US20140300349A1 - Coreless current probe and a method of measuring direct current - Google Patents

Coreless current probe and a method of measuring direct current Download PDF

Info

Publication number
US20140300349A1
US20140300349A1 US13/795,827 US201313795827A US2014300349A1 US 20140300349 A1 US20140300349 A1 US 20140300349A1 US 201313795827 A US201313795827 A US 201313795827A US 2014300349 A1 US2014300349 A1 US 2014300349A1
Authority
US
United States
Prior art keywords
sensors
magnetic field
probe
plane
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/795,827
Inventor
Ian James Walker
Karron Louis Law
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GMW Associates Inc
Original Assignee
GMW Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GMW Associates Inc filed Critical GMW Associates Inc
Priority to US13/795,827 priority Critical patent/US20140300349A1/en
Assigned to GMW Associates Incorporated reassignment GMW Associates Incorporated ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Law, Karron Louis, WALKER, IAN JAMES
Priority to US14/775,553 priority patent/US9952257B2/en
Priority to ES14779818T priority patent/ES2871854T3/en
Priority to PCT/US2014/022775 priority patent/WO2014164551A1/en
Priority to EP14779818.5A priority patent/EP2972425B8/en
Publication of US20140300349A1 publication Critical patent/US20140300349A1/en
Priority to US15/922,628 priority patent/US10690701B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used

