致するように配置され、 互いに接合されてい る。 磁芯 5 3 A, 5 3 Bは、 互いに特性が異なっている。 具体的には、 例えば、 磁芯 5 3 A , 5 3 Bは、互いに透磁率が異なる磁性材料によって形成されている。 磁芯 5 3 A , 5 3 Bの材料としては、 フェライ 卜、 アモルファス磁性材料、 圧粉 磁芯用材料等のうちから、 特性の異なる任意の材料を用いることができる。  The inductance element 51 has two magnetic cores 53A and 53B, each of which forms an annular magnetic circuit. The two magnetic cores 53A and 53B each have a hollow portion, are arranged so that the axial directions of the two hollow portions match, and are joined to each other. The magnetic cores 53A and 53B have different characteristics from each other. Specifically, for example, the magnetic cores 53A and 53B are formed of magnetic materials having different magnetic permeability from each other. As the material of the magnetic cores 53A and 53B, any material having different characteristics can be used from ferrite, an amorphous magnetic material, a material for a dust core, and the like.
ィンダクタンス素子 5 1は、 更に、 磁芯 5 3 A , 5 3 Bに巻かれた巻線 5 4.と、 磁芯 5 3 A , 5 3 Bに巻かれた共振用巻線 5 5とを有している。 卷線 5 4の両端 にはそれぞれ端子 5 4 a, 5 4 bが接続されている。 共振用巻線 5 5の両端はキ ャパシタ 5 2を介して接続されている。 共振用卷線 5 5は、 互いに特性が異なる磁芯 5 3 A , 5 3 Bに巻かれているた め、 第 1 1図に示したように、 磁芯 5 3 Aに巻かれた巻線部分 5 5 aと、 磁芯 5 3 Bに巻かれた巻線部分 5 5 bとを含むものとみなすことができる。 この場合、 巻線部分 5 5 a , 5 5 bは並列に接続されているとみなすことができる。 キャパ シタ 5 2は、 卷線部分 5 5 aの両端間および巻線部分 5 5 bの両端間に設けられ ているとみなすことができる。 磁芯 5 3 A、 巻線部分 5 5 aおよびキャパシタ 5 2は第 1の並列共振回路を構成し、 磁芯 5 3 B、 巻線部分 5 5 bおよびキャパシ 夕 5 2は第 2の並列共振回路を構成している。 また、 磁芯 5 3 Aおよぴ卷線部分 5 5 aによって 1つのィンダクタンス要素が構成され、 磁芯 5 3 Bおよび卷線部 分 5 5 bによって他の 1つのインダクタンス要素が構成される。 また、 巻線 5 4 と卷線部分 5 5 aは磁芯 5 3 Aを介して磁気的に結合され、 巻線 5 4と巻線部分 5 5 bは磁芯 5 3 Bを介して磁気的に結合されている。 The inductance element 51 further includes a winding 54 wound around the magnetic cores 53A and 53B and a resonance winding 55 wound around the magnetic cores 53A and 53B. Have. Terminals 54a and 54b are connected to both ends of the winding 54, respectively. Both ends of the resonance winding 55 are connected via a capacitor 52. Since the resonance winding 55 is wound around the magnetic cores 53 A and 53 B having different characteristics from each other, the winding wound around the magnetic core 53 A as shown in FIG. It can be regarded as including a portion 55a and a winding portion 55b wound around the magnetic core 53B. In this case, the winding portions 55a and 55b can be considered to be connected in parallel. The capacitor 52 can be considered to be provided between both ends of the winding part 55a and between both ends of the winding part 55b. The magnetic core 53 A, the winding part 55 a and the capacitor 52 constitute the first parallel resonance circuit, and the magnetic core 53 B, the winding part 55 b and the capacity 52 constitute the second parallel resonance circuit. Make up the circuit. Also, one inductance element is constituted by the magnetic core 53A and the winding part 55a, and another inductance element is constituted by the magnetic core 53B and the winding part 55b. . The winding 54 and the winding 55a are magnetically coupled via a magnetic core 53A, and the winding 54 and the winding 55b are magnetically coupled via a magnetic core 53B. Is joined to.
また、 磁芯 5 3 A , 5 3 Bの特性が互いに異なっていることから、 卷線部分 5 5 a , 5 5 bのィンダクタンスは互いに異なっている。 そのため、 第 1の並列共 振回路と第 2の並列共振回路は、 互いに異なる共振特性を有している。 特に、 第 1の並列共振回路の共振周波数と第 2の並列共振回路の共振周波数は互いに異な つている。  Further, since the characteristics of the magnetic cores 53A and 53B are different from each other, the inductances of the winding portions 55a and 55b are different from each other. Therefore, the first parallel resonance circuit and the second parallel resonance circuit have different resonance characteristics from each other. In particular, the resonance frequency of the first parallel resonance circuit and the resonance frequency of the second parallel resonance circuit are different from each other.
本実施の形態に係る複合共振回路では、 1つの共振用巻線 5 5と 1つのキャパ シタ 5 2とによって 2つの並列共振回路が複合されている。 また、 巻線 5 4は、 磁芯 5 3 A , 5 3 Bを介して共振用卷線 5 5に対して磁気的に結合されている。 従って、 巻線 5 4は、 2つの並列共振回路の共振特性が複合されてなる複合共振 特性を有することになる。  In the composite resonance circuit according to the present embodiment, two parallel resonance circuits are composited by one resonance winding 55 and one capacitor 52. The winding 54 is magnetically coupled to the resonance winding 55 via the magnetic cores 53 A and 53 B. Therefore, the winding 54 has composite resonance characteristics in which the resonance characteristics of the two parallel resonance circuits are composited.
本実施の形態に係る複合共振回路は、 端子 5 4 a, 5 4 bを介して巻線 5 4が 導電線に接続されることによって、導電線の途中に揷入される。複合共振回路は、 この導電線上を伝搬するリップル電圧やノイズの低減のためのフィル夕として利 用可能である。  The composite resonance circuit according to the present embodiment is inserted in the middle of the conductive wire by connecting winding 54 to the conductive wire via terminals 54a and 54b. The composite resonance circuit can be used as a filter for reducing ripple voltage and noise propagating on the conductive line.
本実施の形態におけるその他の構成、 作用および効果は、 第 1の実施の形態と 同様である。  Other configurations, operations, and effects of the present embodiment are the same as those of the first embodiment.
[第 3の実施の形態] 次に、 第 1 2図および第 1 3図を参照して、 本発明の第 3の実施の形態に係る 複合共振回路について説明する。 第 1 2図は本実施の形態に係る複合共振回路の 構成を示す説明図、 第 1 3図は第 1 2図に示した複合共振回路の等価回路を示す 回路図である。 [Third Embodiment] Next, a composite resonance circuit according to a third embodiment of the present invention will be described with reference to FIG. 12 and FIG. FIG. 12 is an explanatory diagram showing the configuration of the composite resonance circuit according to the present embodiment, and FIG. 13 is a circuit diagram showing an equivalent circuit of the composite resonance circuit shown in FIG.
第 1 2図に示したように、 本実施の形態に係る複合共振回路は、 1つのインダ クタンス素子 6 1と、 このィンダクタンス素子 6 1に接続された 1つのキャパシ タ 6 2とを備えている。  As shown in FIG. 12, the composite resonance circuit according to the present embodiment includes one inductance element 61 and one capacitor 62 connected to the inductance element 61. I have.
インダクタンス素子 6 1は、 それぞれ環状の磁気回路を構成する 2つの磁芯 6 3 A , 6 3 Bを有している。 磁芯 6 3 A, 6 3 Bは、 互いに接合されている。 磁 芯 6 3 A, 6 3 Bの配置や材料は、 第 2の実施の形態における磁芯 5 3 A , 5 3 Bと同様である。  The inductance element 61 has two magnetic cores 63A and 63B, each of which forms an annular magnetic circuit. The magnetic cores 63A and 63B are joined to each other. The arrangement and materials of the magnetic cores 63A and 63B are the same as those of the magnetic cores 53A and 53B in the second embodiment.
ィンダク夕ンス素子 6 1は、 更に、 磁芯 6 3 A , 6 3 Bに巻かれた巻線 6 5を 有している。巻線 6 5の両端にはそれぞれ端子 6 5 c , 6 5 dが接続されている。 また、 卷線 6 5の両端はキャパシタ 6 2を介して接続されている。  The inductance element 61 further has a winding 65 wound around the magnetic cores 63A and 63B. Terminals 65c and 65d are connected to both ends of the winding 65, respectively. Further, both ends of the winding 65 are connected via a capacitor 62.
