US3896319A - Linear motor - Google Patents

Linear motor Download PDF

Info

Publication number
US3896319A
US3896319A US461565A US46156574A US3896319A US 3896319 A US3896319 A US 3896319A US 461565 A US461565 A US 461565A US 46156574 A US46156574 A US 46156574A US 3896319 A US3896319 A US 3896319A
Authority
US
United States
Prior art keywords
core
armature
coil
housing
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US461565A
Inventor
Srinivasan V Chari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Control Data Corp
Original Assignee
Control Data Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Control Data Corp filed Critical Control Data Corp
Priority to US461565A priority Critical patent/US3896319A/en
Application granted granted Critical
Publication of US3896319A publication Critical patent/US3896319A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • H02K41/0352Unipolar motors
    • H02K41/0354Lorentz force motors, e.g. voice coil motors
    • H02K41/0356Lorentz force motors, e.g. voice coil motors moving along a straight path

Definitions

  • Coil means surrounds at least an axial portion of the core, and armature means is canti- [52] U.S. Cl 310/14; 310/27 l red t0 he coil. Magnet means is supported by the [51] Int. Cl.
  • Voice coil motors and solenoids are so named due to their physical similarities to audio loud speakers and the like.
  • Voice coil motors and solenoids are characterized by an electric coil spaced between an internal core and a magnet.
  • a magnetic circuit is established between the coil, the core, the magnet and intervening magnet circuit path, which ordinarily includes suitable air gaps and the housing, to relatively move the coil along the axis of the core.
  • Voice coil motors and solenoids are high precision instruments which are widely used in the data processing art to affectuate precision movement of armatures attached to the voice coil upon application of an electric signal to the coil.
  • voice coil linear motors arecommonly used to adjust the position of record and/orreadheads for magnetic disc memories.
  • Such arrangements ordinarily comprise a cantilevered armature attached between the heads and the coil so that upon movement of the coil, the heads are moved to a proper recording track on the disc.
  • the coil Due to the physical arrangement of the coil surrounding the core, the coil hasheretofore been cantilevered from the armature so as to surround the core in the gap between the magnet and the core.
  • the cantilevered arrangement requires a considerable space between the magnet-core structure and the device to be actuated (the heads).
  • the heads There has been a growing need for precision linear motors and solenoids of the voice coilclass which are more compact and of lighter weight.
  • some attempts have been made to reduce the length of cantilever of thevoice coil and its associatedarmature, such attempts have usually been made ata sacrifice of other qualities of the device. For example, reduction of the length of the armature placed the actuated device (the heads) closer to the magnetic circuitso that stray magnetic flux was induced into the heads. The stray magnetic flux is particularly deleteriousto data recorded on the disc.
  • a voice coil linear motor or the like is provided with a slotted core.
  • a voice coil is attached to an end of an armature or actuatable device, the coil surrounding the core and between the core and the permanent magnets.
  • the arrangement is such that the armature or actuatable device is capable of moving axially into the slot of the core.
  • One feature of the present invention resides in the provision of slots in the permanent magnet so disposed and arranged as to permit axial movement of the armature and/or actuatable device. This feature also assures decoupling of the armature and/or device from the magnetic circuit established by the permanent magnet.
  • FIG. 1 is an exploded perspective view of a portion of a linear motor or the like in accordance with the presently preferred embodiment of the present invention
  • FIG. 2 is an exploded perspective view of a portion of the motor illustrated in FIG. 1;
  • FIGS. 3 and 4 are section views of the motor taken along lines 33 and 44, respectively,.in FIG. 1;
  • FIG. 5 is a perspective view of the assembled motor
  • FIG. 6 is a section view, as in FIG. 3, illustrating the principle of operation of the motor.
  • Motor 10 includes a housing structure which includes a bottom plate 12, top plate 14, rear plate 16, and a pair of front plates 18 and 20. Front plates 18 and 20 are spaced apart by a design distance to form a passage 22 therebetween.
  • Cylindrical core 24 has an axis 26 and includes a diametric slot 28 extending from end 30 of the core part way along the length of the core.
  • core 24 comprises a pair of substantially cylindrical members, 24a, 24b constructed of a suitable soft iron.
  • Transducer 32 extends axially through aperture 34 of plate 16 into a bore in the end of core 24 opposite from end 30.
  • Transducer 32 is a velocity sensitive transducer adapted to measure velocity so that the rate of travel of armature 44 may be measured.
  • Cap 36 is a substantially cylindrical cap having an internal diameter slightly larger than the outside diameter of core 24.
  • Cap 36 is axially centered on axis 26 and includes a first pair of radial flanges 38 extending into the region of slot 28 in core 24.
  • Cap 36 includes a second pair of radial flanges 40 extending outwardly from flanges 38 for purposes to be hereinafter explained.
  • An electric coil 42 consisting of a plurality of windings of electric wire, is mounted to one end of cap 36.
  • cap 36 may also serve as a supporting bobbin for coil 42.
  • the internal and external diameters of coil 42 are approximately the same as the respective internal and external diameters of cap 36.
  • Armature 44 is mounted to the surface 46, 48 formed by flanges 38 and 40. Armature 44 supports a plurality of cantilevered heads 50 is spaced relation.
  • heads 50 may be of the class suitable for use in the magnetic recording art and are capable of being selectively positioned along axis 26 and relative to the axis (not shown) of a plurality of rotating recording discs (not shown) which are rotating about their axis perpendicular to axis 26.
  • Armature 44 is journaled to plates 12 and 14 by lower wheels 52 and upper wheels 54 adapted to track against rails 56 and 58, respectively.
  • the magnetic circuit of motor 10 includes a pair of structures 60, each comprising a substantially semicylindrical shoe 62 having an axis 26a.
  • Permanent magnet 64 which preferably consists of a pair of substantially semi-cylindrical permanent magnets 64a and 64b, are mounted to shoe 62.
  • the assembled magnet 64 and shoe 62 are positioned between magnetically inert spacers 66 and 68 adjacent the respective front plate 18, 20 and rear plate 16.
  • a substantially semicylindrical housing 70 is fastened over the completed structure between rear plate 16 and the respective front plate 18, 20.
  • axis 26a coincides with the axis 26 so that shoe 62 surrounds, and is slightly spaced from, cap 36 and coil 42.
  • magnet 64, housing 70 and the attendent shoe 62 and spacer 66 are positioned in such a manner as to provide a gap 72 in the magnetic circuit diametrically coincident with gap 28.
  • permanent magnets 64a and 64b establish a magnetic flux generally following the arrows shown in FIG. 6.
  • Magnet 640 generates a magnetic flux generally following a circular path from the magnet, through coil 42, core 24a, plate 20, and housing 70.
  • magnet 64b generates flux generally flowing through coil 42, core 24a, plate 20, and housing 70.
  • the local magnetic flux is altered by current flowing within the coil to impose a relative force between the magnet, the core and the coil, thereby causing the coil to move to a position along axis 26 as determined by the strength and direction of the electric current within coil 42.
  • armature 44 is moved axially thereby selectively positioning the location of heads 50.
  • One feature of the present invention resides in the fact that the substantial portion of the magnetic flux is confined to the region of the magnets, the core, the coil, and the housing.
  • the N-poles of magnets 64a and 64b are completely internal to the device.
  • This arrangement presents any appreciable magnetic gradient to exist external to housing 70.
  • stray magnetic flux is minimized, so that little, or no flux flows in the region of armature 44.
  • This feature is particularly advantageous in connec tion with the use of the device according to the present invention for positioning magnetic heads for disc recording and/or readout.
  • Another feature of the present invention resides in the fact that the armature is capable of reciprocating into the motor.
  • the cantilevering effect of the armature and heads is reduced, permitting a design of a motor with minimal mechanical stresses due to extreme cantilevering and the attendant forces created by cantilevered heads.
  • the present invention thus provides apparatus which is light weight, economical, compact, and easily assembled and which provides accurate positioning of an armature of the linear motor in accordance with an induced current in the coil.
  • the apparatus is rugged in use and reliable in operation.
  • a linear motor or the like comprising a housing; substantially cylindrical core means supported by said housing and having an axis, said core means having a first slot extending diametrically through said core means along a portion of the length of said core means from one end thereof; substantially cylindrical magnet means supported by said housing in substantially coaxial relation with said core means and substantially surrounding said core means, said magnet having its opposite poles radially aligned so that one pole portion is closer to said axis than the other pole portion, said magnet means having a second slot extending diametrically through said magnet means, said second slot being radially aligned with said first slot; substantially rectangular armature means at least partially supported by said housing for reciprocable movement along said axis; and coil means fixedly mounted to an end portion of said armature means and positioned between said core means and said magnet means, said end portion of said armature means being positioned in said first slot, whereby a magnetic circuit is formed between said core means, said magnet means, said coil means and a portion of said housing and is so disposed and
  • journal means includes wheel means adapted to track against rail means, one of said wheel means and rail means being mounted to said housing and the other of said wheel means and said rail means being mounted to said armature means.
  • said armature means further includes flange means extending into said second slot.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

A linear motor or the like includes a housing supporting a slotted core. Coil means surrounds at least an axial portion of the core, and armature means is cantilevered to the coil. Magnet means is supported by the housing to at least partially surround the coil means to form a diametric slot in the magnet means, the diametric slot in the magnet being aligned with the slot in the core and being so sized with respect to the armature means as to permit the armature means to reciprocate along the axis of the coil within the slots.

Description

United States Patent [191 Chari July 22, 1975 [54] LINEAR MOTOR 3,577,023 5/l97l Bleiman 310/27 X 3, 63 5 197 "k l. [75] Inventor: Srinivasan V. Chari, Foster City, 735 l l 3 DU Stra et a Mom? Primary ExaminerR. N. Envall, Jr. [73] Assignee: Control Data Corporation, Attorney, Agent, or FirmRobert M. Angus Minneapolis, Minn. 22 Filed: Apr. 17, 19.74 [57] ABSTRACT A linear motor or the like includes a housing support- [21] Appl' 461565 ing a slotted core. Coil means surrounds at least an axial portion of the core, and armature means is canti- [52] U.S. Cl 310/14; 310/27 l red t0 he coil. Magnet means is supported by the [51] Int. Cl. H02K 33/18 housing to at least p r l y urroun he coil means to [58] Field of Search 310/12, 13, 14, 15, 23, form a diametric slot in the magnet means, the dia- 310/27; 335/222, 231 metric slot in the magnet being aligned with the slot in the core and being so sized with respect to the arma- [56] References Cit d ture means as to permit the armature means to recip- UNITED STATES PATENTS rocate along the axis of the coil within the slots. 3,260,870 7/1966 4 Claims, 6 Drawing Figures Beach, Jr. et al 3l0/l4 LINEAR MOTOR This invention relates to linear motors and solenoids, and particularly to improvements in linear motors and solenoids of the voice coil class.
Voice coil motors and solenoids are so named due to their physical similarities to audio loud speakers and the like. Voice coil motors and solenoids are characterized by an electric coil spaced between an internal core and a magnet. A magnetic circuit is established between the coil, the core, the magnet and intervening magnet circuit path, which ordinarily includes suitable air gaps and the housing, to relatively move the coil along the axis of the core. Voice coil motors and solenoids are high precision instruments which are widely used in the data processing art to affectuate precision movement of armatures attached to the voice coil upon application of an electric signal to the coil. For example, voice coil linear motors arecommonly used to adjust the position of record and/orreadheads for magnetic disc memories. Such arrangements ordinarily comprise a cantilevered armature attached between the heads and the coil so that upon movement of the coil, the heads are moved to a proper recording track on the disc.
Due to the physical arrangement of the coil surrounding the core, the coil hasheretofore been cantilevered from the armature so as to surround the core in the gap between the magnet and the core. The cantilevered arrangement, however, requires a considerable space between the magnet-core structure and the device to be actuated (the heads). There has been a growing need for precision linear motors and solenoids of the voice coilclass which are more compact and of lighter weight.,While some attempts have been made to reduce the length of cantilever of thevoice coil and its associatedarmature, such attempts have usually been made ata sacrifice of other qualities of the device. For example, reduction of the length of the armature placed the actuated device (the heads) closer to the magnetic circuitso that stray magnetic flux was induced into the heads. The stray magnetic flux is particularly deleteriousto data recorded on the disc.
It is an objectof the present invention to provide a voice coil linear motor or solenoid which is compact and light weight.
It is another object of the present invention to provide a compact, light-weight voice coil linear motor or the like in which the armature is effectively decoupled from'the magnetic circuit thereof.
It is yet another object of the present invention to provide a double-ended voice coil linear motor or the like. which includes a slotted core capable of receiving at least a portion of the armature of the motor or solenoid in such a manner as to not couple the armature in the magnetic circuit which includes the core.
In accordance with the present invention, a voice coil linear motor or the like is provided with a slotted core. A voice coil is attached to an end of an armature or actuatable device, the coil surrounding the core and between the core and the permanent magnets. The arrangement is such that the armature or actuatable device is capable of moving axially into the slot of the core.
One feature of the present invention resides in the provision of slots in the permanent magnet so disposed and arranged as to permit axial movement of the armature and/or actuatable device. This feature also assures decoupling of the armature and/or device from the magnetic circuit established by the permanent magnet.
The above and other features of this invention will be more fully understood from the following detailed description and the accompanying drawings, in which:
FIG. 1 is an exploded perspective view of a portion of a linear motor or the like in accordance with the presently preferred embodiment of the present invention;
FIG. 2 is an exploded perspective view of a portion of the motor illustrated in FIG. 1;
FIGS. 3 and 4 are section views of the motor taken along lines 33 and 44, respectively,.in FIG. 1;
FIG. 5 is a perspective view of the assembled motor; and
FIG. 6 is a section view, as in FIG. 3, illustrating the principle of operation of the motor.
With reference to the drawings, there is illustrated a linear motor 10 in accordance with the presently preferred embodiment of the present invention. Motor 10 includes a housing structure which includes a bottom plate 12, top plate 14, rear plate 16, and a pair of front plates 18 and 20. Front plates 18 and 20 are spaced apart by a design distance to form a passage 22 therebetween.
Cylindrical core 24 has an axis 26 and includes a diametric slot 28 extending from end 30 of the core part way along the length of the core. Preferably, and as particularly illustrated in FIGS. 2-4, core 24 comprises a pair of substantially cylindrical members, 24a, 24b constructed of a suitable soft iron. Transducer 32 extends axially through aperture 34 of plate 16 into a bore in the end of core 24 opposite from end 30. Transducer 32 is a velocity sensitive transducer adapted to measure velocity so that the rate of travel of armature 44 may be measured.
Cap 36 is a substantially cylindrical cap having an internal diameter slightly larger than the outside diameter of core 24. Cap 36 is axially centered on axis 26 and includes a first pair of radial flanges 38 extending into the region of slot 28 in core 24. Cap 36 includes a second pair of radial flanges 40 extending outwardly from flanges 38 for purposes to be hereinafter explained. An electric coil 42, consisting of a plurality of windings of electric wire, is mounted to one end of cap 36. Conveniently, cap 36 may also serve as a supporting bobbin for coil 42. Preferably, the internal and external diameters of coil 42 are approximately the same as the respective internal and external diameters of cap 36.
Armature 44 is mounted to the surface 46, 48 formed by flanges 38 and 40. Armature 44 supports a plurality of cantilevered heads 50 is spaced relation. For example, heads 50 may be of the class suitable for use in the magnetic recording art and are capable of being selectively positioned along axis 26 and relative to the axis (not shown) of a plurality of rotating recording discs (not shown) which are rotating about their axis perpendicular to axis 26. Armature 44 is journaled to plates 12 and 14 by lower wheels 52 and upper wheels 54 adapted to track against rails 56 and 58, respectively.
The magnetic circuit of motor 10 includes a pair of structures 60, each comprising a substantially semicylindrical shoe 62 having an axis 26a. Permanent magnet 64, which preferably consists of a pair of substantially semi-cylindrical permanent magnets 64a and 64b, are mounted to shoe 62. The assembled magnet 64 and shoe 62 are positioned between magnetically inert spacers 66 and 68 adjacent the respective front plate 18, 20 and rear plate 16. A substantially semicylindrical housing 70 is fastened over the completed structure between rear plate 16 and the respective front plate 18, 20. (For the purposes of illustration in FIG. 1, only one structure 60 has been shown, but it is understood that a similar structure is diametrically opposite the structure 60 shown.)
With the motor fully assembled, axis 26a coincides with the axis 26 so that shoe 62 surrounds, and is slightly spaced from, cap 36 and coil 42. As shown particularly in FIG. 5, magnet 64, housing 70 and the attendent shoe 62 and spacer 66 are positioned in such a manner as to provide a gap 72 in the magnetic circuit diametrically coincident with gap 28.
in operation of the apparatus, permanent magnets 64a and 64b establish a magnetic flux generally following the arrows shown in FIG. 6. (It is to be understood that the arrows shown in FIG. 6 do not necessarily indicate the magnitude of magnetic flux, nor all possible paths of the magnetic flux, but only illustrate the principles of operation in connection with the major portion of the magnetic flux generated by the magnets.) Magnet 640 generates a magnetic flux generally following a circular path from the magnet, through coil 42, core 24a, plate 20, and housing 70. Similarly, magnet 64b generates flux generally flowing through coil 42, core 24a, plate 20, and housing 70. Upon application of an electric signal to coil 42, the local magnetic flux is altered by current flowing within the coil to impose a relative force between the magnet, the core and the coil, thereby causing the coil to move to a position along axis 26 as determined by the strength and direction of the electric current within coil 42. Thus, upon application of a predetermined electric current to coil 42, the position of the coil is selectively adjusted along axis 26. As coil 42 reciprocates along axis 26, armature 44 is moved axially thereby selectively positioning the location of heads 50.
One feature of the present invention resides in the fact that the substantial portion of the magnetic flux is confined to the region of the magnets, the core, the coil, and the housing. In this respect, the N-poles of magnets 64a and 64b are completely internal to the device. This arrangement presents any appreciable magnetic gradient to exist external to housing 70. Thus, by aligning the gap or slot between the magnets 64 with the slot 28 in core 24, stray magnetic flux is minimized, so that little, or no flux flows in the region of armature 44. This feature is particularly advantageous in connec tion with the use of the device according to the present invention for positioning magnetic heads for disc recording and/or readout.
Another feature of the present invention resides in the fact that the armature is capable of reciprocating into the motor. Thus, the cantilevering effect of the armature and heads is reduced, permitting a design of a motor with minimal mechanical stresses due to extreme cantilevering and the attendant forces created by cantilevered heads.
The present invention thus provides apparatus which is light weight, economical, compact, and easily assembled and which provides accurate positioning of an armature of the linear motor in accordance with an induced current in the coil. The apparatus is rugged in use and reliable in operation.
This invention is not to be limited by the embodiment shown in the drawings and described in the description, which is given by way of example and not of limitation, but only in accordance with the scope of the appended claims.
What is claimed is:
l. A linear motor or the like comprising a housing; substantially cylindrical core means supported by said housing and having an axis, said core means having a first slot extending diametrically through said core means along a portion of the length of said core means from one end thereof; substantially cylindrical magnet means supported by said housing in substantially coaxial relation with said core means and substantially surrounding said core means, said magnet having its opposite poles radially aligned so that one pole portion is closer to said axis than the other pole portion, said magnet means having a second slot extending diametrically through said magnet means, said second slot being radially aligned with said first slot; substantially rectangular armature means at least partially supported by said housing for reciprocable movement along said axis; and coil means fixedly mounted to an end portion of said armature means and positioned between said core means and said magnet means, said end portion of said armature means being positioned in said first slot, whereby a magnetic circuit is formed between said core means, said magnet means, said coil means and a portion of said housing and is so disposed and arranged as to exclude said first and second slots so that magnetic flux is induced in said coil means without significantly inducing flux into said armature means.
2. Apparatus according to claim 1 wherein said armature means is supported by said housing by journal means.
3. Apparatus according to claim 2 wherein said journal means includes wheel means adapted to track against rail means, one of said wheel means and rail means being mounted to said housing and the other of said wheel means and said rail means being mounted to said armature means.
4. Apparatus according to claim 1 wherein said armature means further includes flange means extending into said second slot.

Claims (4)

1. A linear motor or the like comprising a housing; substantially cylindrical core means supported by said housing and having an axis, said core means having a first slot extending diametrically through said core means along a portion of the length of said core means from one end thereof; substantially cylindrical magnet means supported by said housing In substantially coaxial relation with said core means and substantially surrounding said core means, said magnet having its opposite poles radially aligned so that one pole portion is closer to said axis than the other pole portion, said magnet means having a second slot extending diametrically through said magnet means, said second slot being radially aligned with said first slot; substantially rectangular armature means at least partially supported by said housing for reciprocable movement along said axis; and coil means fixedly mounted to an end portion of said armature means and positioned between said core means and said magnet means, said end portion of said armature means being positioned in said first slot, whereby a magnetic circuit is formed between said core means, said magnet means, said coil means and a portion of said housing and is so disposed and arranged as to exclude said first and second slots so that magnetic flux is induced in said coil means without significantly inducing flux into said armature means.
2. Apparatus according to claim 1 wherein said armature means is supported by said housing by journal means.
3. Apparatus according to claim 2 wherein said journal means includes wheel means adapted to track against rail means, one of said wheel means and rail means being mounted to said housing and the other of said wheel means and said rail means being mounted to said armature means.
4. Apparatus according to claim 1 wherein said armature means further includes flange means extending into said second slot.
US461565A 1974-04-17 1974-04-17 Linear motor Expired - Lifetime US3896319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US461565A US3896319A (en) 1974-04-17 1974-04-17 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US461565A US3896319A (en) 1974-04-17 1974-04-17 Linear motor

Publications (1)

Publication Number Publication Date
US3896319A true US3896319A (en) 1975-07-22

Family

ID=23833088

Family Applications (1)

Application Number Title Priority Date Filing Date
US461565A Expired - Lifetime US3896319A (en) 1974-04-17 1974-04-17 Linear motor

Country Status (1)

Country Link
US (1) US3896319A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4121124A (en) * 1976-07-26 1978-10-17 Hunt Frederick C Electrodynamic force generator
US4136293A (en) * 1977-11-07 1979-01-23 International Business Machines Corporation Multi-actuator system using single magnetic circuit
FR2421501A1 (en) * 1978-03-27 1979-10-26 Ibm ELECTROMAGNETIC LINEAR MOTOR AND ITS APPLICATION TO MOVING MAGNETIC HEADS IN A DISC MEMORY
DE2823802A1 (en) * 1978-05-31 1979-12-06 Speidel & Keller Kg ELECTROMAGNETIC DRIVE DEVICE FOR OSCILLATING DISPLACEMENT PUMPS
JPS55101164A (en) * 1979-01-26 1980-08-01 Priam Corp Linear actuater for magnetic disk driving device
US4439699A (en) * 1982-01-18 1984-03-27 International Business Machines Corporation Linear moving coil actuator
EP0136776A1 (en) * 1983-07-12 1985-04-10 Memorex Corporation Linear motor
EP0136777A1 (en) * 1983-07-12 1985-04-10 Unisys Corporation Linear motor
EP0222362A2 (en) * 1985-11-13 1987-05-20 Sharp Kabushiki Kaisha Linear motor
EP0222139A2 (en) * 1985-11-14 1987-05-20 International Business Machines Corporation Sealed actuator assembly
US4858452A (en) * 1986-12-22 1989-08-22 United Technologies Electro Systems, Inc. Non-commutated linear motor
US4967296A (en) * 1985-11-20 1990-10-30 Seagate Technology, Inc. Lightweight, rigid, compact configuration for the voice coil, carriage and printed circuit cable in a disc drive
US5701040A (en) * 1992-11-03 1997-12-23 British Technology Group Limited Magnet arrangement, and drive device and cooling apparatus incorporating same
US5867294A (en) * 1993-09-24 1999-02-02 Canon Kabushiki Kaisha Optical space communication apparatus
US20020113497A1 (en) * 2001-02-02 2002-08-22 Park Kyeong Bae Stator fastening structure of reciprocating motor
US20060061442A1 (en) * 2004-05-20 2006-03-23 Elliot Brooks Eddy current inductive drive electromechanical linear actuator and switching arrangement
US20110306467A1 (en) * 2008-10-13 2011-12-15 Enrico Massa Electromagnetic load device for an apparatus for physical exercise, and apparatus provided with said device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3260870A (en) * 1962-12-28 1966-07-12 Ibm Magnetic detent mechanism
US3577023A (en) * 1969-12-04 1971-05-04 Advanced Peripherals Inc Moving coil actuator
US3735163A (en) * 1971-05-06 1973-05-22 Philips Corp Linear motor for the positioning of magnetic heads

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3260870A (en) * 1962-12-28 1966-07-12 Ibm Magnetic detent mechanism
US3577023A (en) * 1969-12-04 1971-05-04 Advanced Peripherals Inc Moving coil actuator
US3735163A (en) * 1971-05-06 1973-05-22 Philips Corp Linear motor for the positioning of magnetic heads

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4121124A (en) * 1976-07-26 1978-10-17 Hunt Frederick C Electrodynamic force generator
US4136293A (en) * 1977-11-07 1979-01-23 International Business Machines Corporation Multi-actuator system using single magnetic circuit
FR2421501A1 (en) * 1978-03-27 1979-10-26 Ibm ELECTROMAGNETIC LINEAR MOTOR AND ITS APPLICATION TO MOVING MAGNETIC HEADS IN A DISC MEMORY
DE2823802A1 (en) * 1978-05-31 1979-12-06 Speidel & Keller Kg ELECTROMAGNETIC DRIVE DEVICE FOR OSCILLATING DISPLACEMENT PUMPS
WO1979001155A1 (en) * 1978-05-31 1979-12-27 Speidel & Keller Kg Electromagnetic driving device for positive displacement oscillating pumps
JPS55101164A (en) * 1979-01-26 1980-08-01 Priam Corp Linear actuater for magnetic disk driving device
JPS636937B2 (en) * 1979-01-26 1988-02-13 Priam Corp
US4439699A (en) * 1982-01-18 1984-03-27 International Business Machines Corporation Linear moving coil actuator
EP0136776A1 (en) * 1983-07-12 1985-04-10 Memorex Corporation Linear motor
EP0136777A1 (en) * 1983-07-12 1985-04-10 Unisys Corporation Linear motor
EP0222362A2 (en) * 1985-11-13 1987-05-20 Sharp Kabushiki Kaisha Linear motor
EP0222362A3 (en) * 1985-11-13 1988-11-17 Sharp Kabushiki Kaisha Linear motor
EP0222139A3 (en) * 1985-11-14 1988-10-26 International Business Machines Corporation Sealed actuator assembly
EP0222139A2 (en) * 1985-11-14 1987-05-20 International Business Machines Corporation Sealed actuator assembly
US4967296A (en) * 1985-11-20 1990-10-30 Seagate Technology, Inc. Lightweight, rigid, compact configuration for the voice coil, carriage and printed circuit cable in a disc drive
US4858452A (en) * 1986-12-22 1989-08-22 United Technologies Electro Systems, Inc. Non-commutated linear motor
US5701040A (en) * 1992-11-03 1997-12-23 British Technology Group Limited Magnet arrangement, and drive device and cooling apparatus incorporating same
US5867294A (en) * 1993-09-24 1999-02-02 Canon Kabushiki Kaisha Optical space communication apparatus
US6819015B2 (en) * 2001-02-02 2004-11-16 Lg Electronics Inc. Stator fastening structure of reciprocating motor
US20020113497A1 (en) * 2001-02-02 2002-08-22 Park Kyeong Bae Stator fastening structure of reciprocating motor
US20060061442A1 (en) * 2004-05-20 2006-03-23 Elliot Brooks Eddy current inductive drive electromechanical linear actuator and switching arrangement
US7777600B2 (en) 2004-05-20 2010-08-17 Powerpath Technologies Llc Eddy current inductive drive electromechanical liner actuator and switching arrangement
US20110068884A1 (en) * 2004-05-20 2011-03-24 Powerpath Technologies Llc Electromechanical actuator
US8134438B2 (en) 2004-05-20 2012-03-13 Powerpath Technologies Llc Electromechanical actuator
US20090212889A1 (en) * 2005-05-20 2009-08-27 Elliot Brooks Eddy current inductive drive electromechanical linear actuator and switching arrangement
US8134437B2 (en) 2005-05-20 2012-03-13 Powerpath Technologies Llc Eddy current inductive drive electromechanical linear actuator and switching arrangement
US20110306467A1 (en) * 2008-10-13 2011-12-15 Enrico Massa Electromagnetic load device for an apparatus for physical exercise, and apparatus provided with said device

Similar Documents

Publication Publication Date Title
US3896319A (en) Linear motor
US4196456A (en) Magnetic head pivotal support with compact drive means
US4414594A (en) Linear actuator for a memory storage apparatus
US3751693A (en) Moving coil motor with no stray flux
KR0133859B1 (en) Objective lens driving device in an optical pick up
US5536983A (en) Linear motor
US3656015A (en) Combined linear motor and carriage
US3470399A (en) Linear motor velocity detection apparatus
US4698798A (en) Device for translating a slide
JPH043593B2 (en)
US3723780A (en) Self shielding linear motor
JP2558387B2 (en) Voice coil motor and magnetic disk device
US3700829A (en) Magnetic stereophonic phonograph pickup
US4782475A (en) Flexure supported read head
JPS6115665B2 (en)
US3743794A (en) Translational motion apparatus for the magnetic transducers of a disc memory
US2027169A (en) Vibration translating device
JPS5888877A (en) Magnetic head/slider/actuator assembly
US4385375A (en) Moving coil type phono cartridge
US3542972A (en) Individual adjustable magnet systems of a stereophonic pickup
US3526728A (en) Variable reluctance type pickup cartridge
US3745386A (en) Moving coil motor
US3230318A (en) Transducer
US3924076A (en) Electromagnetic phono cartridge
US3878342A (en) Replaceable stylus for stereophonic phonograph pickup