Definitions

  • the present invention relates to current probes and methods of measuring direct current.
  • the invention is concerned with coreless current probes, which do not contain a core or cores of material with relatively high magnetic permeability.
  • Probes and methods for measuring current flowing in a conductor which do not require any electrical contact to be made with the conductor.
  • contactless current probes typically provide a core of magnetic material completely embracing the conductor, in combination with a sense winding on the core, to sense alternating magnetic field generated in the core.
  • Such alternating current probes are known as current transformers and a magnetic core completely surrounding the conductor carrying the current to be measured is desirable to ensure good flux linkage between the primary “winding” which is the conductor carrying the current to be measured, and the secondary winding which is the sense coil.
  • AC current sensing is also known using an air core coil surrounding the conductor carrying the current to be measured.
  • U.S. Pat. No. 5,057,769—Edwards discloses a C-shaped sensing coil mounted on a skeleton board to enable the coil to be located embracing a conductor between the arms of the C. Compensating coils are provided at the ends of the main C-shaped coil to provide some compensation for the effect of the gap in the main sensing coil.
  • a DC current sensor formed as a ring of Hall devices surrounding the current conductor.
  • the sum of the outputs of the ring of Hall devices provides an approximation to the line integral of magnetic field around the conductor being measured, so that a value for the current in the conductor is determined.
  • U.S. Pat. No. 7,321,226 discloses a current sensor employing a ring of Hall devices mounted in hinged housings to enable the probe to be clipped around the conductor carrying the current to be measured. Again, by providing multiple Hall devices in a ring completely surrounding the conductor, the sum of the outputs of the Hall devices can provide good approximation to Ampere's Law, thereby providing a good measurement of current in the conductor.
  • the invention provides a coreless current probe comprising a U-shaped body having arms, an open end and a cross piece forming a closed end opposite to the open end.
  • the U-shaped body defines an opening having a width between the arms and a length from the closed end to the open end. The length is not less than the width and the width and the length define a plane of the opening as well as a central line normal to the plane.
  • a conductor carrying a current to be measured can be engaged by the body of the probe so as to extend through the opening parallel to the central line.
  • a plurality of coreless single point magnetic field sensors are distributed in the body around the opening.
  • a respective one of the sensors is located at an end of each of the arms of the U-shaped body, so as to be on each side of the open end of the body. At least one further of the sensors is located at the closed end of the body.
  • the sensors each have a respective axis of magnetic field sensitivity and are arranged in the body so that each of these axes is not co-planar with the central line.
  • Sensing circuitry is connected to the sensors and is operative to produce for each of the sensors a respective sensor signal which is a measure of the angle component of magnetic field at the sensor aligned with its respective axis of magnetic field sensitivity.
  • the sensors are arranged in the body in such a way that there can be found values of c r for which, in any homogeneous magnetic field,
  • n is the number of the magnetic field sensors
  • h r is the measure of the magnetic field component for the r th sensor
  • c r is a constant factor for the r th sensor.
  • the sensing circuitry is operative to combine the measures h r to produce a measured current value representing current flowing in a conductor engaged by the U-shaped body of the probe.
  • the invention further provides a method of measuring direct current flowing in a conductor, where the conductor has minimum and maximum orthogonal cross-sectional dimensions.
  • an Ampere's Law integration path is defined around the conductor in an integration plane perpendicular to a central line of the conductor, where the path has minimum and maximum orthogonal dimensions which exceed the dimensions of the conductor.
  • a respective angle component of magnetic field is measured at each of a plurality of locations on this integration path. An adjacent pair of these locations is at one end of the maximum dimension of the path and spaced apart by the minimum dimension of the path. The third of these locations is at the other end of the maximum dimension of the path.
  • the locations and the orientations of the respective angle components of magnetic field being measured are selected such that values can be found of c r for which, in any homogeneous magnetic field,
  • h r is the measured value of the magnetic field component at the r th location and c r is a constant factor for the r th location.
  • the measured values h r are combined to produce a value of the direct current being measured.
  • FIG. 1 is a schematic representation of an example of a coreless current probe embodying the present invention, using three magnetic field sensors.
  • FIG. 2 is a view of the current probe of FIG. 1 taken from one side and showing sensing circuitry housed in the probe.
  • FIG. 3 illustrates further examples of current probe embodying the present invention, using four magnetic field sensors, and using six magnetic field sensors.
  • FIG. 4 illustrates an electrowinning tank with cathodes and anodes, illustrating a preferred use of the current probe.
  • FIG. 5 is a perspective view of a current probe engaged on a bus bar whose current is to be measured.
  • FIG. 6 illustrates further examples of current probe embodying the present invention.
  • FIG. 7 is a hand-held current probe embodying the present invention.
  • FIG. 8 is a wireless enabled current probe embodying the present invention.
  • FIG. 9 is a view of the current probe of FIG. 8 taken from one side and showing sensing circuitry and wireless circuitry in the probe.
  • FIG. 10 is a schematic circuit diagram illustrating the sensing circuitry and wireless circuitry which may be incorporated in a wireless enabled current probe as illustrated in FIGS. 8 and 9 .
  • FIG. 11 is a timing diagram for the circuit of FIG. 10 .
  • FIGS. 1 and 2 illustrate a basic embodiment of the invention.
  • a coreless current probe is shown having a U-shaped body 10 with arms 11 and 12 , an open end 13 and a cross piece 14 forming a closed end 15 which is opposite to the open end 13 .
  • the U-shaped body 10 defines an opening 16 having a width d between the arms 11 and 12 , and a length l from the closed end 15 to the open end 13 .
  • the length l is not less than the width d and in the example illustrated is in fact substantially greater than the width d.
  • the width and length dimensions of the opening 16 on the U-shaped body 10 define a plane of the opening which is substantially the plane of the paper in FIG.
  • the opening 16 further defines a central line 18 , represented in FIG. 1 by a dot 18 which is normal to the plane of the opening and located substantially centrally in the opening.
  • the U-shaped body 10 of the current probe illustrated in FIG. 1 can be engaged around a conductor 19 carrying a current to be measured.
  • the conductor 19 When engaged by the U-shaped body of the probe, the conductor 19 extends through the opening parallel to the central line 18 .
  • the conductor 19 is shown in cross-section in FIG. 1 within a dashed outline.
  • a short section of the conductor 19 is illustrated in FIG. 2 extending through the opening 16 .
  • a plurality of coreless single point magnetic field sensors are distributed in the U-shaped body 10 around the opening 16 .
  • three such single point magnetic field sensors are illustrated at 20 , 21 and 22 .
  • the single point magnetic field sensors 20 , 21 and 22 comprise Hall effect sensors.
  • any type of sensor may be used which is capable of producing an electrical signal representing the intensity of magnetic field at the location of the sensor.
  • the magnetic field sensors employed in the example of the invention are vector magnetometers, in the sense that each of the sensors has a respective axis of magnetic field sensitivity.
  • alternative magnetic field sensors include magneto resistive devices.
  • a respective magnetic field sensor 21 , 22 is located at an end of each of the arms 11 and 12 of the U-shaped body 10 , at the open end 13 of the body.
  • a third sensor 20 is located at the closed end 15 of the body. In the particular example, sensor 20 is located mid-way along the cross piece 14 at the closed end 15 of the body.
  • the magnetic field sensors 20 , 21 and 22 are intended to detect the magnetic field generated by current flowing in the conductor 19 in the direction of the conductor, that is to say parallel to the central line 18 . Accordingly, it is important that the axis of magnetic field sensitivity of each of the sensors 20 , 21 and 22 is not aligned in a plane containing the central line 18 . Otherwise the sensors would have minimum sensitivity to any magnetic fields generated by current flowing in the conductor parallel to the central line 18 .
  • the sensors 20 , 21 and 22 are intended to detect magnetic field generated by the current flowing along the conductor 19 and should preferably be arranged in the body 10 so as to maximize detection of this magnetic field, whilst having a minimal response to external magnetic fields which are not produced by currents in the conductor 19 .
  • the location and orientation of the sensors 20 , 21 and 22 in the U-shaped body 10 are selected so that it is possible to derive a signal combining the outputs of these sensors, which is insensitive at least to any homogeneous magnetic field in the region of the probe.
  • a homogeneous magnetic field is a field which would be generated externally of the probe, so that the field lines are substantially linear with a uniform flux density everywhere over the probe.
  • Each of the magnetic field sensors 20 , 21 and 22 is connected with sensing circuitry, which is shown by the box 25 located in a housing 26 connected to cross piece 14 of the U-shaped body 10 by a neck piece 27 .
  • the sensing circuitry 25 operates to produce for each of the sensors 20 , 21 and 22 a respective sensor signal which is a measure of the angle component of magnetic field at the respective sensor which is aligned with the axis of magnetic field sensitivity of the sensor.
  • the sensors 20 , 21 and 22 of the probe In order for it to be possible for the sensors 20 , 21 and 22 of the probe to reject a homogeneous external magnetic field, the sensors must be arranged in the U-shaped body 10 such that values c r can be found for which, in any homogeneous magnetic field,
  • n is the number of magnetic field sensors
  • h r is the measure of the magnetic field component for the r th sensor
  • c r is a constant factor for the r th factor. So long as the sensors in a probe are arranged and orientated such that the values of c r can be obtained to satisfy the summation equation above, it is possible to derive a combined signal from the outputs of the sensors which will reject external homogeneous magnetic fields.
  • the sensor 20 at the centre of the cross piece 14 is illustrated with its axis of sensitivity 30 directed in the plane of the opening 16 of the U-shaped body 10 , and normal to a central plane 33 which contains the central line 18 and is mid-way between the arms 11 and 12 of the U-shaped body 10 .
  • the field sensor 21 is shown with its axis of sensitivity 31 also in the plane of the opening 16 and at an angle ⁇ to a transverse line 34 which is normal to the central plane 33 .
  • the sensor 22 is shown with its axis of sensitivity 32 again in the plane of the opening and at an angle ⁇ to the transverse line 34 .
  • the sensors 20 , 21 and 22 have the same nominal sensitivity to magnetic field intensity aligned with a respective axis of the sensitivity of the sensors, it can be shown that for a uniform homogeneous horizontal magnetic field in the plane of the opening 16 and parallel to the transverse line 34 , the summation
  • the sensing circuitry 25 is arranged to be operative to combine the signals from the sensors 20 , 21 and 22 , which comprise measures h 1 , h 2 and h 3 of the angle component of magnetic field at the respective sensors, to produce a measured current value representing current flowing in the conductor 19 engaged by the U-shaped body 10 of the probe.
  • the sensing circuitry 25 will combine the measures h r by performing the summation
  • ⁇ r 1 3 ⁇ c r ⁇ h r ,
  • FIGS. 1 and 2 illustrate a basic example of the invention employing only three magnetic field sensors 20 , 21 and 22 .
  • more than three magnetic field sensors will normally be required in the U-shaped body 10 of the probe.
  • improved performance may be obtained using four magnetic field sensors distributed symmetrically in the U-shaped body 10 about the central plane 33 , which constitutes a plane of symmetry.
  • the sensors 21 and 22 at the ends of the arms 11 and 12 on each side of the opening end 13 of the U-shaped body 10 are provided, as in the example of FIGS.
  • each of the axes of sensitivity 31 , 32 , 51 and 52 is generally aligned with the direction of the magnetic field that will be generated by a current flowing in the conductor 19 engaged by the probe. If the angles of the axes of sensitivity 31 , 32 , 51 and 52 , with respect to lines normal to the plane of symmetry 33 , are all the same, then the factors c 1 , c 2 , c 3 and c 4 applied by the sensing circuitry 25 to the measures h 1 , h 2 , h 3 and h 4 from the four sensors should again be the same, in order to reject homogeneous external fields.
  • FIG. 3 also illustrates a further preferred arrangement which uses six sensors distributed around the U-shaped body 10 of the probe.
  • an additional pair of sensors 43 and 44 is located in the U-shaped body 10 substantially midway along the arms 11 and 12 .
  • the six sensors shown in FIG. 3 comprise a first pair of sensors 21 and 22 at the ends of the arms of the U-shaped body on either side of the open end 13 , a second pair 41 and 42 at the closed end of the U-shaped body 10 , and a third pair comprising the additional sensors 43 and 44 midway along the arms 11 and 12 .
  • the sensors of each of the first, second and third pairs are disposed spaced uniformly apart symmetrically on opposite sides of the plane of symmetry 33 which contains the central line 18 and is equally spaced between the arms.
  • Each of the sensors 21 , 22 , 41 and 42 of the first and second pairs is orientated in the body so that its axis of sensitivity is in the plane of the opening and at a respective acute angle to the plane of symmetry 33 , so as to be generally tangential to the opening.
  • Each of the sensors 43 and 44 of the third pair is orientated in the body to have its axis of sensitivity in the plane of the opening and parallel to the plane of symmetry 33 .
  • the axes of sensitivity of the additional third pair of sensors 43 and 44 are illustrated by the lines and arrows 53 and 54 respectively.
  • the U-shaped body of the probe illustrated in FIG. 3 is generally similar to that illustrated in FIGS. 1 and 2 , the aspect ratio of the U-shaped body in FIG. 3 is somewhat greater, in that the arms 11 and 12 of the U-shaped body 10 are more than twice as long as the spacing between the arms, so that l>2 d.
  • the six magnetic field sensors are numbered in order in a clockwise direction around the opening 16 , starting with sensor 42 as number 1 , then the components of the summation discussed above are c 1 h 1 for sensor 42 , c 2 h 2 for sensor 44 , c 3 h 3 for sensor 22 , c 4 h 4 for sensor 21 , c 5 h 5 for sensor 43 and c 6 h 6 for sensor 41 .
  • the sensitivity to magnetic field of each of the six sensors is the same, so that the measure h for each sensor would be the same if the sensor is in an identical magnetic field aligned with the respective axis of sensitivity of the sensor, then the requirement that the summation
  • the sensing circuitry is adapted to derive the summation
  • ⁇ r 1 6 ⁇ c r ⁇ h r ,
  • the common value of c 2 and c 5 is selected accordingly to be different from the common value of c 1 , c 3 , c 4 and c 6 in order to maximize rejection of external magnetic fields.
  • ⁇ r 1 n ⁇ c r ⁇ h r
  • the magnetic sensors in the U-shaped body are located along a closed loop path which has the shortest possible length surrounding the conductor to be measured. Accordingly, best results are obtained if the opening 16 of the U-shaped body 10 is sized so as closely to fit around a conductor 19 carrying the current to be measured.
  • An example of conductor 19 as illustrated in FIG. 3 has a substantially rectangular cross-section with a minimum orthogonal dimension which is only slightly less than the width d between the inner faces of the arms 11 and 12 of the U-shaped body. Also, the maximum transverse cross-sectional dimension of the conductor 19 is only slightly shorter than the length l between the open and closed ends 13 and 15 of the U-shaped body 10 . Then, a dashed line 60 represents a minimum length closed loop encircling the conductor 19 , and magnetic sensors 21 , 22 , 41 , 42 and 43 , 44 are shown, each with its point of sensitivity located on the line 60 .
  • the line integral of magnetic fields along the minimum length loop 60 provides a measure of current flowing in the conductor 19 .
  • actual magnetic field measurements are made only at six points around the minimum length loop 60 .
  • the sensors 21 , 22 , 41 , 42 and 43 , 44 are arranged with their axes of sensitivity generally aligned with the local direction of the magnetic field which would be produced by current flowing in the conductor 19 , in the absence of any external fields. With this orientation of the magnetic field sensors, the sensitivity of the sensors to the magnetic field to be measured, in effect to the required signal, is maximized. In the absence of any external fields, the summation
  • ⁇ r 1 6 ⁇ c r ⁇ h r ,
  • a useful approach to determining appropriate values of c r is to assign to each of the sensors in FIG. 3 , a line segment along the minimum length loop 60 on either side of the sensor.
  • a line segment 61 may be assigned to sensor 41 , extending from the mid-point 62 between sensor 41 and sensor 43 and the mid-point 63 between sensor 41 and sensor 42 .
  • line segment 64 is assigned to sensor 42 extending from mid-point 63 to a mid-point 65 between sensor 42 and 44 .
  • a line segment 66 is assigned to sensor 44 extending from mid-point 65 to a mid-point 67 between sensor 44 and sensor 22 .
  • Line segment 68 is assigned to sensor 22 extending from the mid-point 67 to a mid-point 69 between sensor 22 and sensor 21 .
  • Line segment 70 is assigned to sensor 21 extending from the mid-point 69 to a mid-point 71 between sensor 21 and sensor 43 .
  • Line segment 72 is then assigned to sensor 43 extending from the mid-point 71 to the mid-point
  • the product h′ r a r should be multiplied by the factor s′ r /h′ r a r .
  • the line integral s r over the line segment for the r th sensor may be expressed
  • ⁇ r 1 6 ⁇ c r ⁇ h r ,
  • the minimum length loop 60 is shown to be slightly asymmetrical from top to bottom, since the loop has an apex point at 63 mid-way between the upper sensors 41 and 42 .
  • This loop shape corresponds to the cross-sectional shape of the conductor 19 . Because of this, the computation of s′ r as outlined above for the line segments corresponding to sensors 41 and 42 will be slightly different to the computations of s′ r for the line segments corresponding to the sensors 21 and 22 at the open end of the U-shaped probe.