卷線 6 5は、 互いに特性が異なる磁芯 6 3 A , 6 3 Bに巻かれているため、 第 1 3図に示したように、 磁芯 6 3 Aに巻かれた卷線部分 6 5 aと、 磁芯 6 3 Bに 巻かれた卷線部分 6 5 bとを含むものとみなすことができる。 この場合、 巻線部 分 6 5 a, 6 5 bは並列に接続されているとみなすことができる。 キャパシタ 6 2は、 巻線部分 6 5 aの両端間および巻線部分 6 5 bの両端間に設けられている とみなすことができる。 磁芯 6 3 A、 卷線部分 6 5 aおよびキャパシタ 6 2は第 1の並列共振回路を構成し、 磁芯 6 3 B、 巻線部分 6 5 bおよびキャパシ夕 6 2 は第 2の並列共振回路を構成している。 また、 磁芯 6 3 Aおよび巻線部分 6 5 a によって 1つのィンダクタンス要素が構成され、 磁芯 6 3 Bおよび巻線部分 6 5 によって他の 1つのィンダクタンス要素が構成される。  Since the winding 65 is wound around the magnetic cores 6 3 A and 6 3 B having different characteristics from each other, as shown in FIG. 13, the winding portion 6 5 wound around the magnetic core 6 3 A is used. a and a winding portion 65b wound around the magnetic core 63B. In this case, the winding portions 65a and 65b can be considered to be connected in parallel. The capacitor 62 can be considered to be provided between both ends of the winding portion 65a and between both ends of the winding portion 65b. The magnetic core 63 A, the winding part 65 a and the capacitor 62 constitute the first parallel resonance circuit, and the magnetic core 63 B, the winding part 65 b and the capacitor 62 constitute the second parallel resonance circuit. Make up the circuit. The magnetic core 63A and the winding part 65a constitute one inductance element, and the magnetic core 63B and the winding part 65 constitute another inductance element.
また、 磁芯 6 3 A , 6 3 Bの特性が互いに異なっていることから、 巻線部分 6 5 a , 6 5 bのインダクタンスは互いに異なっている。 そのため、 第 1の並列共 振回路と第 2の並列共振回路は、 互いに異なる共振特性を有している。 特に、 第 1の並列共振回路の共振周波数と第 2の並列共振回路の共振周波数は互いに異な つている。 本実施の形態に係る複合共振回路では、 1つの巻線 6 5と 1つのキャパシタ 6 2とによって 2つの並列共振回路が複合されている。 そのため、 この複合共振回 路は、 2つの並列共振回路の共振特性が複合されてなる複合共振特性を有する。 本実施の形態に係る複合共振回路は、 端子 6 5 c, 6 5 dを介して巻線 6 5が 導電線に接続されることによって、導電線の途中に揷入される。複合共振回路は、 この導電線上を伝搬するリップル電圧やノイズの低減のためのフィルタとして利 用可能である。 Also, since the characteristics of the magnetic cores 63A and 63B are different from each other, the inductances of the winding portions 65a and 65b are different from each other. Therefore, the first parallel resonance circuit and the second parallel resonance circuit have different resonance characteristics from each other. In particular, the resonance frequency of the first parallel resonance circuit and the resonance frequency of the second parallel resonance circuit are different from each other. In the composite resonance circuit according to the present embodiment, one winding 65 and one capacitor 62 combine two parallel resonance circuits. Therefore, this composite resonance circuit has composite resonance characteristics in which the resonance characteristics of two parallel resonance circuits are composited. The composite resonance circuit according to the present embodiment is inserted in the middle of the conductive wire by connecting winding 65 to the conductive wire via terminals 65c and 65d. The composite resonance circuit can be used as a filter for reducing ripple voltage and noise propagating on the conductive line.
本実施の形態におけるその他の構成、 作用および効果は、 第 2の実施の形態と 同様である。  Other configurations, operations, and effects of the present embodiment are the same as those of the second embodiment.
[第 4の実施の形態]  [Fourth embodiment]
次に、 第 1 4図ないし第 1 6図を参照して、 本発明の第 4の実施の形態に係る 複合共振回路について説明する。 第 1 4図は本実施の形態に係る複合共振回路の 構成を示す説明図、 第 1 5図は第 1 4図に示した複合共振回路の等価回路を示す 回路図、 第 1 6図は本実施の形態に係る複合共振回路の複合共振特性を示す特性 図である。  Next, a composite resonance circuit according to a fourth embodiment of the present invention will be described with reference to FIGS. 14 to 16. FIG. 14 is an explanatory diagram showing the configuration of the composite resonance circuit according to the present embodiment, FIG. 15 is a circuit diagram showing an equivalent circuit of the composite resonance circuit shown in FIG. 14, and FIG. FIG. 4 is a characteristic diagram illustrating composite resonance characteristics of the composite resonance circuit according to the embodiment.
第 1 4図に示したように、 本実施の形態に係る複合共振回路は、 1つのインダ クタンス素子 7 1と、 このィンダクタンス素子 7 1に接続された 2つのキャパシ 夕 7 2 , 7 3とを備えている。 インダクタンス素子 7 1は、 1つの磁芯 7 4を有 している。 磁芯 7 4は、 中央の脚部 7 4 aと、 この脚部 7 4 aの両側において脚 部 7 4 aに対して所定の間隔を開けて配置された 2つの脚部 7 4 b , 7 4 cと、 脚部 7 4 a , 7 4 b , 7 4 cの各一端部を連結する連結部 7 4 dと、脚部 7 4 a , 7 4 b , 7 4 cの各他端部を連結する連結部 7 4 eとを有している。 なお、 磁芯 7 4は、 第 7図に示した磁芯 1 0と同様に、 全体が同一の磁性材料によって形成 されていてもよい。 あるいは、 磁芯 7 4は、 第 8図に示した磁芯 1 0と同様に、 それぞれ単独でも環状の磁気回路を構成可能な 2つの磁芯が接合されて構成され ていてもよい。 また、 あるいは、 磁芯 7 4は、 第 9図に示した磁芯 1 0と同様に、 互いに特性が異なり、 且つそれぞれ単独でも環状の磁気回路を構成可能な 2つの 磁芯が接合されて構成されていてもよい。 インダクタンス素子 7 1は、 更に、 脚 部 7 4 bに巻かれた巻線 7 5と、脚部 7 4 cに巻かれた卷線 7 6とを備えている。 巻線 7 5の両端はキャパシタ 7 2を介して接続され、 巻線 7 6の両端はキャパシ 夕 7 3を介して接続されている。巻線 7 5の一端には端子 7 7が接続されている。 巻線 7 5の他端は巻線 7 6の一端に接続されている。 巻線 7 6の他端には端子 7 8が接続されている。 従って、 第 1 5図に示したように、 卷線 7 5と卷線 7 6は 直列に接続されている。 As shown in FIG. 14, the composite resonance circuit according to the present embodiment includes one inductance element 71, and two capacitors 72, 73 connected to the inductance element 71. It has. The inductance element 71 has one magnetic core 74. The magnetic core 74 is composed of a central leg 74a and two legs 74b, 7b arranged on both sides of the leg 74a at a predetermined distance from the leg 74a. 4c, a connecting portion 74d for connecting one end of each of the legs 74a, 74b, 74c and the other end of each of the legs 74a, 74b, 74c. And a connecting portion 74 e to be connected. The magnetic core 74 may be entirely made of the same magnetic material, similarly to the magnetic core 10 shown in FIG. Alternatively, like the magnetic core 10 shown in FIG. 8, the magnetic core 74 may be configured by joining two magnetic cores each of which can form an annular magnetic circuit by itself. Alternatively, similarly to the magnetic core 10 shown in FIG. 9, the magnetic core 74 is configured by joining two magnetic cores that have different characteristics from each other and that can form an annular magnetic circuit by themselves. It may be. The inductance element 71 further includes a winding 75 wound around the leg 74b and a winding 76 wound around the leg 74c. Both ends of the winding 75 are connected via a capacitor 72, and both ends of the winding 76 are connected via a capacitor 73. A terminal 77 is connected to one end of the winding 75. The other end of the winding 75 is connected to one end of the winding 76. A terminal 78 is connected to the other end of the winding 76. Therefore, as shown in FIG. 15, the winding 75 and the winding 76 are connected in series.
第 1 5図に示したように、 磁芯 7 4、 卷線 7 5およびキャパシタ 7 2は第 1の 並列共振回路 7 9を構成し、 磁芯 7 4、 巻線 7 6およびキャパシ夕 7 3は第 2の 並列共振回路 8 0を構成している。 また、 磁芯 7 4および巻線 7 5によって 1つ のィンダクタンス要素が構成され、 磁芯 7 4および巻線 7 6によって他の 1つの インダクタンス要素が構成される。  As shown in FIG. 15, the magnetic core 74, the winding 75 and the capacitor 72 constitute a first parallel resonance circuit 79, and the magnetic core 74, the winding 76 and the capacitor 73 Constitutes the second parallel resonance circuit 80. The core 74 and the winding 75 constitute one inductance element, and the core 74 and the winding 76 constitute another inductance element.
第 1の並列共振回路 7 9と第 2の並列共振回路 8 0は、 互いに異なる共振特性 を有している。 特に、 第 1の並列共振回路 7 9の共振周波数と第 2の並列共振回 路 8 0の共振周波数は互いに異なっている。 第 1の並列共振回路 7 9と第 2の並 列共振回路 8 0の共振特性を異ならせるには、 巻線 7 5 , 7 6のインダクタンス を異ならせるか、 キャパシタ 7 2 , 7 3の容量を異ならせるか、 あるいは両方を 異ならせればよい。  The first parallel resonance circuit 79 and the second parallel resonance circuit 80 have different resonance characteristics. In particular, the resonance frequency of the first parallel resonance circuit 79 and the resonance frequency of the second parallel resonance circuit 80 are different from each other. In order to make the resonance characteristics of the first parallel resonance circuit 79 and the second parallel resonance circuit 80 different, the inductance of the windings 75 and 76 must be different, or the capacitance of the capacitors 72 and 73 must be changed. Either they can be different, or both can be different.
本実施の形態に係る複合共振回路では、 第 1 5図に示したように、 2つの並列 共振回路 7 9 , 8 0が直列に接続されて、 この 2つの並列共振回路 7 9, 8 0が 複合されている。 そのため、 この複合共振回路は、 2つの並列共振回路 7 9 , 8 0の共振特性が複合されてなる複合共振特性を有する。  In the composite resonance circuit according to the present embodiment, as shown in FIG. 15, two parallel resonance circuits 79 and 80 are connected in series, and these two parallel resonance circuits 79 and 80 are connected to each other. Has been compounded. Therefore, this composite resonance circuit has composite resonance characteristics in which the resonance characteristics of the two parallel resonance circuits 79 and 80 are composited.
次に、 第 1 6図を参照して、 本実施の形態に係る複合共振回路の複合共振特性 の一例について説明する。 この例は、 並列共振回路 7 9, 8 0の共振周波数を比 較的近づけた場合の例である。 第 1 6図は、 並列共振回路 7 9 , 8 0の共振特性 として、 並列共振回路 7 9 , 8 0の各々のインピーダンスの絶対値の周波数特性 を示している。 第 1 6図において、 符号 8 1は並列共振回路 7 9の特性を示し、 符号 8 2は並列共振回路 8 0の特性を示し、 符号 8 3は複合共振回路の特性を示 している。 また、 f i は並列共振回路 7 9の共振周波数を表し、 f 2 は並列共振 回路 8 0の共振周波数を表している。複合共振回路のインピーダンスの絶対値は、 各周波数毎の並列共振回路 7 9, 8 0のインピーダンスの絶対値の和になる。 6510 Next, an example of a composite resonance characteristic of the composite resonance circuit according to the present embodiment will be described with reference to FIG. This example is an example in which the resonance frequencies of the parallel resonance circuits 79 and 80 are relatively close to each other. FIG. 16 shows the frequency characteristics of the absolute value of the impedance of each of the parallel resonance circuits 79 and 80 as the resonance characteristics of the parallel resonance circuits 79 and 80. In FIG. 16, reference numeral 81 indicates the characteristics of the parallel resonance circuit 79, reference numeral 82 indicates the characteristics of the parallel resonance circuit 80, and reference numeral 83 indicates the characteristics of the composite resonance circuit. Moreover, fi denotes the resonant frequency of the parallel resonant circuit 7 9, f 2 represents the resonance frequency of the parallel resonant circuit 8 0. The absolute value of the impedance of the composite resonance circuit is the sum of the absolute values of the impedances of the parallel resonance circuits 79 and 80 for each frequency. 6510
15 この例では、 並列共振回路 7 9 , 8 0の各々のインピーダンスの絶対値が所定 値 (例えば、 並列共振回路 7 9 , 8 0のいずれかのインピーダンスの絶対値の最 大値の 2分の 1 ) 以上となる周波数範囲は部分的に重なっている。 そして、 複合 共振回路のインピーダンスの絶対値が上記の所定値以上となる周波数範囲は、 各 並列共振回路 7 9 , 8 0の上記周波数範囲よりも広い。 15 In this example, the absolute value of the impedance of each of the parallel resonant circuits 79, 80 is a predetermined value (for example, one half of the maximum value of the absolute value of the impedance of any of the parallel resonant circuits 79, 80). 1) The above frequency ranges partially overlap. The frequency range in which the absolute value of the impedance of the composite resonance circuit is equal to or greater than the predetermined value is wider than the frequency range of each of the parallel resonance circuits 79 and 80.
更に、 この例では、 所定の周波数範囲 (例えば、 複合共振回路におけるインピ 一ダンスの絶対値が上記の所定値以上となる周波数範囲) における複合共振回路 のインピーダンスの絶対値は、 その周波数範囲における並列共振回路 7 9, 8 0 の各々のそれよりも大きい。  Further, in this example, the absolute value of the impedance of the composite resonance circuit in a predetermined frequency range (for example, the frequency range in which the absolute value of the impedance in the composite resonance circuit is equal to or more than the above-mentioned predetermined value) It is larger than that of each of the resonance circuits 79, 80.
従って、 この例の複合共振回路によれば、 1つの並列共振回路を用いる場合に 比べて、 リップル電圧やノイズを低減できる周波数範囲を広げることができると 共に、 リップル電圧やノイズをより低減することができる。  Therefore, according to the composite resonance circuit of this example, the frequency range in which the ripple voltage and the noise can be reduced can be widened and the ripple voltage and the noise can be further reduced as compared with the case where one parallel resonance circuit is used. Can be.
なお、 本実施の形態において、 並列共振回路 7 9, 8 0の各々のインピーダン スの絶対値が所定値 (例えば、 並列共振回路 7 9 , 8 0のいずれかのインピーダ シスの絶対値の最大値の 2分の 1 )以上となる周波数範囲が互いに離れるように、 並列共振回路 7 9 , 8 0の共振特性を設定してもよい。 この場合には、 複合共振 回路の複合共振特性は第 6図に示したようになる。  In this embodiment, the absolute value of the impedance of each of the parallel resonance circuits 79, 80 is a predetermined value (for example, the maximum value of the absolute value of the impedance of any of the parallel resonance circuits 79, 80). The resonance characteristics of the parallel resonance circuits 79 and 80 may be set so that the frequency ranges that are equal to or more than 2) are separated from each other. In this case, the composite resonance characteristics of the composite resonance circuit are as shown in FIG.
本実施の形態に係る複合共振回路は、 端子 7 7 , 7 8が導電線に接続されるこ とによって、 導電線の途中に揷入される。 複合共振回路は、 この導電線上を伝搬 するリップル電圧やノイズの低減のためのフィルタとして利用可能である。  The composite resonance circuit according to the present embodiment is inserted in the middle of the conductive wire by connecting terminals 77 and 78 to the conductive wire. The composite resonance circuit can be used as a filter for reducing ripple voltage and noise propagating on the conductive line.
本実施の形態におけるその他の構成、 作用おょぴ効果は、 第 1の実施の形態と 同様である。  Other configurations, operations, and effects of the present embodiment are the same as those of the first embodiment.
[第 5の実施の形態]  [Fifth Embodiment]
次に、 第 1 7図を参照して、 本発明の第 5の実施の形態に係る複合共振回路に ついて説明する。 第 1 7図は本実施の形態に係る複合共振回路の構成を示す説明 図である。  Next, a composite resonance circuit according to a fifth embodiment of the present invention will be described with reference to FIG. FIG. 17 is an explanatory diagram showing the configuration of the composite resonance circuit according to the present embodiment.
本実施の形態に係る複合共振回路は、 環状の磁気回路を構成する 2つの磁芯 9 1 , 9 2と、 それぞれ磁芯 9 1 , 9 2に巻かれた卷線 9 3, 9 4と、 卷線 9 3に 対して並列に接続されたキャパシ夕 9 5と、 巻線 9 4に対して並列に接続された 3 06510 The composite resonance circuit according to the present embodiment includes: two magnetic cores 91 and 92 constituting an annular magnetic circuit; windings 93 and 94 wound around the magnetic cores 91 and 92, respectively; Capacitance 95 connected in parallel with winding 93 and winding connected in parallel with winding 94 3 06510
16 キャパシタ 9 6とを備えている。巻線 9 3の一端には端子 9 7が接続されている。 卷線 9 3の他端は巻線 9 4の一端に接続されている。 巻線 9 4の他端には端子 9 8が接続されている。 従って、 巻線 9 3と巻線 9 4は直列に接続されている。 本 実施の形態に係る複合共振回路の等価回路は、 第 1 5図に示した第 4の実施の形 態における等価回路と同様である。  16 capacitors 96. A terminal 97 is connected to one end of the winding 93. The other end of the winding 93 is connected to one end of the winding 94. The terminal 98 is connected to the other end of the winding 94. Therefore, the winding 93 and the winding 94 are connected in series. The equivalent circuit of the composite resonance circuit according to the present embodiment is the same as the equivalent circuit in the fourth embodiment shown in FIG.
本実施の形態では、 磁芯 9 1、 卷線 9 3およびキャパシタ 9 5は第 1の並列共 振回路 1 0 1を構成し、 磁芯 9 2、 巻線 9 4およびキャパシ夕 9 6は第 2の並列 共振回路 1 0 2を構成している。  In the present embodiment, the magnetic core 91, the winding 93, and the capacitor 95 constitute a first parallel resonance circuit 101, and the magnetic core 92, the winding 94, and the capacity 96 are the first parallel resonance circuit 101. Two parallel resonance circuits 102 are formed.
第 1の並列共振回路 1 0 1と第 2の並列共振回路 1 0 2は、 互いに異なる共振 特性を有している。 特に、 第 1の並列共振回路 1 0 1の共振周波数と第 2の並列 共振回路 1 0 2の共振周波数は互いに異なっている。 第 1の並列共振回路 1 0 1 と第 2の並列共振回路 1 0 2の共振特性を異ならせるには、 卷線 9 3 , 9 4のィ ンダクタンスを異ならせるか、 キャパシ夕 9 5 , 9 6の容量を異ならせるか、 あ るいは両方を異ならせればよい。  The first parallel resonance circuit 101 and the second parallel resonance circuit 102 have different resonance characteristics from each other. In particular, the resonance frequency of the first parallel resonance circuit 101 and the resonance frequency of the second parallel resonance circuit 102 are different from each other. In order to make the resonance characteristics of the first parallel resonance circuit 101 and the second parallel resonance circuit 102 different, the inductances of the windings 93 and 94 should be different or the capacitances 95 and 96 should be different. The capacities can be different, or both can be different.
本実施の形態に係る複合共振回路では、 2つの並列共振回路 1 0 1, 1 0 2が 直列に接続されて、 この 2つの並列共振回路 1 0 1, 1 0 2が複合されている。 そのため、 この複合共振回路は、 2つの並列共振回路 1 0 1, 1 0 2の共振特性 が複合されてなる複合共振特性を有する。  In the composite resonance circuit according to the present embodiment, two parallel resonance circuits 101 and 102 are connected in series, and the two parallel resonance circuits 101 and 102 are combined. Therefore, this composite resonance circuit has a composite resonance characteristic obtained by combining the resonance characteristics of the two parallel resonance circuits 101 and 102.
本実施の形態に係る複合共振回路の複合共振特性は、 第 4の実施の形態と同様 であり、 例えば第 1 6図や第 6図に示したようになる。  The composite resonance characteristics of the composite resonance circuit according to the present embodiment are the same as those of the fourth embodiment, and are as shown in FIGS. 16 and 6, for example.
本実施の形態におけるその他の構成、 作用および効果は、 第 4の実施の形態と 同様である。  Other configurations, operations, and effects of the present embodiment are the same as those of the fourth embodiment.
[第 6の実施の形態]  [Sixth embodiment]
次に、 本発明の第 6の実施の形態に係るフィル夕について説明する。 本実施の 形態に係るフィルタは、 所定の周波数範囲における信号を低減するものである。 なお、 ここで言う信号とは、 リップル電圧やノイズを含むものである。 本実施の 形態に係るフィルタは、 本発明の複合共振回路を含むものである。 すなわち、 本 実施の形態に係るフィルタは、 互いに異なる共振特性を有し、 且つ複合された複 数の並列共振回路を含み、 各並列共振回路の共振特性が複合されてなる複合共振 特性を有している。 本実施の形態に係るフィルタは、 上記複合共振特性を利用し て、 所定の周波数範囲における信号を低減する。 Next, a filter according to a sixth embodiment of the present invention will be described. The filter according to the present embodiment reduces a signal in a predetermined frequency range. Note that the signal referred to here includes a ripple voltage and noise. The filter according to the present embodiment includes the composite resonance circuit of the present invention. That is, the filter according to the present embodiment has different resonance characteristics from each other, includes a plurality of composite parallel resonance circuits, and has a composite resonance obtained by combining the resonance characteristics of the respective parallel resonance circuits. Has characteristics. The filter according to the present embodiment uses the composite resonance characteristic to reduce a signal in a predetermined frequency range.
始めに、 図 1 8を参照して、 本実施の形態に係るフィルタを含むノイズ抑制回 路の構成について説明する。 このノイズ抑制回路 1 1 1は、 ノイズ発生源として の電子機器 1 1 2に接続された 2本の導電線 1 1 3 a, 1 1 3 bの途中に揷入さ れるようになっている。 導電線 1 1 3 a, 1 1 3 bは、 交流電力または直流電力 を輸送する電源線 1 14に接続されるようになっている。 電源線 1 14は、 2本 の導電線 1 14 a, 1 14 bを含んでいる。 導電線 1 1 3 a, 1 1 3 bは、 それ ぞれ導電線 1 14 a, 1 14 bに接続されるようになっている。 電子機器 1 1 2 は、 導電線 1 1 3 a, 1 1 3 bを介して、 電源線 1 14より電力の供給を受ける ようになつている。 電子機器 1 1 2は、 例えばスイッチング電源である。  First, the configuration of the noise suppression circuit including the filter according to the present embodiment will be described with reference to FIG. The noise suppression circuit 111 is inserted in the middle of two conductive wires 113a and 113b connected to the electronic device 112 as a noise source. The conductive wires 113a and 113b are connected to a power line 114 that carries AC power or DC power. The power supply line 114 includes two conductive lines 114a and 114b. The conductive wires 113a and 113b are connected to the conductive wires 114a and 114b, respectively. The electronic device 112 receives power supply from the power supply line 114 via the conductive wires 113a and 113b. The electronic devices 112 are, for example, switching power supplies.
ノイズ抑制回路 1 1 1は、 電子機器 1 1 2より発生されて、 導電線 1 1 3 a, 1 1 3 b上を伝搬するノイズを抑制するものである。 ノイズ抑制回路 1 1 1は、 本実施の形態に係るフィルタとしての低域ノイズ低減回路 1 20と、 高域ノイズ 低減回路 1 8 0とを備えている。低域ノイズ低減回路 1 20は、導電線 1 1 3 a, 1 1 3 bを介して電子機器 1 1 2に接続されている。 高域ノイズ低減回路 1 80 は、 低域ノイズ低減回路 1 20に対して縦続接続され、 且つ電源線 1 14の導電 線 1 14 a, 1 14 bに接続されている。 なお、 電子機器 1 1 2と電源線 1 14 との間における低域ノイズ低減回路 1 20と高域ノイズ低減回路 1 8 0の配置は、 第 1 8図に示した配置と逆であってもよい。  The noise suppression circuit 111 suppresses noise generated from the electronic device 112 and transmitted on the conductive lines 113a and 113b. The noise suppression circuit 111 includes a low-frequency noise reduction circuit 120 as a filter according to the present embodiment, and a high-frequency noise reduction circuit 180. The low-frequency noise reduction circuit 120 is connected to the electronic device 112 via conductive wires 113a and 113b. The high-frequency noise reduction circuit 180 is cascaded to the low-frequency noise reduction circuit 120, and is connected to the conductive wires 114a and 114b of the power supply line 114. Note that the arrangement of the low-frequency noise reduction circuit 120 and the high-frequency noise reduction circuit 180 between the electronic device 112 and the power supply line 114 may be opposite to the arrangement shown in FIG. Good.
高域ノイズ低減回路 1 80は、 主に第 1の周波数範囲におけるノイズを低減す る。 低域ノイズ低減回路 1 2 0は、 主に第 1の周波数範囲内の周波数よりも低い 周波数を含む第 2の周波数範囲におけるノイズを低減する。第 1の周波数範囲は、 例えば 1 ΜΗ ζ〜30MHzの範囲を含む範囲である。 第 2の周波数範囲は、 例 えば 0〜 1ΜΗζの範囲、 あるいはこの範囲内の一部の範囲である。 本実施の形 態に係るフィルタとしての低域ノイズ低減回路 1 20は、 所定の周波数範囲にお ける信号として、 上記第 2の周波数範囲におけるノイズを低減する。  The high-frequency noise reduction circuit 180 mainly reduces noise in the first frequency range. The low-frequency noise reduction circuit 120 mainly reduces noise in a second frequency range including a frequency lower than a frequency in the first frequency range. The first frequency range is a range including, for example, a range of 1 MHz to 30 MHz. The second frequency range is, for example, a range of 0 to 1 °, or a part of the range. Low-frequency noise reduction circuit 120 as a filter according to the present embodiment reduces noise in the second frequency range as a signal in a predetermined frequency range.
低域ノイズ低減回路 1 20および高域ノイズ低減回路 1 8 0は、 これらに対す るグランドとして機能する筐体 1 1 5に収納されている。 低域ノイズ低減回路 1 PC蘭雇 10 The low-frequency noise reduction circuit 120 and the high-frequency noise reduction circuit 180 are housed in a housing 115 that functions as a ground for them. Low frequency noise reduction circuit 1 PC orchid hire 10
18  18
20および高域ノイズ低減回路 1 80においてグランドに接続される部分はダラ ンド線 1 1 3 cに接続されている。 このグランド線 1 1 3 cは、 筐体 1 1 5に電 気的に接続されている。 高域ノイズ低減回路 1 8 0は低域ノイズ低減回路 1 2 0 よりも筐体 1 1 5に近い位置に配置されていてもよい。 なお、 電源線 1 1 4が導 電線 1 14 a, 1 1 4 bの他にグランド線を有する場合には、 グランド線 1 1 3 cは、 この電源線 1 14のグランド線に電気的に接続されていてもよい。 The portion connected to the ground in 20 and the high-frequency noise reduction circuit 180 is connected to the ground line 113c. The ground line 113c is electrically connected to the housing 115. The high-frequency noise reduction circuit 180 may be arranged at a position closer to the housing 115 than the low-frequency noise reduction circuit 120. When the power supply line 114 has a ground wire in addition to the conductors 114a and 114b, the ground wire 113c is electrically connected to the ground wire of the power supply line 114. It may be.
ノイズ抑制回路 1 1 1は、 電子機器 1 1 2と別体でもよいし、 一体化されてい てもよい。 ノイズ抑制回路 1 1 1が電子機器 1 1 2と別体の場合には、 筐体 1 1 5はノイズ抑制回路 1 1 1の専用の筐体である。 ノイズ抑制回路 1 1 1が電子機 器 1 1 2と一体化されている場合には、 筐体 1 1 5は、 電子機器 1 1 2の筐体で あってもよいし、 電子機器 1 1 2の筐体内に収納されたノイズ抑制回路 1 1 1の 専用の筐体であってもよい。 電子機器 1 1 2においてグランドに接続される部分 は、 グランド線 1 1 3 cに接続されていてもよい。  The noise suppression circuit 111 may be separate from the electronic device 112 or may be integrated therewith. When the noise suppression circuit 111 is separate from the electronic device 112, the housing 115 is a dedicated housing for the noise suppression circuit 111. When the noise suppression circuit 1 1 1 is integrated with the electronic device 1 1 2, the housing 1 1 5 may be the housing of the electronic device 1 1 2 or the electronic device 1 1 2 It may be a dedicated housing for the noise suppression circuit 111 housed in the housing. The part of the electronic device 112 connected to the ground may be connected to the ground line 113c.
次に、 第 1 9図を参照して、 本実施の形態に係るフィルタ、 すなわち低域ノィ ズ低減回路 1 20の構成について説明する。 低域ノイズ低減回路 1 2 0は、 導電 線 1 1 3 a, 1 1 3 bを伝搬するノ一マルモ一ドノィズおよびコモンモ一ドノィ ズを低減するものである。 ここでは、 低域ノイズ低減回路 1 20は、 電子機器 1 1 2と高域ノイズ低減回路 1 80との間に配置されるものとして説明する。 低域 ノイズ低減回路 1 2 0は、 電子機器 1 1 2に接続される 2つの端子 1 2 1 a, 1 2 1 bと、 高域ノイズ低減回路 1 8 0に接続される 2つの端子 1 2 2 a, 12 2 bとを備えている。 端子 1 2 1 a, 1 2 2 a間は導電線 1 1 3 aによって接続さ れている。端子 1 2 1 b, 1 22 b間は導電線 1 1 3 bによって接続されている。 低域ノイズ低減回路 1 20は、 更に、 端子 1 2 1 a, 1 22 a間において導電 線 1 1 3 aに揷入された複合共振回路 1 2 3と、 端子 1 2 1 b, 1 22 b a間に おいて導電線 1 1 3 bに揷入された複合共振回路 1 24とを備えている。 複合共 振回路 1 23, 1 24は、 同様の構成になっている。 複合共振回路 1 2 3, 1 2 4としては、 第 1ないし第 5の各実施の形態のうちのいずれかの複合共振回路が 用いられる。  Next, the configuration of the filter according to the present embodiment, that is, the low-frequency noise reduction circuit 120 will be described with reference to FIG. The low-frequency noise reduction circuit 120 reduces normal mode noise and common mode noise propagating through the conductive lines 113a and 113b. Here, the low-frequency noise reduction circuit 120 is described as being disposed between the electronic device 112 and the high-frequency noise reduction circuit 180. The low-frequency noise reduction circuit 1 2 0 has two terminals 1 2 1 a and 1 2 1 b connected to the electronic device 1 1 2 and the two terminals 1 2 connected to the high-frequency noise reduction circuit 1 80 2 a and 12 2 b. Terminals 121a and 122a are connected by conductive wire 113a. Terminals 121b and 122b are connected by conductive wire 113b. The low-frequency noise reduction circuit 120 further includes a composite resonance circuit 1 23 inserted between the terminals 121 a and 122 a in the conductive wire 113 a, and terminals 122 b and 122 ba. And a composite resonance circuit 124 inserted between the conductive wires 113 b in between. The composite resonance circuits 123 and 124 have the same configuration. As the composite resonance circuits 123 and 124, any of the composite resonance circuits of the first to fifth embodiments is used.
この低域ノイズ低減回路 1 20によれば、 導電線 1 1 3 a, 1 1 3 bを伝搬す る第 2の周波数範囲におけるノーマルモードノイズおよびコモンモードノイズを 低減することができる。 なお、 低域ノイズ低減回路 1 20は、 複合共振回路 1 2 3, 1 24の一方のみを備えて、 ノ一マルモードノイズのみを低減するものであ つてもよい。 According to the low-frequency noise reduction circuit 120, the conductive lines 113 a and 113 b The normal mode noise and the common mode noise in the second frequency range can be reduced. The low-frequency noise reduction circuit 120 may include only one of the composite resonance circuits 123 and 124 to reduce only normal mode noise.
次に、 第 2 0図を参照して、 高域ノイズ低減回路 1 80の具体的な回路構成の 一例について説明する。 第 20図に示した高域ノイズ低減回路 1 80は、 導電線 1 1 3 a, 1 1 3 bを伝搬するコモンモ一ドノイズを低減するものである。 ここ では、 高域ノイズ低減回路 1 8 0は、 低域ノイズ低減回路 1 2 0と電源線 1 14 との間に配置されるものとして説明する。 高域ノイズ低減回路 1 80は、 低域ノ ィズ低減回路 1 2 0に接続される 2つの端子 1 8 1 a, 1 8 1 bと、 電源線 1 1 4の導電線 1 14 a, 1 14 bに接続される 2つの端子 1 82 a, 1 82 bとを 備えている。 端子 1 8 1 a, 1 82 a間は導電線 1 1 3 aによって接続されてい る。 端子 1 8 1 b, 1 82 b間は導電線 1 1 3 bによって接続されている。 高域ノイズ低減回路 1 80は、 更に、 導電線 1 1 3 a, 1 1 3 bの所定の位置 に配置され、 導電線 1 1 3 a, 1 1 3 bを伝搬するコモンモードノイズを検出す る検出回路 1 84と、 この検出回路 1 84により検出されたノイズと逆相の信号 となる逆相信号を発生する逆相信号発生回路 1 8 5と、 導電線 1 1 3 a, 1 1 3 bにおいて検出回路 1 84とは異なる位置に配置され、 導電線 1 1 3 a, 1 1 3 bに対して逆相信号発生回路 1 8 5により発生された逆相信号を注入する注入回 路 18 6と、 導電線 1 1 3 a, 1 1 3 bにおいて検出回路 1 84が配置された位 置と注入回路 1 8 6が配置された位置との間の位置に設けられ、 通過するノイズ の波高値を低減するインピーダンスを有するインピーダンス素子 1 8 7と、 逆相 信号発生回路 1 8 5と注入回路 1 8 6との間に設けられたインピーダンス素子 1 8 8とを備えている。  Next, an example of a specific circuit configuration of the high-frequency noise reduction circuit 180 will be described with reference to FIG. The high-frequency noise reduction circuit 180 shown in FIG. 20 reduces common mode noise propagating through the conductive lines 113a and 113b. Here, the high-frequency noise reduction circuit 180 is described as being disposed between the low-frequency noise reduction circuit 120 and the power supply line 114. The high-frequency noise reduction circuit 180 is composed of two terminals 18 1 a and 18 1 b connected to the low-frequency noise reduction circuit 120 and the conductive lines 114 a and 1 of the power supply line 114. It has two terminals 182a and 182b connected to 14b. Terminals 18 1 a and 182 a are connected by a conductive wire 113 a. Terminals 18 1 b and 182 b are connected by a conductive wire 113 b. The high-frequency noise reduction circuit 180 is further disposed at a predetermined position of the conductive lines 113a and 113b, and detects common mode noise propagating through the conductive lines 113a and 113b. Detection circuit 184, an anti-phase signal generation circuit 185 for generating an anti-phase signal that is an anti-phase signal to the noise detected by the detection circuit 184, and conductive lines 1 13 a, 1 13 Injection circuit 18 which is arranged at a position different from the detection circuit 184 in b, and injects the negative-phase signal generated by the negative-phase signal generation circuit 185 into the conductive lines 113 a and 113 b. 6 and a position where the detection circuit 184 is arranged and the position where the injection circuit 186 is arranged in the conductive lines 113a and 113b, and the noise wave passing therethrough is provided. An impedance element 187 having an impedance to reduce the high value, and an impedance element provided between the negative-phase signal generation circuit 185 and the injection circuit 186 And a 1 8 8.
インピーダンス素子 1 88は、 注入回路 1 86に入力されるノイズと注入回路 1 86によって導電線 1 1 3 a, 1 1 3 bに注入される逆相信号との位相差が 1 8 0° に近づくように、 逆相信号の位相を調整するものである。 また、 このイン ピーダンス素子 1 8 8により、 注入回路 1 8 6によって導電線 1 1 3 a, 1 1 3 bに注入される逆相信号の波高値を、 注入回路 1 86に入力されるノイズの波高 値に近づくように調整することもできる。 In the impedance element 188, the phase difference between the noise input to the injection circuit 186 and the negative phase signal injected into the conductive lines 113a and 113b by the injection circuit 186 approaches 180 °. In this way, the phase of the negative phase signal is adjusted. In addition, the impedance element 188 allows the peak value of the negative-phase signal injected into the conductive lines 113a and 113b by the injection circuit 186 to be a value of the noise input to the injection circuit 186. Wave height It can also be adjusted to approach the value.
検出回路 1 84は、 一端が導電線 1 1 3 aに接続され、 他端が逆相信号発生回 路 1 8 5の入力端に接続されたキャパシタ 1 84 aと、 一端が導電線 1 1 3 bに 接続され、 他端が逆相信号発生回路 1 8 5の入力端に接続されたキャパシタ 1 8 4 bとを有している。 キャパシタ 1 84 a , 1 84 bは、 それぞれ導電線 1 1 3 a, 1 1 3 bにおける電圧変動のうち、 高周波成分を通過させ、 交流電力の周波 数を含む低周波成分を遮断する。 注入回路 1 86は、 一端がインピ一ダンス素子 1 8 8の出力端に接続され、 他端が導電線 1 1 3 aに接続されたキャパシタ 1 8 6 aと、 一端がインピーダンス素子 1 88の出力端に接続され、 他端が導電線 1 1 3 bに接続されたキャパシタ 1 8 6 bとを有している。 この例では、 注入回路 The detection circuit 184 includes a capacitor 184a having one end connected to the conductive line 113a and the other end connected to the input terminal of the negative-phase signal generation circuit 185, and one end connected to the conductive line 113. b and a capacitor 184 b connected at the other end to the input terminal of the antiphase signal generation circuit 185. Capacitors 184a and 184b allow high-frequency components of voltage fluctuations in conductive lines 113a and 113b to pass, and block low-frequency components including the frequency of AC power. The injection circuit 186 has one end connected to the output end of the impedance element 188, the other end connected to the conductive line 113a, a capacitor 186a, and one end connected to the output of the impedance element 188. And a capacitor 186 b connected to the other end and the other end connected to the conductive line 113 b. In this example, the injection circuit
1 8 6は、 キャパシタ 1 8 6 a, 1 86 bを介して、 導電線 1 1 3 a, 1 1 3 b に対して、 逆相信号に対応した同じ電圧の変化を与える。 The 186 gives the same voltage change corresponding to the negative-phase signal to the conductive lines 113a and 113b via the capacitors 186a and 186b.
逆相信号発生回路 1 8 5は、 トランス 1 89を有している。 トランス 1 8 9の 1次巻線の一端はキャパシタ 1 84 a, 1 84 bに接続されている。 トランス 1 89の 1次巻線の他端は、 トランス 1 89の 2次巻線の一端と共にグランドに接 続されている。 トランス 1 89の 2次巻線の他端は、 ィンピ一ダンス素子 1 88 に接続されている。 インピーダンス素子 1 8 7にはコモンモ一ドチヨ一クコイル The antiphase signal generating circuit 185 has a transformer 189. One end of the primary winding of the transformer 189 is connected to the capacitors 184a and 184b. The other end of the primary winding of the transformer 189 is connected to ground together with one end of the secondary winding of the transformer 189. The other end of the secondary winding of the transformer 189 is connected to the impedance element 188. Common mode choke coil for impedance element 1 8 7
1 90が用いられ、 インピーダンス素子 1 88にはラインチョークコイル 1 9 1 またはこれと同等の位相特性を有するインピ一ダンス素子が用いられている。 キャパシタ 1 84 a, 1 84 b, 1 86 a, 1 86 bの容量は、 例えば漏洩電 流値が所定の規格値以内になるように設定される。 具体的には、 キャパシ夕 1 8 4 a , 1 84 b, 1 8 6 a, 1 86 bの容量は、 例えば 1 0〜 2 0, O O O p F の範囲内である。 A line choke coil 191 or an impedance element having a phase characteristic equivalent thereto is used as the impedance element 188. The capacitances of the capacitors 184a, 184b, 186a, 186b are set so that, for example, the leakage current value falls within a predetermined standard value. Specifically, the capacities of the capacitors 184a, 184b, 186a, and 186b are, for example, in the range of 10 to 20 and OOOpF.
また、 トランス 1 8 9の 1次巻線と 2次卷線の卷数比は 1 : 1であることが理 想的であるが、 トランス 1 89における信号の減衰を考慮して巻数比を変えても よい。  It is ideal that the turns ratio of the primary winding and the secondary winding of the transformer 189 is 1: 1, but the turns ratio is changed in consideration of the signal attenuation in the transformer 189. You may.
次に、 第 2 0図に示した高域ノイズ低減回路 1 80の作用について説明する。 この高域ノイズ低減回路 1 80では、 インピーダンス素子 1 87よりも検出回路 1 84側の導電線 1 1 3 a , 1 1 3 b (以下、 単に検出回路 1 84側の導電線 1 1 3 a, 1 1 3 bと言う。) 上に発生したノイズが、 インピーダンス素子 1 8 7を 通過して、ィンピーダンス素子 1 8 7よりも注入回路 1 8 6側の導電線 1 1 3 a, 1 1 3 b (以下、 単に注入回路 1 8 6側の導電線 1 1 3 a, 1 1 3 bと言う。) に 流入した場合、 注入回路 1 86側の導電線 1 1 3 a, 1 13 b上のノイズの波高 値は、 検出回路 1 84側の導電線 1 1 3 a, 1 1 3 b上のノイズの波高値よりも 小さくなる。 また、 この高域ノイズ低減回路 1 80では、 インピーダンス素子 1 8 7によって、 検出回路 1 84側の導電線 1 1 3 a, 1 13 b上のノイズの波高 値と注入回路 1 8 6側の導電線 1 1 3 a, 1 1 3 b上のノイズの波高値とが異な る状態を維持することができる。 Next, the operation of the high-frequency noise reduction circuit 180 shown in FIG. 20 will be described. In this high-frequency noise reduction circuit 180, the conductive lines 113a and 113b on the detection circuit 184 side than the impedance element 187 (hereinafter simply referred to as the conductive lines 1 84 on the detection circuit 184 side) We say 1 3 a, 1 1 3 b. The noise generated above passes through the impedance element 187, and the conductive wires 1 13a and 1 13b on the injection circuit 1 86 side of the impedance element 1 87 (hereinafter simply referred to as the injection circuit). When it flows into the conductive lines 1 13a and 1 13b on the 186 side, the peak value of noise on the conductive lines 1 13a and 1 13b on the injection circuit 186 is detected. It becomes smaller than the peak value of the noise on the conductive wires 1 13 a and 1 13 b on the circuit 184 side. Also, in the high-frequency noise reduction circuit 180, the impedance element 187 causes the noise peak value on the conductive lines 113a and 113b on the detection circuit 184 side and the conductive value on the injection circuit 186 side to be higher. The state where the noise peak values on the lines 113a and 113b differ from each other can be maintained.
また、 第 2 0図に示した高域ノイズ低減回路 1 80では、 検出回路 1 84によ り、 導電線 1 1 3 a, 1 1 3 b上のコモンモードノイズが検出される。 そして、 逆相信号発生回路 1 8 5によって、 検出回路 1 84により検出されたノイズと逆 相の信号となる逆相信号が発生される。 更に、 注入回路 1 86によって、 導電線 1 1 3 a, 1 1 3 bに対して逆相信号発生回路 1 8 5により発生された逆相信号 が注入される。 これにより、 注入回路 1 8 6側の導電線 1 1 3 a, 1 1 3 b上の コモンモードノイズが相殺される。  In the high-frequency noise reduction circuit 180 shown in FIG. 20, the detection circuit 184 detects the common mode noise on the conductive lines 113a and 113b. Then, the anti-phase signal generation circuit 185 generates an anti-phase signal which is a signal of an anti-phase to the noise detected by the detection circuit 184. Further, the injection circuit 186 injects the antiphase signal generated by the antiphase signal generation circuit 185 into the conductive lines 113a and 113b. As a result, the common mode noise on the conductive lines 113a and 113b on the injection circuit 186 side is canceled.
なお、 インピーダンス素子 1 8 7を通過した後のノイズの波高値は、 インピー ダンス素子 1 8 7を通過する前のノイズの波高値よりも小さくなる。 従って、 注 入回路 1 86によって導電線 1 1 3 a, 1 1 3 bに注入される逆相信号の波高値 を、 インピーダンス素子 1 87を通過した後に注入回路 1 8 6に入力されるノィ ズの波高値に近いものとなるように調整する必要がある。  Note that the peak value of the noise after passing through the impedance element 187 is smaller than the peak value of the noise before passing through the impedance element 187. Therefore, the peak value of the negative-phase signal injected into the conductive lines 113a and 113b by the injection circuit 186 is converted into the noise input to the injection circuit 186 after passing through the impedance element 187. It is necessary to make an adjustment so as to be close to the peak value.
また、 第 2 0図に示し fe高域ノイズ低減回路 1 8 0では、 インピーダンス素子 1 8 8によって、 注入回路 1 8 6に入力されるノイズと注入回路 1 8 6によって 導電線 1 1 3 a, 1 1 3 bに注入される逆相信号との位相差を 1 80 ° に近づけ ることができると共に、 注入回路 1 8 6によって導電線 1 1 3 a, 1 1 3 bに注 入される逆相信号の波高値を、 注入回路 1 86に入力されるノイズの波高値に近 づけることができる。 従って、 この高域ノイズ低減回路 18 0によれば、 より効 果的に、 注入回路 1 8 6側の導電線 1 1 3 a, 1 1 3 b上のノイズを低減するこ とができる。 なお、 本発明は上記各実施の形態に限定されず、 種々の変更が可能である。 例 えば、 各実施の形態では、 2つの並列共振回路を複合して複合共振回路を構成し たが、 本発明では 3つ以上の並列共振回路を複合して複合共振回路を構成しても よい。 In the fe high-frequency noise reduction circuit 180 shown in FIG. 20, the impedance input to the injection circuit 186 by the impedance element 188 and the conductive line 113 a, The phase difference between the opposite phase signal injected into 113b and 180 ° can be made close to 180 °, and the reverse circuit injected into conductive lines 113a and 113b by injection circuit 186. The peak value of the phase signal can be made close to the peak value of the noise input to the injection circuit 186. Therefore, according to the high-frequency noise reduction circuit 180, the noise on the conductive lines 113a and 113b on the injection circuit 186 side can be reduced more effectively. Note that the present invention is not limited to the above embodiments, and various modifications are possible. For example, in each embodiment, a composite resonance circuit is formed by combining two parallel resonance circuits. However, in the present invention, a composite resonance circuit may be formed by combining three or more parallel resonance circuits. .
以上説明したように、 本発明の複合共振回路によれば、 複数の並列共振回路の 共振特性が複合されてなる複合共振特性を利用して、 電力変換回路が発生するリ ップル電圧やノイズを低減することができる。 また、 本発明では、 ある程度の周 波数の幅を有するノイズを低減したり、 周波数が異なるリツプル電圧とノイズを 同時に低減したりすることができる。 また、 本発明によれば、 複合共振特性を利 用してリップル電圧やノイズを低減するため、 小型化が可能である。 従って、 本 発明によれば、 電力変換回路が発生するリップル電圧やノイズの低減のためのフ ィルタとして利用可能で且つ小型化できる複合共振回路を実現することができる また、 本発明の複合共振回路において、 複数のインダクタンス要素を含む 1つ のィンダクタンス素子と、 このィンダクタンス素子に接続された 1以上のキャパ シタとを用いて、 複数の並列共振回路を構成してもよい。 この場合には、 複合共 振回路をより小型化することが可能になる。  As described above, according to the composite resonance circuit of the present invention, the ripple voltage and noise generated by the power conversion circuit are reduced by using the composite resonance characteristics obtained by combining the resonance characteristics of a plurality of parallel resonance circuits. can do. Further, in the present invention, noise having a certain frequency width can be reduced, and ripple voltage and noise having different frequencies can be reduced at the same time. Further, according to the present invention, the ripple voltage and the noise are reduced by using the composite resonance characteristics, so that the size can be reduced. Therefore, according to the present invention, it is possible to realize a composite resonance circuit that can be used as a filter for reducing a ripple voltage and noise generated by a power conversion circuit and that can be reduced in size. In the above, a plurality of parallel resonance circuits may be configured using one inductance element including a plurality of inductance elements and one or more capacitors connected to the inductance element. In this case, the size of the composite resonance circuit can be further reduced.
また、 本発明のフィルタによれば、 本発明の複合共振回路と同様の効果を得る ことができる。  Further, according to the filter of the present invention, the same effect as that of the composite resonance circuit of the present invention can be obtained.
以上の説明に基づき、 本発明の種々の態様や変形例を実施可能であることは明 らかである。 従って、 以下の請求の範囲の均等の範囲において、 上記の最良の形 態以外の形態でも本発明を実施することが可能である。  Based on the above description, it is apparent that various aspects and modifications of the present invention can be implemented. Therefore, within the scope equivalent to the following claims, the present invention can be carried out in a form other than the above-described best mode.

Claims

請 求 の 範 囲 The scope of the claims
1 . 互いに異なる共振特性を有し、且つ複合された複数の並列共振回路を含み、 各並列共振回路の共振特性が複合されてなる複合共振特性を有することを特徴と する複合共振回路。 1. A composite resonance circuit comprising a plurality of composite parallel resonance circuits having different resonance characteristics from each other and having composite resonance characteristics obtained by combining the resonance characteristics of the respective parallel resonance circuits.
2 . 前記複数の並列共振回路は、 複数のインダクタンス要素を含む 1つのイン ダクタンス素子と、 このィンダクタンス素子に接続された 1以上のキャパシタと を有することを特徴とする請求の範囲第 1項記載の複合共振回路。  2. The plurality of parallel resonance circuits include one inductance element including a plurality of inductance elements, and one or more capacitors connected to the inductance elements. Composite resonance circuit.
3 . 前記インダクタンス素子は、 1つの磁芯と、 この磁芯に巻かれた複数の卷 線とを有し、 これらによって複数のインダクタンス要素が構成され、 各巻線には それぞれ別個のキャパシタが接続されていることを特徴とする請求の範囲第 2項 記載の複合共振回路。  3. The inductance element has one magnetic core and a plurality of windings wound on the magnetic core, and a plurality of inductance elements are formed by these. A separate capacitor is connected to each winding. 3. The composite resonance circuit according to claim 2, wherein:
4 . 前記インダクタンス素子は、 接合された複数の磁芯と、 各磁芯に巻かれた 複数の巻線とを有し、 これらによって複数のインダクタンス要素が構成され、 各 巻線にはそれぞれ別個のキャパシ夕が接続されていることを特徴とする請求の範 囲第 2項記載の複合共振回路。  4. The inductance element has a plurality of bonded magnetic cores, and a plurality of windings wound around each magnetic core, and a plurality of inductance elements are configured by these. 3. The composite resonance circuit according to claim 2, wherein a capacity is connected.
5 . 前記複数の磁芯は、 互いに特性が異なることを特徴とする請求の範囲第 4 項記載の複合共振回路。  5. The composite resonance circuit according to claim 4, wherein the plurality of magnetic cores have different characteristics from each other.
6 . 前記インダクタンス素子は、 互いに特性が異なる複数の磁芯と、 この複数 の磁芯に卷かれた 1つの巻線とを有し、 これらによって複数のインダクタンス要 素が構成され、 前記巻線には 1つのキャパシ夕が接続されていることを特徴とす る請求の範囲第 2項記載の複合共振回路。  6. The inductance element has a plurality of magnetic cores having different characteristics from each other, and one winding wound on the plurality of magnetic cores, and these constitute a plurality of inductance elements. 3. The composite resonance circuit according to claim 2, wherein one capacitor is connected.
7 . 前記複数の並列共振回路は、 複数の巻線と、 それぞれ各巻線に対して並列 に接続されたキャパシ夕とを有することを特徴とする請求の範囲第 1項記載の複 合共振回路。  7. The composite resonance circuit according to claim 1, wherein the plurality of parallel resonance circuits include a plurality of windings and a capacity connected to each winding in parallel.
8 . 前記複数の巻線は直列に接続されていることを特徴とする請求の範囲第 7 項記載の複合共振回路。  8. The composite resonance circuit according to claim 7, wherein the plurality of windings are connected in series.
9 . 前記複数の並列共振回路は、 更に、 前記複数の巻線が巻かれた 1つの磁芯 を有することを特徴とする請求の範囲第 8項記載の複合共振回路。 9. The composite resonance circuit according to claim 8, wherein the plurality of parallel resonance circuits further include one magnetic core on which the plurality of windings are wound.
1 0 . 前記複数の並列共振回路は、 更に、 それぞれ前記各巻線が巻かれた複数の 磁芯を有することを特徴とする請求の範囲第 8項記載の複合共振回路。 10. The composite resonance circuit according to claim 8, wherein the plurality of parallel resonance circuits further include a plurality of magnetic cores each wound with each of the windings.
1 1 . 前記複数の並列共振回路の各々のインピーダンスの絶対値が所定値以上と なる周波数範囲は部分的に重なっており、 前記複合共振回路のインピーダンスの 絶対値が前記所定値以上となる周波数範囲は、 各並列共振回路の前記周波数範囲 よりも広いことを特徴とする請求の範囲第 1項記載の複合共振回路。  11. The frequency range in which the absolute value of the impedance of each of the plurality of parallel resonance circuits is equal to or more than a predetermined value partially overlaps, and the frequency range in which the absolute value of the impedance of the composite resonance circuit is equal to or more than the predetermined value. 2. The composite resonance circuit according to claim 1, wherein the frequency range is wider than the frequency range of each parallel resonance circuit.
1 2 . 前記複数の並列共振回路の各々のインピーダンスの絶対値が所定値以上と なる周波数範囲は互いに離れており、 前記複合共振回路のインピーダンスの絶対 値が前記所定値以上となる周波数範囲は、 各並列共振回路の前記周波数範囲を含 むことを特徴とする請求の範囲第 1項記載の複合共振回路。  12. The frequency range in which the absolute value of the impedance of each of the plurality of parallel resonance circuits is equal to or more than a predetermined value is separated from each other, and the frequency range in which the absolute value of the impedance of the composite resonance circuit is equal to or more than the predetermined value is: 2. The composite resonance circuit according to claim 1, comprising the frequency range of each parallel resonance circuit.
1 3 .所定の周波数範囲における前記複合共振回路のインピ一ダンスの絶対値は、 前記周波数範囲における前記複数の並列共振回路の各々のそれよりも大きいこと を特徴とする請求の範囲第 1項記載の複合共振回路。  13. The absolute value of the impedance of the composite resonance circuit in a predetermined frequency range is larger than that of each of the plurality of parallel resonance circuits in the frequency range. Composite resonance circuit.
1 4 . 所定の周波数範囲における信号を低減するフィルタであって、 1 4. A filter for reducing a signal in a predetermined frequency range,
互いに異なる共振特性を有し、 且つ複合された複数の並列共振回路を含み、 各 並列共振回路の共振特性が複合されてなる複合共振特性を有することを特徴とす るフィルタ。  A filter comprising a plurality of combined parallel resonance circuits having different resonance characteristics from each other, and having a composite resonance characteristic obtained by combining resonance characteristics of the respective parallel resonance circuits.
PCT/JP2003/006510 2002-05-27 2003-05-26 Complex resonance circuit and filter WO2003100972A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002151853A JP4233273B2 (en) 2002-05-27 2002-05-27 Complex resonant circuit
JP2002-151853 2002-05-27

Publications (1)

Publication Number Publication Date
WO2003100972A1 true WO2003100972A1 (en) 2003-12-04

Family

ID=29561263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006510 WO2003100972A1 (en) 2002-05-27 2003-05-26 Complex resonance circuit and filter

Country Status (3)

Country Link
JP (1) JP4233273B2 (en)
TW (1) TW200404405A (en)
WO (1) WO2003100972A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4219907B2 (en) * 2005-03-31 2009-02-04 Tdk株式会社 Noise suppression circuit
US8062783B2 (en) * 2006-12-01 2011-11-22 Tti Ellebeau, Inc. Systems, devices, and methods for powering and/or controlling devices, for instance transdermal delivery devices
JP6975034B2 (en) * 2017-12-21 2021-12-01 株式会社Soken Drive device for rotary electric machine

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924881Y1 (en) * 1973-08-09 1974-07-04
JPS5927618U (en) * 1982-08-12 1984-02-21 松下電器産業株式会社 power transformer equipment
JPS59140525U (en) * 1983-03-10 1984-09-19 ティーディーケイ株式会社 power line filter
JPS61140617U (en) * 1985-02-22 1986-08-30
JPH0159341U (en) * 1987-10-08 1989-04-13
JPH01105215U (en) * 1987-12-29 1989-07-14
JPH0397219U (en) * 1990-01-24 1991-10-07
JPH04362805A (en) * 1991-06-11 1992-12-15 Toshiba Corp Resonance filter
JPH10229315A (en) * 1997-02-13 1998-08-25 Matsushita Electric Ind Co Ltd Terminal noise filter
JPH11205063A (en) * 1998-01-13 1999-07-30 Mitsubishi Materials Corp Band stop filter component
WO2002037674A1 (en) * 2000-10-31 2002-05-10 Tdk Corporation Power line noise filter

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924881Y1 (en) * 1973-08-09 1974-07-04
JPS5927618U (en) * 1982-08-12 1984-02-21 松下電器産業株式会社 power transformer equipment
JPS59140525U (en) * 1983-03-10 1984-09-19 ティーディーケイ株式会社 power line filter
JPS61140617U (en) * 1985-02-22 1986-08-30
JPH0159341U (en) * 1987-10-08 1989-04-13
JPH01105215U (en) * 1987-12-29 1989-07-14
JPH0397219U (en) * 1990-01-24 1991-10-07
JPH04362805A (en) * 1991-06-11 1992-12-15 Toshiba Corp Resonance filter
JPH10229315A (en) * 1997-02-13 1998-08-25 Matsushita Electric Ind Co Ltd Terminal noise filter
JPH11205063A (en) * 1998-01-13 1999-07-30 Mitsubishi Materials Corp Band stop filter component
WO2002037674A1 (en) * 2000-10-31 2002-05-10 Tdk Corporation Power line noise filter

Also Published As

Publication number Publication date
TW200404405A (en) 2004-03-16
JP4233273B2 (en) 2009-03-04
JP2003347879A (en) 2003-12-05

Similar Documents

Publication Publication Date Title
JP2004274161A (en) Noise suppression circuit
US9330837B2 (en) Energy transfer assembly with tuned leakage inductance and common mode noise compensation
US7199692B2 (en) Noise suppressor
WO2005101626A1 (en) Noise control circuit
WO2003098799A1 (en) Noise suppressing circuit
JPH07504556A (en) Integrated EMI/RFI filter magnetic device
KR20210129135A (en) Device and method for filtering electromagnetic interference
WO2006019011A1 (en) Noise suppressing circuit
KR20050048606A (en) Common mode signal suppressing circuit and normal mode signal suppressing circuit
JP2006203862A (en) Noise suppression circuit
GB2357635A (en) Interface circuit between amplifier and antenna
JP2004297551A (en) Noise filter device and switching power supply
JP2831252B2 (en) Class E push-pull power amplifier circuit
WO2003100972A1 (en) Complex resonance circuit and filter
JP2004248118A (en) Noise filter and plc modem using the noise filter
JP2004080436A (en) Common-mode signal suppressing circuit
JP4424476B2 (en) Noise suppression circuit
US20220115173A1 (en) A common mode choke
JP2004248119A (en) Plc modem
JP2004356918A (en) Noise suppression circuit
JP2006186620A (en) Line filter
JP4681207B2 (en) Power supply filter
WO2004095697A1 (en) Normal mode noise suppressing circuit
JP3164567B2 (en) Noise filter
JP4290644B2 (en) Filter circuit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase