WO1994016003A1 - Prepreg, method of manufacturing the same, and laminated composite - Google Patents

Prepreg, method of manufacturing the same, and laminated composite Download PDF

Info

Publication number
WO1994016003A1
WO1994016003A1 PCT/JP1993/001882 JP9301882W WO9416003A1 WO 1994016003 A1 WO1994016003 A1 WO 1994016003A1 JP 9301882 W JP9301882 W JP 9301882W WO 9416003 A1 WO9416003 A1 WO 9416003A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
constituent
component
preder
manufacturing
Prior art date
Application number
PCT/JP1993/001882
Other languages
French (fr)
Japanese (ja)
Inventor
Atsushi Ozaki
Hajime Kishi
Nobuyuki Odagiri
Hiroki Oosedo
Hiroaki Ninomiya
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to DE69326059T priority Critical patent/DE69326059T2/en
Priority to EP94903061A priority patent/EP0632087B1/en
Priority to JP51586194A priority patent/JP3387100B2/en
Publication of WO1994016003A1 publication Critical patent/WO1994016003A1/en
Priority to KR1019940703114A priority patent/KR950700350A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/247Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using fibres of at least two types
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2301/00Use of unspecified macromolecular compounds as reinforcement
    • B29K2301/12Thermoplastic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/24Thermosetting resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/22Thermoplastic resins

Definitions

  • the present invention relates to a pre-preder used for producing a fiber reinforced plastic having excellent strength, elastic modulus, impact resistance and interlaminar toughness.
  • Fiber-reinforced plastic which is a type of composite material, is an anisotropic material that contains reinforced fibers and matrix resin as essential components, and there is a large difference between the physical properties in the fiber axis direction and those in the other directions.
  • the strength and elastic modulus in the fiber axis direction are extremely high, but they take low values in other directions.
  • a method is widely used in which a film-shaped precursor called a preplader, in which uncured thermosetting resin is impregnated in reinforced fibers, is laminated, molded, and then cured to obtain the * t target product. Be done.
  • a preplader in which uncured thermosetting resin is impregnated in reinforced fibers, is laminated, molded, and then cured to obtain the * t target product.
  • composite material is used to mean a fiber-reinforced plastic obtained by laminating, molding, and curing a prepender unless otherwise specified.
  • the in-plane physical properties can be almost eliminated by using a method of using a prepreg made of reinforcing fibers as a woven fabric or a method of stacking prepregs of reinforcing fibers arranged in one direction by changing the fiber axis direction. Isotropic is done.
  • the interlayer of the composite material means the vicinity of the surface corresponding to the interface between the pre-preders when laminating the pre-preders. In this region, the fraction of the reinforcing fibers is small and the orientation of the reinforcing fibers on both sides of it is different, so it is easy to concentrate the fracture o
  • a composite material using a thermosetting resin as a matrix resin has insufficient impact resistance, reflecting the low toughness of the matrix resin.
  • various methods have been proposed for the purpose of improving physical properties other than the fiber axis direction, particularly impact resistance and interlayer toughness.
  • a material different from the matrix resin is arranged between the layers to absorb the fracture energy.
  • U.S. Pat. No. 4,604.9 discloses that impact resistance is improved by placing a thermoplastic resin film between the layers of a fiber reinforced pre-preder. But this place In this case, the thermosetting resin has the disadvantage that the tackiness (adhesiveness) and the drapeability (property to conform to the shape) which are advantages of the thermosetting resin are lost.
  • the interlaminar toughness of a composite material is improved by pasting a woven fabric on the surface of a fiber reinforced pre-preder.
  • it is often easier to fiberize the resin than to make it into particles, and this has an advantage, but it is not possible to make full use of this advantage because it is necessary to fabricate the fiber.
  • Japanese Unexamined Patent Application Publication No. 2-Japanese Unexamined Patent Publication No. 295-295, Japanese Unexamined Patent Publication No. 2962, Japanese Unexamined Patent Publication No. 4-292909, Japanese Unexamined Patent Publication No. 55, Japanese Unexamined Patent Publication No. 4-325528, Japanese Unexamined Patent Publication No. Japanese Patent Laid-Open No. 17603/1993 discloses that interlaminar toughness of a composite material is improved by arranging a fibrous thermoplastic resin on a surface of a fiber reinforced pre-preder in a certain direction.
  • the fibrous thermoplastic resin is made to have a low basis weight, there is a drawback that unevenness of the basis weight is caused in the width direction of the pre-preder, resulting in large variation in performance. Further, in the case of using the unidirectionally arranged reinforcing fibers, if the fibrous thermoplastic resin is arranged in parallel with the reinforcing fibers, they will penetrate into the reinforcing fibers and impair the physical properties of the composite material.
  • the present invention has the following configuration to achieve the above object.
  • the constituent [C] is distributed near the surface of one side or both sides, and the constituent [C] is a pre-preder without a regular array.
  • the present invention has the following configuration to achieve the above object.
  • the present invention has the following configuration to achieve the above object.
  • a composite material consisting of the following components [A], [D], and [C], in which the components [C] are randomly arranged in a plane between the laminated layers.
  • the element used as the constituent element [A] in the present invention is a reinforcing fiber composed of long fibers, and various elements can be used according to the purpose of use of the composite material.
  • Specific examples of the reinforcing fiber used in the present invention include carbon fiber, graphite fiber, aramid fiber, gay carbon fiber, aluminum fiber, boron fiber, tungsten carbide fiber and glass fiber.
  • the reinforcing fiber may be used in combination of plural kinds. Among these, carbon fiber and graphite fiber, which have good specific strength and specific elastic modulus and are recognized to make a great contribution to weight reduction, are good for the present invention.
  • the shape and arrangement of the reinforcing fibers are not limited, and for example, they can be used in a single direction, a random direction, a sheet shape, a mat shape, a woven shape, or a braided shape. Further, in particular, an array in which reinforcing fibers are aligned in a single direction is most suitable for an application in which high specific strength and high inelasticity are required, but a woven array that is easy to handle is also included in the present invention. Suitable for
  • the matrix resin used as the constituent element [B] in the present invention is mainly composed of a resin that is cured by heat or energy from the outside such as light or electron beam to form a three-dimensional cured product at least partially.
  • a so-called thermosetting resin that is cured by heat is preferably used.
  • an epoxy resin is particularly mentioned, and it is generally used in combination with a curing agent or a curing catalyst.
  • an epoxy resin containing an amine, a phenol, or a compound having a carbon-carbon double bond as a precursor is preferable.
  • epoxy resin using an amine as a precursor tetradalycidyl diaminodiphenyl methane, triglycidyl 1-p-aminophenol, liglycidyl m-aminophenol, Epoxy resins using various isomers of triglycidylamino cresol and phenols as precursors, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolak type epoxy resin, Examples of the cresol lunovolak type epoxy resin and the epoxy resin having a compound having a carbon-carbon double bond as a precursor include alicyclic epoxy resins, but are not limited thereto.
  • Epoxy resins which have aromatic aromatic amines such as tetradalycidyl diaminodiphenyl methane as a precursor, have good heat resistance and good adhesion to reinforcing fibers, and are therefore most suitable for the present invention. There is. Epoxy resins are preferably used in combination with epoxy hardeners.
  • the epoxy curing agent any compound having an active group capable of reacting with an epoxy group can be used. A compound having an amino group, an acid anhydride group, or an azido group is preferable.
  • dicyandiamide various isomers of diaminodiphenylsulfone, various derivatives of diaminodiphenylmethane, and aminobenzoic acid esters are suitable.
  • dicyandiamide is preferred because of its excellent preservability.
  • various isomers of diaminodiphenyl sulfone are most suitable for the present invention because they give a cured product having good heat resistance.
  • An alkyl derivative of diaminodiphenylmethane, particularly a 3,3'5,5'-tetraalkyl derivative, is suitable for the present invention because it gives a cured product having high elongation and low water absorption.
  • trimethylenedalicol di-p-aminobenzoate and neopentylglycol di-p-aminobenzobenzoic acid are preferably used and compared with diaminodiphenylsulfone. Although it is inferior in heat resistance, it is superior in tensile elongation, so it is selected and used according to the application.
  • the thermosetting resin used for the component [B] includes a maleimide resin, a resin having an acetylene terminal, a resin having a nadic acid terminal, a resin having a cyanate ester terminal, a resin having a vinyl terminal, and an aryl group.
  • a resin having is also preferably used. These may be appropriately mixed with an epoxy resin or another resin.
  • a reactive diluent may be used, or a modifier such as a thermoplastic resin or an elastomer may be mixed and used to such an extent that heat resistance is not significantly deteriorated.
  • Maleimide resin is a compound containing an average of 2 or more maleimide groups per molecule. Particularly preferred is bismaleimide made from diaminodiphenyl ester. Examples of this type of maleide compound include N, N'-phenylene bismaleimide,, ⁇ '-hexamethylene bismaleimide, ⁇ , N'-methylene-di- ⁇ _phenenium.
  • maleimide compounds may be used as a mixture of two or more kinds, and also contain mono-maleimide compounds such as N-arylmaleimide, N-propylmaleamide, N-hexylmaleamide and N-phenylmaleimide. You may.
  • the maleimide resin is preferably used in combination with a curing agent.
  • a curing agent any compound having an active group capable of reacting with the maleimide group can be used.
  • a compound having an amino group, an alkenyl group represented by an aryl group, a benzocyclobutene group, an arylnamidimide group, an isocyanate group, a cyanate group, or an epoxy group is suitable.
  • diaminodiphenylmethane is a typical curing agent having an amino group
  • 0,0'-diarylbisphenol A or bis (propenylphenoxy) sulfone is a curing agent having an alkenyl group. And so on.
  • the above-described bismaleimide-triazine resin (BT resin) composed of bismaleamide and cyanate ester is also suitable as the thermosetting resin used in the constituent element [B] of the present invention.
  • a resin having a cyanate ester terminal a polyvalent cyanate ester compound represented by bisphenol A is preferable.
  • a resin in which a cyanate ester resin and a bismaleimide resin are combined is commercially available from Mitsubishi Gas Chemical Co., Inc. as a B T resin and is suitable for the present invention. Generally, these have better heat resistance and water resistance than epoxy resins, but are inferior in toughness and impact resistance, so they are selected and used according to the application. It is used in a weight ratio of bismaleimide to cyanate in the range of 0 Z 100 to 70 Z 30. The case of 0 100 corresponds to a triazine resin, which is also suitable for the present invention.
  • thermosetting polyimide resin having a terminal reactive group is also suitable as the constituent element [B] of the present invention.
  • the terminal reactive group nadiimide group, acetylene group, benzocyclobutene group and the like are preferable.
  • the component [B] of the present invention may be a thermosetting resin that has been widely recognized in the industry, such as a fuunol resin, a resorcinol resin, an unsaturated polyester resin, a diaryl phthalate resin, a urea resin, and a melamine resin. Can be used.
  • a fuunol resin such as a fuunol resin, a resorcinol resin, an unsaturated polyester resin, a diaryl phthalate resin, a urea resin, and a melamine resin.
  • thermosetting resin a thermoplastic resin such as polysulfone or polyether imide, inorganic fine particles such as finely powdered silica, and elastomer are mixed in the constituent element [B] of the present invention. It is also possible to modify. In this case, the components other than the thermosetting resin are preferably contained within 35% by weight.
  • the prepreg of the present invention is laminated and cured using a means such as heat or light to obtain a composite material.
  • the constituent [B] is a constituent component of the resin component produced by curing. Let's say [D].
  • the constituent [B] of the pre-preder of the present invention a resin composition that undergoes phase separation in the process of heating from 10 ° C to 250 ° C can be preferably used.
  • the constituent [D] of the composite material has a phase-separated structure. Whether or not the resin composition undergoes phase separation can be easily determined by observing with a microscope in the process of heating and heating.
  • the component [D] having a phase-separated structure has a structure in which a phase mainly composed of a thermosetting resin and a phase mainly composed of a thermoplastic resin are separated into a mixture phase o
  • This preferable matrix resin composition is further preferably a resin cured product having a structure in which a phase mainly containing a thermosetting resin and a phase mainly containing a thermoplastic resin are separated into a mixture phase.
  • the constituent [D] is obtained by curing the constituent [B].
  • the component [B] has a characteristic microphase-separated structure described below in the process of curing.
  • a phase containing a thermoplastic resin as a main component exists separately from a phase containing a thermosetting resin as a main component, and at least a phase containing a thermoplastic resin as a main component is three-dimensionally continuous in a mesh pattern. This is the case when there is a structure.
  • thermosetting resin and the thermoplastic resin which have not been cured yet, once forming a uniform compatible state and then phase-separated during the curing process. More preferably, it is a resin cured product having a Miku mouth phase separation structure in which both phases have a three-dimensionally continuous mesh-like structure. In some cases, it is also preferable that the continuous phase contains a dispersed phase of another phase. In particular, it is preferable to have a dispersed phase composed of a rubber phase because it greatly contributes to the improvement of toughness.
  • the structural period of the continuous phase containing a thermoplastic resin as a main component is more preferably about 0.01 to 20 Mikuguchi. If it is less than 0.01 micron, the unevenness of the fracture surface is shallow and the fracture path is short, making it difficult to develop high toughness. Above 20 micron, the fracture path is simplified and the toughening effect is diminished. More preferably, it is about 0.1 to 10 Miku.
  • the phase-separated structure of the cured resin can be observed under a microscope by a conventional method. Although it can be observed with an optical microscope, in some cases it is preferable to stain with osmium tetroxide or the like and observe with an electron microscope.
  • the existence of different phases is clear, and at least one phase forms a continuous structure, and if there is a dispersed phase in the continuous phase, its existence can be known.
  • an analyzer such as an X-ray micro analyzer, it is possible to identify the constituent elements.
  • the flexural modulus shall be measured according to AS TM D790.
  • thermoplastic resin component in component [B] and component [D] refers to a thermoplastic resin that is widely recognized in the industry, but it does not have the high heat resistance and high elastic modulus inherent to thermosetting resins. Since it does not damage, it belongs to the so-called engineering plastics of aromatic type. It is preferable as this thermoplastic resin. That is, a thermosetting resin-soluble high heat-resistant thermoplastic resin having an aromatic polyimide skeleton, an aromatic polyamide skeleton, an aromatic polyether skeleton, an aromatic polysulfone skeleton, and an aromatic polyketone skeleton is a typical example. can give. In particular, those having an aromatic polyimide skeleton are preferable because they have excellent heat resistance, solvent resistance, and toughness. Specific examples thereof include polyether sulfone, polysulfone, polyimide, polyether imide, and polyimide having a phenyltrimethylindane structure.
  • any method known in the industry can be used.
  • a tetracarboxylic dianhydride and a diamino compound are reacted. Synthesized by that.
  • tetracarboxylic acid dianhydride Preferable examples of tetracarboxylic acid dianhydride are pyromellitic dianhydride, 3, 3 ', 4, 4'-benzofluoroethylene carboxylic acid dianhydride, 3, 3', 4, 4'- Biphenyl tetracarboxylic dianhydride, 3, 3 ', 4, 4'-diphenyl ether tetracarboxylic dianhydride, 3, 3', 4, 4, 1 diphenyl sulfone tetracarboxylic dianhydride
  • Aromatic tetracarboxylic acid dianhydrides such as compounds, more preferably 3,3 ', 4, 4'monobiphenyltetracarboxylic carboxylic acid dianhydride, 3, 3', 4, 4, diphenyl ether tetra Aromatic tetracarboxylic dianhydrides such as carboxylic dianhydrides can be mentioned.
  • diamino compound examples include diaminodiphenylmethane, metaphenylene diamine, paraphenylene diamine, diamino diphenyl ether, diamino diphenyl sulfone, diamino diphenyl disulfide, diamino diphenyl diethane, diamino.
  • Thermoplastic resin consisting of polyimide skeleton, polyamide skeleton, polyether skeleton, polysulfone skeleton, or polyketone skeleton Having hexafluoropropane skeleton in the molecule means dissolution in uncured thermosetting resin It is preferable because it improves the property and forms an appropriate phase-separated structure after curing. In addition, since the water absorption of the cured resin is remarkably reduced by having the structure, it also has an effect of improving the environment resistance of the cured resin.
  • the component [B] and the thermoplastic resin in the component [D] use a block copolymer or graft copolymer composed of a chain compatible with the thermosetting resin and a chain incompatible with the thermosetting resin. Are particularly preferable from the viewpoint of compatibility control.
  • One of the preferred specific examples is to form a chain consisting of a siloxane skeleton that is essentially incompatible with the component [B] and the thermosetting resin in the component [D], and has high toughness and low water absorption. It has a block copolymer or a graft copolymer. Particularly preferably, a portion other than the chain composed of the siloxane skeleton is composed of a polyimide skeleton, a polyamide skeleton, a polyether skeleton, a polysulfone skeleton, or a polyketone skeleton in which the thermosetting resin in the constituent [B] is compatible. Is a block copolymer or a graft copolymer. As the siloxane skeleton, dimethylsiloxane is particularly preferable, but phenylsiloxane and its copolymer are also preferable.
  • thermoplastic resin obtained by block-copolymerizing the siloxane skeleton has a small increase in resin viscosity due to its addition when compared with an aromatic thermoplastic resin having the same molecular weight. Therefore, there is little deterioration in workability, and the prepreg using this resin as a matrix resin has excellent tackiness and drapeability. From another point of view, the restriction on the amount of the thermoplastic resin added in the constituent [B] is loose, and a large amount can be introduced into the resin system without impairing the tackiness, which is advantageous for improving the resin toughness.
  • the most preferable block copolymer or graphene copolymer as the thermoplastic resin in the component [B] and the component [D] has a polyimide chain portion.
  • thermoplastic resin in the component [B] and the component [D] has a functional group capable of reacting with the thermosetting resin in the component [B] at the end of the thermoplastic resin to further enhance the adhesiveness at the phase interface. Therefore, it is preferable from the viewpoint of solvent resistance and fatigue resistance.
  • Specific examples include those having a functional group such as an amino group, an epoxy group, a hydroxyl group and a carboxyl group at the terminal.
  • a polyamide having an amino group terminal is preferable.
  • the amount of the thermoplastic resin in the constituent [B] and the constituent [D] is preferably 5 to 40% by weight based on all the components in the constituent [B] and the constituent [D]. If it is less than this, the toughness improving effect is small, and if it is more than this, the workability is significantly reduced. It is more preferably 8 to 30% by weight.
  • thermoplastic resin component in the constituent element [B] may be previously dissolved in the uncured thermosetting resin component, or may be simply dispersed. Alternatively, it may be partially dissolved and partially dispersed. By changing the dissolution / dispersion ratio, the viscosity of the resin can be adjusted, and the tackiness and drapeability of the pre-preparer can be adjusted to a desired degree. Most of the dispersed thermoplastic resin also dissolves in the thermosetting resin component during the molding process, and phase-separates again by the end of curing, contributing to the formation of the appropriate Miku mouth phase separation structure.
  • the molecular weight of the thermoplastic resin in component [B] and component [D] should be the number average molecular weight when the thermoplastic resin component is previously dissolved in the uncured thermosetting resin component.
  • a range of about 2000 to 20000 is preferred. When the molecular weight is smaller than this, the effect of improving toughness is small, and when the molecular weight is larger than this, the resin viscosity is remarkably increased and the workability is markedly reduced. More preferably in the range of about 2500-10000
  • the component [C] is a long fiber of a thermoplastic resin, which is distributed near the surface of the pre-preder and arranged randomly.
  • the long fiber means a fiber having a length of 3 cm or more. Randomly arranged means an array in which the same structure is repeated at regular intervals (for example, parallel array of monofilament or multifilament, or regular fabric structure such as woven fabric, knitted fabric and braid). It means not to take.
  • Such an arrangement can be realized by simple spraying or spraying, and does not require special equipment such as a loom as in the case of making regular fabrics.
  • such an arrangement can be realized by utilizing a long-fiber nonwoven fabric.
  • Long fiber Nonwoven fabrics are superior to woven fabrics and pine in that they can directly obtain fabrics from the resin without making the raw material resin into a filament. Further, because of such a form, the problem that the constituent element [C] invades the constituent element [A] like the parallel arrangement does not occur in the prepreg of the present invention.
  • the feature of the component [C] of the present invention is that it does not have a regular arrangement, but in order to obtain the desired physical properties, it is desirable that the basis weight of the component [C] is as uniform as possible. ..
  • component [C] is distributed in the vicinity of the surface layer of the pre-preder, but since it does not cover the entire surface, it can be easily impregnated with the matrix resin, and the tackiness and drape of the matrix resin are the pre-preda characteristics. Reflected, it becomes a prepreg with excellent handling. Furthermore, component [C] has the function of holding a certain amount of resin on the surface of the prepreg, so it improves the tackiness itself compared to a normal prepreg, and the change in the tackiness with time is extremely small. Have the effect of
  • the material of the constituent [C] is a thermoplastic resin.
  • Polyamide, Polycarbonate, Polyacetal, Polyphenylene oxide, Polyphenylene sulfide, Polyacrylate, Polyester, Polyamideimide, Polyimide, Polyetherimide, Polysulfone, Polyethersulfone, Polyetherether Ketons, polyalamides, and polybenzimidazoles are suitable for the non-woven fabric used in the present invention because they have high impact resistance.
  • polyamides, polyimides, polyamideimides, polyetherimides, polyethersulfones, and polysulfones are suitable for the present invention because they have high toughness and good heat resistance.
  • the toughness of polyamide is particularly excellent, and by using one belonging to amorphous transparent nylon, it can also have heat resistance.
  • constituent [C] it is possible to use a combination of long fibers of a plurality of types of thermoplastic resins, or to use a long fiber obtained by composite spinning of a plurality of types of thermoplastic resins. These methods are preferable because the properties of the composite material can be improved by optimizing the combination of materials.
  • the component [C] needs to be distributed near the surface layer in the pre-preder. As a result, when a composite material is made from It forms a zone and the component [C] is localized between the layers, giving a composite material with excellent impact resistance.
  • To be distributed in the vicinity of the surface layer specifically means that 90% or more of the constituent element [C] is present in the part from the surface of the pre-preder to 30% of the pre-preder thickness. It is more preferable that 90% or more of the constituent element [C] is present in the region from the surface of the prepreg to 20% of the prepreg thickness, because the effect of the present invention is more remarkably exhibited.
  • component [C] in the prepreg is optimal as long as it is similarly localized on both sides of the prepreg, as it is possible to obtain a composite material by freely laminating the prepreg on both sides. is there.
  • the constituent elements [C] have the same distribution on only one side of the pre-preder, the same effect can be obtained if the constituent elements [c] are always placed between the pre-preders when stacking the pre-preders. Also, such a pre-preder is included in the present invention.
  • the distribution of component [C] in the prepreg can be evaluated as follows.
  • the prepreg is sandwiched between the two smooth support plates and brought into close contact, and the temperature is gradually raised to cure over a long period of time.
  • the important thing is to gel at a temperature as low as possible. If the temperature is suddenly raised before gelation occurs, the resin in the prepreg will flow, making it impossible to accurately evaluate the distribution state in the prepreg.
  • the temperature is gradually raised over a further period of time to cure the prepreg. Cut the hardened pre-preder and enlarge its cross section by a factor of 200 or more to take a photograph of 200 mm x 200 mm or more. When it is difficult to distinguish the constituent [B] from the constituent [C], one of them is selectively stained and observed. Use either a light microscope or an electron microscope, whichever is suitable.
  • the average thickness of the pre-preder is obtained using this photograph of the cross section.
  • the average thickness of the prepredder should be measured on at least 5 places on the photograph and the average should be taken.
  • the area of the component [C] existing between the surface that was in contact with the support plate and the parallel line of 30% was quantified on both sides of the pre-preder.
  • the ratio of the component [C] existing within the depth of 30% from the surface of the pre-preder is calculated.
  • Area quantification can also be performed by a gravimetric method or image processing using an image analyzer. In order to eliminate the effect of partial distribution variation, this evaluation is performed over the entire width of the obtained photograph, and the same evaluation is performed for five or more arbitrarily selected photographs, and the average is taken.
  • the elastic modulus and the yield strength of the material of the component [C] be lower than the elastic modulus and the yield strength of the resin cured product of the component [B] in order to improve the impact resistance of the composite material.
  • the elastic modulus of the material of the constituent element [C] is as low as that of the elastomer, it is likely to be deformed due to changes in conditions such as pressure, temperature or temperature rising rate during molding of the composite material, and the thickness between the laminated plate layers is It tends to fluctuate and change with changes in molding conditions, resulting in unstable physical properties of the composite material.
  • the bending elastic modulus of the material of the constituent element [C] in the bulk is in the range of 80 to 400 kg / mm 2 in order to obtain stable high toughness that is insensitive to changes in molding conditions. Further, it is also preferable that the tensile elastic modulus when the constituent [C] is in a fibrous state is in the range of 40 to 5000 kg / mm 2 for the same reason as above.
  • the suitable amount of the constituent [C] is in the range of 2 to 30% by weight based on the total amount of the constituent [B] and the constituent [C] in the prepreader or the composite material. If the amount is less than 2% by weight, almost no effect is exhibited, and if it exceeds 30% by weight, the tackiness and drapeability of the prepreg are significantly reduced.
  • the constituent element [B] is utilized to develop the compressive strength of the composite material
  • the constituent element [C] having high fracture elongation and high toughness is used to increase the toughness between layers of the composite material. Is rather preferable to be in a small range of 2 to 20% by weight, and more preferably 4 to 13% by weight.
  • the following method can be used as a method of manufacturing the prepreader having the above-described configuration.
  • the component [C] is impregnated with the component [B] on the surface of the component [A], and the component [C] is randomly arranged in a plane to form a pre-preder. If this is left as it is, the constituent element [C] will remain exposed on the surface of the pre-preder, and the tackiness will be inadequate. Therefore, after spraying, heating and pressurizing using a heat nozzle, etc., the constituent element [C] Impregnation with [B] is desirable. As a modification of this method, the constituent [A] is impregnated with the constituent [B], but the constituent [C] is randomly arranged on the surface and then applied on a release paper. The element [B] may be attached and heat-pressed for impregnation.
  • the constituent [B] to be impregnated in the constituent [A] and the constituent [B] to be applied onto the release paper have different compositions.
  • the component [B] to be applied on the release paper or the like is one that has a higher adhesiveness than the component [B] to be impregnated in the component [A], the tackiness of the prepreder can be improved. Yes, it is preferable.
  • the component [C] is randomly arranged in a plane on the surface of the component [B] molded into a film, and laminated with the component [A].
  • the prepreg is formed by heating and pressing.
  • the component [C] is randomly arranged in a plane on the component [A], and then the component [B] is impregnated to form a pre-preder. This method is particularly suitable when [A] has shape-retaining properties such as woven fabric.
  • thermoplastic resin is spun in advance to obtain a monofilament or a multifilament
  • examples of such methods include spraying the target directly on the target using pressurized air, spraying it through a swinging guide, or hitting the shock plate once and then spraying it after diffusion.
  • any spinnable resin can be used as the constituent [C] material.
  • a long-fiber nonwoven fabric of the constituent element [C] can be prepared in advance by the spunbond method or the melt blow method, etc. Is.
  • the pre-preder is formed by laminating the constituent [C] non-woven fabric on the constituent [A] impregnated with the constituent [B]. In this case, if it is left as it is, the constituent element [C] is exposed on the surface of the pre-preder, so the tackiness may become insufficient. Therefore, after bonding, heat and pressure using a heat roller etc. It is desirable to impregnate C] with component [B].
  • the non-woven fabric of the constituent [C] may be impregnated with the constituent [B] in advance.
  • the constituent [B] to be impregnated in the constituent [A] and the constituent [B] to be impregnated in the nonwoven fabric of the constituent [C] have different compositions.
  • the constituent [B] of the constituent [C] that is impregnated into the nonwoven fabric is one that has a stronger adhesiveness than the constituent [B] that is impregnated into the constituent [A], the tackiness of the prepreg is improved. It is possible and preferable.
  • the superposition positional relationship is such that the nonwoven fabric of component [C] is sandwiched between the component [A] and the component [B] formed into a film shape, and the nonwoven fabric of component [C] is It is preferable that the component [B] is easily impregnated in the above.
  • the nonwoven fabric of the constituent element [C] is stacked from both sides of the constituent element [A], and then the constituent element [B] formed into a film shape is supplied from both sides of the non-woven fabric and stacked, and the heat roll or the like is laminated.
  • a method of heating and pressing with a means to form a pre-preder, and a non-woven fabric of the constituent element [C] bonded to the surface of the constituent element [B] formed into a film pattern are prepared, and this is made into the constituent element [A].
  • a preferred method is to stack the constituent elements [C] on both sides so that they are on the inner side, and heat and pressurize them by means of a heat roll or the like to form a pre-preder.
  • the following raw materials were kneaded to prepare a matrix resin composition.
  • Tetraglycidyl diaminodiphenyl ester (E LM434, manufactured by Sumitomo Chemical Co., Ltd.) 60 parts by weight
  • Nylon 66 fiber (15 denier, 5 filament) was sprayed on one surface of this sample using an aspirator equipped with an impact plate at the tip and compressed air to obtain a prepreder.
  • the basis weight of the fiber was 13. O gZm 2 .
  • Example 2 A sample in which the same matrix resin as in Example 1 was impregnated with carbon fiber (T 800 H, manufactured by Toray Industries, Inc.) was prepared using the drum winding method.
  • the amount of carbon fiber per unit area was 190 gZm 2
  • the amount of matrix resin was 90.6 gZm 2.
  • a hardened plate was prepared in the same manner as in Example 1 using this pre-preder, and the compression strength after falling weight impact was measured to be 35.8 kg / ImI m 2 .
  • Example 2 A sample in which the same matrix resin as in Example 1 was impregnated in carbon fiber (T 800 H, manufactured by Toray Industries, Inc.) was prepared by the drum winding method.
  • the amount of carbon fiber per unit area was 190 g / m 2
  • the amount of matrix resin was 90.6 gZn ⁇ o
  • nylon 12 fibers discharged from a mouthpiece with an orifice were drawn and blown using aspirator with an impact plate at the tip and compressed air to obtain a prepreg.
  • the basis weight of the fiber was 13.0 g Zm 2 .
  • a hardened plate was prepared from this pre-preder in the same manner as in Example 1, and the compressive strength after impact with a falling weight was measured and found to be 36.1 kgZmm 2 .
  • thermoplastic resin fiber in which the same matrix resin as in Example 1 was impregnated with carbon fiber (T 800 H, manufactured by Toray Industries, Inc.) was prepared.
  • the amount of carbon fiber per unit area was 190 g / m 2
  • the amount of matrix resin was 103.6 gZm 2 .
  • a hardened plate was prepared from this prepreg in the same manner as in Example 1, and the compression strength after impact with a falling weight was measured to be 19.7 kg / mm 2 .
  • Example 2 The same matrix resin composition as in Example 1 was coated on release paper using a reverse roll coater. The coating amount was 45. 32 ".
  • Nylon 66 fibers (15 denier, 5 filaments) were sprayed onto the surface of this resin film using an aspirator equipped with an impact plate at the tip and compressed air.
  • the basis weight of nylon 6 6 fiber was 6. S gZm 2 .
  • a hardened plate was prepared from this pre-preder in the same manner as in Example 1, and the compression strength after impact with a falling weight was measured to be 34.4 kg / mm 2 .
  • Example 2 The same matrix resin composition as in Example 1 was applied on a release paper using a reverse mouth coater. The coating amount was 45.3 gZm 2 .
  • the fiber of grillamide TR-55 (polyamide made by EMS ER WE RK E Co.) discharged from a die with one orifice was compressed, and compressed with an aspire with an impact plate at the tip. It was stretched and blown with air.
  • the basis weight of the fiber was 6.5 g / m 2 .
  • Darylamide TR-5 5 Fiber resin is fixed on a drum winder, carbon fiber (T 800 H, manufactured by Toray Industries, Inc.) is wrapped around it, and then Grylamide TR-5 5 Another resin film sprayed with the above fibers was attached to this and impregnated under pressure to obtain a prepreder.
  • the amount of carbon fiber per unit area was 190 g / m 2 .
  • a hardened plate was prepared from this pre-preder in the same manner as in Example 1, and the compression strength after impact with a falling weight was measured and found to be 33.7 kgZmm 2 .
  • a carbon fiber woven fabric (a plain weave of carbon fiber T 800 H manufactured by Toray Industries, Inc. with a fiber basis weight of 196 g / m ") is attached to one end of nylon 6 6 fiber (15 denier, 5 filament). It was sprayed with a striking plate equipped with a striking plate and compressed air. The unit weight of nylon 6 6 fiber was 16.O gZm 2. It was impregnated with the same matrix resin as in Example 1. A prepreg was obtained. The amount of resin per unit area was 130 g / m 2. With respect to this prepreg, a cured plate was prepared in the same manner as in Example 1, and the compression strength after impact with a falling weight was measured. The measured value was 29.4 kg mm 2 .
  • Fiber of grilled amide TR-55 (polyamide made by EM S ER WE RK E) discharged from a mouthpiece provided with one orifice was used by using aspire overnight with a shock plate on the wire mesh and compressed air. It was stretched and sprayed for repair. The fiber sheet repaired on the wire mesh was heat-bonded using a heating press machine, and a nonwoven fabric of grill amid TR-55 was prepared. The fabric weight was 6.5 gZn ⁇ .
  • a sample obtained by impregnating carbon fiber (T 800 H, manufactured by Toray Industries, Inc.) with the same matrix resin as in Example 1 was prepared by the drum winding method.
  • -Carbon fibers per unit area, 1 9 0 g / m 2 the amount of the matrix resin, on both surfaces of the sample which was a 9 0. 6 g / m 2, attached to Guriruami de TR- 5 5 of the nonwoven fabric.
  • a pre-preder was prepared.
  • a hardened plate was prepared from this pre-preder by the same method as in Example 1 and the falling weight impact The subsequent compressive strength was measured and found to be 34. OkgZmm 2 .
  • Nylon 6 fibers discharged from a mouthpiece provided with one orifice were drawn and dispersed using an aspire overnight equipped with an impact plate at the tip of the wire mesh and compressed air, and collected.
  • the fiber sheet collected on the wire mesh was heat-bonded using a heat press machine to produce a nylon 6 non-woven fabric.
  • the basis weight of the fiber was 6.5 gZn ⁇ .
  • a sample obtained by impregnating carbon fiber (T 800 H, manufactured by Toray Industries, Inc.) with the same matrix resin as in Example 1 was prepared using the drum winding method.
  • the amount of carbon fiber per unit area was 190 g / m 2
  • the amount of matrix resin was 90.6 g / m 2 .
  • Nylon 6 non-woven fabric was attached to both sides of this sample to prepare a prepreder.
  • a hardened plate was prepared from this pre-preder in the same manner as in Example 1, and the compression strength after impact with a falling weight was measured and found to be 3 3. lk gZmm 2 .
  • Example 2 The same matrix resin composition as in Example 1 was coated on release paper using a revers roll coater. The coating amount was 45.3 g / m 2 .
  • Example 7 Onto this resin film, the same non-woven fabric of GRILLAMIDE TR-55 used in Example 7 was attached and fixed by pressing with a calendar roll. Then, on both sides of the carbon fibers (T 800 H, manufactured by Toray Industries, Inc.) aligned in one direction, lay a resin film with a non-woven fabric inside so that the non-woven fabric is on the inside, and apply heat and pressure using a heat roll. And impregnated to obtain a pre-preder. The amount of carbon fiber per unit area was 270 g / m '. A hardened plate was prepared in the same manner as in Example 1 with respect to this pre-preder, and the compression strength after falling weight impact was measured. It was .3 k gZmm 2 .
  • Example 2 The same matrix resin composition as in Example 1 was applied on a release paper using a reverse roll roll.
  • the coating weight was 45.3 g / m 2 .
  • Example 8 The same nylon 6 non-woven fabric used in Example 8 was stuck on this resin film, and was pressed and fixed with a calendar roll. Then, on both sides of the carbon fiber (T 800 H, manufactured by Toray Industries, Inc.) aligned in one direction, the resin film with the non-woven fabric attached was placed so that the non-woven fabric was on the inside, and the heat roll was applied.
  • the prepreg was obtained by heating and pressurizing and impregnating. The amount of carbon fiber per unit area was 190 gZm 2 .
  • a hardened plate was prepared in the same manner as in Example 1, and the compression strength after falling weight impact The degree was measured to be 33.6 k gZmm 2 .
  • the core-sheath composite spinneret is made of polyethylene terephthalate from the core and nylon 6 is discharged from the sheath so that the core-sheath ratio is 1: 1. It was stretched with compressed air, scattered, and collected. The fiber sheet collected on the wire mesh was heat-bonded using a heating press machine to produce a nonwoven fabric. The basis weight of the fiber was 6.5 g / m Z.
  • Example 2 The same matrix resin composition as in Example 1 was applied onto a release paper using a revers roll coat. The applied amount was 45.3 g / n ⁇ .
  • the above-mentioned non-woven fabric was pasted on this resin film and fixed by pressing with a calendar roll. Then, on both sides of unidirectionally aligned carbon fibers (T 800 H, manufactured by Toray Industries, Inc.), overlay the resin film with the non-woven fabric attached so that the non-woven fabric is on the inside, and heat with a heat roll. It was pressurized and impregnated to obtain a pre-preder. The amount of carbon fiber per unit area was 190 gm 2 .
  • a hardened plate was prepared from this pre-preder by the same method as in Example 1, and the compressive strength after impact with a falling weight was measured and found to be 33.8 kgZmni 2 .
  • Mn number average molecular weight of this oligomer was measured by gel permeation chromatography using a dimethylformamide (DMF) solvent. It was 5,500 in terms of ethylene glycol (PEG). The glass transition point was 223 ° C according to the differential thermal analyzer (DSC).
  • DSC differential thermal analyzer
  • siloxane polyimide oligomer prepared in (1) 20 parts was added to 0, 0 to 1 part of diarylbisphenol A 41, and heated at 140 ° C for 2 hours. 39 parts of diphenylmethane bismaleimide was uniformly mixed and dissolved therein. After vacuum degassing by connecting a vacuum pump to the container, the contents were poured into a mold that had been preheated to 120 ° C and subjected to mold release treatment. The resin was cured in an oven at 180 ° C for 2 hours to prepare a 3 mm thick resin-hardened plate. Further, this cured plate was subjected to a blast cure at 200 ° C for 2 hours and at 250 ° C for 6 hours.
  • the T g of the obtained cured resin was 295 ° C.
  • the fracture strain energy release rate G ie was 450 J / 1 and the flexural modulus was 380 kg / mm 2 .
  • a resin plate of 60 x 10 x 2 mm was boiled for 20 hours, its water absorption rate was 2.0%.
  • the polished surface of the cured resin was stained with osmium tetroxide, and observation of the backscattered electron image with a scanning electron microscope revealed that a microphase-separated structure in which the phase mainly composed of the oligomer was a continuous phase was formed.
  • siloxane polyimido oligomer synthesized in (1) 20 parts was dissolved in 1 part of 0,0'-diallyl bisphenol A 41, and then 39 parts of diphenyl methane bismaleimide was uniformly mixed in a kneader.
  • This resin composition was coated on a release paper on which a silicone release agent was thinly applied in advance with a constant thickness to obtain a resin film having a basis weight of 47 gZm 2 .
  • a unit weight of 190 g / m 2 carbon fiber (“Torayca” T800 H Toray Co., Ltd.) is aligned in one direction, and then a unit weight of 5 gZm 2 is made from nylon 6 above and below the carbon fiber.
  • the above non-woven fabrics were laid one on top of the other, and the above resin films were pressed from above and below to impregnate the resin into the fiber to obtain a prepreder.
  • This prepredder was good in dawnability and drapeability.
  • the pre-preder was sandwiched between two smooth Teflon plates, gradually heated to 180 ° C over 2 weeks to be cured, and the cross section was observed and micrographs were taken. When the amount of non-woven fabric existing in the range from the prepreg surface to the depth of 30% of the prepreg was evaluated, the value was 100%, and the non-woven fabric was well localized on the prepreg surface. I was there.
  • the matrix resin had a microphase-separated structure in which the oligomeric phase was a continuous phase.
  • Pre-preders were laminated in 24 layers in a pseudo-isotropic configuration ((+ 45 ° / 0 ° / -45 ° / 90 °) 3S ), using a normal vacuum bag autoclave molding method, under pressure of 6 k g Zc 1
  • the temperature was raised from 25 to 180 ° C at a heating rate of 0.5 ° C / min, and a cured plate was obtained by thermoforming at 180 ° C x 2 hours. Furthermore, this cured plate was subjected to boss cure at 200 ° C for 2 hours and at 250 ° C for 6 hours.
  • the fiber volume fraction was 55.4 V o 1% and the resin weight fraction was 35.8 wt%. After molding, observing the cross section with an optical microscope, it was confirmed that all the non-woven fabrics were completely present in the interlayer frame area of the cured plate.
  • the prepreg of the present invention has long fibers of thermoplastic resin having no regular arrangement in the vicinity of the surface layer, so that tackiness and drape, high elastic modulus when heat-molded into a composite material, and heat resistance It provides a composite material that has excellent impact resistance and interlaminar toughness while maintaining its properties. Further, such a prepreder is easy to manufacture, has a high degree of freedom in materials, and is industrially significant.

Abstract

A prepreg consisting of the following constituent elements: (A), (B) and (C), and the constituent element (C) is distributed in the portion of the prepreg which is close to a superficial layer of one or both surfaces thereof, the constituent element (C) not having regular arrangement (A) reinforced fibers consisting of long fibers; (B) matrix resin; (C) long fibers of a thermoplastic resin. The prepreg according to the present invention gives a composite material retaining its tacking characteristics and draping characteristics and its thermal resistance when it is hot formed, and having excellent impact resistance and inter-layer tenacity. This prepreg is manufactured easily, and has a high degree of freedom as a material.

Description

明 細 書  Specification
プリプレダ、 その製造方法および積層複合体  Pre-preder, method for producing the same, and laminated composite
技術分野  Technical field
本発明は、 強度、 弾性率、 耐衝撃性、 層間靭性に優れる繊維強化プラスチックの 製造に用いられるプリプレダに関する。 複合材料の一種である繊維強化プラスチックは、 強化繊維とマトリックス樹脂を 必須の構成要素とする異方性材料であり、 繊維軸方向の物性とそれ以外の方向の物 性に大きな差が存在する。 一般に繊維軸方向の強度、 弾性率は極めて高いが、 それ 以外の方向ではこれらは低い値をとる。  The present invention relates to a pre-preder used for producing a fiber reinforced plastic having excellent strength, elastic modulus, impact resistance and interlaminar toughness. Fiber-reinforced plastic, which is a type of composite material, is an anisotropic material that contains reinforced fibers and matrix resin as essential components, and there is a large difference between the physical properties in the fiber axis direction and those in the other directions. Generally, the strength and elastic modulus in the fiber axis direction are extremely high, but they take low values in other directions.
繊維強化プラスチックの製造においては、 強化繊維に未硬化の熱硬化性樹脂を含 浸させたプリプレダと呼ばれるフィルム状の前駆体を積層、 成形した後、 硬化し *t 目的物を得る手法が広く用いられる。 以後の記述においては、 とくにことわらない 限り 「複合材料」 という用語を、 プリプレダを積層、 成形、 硬化して得た繊維強化 プラスチヅクという意味で使用する。  In the production of fiber-reinforced plastics, a method is widely used in which a film-shaped precursor called a preplader, in which uncured thermosetting resin is impregnated in reinforced fibers, is laminated, molded, and then cured to obtain the * t target product. Be done. In the following description, the term “composite material” is used to mean a fiber-reinforced plastic obtained by laminating, molding, and curing a prepender unless otherwise specified.
プリプレダから複合材料を得る場合、 強化繊維を織物にしたプリプレダを用いる 手法、 一方向に配列した強化繊維からなるプリプレグを、 繊維軸方向を変えて積層 する手法などを用いて面内の物性をほぼ等方的にすることが行われる。  When a composite material is obtained from a prepreg, the in-plane physical properties can be almost eliminated by using a method of using a prepreg made of reinforcing fibers as a woven fabric or a method of stacking prepregs of reinforcing fibers arranged in one direction by changing the fiber axis direction. Isotropic is done.
ところが、 このような構成をとる場合でも、 複合材料の耐衝撃性などは、 層間で の破壊に支配されるため、 強化繊維の強度を向上させても抜本的な改良には結びつ かないことが知られている。 ここで複合材料の層間とは、 プリプレダを積層すると きのプリプレダ間の界面に相当する面の近傍をいう。 この領域は、 強化繊維の分率 が小さく、 その両側での強化繊維の配向がことなるため、 破壊が集中しやすくなる o  However, even with such a structure, the impact resistance of the composite material is dominated by the fracture between the layers, and therefore, improving the strength of the reinforcing fiber may not lead to a drastic improvement. Are known. Here, the interlayer of the composite material means the vicinity of the surface corresponding to the interface between the pre-preders when laminating the pre-preders. In this region, the fraction of the reinforcing fibers is small and the orientation of the reinforcing fibers on both sides of it is different, so it is easy to concentrate the fracture o
特に、 熱硬化性樹脂をマトリックス樹脂とする複合材料は、 マトリックス樹脂の 低靭性を反映し耐衝撃性が不十分である。 また、 交差積層板に引張り荷重を加えた 際、 板端から層間剥離が生じることが多く、 その為、 積層構成の自由度が制限され ることが多い。 そこで、 繊維軸方向以外の物性、 特に耐衝撃性、 層間靭性を改良す ることを目的として種々の方法が提案されており、 特に層間にマトリックス樹脂と は異なる材料を配置し、 破壊エネルギーを吸収させる手法が多く提案されている。 米国特許第 4, 604. 9 号明細書では、 繊維強化プリプレダの層間に熱可塑性樹脂 フィルムを配して耐衝撃性の改善がなされることが開示されている。 しかしこの場 合は、 熱硬化性樹脂の利点であるタック性 (粘着性) やドレープ性 (形状になじむ 性質) が失われるという欠点を有する。 In particular, a composite material using a thermosetting resin as a matrix resin has insufficient impact resistance, reflecting the low toughness of the matrix resin. In addition, when a tensile load is applied to a cross-laminated plate, delamination often occurs from the plate edge, which often limits the degree of freedom in the laminated structure. Therefore, various methods have been proposed for the purpose of improving physical properties other than the fiber axis direction, particularly impact resistance and interlayer toughness. In particular, a material different from the matrix resin is arranged between the layers to absorb the fracture energy. There are many proposed methods. U.S. Pat. No. 4,604.9 discloses that impact resistance is improved by placing a thermoplastic resin film between the layers of a fiber reinforced pre-preder. But this place In this case, the thermosetting resin has the disadvantage that the tackiness (adhesiveness) and the drapeability (property to conform to the shape) which are advantages of the thermosetting resin are lost.
本発明者らは米国特許第 5, 028, 478 号明細書において、 榭脂を素材とする微粒子 を含むマトリックス樹脂を開示した。 特に、 樹脂微粒子をプリプレダの表面に局在 化させることにより、 プリプレダのタック性およびドレープ性を有したまま耐衝撃 性の改良された複合材料を与えることを示した。 しかし、 この手法にも、 樹脂の微 粒子を得ることが、 あまり容易ではないという問題がある。 さらに、 微粒子は強化 繊維中に侵入しゃいが、 微粒子の侵入は複合材料の物性の低下の原因となり、 これ を回避しょうとするとプリプレグの製造工程が複雑化してしまう。 特開平 2 - 3284 3 号公報では、 繊維強化プリプレダの表面に織物を貼着することで複合材料の層間 靭性の改善がなされることが開示されている。 一般的に樹脂を粒子化するより繊維 化することが容易な場合が多く、 この点では利点を有するが、 繊維を織物化するェ 程が必要になるため、 あまりこの利点を活かすことができない。 また、 織物の低目 付化に製造上の限界があり、 層間素材として適当な目付のものを得ることができな い。  The present inventors have disclosed in US Pat. No. 5,028,478 a matrix resin containing fine particles made of oleoresin. In particular, it was shown that by localizing the resin fine particles on the surface of the pre-preder, a composite material having improved impact resistance while maintaining the tackiness and drape of the pre-preder was provided. However, this method also has a problem that it is not so easy to obtain fine resin particles. Further, fine particles penetrate the reinforcing fiber, but the fine particles cause deterioration of the physical properties of the composite material, and trying to avoid this complicates the prepreg manufacturing process. Japanese Unexamined Patent Publication No. 2-32843 discloses that the interlaminar toughness of a composite material is improved by pasting a woven fabric on the surface of a fiber reinforced pre-preder. In general, it is often easier to fiberize the resin than to make it into particles, and this has an advantage, but it is not possible to make full use of this advantage because it is necessary to fabricate the fiber. In addition, there is a manufacturing limit in reducing the basis weight of the woven fabric, and it is not possible to obtain an appropriate basis weight as the interlayer material.
Composite Materials: Testing and Design (Seventh Conference), ASTM STP 89 3 " 256頁所収の論文には、 ケブラ一またはポリエステルのマッ トを層間に配す ることにより、 層間靭性の向上効果が得られることが記述されている。 しかし、 こ のようなマツ トの作製には繊維の作製の後にさらにカツ ト、 マツ ト化という工程が 必要であり、 繊維を用いる利点をあまり活かすことができない。 また、 低目付化に も限界がある。  Composite Materials: Testing and Design (Seventh Conference), ASTM STP 89 3 "In a 256-page paper, it was found that the effect of improving interlaminar toughness can be obtained by placing a Kevlar or polyester mat between the layers. However, the production of such mats requires a further step of cutting and matting after the production of fibers, and the advantages of using fibers cannot be fully utilized. There is a limit to the unit weight.
特開平 2- 号公報、 特開平 292 5号公報、 特開平 292 6号公報、 特開平 4-292909号公報、 特開平 55 号公報、 特開平 4- 325528号公報、 特開平 4-325529 号公報、 特開平 5- 17603号公報では、 繊維強化プリプレダの表面に繊維状熱可塑性 樹脂を一定方向に配列することで複合材料の層間靭性の改善がなされることが開示 されている。 しかし、 繊維状熱可塑性樹脂を低目付にしょうとするとプリプレダの 幅方向に目付ムラができ、 性能のばらつきが大きくなるといった欠点を有する。 ま た、 一方向に配列された強化繊維を用いる場合、 これと平行に繊維状熱可塑性樹脂 を配列すると強化繊維中に侵入し、 複合材料の物性を損なうことになる。  Japanese Unexamined Patent Application Publication No. 2-Japanese Unexamined Patent Publication No. 295-295, Japanese Unexamined Patent Publication No. 2962, Japanese Unexamined Patent Publication No. 4-292909, Japanese Unexamined Patent Publication No. 55, Japanese Unexamined Patent Publication No. 4-325528, Japanese Unexamined Patent Publication No. Japanese Patent Laid-Open No. 17603/1993 discloses that interlaminar toughness of a composite material is improved by arranging a fibrous thermoplastic resin on a surface of a fiber reinforced pre-preder in a certain direction. However, if the fibrous thermoplastic resin is made to have a low basis weight, there is a drawback that unevenness of the basis weight is caused in the width direction of the pre-preder, resulting in large variation in performance. Further, in the case of using the unidirectionally arranged reinforcing fibers, if the fibrous thermoplastic resin is arranged in parallel with the reinforcing fibers, they will penetrate into the reinforcing fibers and impair the physical properties of the composite material.
しかし、 これらの手法は、 その耐衝撃性改良効果がいまだ不十分であったり、 耐 衝撃性を改良するために層間剪断強度、 ハンドリング性その他の特性を犠牲にする など、 それぞれに欠点を有している。 また、 従来のプリプレダと比較すると共通し て製造工程が複雑かつ困難になるという問題もある。 However, each of these methods has its own drawbacks, such as its impact resistance improvement effect is still insufficient, and interlaminar shear strength, handleability and other properties are sacrificed in order to improve impact resistance. ing. Also, in comparison with conventional prepreders, There is also a problem that the manufacturing process becomes complicated and difficult.
本発明は強度、 弾性率、 耐衝撃性、 層間靭性に優れた複合材料を与え、 しかも単 純かつ容易に製造できるプリプレダ、 およびその製造方法を提供することを課題と する。  It is an object of the present invention to provide a composite material that is excellent in strength, elastic modulus, impact resistance, and interlaminar toughness, and that is simple and easy to manufacture, and a manufacturing method thereof.
発明の開示  Disclosure of the invention
本発明は上記目的を達するため次の構成を有する。  The present invention has the following configuration to achieve the above object.
次の構成要素 [A] 、 [B] 、 [C] からなり、 構成要素 [C] が片面または両 面の表層近傍に分布し、 構成要素 [C] が規則的配列を持たないプリプレダである  Consists of the following constituents [A], [B], and [C]. The constituent [C] is distributed near the surface of one side or both sides, and the constituent [C] is a pre-preder without a regular array.
[A] :長繊維からなる強化繊維 [A]: Reinforcing fiber consisting of long fibers
[B] :マトリックス樹脂  [B]: Matrix resin
[C] :熱可塑性樹脂の長繊維  [C]: Long filament of thermoplastic resin
また、 本発明は上記目的を達するため次の構成を有する。  Further, the present invention has the following configuration to achieve the above object.
次の構成要素 [A] に構成要素 [B] を含浸させ、 その片面または両面から構成 要素 [C] を平面状にランダムに配置することを特徴とするプリプレダの製造方法 である。  This is a method for producing a pre-preder characterized by impregnating the following constituent [A] with the constituent [B] and randomly arranging the constituent [C] from one side or both sides of the constituent [C].
[A] :長繊維からなる強化繊維  [A]: Reinforcing fiber consisting of long fibers
[B] :マトリックス樹脂  [B]: Matrix resin
[C] :熱可塑性樹脂の長繊維  [C]: Long filament of thermoplastic resin
さらに、 本発明は上記目的を達するため次の構成を有する。  Furthermore, the present invention has the following configuration to achieve the above object.
次の構成要素 [A] 、 [D] 、 [C] からなり、 構成要素 [C] が積層層間にラ ンダムに平面状に配列された複合材料。  A composite material consisting of the following components [A], [D], and [C], in which the components [C] are randomly arranged in a plane between the laminated layers.
[A] 長繊維からなる強化繊維  [A] Reinforcing fiber consisting of long fibers
[D] マトリックス樹脂硬化物  [D] Matrix resin cured product
[C] 熱可塑性樹脂の長繊維  [C] Thermoplastic long fibers
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を具体的に説明する。  Hereinafter, the present invention will be specifically described.
本発明に構成要素 [A] として用いられる要素は長繊維からなる強化繊維であり 、 複合材料の使用目的に応じた様々なものが使用できる。 本発明に用いる強化繊維 の具体例としては、 炭素繊維、 黒鉛繊維、 ァラミ ド繊維、 炭化ゲイ素繊維、 アルミ ナ繊維、 ボロン繊維、 タングステンカーバイ ド繊維、 ガラス繊維がなどあげられる 。 強化繊維は複数種を組合わせて使用することもできる。 これらのうち比強度、 比弾性率が良好で軽量化に大きな寄与が認められる炭素繊 維や黒鉛繊維が本発明には良好である。 炭素繊維や黒鉛繊維は用途に応じてあらゆ る種類の炭素繊維や黒鉛繊維を用いることが可能であるが、 引張伸度 1. 5 ¾以上の 高強度炭素繊維が複合材料の強度発現のため適している。 引張強度 4 5 0 k g f
Figure imgf000006_0001
、 引張伸度 1.? %以上の高強度高伸度炭素繊維はさらに好ましく、 引張伸度 1. 9 !¾以 上の高強度高伸度炭素繊維が最も適している。 また、 本発明には長繊維状の強化繊 維を用いるが、 その長さは 5 c m以上であることが好ましい。 それより短い場合、 強化繊維の強度を複合材料として十分に発現させることが困難となる。 また、 炭素 繊維や黒鉛繊維は他の強化繊維を混合して用いてもかまわない。
The element used as the constituent element [A] in the present invention is a reinforcing fiber composed of long fibers, and various elements can be used according to the purpose of use of the composite material. Specific examples of the reinforcing fiber used in the present invention include carbon fiber, graphite fiber, aramid fiber, gay carbon fiber, aluminum fiber, boron fiber, tungsten carbide fiber and glass fiber. The reinforcing fiber may be used in combination of plural kinds. Among these, carbon fiber and graphite fiber, which have good specific strength and specific elastic modulus and are recognized to make a great contribution to weight reduction, are good for the present invention. It is possible to use all types of carbon fibers and graphite fibers depending on the application, but high-strength carbon fibers with a tensile elongation of 1.5 ¾ or more are used to express the strength of the composite material. Are suitable. Tensile strength 450 kgf
Figure imgf000006_0001
, Tensile elongation 1.? High strength and high elongation carbon fibers having a tensile strength of 1.9% or higher are most preferable. Further, although long-fiber-shaped reinforcing fibers are used in the present invention, the length thereof is preferably 5 cm or more. If the length is shorter than that, it becomes difficult to sufficiently develop the strength of the reinforcing fiber as a composite material. Further, carbon fibers and graphite fibers may be used by mixing with other reinforcing fibers.
強化繊維はその形状や配列を限定されず、 たとえば、 単一方向、 ランダム方向、 シート状、 マッ ト状、 織物状、 組み紐状であっても使用可能である。 また、 特に、 比強度、 非弾性率が高いことを要求される用途には強化繊維が単一方向に引き揃え られた配列が最も適しているが、 取り扱いの容易な織物状の配列も本発明には適し ている。  The shape and arrangement of the reinforcing fibers are not limited, and for example, they can be used in a single direction, a random direction, a sheet shape, a mat shape, a woven shape, or a braided shape. Further, in particular, an array in which reinforcing fibers are aligned in a single direction is most suitable for an application in which high specific strength and high inelasticity are required, but a woven array that is easy to handle is also included in the present invention. Suitable for
本発明に構成要素 [ B ] として用いられるマトリックス樹脂には、 熱または光や 電子線などの外部からのエネルギーにより硬化して、 少なくとも部分的に三次元硬 化物を形成する樹脂が主成分として用いられ、 特に熱により硬化するいわゆる熱硬 化性樹脂が好ましく用いられる。 ' 本発明に適した熱硬化性樹脂としては、 特にエポキシ樹脂があげられ、 一般に硬 化剤や硬化触媒と 合せて用いられる。 特に、 アミ ン類、 フヱノール類、 炭素炭素 二重結合を有する化合物を前駆体とするエポキシ樹脂が好ましい。 具体的には、 ァ ミ ン類を前駆体とするエポキシ樹脂として、 テトラダリシジルジァミノジフヱニル メタン、 ト リグリ シジル一 p—ァミ ノフエノール、 卜 リグリ シジルー m—アミ ノフ エノ一ル、 トリグリシジルァミノクレゾールの各種異性体、 フヱノール類を前駆体 とするエポキシ樹脂として、 ビスフエノール A型エポキシ樹脂、 ビスフヱノール F 型エポキシ樹脂、 ビスフヱノール S型エポキシ樹脂、 フヱノールノボラック型ェポ キシ樹脂、 クレゾ一ルノボラック型エポキシ樹脂、 炭素炭素二重結合を有する化合 物を前駆体とするエポキシ樹脂としては、 脂環式エポキシ樹脂等があげられるが、 これに限定されない。 また、 これらのエポキシ樹脂をブロム化したブロム化工ポキ シ樹脂も用いられる。 テトラダリシジルジァミノジフヱニルメタンに代表される芳 香族ァミ ンを前駆体とするエポキシ樹脂は耐熱性が良好で強化繊維との接着性が良 好なため本発明に最も適している。 エポキシ樹脂はエポキシ硬化剤と組合せて好ましく用いられる。 エポキシ硬化剤 はエポキシ基と反応しうる活性基を有する化合物であればこれを用いることができ る。 好ましくは、 アミノ基、 酸無水物基、 アジド基を有する化合物が適している。 具体的には、 ジシアンジアミ ド、 ジァミ ノ ジフヱニルスルホンの各種異性体、 ジァ ミノジフヱニルメ夕ンの各種誘導体、 ァミノ安息香酸エステル類が適している。 具 体的に説明すると、 ジシアンジアミ ドはプリプレダの保存性に優れるため好んで用 いられる。 また、 ジァミノジフヱニルスルホンの各種異性体は、 耐熱性の良好な硬 化物を与えるため本発明には最も適している。 ジアミノジフヱニルメタンのアルキ ル誘導体、 特に 3, 3' 5, 5' - テトラアルキル誘導体は高伸度、 低吸水性の硬化物を与 えるため本発明に適している。 The matrix resin used as the constituent element [B] in the present invention is mainly composed of a resin that is cured by heat or energy from the outside such as light or electron beam to form a three-dimensional cured product at least partially. In particular, a so-called thermosetting resin that is cured by heat is preferably used. As the thermosetting resin suitable for the present invention, an epoxy resin is particularly mentioned, and it is generally used in combination with a curing agent or a curing catalyst. In particular, an epoxy resin containing an amine, a phenol, or a compound having a carbon-carbon double bond as a precursor is preferable. Specifically, as an epoxy resin using an amine as a precursor, tetradalycidyl diaminodiphenyl methane, triglycidyl 1-p-aminophenol, liglycidyl m-aminophenol, Epoxy resins using various isomers of triglycidylamino cresol and phenols as precursors, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolak type epoxy resin, Examples of the cresol lunovolak type epoxy resin and the epoxy resin having a compound having a carbon-carbon double bond as a precursor include alicyclic epoxy resins, but are not limited thereto. In addition, brominated epoxy resins obtained by bromizing these epoxy resins are also used. Epoxy resins, which have aromatic aromatic amines such as tetradalycidyl diaminodiphenyl methane as a precursor, have good heat resistance and good adhesion to reinforcing fibers, and are therefore most suitable for the present invention. There is. Epoxy resins are preferably used in combination with epoxy hardeners. As the epoxy curing agent, any compound having an active group capable of reacting with an epoxy group can be used. A compound having an amino group, an acid anhydride group, or an azido group is preferable. Specifically, dicyandiamide, various isomers of diaminodiphenylsulfone, various derivatives of diaminodiphenylmethane, and aminobenzoic acid esters are suitable. Specifically, dicyandiamide is preferred because of its excellent preservability. Further, various isomers of diaminodiphenyl sulfone are most suitable for the present invention because they give a cured product having good heat resistance. An alkyl derivative of diaminodiphenylmethane, particularly a 3,3'5,5'-tetraalkyl derivative, is suitable for the present invention because it gives a cured product having high elongation and low water absorption.
ァミ ノ安息香酸エステル類としては、 ト リメチレンダリコールジ一 p—ァミ ノべ ンゾエートゃネオペンチルグリコールジ一 p—ァミノベンゾェ一 卜が好んで用いら れ、 ジァミ ノ ジフヱニルスルホンに比較して、 耐熱性に劣るものの、 引張伸度に優 れるため用途に応じて選択して用いられる。  As aminobenzoic acid esters, trimethylenedalicol di-p-aminobenzoate and neopentylglycol di-p-aminobenzobenzoic acid are preferably used and compared with diaminodiphenylsulfone. Although it is inferior in heat resistance, it is superior in tensile elongation, so it is selected and used according to the application.
構成要素 [ B ] に用いる熱硬化性樹脂としては、 マレイミ ド樹脂、 アセチレン末 端を有する樹脂、 ナジック酸末端を有する樹脂、 シアン酸エステル末端を有する樹 脂、 ビニル末端を有する樹脂、 ァリル末端を有する樹脂も好ましく用いられる。 こ れらは適宜、 エポキシ樹脂や他の樹脂と混合しても良い。 また、 反応性希釈剤を用 いたり熱可塑性樹脂やエラストマ一などの改質剤を耐熱性を大きく低下させない程 度に混合して用いてもかまわない。  The thermosetting resin used for the component [B] includes a maleimide resin, a resin having an acetylene terminal, a resin having a nadic acid terminal, a resin having a cyanate ester terminal, a resin having a vinyl terminal, and an aryl group. A resin having is also preferably used. These may be appropriately mixed with an epoxy resin or another resin. In addition, a reactive diluent may be used, or a modifier such as a thermoplastic resin or an elastomer may be mixed and used to such an extent that heat resistance is not significantly deteriorated.
マレイミ ド樹脂は、 1分子あたりマレイミ ド基を平均 2個以上含む化合物である 。 ジァミノジフヱニルメ夕ンを原料とするビスマレイミ ドが特に好適に用いられる 。 この種のマレイ ミ ド化合物としては、 例えば、 N, N' - フヱニレンビスマレイ ミ ド 、 , Ν' - へキサメチレンビスマレイ ミ ド、 Ν, N' - メチレン- ジ- ρ _ フエ二レンビ スマレイ ミ ド、 Ν, Ν' - ォキシ- ジ- Ρ - フヱニレンビスマレイ ミ ド、 N, N' -4, 4' -ベ ンゾフヱノ ンビスマレイ ミ ド、 Ν, N' - ジフエニルスルホンビスマレイ ミ ド、 Ν, N' - ( 3, 3' - ジメチル) -メチレン- ジ- ρ - フヱニレンビスマレイ ミ ド、 Ν, N' -4, 4' -ジシ ク口へキシルメ 夕ンビスマレイ ミ ド、 Ν, N' - m ( 又は p ) -キシリ レン- ビスマレイ ミ ド、 N, N' - (3, 3' 一 ジェチル) -メチレン- ジ- p - フエ二レンビスマレイ ミ ド、 N, N' - メ タ ト リ レン- ジ- マレイ ミ ドゃビス (ァミ ノフヱノキシ) ベンゼンのビスマ レイ ミ ドを始め、 ァニリンとホルマリンの反応生成物である混合ポリアミ ンと無水 マレイン酸との反応生成物があげられるが、 本発明はこれに限定されない。 また、 これらマレイ ミ ド化合物は 2種以上の混合系で用いてもよく、 また N-ァリルマレイ ミ ド、 N-プロピルマレイ ミ ド、 N-へキシルマレイミ ド、 N-フヱニルマレイミ ドなど のモノマレイ ミ ド化合物を含有してもよい。 Maleimide resin is a compound containing an average of 2 or more maleimide groups per molecule. Particularly preferred is bismaleimide made from diaminodiphenyl ester. Examples of this type of maleide compound include N, N'-phenylene bismaleimide,, Ν'-hexamethylene bismaleimide, Ν, N'-methylene-di-ρ _phenenium. Lenvy maleimide, Ν, Ν'-oxy-di-Ρ-Phenylene bismaleimide, N, N '-4, 4'- Benzophenone bismaleimide, Ν, N'-Diphenylsulfone bismale Mid, Ν, N'- (3, 3'-Dimethyl) -Methylene-di-ρ-Phenylene Bismaleimid, Ν, N'-4, 4'-Disic Mouth Hexylme Yun Bismalei Mid , Ν, N'- m (or p) -xylylene-bismaleimide, N, N '-(3,3' octyl) -methylene-di-p-phenylene bismaleimide, N, N '- Examples include the reaction products of mixed polyamines, which are the reaction products of aniline and formalin, and maleic anhydride, including the bismalemides of benzene and the diamines. However, the present invention is not limited to this. Also, These maleimide compounds may be used as a mixture of two or more kinds, and also contain mono-maleimide compounds such as N-arylmaleimide, N-propylmaleamide, N-hexylmaleamide and N-phenylmaleimide. You may.
マレイミ ド樹脂は硬化剤と組合せて好ましく用いられる。 硬化剤はマレイミ ド基 と反応し得る活性基を有する化合物であればこれを用いることができる。 好ましく は、 アミノ基、 ァリル基に代表されるアルケニル基、 ベンゾシクロブテン基、 ァリ ルナジックイミ ド基、 イソシァネート基、 シァネート基、 エポキシ基を有する化合 物が適している。 例えば、 アミノ基を有する硬化剤としてはジァミノジフヱニルメ タンが代表的であり、 アルケニル基を有する硬化剤としては 0, 0' - ジァリルビスフ エノ一ル Aやビス (プロぺニルフヱノキシ) スルホンなどが挙げられる。  The maleimide resin is preferably used in combination with a curing agent. As the curing agent, any compound having an active group capable of reacting with the maleimide group can be used. A compound having an amino group, an alkenyl group represented by an aryl group, a benzocyclobutene group, an arylnamidimide group, an isocyanate group, a cyanate group, or an epoxy group is suitable. For example, diaminodiphenylmethane is a typical curing agent having an amino group, and 0,0'-diarylbisphenol A or bis (propenylphenoxy) sulfone is a curing agent having an alkenyl group. And so on.
上記のビスマレイ ミ ドとシアン酸エステルで構成されるビスマレイ ミ ド · 卜 リア ジン樹脂 (B T樹脂) も本発明の構成要素 [ B ] に用いる熱硬化性樹脂として好適 である。 シアン酸エステル末端を有する樹脂としては、 ビスフヱノール Aに代表さ れる多価フヱノールのシアン酸エステル化合物が好適である。 シアン酸エステル樹 脂とビスマレイミ ド樹脂と組合わせた樹脂は、 三菱ガス化学 (株) 製から B Tレジ ンとして市販されており本発明に適している。 これらは一般にエポキシ樹脂より、 耐熱性と耐水性が良好である半面、 靭性ゃ耐衝撃性が劣るため用途に応じて選択し て用いられる。 ビスマレイミ ドとシアン酸エステルの重量比で 0 Z 1 0 0〜7 0 Z 3 0の範囲で用いられる。 0 1 0 0の場合はトリアジン樹脂に該当することとな るが、 本発明にはこれも適している。  The above-described bismaleimide-triazine resin (BT resin) composed of bismaleamide and cyanate ester is also suitable as the thermosetting resin used in the constituent element [B] of the present invention. As the resin having a cyanate ester terminal, a polyvalent cyanate ester compound represented by bisphenol A is preferable. A resin in which a cyanate ester resin and a bismaleimide resin are combined is commercially available from Mitsubishi Gas Chemical Co., Inc. as a B T resin and is suitable for the present invention. Generally, these have better heat resistance and water resistance than epoxy resins, but are inferior in toughness and impact resistance, so they are selected and used according to the application. It is used in a weight ratio of bismaleimide to cyanate in the range of 0 Z 100 to 70 Z 30. The case of 0 100 corresponds to a triazine resin, which is also suitable for the present invention.
さらに、 末端反応性基を持つ熱硬化性ポリイミ ド樹脂も本発明の構成要素 [ B ] として好適である。 末端反応性基としてはナジイミ ド基、 アセチレン基、 ベンゾシ クロブテン基などが好適である。  Further, a thermosetting polyimide resin having a terminal reactive group is also suitable as the constituent element [B] of the present invention. As the terminal reactive group, nadiimide group, acetylene group, benzocyclobutene group and the like are preferable.
また、 本発明の構成要素 [ B ] には、 フユノール樹脂、 レゾルシノール樹脂、 不 飽和ポリエステル樹脂、 ジァリルフタレー ト樹脂、 尿素樹脂、 メラ ミ ン樹脂といつ た工業界で広く認知された熱硬化性樹脂も用いることができる。  In addition, the component [B] of the present invention may be a thermosetting resin that has been widely recognized in the industry, such as a fuunol resin, a resorcinol resin, an unsaturated polyester resin, a diaryl phthalate resin, a urea resin, and a melamine resin. Can be used.
また、 本発明の構成要素 [ B ] には、 熱硬化性樹脂の他に、 ポリスルホン、 ポリ エーテルィ ミ ドなどの熱可塑性樹脂ゃ微粉末状シリカなどの無機質微粒子やエラス トマ一などを混合して改質することも可能である。 この場合、 熱硬化性樹脂以外の 成分は 3 5重量%以内であることが好ましい。  In addition to the thermosetting resin, a thermoplastic resin such as polysulfone or polyether imide, inorganic fine particles such as finely powdered silica, and elastomer are mixed in the constituent element [B] of the present invention. It is also possible to modify. In this case, the components other than the thermosetting resin are preferably contained within 35% by weight.
本発明のプリプレグは積層し、 熱、 光などの手段を用いて硬化して複合材料を得 る。 この複合材料において、 構成要素 [ B ] が硬化して生成する樹脂成分を構成要 素 [ D ] とする。 The prepreg of the present invention is laminated and cured using a means such as heat or light to obtain a composite material. In this composite material, the constituent [B] is a constituent component of the resin component produced by curing. Let's say [D].
本発明のプリプレダの構成要素 [ B ] として、 1 0 °Cから 2 5 0 °Cまで昇温する 過程において相分離する樹脂組成物を好ましく用いることができる。 この場合、 複 合材料の構成要素 [ D ] は、 相分離した構造をとる。 樹脂組成物が相分離するか否 かは加熱昇温する過程において顕微鏡観察することにより容易に判断することがで きる。  As the constituent [B] of the pre-preder of the present invention, a resin composition that undergoes phase separation in the process of heating from 10 ° C to 250 ° C can be preferably used. In this case, the constituent [D] of the composite material has a phase-separated structure. Whether or not the resin composition undergoes phase separation can be easily determined by observing with a microscope in the process of heating and heating.
相分離した構造をとる構成要素 [ D ] は、 熱硬化性樹脂を主成分とする相と、 熱 可塑性樹脂を主成分とする相にミク口相分離した構造をとることがさらに好ましい o  It is further preferable that the component [D] having a phase-separated structure has a structure in which a phase mainly composed of a thermosetting resin and a phase mainly composed of a thermoplastic resin are separated into a mixture phase o
この好ましいマトリックス樹脂組成物は、 熱硬化性樹脂を主成分とする相と熱可 塑性樹脂を主成分とする相にミク口相分離した構造を有する樹脂硬化物であること がさらに好ましい。 またこの構成要素 [ D ] は、 構成要素 [ B ] を硬化することに よって得られるものである。 構成要素 [ B ] を硬化する過程において次に述べる特 徴的なミクロ相分離構造を有するようになることがさらに好ましい。 すなわち、 熱 可塑性樹脂を主成分とする相が、 熱硬化性樹脂を主成分とする相と分離して存在し 、 少なく とも熱可塑性樹脂を主成分とする相が 3次元的に連続した網目状構造を有 する場合である。 こうした構造は、 硬化前の熱硬化性樹脂と熱可塑性樹脂が一旦均 一相溶状態をつく り、 硬化過程において相分離することによって得られる。 より好 ましくは両方の相が共に 3次元的に連続した綱目状構造をしているミク口相分離構 造を有する樹脂硬化物である。 また場合によっては、 連続相中に他相の分散相を含 有する形態を有することも好ましい。 特に、 ゴム相からなる分散相を有する場合は 靭性向上に大きく寄与するため好ましい。  This preferable matrix resin composition is further preferably a resin cured product having a structure in which a phase mainly containing a thermosetting resin and a phase mainly containing a thermoplastic resin are separated into a mixture phase. The constituent [D] is obtained by curing the constituent [B]. It is more preferable that the component [B] has a characteristic microphase-separated structure described below in the process of curing. In other words, a phase containing a thermoplastic resin as a main component exists separately from a phase containing a thermosetting resin as a main component, and at least a phase containing a thermoplastic resin as a main component is three-dimensionally continuous in a mesh pattern. This is the case when there is a structure. Such a structure is obtained by the thermosetting resin and the thermoplastic resin, which have not been cured yet, once forming a uniform compatible state and then phase-separated during the curing process. More preferably, it is a resin cured product having a Miku mouth phase separation structure in which both phases have a three-dimensionally continuous mesh-like structure. In some cases, it is also preferable that the continuous phase contains a dispersed phase of another phase. In particular, it is preferable to have a dispersed phase composed of a rubber phase because it greatly contributes to the improvement of toughness.
熱可塑性樹脂を主成分とする連続相の構造周期は約 0. 01〜20ミク口ンがさらに好 ましい。 0. 01ミクロン以下であると破断面の凹凸深さが浅く、 破壊経路は短くなり 高靭性を発現しにくい。 20ミ クロンを越えると、 破壊経路は単純化し高靭性化効果 が薄れる。 より好ましくは 0. 1 乃至 10ミク口ン程度である。  The structural period of the continuous phase containing a thermoplastic resin as a main component is more preferably about 0.01 to 20 Mikuguchi. If it is less than 0.01 micron, the unevenness of the fracture surface is shallow and the fracture path is short, making it difficult to develop high toughness. Above 20 micron, the fracture path is simplified and the toughening effect is diminished. More preferably, it is about 0.1 to 10 Miku.
樹脂硬化物の相分離構造は常法にて顕微鏡観察できる。 光学顕微鏡にても観察可 能であるが、 場合によっては四酸化オスミ ウム等にて染色し、 電子顕微鏡で観察す る方が好ましい。 異なる相の存在が明確であり、 少なく とも一つの相が連続構造を 形成しており、 さらに、 その連続相中に分散相があればその存在がわかる。 X線マ ィクロアナライザ一等の分析装置と顕微鏡を併用することにより、 構成要素の特定 が可能である。 本発明の硬化樹脂の破壊歪エネルギー解放率 G は、 ASTM E 399 - 83 によって得られた応力拡大係数 Kieとポアッソン比 7、 曲げ弾性率 Eから G =Κ ,c 2 (1—ァ 2 ) ZEに従って計算できる。 ここで曲げ弾性率は A S TM D 79 0に従って測定するものとする。 The phase-separated structure of the cured resin can be observed under a microscope by a conventional method. Although it can be observed with an optical microscope, in some cases it is preferable to stain with osmium tetroxide or the like and observe with an electron microscope. The existence of different phases is clear, and at least one phase forms a continuous structure, and if there is a dispersed phase in the continuous phase, its existence can be known. By using a microscope together with an analyzer such as an X-ray micro analyzer, it is possible to identify the constituent elements. Fracture strain energy release rate G of the cured resin of the present invention, ASTM E 399 - 83 stress intensity factor obtained by K ie and Poisson's ratio 7, G 1 [lambda = kappa from flexural modulus E, c 2 (1-§ 2 ) Can be calculated according to ZE. Here, the flexural modulus shall be measured according to AS ™ D790.
構成要素 [B] および構成要素 [D] 中の熱可塑性樹脂成分は、 工業界で広く認 知された熱可塑性樹脂を指すのであるが、 熱硬化性樹脂本来の高耐熱性、 高弾性率 を損わない為に、 芳香族系のいわゆるエンジニアリングプラスチックに属するもの 力 この熱可塑性樹脂として好ましい。 すなわち、 芳香族ポリイミ ド骨格、 芳香族 ポリアミ ド骨格、 芳香族ポリエーテル骨格、 芳香族ポリスルホン骨格、 芳香族ポリ ケトン骨格を有する熱硬化性樹脂可溶の高耐熱性の熱可塑性樹脂が代表例としてあ げられる。 特に芳香族ポリイ ミ ド骨格を有するものは耐熱性、 耐溶剤性、 靭性のい ずれにも優れるため好ましい。 ポリエーテルスルホン、 ポリスルホン、 ポリイミ ド 、 ポリエーテルイミ ド、 フエニルトリメチルインダン構造を有するポリイミ ド等が 具体例として挙げられる。  The thermoplastic resin component in component [B] and component [D] refers to a thermoplastic resin that is widely recognized in the industry, but it does not have the high heat resistance and high elastic modulus inherent to thermosetting resins. Since it does not damage, it belongs to the so-called engineering plastics of aromatic type. It is preferable as this thermoplastic resin. That is, a thermosetting resin-soluble high heat-resistant thermoplastic resin having an aromatic polyimide skeleton, an aromatic polyamide skeleton, an aromatic polyether skeleton, an aromatic polysulfone skeleton, and an aromatic polyketone skeleton is a typical example. can give. In particular, those having an aromatic polyimide skeleton are preferable because they have excellent heat resistance, solvent resistance, and toughness. Specific examples thereof include polyether sulfone, polysulfone, polyimide, polyether imide, and polyimide having a phenyltrimethylindane structure.
熱可塑性樹脂成分として好適な芳香族ポリイミ ドの合成法は、 工業界にて公知の いずれの方法を用いることもできるが、 代表的にはテトラカルボン酸二無水物とジ ァミノ化合物とを反応させることよって合成する。 テトラカルボン酸二無水物の好 ましい例は、 ピロメ リ ッ ト酸二無水物、 3, 3' , 4, 4' —ベンゾフヱノ ンテト ラカルボン酸二無水物、 3, 3' , 4, 4' —ビフヱニルテトラカルボン酸二無水 物、 3, 3' , 4, 4' —ジフヱニルエーテルテトラカルボン酸二無水物、 3, 3 ' , 4, 4, 一ジフヱニルスルホンテトラカルボン酸二無水物などの芳香族テトラ カルボン酸二無水物、 より好ましく は、 3, 3' , 4, 4' 一ビフヱニルテ トラ力 ルボン酸二無水物、 3, 3' , 4, 4, ージフヱニルエーテルテトラカルボン酸二 無水物などの芳香族テトラカルボン酸二無水物を挙げることができる。  As a method for synthesizing an aromatic polyimide suitable as a thermoplastic resin component, any method known in the industry can be used. Typically, a tetracarboxylic dianhydride and a diamino compound are reacted. Synthesized by that. Preferable examples of tetracarboxylic acid dianhydride are pyromellitic dianhydride, 3, 3 ', 4, 4'-benzofluoroethylene carboxylic acid dianhydride, 3, 3', 4, 4'- Biphenyl tetracarboxylic dianhydride, 3, 3 ', 4, 4'-diphenyl ether tetracarboxylic dianhydride, 3, 3', 4, 4, 1 diphenyl sulfone tetracarboxylic dianhydride Aromatic tetracarboxylic acid dianhydrides such as compounds, more preferably 3,3 ', 4, 4'monobiphenyltetracarboxylic carboxylic acid dianhydride, 3, 3', 4, 4, diphenyl ether tetra Aromatic tetracarboxylic dianhydrides such as carboxylic dianhydrides can be mentioned.
ジァミノ化合物の好ましい例は、 ジアミノジフエ二ルメタン、 メタフエ二レンジ ァミ ン、 パラフエ二レンジァミ ン、 ジァミ ノジフエニルエーテル、 ジァミ ノ ジフエ ニルスルフォン、 ジアミ ノジフエニルスルフィ ド、 ジアミ ノ ジフエ二ルェタン、 ジ アミ ノ ジフエニルプロパン、 ジアミ ノ ジフエ二ルケ トン、 ジアミ ノ ジフエ二ルへキ サフルォロプロパン、 ビス (アミ ノフエノキシ) ベンゼン、 ビス (アミ ノフヱノキ シ) ジフエニルスルフォン、 ビス (アミノフエノキシ) ジフエニルプロパン、 ビス (ァミ ノフヱノキシ) ジフヱニルへキサフルォロプロパン、 ジァミ ノジフヱニルフ ルオレン、 フルオレンジァミ ン、 ジアミ ノジフエ二ルメタンのジメチル置換体、 ジ アミ ノ ジフエニルメタンのテトラメチル置換体、 ジアミ ノジフエニルメタンのジェ チル置換体、 ジアミ ノ ジフエ二ルメタンのテトラェチル置換体、 ジアミ ノ ジフエ二 ルメ夕ンのジメチルジェチル置換体などの芳香族ジァミノ化合物、 より好ましくは 、 ビス (アミ ノフエノキシ) ベンゼン、 ビス (アミ ノフエノキシ) ジフエニルスル フォン、 ビス (アミ ノフエノキシ) ジフエニルプロパン、 ビス (ァミ ノフエノキシ ) ジフエニルへキサフルォロプロパン、 ジアミ ノ ジフヱニルフルオレン、 ジァミ ノ ジフエニルメタンのジメチル置換体、 ジアミ ノ ジフエニルメタンのテトラメチル置 換体、 ジアミ ノ ジフエ二ルメタンのジェチル置換体、 ジアミ ノ ジフエ二ルメタンの テ トラェチル置換体、 ジァミ ノ ジフエニルメ夕ンのジメチルジェチル置換体などの 芳香族ジァミノ化合物を挙げることができる。 Preferred examples of the diamino compound are diaminodiphenylmethane, metaphenylene diamine, paraphenylene diamine, diamino diphenyl ether, diamino diphenyl sulfone, diamino diphenyl disulfide, diamino diphenyl diethane, diamino. Nodiphenyl propane, diamino diphenylene ketone, diamino diphenylhexafluoropropane, bis (aminophenoxy) benzene, bis (aminophenoxy) diphenyl sulfone, bis (aminophenoxy) diphenylpropane, bis (Aminophenoxy) diphenylhexafluropropane, diaminodiphenylfluorene, fluorangeamine, dimethyl-substituted diamine diphenylmethane, diamine Aromatic diamino compounds such as tetramethyl-substituted aminodiphenyl methane, dimethyl-substituted diaminodiphenylmethane, tetraethyl-substituted diaminodiphenylmethane, and dimethyljetyl-substituted diaminodiphenylmethane, etc., More preferably, bis (aminophenoxy) benzene, bis (aminophenoxy) diphenylsulfone, bis (aminophenoxy) diphenylpropane, bis (aminophenoxy) diphenylhexafluoropropane, diaminodiphenylfluorene, diami Dimethyl substitution of nodiphenyl methane, tetramethyl substitution of diamino diphenyl methane, acetyl substitution of diamino diphenyl methane, tetraethyl substitution of diamino diphenyl methane, substitution of diamino diphenyl dimethyl dimethyl. An aromatic diamino compound can be mentioned.
ポリイミ ド骨格、 ポリアミ ド骨格、 ポリエーテル骨格、 ポリスルホン骨格あるい はポリケトン骨格からなる熱可塑性樹脂分子中にへキサフルォロプロパン骨格を有 することは未硬化状態の熱硬化性樹脂への溶解性を向上させ、 硬化後に適切な相分 離構造を形成させるため好ましい。 また該構造を有することによって硬化樹脂の吸 水性を著しく低下させるため、 硬化樹脂の耐環境性を向上せしめる効果もある。 また、 構成要素 [ B ] および構成要素 [ D ] 中の熱可塑性樹脂として、 熱硬化性 樹脂と相溶性の連鎖と非相溶性の連鎖からなるプロック共重合体またはグラフ ト共 重合体を用いることは相溶性制御の観点から特に好ましい。  Thermoplastic resin consisting of polyimide skeleton, polyamide skeleton, polyether skeleton, polysulfone skeleton, or polyketone skeleton Having hexafluoropropane skeleton in the molecule means dissolution in uncured thermosetting resin It is preferable because it improves the property and forms an appropriate phase-separated structure after curing. In addition, since the water absorption of the cured resin is remarkably reduced by having the structure, it also has an effect of improving the environment resistance of the cured resin. As the component [B] and the thermoplastic resin in the component [D], use a block copolymer or graft copolymer composed of a chain compatible with the thermosetting resin and a chain incompatible with the thermosetting resin. Are particularly preferable from the viewpoint of compatibility control.
好ましい具体例の 1つは、 構成要素 [ B ] および構成要素 [ D ] 中の熱硬化性樹 脂とは本来非相溶性であり、 高靭性かつ低吸水率であるシロキサン骨格からなる連 鎖を有するプロック共重合体またはグラフ ト共重合体である。 特に好ましくは、 そ のシロキサン骨格からなる連鎖以外の部分が構成要素 [ B ] 中の熱硬化性樹脂と相 溶するポリイミ ド骨格、 ポリアミ ド骨格、 ポリエーテル骨格、 ポリスルホン骨格あ るいはポリケトン骨格からなるプロック共重合体またはグラフト共重合体である。 シロキサン骨格としては、 ジメチルシロキサンが特に好ましいが、 フヱニルシロキ サンやもしくはその共重合体も好適である。  One of the preferred specific examples is to form a chain consisting of a siloxane skeleton that is essentially incompatible with the component [B] and the thermosetting resin in the component [D], and has high toughness and low water absorption. It has a block copolymer or a graft copolymer. Particularly preferably, a portion other than the chain composed of the siloxane skeleton is composed of a polyimide skeleton, a polyamide skeleton, a polyether skeleton, a polysulfone skeleton, or a polyketone skeleton in which the thermosetting resin in the constituent [B] is compatible. Is a block copolymer or a graft copolymer. As the siloxane skeleton, dimethylsiloxane is particularly preferable, but phenylsiloxane and its copolymer are also preferable.
シロキサン骨格をプロック共重合した熱可塑性樹脂は、 同じ分子量を持つ芳香族 熱可塑性樹脂と比較した場合、 その添加による樹脂粘度増加が小さい。 したがって 作業性の低下が少なく、 この樹脂をマトリックス樹脂とするプリプレグはタック性 、 ドレープ性が優れているという効果がある。 別の見方をすると、 構成要素 [ B ] 中の熱可塑性樹脂添加量の制約が緩く、 タック性を損わずに樹脂系に多量に導入で き樹脂靭性向上に有利である。 構成要素 [B] および構成要素 [D] 中の熱可塑性樹脂として最も好ましいプロ ック共重合体またはグラフ 卜共重合体はポリイミ ド連鎖部を有する。 The thermoplastic resin obtained by block-copolymerizing the siloxane skeleton has a small increase in resin viscosity due to its addition when compared with an aromatic thermoplastic resin having the same molecular weight. Therefore, there is little deterioration in workability, and the prepreg using this resin as a matrix resin has excellent tackiness and drapeability. From another point of view, the restriction on the amount of the thermoplastic resin added in the constituent [B] is loose, and a large amount can be introduced into the resin system without impairing the tackiness, which is advantageous for improving the resin toughness. The most preferable block copolymer or graphene copolymer as the thermoplastic resin in the component [B] and the component [D] has a polyimide chain portion.
構成要素 [B] および構成要素 [D] 中の熱可塑性樹脂が、 その末端に構成要素 [B] 中の熱硬化性樹脂と反応しうる官能基を有することは相界面の接着性をより 高めるため耐溶剤性および耐疲労性の観点から好ましい。 具体的にはァミノ基、 ェ ポキシ基、 水酸基、 カルボキシル基等の官能基を末端に有するものが挙げられる。 特にァミノ基末端のポリィミ ドが好ましい。  The thermoplastic resin in the component [B] and the component [D] has a functional group capable of reacting with the thermosetting resin in the component [B] at the end of the thermoplastic resin to further enhance the adhesiveness at the phase interface. Therefore, it is preferable from the viewpoint of solvent resistance and fatigue resistance. Specific examples include those having a functional group such as an amino group, an epoxy group, a hydroxyl group and a carboxyl group at the terminal. In particular, a polyamide having an amino group terminal is preferable.
構成要素 [B] および構成要素 [D] 中の熱可塑性樹脂量は構成要素 [B] およ び構成要素 [D] 中の全成分中の 5〜40重量%が好ましい。 これより少なければ 靭性向上効果が小さく、 またこれより多ければ作業性の低下が顕著である。 より好 ましくは 8〜 30重量%である。  The amount of the thermoplastic resin in the constituent [B] and the constituent [D] is preferably 5 to 40% by weight based on all the components in the constituent [B] and the constituent [D]. If it is less than this, the toughness improving effect is small, and if it is more than this, the workability is significantly reduced. It is more preferably 8 to 30% by weight.
ここで構成要素 [B] 中の熱可塑性樹脂成分は未硬化状態の熱硬化性樹脂成分に 予め溶解しておいてもよいし、 分散させているだけでもよい。 また、 部分的に溶解 させ、 部分的に分散させてもよい。 この溶解と分散の比率を変化させることによつ て樹脂の粘度を調節でき、 プリプレダとしたときのタック性、 ドレープ性を好みの 程度に調節することができる。 分散させた熱可塑性樹脂もその大部分が成形過程に おいて熱硬化性樹脂成分に溶解し、 硬化終了時までに再び相分離し、 前記の適切な ミク口相分離構造の形成に寄与する。  Here, the thermoplastic resin component in the constituent element [B] may be previously dissolved in the uncured thermosetting resin component, or may be simply dispersed. Alternatively, it may be partially dissolved and partially dispersed. By changing the dissolution / dispersion ratio, the viscosity of the resin can be adjusted, and the tackiness and drapeability of the pre-preparer can be adjusted to a desired degree. Most of the dispersed thermoplastic resin also dissolves in the thermosetting resin component during the molding process, and phase-separates again by the end of curing, contributing to the formation of the appropriate Miku mouth phase separation structure.
構成要素 [B] および構成要素 [D] 中の熱可塑性樹脂の分子量は、 熱可塑性樹 脂成分を未硬化状態の熱硬化性樹脂成分に予め溶解させておく場合は、 数平均分子 量にして約 2000〜 20000の範囲が好ましい。 これより分子量が小さい場合 、 靭性向上効果が小さく、 また、 これより分子量が大きければ樹脂粘度の増加が著 しく作業性の低下が顕著である。 より好ましくは約 2500〜 10000の範囲で あ o  The molecular weight of the thermoplastic resin in component [B] and component [D] should be the number average molecular weight when the thermoplastic resin component is previously dissolved in the uncured thermosetting resin component. A range of about 2000 to 20000 is preferred. When the molecular weight is smaller than this, the effect of improving toughness is small, and when the molecular weight is larger than this, the resin viscosity is remarkably increased and the workability is markedly reduced. More preferably in the range of about 2500-10000
構成要素 [C] は熱可塑性樹脂の長繊維であり、 プリプレダの表層近傍に分布し 、 ランダムに配置される。 ここで、 長繊維とは、 長さ 3 cm以上の繊維を意味する。 ランダムに配置されるとは、 一定周期で同一の構造が繰り返される配列 (例えばモ ノフイ ラメ ン トあるいはマルチフィ ラメ ン 卜の平行配列、 あるいは、 織物、 編物、 組紐などの規則的なフアブリック構造) をとらないことを意味する。  The component [C] is a long fiber of a thermoplastic resin, which is distributed near the surface of the pre-preder and arranged randomly. Here, the long fiber means a fiber having a length of 3 cm or more. Randomly arranged means an array in which the same structure is repeated at regular intervals (for example, parallel array of monofilament or multifilament, or regular fabric structure such as woven fabric, knitted fabric and braid). It means not to take.
このような配列は、 単なる散布や吹付けで実現することが可能で、 規則的なファ プリックを作製する場合のように織機などの特別の装置を必要としない。 あるいは 、 このような配列は、 長繊維不織布を利用することによつても実現できる。 長繊維 不織布は、 織物、 マツ 卜と比較して、 原料樹脂を一旦フィラメ ン卜にすることなく 、 直接樹脂からファブリ ックを得ることができる点において生産性に優れる。 また 、 このような形態をとるため、 平行配列のように構成要素 [ C ] が構成要素 [ A ] に侵入するという問題は本発明のプリプレグでは生じない。 Such an arrangement can be realized by simple spraying or spraying, and does not require special equipment such as a loom as in the case of making regular fabrics. Alternatively, such an arrangement can be realized by utilizing a long-fiber nonwoven fabric. Long fiber Nonwoven fabrics are superior to woven fabrics and pine in that they can directly obtain fabrics from the resin without making the raw material resin into a filament. Further, because of such a form, the problem that the constituent element [C] invades the constituent element [A] like the parallel arrangement does not occur in the prepreg of the present invention.
本発明のプリプレダの構成要素 [ C ] は、 規則的配列を持たないことを特徵とす るが、 望ましい物性を得るためには、 構成要素 [ C ] の目付ができるだけ均一であ ることが望ましい。  The feature of the component [C] of the present invention is that it does not have a regular arrangement, but in order to obtain the desired physical properties, it is desirable that the basis weight of the component [C] is as uniform as possible. ..
また、 構成要素 [ C ] はプリプレダの表層近傍に分布するが、 全表面を被覆する ことはないため、 マトリ ックス樹脂の含浸が容易であり、 マトリックス樹脂のもつ タック性、 ドレープ性がプリプレダ特性として反映され、 取扱いの優れたプリプレ グとなる。 さらに構成要素 [ C ] は、 プリプレグ表面に一定量の樹脂を保持する機 能を有するため、 通常のプリプレダと比較して、 タック性自体が向上するうえ、 夕 ック性の経時変化をきわめて小さくする効果を有する。  In addition, the component [C] is distributed in the vicinity of the surface layer of the pre-preder, but since it does not cover the entire surface, it can be easily impregnated with the matrix resin, and the tackiness and drape of the matrix resin are the pre-preda characteristics. Reflected, it becomes a prepreg with excellent handling. Furthermore, component [C] has the function of holding a certain amount of resin on the surface of the prepreg, so it improves the tackiness itself compared to a normal prepreg, and the change in the tackiness with time is extremely small. Have the effect of
構成要素 [ C ] の素材は熱可塑性樹脂である。 主鎖に、 炭素炭素結合、 アミ ド結 合、 イミ ド結合、 エステル結合、 エーテル結合、 カーボネート結合、 ウレタン結合 、 チォエーテル結合、 スルホン結合、 イミダゾール結合、 カルボニル結合から選ば れる結合を有する熱可塑性樹脂が代表的である。 特に、 ポリアミ ド、 ポリカーボナ — ト、 ポリアセタール、 ポリフエ二レンォキシ ド、 ポリフエ二レンスルフィ ド、 ポ リァリ レー ト、 ポリエステル、 ポリアミ ドイ ミ ド、 ポリイ ミ ド、 ポリエーテルイ ミ ド、 ポリスルホン、 ポリエーテルスルホン、 ポリエーテルエーテルケ トン、 ポリア ラミ ド、 ポリべンズィ ミダゾ一ルは耐衝撃性に傻れるので本発明に使用する不織布 の素材として適している。 この中でも、 ポリアミ ド、 ポリイミ ド、 ポリアミ ドイミ ド、 ポリエーテルイ ミ ド、 ポリエーテルスルホン、 ポリスルホンは、 高靭性かつ耐 熱性良好であるため本発明に好適である。 ポリアミ ドの靭性は特に優れており非晶 質透明ナイロンに属するものを使用することにより耐熱性をも兼ね備えることがで きる。  The material of the constituent [C] is a thermoplastic resin. A thermoplastic resin having a bond selected from a carbon-carbon bond, an amide bond, an imide bond, an ester bond, an ether bond, a carbonate bond, a urethane bond, a thioether bond, a sulfone bond, an imidazole bond, and a carbonyl bond in the main chain It is typical. Polyamide, Polycarbonate, Polyacetal, Polyphenylene oxide, Polyphenylene sulfide, Polyacrylate, Polyester, Polyamideimide, Polyimide, Polyetherimide, Polysulfone, Polyethersulfone, Polyetherether Ketons, polyalamides, and polybenzimidazoles are suitable for the non-woven fabric used in the present invention because they have high impact resistance. Among these, polyamides, polyimides, polyamideimides, polyetherimides, polyethersulfones, and polysulfones are suitable for the present invention because they have high toughness and good heat resistance. The toughness of polyamide is particularly excellent, and by using one belonging to amorphous transparent nylon, it can also have heat resistance.
構成要素 [ C ] として、 複数種の熱可塑性樹脂の長繊維を組合わせて使用するこ と、 あるいは、 複数種の熱可塑性樹脂を複合紡糸した長繊維を使用することもでき る。 これらの方法は、 材料の組合わせを最適化することにより、 複合材料の特性を 向上させることが可能な め好ましい。  As the constituent [C], it is possible to use a combination of long fibers of a plurality of types of thermoplastic resins, or to use a long fiber obtained by composite spinning of a plurality of types of thermoplastic resins. These methods are preferable because the properties of the composite material can be improved by optimizing the combination of materials.
構成要素 [ C ] は、 プリプレダ中において、 表層近傍に分布することが必要であ る。 このことにより、 プリプレダから複合材料を作製した場合、 一定厚みの層間領 域を形成し、 構成要素 [C] が層間に局在化するため、 耐衝撃性の優れた複合材料 を与える。 表層近傍に分布するとは、 具体的には、 構成要素 [C] の 90%以上が 、 プリプレダの表面からプリプレダ厚みの 30%までの部位に存在することを意味 する。 構成要素 [C] の 90%以上が、 プリプレダの表面からプリプレグ厚みの 2 0%までの部位に存在する場合は、 より顕著に本発明の効果が現れるのでさらに好 ましい。 The component [C] needs to be distributed near the surface layer in the pre-preder. As a result, when a composite material is made from It forms a zone and the component [C] is localized between the layers, giving a composite material with excellent impact resistance. To be distributed in the vicinity of the surface layer specifically means that 90% or more of the constituent element [C] is present in the part from the surface of the pre-preder to 30% of the pre-preder thickness. It is more preferable that 90% or more of the constituent element [C] is present in the region from the surface of the prepreg to 20% of the prepreg thickness, because the effect of the present invention is more remarkably exhibited.
前記の条件をはずれ、 表層近傍を越えて、 層の内部深くに構成要素 [C] が多量 に存在する場合、 層間でのエネルギー吸収が不十分になって複合材料の耐衝撃性、 層間靭性の向上効果は小さくなり、 また強化繊維の配列を乱し、 強化繊維近傍のマ トリ ックス樹脂の分率を低下させるため強度や耐熱性を損なうおそれがある。  If the above conditions are not satisfied and a large amount of component [C] exists deep inside the layer beyond the vicinity of the surface layer, the energy absorption between layers becomes insufficient and the impact resistance and interlaminar toughness of the composite material are reduced. The improvement effect becomes small, and the arrangement of the reinforcing fibers is disturbed, and the fraction of the matrix resin in the vicinity of the reinforcing fibers is reduced, so that the strength and heat resistance may be impaired.
プリプレグ中の構成要素 [C] の分布は、 プリプレダ両面において同様に局在化 したものであれば、 プリプレダの表裏にかかわりなく 自由に積層して複合材料を得 ることが可能であるため最適である。 しかし、 プリプレダの片面のみに構成要素 [ C] が同様の分布をしたプリプレダでも、 プリプレダどうしを積層する時に構成要 素 [c] が必ずプリプレダ間にくるよう使用すれば同様の効果が得られるため、 こ のようなプリプレダも本発明に含まれる。  The distribution of component [C] in the prepreg is optimal as long as it is similarly localized on both sides of the prepreg, as it is possible to obtain a composite material by freely laminating the prepreg on both sides. is there. However, even in a pre-preder in which the constituent elements [C] have the same distribution on only one side of the pre-preder, the same effect can be obtained if the constituent elements [c] are always placed between the pre-preders when stacking the pre-preders. Also, such a pre-preder is included in the present invention.
プリプレグ中の構成要素 [C] の分布状態の評価は次のようにして行うことがで きる。  The distribution of component [C] in the prepreg can be evaluated as follows.
まず、 プリプレグを二枚の平滑な支持板の間にはさんで密着させ、 長時間かけて 徐々に温度を上げて硬化させる。 この時に重要なことは可能なかぎり低温でゲル化 させることである。 ゲル化しないうちに急に温度を上げるとプリプレグ中の樹脂が 流動するため、 プリプレダ中における正確な分布状態の評価ができない。 ゲル化 した後、 さらに時間をかけて徐々に昇温しプリプレダを硬化させる。 この硬化した プリプレダを切断し、 その断面を 200倍以上に拡大して、 200 mmx 200m m以上の写真を撮る。 構成要素 [B] と構成要素 [C] の見分けがつきにくい時は 、 一方を選択的に染色して観察する。 顕微鏡としては光学顕微鏡または電子顕微鏡 のいずれか適したものを用いる。  First, the prepreg is sandwiched between the two smooth support plates and brought into close contact, and the temperature is gradually raised to cure over a long period of time. At this time, the important thing is to gel at a temperature as low as possible. If the temperature is suddenly raised before gelation occurs, the resin in the prepreg will flow, making it impossible to accurately evaluate the distribution state in the prepreg. After gelation, the temperature is gradually raised over a further period of time to cure the prepreg. Cut the hardened pre-preder and enlarge its cross section by a factor of 200 or more to take a photograph of 200 mm x 200 mm or more. When it is difficult to distinguish the constituent [B] from the constituent [C], one of them is selectively stained and observed. Use either a light microscope or an electron microscope, whichever is suitable.
この断面写真を用い、 まず平均的なプリプレダの厚みを求める。 プリプレダの平 均厚みは写真上で、 任意に選んだ少なく とも 5箇所で測り、 その平均をとる。 次に 、 両方の支持板に接していた面からプリプレダの厚みの 30%深さの位置にプリプ レグの面方向と平行に線を引く。 支持板に接していた面と 30%の平行線の間に存 在する構成要素 [C] の面積をプリプレダの両面について定量し、 これと、 プリプ レグの全厚みにわたって存在する構成要素 [C] の全面積を定量し、 その比をとる ことによりプリプレダの表面から深さ 30%以内に存在する構成要素 [C] の割合 が算出される。 面積定量は重量法、 イメージアナライザ一を用いた画像処理により 行うこともできる。 部分的な分布のばらつきの影響を排除するため、 この評価は得 られた写真の幅全域にわたって行い、 かつ、 任意に選んだ 5箇所以上の写真につい て同様の評価を行い、 その平均をとる。 First, the average thickness of the pre-preder is obtained using this photograph of the cross section. The average thickness of the prepredder should be measured on at least 5 places on the photograph and the average should be taken. Next, draw a line parallel to the plane direction of the prepreg from the surface that was in contact with both support plates at a depth of 30% of the thickness of the prepreg. The area of the component [C] existing between the surface that was in contact with the support plate and the parallel line of 30% was quantified on both sides of the pre-preder. By quantifying the total area of the component [C] existing over the entire thickness of the leg and taking the ratio, the ratio of the component [C] existing within the depth of 30% from the surface of the pre-preder is calculated. Area quantification can also be performed by a gravimetric method or image processing using an image analyzer. In order to eliminate the effect of partial distribution variation, this evaluation is performed over the entire width of the obtained photograph, and the same evaluation is performed for five or more arbitrarily selected photographs, and the average is taken.
構成要素 [C] の素材の弾性率および降伏強度は、 構成要素 [B] の樹脂硬化物 の弾性率および降伏強度より低いほうが、 複合材料の耐衝撃性を高めるために好ま しい。 しかし、 一方で構成要素 [C] の素材の弾性率がエラストマ一のように低い 場合、 複合材料成形中の圧力、 温度あるいは昇温速度等の条件変化によって変形し やすく、 積層板層間の厚みがばらついたり成形条件変化に伴なつて変化しやすくな り、 結果として複合材料の物性が不安定となる。 したがって、 構成要素 [C] の素 材のバルクでの曲げ弾性率が 80〜400 k g/mm2 の範囲にあることが成形条 件変化に鈍感な安定した高靭性を得るために好ましい。 また、 構成要素 [C] を繊 維状としたときの引張弾性率が 40〜 5000 k g /mm2 の範囲にあることも上 記同様の理由から好ましい。 It is preferable that the elastic modulus and the yield strength of the material of the component [C] be lower than the elastic modulus and the yield strength of the resin cured product of the component [B] in order to improve the impact resistance of the composite material. However, on the other hand, when the elastic modulus of the material of the constituent element [C] is as low as that of the elastomer, it is likely to be deformed due to changes in conditions such as pressure, temperature or temperature rising rate during molding of the composite material, and the thickness between the laminated plate layers is It tends to fluctuate and change with changes in molding conditions, resulting in unstable physical properties of the composite material. Therefore, it is preferable that the bending elastic modulus of the material of the constituent element [C] in the bulk is in the range of 80 to 400 kg / mm 2 in order to obtain stable high toughness that is insensitive to changes in molding conditions. Further, it is also preferable that the tensile elastic modulus when the constituent [C] is in a fibrous state is in the range of 40 to 5000 kg / mm 2 for the same reason as above.
構成要素 [C] の量は、 プリプレダあるいは複合材料中の構成要素 [B] と構成 要素 [C] との総和に対して 2〜30重量%の範囲が適している。 2重量%未満で は効果がほとんど現れず、 また 30重量%をこえると、 プリプレダのタック性、 ド レープ性が大幅に低下してしまう。  The suitable amount of the constituent [C] is in the range of 2 to 30% by weight based on the total amount of the constituent [B] and the constituent [C] in the prepreader or the composite material. If the amount is less than 2% by weight, almost no effect is exhibited, and if it exceeds 30% by weight, the tackiness and drapeability of the prepreg are significantly reduced.
特に構成要素 [B] の剛性を複合材料の圧縮強度の発現に活かしたまま、 破断伸 度が高く高靭性を有する構成要素 [C] で複合材料の層間を高靭化する目的で使用 する場合は、 むしろ 2〜20重量%の少ない範囲のほうが好適であり、 さらに好ま しくは 4〜1 3重量%の範囲である。  Especially when the rigidity of the constituent element [B] is utilized to develop the compressive strength of the composite material, and the constituent element [C] having high fracture elongation and high toughness is used to increase the toughness between layers of the composite material. Is rather preferable to be in a small range of 2 to 20% by weight, and more preferably 4 to 13% by weight.
以上述べたような構成のプリプレダの製造方法としては、 以下のような方法を用 いることができる。  The following method can be used as a method of manufacturing the prepreader having the above-described configuration.
[方法 1 ]  [Method 1]
構成要素 [A] に構成要素 [B] を含浸させたものの表面に構成要素 [C] を平 面状にランダムに配置することによりプリプレダを形成する。 このままでは、 構成 要素 [C] がプリプレダ表面に露出したままになり、 タック性が不十分になるので 、 散布後、 ヒート口一ラーなどを用いて加熱加圧し、 構成要素 [C] に構成要素 [ B] を含浸させることが望ましい。 この方法の変法として、 構成要素 [A] に構成要素 [B] を含浸させたものの表 面に構成要素 [C] を平面状にランダムに配置した後、 離型紙などの上に塗布した 構成要素 [B] を貼りあわせて加熱加圧して含浸させてもよい。 また、 この場合、 構成要素 [A] に含浸させる構成要素 [B] と離型紙などの上に塗布する構成要素 [B] の組成が異なることも好ましい。 特に、 離型紙などの上に塗布する構成要素 [B] として、 構成要素 [A] に含浸させる構成要素 [B] よりも粘着性の強いも のを使用するとプリプレダのタック性を向上させることができ、 好ましい。 The component [C] is impregnated with the component [B] on the surface of the component [A], and the component [C] is randomly arranged in a plane to form a pre-preder. If this is left as it is, the constituent element [C] will remain exposed on the surface of the pre-preder, and the tackiness will be inadequate. Therefore, after spraying, heating and pressurizing using a heat nozzle, etc., the constituent element [C] Impregnation with [B] is desirable. As a modification of this method, the constituent [A] is impregnated with the constituent [B], but the constituent [C] is randomly arranged on the surface and then applied on a release paper. The element [B] may be attached and heat-pressed for impregnation. In this case, it is also preferable that the constituent [B] to be impregnated in the constituent [A] and the constituent [B] to be applied onto the release paper have different compositions. In particular, if the component [B] to be applied on the release paper or the like is one that has a higher adhesiveness than the component [B] to be impregnated in the component [A], the tackiness of the prepreder can be improved. Yes, it is preferable.
[方法 2]  [Method 2]
離型紙などの支持体に塗布することにより、 フィルム状に成型した構成要素 [B ] の表面に平面状に構成要素 [C] を平面伏にランダムに配置し、 構成要素 [A] と貼りあわせ、 加熱加圧することによりプリプレダを形成する。  By applying it to a support such as release paper, the component [C] is randomly arranged in a plane on the surface of the component [B] molded into a film, and laminated with the component [A]. The prepreg is formed by heating and pressing.
この方法の変法として、 あらかじめ構成要素 [A] に構成要素 [B] を一部含浸 させておいて同様の操作を行う方法も用いることができる。  As a modification of this method, a method in which the constituent [A] is partially impregnated with the constituent [B] in advance and the same operation is performed can also be used.
[方法 3]  [Method 3]
構成要素 [A] の上に構成要素 [C] を平面状にランダムに配置し、 ついで構成 要素 [B] を含浸させることによりプリプレダを形成する。 この方法は、 [A] が 織物のように形態保持性をもつ場合に特に適している。  The component [C] is randomly arranged in a plane on the component [A], and then the component [B] is impregnated to form a pre-preder. This method is particularly suitable when [A] has shape-retaining properties such as woven fabric.
以上の 3種の方法において構成要素 [C] を平面伏にランダムに配置する方法と しては、 まず、 あらかじめ熱可塑性樹脂を紡糸してモノフィ ラメ ン トもしくはマル チフィ ラメ ン トを得、 これを加圧空気などを用いて直接対象物に吹き付ける、 揺動 ガイ ドを通して吹き付ける、 あるいは、 一旦衝撃板に打ち当てて拡散後吹付けるな どの方法が挙げられる。 この方法では、 原則として、 紡糸可能なあらゆる樹脂が構 成要素 [C] の材料として使用することができる。 また、 目付量を小さくする場合 の限界も存在しない。  In the method of randomly arranging the constituent elements [C] on the plane in the above three methods, first, the thermoplastic resin is spun in advance to obtain a monofilament or a multifilament, and Examples of such methods include spraying the target directly on the target using pressurized air, spraying it through a swinging guide, or hitting the shock plate once and then spraying it after diffusion. In this method, in principle, any spinnable resin can be used as the constituent [C] material. In addition, there is no limit for reducing the basis weight.
また、 口金から吐出した繊維を直接平面状にランダムに配置する方法も可能であ る。 この場合、 通常の口金から吐出した繊維を加圧空気流を用いて延伸し、 対象に 吹付ける方法、 およびメルトブロー口金を用いて延伸しない繊維を吹付ける方法が 適用可能である。 これらの方法は、 紡糸性の良好な樹脂に適している。  It is also possible to arrange the fibers discharged from the die directly and randomly on a plane. In this case, it is possible to apply a method in which fibers discharged from an ordinary spinneret are stretched using a pressurized air flow and sprayed on an object, and a method in which unstretched fibers are sprayed using a melt blow spinneret. These methods are suitable for resins having good spinnability.
これらの方法においては、 長繊維を直接対象に吹き付けるかわりに、 一旦金網な どの捕集体上に吹き付けた後、 対象表面に転写する方法をとることもできる。 さ らに、 あらかじめ構成要素 [C] の長繊維不織布をスパンボンド法またはメルトブ ロー法などで作製し、 これを用いてプリプレダを製造する以下のような方法も可能 である。 In these methods, instead of directly spraying the long fibers onto the target, it is also possible to spray them once on a collector such as a wire mesh and then transfer them onto the target surface. In addition, a long-fiber nonwoven fabric of the constituent element [C] can be prepared in advance by the spunbond method or the melt blow method, etc. Is.
[方法 4 ]  [Method 4]
構成要素 [A] に構成要素 [B] を含浸させたものの上に構成要素 [C] の不織 布を貼りあわせることによりプリプレダを形成する。 この場合、 このままでは、 構 成要素 [C] がプリプレダ表面に露出するので、 タック性が不十分になるおそれが あるので、 貼りあわせ後、 ヒートロ一ラーなどを用いて加熱加圧し、 構成要素 [C ] に構成要素 [B] を含浸させることが望ましい。  The pre-preder is formed by laminating the constituent [C] non-woven fabric on the constituent [A] impregnated with the constituent [B]. In this case, if it is left as it is, the constituent element [C] is exposed on the surface of the pre-preder, so the tackiness may become insufficient. Therefore, after bonding, heat and pressure using a heat roller etc. It is desirable to impregnate C] with component [B].
この方法の変法として、 構成要素 [C] の不織布にもあらかじめ構成要素 [B] を含浸させておいてもよい。 また、 この場合、 構成要素 [A] に含浸させる構成要 素 [B] と構成要素 [C] の不織布に含浸させる構成要素 [B] の組成が異なるこ とも好ましい。 特に、 構成要素 [C] の不織布に含浸させる構成要素 [B] として 、 構成要素 [A] に含浸させる構成要素 [B] よりも粘着性の強いものを使用する とプリプレグのタック性を向上させることができ、 好ましい。  As a modification of this method, the non-woven fabric of the constituent [C] may be impregnated with the constituent [B] in advance. In this case, it is also preferable that the constituent [B] to be impregnated in the constituent [A] and the constituent [B] to be impregnated in the nonwoven fabric of the constituent [C] have different compositions. In particular, if the constituent [B] of the constituent [C] that is impregnated into the nonwoven fabric is one that has a stronger adhesiveness than the constituent [B] that is impregnated into the constituent [A], the tackiness of the prepreg is improved. It is possible and preferable.
[方法 5 ]  [Method 5]
離型紙などの支持体に塗布することによりフィルム状に成型した構成要素 [B] 、 構成要素 [C] の不織布、 構成要素 [A] を任意の順序でまたは同時に順不同で 貼りあわせ加熱加圧することによりプリプレダを形成する。 この場合、 重ね合せの 位置関係を、 構成要素 [C] の不織布が、 構成要素 [A] とフィ ルム状に成形した 構成要素 [B] に挟まれるようにすると、 構成要素 [C] の不織布に構成要素 [B ] が含浸されるのが容易になるため好ましい。  Applying component [B], non-woven fabric of component [C], and component [A], which have been molded into a film by applying them to a support such as release paper, in any order or at the same time in any order and heat and press To form a pre-preder. In this case, the superposition positional relationship is such that the nonwoven fabric of component [C] is sandwiched between the component [A] and the component [B] formed into a film shape, and the nonwoven fabric of component [C] is It is preferable that the component [B] is easily impregnated in the above.
具体的には、 構成要素 [A] の両側から構成要素 [C] の不織布を重ね、 ついで 、 その両側からフィ ルム状に成形した構成要素 [B] を供給して重ね合わせ、 ヒー トロールなどの手段で加熱加圧してプリプレダを形成する方法、 およびフィルム伏 に成形した構成要素 [B] の表面に構成要素 [C] の不織布を貼り合わせたものを まず作製し、 これを構成要素 [A] の両側に構成要素 [C] が内側になるよう重ね 合せてヒートロールなどの手段で加熱加圧してプリプレダを形成する方法などが好 ましい方法として挙げられる。  Specifically, the nonwoven fabric of the constituent element [C] is stacked from both sides of the constituent element [A], and then the constituent element [B] formed into a film shape is supplied from both sides of the non-woven fabric and stacked, and the heat roll or the like is laminated. First, a method of heating and pressing with a means to form a pre-preder, and a non-woven fabric of the constituent element [C] bonded to the surface of the constituent element [B] formed into a film pattern are prepared, and this is made into the constituent element [A]. A preferred method is to stack the constituent elements [C] on both sides so that they are on the inner side, and heat and pressurize them by means of a heat roll or the like to form a pre-preder.
実施例  Example
以下、 実施例により本発明をより詳細に説明する。  Hereinafter, the present invention will be described in more detail with reference to examples.
[実施例 1]  [Example 1]
下記原料を混練し、 マトリックス樹脂組成物を調製した。  The following raw materials were kneaded to prepare a matrix resin composition.
( 1 ) テトラグリシジルジァミノジフエニルメ夕ン (E LM434、 住友化学工業 (株) 製) 60重量部 (1) Tetraglycidyl diaminodiphenyl ester (E LM434, manufactured by Sumitomo Chemical Co., Ltd.) 60 parts by weight
(2) ビスフヱノール A型エポキシ樹脂  (2) Bisphenol A type epoxy resin
(ェピコ一ト 828、 油化シヱルエポキシ (株) 製) 20重量部  (Epikoto 828, manufactured by Yuka Seki Epoxy Co., Ltd.) 20 parts by weight
(3) 3官能アミノフヱノール型エポキシ樹脂  (3) Trifunctional aminophenol epoxy resin
(E LM100、 住友化学工業 (株) 製) 20重量部  (E LM100, manufactured by Sumitomo Chemical Co., Ltd.) 20 parts by weight
(4) 4, 4' ージアミ ノ ジフエニルスルホン  (4) 4, 4'-diamminodiphenyl sulfone
(スミキユア S、 住友化学工業 (株) 製) 47. 3重量部 (Sumikiure S, manufactured by Sumitomo Chemical Co., Ltd.) 47.3 parts by weight
(5) ポリエーテルスルホン (5) Polyether sulfone
(P E S 5003 P、 三井東圧化学 (株) 製 16重量部 このマトリックス樹脂を炭素繊維 (T 800 H、 東レ (株) 製) に含浸させた試 料をドラムワイ ンデンィング法を用いて作製した。 単位面積当たりの炭素繊維量は 、 190 /m2 、 マト リ ックス樹脂量は、 90. 6 gZm2 であった。 (PES 5003 P, manufactured by Mitsui Toatsu Chemicals, Inc. 16 parts by weight) A sample obtained by impregnating carbon fiber (T 800 H, manufactured by Toray Co., Ltd.) with this matrix resin was prepared using the drum winding method. The amount of carbon fiber per area was 190 / m 2 , and the amount of matrix resin was 90.6 gZm 2 .
この試料の片側表面にナイロン 66繊維 (15デニール、 5フィ ラメ ン ト) を先 端に衝撃板を設けたァスピレー夕と圧縮空気を用いて吹付け、 プリプレダを得た。 繊維の目付は 13. O gZm2 であった。 Nylon 66 fiber (15 denier, 5 filament) was sprayed on one surface of this sample using an aspirator equipped with an impact plate at the tip and compressed air to obtain a prepreder. The basis weight of the fiber was 13. O gZm 2 .
このプリプレダを疑似等方構成 (+45° 0° Z— 45° Z90° ) 3sで 24 層に積層し、 ォ一トクレーブ中、 温度 180°C、 圧力 6 k g/cm2 の条件下、 2 時間で成形した。 得られた硬化板を縦 15 Omm、 横 10 Ommに切断して試験片 とした。 この試験片の中心に 1500インチ ·ポンド Zィンチの落錘衝撃を与えた 後、 ASTM D 695に従い衝撃後の圧縮強度を測定すると 34. 0 k g/mm " であった。 Pseudo-isotropic structure (+ 45 ° 0 ° Z — 45 ° Z90 °) This prepreder was laminated in 24 layers for 3 s, and in the autoclave, the temperature was 180 ° C and the pressure was 6 kg / cm 2 , and 2 Molded in time. The obtained cured plate was cut into a length of 15 mm and a width of 10 mm to obtain a test piece. After subjecting the center of this test piece to a falling weight impact of 1500 inch-pound Z inch, the compressive strength after impact was measured according to ASTM D 695, and it was 34.0 kg / mm ".
[実施例 2]  [Example 2]
実施例 1と同じマトリックス樹脂を炭素繊維 (T 800 H、 東レ (株) 製) に含 浸させた試料をドラムワインデンィング法を用いて作製した。 単位面積当たりの炭 素繊維量は、 190 gZm2 、 マトリツクス樹脂量は、 90. 6 gZm2 であった o A sample in which the same matrix resin as in Example 1 was impregnated with carbon fiber (T 800 H, manufactured by Toray Industries, Inc.) was prepared using the drum winding method. The amount of carbon fiber per unit area was 190 gZm 2 , and the amount of matrix resin was 90.6 gZm 2.
この試料の片側表面にポリエーテルィ ミ ド (ウルテム 1010、 GEプラスチッ クス製) の繊維 (13デニール、 1フィ ラメ ン ト) を先端に衝撃板を設けたァスピ レー夕と圧縮空気を用いて吹付け、 プリプレダを得た。 繊維の目付は 13. 0 g/ m2 であった。 The surface of one side of this sample was sprayed with polyetherimide (Ultem 1010, GE Plastics) fibers (13 denier, 1 filament) using an aspirator equipped with an impact plate at the tip and compressed air. I got prepreda. The basis weight of the fiber was 13.0 g / m 2 .
このプリプレダについて、 実施例 1と同様の方法で、 硬化板を作製し、 落錘衝撃 後の圧縮強度を測定すると 35. 8 k g/ ImI m2 であった A hardened plate was prepared in the same manner as in Example 1 using this pre-preder, and the compression strength after falling weight impact was measured to be 35.8 kg / ImI m 2 .
6 [実施例 3] 6 [Example 3]
実施例 1と同じマトリ ックス樹脂を炭素繊維 (T 800 H、 東レ (株) 製) に含 浸させた試料をドラムワインデンィング法を用いて作製した。 単位面積当たりの炭 素繊維量は、 190 g/m2 、 マトリックス樹脂量は、 90. 6 gZn^ であった o A sample in which the same matrix resin as in Example 1 was impregnated in carbon fiber (T 800 H, manufactured by Toray Industries, Inc.) was prepared by the drum winding method. The amount of carbon fiber per unit area was 190 g / m 2 , and the amount of matrix resin was 90.6 gZn ^ o
この試料の片側表面に、 オリフィ スを 1個もうけた口金から吐出したナイロン 1 2繊維を、 先端に衝撃板を設けたァスピレー夕と圧縮空気を用いて延伸、 吹付け、 プリプレグを得た。 繊維の目付は 13. 0 g Zm 2 であつた。 On one surface of this sample, nylon 12 fibers discharged from a mouthpiece with an orifice were drawn and blown using aspirator with an impact plate at the tip and compressed air to obtain a prepreg. The basis weight of the fiber was 13.0 g Zm 2 .
このプリプレダについて、 実施例 1と同様の方法で、 硬化板を作製し、 落錘衝撃 後の圧縮強度を測定すると 36. 1 k gZmm2 であった。 A hardened plate was prepared from this pre-preder in the same manner as in Example 1, and the compressive strength after impact with a falling weight was measured and found to be 36.1 kgZmm 2 .
[比較例 1 ]  [Comparative Example 1]
実施例 1と同じマトリックス樹脂を炭素繊維 (T 800 H、 東レ (株) 製) に含 浸させた熱可塑性樹脂繊維を含まないプリプレダをドラムワインデンィング法を用 いて作製した。 単位面積当たりの炭素繊維量は、 190 g/m2 、 マ ト リ ックス樹 脂量は、 103. 6 gZm2 であった。 Using a drum winding method, a prepreder containing no thermoplastic resin fiber in which the same matrix resin as in Example 1 was impregnated with carbon fiber (T 800 H, manufactured by Toray Industries, Inc.) was prepared. The amount of carbon fiber per unit area was 190 g / m 2 , and the amount of matrix resin was 103.6 gZm 2 .
このプリプレグについて、 実施例 1と同様の方法で、 硬化板を作製し、 落錘衝撃 後の圧縮強度を測定すると 19. 7 k g/mm2 であった。 A hardened plate was prepared from this prepreg in the same manner as in Example 1, and the compression strength after impact with a falling weight was measured to be 19.7 kg / mm 2 .
[実施例 4]  [Example 4]
実施例 1と同じマトリックス樹脂組成物を離型紙上にリバースロールコ一タを用 いて塗布した。 塗布量は、 45. 32 " であった。  The same matrix resin composition as in Example 1 was coated on release paper using a reverse roll coater. The coating amount was 45. 32 ".
この樹脂フィ ルムの表面に、 ナイロン 66繊維 ( 15デニール、 5フィ ラメ ント ) を先端に衝撃板を設けたァスピレ一夕と圧縮空気を用いて吹付けた。 ナイロン 6 6繊維の目付量は 6. S gZm2 であった。 Nylon 66 fibers (15 denier, 5 filaments) were sprayed onto the surface of this resin film using an aspirator equipped with an impact plate at the tip and compressed air. The basis weight of nylon 6 6 fiber was 6. S gZm 2 .
ナイ口ン 66繊維を散布した樹脂フィルムをドラムワインダに固定し、 炭素繊維 (T 800 H、 東レ (株) 製) を巻き付け、 さらにその上にナイロン 66を吹付け た樹脂フィルムをもう 1枚これに貼り付け、 加圧含浸させてプリプレダを得た。 単 位面積当たりの炭素繊維量は、 190 g/m2 であった。 Fix the resin film sprinkled with NAIKUN 66 fiber on the drum winder, wrap the carbon fiber (T 800 H, manufactured by Toray Co., Ltd.), and then wrap another resin film on which nylon 66 is sprayed. It was affixed to, and impregnated under pressure to obtain a prepreder. The amount of carbon fiber per unit area was 190 g / m 2 .
このプリプレダについて、 実施例 1と同様の方法で、 硬化板を作製し、 落錘衝撃 後の圧縮強度を測定すると 34. 4 k g/mm2 であった。 A hardened plate was prepared from this pre-preder in the same manner as in Example 1, and the compression strength after impact with a falling weight was measured to be 34.4 kg / mm 2 .
[実施例 5]  [Example 5]
実施例 1と同じマトリックス樹脂組成物を離型紙上にリバース口一ルコ一タを用 いて塗布した。 塗布量は、 45. 3 gZm2 であった。 The same matrix resin composition as in Example 1 was applied on a release paper using a reverse mouth coater. The coating amount was 45.3 gZm 2 .
- 11 - この樹脂フィルム表面に、 オリフィスを 1個もうけた口金から吐出したグリルァ ミ ド TR— 5 5 (EMS E R WE RK E社製ポリアミ ド) の繊維を、 先端に衝撃 板を設けたァスピレ一夕と圧縮空気を用いて延伸、 吹付けた。 繊維の目付は 6. 5 g/m2 であった。 -11- On the surface of this resin film, the fiber of grillamide TR-55 (polyamide made by EMS ER WE RK E Co.) discharged from a die with one orifice was compressed, and compressed with an aspire with an impact plate at the tip. It was stretched and blown with air. The basis weight of the fiber was 6.5 g / m 2 .
ダリルァミ ド TR— 5 5繊維を散布した樹脂フィルムをドラムワインダに固定し 、 これに炭素繊維 (T 8 0 0 H、 東レ (株) 製) を巻き付け、 さらにその上にグリ ルァミ ド TR— 5 5の繊維を吹付けた樹脂フィルムをもう 1枚これに貼り付け、 加 圧含浸させてプリプレダを得た。 単位面積当たりの炭素繊維量は、 1 9 0 g/m2 であつた。 Darylamide TR-5 5 Fiber resin is fixed on a drum winder, carbon fiber (T 800 H, manufactured by Toray Industries, Inc.) is wrapped around it, and then Grylamide TR-5 5 Another resin film sprayed with the above fibers was attached to this and impregnated under pressure to obtain a prepreder. The amount of carbon fiber per unit area was 190 g / m 2 .
このプリプレダについて、 実施例 1と同様の方法で、 硬化板を作製し、 落錘衝撃 後の圧縮強度を測定すると 3 3. 7 k gZmm2 であった。 A hardened plate was prepared from this pre-preder in the same manner as in Example 1, and the compression strength after impact with a falling weight was measured and found to be 33.7 kgZmm 2 .
[実施例 6]  [Example 6]
炭素繊維織物 (東レ (株) 製炭素繊維 T 8 0 0 Hの平織、 繊維目付 1 9 6 g/m " ) の片面上に、 ナイロン 6 6繊維 (1 5デニール、 5フイラメント) を先端に衝 撃板を設けたァスピレ一夕と圧縮空気を用いて吹付けた。 ナイロン 6 6繊維の目付 量は 1 6. O gZm2 であった。 これに実施例 1と同じマトリックス樹脂を含浸さ せてプリプレグを得た。 単位面積当たりの樹脂量は 1 3 0 g/m2 であった。 このプリプレダについて、 実施例 1と同様の方法で、 硬化板を作製し、 落錘衝撃 後の圧縮強度を測定すると 2 9. 4 k g mm2 であった。 A carbon fiber woven fabric (a plain weave of carbon fiber T 800 H manufactured by Toray Industries, Inc. with a fiber basis weight of 196 g / m ") is attached to one end of nylon 6 6 fiber (15 denier, 5 filament). It was sprayed with a striking plate equipped with a striking plate and compressed air.The unit weight of nylon 6 6 fiber was 16.O gZm 2. It was impregnated with the same matrix resin as in Example 1. A prepreg was obtained.The amount of resin per unit area was 130 g / m 2. With respect to this prepreg, a cured plate was prepared in the same manner as in Example 1, and the compression strength after impact with a falling weight was measured. The measured value was 29.4 kg mm 2 .
[実施例 7]  [Example 7]
オリフィスを 1個設けた口金から吐出したグリルアミ ド TR— 5 5 (EM S ER WE RK E社製ポリアミ ド) の繊維を、 金網上に先端に衝撃板を設けたァスピレ 一夕と圧縮空気を用いて延伸、 吹付けて補修した。 金網上に補修した繊維シートを 加熱プレス機を用いて熱接着し、 グリルアミ ド TR— 5 5の不織布を作製した。 繊 維の目付は 6. 5 gZn ^ であった。  Fiber of grilled amide TR-55 (polyamide made by EM S ER WE RK E) discharged from a mouthpiece provided with one orifice was used by using aspire overnight with a shock plate on the wire mesh and compressed air. It was stretched and sprayed for repair. The fiber sheet repaired on the wire mesh was heat-bonded using a heating press machine, and a nonwoven fabric of grill amid TR-55 was prepared. The fabric weight was 6.5 gZn ^.
実施例 1と同じマ卜リックス樹脂を炭素繊維 (T 8 0 0 H、 東レ (株) 製) に含 浸させた試料をドラムワインデンイング法を用いて作製した。 単位面積当たりの炭 素繊維量は、 1 9 0 g/m2 、 マトリックス樹脂量は、 9 0. 6 g/m2 であった この試料の両面に、 グリルアミ ド TR— 5 5の不織布を貼りつけ、 プリプレダを 作製した。 A sample obtained by impregnating carbon fiber (T 800 H, manufactured by Toray Industries, Inc.) with the same matrix resin as in Example 1 was prepared by the drum winding method. -Carbon fibers per unit area, 1 9 0 g / m 2 , the amount of the matrix resin, on both surfaces of the sample which was a 9 0. 6 g / m 2, attached to Guriruami de TR- 5 5 of the nonwoven fabric Then, a pre-preder was prepared.
このプリプレダについて、.実施例 1と同様の方法で、 硬化板を作製し、 落錘衝撃 後の圧縮強度を測定すると 3 4. O k gZmm2 であった。 A hardened plate was prepared from this pre-preder by the same method as in Example 1 and the falling weight impact The subsequent compressive strength was measured and found to be 34. OkgZmm 2 .
[実施例 8]  [Example 8]
オリフィ スを 1個設けた口金から吐出したナイロン 6の繊維を、 金網上の先端に 衝撃板を設けたァスピレ一夕と圧縮空気を用いて延伸、 散布して捕集した。 金網上 に捕集した繊維シートを加熱プレス機を用いて熱接着し、 ナイロン 6の不織布を作 製した。 繊維の目付は 6. 5 gZn^ であった。  Nylon 6 fibers discharged from a mouthpiece provided with one orifice were drawn and dispersed using an aspire overnight equipped with an impact plate at the tip of the wire mesh and compressed air, and collected. The fiber sheet collected on the wire mesh was heat-bonded using a heat press machine to produce a nylon 6 non-woven fabric. The basis weight of the fiber was 6.5 gZn ^.
実施例 1と同じマトリックス樹脂を炭素繊維 (T 800 H、 東レ (株) 製) に含 浸させた試料をドラムワインディ ング法を用いて作製した。 単位面積当りの炭素繊 維量は、 1 9 0 g/m2 、 マトリ ックス樹脂量は、 9 0. 6 g/m2 であった。 この試料の両面に、 ナイロン 6の不織布を貼り付け、 プリプレダを作製した。 このプリプレダについて、 実施例 1と同様の方法で、 硬化板を作製し、 落錘衝撃後 の圧縮強度を測定すると 3 3. l k gZmm2 であった。 A sample obtained by impregnating carbon fiber (T 800 H, manufactured by Toray Industries, Inc.) with the same matrix resin as in Example 1 was prepared using the drum winding method. The amount of carbon fiber per unit area was 190 g / m 2 , and the amount of matrix resin was 90.6 g / m 2 . Nylon 6 non-woven fabric was attached to both sides of this sample to prepare a prepreder. A hardened plate was prepared from this pre-preder in the same manner as in Example 1, and the compression strength after impact with a falling weight was measured and found to be 3 3. lk gZmm 2 .
[実施例 9]  [Example 9]
実施例 1と同じマトリックス樹脂組成物を離型紙上にリバ一スロールコ一タを用 いて塗布した。 塗布量は、 4 5. 3 g/m2 であった。 The same matrix resin composition as in Example 1 was coated on release paper using a revers roll coater. The coating amount was 45.3 g / m 2 .
この樹脂フィルム上に実施例 7で用いたのと同じグリルァミ ド TR— 5 5の不織 布を貼り付け、 カレンダ一ロールで加圧して固定した。 ついで、 一方向に引き揃え られた炭素繊維 (T 800 H、 東レ (株) 製) の両側に、 不織布を貼り付けた樹脂 フィルムを不織布が内側になるよう重ね、 ヒートロールを用いて加熱加圧して含浸 させてプリプレダを得た。 単位面積当りの炭素繊維量は、 2 7 0 g/m' であった このプリプレダについて、 実施例 1と同様の方法で、 硬化板を作製し、 落錘衝撃 後の圧縮強度を測定すると 3 4. 3 k gZmm2 であった。 Onto this resin film, the same non-woven fabric of GRILLAMIDE TR-55 used in Example 7 was attached and fixed by pressing with a calendar roll. Then, on both sides of the carbon fibers (T 800 H, manufactured by Toray Industries, Inc.) aligned in one direction, lay a resin film with a non-woven fabric inside so that the non-woven fabric is on the inside, and apply heat and pressure using a heat roll. And impregnated to obtain a pre-preder. The amount of carbon fiber per unit area was 270 g / m '. A hardened plate was prepared in the same manner as in Example 1 with respect to this pre-preder, and the compression strength after falling weight impact was measured. It was .3 k gZmm 2 .
[実施例 1 0]  [Example 10]
実施例 1と同じマトリックス樹脂組成物を離型紙上にリバースロールコ一夕を用 いて塗布した。 塗布量は、 4 5. 3 g/m2 でった。 The same matrix resin composition as in Example 1 was applied on a release paper using a reverse roll roll. The coating weight was 45.3 g / m 2 .
この樹脂フィルム上に実施例 8で用いたのと同じナイロン 6の不織布を貼り付け 、 カレンダーロールで加圧して固定した。 ついで、 一方向に引き揃えられた炭素繊 維 (T 800 H、 東レ (株) 製) の両側に、 不織布を貼り付けた樹脂フィ ルムを不 織布が内側になるよう重ね、 ヒー卜ロールを用いて加熱加圧して含浸させてプリプ レグを得た。 単位面積当りの炭素繊維量は、 1 9 0 gZm2 であった。 このプリ プレグについて、 実施例 1と同様の方法で、 硬化板を作製し、 落錘衝撃後の圧縮強 度を測定すると 3 3. 6 k gZmm2 であった。 The same nylon 6 non-woven fabric used in Example 8 was stuck on this resin film, and was pressed and fixed with a calendar roll. Then, on both sides of the carbon fiber (T 800 H, manufactured by Toray Industries, Inc.) aligned in one direction, the resin film with the non-woven fabric attached was placed so that the non-woven fabric was on the inside, and the heat roll was applied. The prepreg was obtained by heating and pressurizing and impregnating. The amount of carbon fiber per unit area was 190 gZm 2 . For this prepreg, a hardened plate was prepared in the same manner as in Example 1, and the compression strength after falling weight impact The degree was measured to be 33.6 k gZmm 2 .
[実施例 1 1]  [Example 1 1]
芯鞘複合紡糸口金の芯部からポリエチレンテレフタレー ト、 鞘部からナイロン 6 を芯鞘比率が 1 : 1になるよう吐出した複合紡糸繊維を、 金網上の先端に衝撃板を 設けたァスピレー夕と圧縮空気を用いて延伸、 散布して捕集した。 金網上に捕集し た繊維シートを加熱プレス機を用いて熱接着し、 不織布を作製した。 繊維の目付は 6. 5 g/mZ であった。 The core-sheath composite spinneret is made of polyethylene terephthalate from the core and nylon 6 is discharged from the sheath so that the core-sheath ratio is 1: 1. It was stretched with compressed air, scattered, and collected. The fiber sheet collected on the wire mesh was heat-bonded using a heating press machine to produce a nonwoven fabric. The basis weight of the fiber was 6.5 g / m Z.
実施例 1と同じマトリ ックス樹脂組成物を離型紙上にリバ一スロールコ一夕を用 いて塗布した。 塗布量は、 4 5. 3 g/n^ でった。  The same matrix resin composition as in Example 1 was applied onto a release paper using a revers roll coat. The applied amount was 45.3 g / n ^.
この樹脂フィルム上に上記不織布を貼り付け、 カレンダ一ロールで加圧して固定 した。 ついで、 一方向に引き揃えられた炭素繊維 (T 8 0 0 H、 東レ (株) 製) の 両側に、 不織布を貼り付けた樹脂フィルムを不織布が内側になるよう重ね、 ヒート ロールを用いて加熱加圧して含浸させてプリプレダを得た。 単位面積当りの炭素繊 維量は、 1 9 0 g m2 であった。 The above-mentioned non-woven fabric was pasted on this resin film and fixed by pressing with a calendar roll. Then, on both sides of unidirectionally aligned carbon fibers (T 800 H, manufactured by Toray Industries, Inc.), overlay the resin film with the non-woven fabric attached so that the non-woven fabric is on the inside, and heat with a heat roll. It was pressurized and impregnated to obtain a pre-preder. The amount of carbon fiber per unit area was 190 gm 2 .
このプリプレダについて、 実施例 1と同様の方法で、 硬化板を作製し、 落錘衝撃 後の圧縮強度を測定すると 3 3. 8 k gZmni2 であった。 A hardened plate was prepared from this pre-preder by the same method as in Example 1, and the compressive strength after impact with a falling weight was measured and found to be 33.8 kgZmni 2 .
[実施例 1 2]  [Example 1 2]
( 1 ) 反応性ポリィミ ドォリゴマの合成  (1) Synthesis of reactive poly (oligo sesame)
窒素導入口および温度計、 攪拌器および脱水トラップを装着した 3 0 0 0 m 1容 のセパラブルフラスコに窒素置換のもとで 392 g (0.91mol) のビス [4- (3- アミノフ エノキシ) フエニル] スルホン (B AP S—M) 、 39g (0. llmol)の 9, 9' - ビス (4- ァミ ノフエ二ル) フルオレン (F DA) 、 147g (0, llmol) の NH2 当量 650 のアミ ノ末端ジメチルシロキサン (東レシリコーン社市販 BY-16-853)を 2 0 0 Om 1 の N—メチルー 2—ピロリ ドン (NMP) に攪拌溶解した。 そこへ固体状のビフヱ二 ルテトラカンボン酸二無水物を 300 g (1. 02mol) を少しずつ加え、 室温で 3時間撹拌 した後、 1 2 0°Cに昇温し 2時間攪拌した。 フラスコを室温に戻しトリェチルアミ ン 5 0m l と トルエン 5 0m lを加えた後、 再び昇温し 1 6 0°Cで共沸脱水すると 約 3 Om 1の水が得られた。 この反応混合物を冷却した後、 倍量の NMPで希釈し 、 ゆっく りと 2 0 Iのァセトン中に注ぎァミ ン末端シロキサンボリィミ ドォリゴマ を固体生成物として沈殿させた。 そして、 その沈殿物を 2 0 0°Cで真空乾燥した。 このオリゴマの数平均分子量 (Mn) をジメチルホルムアミ ド (DMF) 溶媒を用 いてゲルパ一ミエーションク.ロマトダラフィ一 (G P C) で測定すると、 、 ポリエ チレングリコール (P E G) 換算で 5500であった。 またガラス転移点は示差熱分析 計 (D S C) によると 223 °Cであった。 また、 シロキサン骨格の導入およびァミ ン 末端であることは NMRスぺク トルおよび I Rスぺク トルから確認できた。 In a 300 m 1 separable flask equipped with a nitrogen inlet, a thermometer, a stirrer and a dehydration trap, 392 g (0.91 mol) of bis [4- (3-aminophenoxy) was added under nitrogen substitution. Phenyl] sulfone (B AP S—M), 39 g (0. llmol) 9, 9'-bis (4-aminophenyl) fluorene (F DA), 147 g (0, llmol) NH 2 equivalent 650 Amino-terminated dimethyl siloxane (BY-16-853 available from Toray Silicone Co., Ltd.) was dissolved in 200 Om 1 of N-methyl-2-pyrrolidone (NMP) with stirring. To this, 300 g (1.02 mol) of solid biphenyltetracambonic acid dianhydride was added little by little, and the mixture was stirred at room temperature for 3 hours, then heated to 120 ° C and stirred for 2 hours. After returning the flask to room temperature and adding 50 ml of triethylamine and 50 ml of toluene, the temperature was raised again and azeotropic dehydration was performed at 160 ° C to obtain about 3 Om 1 of water. After cooling the reaction mixture, it was diluted with twice the volume of NMP and slowly poured into 20 I of acetone to precipitate the amine-terminated siloxane polyimidoligoma as a solid product. Then, the precipitate was vacuum dried at 200 ° C. The number average molecular weight (Mn) of this oligomer was measured by gel permeation chromatography using a dimethylformamide (DMF) solvent. It was 5,500 in terms of ethylene glycol (PEG). The glass transition point was 223 ° C according to the differential thermal analyzer (DSC). In addition, the introduction of siloxane skeleton and the fact that it was an amine terminal could be confirmed from NMR spectrum and IR spectrum.
(2) 構成要素 Bの樹脂調製および樹脂物性測定  (2) Resin preparation of constituent B and measurement of resin physical properties
(1) で合成したシロキサンボリイミ ドオリゴマ 20部を 0, 0に ジァリルビスフエ ノール A 4 1部に加え、 1 4 0°Cで 2時間加熱した。 そこへジフエニルメタンビス マレイミ ド 3 9部を均一混合し溶解させた。 その容器に真空ポンプを接続し真空脱 泡した後、 内容物をあらかじめ 1 2 0°Cに予熱しておいた離型処理を施したモール ドに注ぎ込んだ。 オーブン中で 1 8 0°Cで 2時間硬化反応させて 3 mm厚の樹脂硬 化板を調製した。 さらにこの硬化板に 2 0 0°Cで 2時間、 2 5 0°Cで 6時間のボス トキユアを施した。 得られた硬化樹脂の T gは 2 9 5°Cであった。 また、 破壊歪ェ ネルギ一解放率 G i eは 4 5 0 J / 1 であり、 曲げ弾性率は 3 8 0 k g/mm2 で あった。 また、 6 0 X 1 0 X 2 mmの樹脂板を 2 0時間煮沸したところ、 その吸水 率は 2. 0%であった。 20 parts of the siloxane polyimide oligomer prepared in (1) was added to 0, 0 to 1 part of diarylbisphenol A 41, and heated at 140 ° C for 2 hours. 39 parts of diphenylmethane bismaleimide was uniformly mixed and dissolved therein. After vacuum degassing by connecting a vacuum pump to the container, the contents were poured into a mold that had been preheated to 120 ° C and subjected to mold release treatment. The resin was cured in an oven at 180 ° C for 2 hours to prepare a 3 mm thick resin-hardened plate. Further, this cured plate was subjected to a blast cure at 200 ° C for 2 hours and at 250 ° C for 6 hours. The T g of the obtained cured resin was 295 ° C. The fracture strain energy release rate G ie was 450 J / 1 and the flexural modulus was 380 kg / mm 2 . When a resin plate of 60 x 10 x 2 mm was boiled for 20 hours, its water absorption rate was 2.0%.
硬化樹脂の研磨面を四酸化ォスミゥム染色し走査型電子顕微鏡で反射電子像を観 察すると、 オリゴマを主成分とする相が連続相となるミクロ相分離構造を形成して いた。  The polished surface of the cured resin was stained with osmium tetroxide, and observation of the backscattered electron image with a scanning electron microscope revealed that a microphase-separated structure in which the phase mainly composed of the oligomer was a continuous phase was formed.
(3) プリプレダおよび複合材料の調製と物性測定  (3) Preparation of pre-preda and composite materials and measurement of physical properties
まず、 ( 1 ) で合成したシロキサンポリイミ ドオリゴマ 2 0部を 0, 0' - ジァリル ビスフヱノール A 4 1部に溶解した後、 ジフヱニルメタンビスマレイミ ド 3 9部を ニーダ一中で均一混合した。  First, 20 parts of the siloxane polyimido oligomer synthesized in (1) was dissolved in 1 part of 0,0'-diallyl bisphenol A 41, and then 39 parts of diphenyl methane bismaleimide was uniformly mixed in a kneader.
この樹脂組成物をシリコン離型剤をあらかじめ薄く塗布した離型紙に一定の厚さ でコーティ ングし、 4 7 gZm2 の目付の樹脂フィルムを得た。 This resin composition was coated on a release paper on which a silicone release agent was thinly applied in advance with a constant thickness to obtain a resin film having a basis weight of 47 gZm 2 .
目付 1 9 0 g/m2 の炭素繊維 ( "トレカ" T 8 0 0 H東レ (株) 製) を一方向 に引揃えてから、 炭素繊維の上下にナイロン 6より作製した 5 gZm2 の目付の不 織布を重ね、 さらにその上下から上記の樹脂フィルムを圧着させて樹脂を繊維に含 浸しプリプレダとした。 このプリプレダは夕ック性も ドレープ性も良好であった。 このプリプレダを 2枚の平滑なテフロン板の間にはさみ、 2週間かけて徐々に 1 8 0°Cまで昇温して硬化させ、 その断面を観察し顕微鏡写真を撮影した。 プリプレ グ表面からプリプレダ厚さの 3 0 %深さまでの範囲に存在する不織布の量を評価し たところ、 その値は 1 0 0 %であり、 不織布は十分にプリプレダ表面に局在化して いた。 A unit weight of 190 g / m 2 carbon fiber ("Torayca" T800 H Toray Co., Ltd.) is aligned in one direction, and then a unit weight of 5 gZm 2 is made from nylon 6 above and below the carbon fiber. The above non-woven fabrics were laid one on top of the other, and the above resin films were pressed from above and below to impregnate the resin into the fiber to obtain a prepreder. This prepredder was good in dawnability and drapeability. The pre-preder was sandwiched between two smooth Teflon plates, gradually heated to 180 ° C over 2 weeks to be cured, and the cross section was observed and micrographs were taken. When the amount of non-woven fabric existing in the range from the prepreg surface to the depth of 30% of the prepreg was evaluated, the value was 100%, and the non-woven fabric was well localized on the prepreg surface. I was there.
この硬化プリプレダを四酸化ォスミゥム染色し走査型電子顕微鏡で反射電子像を 観察すると、 マトリックス樹脂はオリゴマリツチ相が連続相となるミクロ相分離構 造を形成していた。  When this cured prepreg was dyed with osmium tetroxide and the backscattered electron image was observed with a scanning electron microscope, the matrix resin had a microphase-separated structure in which the oligomeric phase was a continuous phase.
プリプレダを疑似等方構成 ((+45° /0° /- 45° /90 ° ) 3S) で 24層に積層し、 通常の真空バッグオートクレープ成形法を用い、 6 k gZc の加圧下で 1. 5 °C/m i nの昇温速度にて 25でから 180°Cまで昇温し、 1 80 °C x 2時間の加 熱成形により硬化板を得た。 さらにこの硬化板に 200°Cで 2時間、 250°Cで 6 時間のボストキユアを施した。 その繊維容積分率は 55. 4 V o 1 %であり、 樹脂 重量分率は 35. 8w t %であった。 成形後、 断面を光学顕微鏡で観察すると、 不 織布はすべて完全に硬化板の層間額域内に存在していることが確認できた。 Pre-preders were laminated in 24 layers in a pseudo-isotropic configuration ((+ 45 ° / 0 ° / -45 ° / 90 °) 3S ), using a normal vacuum bag autoclave molding method, under pressure of 6 k g Zc 1 The temperature was raised from 25 to 180 ° C at a heating rate of 0.5 ° C / min, and a cured plate was obtained by thermoforming at 180 ° C x 2 hours. Furthermore, this cured plate was subjected to boss cure at 200 ° C for 2 hours and at 250 ° C for 6 hours. The fiber volume fraction was 55.4 V o 1% and the resin weight fraction was 35.8 wt%. After molding, observing the cross section with an optical microscope, it was confirmed that all the non-woven fabrics were completely present in the interlayer frame area of the cured plate.
硬化板の研磨面を四酸化ォスミゥム染色し走査型電子顕微鏡で反射電子像を観察 すると、 イミ ドオリゴマを主成分とする連続相を形成したミクロ相分離構造が見ら れた。  When the polished surface of the cured plate was stained with osmium tetroxide and the backscattered electron image was observed with a scanning electron microscope, a microphase-separated structure in which a continuous phase containing an imide oligomer as a main component was formed was observed.
この硬化板の落錘衝撃後の圧縮強度を測定すると 33. 1 k g/mmZ であった 産業上の利用可能性 The compressive strength of this cured plate after impact with falling weight was measured to be 33.1 kg / mm Z. Industrial applicability
本発明のプリプレグは、 表層近傍に規則的な配列を持たない熱可塑性樹脂の長繊 維を配することにより、 タック性、 ドレープ性や、 加熱成型し複合材料としたとき の高弾性率、 耐熱性を確保しつつ、 かつ卓越した高い耐衝撃性、 層間靭性を有する 複合材料を与える。 また、 このようなプリプレダは製造が容易で材料の自由度が高 く、工業的に有意義である。  The prepreg of the present invention has long fibers of thermoplastic resin having no regular arrangement in the vicinity of the surface layer, so that tackiness and drape, high elastic modulus when heat-molded into a composite material, and heat resistance It provides a composite material that has excellent impact resistance and interlaminar toughness while maintaining its properties. Further, such a prepreder is easy to manufacture, has a high degree of freedom in materials, and is industrially significant.

Claims

請求の範囲 The scope of the claims
1. 次の構成要素 [A] 、 [B] 、 [C] からなり、 構成要素 [C] が片面または 両面の表層近傍に分布し、 構成要素 [C] がランダムに配列されたプリプレダ。  1. A pre-preda consisting of the following constituents [A], [B], and [C], in which constituent [C] is distributed near the surface of one or both surfaces, and constituent [C] is randomly arranged.
[A] :長繊維からなる強化繊維  [A]: Reinforcing fiber consisting of long fibers
CB] : マトリックス樹脂  CB]: Matrix resin
[C] :熱可塑性樹脂の長繊維  [C]: Long filament of thermoplastic resin
2. [C] の熱可塑性樹脂がポリアミ ド、 ポリカーボナート、 ポリアセタール、 ポ リフヱ二レンォキシ ド、 ポリフヱニレンスルフィ ド、 ポリアリ レー ト、 ポリエステ ル、 ポリアミ ドイ ミ ド、 ポリイミ ド、 ポリエーテルィミ ド、 ポリスルホン、 ポリエ 一テルスルホン、 ポリエーテルエーテルケトン、 ポリアラミ ド、 ポリべンズイ ミダ ゾールからなる群から選ばれた 1以上であるクレーム 1のプリプレダ。  2. The thermoplastic resin of [C] is polyamide, polycarbonate, polyacetal, polyphenylene oxide, polyphenylene sulfide, polyarylate, polyester, polyamide imide, polyimide, polyether imide, polysulfone. The pre-preda of claim 1 which is one or more selected from the group consisting of: polyether tersulfone, polyether ether ketone, polyaramid, and polybenzimidazole.
3. [C] の熱可塑性樹脂の曲げ弾性率が 8 0〜4 0 0 k g/mm2 であるクレー ム 1のプリプレダ。 3. A pre-predeer for claim 1 in which the thermoplastic resin of [C] has a flexural modulus of 80 to 400 kg / mm 2 .
4. [C] の熱可塑性樹脂の長繊維の引張弾性率が 4 0〜5 0 0 0 k g/mm2 で あるクレーム 1のプリプレダ。 4. The pre-preder of Claim 1 wherein the tensile modulus of the long fibers of the thermoplastic resin of [C] is 40 to 500 kg / mm 2 .
5. [B] のマトリックス樹脂が熱硬化性樹脂であるクレーム 1〜4のプリプレダ  5. The pre-predator according to claims 1 to 4, wherein the matrix resin of [B] is a thermosetting resin.
6. 熱硬化性樹脂が、 エポキシ樹脂、 マレイミ ド樹脂、 ビスマレイミ ド · トリアジ ン樹脂、 末端反応性基を持つ熱硬化性ポリイミ ド樹脂、 アセチレン末端を有する樹 脂、 ナジック酸末端を有する樹脂、 シアン酸エステル末端を有する樹脂、 ビニル末 端を有する樹脂、 ァリル末端を有する樹脂フエノール樹脂、 レゾルシノール樹脂、 不飽和ポリエステル樹脂、 ジァリルフタレート樹脂、 尿素樹脂、 メラミ ン樹脂から なる群から選ばれた 1以上であるクレーム 5のプリプレダ。 6. Thermosetting resin includes epoxy resin, maleimide resin, bismaleimide triazine resin, thermosetting polyimide resin having terminal reactive group, acetylene-terminated resin, nadic acid-terminated resin, cyan 1 selected from the group consisting of acid ester-terminated resin, vinyl-terminated resin, aryl-terminated resin phenol resin, resorcinol resin, unsaturated polyester resin, diaryl phthalate resin, urea resin and melamine resin 1 This is the pre-preparer for claim 5.
7. 構成要素 [B] が 1 0°Cから 2 5 0°Cまで昇温する過程において相分離するマ トリックス樹脂組成物であるクレーム 1のプリプレダ。  7. The prepredder according to claim 1, which is a matrix resin composition in which the component [B] undergoes phase separation in the process of heating from 10 ° C to 250 ° C.
8. 構成要素 [B] が、 熱硬化性樹脂可溶の熱可塑性樹脂が混合あるいは溶解され た熱硬化性樹脂組成物であるクレーム 7のプリプレダ。  8. The pre-preder of claim 7, wherein the component [B] is a thermosetting resin composition in which a thermosetting resin-soluble thermoplastic resin is mixed or dissolved.
9. 構成要素 [B] 中の熱硬化性樹脂可溶の熱可塑性樹脂がポリエーテルスルホン 、 ポリスルホン、 ポリイミ ド、 ポリエーテルイミ ドから選ばれる熱可塑性樹脂であ るク レーム 8のプリプレダ。  9. The pre-predeer of claim 8 in which the thermosetting resin-soluble thermoplastic resin in component [B] is a thermoplastic resin selected from polyethersulfone, polysulfone, polyimide, and polyetherimide.
1 0. 構成要素 [B] 中の熱硬化性樹脂可溶の熱可塑性樹脂が反応性ポリイミ ドで あるクレーム 8記載のプリ.プ.レグ。 1 0. The prepreg according to claim 8, wherein the thermosetting resin-soluble thermoplastic resin in the component [B] is a reactive polyimide.
1 1. 構成要素 [B] 中の反応性ポリイミ ドが、 シロキサン連鎖をブロック共重合 したポリイ ミ ドであるク レーム 1 0のプリプレダ。 1 1. The pre-predeer of Claim 10 in which the reactive polyimide in the component [B] is a block-polymerized siloxane chain.
1 2. 強化繊維にマ卜リックス樹脂を含浸させた強化繊維層の両面または片面に、 熱可塑性樹脂からなる不織布にマ卜リックス樹脂を含浸させた不織布層が積層され て構成されてなるプリプレダ。  1 2. A pre-preder composed of a reinforced fiber layer in which reinforcing fibers are impregnated with a matrix resin, and a nonwoven fabric layer formed by impregnating a nonwoven fabric made of a thermoplastic resin with a matrix resin is laminated on one or both sides.
1 3. プリプレダ単位面積当りの、 マ卜リックス樹脂の重量 B (g/m2 ) と熱可 塑性繊維からなる不織布の重量 C (g/m' ) とが、 次式を満足する関係にあるこ とを特徴とするクレーム 1 2のプリプレダ 1 3. The weight B (g / m 2 ) of the matrix resin and the weight C (g / m ') of the non-woven fabric made of thermoplastic fibers per unit area of the pre-preder have a relationship satisfying the following formula. Pre-preda of claims 1 and 2 characterized by
2≤ C x l 0 0≤ 3 0  2 ≤ C x l 0 0 ≤ 30
1 4. 構成要素 [A] に構成要素 [B] を含浸させ、 その片面または両面から構成 要素 [C] を平面状にランダムに配置することを特徴とするプリプレダの製造方法 o  1 4. A method of manufacturing a pre-preder characterized by impregnating the constituent element [A] with the constituent element [B] and randomly arranging the constituent element [C] from one side or both sides of the constituent o.
[A] :長繊維からなる強化繊維  [A]: Reinforcing fiber consisting of long fibers
[B] : マ ト リ ックス樹脂  [B]: Matrix resin
[C] :熱可塑性樹脂の長繊維  [C]: Long filament of thermoplastic resin
15. フィルム状構成要素 [B] の片面から構成要素 [C] を平面状にランダムに 配置した後、 構成要素 [A] の片面または両面に貼りあわせることを特徴とするプ リプレダの製造方法。  15. A method for manufacturing a pre-preder, which comprises randomly arranging the constituent elements [C] in a plane from one side of the film constituent elements [B], and then laminating the constituent elements [A] on one side or both sides.
1 6. フィルム状構成要素 [B] の片面から構成要素 [C] を平面状にランダムに 配置した後、 構成要素 [B] を含浸した構成要素 [A] の片面または両面に貼りあ わせることを特徴とするプリプレダの製造方法。  1 6. The components [C] are randomly arranged in a plane from one side of the film-shaped component [B], and then the one side or both sides of the component [A] impregnated with the component [B] are attached. A method of manufacturing a pre-preder characterized by the above.
1 7. フィルム状構成要素 [B] と含浸させる構成要素 [B] の組成が異なるクレ ーム 1 6のプリプレダの製造方法。  1 7. A method for producing a pre-preder of claim 16 in which the composition of the film-like constituent [B] and the constituent [B] to be impregnated are different.
1 8. 構成要素 [A] の片面または両面から構成要素 [C] を平面状にランダムに 配置した後、 構成要素 [B] を含浸させることを特徴とするプリプレダの製造方法 o  1 8. A method for manufacturing a prepredder characterized by randomly arranging the component [C] on one side or both sides of the component [A] in a plane and then impregnating the component [B].
1 9. 構成要素 [A] に構成要素 [B] を含浸させ、 その片面または両面に構成要 素 [C] からなる長繊維不織布を貼りあわせることを特徴とするプリプレダの製造 方法。  1 9. A method for manufacturing a prepredder characterized by impregnating the constituent element [A] with the constituent element [B], and laminating a long-fiber nonwoven fabric composed of the constituent element [C] on one or both sides thereof.
2 0. 構成要素 [A] に構成要素 [B] を含浸させ、 その片面または両面に構成要 素 [B] を含浸または貼りあわせた構成要素 [C] からなる長繊維不織布を貼りあ わせることを特徴とするプリプレダの製造方法。 20. Component [A] is impregnated with component [B], and one or both surfaces of the component [B] are impregnated or laminated with a long-fiber nonwoven fabric composed of component [C]. A method of manufacturing a pre-preder characterized by the above.
21. 構成要素 [A] に含浸させる構成要素 [B] と、 構成要素 [C] からなる長 繊維不織布に含浸または貼りあわせる構成要素 [B] の組成が異なるクレーム 20 のプリプレダの製造方法。 21. The method for manufacturing the pre-preder according to claim 20, wherein the composition of the constituent [B] to be impregnated in the constituent [A] and the constituent [B] to be impregnated or bonded to the long-fiber nonwoven fabric composed of the constituent [C] are different.
22. フィ ルム状構成要素 [B] 、 構成要素 [C] からなる不織布および構成要素 [A] を任意の順序でまたは同時に順不同で貼りあわせることによるプリプレダの 製造方法。  22. A method for manufacturing a prepredder by laminating a nonwoven fabric composed of a film-like constituent [B] and a constituent [C] and a constituent [A] in any order or simultaneously in any order.
23. 重ね合せの位置関係を、 構成要素 [C] の不織布が、 構成要素 [A] とフィ ルム状に成形した構成要素 [B] に挟まれるようにする請求項 22の製造方法。  23. The manufacturing method according to claim 22, wherein the non-woven fabric of the constituent element [C] is sandwiched between the constituent element [A] and the constituent element [B] formed into a film shape in the positional relationship of superposition.
24. 構成要素 [A] の片面または両面から構成要素 [C] の不織布を重ね、 つい で、 その片面または両面からフィルム状に成形した構成要素 [B] を供給して重ね 合せて貼り合せるようにする請求項 22の製造方法。 24. Overlay the non-woven fabric of component [C] from one side or both sides of component [A], and then supply the component [B] formed into a film form from one side or both sides and superimpose them. 23. The manufacturing method according to claim 22.
25. フィルム状に成形した構成要素 [B] の表面に構成要素 [C] の不織布を貼 り合わせたものをまず作製し、 これを構成要素 [A] の片面または両面に構成要素 [C] が内側になるよう重ね合わせて貼り合わせる請求項 22の製造方法。  25. First, the one in which the non-woven fabric of the constituent [C] is laminated on the surface of the constituent [B] formed into a film is prepared, and this is formed on one side or both sides of the constituent [A]. 23. The manufacturing method according to claim 22, wherein the layers are laminated and attached so that the inside is on the inside.
26. 次の構成要素 [A] 、 [D] 、 [C] からなり、 構成要素 [C] が積層層間 にランダムに平面状に配列された複合材料。 26. A composite material composed of the following constituents [A], [D], and [C], in which the constituents [C] are randomly arranged in a plane between the laminated layers.
[A] :長繊維からなる強化繊維  [A]: Reinforcing fiber consisting of long fibers
[D] : マトリ ックス樹脂硬化物  [D]: Matrix resin cured product
[C] :熱可塑性樹脂の長繊維  [C]: Long filament of thermoplastic resin
27. 構成要素 [D] が相分離した構造を有するク レーム 26の複合材料。 27. A composite material of claim 26 in which the constituent [D] has a phase separated structure.
28. 構成要素 [D] が熱硬化性樹脂を主成分とする相と熱可塑性樹脂を主成分と する相に相分離した構造を有することを特徴とするクレーム 27の複合材料。28. The composite material according to claim 27, wherein the constituent element [D] has a structure in which the thermosetting resin-based phase and the thermoplastic resin-based phase are phase-separated.
29. 構成要素 [D] 中の熱可塑性樹脂を主成分とする相がポリイミ ドを主成分と することを特徴とするクレーム 28の複合材料。 29. Composite material according to claim 28, characterized in that the thermoplastic resin-based phase in component [D] is based on polyimide.
30. 構成要素 [D] 中のポリイミ ドがゲイ素元素を有するポリィミ ドであること を特徴とするクレーム 29記載の複合材料。  30. The composite material according to claim 29, characterized in that the polyimide in the constituent element [D] is a polyimide containing a gay element.
31. 構成要素 [D] 中の熱硬化性樹脂がエポキシ樹脂、 マレイミ ド樹脂、 ビスマ レイ ミ ド * トリアジン樹脂、 末端反応性基を持つ熱硬化性ポリイミ ド樹脂、 ァセチ レン末端を有する樹脂、 ナジック酸末端を有する樹脂、 シアン酸エステル末端を有 する樹脂、 ビニル末端を有する樹脂、 ァリル末端を有する樹脂フユノール樹脂、 レ ゾルシノール樹脂、 不飽和ポリエステル樹脂、 ジァリルフタレー ト樹脂、 尿素樹脂 、 メラミ ン樹脂からなる群から選ばれた 1以上であることを特徴とするクレーム 2 7〜30記載の複合材料 c 31. Thermosetting resin in component [D] is epoxy resin, maleimide resin, bismaleimide * triazine resin, thermosetting polyimide resin having a terminal reactive group, acetylene terminated resin, Nagic Resin with acid end, resin with cyanate end, resin with vinyl end, resin with aryl end, phenol resin, resorcinol resin, unsaturated polyester resin, diaryl phthalate resin, urea resin, melamine resin Claim 2 characterized by being one or more selected from the group 2 7 to 30 composite material c
PCT/JP1993/001882 1993-01-14 1993-12-24 Prepreg, method of manufacturing the same, and laminated composite WO1994016003A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69326059T DE69326059T2 (en) 1993-01-14 1993-12-24 PREPREGS, METHOD FOR PRODUCING AND COMPOSITE COATING
EP94903061A EP0632087B1 (en) 1993-01-14 1993-12-24 Prepreg, method of manufacturing the same, and laminated composite
JP51586194A JP3387100B2 (en) 1993-01-14 1993-12-24 Prepreg, production method thereof and laminated composite
KR1019940703114A KR950700350A (en) 1993-01-14 1994-09-06 Prepreg, its manufacturing method and laminated composite (PREPREG, METHOD OF MANUFACTURING THE SAME, AND LAMINATED COMPOSITE)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP471593 1993-01-14
JP5/4715 1993-01-14

Publications (1)

Publication Number Publication Date
WO1994016003A1 true WO1994016003A1 (en) 1994-07-21

Family

ID=11591585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001882 WO1994016003A1 (en) 1993-01-14 1993-12-24 Prepreg, method of manufacturing the same, and laminated composite

Country Status (4)

Country Link
JP (1) JP3387100B2 (en)
KR (1) KR950700350A (en)
DE (1) DE69326059T2 (en)
WO (1) WO1994016003A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127663A (en) * 1994-10-28 1996-05-21 Mitsubishi Rayon Co Ltd Prepreg
JP2002539992A (en) * 1999-03-30 2002-11-26 サイテク・テクノロジー・コーポレーシヨン Composites comprising structural and non-structural fibers
JP2004506799A (en) * 2000-08-22 2004-03-04 サイテク・テクノロジー・コーポレーシヨン Flexible polymer elements as toughening agents in prepregs
WO2008018421A1 (en) 2006-08-07 2008-02-14 Toray Industries, Inc. Prepreg and carbon fiber-reinforced composite material
JP2009167349A (en) * 2008-01-18 2009-07-30 Yokohama Rubber Co Ltd:The Prepreg and fiber-reinforced composite material
JP2013531707A (en) * 2010-05-27 2013-08-08 ヘクセル コンポジット、リミテッド Structured thermoplastics in composite interleaf
WO2014017339A1 (en) 2012-07-25 2014-01-30 東レ株式会社 Prepreg and carbon-fiber-reinforced composite material
WO2018099910A1 (en) 2016-11-29 2018-06-07 Advanced Materials Design & Manufacturing Limited Process for making hybrid (fiber-nanofiber) textiles through efficient fiber-to-nanofiber bonds comprising novel effective load-transfer mechanisms
WO2018181254A1 (en) 2017-03-29 2018-10-04 東レ株式会社 Prepreg and fiber reinforced composite material
JP2019519643A (en) * 2016-06-03 2019-07-11 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag Multilayer composites comprising certain copolycarbonates as matrix material
WO2019150193A1 (en) 2018-01-31 2019-08-08 Toray Industries, Inc. Prepreg sheets and prepreg stacks useful for preparing low void content fiber-reinforced compostite materials
WO2020012964A1 (en) * 2018-07-13 2020-01-16 株式会社クラレ Fiber-reinforced resin composite body, production method therefor, and non-woven fabric for use in fiber-reinforced resin composite body
WO2020059599A1 (en) 2018-09-18 2020-03-26 東レ株式会社 Prepreg, prepreg laminate, and fiber-reinforced composite material
US10808091B2 (en) 2014-09-19 2020-10-20 Toray Industries, Inc. Notched pre-preg and notched pre-preg sheet
US11565497B2 (en) 2018-03-30 2023-01-31 Toray Industries, Inc. Prepreg, laminate body, fiber-reinforced composite material, and manufacturing method for fiber-reinforced composite material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2734398T3 (en) * 2011-12-20 2019-12-05 Cytec Ind Inc Production procedure of a tape cut longitudinally or a bundle of filaments
WO2013099741A1 (en) 2011-12-26 2013-07-04 東レ株式会社 Carbon fiber base, prepreg, and carbon-fiber-reinforced composite material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265212U (en) * 1985-10-16 1987-04-23
JPH0263821A (en) * 1988-08-31 1990-03-05 Shin Kobe Electric Mach Co Ltd Laminated plate
JPH04325529A (en) * 1991-04-26 1992-11-13 Mitsubishi Rayon Co Ltd Prepreg
JPH05170952A (en) * 1991-12-25 1993-07-09 Mitsubishi Rayon Co Ltd Prepreg for carbon fiber-reinforced multifunctional maleimide-based resin composite material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3065686B2 (en) * 1991-03-20 2000-07-17 三菱レイヨン株式会社 Prepreg

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265212U (en) * 1985-10-16 1987-04-23
JPH0263821A (en) * 1988-08-31 1990-03-05 Shin Kobe Electric Mach Co Ltd Laminated plate
JPH04325529A (en) * 1991-04-26 1992-11-13 Mitsubishi Rayon Co Ltd Prepreg
JPH05170952A (en) * 1991-12-25 1993-07-09 Mitsubishi Rayon Co Ltd Prepreg for carbon fiber-reinforced multifunctional maleimide-based resin composite material

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127663A (en) * 1994-10-28 1996-05-21 Mitsubishi Rayon Co Ltd Prepreg
JP2002539992A (en) * 1999-03-30 2002-11-26 サイテク・テクノロジー・コーポレーシヨン Composites comprising structural and non-structural fibers
JP2004506799A (en) * 2000-08-22 2004-03-04 サイテク・テクノロジー・コーポレーシヨン Flexible polymer elements as toughening agents in prepregs
EP2460846A1 (en) 2006-08-07 2012-06-06 Toray Industries, Inc. Prepreg and carbon fiber-reinforced composite material
EP2452967A1 (en) 2006-08-07 2012-05-16 Toray Industries, Inc. Prepreg and carbon fibre-reinforced composite material
EP2455418A1 (en) 2006-08-07 2012-05-23 Toray Industries, Inc. Prepreg and Carbon Fiber-Reinforced Composite Material
EP2455419A1 (en) 2006-08-07 2012-05-23 Toray Industries, Inc. Prepreg and carbon fiber-reinforced composite material
EP2666807A2 (en) 2006-08-07 2013-11-27 Toray Industries, Inc. A Prepreg And Carbon Fiber Reinforced Composite Materials
WO2008018421A1 (en) 2006-08-07 2008-02-14 Toray Industries, Inc. Prepreg and carbon fiber-reinforced composite material
JP2009167349A (en) * 2008-01-18 2009-07-30 Yokohama Rubber Co Ltd:The Prepreg and fiber-reinforced composite material
JP2013531707A (en) * 2010-05-27 2013-08-08 ヘクセル コンポジット、リミテッド Structured thermoplastics in composite interleaf
WO2014017339A1 (en) 2012-07-25 2014-01-30 東レ株式会社 Prepreg and carbon-fiber-reinforced composite material
EP3401357A1 (en) 2012-07-25 2018-11-14 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite material
US10808091B2 (en) 2014-09-19 2020-10-20 Toray Industries, Inc. Notched pre-preg and notched pre-preg sheet
US11130321B2 (en) 2016-06-03 2021-09-28 Covestro Deutschland Ag Multi-layer composite material containing special copolycarbonates as a matrix material
JP2019519643A (en) * 2016-06-03 2019-07-11 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag Multilayer composites comprising certain copolycarbonates as matrix material
WO2018099910A1 (en) 2016-11-29 2018-06-07 Advanced Materials Design & Manufacturing Limited Process for making hybrid (fiber-nanofiber) textiles through efficient fiber-to-nanofiber bonds comprising novel effective load-transfer mechanisms
WO2018181254A1 (en) 2017-03-29 2018-10-04 東レ株式会社 Prepreg and fiber reinforced composite material
WO2019150193A1 (en) 2018-01-31 2019-08-08 Toray Industries, Inc. Prepreg sheets and prepreg stacks useful for preparing low void content fiber-reinforced compostite materials
US11565497B2 (en) 2018-03-30 2023-01-31 Toray Industries, Inc. Prepreg, laminate body, fiber-reinforced composite material, and manufacturing method for fiber-reinforced composite material
WO2020012964A1 (en) * 2018-07-13 2020-01-16 株式会社クラレ Fiber-reinforced resin composite body, production method therefor, and non-woven fabric for use in fiber-reinforced resin composite body
JPWO2020012964A1 (en) * 2018-07-13 2021-07-15 株式会社クラレ Fiber reinforced resin composite and its manufacturing method, and non-woven fabric for fiber reinforced resin composite
WO2020059599A1 (en) 2018-09-18 2020-03-26 東レ株式会社 Prepreg, prepreg laminate, and fiber-reinforced composite material
US11760053B2 (en) 2018-09-18 2023-09-19 Toray Industries, Inc. Prepreg, prepreg laminate, and fiber-reinforced composite material

Also Published As

Publication number Publication date
KR950700350A (en) 1995-01-16
DE69326059D1 (en) 1999-09-23
DE69326059T2 (en) 2000-01-27
JP3387100B2 (en) 2003-03-17

Similar Documents

Publication Publication Date Title
CN104736614B (en) Fiber reinforcement high modulus polymer complex with enhancing interface phase
WO1994016003A1 (en) Prepreg, method of manufacturing the same, and laminated composite
JP5081812B2 (en) Resin soluble thermoplastic veil for composite materials
US7192634B2 (en) Flexible polymer element as toughening agent in prepregs
AU2007203150B8 (en) Flexible polymer element as toughening agent in prepregs
CN104884512B (en) Conductive fibers enhance polymer composite body and multi-functional complex
CN104884511B (en) Fiber-reinforced polymer complex with hard interface phase
JP3505754B2 (en) Prepreg and manufacturing method thereof
EP0564235B1 (en) Prepreg and composites
CN104718245A (en) High modulus fiber reinforced polymer composite
US6027794A (en) Prepregs, processes for their production, and composite laminates
JPH0741577A (en) Prepreg and fiber-reinforced plastic
JPH0741575A (en) Prepreg and fiber-reinforced composite material
US20070196619A1 (en) Flexible polymer element for a curable composition
JPH0694515B2 (en) Prepreg
JPS63170428A (en) Production of prepreg
JPH09235397A (en) Prepreg and fiber-reinforced plastic
JP3312470B2 (en) Prepreg and laminate
EP0632087B1 (en) Prepreg, method of manufacturing the same, and laminated composite
JP3508346B2 (en) Prepreg and fiber reinforced composite materials
JPH08506847A (en) Curable composite material
JPH08225666A (en) Prepreg and composite material
EP0540250B1 (en) Maleimide resin composition, prepreg and fibre-reinforced plastics material
JPH0641332A (en) Prepreg and composite material
JPH0753742A (en) Prepreg

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1994903061

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1994 302763

Date of ref document: 19941005

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994903061

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1995 562623

Date of ref document: 19951124

Kind code of ref document: A

Format of ref document f/p: F

WWG Wipo information: grant in national office

Ref document number: 1994903061

Country of ref document: EP