  • the values of c r should be symmetrical so that in a homogeneous external field only, in the absence of any current flowing through the conductor 19 , the summation of c r h r is zero. Accordingly, in order to achieve this full rejection of any external homogeneous field, an average is taken of the calculated values c r for the four corner sensors 41 , 42 and 21 , 22 , in order to provide identical values of c r for these sensors.
  • ⁇ r 1 n ⁇ c r ⁇ h r ,
  • the lengths a r of the line segments is somewhat arbitrary.
  • the location of the mid-point 63 between upper sensors 41 and 42 on the U-shaped probe is determined by the requirements for symmetry, as is the position of the mid-point 69 between the sensors 21 and 22 .
  • end points 65 and 67 should be equally spaced on opposite sides of sensor 44
  • mid-points 62 and 71 should be equally spaced on opposite sides of sensor 43 .
  • the overall length of the line segments associated with the mid-point sensors 43 and 44 may be extended to accommodate a region along the flanks of the conductor 19 over which the magnetic field produced by currents flowing in the conductor 19 extends generally parallel to the these flanks, at least at locations closely spaced to the flanks.
  • the current probe can be optimized for a particular installation by determining empirically the length of the line segments 66 and 72 associated with the mid-point sensors 43 and 44 , which will maximize rejection of unwanted external magnetic fields.
  • the coreless current probe described above can have general application for measuring currents flowing in conductors, particularly where the physical construction and arrangement of the conductors to be measured does not permit the current probe to be wrapped entirely around the conductor.
  • the current probe is also especially suited to arrangements where there may be high levels of external magnetic field, for example in circumstances where current is to be measured in a single conductor of an array of conductors carrying substantial currents.
  • the probe can be used to measure DC currents.
  • FIG. 4 illustrates schematically part of an array of cathodes and anodes for an electrowinning installation comprising anodes 70 a , 70 b , 70 c , 70 d , 70 e , 70 f , alternating with cathodes 71 a , 71 b , 71 c , 71 d and 71 e etc.
  • anodes 70 a , 70 b , 70 c , 70 d , 70 e , 70 f alternating with cathodes 71 a , 71 b , 71 c , 71 d and 71 e etc.
  • FIG. 4 illustrates schematically part of an array of cathodes and anodes for an electrowinning installation comprising anodes 70 a , 70 b , 70 c , 70 d , 70 e , 70 f , alternating with cathodes 71 a , 71 b , 71 c , 71
  • Each anode and cathode comprises a plate electrode extending normal to the page of the drawing of FIG. 4 into an electrolyte solution in the processing tank.
  • the plates of the anodes and cathodes generally extend between the dotted lines 72 and 73 shown in FIG. 4 .
  • Anode bus bars 75 a , 75 b , 75 c , 75 d , 75 e , 75 f are provided supporting the anodes 70 a - f and are each connecting along the right hand side in FIG. 4 to an anode supply connector 76 .
  • cathode bus bars 77 a - e respectively support cathodes 71 a - e and are each connected along the left hand side of FIG. 4 to a cathode supply connector 78 .
  • FIG. 5 illustrates in perspective view a typical anode bus bar 75 , which is shaped with a generally rectilinear cross-section having a relatively high aspect ratio. This shape allows the bus bar to carry the high levels of current needed for an electrowinning process, typically in excess of 1000 amps for each anode or cathode bus bar, while minimizing the spacing between adjacent bus bars.
  • FIG. 5 also illustrates a coreless current probe 80 , of the kind described above with a U-shaped body, engaged on the bus bar 75 .
  • the current probe 80 is dimensioned specifically for the particular bus bar 75 , so that the width d between the arms 11 and 12 of the U-shaped body 10 is just sufficient to slide over the minimum cross-sectional dimension of the bus bar 75 .
  • the internal maximum dimension l of the U-shaped body is sized so that the full maximum cross-sectional dimension of the bus bar 75 is accommodated in the opening of the U-shaped body, for example as shown in the cross-section in FIG. 3 .
  • a separate current probe 80 a - f may be located engaged with each of the anode bus bars 75 a - f , as illustrated in FIG. 4 .
  • each of the anode bus bars 75 a - f in an electrowinning installation may carry a current in excess of 1000 amps. Similar currents will be carried by the cathode bus bars 70 a - e . It can be seen, therefore, that each of the current probes 80 a - f will be in a region of substantial magnetic field in addition to magnetic field generated by current flowing in the respective bus bar 75 a - f , that is the current to be measured in each case. Furthermore, the nature of the external magnetic field experienced by each of the current probes 80 a - 80 f will be different depending on the location of the probe across the array of bus bars.
  • a current probe with a U-shaped body and six sensors distributed as illustrated in FIG. 3 can measure the current flowing in a respective bus bar to an accuracy of better than about 1%, at any position across an array of bus bars comprising for example 51 anodes and 50 cathodes.
  • FIG. 6 represents the U-shaped body 10 of a probe containing additional magnetic field sensors.
  • features common to the probe of FIG. 3 are given the same numerals.
  • three further magnetic field sensors are provided, including one sensor 81 located substantially mid-way along the cross piece 14 of the U-shaped body 10 , effectively at the location of the mid-point 63 identified in the arrangement with six sensors shown in FIG. 3 . Also, there is a further sensor 82 and 83 located at the end of each of the arms 11 and 12 of the U-shaped body on opposite sides of the open end 13 of the body. Each of the three further sensors 81 , 82 and 83 is orientated to have its axis of sensitivity in the plane of the opening and also substantially normal to the plane of symmetry 33 . As shown in FIG. 6 , the direction of sensitivity for the further sensor 81 is indicated by the arrow 84 and opposes the directions of sensitivity of the sensors 82 and 83 , as shown by the arrows 85 and 86 respectively.
  • either the sensitivity of the sensors 82 and 83 are set to be half the sensitivity of sensor 81 , or the factor c r for the sensors 82 and 83 is set to be half the factor c r for sensor 81 .
  • the factors c r for the three further sensors can be different from the common factor c r for the corner sensors 41 42 , 21 22 and also from the factor for the mid-point sensors 43 and 44 .
  • Values for the factors c r for the nine sensors can be determined as before by performing line integral calculations over a predetermined line segment for each sensor in a model field corresponding to the field generated by current flowing in the conductor 19 and no external fields.
  • FIG. 6 also illustrates a probe with still further sensors to provide even greater accuracy and rejection of external magnetic fields.
  • there may be a total of thirteen sensors in the U-shaped body 10 of the probe including four still further sensors 90 , 91 , 92 and 93 , each located at a respective mid-point along an arm of the U-shaped body between an existing mid-point sensor 43 or 44 and a respective corner sensor 42 , 22 , 21 and 41 .
  • these four still further sensors 90 , 91 , 92 and 93 are located on the minimum length loop 60 and orientated to have axes of sensitivity in the plane of the opening.
  • the axes of sensitivity of these still further sensors 90 , 91 , 92 and 93 are also orientated parallel to the plane of symmetry 33 , so as to extend as shown by the arrows in FIG. 6 substantially along the minimum length loop 60 .
  • the values of c r for each of the still further sensors 90 , 91 , 92 and 93 should be the same, assuming each sensor has the same sensitivity. Again the common value of c r for these four still further sensors may be selected relative to the values of c r for the mid-point sensors 43 and 44 , and for the corner sensors 41 , 42 , 21 and 22 , by performing the line integral calculations described previously.
  • FIG. 7 illustrates a practical hand carried current probe incorporating the U-shaped body with magnetic sensors distributed as described in the previous embodiments.
  • the current probe instrument comprises the U-shaped body 10 which may be as illustrated in FIG. 1 , 2 , 3 or 6 .
  • the instrument includes a housing 100 which contains a measured current display 101 which is connected to sensing circuitry within the housing 100 .
  • the housing 100 with display 101 corresponds to the housing 26 illustrated in FIG. 2 including the display 101 connected to the sensing circuitry 25 .
  • a handle 102 is fixed to the housing 100 and a tube 103 connects the U-shaped body 10 to the housing 100 . Connection cables can run inside the tube 103 to connect the sensors on the U-shaped body 10 to the sensing circuitry 25 within the housing 100 .
  • the instrument shown in FIG. 7 can be battery operated so the housing 100 includes a battery compartment which is not shown in the drawing.
  • the instrument can be operated by an operator holding the handle 102 and standing above an array of bus bars carrying currents to be measured.
  • the operator locates the arms 11 and 12 over a bus bar to be monitored, slides the U-shaped body 10 down onto the bus bar and can then measure the current by pressing a button 104 on the handle 102 of the instrument.
  • the sensing circuitry 25 is arranged to respond to pressing the button 104 by recording the output signals of the sensors in the U-shaped body, performing the summation
  • ⁇ r 1 n ⁇ c r ⁇ h r
  • An indicator light 105 may be provided which is arranged to flash when the current has been taken and is recorded in a data logger contained in the sensing circuitry 25 . The operator can then lift the U-shaped body 10 off the bus bar and engage the next bus bar to measure its current.
  • FIGS. 8 and 9 illustrate a further embodiment of the current probe.
  • a housing 110 is physically connected to U-shaped body 10 .
  • the housing 110 contains not only the sensing circuitry of the probe but also wireless signaling circuitry connected to the sensing circuitry for wireless signaling measured current values to a remote location.
  • the housing additionally has a battery compartment 111 for a battery to power the sensing circuitry and the wireless signaling circuitry.
  • the probe is formed as a unitary structure incorporating the U-shaped body 10 and the housing 110 with the battery compartment 111 .
  • the housing and the battery compartment may be integral with the cross piece 14 of the U-shaped body.
  • the wireless signaling circuitry is illustrated in FIG. 9 by the box 112 shown connected to box 25 containing the sensing circuitry.
  • the wireless signaling circuitry may be constituted by Wi-Fi circuitry using standard Wi-Fi protocols, so that the probe can be networked in a computer network.
  • FIGS. 8 and 9 permits a Wi-Fi enabled current probe as illustrated to be located on each of the anode bus bars of an electrowinning tank in an electrowinning insulation, that is to say there would be fifty-one such wireless enabled probes engaged with respective anode bus bars on a tank comprising fifty-one anodes and fifty cathodes.
  • a Wi-Fi enabled current probe as illustrated to be located on each of the anode bus bars of an electrowinning tank in an electrowinning insulation, that is to say there would be fifty-one such wireless enabled probes engaged with respective anode bus bars on a tank comprising fifty-one anodes and fifty cathodes.
  • there may be multiple rows of anodes and cathodes for example eight rows each comprising fifty-one anodes and fifty cathodes. In order to monitor all the cathodes in the installation, this implies over four hundred individual Wi-Fi channels to be monitored.
  • Ethernet gateway systems may be provided, each capable of monitoring a hundred Wi-Fi channels and providing these channels over an Ethernet connection to an Ethernet router, in turn connected to a computer system running the monitoring software.
  • a system can be devised enabling the currents in every one of the anodes of a substantial electrowinning installation to be monitored substantially in real time by a computer at a remote location.
  • the monitoring computer itself may be connected to a further remote location by internet.
  • the wireless enabled current monitoring probes are made to be readily removable from the respective bus bars.
  • the arms 11 and 12 of the U-shaped body 10 of the probe have parallel internal faces providing a predetermined uniform spacing which is sized to accommodate a rectangular section bus bar engaged by the probe.
  • At least one compression tab 115 is located on the internal face 113 of at least one of the arms. The tab 115 protrudes inwards from the internal face 113 and is adapted to be resiliently outwardly compressible on engagement with the bus bar.
  • a second resilient tab 116 is provided on the opposite internal face 114 .
  • These resilient tabs 115 and 116 enable the probe to be slid over the bus bar, causing the tabs 115 and 116 to move outwardly when engaging the sides of the bus bar, so that when the probe is fully engaged over the bus bar, the tabs 115 and 116 apply a resilient force to the sides of the bus bar which will secure the probe in position.
  • the probe can readily be removed again from the bus bar.
  • Depressions 117 may be formed as illustrated at an upper part on opposite sides of the probe, to enable the probe to be gripped readily by the fingers of an operator to assist in removal from the bus bar.
  • the U-shaped body of the probes described above should be made of an electrically insulating material, at least where the probe is to be in contact with the bus bar whose current is to be measured. In practice, it is convenient to form the entire unitary body of the probes such as illustrated in FIGS. 8 and 9 of an electrically insulating plastics material.
  • FIG. 10 is a schematic diagram of the circuitry 25 , 112 , which is incorporated in the wireless enabled probe shown in FIGS. 8 and 9 .
  • each of the Hall sensors of the probe is represented by the device 120 , which in the illustrated example is a linear Hall IC, Part No. EQ-731L, manufactured by AKM (Asahi Kasei Microdevices).
  • the Hall devices used in each probe are presorted to provide at least 1% sensitivity matching.
  • Each Hall IC has an offset voltage which is adjusted out using an operational amplifier circuit incorporating a digital potentiometer 121 , such as device AD5116 made by Analogue Devices.
  • the resulting circuitry provides a sensor output voltage on line 122 which is a measure of the magnetic field intensity aligned with the axis of sensitivity of the device 120 .
  • the circuitry shown in FIG. 10 containing the device 120 and the Op amp circuitry including the digital potentiometer 121 is repeated six times, one for each of the Hall devices.
  • the six sensor outputs on respective lines 122 are then supplied to the summing inputs 123 of the summing amplifier containing operational amplifier 125 .
  • the input resistances shown in the six summing inputs of the summing amplifier are selected to apply the relative values c 1 to c 6 for the six magnetic field sensors, so that the output of the summing amplifier on line 124 from op amp 125 represents
  • ⁇ r 1 6 ⁇ ⁇ c r ⁇ h r .
  • This summed magnetic field sensor value is inverted by op amp 126 , sampled by op amp 127 and then buffered by buffer amp 128 for supply to a sense input of a wireless sensor device indicated by the box 129 .
  • the wireless sensor device used in the example is an analogue voltage sensing device made by Monnit Corporation which can be interfaced in a wireless network to transmit the sensed voltage value (representing the magnetic field sensor summation) to a remote location.
  • the circuitry of FIG. 10 is powered by a coin battery shown at 130 via a switched regulator module 131 , such as LP-2980 made by Texas Instruments.
  • the unregulated voltage from the battery 130 is supplied to maintain power to the sample and hold op amp 127 and buffer amp 128 , and also the wireless sensor module 129 .
  • the regulated output from voltage regulator 131 is controlled by a pulse generator incorporating bi-stable circuit 132 , producing pulses of duration 1 mS.
  • the bi-stable 132 is itself triggered by a bi-stable 133 , connected with a timing RC circuit to cycle between states every one second, so that the 1 mS pulses from the bi-stable 132 are produced once every two seconds.
  • a further bi-stable circuit 134 is connected to produce pulses of length 0.75 mS, to clock the sample and hold circuit 127 .
  • the Hall devices and summing amplifier are powered for brief periods of 1 mS every two seconds during which the summed sensor value is captured by the sample and hold circuit 127 for buffering and subsequent wireless transmission by the wireless module 129 .
  • FIG. 11 is the timing diagram for the circuit.
  • FIG. 10 is only an example of circuits which may be used for determining and summing the magnetic field sensor outputs and, in the wireless enabled embodiment, for transmitting these wirelessly to a remote location.
  • a similar functionality may be achieved using a microprocessor, enabling program controlled sensitivity calibration and offset adjustment.
  • suitable wireless routers and also network monitoring software may also be used as provided by Monnit Corporation.
  • the networking and monitoring software can be set to provide a “heartbeat” which activates the wireless circuitry in each current sensor probe only periodically, for example once every hour, and for just long enough to complete a wireless transaction supplying the currently buffered magnetic field sensor summation value.
  • an example of the invention provides a method of measuring direct current flowing in a conductor which has minimum and maximum orthogonal cross-sectional dimensions.
  • an Ampere's Law integration path is effectively defined around the conductor.
  • the integration path is perpendicular to a central line of the conductors and the path has minimum and maximum orthogonal dimensions which exceed the dimensions of the conductor.
  • a respective angle component of magnetic field is then measured at each of a plurality of locations along this integration path. It is important that there is an adjacent pair of these magnetic field measuring locations at one end of the maximum dimension of the path, the locations of this pair being spaced apart by the minimum dimension of the path. There should also be a third location for the measurement which is located at the other end of the maximum dimension of the path.
  • the Ampere's Law integration path comprises the dotted line 120 linking the measurement locations corresponding to the locations of sensors 20 , 21 and 22 .
  • the minimum and maximum orthogonal dimensions of the path correspond respectively to the horizontal width and vertical height of the path 120 as illustrated in FIG. 1 .
  • the pair of locations at one end of the maximum dimension of the path 120 corresponds to the locations of the sensors 21 and 22 and the third location at the other end of the maximum dimension of the path corresponds to the location of the sensor 20 .
  • h r is the measured value of the magnetic field component at the r th location and c r is a constant factor for the r th location. Then, the measured values of h r can be combined to produce a value for the direct current to be measured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

A coreless current probe has a U-shaped body with arms, an open end and a cross piece forming a closed end. The opening formed in the U-shaped body has a length not less than the width between the arms. The U-shaped body can engage around a conductor carrying a current to be measured. The U-shaped body has a number of coreless single point magnetic field sensors, usually Hall devices, distributed around the opening. An arrangement with six sensors has two sensors at the ends of the arms of the U-shaped body, two sensors at the closed end, and two sensors mid-way along the arms. Sensing circuitry applies factors to the outputs of the sensors and sums the results to produce a measured current value. The factors are selected so that the summed result is zero in any externally generated homogeneous magnetic field.

Description

    BACKGROUND
  • 1. Field of the Invention
  • The present invention relates to current probes and methods of measuring direct current. In particular, the invention is concerned with coreless current probes, which do not contain a core or cores of material with relatively high magnetic permeability.
  • 2. Background of the Invention
  • Probes and methods for measuring current flowing in a conductor are known which do not require any electrical contact to be made with the conductor. For measuring alternating currents in a conductor, contactless current probes typically provide a core of magnetic material completely embracing the conductor, in combination with a sense winding on the core, to sense alternating magnetic field generated in the core. Such alternating current probes are known as current transformers and a magnetic core completely surrounding the conductor carrying the current to be measured is desirable to ensure good flux linkage between the primary “winding” which is the conductor carrying the current to be measured, and the secondary winding which is the sense coil. It is known also to provide current transformer type current probes in which the magnetic core is in two parts, enabling the probe to be clamped around the conductor carrying the current to be measured. Further, it is known to use a Hall device to sense magnetic field in a small gap in the core surrounding the conductor.
  • AC current sensing is also known using an air core coil surrounding the conductor carrying the current to be measured. In particular, U.S. Pat. No. 5,057,769—Edwards discloses a C-shaped sensing coil mounted on a skeleton board to enable the coil to be located embracing a conductor between the arms of the C. Compensating coils are provided at the ends of the main C-shaped coil to provide some compensation for the effect of the gap in the main sensing coil.
  • Generally, use of current transformer type current probes with cores of magnetic material is unsuitable in regions of very high magnetic fields which may cause saturation of the magnetic core. Furthermore, inductively linked current sensing devices are not suitable for measuring DC current. Sensors are known which can measure the magnetic field intensity at a single point. Examples of such sensors include MEMS sensors, various kinds of magnetometer, and in particular Hall effect sensors. According to Ampere's Law, the line integral of magnetic fields around a closed loop is proportional to the total current embraced by the loop. This simple expression of the law is true in magneto static situations, when there is no time varying charge density or electro magnetic propagation. U.S. Pat. No. 4,625,166—Steingroever et al. discloses a DC current sensor formed as a ring of Hall devices surrounding the current conductor. The sum of the outputs of the ring of Hall devices provides an approximation to the line integral of magnetic field around the conductor being measured, so that a value for the current in the conductor is determined.
  • U.S. Pat. No. 7,321,226—Yakymyshyn et al. discloses a current sensor employing a ring of Hall devices mounted in hinged housings to enable the probe to be clipped around the conductor carrying the current to be measured. Again, by providing multiple Hall devices in a ring completely surrounding the conductor, the sum of the outputs of the Hall devices can provide good approximation to Ampere's Law, thereby providing a good measurement of current in the conductor.
  • Measuring current in a conductor using multiple coreless single point magnetic field sensors, such as Hall devices, presents problems when it is not possible to obtain access completely around the conductor in which the current is to be measured. U.S. Pat. No. 7,445,696—You et al. discloses a device for measuring electric current in a conductor, where the conductor is a bus bar feeding current to and from the electrodes of the electro-chemical cells in an electro-metallurgical system. Such electro-metallurgical systems include electro-refining and electrowinning systems for copper, zinc, and other metals. Although it may be desirable to monitor the current flowing in a single bus bar feeding a single electrode of such an electro-metallurgical system, the physical arrangement of such systems means that it is not practicable to obtain access for a current sensing probe completely around the bus bar. Furthermore, the presence of multiple current carrying bus bars in close proximity leads to relatively high magnetic fields in the vicinity of each bus bar, including high levels of external magnetic field which is not produced by a current to be measured flowing in a target bus bar. The patent to You et al. describes using multiple Hall effect sensors mounted immediately above the bus bar being monitored. A proximity sensor is also provided on the probe to ensure the probe is in close contact with the top of the bus bar being monitored.
  • BRIEF SUMMARY OF THE INVENTION
  • In one aspect, the invention provides a coreless current probe comprising a U-shaped body having arms, an open end and a cross piece forming a closed end opposite to the open end. The U-shaped body defines an opening having a width between the arms and a length from the closed end to the open end. The length is not less than the width and the width and the length define a plane of the opening as well as a central line normal to the plane. A conductor carrying a current to be measured can be engaged by the body of the probe so as to extend through the opening parallel to the central line. A plurality of coreless single point magnetic field sensors are distributed in the body around the opening. A respective one of the sensors is located at an end of each of the arms of the U-shaped body, so as to be on each side of the open end of the body. At least one further of the sensors is located at the closed end of the body. The sensors each have a respective axis of magnetic field sensitivity and are arranged in the body so that each of these axes is not co-planar with the central line. Sensing circuitry is connected to the sensors and is operative to produce for each of the sensors a respective sensor signal which is a measure of the angle component of magnetic field at the sensor aligned with its respective axis of magnetic field sensitivity. The sensors are arranged in the body in such a way that there can be found values of cr for which, in any homogeneous magnetic field,
  • r = 1 n c r h r = 0 ,
  • where n is the number of the magnetic field sensors, hr is the measure of the magnetic field component for the rth sensor, and cr is a constant factor for the rth sensor. The sensing circuitry is operative to combine the measures hr to produce a measured current value representing current flowing in a conductor engaged by the U-shaped body of the probe.
  • The invention further provides a method of measuring direct current flowing in a conductor, where the conductor has minimum and maximum orthogonal cross-sectional dimensions. In the method, an Ampere's Law integration path is defined around the conductor in an integration plane perpendicular to a central line of the conductor, where the path has minimum and maximum orthogonal dimensions which exceed the dimensions of the conductor. A respective angle component of magnetic field is measured at each of a plurality of locations on this integration path. An adjacent pair of these locations is at one end of the maximum dimension of the path and spaced apart by the minimum dimension of the path. The third of these locations is at the other end of the maximum dimension of the path. The locations and the orientations of the respective angle components of magnetic field being measured are selected such that values can be found of cr for which, in any homogeneous magnetic field,
  • r = 1 n c r h r = 0 ,
  • where n is the number of the above referred locations, hr is the measured value of the magnetic field component at the rth location and cr is a constant factor for the rth location. In the method, the measured values hr are combined to produce a value of the direct current being measured.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments of the invention will be described below with reference to the following figures.
  • FIG. 1 is a schematic representation of an example of a coreless current probe embodying the present invention, using three magnetic field sensors.
  • FIG. 2 is a view of the current probe of FIG. 1 taken from one side and showing sensing circuitry housed in the probe.
  • FIG. 3 illustrates further examples of current probe embodying the present invention, using four magnetic field sensors, and using six magnetic field sensors.
  • FIG. 4 illustrates an electrowinning tank with cathodes and anodes, illustrating a preferred use of the current probe.
  • FIG. 5 is a perspective view of a current probe engaged on a bus bar whose current is to be measured.
  • FIG. 6 illustrates further examples of current probe embodying the present invention.
  • FIG. 7 is a hand-held current probe embodying the present invention.
  • FIG. 8 is a wireless enabled current probe embodying the present invention.
  • FIG. 9 is a view of the current probe of FIG. 8 taken from one side and showing sensing circuitry and wireless circuitry in the probe.
  • FIG. 10 is a schematic circuit diagram illustrating the sensing circuitry and wireless circuitry which may be incorporated in a wireless enabled current probe as illustrated in FIGS. 8 and 9.
  • FIG. 11 is a timing diagram for the circuit of FIG. 10.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • FIGS. 1 and 2 illustrate a basic embodiment of the invention. A coreless current probe is shown having a U-shaped body 10 with arms 11 and 12, an open end 13 and a cross piece 14 forming a closed end 15 which is opposite to the open end 13. The U-shaped body 10 defines an opening 16 having a width d between the arms 11 and 12, and a length l from the closed end 15 to the open end 13. As illustrated in FIG. 1 the length l is not less than the width d and in the example illustrated is in fact substantially greater than the width d. The width and length dimensions of the opening 16 on the U-shaped body 10 define a plane of the opening which is substantially the plane of the paper in FIG. 1, and is a plane perpendicular to the paper along the line 17 in FIG. 2. The opening 16 further defines a central line 18, represented in FIG. 1 by a dot 18 which is normal to the plane of the opening and located substantially centrally in the opening.
  • In use, the U-shaped body 10 of the current probe illustrated in FIG. 1 can be engaged around a conductor 19 carrying a current to be measured. When engaged by the U-shaped body of the probe, the conductor 19 extends through the opening parallel to the central line 18. The conductor 19 is shown in cross-section in FIG. 1 within a dashed outline. A short section of the conductor 19 is illustrated in FIG. 2 extending through the opening 16.
  • In FIGS. 1 and 2, a plurality of coreless single point magnetic field sensors are distributed in the U-shaped body 10 around the opening 16. In the example of FIGS. 1 and 2, three such single point magnetic field sensors are illustrated at 20, 21 and 22. In one example, the single point magnetic field sensors 20, 21 and 22 comprise Hall effect sensors. However, any type of sensor may be used which is capable of producing an electrical signal representing the intensity of magnetic field at the location of the sensor. The magnetic field sensors employed in the example of the invention are vector magnetometers, in the sense that each of the sensors has a respective axis of magnetic field sensitivity. Apart from Hall effect devices, alternative magnetic field sensors include magneto resistive devices.
  • In the example illustrated, a respective magnetic field sensor 21, 22 is located at an end of each of the arms 11 and 12 of the U-shaped body 10, at the open end 13 of the body. A third sensor 20 is located at the closed end 15 of the body. In the particular example, sensor 20 is located mid-way along the cross piece 14 at the closed end 15 of the body. The magnetic field sensors 20, 21 and 22 are intended to detect the magnetic field generated by current flowing in the conductor 19 in the direction of the conductor, that is to say parallel to the central line 18. Accordingly, it is important that the axis of magnetic field sensitivity of each of the sensors 20, 21 and 22 is not aligned in a plane containing the central line 18. Otherwise the sensors would have minimum sensitivity to any magnetic fields generated by current flowing in the conductor parallel to the central line 18.
  • Generally, the sensors 20, 21 and 22 are intended to detect magnetic field generated by the current flowing along the conductor 19 and should preferably be arranged in the body 10 so as to maximize detection of this magnetic field, whilst having a minimal response to external magnetic fields which are not produced by currents in the conductor 19. To this end, the location and orientation of the sensors 20, 21 and 22 in the U-shaped body 10 are selected so that it is possible to derive a signal combining the outputs of these sensors, which is insensitive at least to any homogeneous magnetic field in the region of the probe. Such a homogeneous magnetic field is a field which would be generated externally of the probe, so that the field lines are substantially linear with a uniform flux density everywhere over the probe.
  • Each of the magnetic field sensors 20, 21 and 22 is connected with sensing circuitry, which is shown by the box 25 located in a housing 26 connected to cross piece 14 of the U-shaped body 10 by a neck piece 27. The sensing circuitry 25 operates to produce for each of the sensors 20, 21 and 22 a respective sensor signal which is a measure of the angle component of magnetic field at the respective sensor which is aligned with the axis of magnetic field sensitivity of the sensor.
  • In order for it to be possible for the sensors 20, 21 and 22 of the probe to reject a homogeneous external magnetic field, the sensors must be arranged in the U-shaped body 10 such that values cr can be found for which, in any homogeneous magnetic field,
  • r = 1 n c r h r = 0 ,
  • where n is the number of magnetic field sensors, hr is the measure of the magnetic field component for the rth sensor and cr is a constant factor for the rth factor. So long as the sensors in a probe are arranged and orientated such that the values of cr can be obtained to satisfy the summation equation above, it is possible to derive a combined signal from the outputs of the sensors which will reject external homogeneous magnetic fields.
  • In the example illustrated in FIG. 1, the sensor 20 at the centre of the cross piece 14 is illustrated with its axis of sensitivity 30 directed in the plane of the opening 16 of the U-shaped body 10, and normal to a central plane 33 which contains the central line 18 and is mid-way between the arms 11 and 12 of the U-shaped body 10. The field sensor 21 is shown with its axis of sensitivity 31 also in the plane of the opening 16 and at an angle θ to a transverse line 34 which is normal to the central plane 33. The sensor 22 is shown with its axis of sensitivity 32 again in the plane of the opening and at an angle φ to the transverse line 34. If the sensors 20, 21 and 22 have the same nominal sensitivity to magnetic field intensity aligned with a respective axis of the sensitivity of the sensors, it can be shown that for a uniform homogeneous horizontal magnetic field in the plane of the opening 16 and parallel to the transverse line 34, the summation
  • r = 1 3 c r h r = 0 ,
  • is true if c1=c2 Cos θ+c3 Cos φ. Similarly, in order for the above summation to be zero in the presence of a vertical homogeneous magnetic field in the plane of the opening 16 and normal to the transverse line 34, c2 Sin θ=c3 Sin φ. Accordingly, in the general case illustrated in FIG. 1, values of c1, c2 and c3 can be identified for which the summation is zero in any homogeneous magnetic field.
  • In practice, it is convenient to orientate the sensors 21 and 22 so that θ=φ=45°, whereupon the summation is zero if c1=✓2*c2=✓2*c3.
  • In the probe illustrated in FIGS. 1 and 2, the sensing circuitry 25 is arranged to be operative to combine the signals from the sensors 20, 21 and 22, which comprise measures h1, h2 and h3 of the angle component of magnetic field at the respective sensors, to produce a measured current value representing current flowing in the conductor 19 engaged by the U-shaped body 10 of the probe. In order fully to reject external homogeneous magnetic fields, the sensing circuitry 25 will combine the measures hr by performing the summation
  • r = 1 3 c r h r ,
  • using the values of cr as calculated above for rejecting homogeneous external fields.
  • FIGS. 1 and 2 illustrate a basic example of the invention employing only three magnetic field sensors 20, 21 and 22. In order for the probe accurately to measure the current flowing in conductor 19 engaged by the probe, in the presence of relatively strong external magnetic fields, more than three magnetic field sensors will normally be required in the U-shaped body 10 of the probe. Referring to FIG. 3, improved performance may be obtained using four magnetic field sensors distributed symmetrically in the U-shaped body 10 about the central plane 33, which constitutes a plane of symmetry. The sensors 21 and 22 at the ends of the arms 11 and 12 on each side of the opening end 13 of the U-shaped body 10 are provided, as in the example of FIGS. 1 and 2, with their axes of magnetic sensitivity aligned at the same angle to transverse line 34. The single sensor 20 at the centre of the cross piece 14 is replaced, in the example of FIG. 3, with a pair of sensors 41 and 42 mirroring the sensors 21 and 22. As can be seen, in each case the axes of magnetic sensitivity 31 and 32 of the sensors 21 and 22, and 51 and 52 of the sensors 41 and 42 are each at a respective acute angle to the plane of symmetry 33, so that each of the axes 21, 22, 41 and 52 is generally tangential to the opening 16 between the arms 11 and 12 of the U-shaped body 10. In this way, each of the axes of sensitivity 31, 32, 51 and 52 is generally aligned with the direction of the magnetic field that will be generated by a current flowing in the conductor 19 engaged by the probe. If the angles of the axes of sensitivity 31, 32, 51 and 52, with respect to lines normal to the plane of symmetry 33, are all the same, then the factors c1, c2, c3 and c4 applied by the sensing circuitry 25 to the measures h1, h2, h3 and h4 from the four sensors should again be the same, in order to reject homogeneous external fields.
  • FIG. 3 also illustrates a further preferred arrangement which uses six sensors distributed around the U-shaped body 10 of the probe. In this embodiment, an additional pair of sensors 43 and 44 is located in the U-shaped body 10 substantially midway along the arms 11 and 12. Accordingly, the six sensors shown in FIG. 3 comprise a first pair of sensors 21 and 22 at the ends of the arms of the U-shaped body on either side of the open end 13, a second pair 41 and 42 at the closed end of the U-shaped body 10, and a third pair comprising the additional sensors 43 and 44 midway along the arms 11 and 12. The sensors of each of the first, second and third pairs are disposed spaced uniformly apart symmetrically on opposite sides of the plane of symmetry 33 which contains the central line 18 and is equally spaced between the arms. Each of the sensors 21, 22, 41 and 42 of the first and second pairs is orientated in the body so that its axis of sensitivity is in the plane of the opening and at a respective acute angle to the plane of symmetry 33, so as to be generally tangential to the opening. Each of the sensors 43 and 44 of the third pair is orientated in the body to have its axis of sensitivity in the plane of the opening and parallel to the plane of symmetry 33. The axes of sensitivity of the additional third pair of sensors 43 and 44 are illustrated by the lines and arrows 53 and 54 respectively.
  • Although the U-shaped body of the probe illustrated in FIG. 3 is generally similar to that illustrated in FIGS. 1 and 2, the aspect ratio of the U-shaped body in FIG. 3 is somewhat greater, in that the arms 11 and 12 of the U-shaped body 10 are more than twice as long as the spacing between the arms, so that l>2 d.
  • If the six magnetic field sensors are numbered in order in a clockwise direction around the opening 16, starting with sensor 42 as number 1, then the components of the summation discussed above are c1 h1 for sensor 42, c2 h2 for sensor 44, c3 h3 for sensor 22, c4 h4 for sensor 21, c5 h5 for sensor 43 and c6 h6 for sensor 41. Again assuming that the sensitivity to magnetic field of each of the six sensors is the same, so that the measure h for each sensor would be the same if the sensor is in an identical magnetic field aligned with the respective axis of sensitivity of the sensor, then the requirement that the summation
  • r = 1 6 c r h r = 0 ,
  • in order to reject homogeneous external fields is met so long as c1=c3=c4=c6 and c2=c5. Note however, that there is no constraint on the relationship between the value of c for sensors 44 and 43 at the mid-points of the arms 12 and 11 (of c2 and c5) and the value of c for the sensors 42, 22, 21 and 41 at the corners of the opening 16 (c1, c3, c4, c6). In order to improve the performance of the probe illustrated in FIG. 3 with six magnetic field sensors, the sensing circuitry is adapted to derive the summation
  • r = 1 6 c r h r ,
  • using values of cr which are selected to maximize rejection by the probe of external magnetic fields which are not produced by currents in the conductor probe 19 engaged by the probe. Accordingly, in this example, the common value of c2 and c5 is selected accordingly to be different from the common value of c1, c3, c4 and c6 in order to maximize rejection of external magnetic fields.
  • It should be understood that the current probe described above with a U-shaped body carrying plural magnetic field sensors can be used to measure the current flowing in any conductor engaged between the arms 11 and 16 of the U-shaped body. Factors cr can be applied to the signals from the magnetic field sensors to produce a combined measurement
  • r = 1 n c r h r
  • representing current flowing in the conductor and rejecting the effect of external fields. In order to reject external fields successfully, the summation above should, as far as possible, approximate to the line integral along a closed loop around the conductor carrying the current to be measured. In order to approximate to the line integral value most accurately, and to reject external fields most successfully, it is desirable that the magnetic sensors in the U-shaped body are located along a closed loop path which has the shortest possible length surrounding the conductor to be measured. Accordingly, best results are obtained if the opening 16 of the U-shaped body 10 is sized so as closely to fit around a conductor 19 carrying the current to be measured.
  • An example of conductor 19 as illustrated in FIG. 3 has a substantially rectangular cross-section with a minimum orthogonal dimension which is only slightly less than the width d between the inner faces of the arms 11 and 12 of the U-shaped body. Also, the maximum transverse cross-sectional dimension of the conductor 19 is only slightly shorter than the length l between the open and closed ends 13 and 15 of the U-shaped body 10. Then, a dashed line 60 represents a minimum length closed loop encircling the conductor 19, and magnetic sensors 21, 22, 41, 42 and 43, 44 are shown, each with its point of sensitivity located on the line 60.
  • According to Ampere's Law, the line integral of magnetic fields along the minimum length loop 60 provides a measure of current flowing in the conductor 19. However, in the example of FIG. 3, actual magnetic field measurements are made only at six points around the minimum length loop 60. The sensors 21, 22, 41, 42 and 43, 44 are arranged with their axes of sensitivity generally aligned with the local direction of the magnetic field which would be produced by current flowing in the conductor 19, in the absence of any external fields. With this orientation of the magnetic field sensors, the sensitivity of the sensors to the magnetic field to be measured, in effect to the required signal, is maximized. In the absence of any external fields, the summation
  • r = 1 6 h r
  • would be proportional to the current flowing in the conductor 19. However, in order to provide discrimination between the magnetic field generated by current flowing in the conductor 19 and external fields, it is desirable to calculate the summation
  • r = 1 6 c r h r ,
  • where the values of cr are selected to provide a better approximation to the calculated line integral of magnetic field along the minimum length path 60.
  • A useful approach to determining appropriate values of cr is to assign to each of the sensors in FIG. 3, a line segment along the minimum length loop 60 on either side of the sensor. For example, a line segment 61 may be assigned to sensor 41, extending from the mid-point 62 between sensor 41 and sensor 43 and the mid-point 63 between sensor 41 and sensor 42. Similarly, line segment 64 is assigned to sensor 42 extending from mid-point 63 to a mid-point 65 between sensor 42 and 44. A line segment 66 is assigned to sensor 44 extending from mid-point 65 to a mid-point 67 between sensor 44 and sensor 22. Line segment 68 is assigned to sensor 22 extending from the mid-point 67 to a mid-point 69 between sensor 22 and sensor 21. Line segment 70 is assigned to sensor 21 extending from the mid-point 69 to a mid-point 71 between sensor 21 and sensor 43. Line segment 72 is then assigned to sensor 43 extending from the mid-point 71 to the mid-point 62.
  • In order to determine values of cr in the above summation which provide a better approximation to the line integral around the minimum length loop 60, a computer model is made of the magnetic field generated by current flowing along conductor 19, in the absence of any extraneous magnetic fields. It is then computationally straightforward to calculate the line integral of magnetic field along each of the line segments 64, 66, 68, 70, 72 and 61. These calculated line segments integrals are identified respectively as sr, where r is 1-6. At the same time, it is also straightforward to identify in the computer model of the magnetic field the magnetic field intensity values h′r which would be determined by the six magnetic field sensors.
  • In order to provide a line integral value of s′r over a line segment length ar in a magnetic field produced by current in the conductor 19 and in the absence of any extraneous field, the product h′r ar should be multiplied by the factor s′r/h′r ar. In a more general magnetic field comprising not only the magnetic field produced by current flowing in the conductor 19 but also external magnetic field, the line integral sr over the line segment for the rth sensor may be expressed
  • s r = ( s r / h r a r ) * h r * a r = ( s r / h r ) * h r ,
  • where hr is the measured field at the rth sensor. It can be seen therefore that a more accurate approximation to the line integral of magnetic field around the minimum length loop 60 illustrated in FIG. 3, in a magnetic field comprising not only the field generated by current in the conductor 19, but also external magnetic field, is represented by the above referred summation
  • r = 1 6 c r h r ,
  • where cr=s′r/h′r. Since s′r and h′r can be calculated in a computer model of the field generated by current flowing in the conductor 19, calculated values can be obtained for cr.
  • In the example illustrated in FIG. 3, the minimum length loop 60 is shown to be slightly asymmetrical from top to bottom, since the loop has an apex point at 63 mid-way between the upper sensors 41 and 42. This loop shape corresponds to the cross-sectional shape of the conductor 19. Because of this, the computation of s′r as outlined above for the line segments corresponding to sensors 41 and 42 will be slightly different to the computations of s′r for the line segments corresponding to the sensors 21 and 22 at the open end of the U-shaped probe.
  • Nevertheless, the values of cr should be symmetrical so that in a homogeneous external field only, in the absence of any current flowing through the conductor 19, the summation of cr hr is zero. Accordingly, in order to achieve this full rejection of any external homogeneous field, an average is taken of the calculated values cr for the four corner sensors 41, 42 and 21, 22, in order to provide identical values of cr for these sensors.
  • Full rejection of a uniform external field is important because any external magnetic field can be expanded into a uniform field plus a series of spatial harmonics. In most cases, the uniform field component of any external field has the largest contribution to the external field.
  • It can be seen from the above discussion of a procedure for calculating values cr for use in the summation
  • r = 1 n c r h r ,
  • that the lengths ar of the line segments is somewhat arbitrary. In particular, it can be seen that the location of the mid-point 63 between upper sensors 41 and 42 on the U-shaped probe is determined by the requirements for symmetry, as is the position of the mid-point 69 between the sensors 21 and 22. Again for symmetry end points 65 and 67 should be equally spaced on opposite sides of sensor 44, and mid-points 62 and 71 should be equally spaced on opposite sides of sensor 43. However, there is no clear indication for the overall length of the segments 66 and 72 associated with the mid-point sensors 43 and 44. In practice, it can be seen that the overall length of the line segments associated with the mid-point sensors 43 and 44 may be extended to accommodate a region along the flanks of the conductor 19 over which the magnetic field produced by currents flowing in the conductor 19 extends generally parallel to the these flanks, at least at locations closely spaced to the flanks.
  • In practice, the current probe can be optimized for a particular installation by determining empirically the length of the line segments 66 and 72 associated with the mid-point sensors 43 and 44, which will maximize rejection of unwanted external magnetic fields.
  • The coreless current probe described above can have general application for measuring currents flowing in conductors, particularly where the physical construction and arrangement of the conductors to be measured does not permit the current probe to be wrapped entirely around the conductor. The current probe is also especially suited to arrangements where there may be high levels of external magnetic field, for example in circumstances where current is to be measured in a single conductor of an array of conductors carrying substantial currents. In particular the probe can be used to measure DC currents.
  • In large scale electro-chemical processing plants, particularly plants for electrowinning metals, a typical installation may comprise multiple tanks containing arrays of cathodes and anodes. For example, a single row of electrodes may comprise 50 cathodes and 51 anodes arranged alternating across the tank. FIG. 4 illustrates schematically part of an array of cathodes and anodes for an electrowinning installation comprising anodes 70 a, 70 b, 70 c, 70 d, 70 e, 70 f, alternating with cathodes 71 a, 71 b, 71 c, 71 d and 71 e etc. Although only six anodes and five cathodes are illustrated in FIG. 4, it should be understood that these will comprise just part of a much larger array for example comprising 51 anodes and 50 cathodes.
  • Each anode and cathode comprises a plate electrode extending normal to the page of the drawing of FIG. 4 into an electrolyte solution in the processing tank. The plates of the anodes and cathodes generally extend between the dotted lines 72 and 73 shown in FIG. 4. Anode bus bars 75 a, 75 b, 75 c, 75 d, 75 e, 75 f are provided supporting the anodes 70 a-f and are each connecting along the right hand side in FIG. 4 to an anode supply connector 76. Similarly, cathode bus bars 77 a-e respectively support cathodes 71 a-e and are each connected along the left hand side of FIG. 4 to a cathode supply connector 78.
  • In an electrowinning installation such as illustrated in FIG. 4, neighboring anode and cathode bus bars are relatively close together and may be separated by a spacing which is no greater than the width of each bus bar. It is not, therefore, possible to access each of the bus bars to clip a current probe completely around the bus bar. FIG. 5 illustrates in perspective view a typical anode bus bar 75, which is shaped with a generally rectilinear cross-section having a relatively high aspect ratio. This shape allows the bus bar to carry the high levels of current needed for an electrowinning process, typically in excess of 1000 amps for each anode or cathode bus bar, while minimizing the spacing between adjacent bus bars. FIG. 5 also illustrates a coreless current probe 80, of the kind described above with a U-shaped body, engaged on the bus bar 75. For best performance, the current probe 80 is dimensioned specifically for the particular bus bar 75, so that the width d between the arms 11 and 12 of the U-shaped body 10 is just sufficient to slide over the minimum cross-sectional dimension of the bus bar 75. The internal maximum dimension l of the U-shaped body is sized so that the full maximum cross-sectional dimension of the bus bar 75 is accommodated in the opening of the U-shaped body, for example as shown in the cross-section in FIG. 3.
  • A separate current probe 80 a-f may be located engaged with each of the anode bus bars 75 a-f, as illustrated in FIG. 4.
  • As mentioned previously, each of the anode bus bars 75 a-f in an electrowinning installation may carry a current in excess of 1000 amps. Similar currents will be carried by the cathode bus bars 70 a-e. It can be seen, therefore, that each of the current probes 80 a-f will be in a region of substantial magnetic field in addition to magnetic field generated by current flowing in the respective bus bar 75 a-f, that is the current to be measured in each case. Furthermore, the nature of the external magnetic field experienced by each of the current probes 80 a-80 f will be different depending on the location of the probe across the array of bus bars. Nevertheless, it has been found that a current probe with a U-shaped body and six sensors distributed as illustrated in FIG. 3 can measure the current flowing in a respective bus bar to an accuracy of better than about 1%, at any position across an array of bus bars comprising for example 51 anodes and 50 cathodes.
  • Some improvement in the rejection of magnetic fields is obtained by increasing the number of sensors located in the U-shaped body 10 of the probe, along the minimum length loop 60 as defined previously. FIG. 6 represents the U-shaped body 10 of a probe containing additional magnetic field sensors. In FIG. 6, features common to the probe of FIG. 3 are given the same numerals.
  • In FIG. 6, three further magnetic field sensors are provided, including one sensor 81 located substantially mid-way along the cross piece 14 of the U-shaped body 10, effectively at the location of the mid-point 63 identified in the arrangement with six sensors shown in FIG. 3. Also, there is a further sensor 82 and 83 located at the end of each of the arms 11 and 12 of the U-shaped body on opposite sides of the open end 13 of the body. Each of the three further sensors 81, 82 and 83 is orientated to have its axis of sensitivity in the plane of the opening and also substantially normal to the plane of symmetry 33. As shown in FIG. 6, the direction of sensitivity for the further sensor 81 is indicated by the arrow 84 and opposes the directions of sensitivity of the sensors 82 and 83, as shown by the arrows 85 and 86 respectively.
  • In order to obtain the requirement for the summation
  • r = 1 n c r h r = 0
  • for uniform external fields, either the sensitivity of the sensors 82 and 83 are set to be half the sensitivity of sensor 81, or the factor cr for the sensors 82 and 83 is set to be half the factor cr for sensor 81.
  • Within these constraints, the factors cr for the three further sensors can be different from the common factor cr for the corner sensors 41 42, 21 22 and also from the factor for the mid-point sensors 43 and 44. Values for the factors cr for the nine sensors can be determined as before by performing line integral calculations over a predetermined line segment for each sensor in a model field corresponding to the field generated by current flowing in the conductor 19 and no external fields.
  • FIG. 6 also illustrates a probe with still further sensors to provide even greater accuracy and rejection of external magnetic fields. Thus, there may be a total of thirteen sensors in the U-shaped body 10 of the probe including four still further sensors 90, 91, 92 and 93, each located at a respective mid-point along an arm of the U-shaped body between an existing mid-point sensor 43 or 44 and a respective corner sensor 42, 22, 21 and 41. Again, these four still further sensors 90, 91, 92 and 93 are located on the minimum length loop 60 and orientated to have axes of sensitivity in the plane of the opening. Preferably, the axes of sensitivity of these still further sensors 90, 91, 92 and 93 are also orientated parallel to the plane of symmetry 33, so as to extend as shown by the arrows in FIG. 6 substantially along the minimum length loop 60.
  • In order to maintain the summation
  • r = 1 n c r h r = 0
  • for uniform external fields, the values of cr for each of the still further sensors 90, 91, 92 and 93 should be the same, assuming each sensor has the same sensitivity. Again the common value of cr for these four still further sensors may be selected relative to the values of cr for the mid-point sensors 43 and 44, and for the corner sensors 41, 42, 21 and 22, by performing the line integral calculations described previously.
  • FIG. 7 illustrates a practical hand carried current probe incorporating the U-shaped body with magnetic sensors distributed as described in the previous embodiments. In the Figure, the current probe instrument comprises the U-shaped body 10 which may be as illustrated in FIG. 1, 2, 3 or 6. The instrument includes a housing 100 which contains a measured current display 101 which is connected to sensing circuitry within the housing 100. The housing 100 with display 101 corresponds to the housing 26 illustrated in FIG. 2 including the display 101 connected to the sensing circuitry 25. A handle 102 is fixed to the housing 100 and a tube 103 connects the U-shaped body 10 to the housing 100. Connection cables can run inside the tube 103 to connect the sensors on the U-shaped body 10 to the sensing circuitry 25 within the housing 100. Generally, the instrument shown in FIG. 7 can be battery operated so the housing 100 includes a battery compartment which is not shown in the drawing.
  • The instrument can be operated by an operator holding the handle 102 and standing above an array of bus bars carrying currents to be measured. The operator locates the arms 11 and 12 over a bus bar to be monitored, slides the U-shaped body 10 down onto the bus bar and can then measure the current by pressing a button 104 on the handle 102 of the instrument. The sensing circuitry 25 is arranged to respond to pressing the button 104 by recording the output signals of the sensors in the U-shaped body, performing the summation
  • r = 1 n c r h r
  • as described previously and displaying the calculated current on the display 101. An indicator light 105 may be provided which is arranged to flash when the current has been taken and is recorded in a data logger contained in the sensing circuitry 25. The operator can then lift the U-shaped body 10 off the bus bar and engage the next bus bar to measure its current.
  • FIGS. 8 and 9 illustrate a further embodiment of the current probe. In this embodiment, a housing 110 is physically connected to U-shaped body 10. The housing 110 contains not only the sensing circuitry of the probe but also wireless signaling circuitry connected to the sensing circuitry for wireless signaling measured current values to a remote location. The housing additionally has a battery compartment 111 for a battery to power the sensing circuitry and the wireless signaling circuitry.
  • As shown in FIGS. 8 and 9, the probe is formed as a unitary structure incorporating the U-shaped body 10 and the housing 110 with the battery compartment 111. The housing and the battery compartment may be integral with the cross piece 14 of the U-shaped body.
  • The wireless signaling circuitry is illustrated in FIG. 9 by the box 112 shown connected to box 25 containing the sensing circuitry. The wireless signaling circuitry may be constituted by Wi-Fi circuitry using standard Wi-Fi protocols, so that the probe can be networked in a computer network.
  • The embodiments shown in FIGS. 8 and 9 permits a Wi-Fi enabled current probe as illustrated to be located on each of the anode bus bars of an electrowinning tank in an electrowinning insulation, that is to say there would be fifty-one such wireless enabled probes engaged with respective anode bus bars on a tank comprising fifty-one anodes and fifty cathodes. In a real installation there may be multiple rows of anodes and cathodes, for example eight rows each comprising fifty-one anodes and fifty cathodes. In order to monitor all the cathodes in the installation, this implies over four hundred individual Wi-Fi channels to be monitored. Ethernet gateway systems may be provided, each capable of monitoring a hundred Wi-Fi channels and providing these channels over an Ethernet connection to an Ethernet router, in turn connected to a computer system running the monitoring software. In this way a system can be devised enabling the currents in every one of the anodes of a substantial electrowinning installation to be monitored substantially in real time by a computer at a remote location. The monitoring computer itself may be connected to a further remote location by internet.
  • It will be understood by those experienced in the art of electrowinning, that the electrodes of an electrowinning tank must be removed regularly for processing and cleaning. In order to accommodate this, the wireless enabled current monitoring probes are made to be readily removable from the respective bus bars. As shown in FIG. 8, the arms 11 and 12 of the U-shaped body 10 of the probe have parallel internal faces providing a predetermined uniform spacing which is sized to accommodate a rectangular section bus bar engaged by the probe. At least one compression tab 115 is located on the internal face 113 of at least one of the arms. The tab 115 protrudes inwards from the internal face 113 and is adapted to be resiliently outwardly compressible on engagement with the bus bar. In the illustrated example, a second resilient tab 116 is provided on the opposite internal face 114. These resilient tabs 115 and 116 enable the probe to be slid over the bus bar, causing the tabs 115 and 116 to move outwardly when engaging the sides of the bus bar, so that when the probe is fully engaged over the bus bar, the tabs 115 and 116 apply a resilient force to the sides of the bus bar which will secure the probe in position. However, the probe can readily be removed again from the bus bar. Depressions 117 may be formed as illustrated at an upper part on opposite sides of the probe, to enable the probe to be gripped readily by the fingers of an operator to assist in removal from the bus bar.
  • Generally, the U-shaped body of the probes described above should be made of an electrically insulating material, at least where the probe is to be in contact with the bus bar whose current is to be measured. In practice, it is convenient to form the entire unitary body of the probes such as illustrated in FIGS. 8 and 9 of an electrically insulating plastics material.
  • FIG. 10 is a schematic diagram of the circuitry 25, 112, which is incorporated in the wireless enabled probe shown in FIGS. 8 and 9. In the circuit of FIG. 10, each of the Hall sensors of the probe is represented by the device 120, which in the illustrated example is a linear Hall IC, Part No. EQ-731L, manufactured by AKM (Asahi Kasei Microdevices). The Hall devices used in each probe are presorted to provide at least 1% sensitivity matching. Each Hall IC has an offset voltage which is adjusted out using an operational amplifier circuit incorporating a digital potentiometer 121, such as device AD5116 made by Analogue Devices. The resulting circuitry provides a sensor output voltage on line 122 which is a measure of the magnetic field intensity aligned with the axis of sensitivity of the device 120. For the current probe with six magnetic field sensors, the circuitry shown in FIG. 10 containing the device 120 and the Op amp circuitry including the digital potentiometer 121 is repeated six times, one for each of the Hall devices.
  • The six sensor outputs on respective lines 122 are then supplied to the summing inputs 123 of the summing amplifier containing operational amplifier 125. The input resistances shown in the six summing inputs of the summing amplifier are selected to apply the relative values c1 to c6 for the six magnetic field sensors, so that the output of the summing amplifier on line 124 from op amp 125 represents
  • r = 1 6 c r h r .
  • This summed magnetic field sensor value is inverted by op amp 126, sampled by op amp 127 and then buffered by buffer amp 128 for supply to a sense input of a wireless sensor device indicated by the box 129. The wireless sensor device used in the example is an analogue voltage sensing device made by Monnit Corporation which can be interfaced in a wireless network to transmit the sensed voltage value (representing the magnetic field sensor summation) to a remote location.
  • The circuitry of FIG. 10 is powered by a coin battery shown at 130 via a switched regulator module 131, such as LP-2980 made by Texas Instruments. The unregulated voltage from the battery 130 is supplied to maintain power to the sample and hold op amp 127 and buffer amp 128, and also the wireless sensor module 129. The regulated output from voltage regulator 131 is controlled by a pulse generator incorporating bi-stable circuit 132, producing pulses of duration 1 mS. The bi-stable 132 is itself triggered by a bi-stable 133, connected with a timing RC circuit to cycle between states every one second, so that the 1 mS pulses from the bi-stable 132 are produced once every two seconds. A further bi-stable circuit 134 is connected to produce pulses of length 0.75 mS, to clock the sample and hold circuit 127. With this arrangement, the Hall devices and summing amplifier are powered for brief periods of 1 mS every two seconds during which the summed sensor value is captured by the sample and hold circuit 127 for buffering and subsequent wireless transmission by the wireless module 129. FIG. 11 is the timing diagram for the circuit.
  • It will be understood that FIG. 10 is only an example of circuits which may be used for determining and summing the magnetic field sensor outputs and, in the wireless enabled embodiment, for transmitting these wirelessly to a remote location. A similar functionality may be achieved using a microprocessor, enabling program controlled sensitivity calibration and offset adjustment.
  • When the wireless enabled current probe embodiment described with reference to FIGS. 8, 9 and 10 is used in a wireless network, suitable wireless routers and also network monitoring software may also be used as provided by Monnit Corporation. In order to reduce battery consumption for the circuitry of the wireless enabled current probe, the networking and monitoring software can be set to provide a “heartbeat” which activates the wireless circuitry in each current sensor probe only periodically, for example once every hour, and for just long enough to complete a wireless transaction supplying the currently buffered magnetic field sensor summation value.
  • In summary, an example of the invention provides a method of measuring direct current flowing in a conductor which has minimum and maximum orthogonal cross-sectional dimensions. In the method, an Ampere's Law integration path is effectively defined around the conductor. The integration path is perpendicular to a central line of the conductors and the path has minimum and maximum orthogonal dimensions which exceed the dimensions of the conductor. A respective angle component of magnetic field is then measured at each of a plurality of locations along this integration path. It is important that there is an adjacent pair of these magnetic field measuring locations at one end of the maximum dimension of the path, the locations of this pair being spaced apart by the minimum dimension of the path. There should also be a third location for the measurement which is located at the other end of the maximum dimension of the path. Referring to FIGS. 1 and 2, the Ampere's Law integration path comprises the dotted line 120 linking the measurement locations corresponding to the locations of sensors 20, 21 and 22. The minimum and maximum orthogonal dimensions of the path correspond respectively to the horizontal width and vertical height of the path 120 as illustrated in FIG. 1. The pair of locations at one end of the maximum dimension of the path 120 corresponds to the locations of the sensors 21 and 22 and the third location at the other end of the maximum dimension of the path corresponds to the location of the sensor 20.
  • It is then important that the locations and the orientations of the angle components which are measured are selected such that there exist values of cr for which in any homogeneous magnetic field
  • r = 1 n c r h r = 0
  • where n is the number of said locations, hr is the measured value of the magnetic field component at the rth location and cr is a constant factor for the rth location. Then, the measured values of hr can be combined to produce a value for the direct current to be measured.
  • The foregoing detailed description has described only a few of the many forms that this invention may take. For this reason the detailed description is intended by way of illustration and not by way of limitation. It is only the following claims, including all equivalents, which are intended to define the scope of the invention.

Claims (26)

1. A coreless current probe comprising a U-shaped body having arms, an open end, and a cross piece forming a closed end opposite to said open end, said U-shaped body defining an opening having a width between the arms and a length from said closed end to said open end, wherein said length is not less than said width, said width and said length defining a plane of said opening and a central line normal to said plane, whereby a conductor carrying a current to be measured can be engaged by said body of said probe so as to extend through said opening parallel to said central line;
a plurality of coreless single point magnetic field sensors distributed in said body around said opening including a respective said sensor at an end of each of said arms on each side of said open end of said body and at least one said sensors at said closed end of said body, said sensors each having a respective axis of magnetic field sensitivity and being arranged in said body so that each of said axes is not co-planar with said central line;
and sensing circuitry connected to said sensors which is operative to produce for each of said sensors a respective sensor signal which is a measure of the angle component of magnetic field at the sensor aligned with the respective axis of magnetic field sensitivity of the sensor,
said sensors being arranged such that there are values of cr for which, in any homogeneous magnetic field,
r = 1 n c r h r = 0 ,
where n is the number of said magnetic field sensors,
hr is said measure of said magnetic field component for the rth sensor,
and cr is a constant factor for the rth sensor,
said sensing circuitry being further operative to combine said measures hr to produce a measured current value representing current following in a conductor engaged by said body of said probe.
2. A coreless current probe as claimed in claim 1, wherein each of said magnetic field sensors is orientated to have its axis of sensitivity in said plane of said opening.
3. A coreless current probe as claimed in claim 1, wherein said sensing circuitry is adapted to derive as said measured current value the summation
r = 1 n c r h r
where the values of cr are selected to maximise rejection by the probe of external magnetic fields which are not produced by currents in a conductor engaged by the probe.
4. A coreless current probe as claimed in claim 3, wherein the values of cr are selected such that in any homogeneous magnetic field
r = 1 n c r h r = 0.
5. A coreless current probe as claimed in claim 3, wherein said length of said opening of said U-shaped body is not less than twice said width of said opening.
6. A coreless current probe as claimed in claim 5, wherein said plurality of said magnetic field sensors comprises at least six said sensors, including
a) a first pair constituted by said sensors at said ends of said arms of said U-shaped body,
b) a second pair of said sensors at said closed end of said U-shaped body, and
c) a third pair of said sensors located substantially mid-way along said arms;
the sensors of each of said first, second and third pairs of said sensors being disposed spaced uniformly apart symmetrically on opposite sides of a plane of symmetry containing said central line and equally spaced between said arms;
each of the sensors of said first and second pairs of said sensors being orientated in said body to have its axis of sensitivity in said plane of said opening and at a respective acute angle to said plane of symmetry so as to be generally tangential to said opening;
each of the sensors of said third pair of sensors being orientated in said body to have its axis of sensitivity in said plane of said opening and parallel to said plane of symmetry.
7. A coreless current probe as claimed in claim 6, wherein said length of said opening is greater than twice the width, and the spacing between each of said third pair of sensors and a neighbouring sensor of said first or second pair of said sensors is greater than the spacing apart of the sensors of said first pair of said sensors,
and said sensing circuitry is adapted such that the selected values of cr for the sensors of said third pair are greater than the selected values of cr for the sensors of said first and second pairs.
8. A coreless current probe as claimed in claim 1, wherein said plurality of said magnetic field sensors comprises at least four said sensors.
9. A coreless current probe as claimed in claim 8, wherein four said magnetic field sensors are distributed symmetrically in said U-shaped body, about a plane of symmetry which contains said central line and is equally spaced between said arms.
10. A coreless current probe as claimed in claim 9, wherein each of said four sensors is orientated in said body to have its axis of sensitivity in said plane of said opening and at a respective acute angle to said plane of symmetry so as to be generally tangential to said opening.
11. A coreless current probe as claimed in claim 10, wherein said plurality of said magnetic field sensors comprises at least six said sensors, including two additional said sensors located substantially mid-way along said arms and orientated in said body to have their axes of sensitivity in said plane of said opening and parallel to said plane of symmetry.
12. A coreless current probe as claimed in claim 11, wherein said plurality of said magnetic field sensors comprises at least nine said sensors including three further said sensors comprising one said further sensor located substantially mid-way along said cross piece of said body, and one said further sensor located at the end of each of said arms, said three further sensors being orientated to have axes of sensitivity in said plane of said opening and substantially normal to said plane of symmetry.
13. A coreless current probe as claimed in claim 12, wherein said plurality of said magnetic field sensors comprises at least thirteen said sensors including four still further said sensors located on said arms of said body, a respective said still further sensor being located on each side of each of said additional said sensors which are located mid-way along said arms, and said four still further said sensors being orientated to have axes of sensitivity in said plane of said opening.
14. A coreless current probe as claimed in claim 1, further including a housing containing a measured current display connected to said sensing circuitry, a handle fixed to said housing, a tube connecting said U-shaped body to said housing, and connection cables extending through said tube, whereby an operator holding said handle can engage a conductor between the arms of said body of said probe and read a measured current from said display.
15. A coreless current probe as claimed in claim 1, including a housing connected to said U-shaped body, wireless signalling circuitry contained in said housing, said wireless signalling circuitry being connected to said sensing circuitry for wireless signalling said measured current values to a remote location, and a battery compartment for a battery to power said sensing circuitry and said wireless signalling circuitry.
16. A coreless current probe as claimed in claim 15, wherein said probe is formed as a unitary structure incorporating said U-shaped body and said housing with said battery compartment.
17. A coreless current probe as claimed in claim 16, wherein said housing with said battery compartment are integral with said cross-piece of said U-shaped body.
18. A coreless current probe as claimed in claim 17, wherein said arms have parallel internal faces providing a predetermined uniform spacing sized to accommodate a rectangular section bus bar engaged by said probe, and at least one compression tab located on the internal face of at least one of said arms, said tab protruding inwards from said internal face and adapted to be resiliently outwardly compressible on engagement with said bus bar to hold the probe in position on the bus bar.
19. A coreless current probe as claimed in claim 1, wherein said U-shaped body has at least exterior surfaces which are electrically insulating.
20. A method of measuring direct current flowing in a conductor having minimum and maximum orthogonal cross-sectional dimensions, the method comprising the steps of:
defining an Ampere's Law integration path around the conductor in an integration plane perpendicular to a central line of the conductor, said path having minimum and maximum orthogonal dimensions which exceed said dimensions of said conductor,
measuring a respective angle component of magnetic field at each of a plurality of locations on said integration path, an adjacent pair of said locations being at one end of said maximum dimension of said path and spaced apart by said minimum dimension of said path, and a third of said locations being at the other end of said maximum dimension of said path, said locations and the orientations of said respective angle components being selected such that there are values of cr for which, in any homogeneous magnetic field,
r = 1 n c r h r = 0 ,
where n is the number of said locations,
hr is the measured value of said magnetic field component at the rth location, and cr is a constant factor for the rth location,
and combining said measured values hr to produce a value of said direct current.
21. A method as claimed in claim 20, wherein the respective angle components are orientated in said integration plane.
22. A method as claimed in claim 20, wherein said step of combining performs the summation
r = 1 n c r h r ,
where the values cr are selected to maximise rejection in the summation of the influence of external magnetic fields which are not produced by current flowing in the conductor.
23. A method as claimed in claim 22, wherein the values of cr in said summation are selected such that in any homogenous magnetic field
r = 1 n c r h r = 0.
24. A method as claimed in claim 20, wherein said maximum orthogonal cross-sectional dimension of said conductor is not less than twice said minimum orthogonal cross-sectional dimension.
25. A method as claimed in claim 24, wherein a respective angle component of magnetic field is measured at at least six locations on said integration path, said locations including
a) a first pair corresponding to said adjacent pair of said locations at said one end of said maximum dimension of said path,
b) a second pair at said other end of said maximum dimension of said path, and
c) a third pair substantially mid-way along said maximum dimension of said path;
said locations of each of said first, second and third pairs of locations being spaced uniformly apart on opposite sides of a plane of symmetry containing a central line of said conductor and parallel to said maximum orthogonal cross-sectional dimension of said conductor;
the respective angle component of magnetic field being measured at each of the locations of said first and second pairs of locations being in said integration plane and at an acute angle to said plane of symmetry so as to be generally tangential to said conductor;
the respective angle component of magnetic field being measured at each of the locations of said third pair of locations being in said integration plane and parallel to said plane of symmetry.
26. A method as claimed in claim 25, wherein said maximum orthogonal cross-sectional dimension of said conductor is greater than twice said minimum dimension of the conductor, and the spacing between each of said third pair of locations and a neighbouring location along said path of said first or second pairs of locations is greater than the spacing apart of the locations of said first pair of locations,
and, in said step of combining the selected values of cr for the locations of said third pair are greater than the selected values of cr for the locations of said first and second pairs.
US13/795,827 2013-03-12 2013-03-12 Coreless current probe and a method of measuring direct current Abandoned US20140300349A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/795,827 US20140300349A1 (en) 2013-03-12 2013-03-12 Coreless current probe and a method of measuring direct current
US14/775,553 US9952257B2 (en) 2013-03-12 2014-03-10 Coreless current probe and a method of measuring current
ES14779818T ES2871854T3 (en) 2013-03-12 2014-03-10 A coreless current probe and a method to measure current
PCT/US2014/022775 WO2014164551A1 (en) 2013-03-12 2014-03-10 A coreless current probe and a method of measuring current
EP14779818.5A EP2972425B8 (en) 2013-03-12 2014-03-10 A coreless current probe and a method of measuring current
US15/922,628 US10690701B2 (en) 2013-03-12 2018-03-15 Coreless current probe and a method of measuring current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/795,827 US20140300349A1 (en) 2013-03-12 2013-03-12 Coreless current probe and a method of measuring direct current

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/775,553 Continuation US9952257B2 (en) 2013-03-12 2014-03-10 Coreless current probe and a method of measuring current
PCT/US2014/022775 Continuation WO2014164551A1 (en) 2013-03-12 2014-03-10 A coreless current probe and a method of measuring current

Publications (1)

Publication Number Publication Date
US20140300349A1 true US20140300349A1 (en) 2014-10-09

Family

ID=51653997

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/795,827 Abandoned US20140300349A1 (en) 2013-03-12 2013-03-12 Coreless current probe and a method of measuring direct current
US14/775,553 Active 2033-10-01 US9952257B2 (en) 2013-03-12 2014-03-10 Coreless current probe and a method of measuring current
US15/922,628 Active 2033-05-05 US10690701B2 (en) 2013-03-12 2018-03-15 Coreless current probe and a method of measuring current

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14/775,553 Active 2033-10-01 US9952257B2 (en) 2013-03-12 2014-03-10 Coreless current probe and a method of measuring current
US15/922,628 Active 2033-05-05 US10690701B2 (en) 2013-03-12 2018-03-15 Coreless current probe and a method of measuring current

Country Status (4)

Country Link
US (3) US20140300349A1 (en)
EP (1) EP2972425B8 (en)
ES (1) ES2871854T3 (en)
WO (1) WO2014164551A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112485496A (en) * 2019-09-11 2021-03-12 英飞凌科技股份有限公司 Current sensor and method for sensing current intensity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10473701B2 (en) * 2016-12-09 2019-11-12 Schweitzer Engineering Laboratories, Inc. Systems and methods for magnetometer-based current measurement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071457A (en) * 2004-09-02 2006-03-16 Denso Corp Current measuring device
US20070164724A1 (en) * 2003-12-08 2007-07-19 Abb Entrelec (Societe Par Actions Simplifiee) Current sensor with reduced sensitivity to parasitic magnetic fields
US20100090684A1 (en) * 2008-10-13 2010-04-15 National Taiwan University Of Science And Technology Method and apparatus for current measurement using hall sensors without iron cores

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3305888A1 (en) 1983-02-19 1984-08-23 Erich Dr.-Ing. 5300 Bonn Steingroever DEVICE WITH PROBE FOR MEASURING MAGNETIC POTENTIALS
US5057769A (en) 1989-07-27 1991-10-15 Sensorlink Corporation AC current sensor
JP3327899B2 (en) * 2000-06-19 2002-09-24 共立電気計器株式會社 Non-contact current meter
CA2432671C (en) * 2003-06-17 2008-11-04 Kinectrics Inc. Coreless current sensor
US7164263B2 (en) 2004-01-16 2007-01-16 Fieldmetrics, Inc. Current sensor
EP2000813A1 (en) * 2007-05-29 2008-12-10 Ecole Polytechnique Fédérale de Lausanne Magnetic field sensor for measuring a direction of a magnetic field in a plane
US7605580B2 (en) * 2007-06-29 2009-10-20 Infineon Technologies Austria Ag Integrated hybrid current sensor
US7583073B2 (en) * 2007-07-19 2009-09-01 Honeywell International Inc. Core-less current sensor
WO2009021076A1 (en) 2007-08-06 2009-02-12 Yakymyshyn C Slotted current transducer using magnetic field point sensors
CN102099695B (en) 2008-07-22 2015-08-12 Abb研究有限公司 Magnetoresistive transducer for current measurement is arranged
GB0914259D0 (en) * 2009-08-14 2009-09-30 Sentec Ltd Air cored current sensor
JP5834292B2 (en) * 2011-05-09 2015-12-16 アルプス・グリーンデバイス株式会社 Current sensor
US20140049255A1 (en) * 2011-05-20 2014-02-20 Honda Motor Co., Ltd. Coreless current sensor structure, coreless current sensor, and current detection method
US9000752B2 (en) * 2011-06-14 2015-04-07 International Business Machines Corporation Multi-conductor cable current and voltage sensors
US9618588B2 (en) * 2014-04-25 2017-04-11 Infineon Technologies Ag Magnetic field current sensors, sensor systems and methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070164724A1 (en) * 2003-12-08 2007-07-19 Abb Entrelec (Societe Par Actions Simplifiee) Current sensor with reduced sensitivity to parasitic magnetic fields
JP2006071457A (en) * 2004-09-02 2006-03-16 Denso Corp Current measuring device
US20100090684A1 (en) * 2008-10-13 2010-04-15 National Taiwan University Of Science And Technology Method and apparatus for current measurement using hall sensors without iron cores

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Ampere and Biot-Savart Laws http://web.mit.edu/8.02t/www/materials/StudyGuide/guide09.pdf discusses relationship between Biot-Savart Law and Ampere law (page 9-16); pdf Attached *
IceCube Neutrino Observatory Lecture Notes; Physics 202, Lecture 13, "Sources of Magnetic Fields" http://icecube.wisc.edu/~karle/courses/phys202/202lecture13.pdf ; pdf Attached *
Ito JP 2006071457, "Current Measuring Device" (English Machine Translation, Published March 16 2006) *
Olsen et al, "Effective Use of Miniature, Multi-Point, Field Based Current Sensors without Magnetic Cores," Industry Applications Conference, Conference Record of the 2007 IEEE, New Orleans, LA. pp 1426-1433, 23-27 September 2007 *
The Biot-Savart Law; http://farside.ph.utexas.edu/teaching/em/lectures/node39.html discusses the vector identity of Biot-Savart Law (Published February 2006); pdf Attached *
Tsai et al, "Using Coreless Hall Effect Sensor for Accurate Current Measurement in ZigBee based Wireless Sensor Network" Industry Applications Society Annual Meeting, Conference Record of the 2011 IEEE, Orlando, FL. pp 1-9, 9-10 October 2011 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112485496A (en) * 2019-09-11 2021-03-12 英飞凌科技股份有限公司 Current sensor and method for sensing current intensity
US11500014B2 (en) * 2019-09-11 2022-11-15 Infineon Technologies Ag Current sensor and method for sensing a strength of an electric current

Also Published As

Publication number Publication date
EP2972425B8 (en) 2021-06-23
EP2972425B1 (en) 2021-05-19
US9952257B2 (en) 2018-04-24
EP2972425A4 (en) 2017-06-14
ES2871854T3 (en) 2021-11-02
EP2972425A1 (en) 2016-01-20
US20180231588A1 (en) 2018-08-16
US20160033554A1 (en) 2016-02-04
US10690701B2 (en) 2020-06-23
WO2014164551A1 (en) 2014-10-09

Similar Documents

Publication Publication Date Title
JP6431099B2 (en) Current measuring device for individual electrodes in electrolysis system
US9966676B2 (en) Kelvin connector adapter for storage battery
TWI544675B (en) Permanent system for continuous detection of current distribution in interconnected electrolytic cells
AU2014222569B2 (en) Measurement of electric current in an individual electrode in an electrolysis system
US20150302288A1 (en) Active RFID Asset Tracking Tag with Current-Sensing Cable Clamp
US10690701B2 (en) Coreless current probe and a method of measuring current
US20170254838A1 (en) Active rfid asset tracking tag with current-sensing cable clamp
JP5278067B2 (en) Desktop measuring device
JP2018028477A (en) Electric power measurement device
RU2015134753A (en) METHOD AND DEVICE FOR MONITORING THE POWER CHAIN, SYSTEM FOR MANAGING THE POWER CHAIN OF THE POWER SUPPLY, AND METHOD FOR INSTALLING THE DEVICE FOR MONITORING THE POWER CHAIN
FI125909B (en) Arrangement for measuring the current flowing at a single electrode of an electrolysis system
KR20150102472A (en) Measuring device human body impedance having strain sensor
FI59176B (en) ELEKTROLYSCELL
CN213481599U (en) Device for detecting residual stress of aluminum alloy through pulse eddy current
CN111257620A (en) Current detection device and method
JP2020193876A (en) Method of detecting current value and current sensor
CN115333241A (en) Power distribution network power measurement method and system
WO2019045027A1 (en) Nondestructive test method and nondestructive test instrument
JPH06180244A (en) Liquid-surface level measuring apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: GMW ASSOCIATES INCORPORATED, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WALKER, IAN JAMES;LAW, KARRON LOUIS;SIGNING DATES FROM 20030314 TO 20130314;REEL/FRAME:030939/0389

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION