US20110104040A1 - Simple, effective and scalable process for making carbon nanotubes - Google Patents

Simple, effective and scalable process for making carbon nanotubes Download PDF

Info

Publication number
US20110104040A1
US20110104040A1 US12/608,016 US60801609A US2011104040A1 US 20110104040 A1 US20110104040 A1 US 20110104040A1 US 60801609 A US60801609 A US 60801609A US 2011104040 A1 US2011104040 A1 US 2011104040A1
Authority
US
United States
Prior art keywords
nanotubes
carbon
carbon nanotubes
ppy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/608,016
Inventor
Songmin Shang
Xiao-ming Tao
Xiaoming Yang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/608,016 priority Critical patent/US20110104040A1/en
Priority to CN2010105250486A priority patent/CN102050440A/en
Publication of US20110104040A1 publication Critical patent/US20110104040A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Abstract

A simple, effective and scalable method for fabricating carbon nanotubes. The method has two simple steps: (a) producing the carbon precursors (i.e., nanotubes of conducting polymer) in water solution via a soft template method involving a fibrillar complex and (b) carbonizing the carbon precursors (i.e. the nanotubes of the conducting polymer) at a temperature between 900-2200° C. in a nitrogen atmosphere or under a vacuum condition.

Description

    FIELD OF THE INVENTION
  • The present invention relates to carbon nanotubes. Particularly, it relates to a simple, low cost, safe, and scalable method for synthesizing carbon nanotubes.
  • BACKGROUND OF THE INVENTION
  • Carbon nanotubes are allotropes of carbon with a cylindrical nanostructure. These cylindrical carbon molecules have many outstanding properties that make them potentially useful in many applications in nanotechnology, electronics, optics and other fields of materials science, as well as potential uses in architectural fields. For example, they exhibit extraordinary strength and unique electrical properties, and are efficient thermal conductors. Since the discovery of fullerenes and carbon nanotubes (Kratschmer W, Lamb L D, Fostiropoulos K, Huffman R D. Nature 1990; 6291(347):354-8), they have attracted tremendous academic and industrial interest, with thousands of papers on nanotubes being published every year.
  • However, despite of rapid development in carbon nanotube science, commercial applications have been rather slow to develop, primarily because of the high production costs of the best quality nanotubes. Low cost, large-scale synthetic method of carbon nanostructures has been the subject of many research teams, both in academic research institutions and in industries. The synthesis of well defined carbon nanotubes with 50-100 nm diameters has been a long-standing goal of materials chemistry (Tang N J, Zhong W, Au C T, Gedanken Y Y, Du Y W. Adv Funct Mater 2007; 17(9):1542-50).
  • The preparation of carbon materials commonly involves pyrolysis of the carbon precursor (such as sucrose, furfuryl alcohol, acetylene, acenaphthene, or phenol resin). Aromatic polyimide film has aroused a great deal of interest as it is one of the attractive precursors for producing carbon and graphite films in recent years. Poly (acrylonitrile) (PAN) is another commonly used precursors (Chae H G, Minus M L, Rasheed A, Kumar S. Polymer 2007; 48(13):3781-9). Xia et al. reported a method of fabrication of carbon nanotubes by combining polyelectrolyte electrospinning with vapor deposition polymerization. The process is high-temperature carbonization of poly (acrylonitrile) nanotubes with poly(styrene sulfonate) sodium nanofibers as cores at 900° C. under a nitrogen flow (McCann J T, Lim B, Ostermann R, Rycenga M, Marquez M, Xia Y. Nano Lett 2007; 7(8):2470-4). Wu et al. prepared carbon nanospheres by the pyrolysis of nanospherical polyacrylonitrile (PAN) (Yang L C, Shi Y, Gao Q S, Wang B, Wu Y P, Tang Y. Carbon 2008; 46(13):1816-8).
  • In a previous study, the applicants developed a new chemical approach (or a “soft” template method), in which a fibrillar complex of the anionic azo dye MO (methyl orange), sodium 4-[4-(dimethyl-amino)-phenyldiazo]phenylsulfonate ((CH3)2NC6H4N═NC6H4SO3Na) and the oxidant FeCl3 was used as a reactive self-degradable seed template directing the growth of polypyrrole (PPy) on its surface and promoting the assembly into hollow nanotubular structures (Yang X M, Zhu Z X, Dai T Y, Lu Y. Macromol Rapid Commun 2005; 26:1736-40).
  • SUMMARY OF THE INVENTION
  • One object of the present invention is to provide a low-cost, simple method to fabricate carbon nanotubes. This object is realized by a process having two simple steps: (a) producing the carbon precursors (i.e., nanotubes of conducting polymer) in water solution via a soft template method involving a fibrillar complex and (b) carbonizing the carbon precursors, i.e. the nanotubes, at a temperature between 900-2200° C. in a nitrogen atmosphere or under a vacuum condition. An exemplary scheme embodies the present invention is depicted in FIG. 8.
  • As shown in the scheme of FIG. 8, the carbon precursors can be conducted in water solution to which an oxidant is added. A typical oxidant is FeCl3, although other oxidants may also be used to obtain satisfactory results, for example, ammonium persulfate, potassium persulfate, and ferric nitrate. In step (a), any soft-template method may be used and an exemplary system can include just an oxidant and methyl orange (MO) (anionic azo dye). Other substances may also be used in the place of MO, for example, such as methyl red, benzyl orange, and 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin. An exemplary monomer is pyrrole but any conductive monomers, such as, for example, aniline or thiophene, may also be used. It is understood that any conjugated polymers may be used as carbon precursors to practice the present invention. For example, polypyrrole, polyaniline and polythiophene are typical conjugated polymers. In step (b), the carbon precursors, which are nanotubes of conducting polymer, are undergone a heat-treatment process under suitable conditions, which typically are 900-2200° C. and 3-5 hours in a nitrogen atmosphere, or 900-2200° C. and 3-5 hours under a vacuum condition. Although these conditions can be modified by people having ordinary skill in the art so that satisfactory results can be obtained under different circumstances. In summary, the present invention provides a simple, feasible and practical method for effectively producing carbon nanotubes on a large scale.
  • The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages, and specific objects attained by its use, reference should be made to the drawings and the following description in which there are illustrated and described preferred embodiments of the invention.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is the TEM images of the PPy nanotubes fabricated according to the present invention (A) and the PPy granules made for the purpose of comparison (B)
  • FIG. 2 is the TGA curves of (a) PPy nanotubes and (b) PPy granules (under nitrogen atmosphere).
  • FIG. 3 is the TEM images of the carbon nanotubes fabricated according to the present invention.
  • FIG. 4 is the TEM image (A) showing one carbon nanotubes and the HRTEM image (B) showing a curved part of the same carbon nanotubes.
  • FIG. 5 depicts the XRD pattern of carbon nanotubes fabricated according to the present invention.
  • FIG. 6 depicts the TEM images of the carbon nanotubes fabricated according to the present invention and the iron (pointed to by the arrow).
  • FIG. 7 shows the Raman spectrums of the PPy nanotubes (A) and carbon nanotubes (B) produced according to the present invention.
  • FIG. 8 is a diagram showing the general scheme of making carbon nanotubes according to the present invention.
  • DETAILED DESCRIPTION OF PARTICULAR EMBODIMENTS OF THE INVENTION
  • As an example, the following describes a preferred embodiment of the present invention.
  • In the first step, 0.243 g (1.5 mmol) of FeCl3 was dissolved in 30 mL of 5 mmol/l methyl orange deionized water solution (0.15 mmol). Then 105 ml (1.5 mmol) of pyrrole monomer (Aldrich) was added into the solution and the mixture was stirred at room temperature for 24 h. The formed polypyrrole (PPy) precipitate was washed with deionized water/ethanol several times until the filtrate was colorless and neutral, and finally dried under a vacuum atmosphere at 60° C. for 24 h. A kind of dry black powder was obtained which are the PPy nanotubes fabricated. As a comparison, the PPy granules were fabricated by similar procedures as described in the above except that methyl orange was not used.
  • In the next step, the obtained PPy nanotubes from the first step were further carbonized to afford the carbon nanotubes. The carbonization process was carried out in a quartz tubular furnace under nitrogen atmosphere. The sample was first gradually heated up to 900° C. at a heating rate of 3° C. min−1, kept at 900° C. for 5 h and then cooled to room temperature. The carbon nanotubes were then successfully fabricated.
  • The structure of the carbon nanotubes prepared in the above was investigated by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy and X-ray diffraction (XRD). It was shown that these as-prepared carbon nanotubes were mostly amorphous in terms of morphology.
  • A SDT 2960 thermogravimetric analyzer was used to investigate the thermal stability of the PPy nanotube with nitrogen as pure gas at a flow rate of 20 ml min−1. The heating rate was 3° C. min−1. The morphologies of the samples were examined by TEM (JEM-2000CX) and HRTEM (JEOL-2010) operated at accelerating voltage of 100 and 200 kV, respectively. A few drops of the solvent extracts were placed onto the copper mesh covered with a per-coated carbon film and allowed to evaporate. XRD patterns were obtained on PHILIPS PW 3710 diffractometer in the reflection mode using Cu Kα radiation at room temperature. Raman spectra was recorded in the range of 0-3500 cm−1 at ambient temperature with a labRAM HR 800 (France, Jobin Yvon) using 532 nm laser as the excitation source. The results of these measurements are described in the following and in the drawings.
  • The TEM images of the PPy nanotubes (A) and the PPy granules (B) were made of the samples produced in the above described fabricating process and are reproduced in FIG. 1. As shown in FIG. 1(A), the PPy nanotubes are hollow, and that their outer and inner diameters are determined as about 70 and 50 nm respectively. Therefore, their wall thicknesses are about 20 nm.
  • The thermogravimetric (TGA) curves in FIG. 2 show the weight losses of the PPy nanotubes (a) and the PPy granules (b). Both the TGA curves of the PPy nanotubes and the PPy granules show a two-step weight loss during the heating processes. The weight loss (about 5%) that occurred in the first step below 100° C. could be attributed to the loss of residual moisture. In the second step, starting around 260° C., the weight loss could be attributed to the degradation of PPy and decomposition of dopants. The weight loss of the PPy nanotubes appeared to be less than that of the PPy granules. About 47% of the original weight remained for PPy nanotubes while it was only 40% for the PPy granules.
  • It was demonstrated that the PPy nanotubes were successfully transformed into carbon nanotubes after following the heating process at 900° C. in a quartz tubular furnace under a nitrogen atmosphere for 5 h as described in the above, because they are stable under the extremely high temperature. The chemical compositions of the as-prepared carbon nanotubes and the PPy nanotubes were evaluated by EDS (Energy Dispersive Spectrometer) analysis. The data were summarized in Table 1.
  • TABLE 1
    The compositions of the PPy nanotubes and the carbon nanotubes.
    Element C (%) N (%) O (%) S (%) Cl (%) Fe (%)
    PPy nanotubes 77.00 11.76 5.48 3.86 1.80 0.10
    Carbon nanotubes 88.77 4.59 4.38 1.74 0 0.52
  • It is evident that the content of carbon was increased after calcinations. It is believed that during the carbonization process of PPy nanotubes, carbonization reactions such as dehydrogenation and denitrogenation occur and produce more compact polycondensed graphitic species.
  • In order to investigate the structure of the as-prepared carbon nanotubes, the TEM image was obtained, which is shown in FIG. 3. It was evident from FIG. 3 that the tubular structures were obtained after pyrolysis at 900° C. The wall thickness of the carbon nanotube is about 15 nm, which is thinner than that of the original PPy nanotubes (20 nm). The size reduction can be attributed to the weight loss and the formation of more compact structure in the carbonization process.
  • FIG. 4(B) is the HRTEM image of the as-prepared carbon nanotubes and shows some ordered graphitic layers on the wall of the carbon nanotube. Morphologically, these carbon nanotubes were found to be mostly amorphous in structure. The main activity that occurred at this temperature (900° C.) should be described as carbonization but not graphitization. Graphitization may occur at higher temperatures such as 2200° C.
  • The XRD pattern of the as-prepared carbon nanotubes is shown in FIG. 5. The wide-angle XRD of the carbonized PPy-nanotubes contain two broad signals at 25.68° and 44.75°, corresponding to (002) and a superposition of the (101) reflections of the graphite structure. The XRD peaks with a maximum at 2θ=25.68°, which is equivalent to the d spacing of about 3.432 Å. In addition to the strong (002) peak, the same XRD pattern also showed peaks at 44.75°, which may be ascribed to the diffraction peak of (101) plane of graphite. This confirms that the structure of as-prepared carbon nanotubes is between the disordered amorphous carbon phase and highly ordered graphitic phase.
  • After the formation of PPy nanotubes, some residual iron salts (FeCl2) were left inside the PPy nanotubes because the redox polymerization of pyrrole was conducted by using FeCl3 as an oxidizing agent. In addition, the chemical oxidation polymerization led to the incorporation of iron-based species like FeCl4− anions, which can be coordinated to the polymer backbone. The iron complexes break away from the PPy nanotubes and form iron when they expose to 900° C. under nitrogen. The darker part of FIG. 6 is believed to be the cluster of iron that had broken away from the PPy nanotubes (arrow in FIG. 6).
  • The structure of the as-prepared carbon nanotubes can also be observed by the Raman spectra as shown in FIG. 7, which are consistent with those reported in the literature for carbon fibers, displaying a characteristic strong, relatively narrow band around 1583 cm−1, corresponding to a graphitic species (G-band) and a band at 1341 cm−1, corresponding to an sp3 carbon species (D-band). The bands at 1583 cm−1 and 1341 cm−1 may be ascribed to the graphite-like and disordered structure of carbons, respectively. The D-band showed an increased intensity relative to that of the G-band. The results also indicate that the as-prepared carbon nanotubes were the disordered amorphous carbon phase.
  • While the preferred embodiment of the present invention has been described in conjunction with the drawings, the present invention is not limited to the above embodiment. The above embodiment is only illustrative and not limitative. Without departing from the spirit of the present invention and the scope sought for protection by the claims, a person skilled in the art can further make a lot of forms, all of which belong to the protection scope of the present invention.
  • REFERENCES
    • Kratschmer W, Lamb L D, Fostiropoulos K, Huffman R D. Nature 1990; 6291(347):354-8.
    • Tang N J, Zhong W, Au C T, Gedanken Y Y, Du Y W. Adv Funct Mater 2007; 17(9):1542-50.
    • Laskoski M, Keller T M, Qadri S B. Polymer 2007; 48(26):7484-9.
    • Chae H G, Minus M L, Rasheed A, Kumar S. Polymer 2007; 48(13):3781-9.
    • McCann J T, Lim B, Ostermann R, Rycenga M, Marquez M, Xia Y. Nano Lett 2007; 7(8):2470-4.
    • Yang L C, Shi Y, Gao Q S, Wang B, Wu Y P, Tang Y. Carbon 2008; 46(13):1816-8.
    • Jang J, Oh J H, Stucky G D. Angew Chem Int Ed 2002; 41(21):4016-9.
    • Yang C M, Weidenthaler C, Spliethoff B, Mayanna M, Schuth F. Chem Mater 2005; 17(2):355-8.
    • Jang J, Oh J H. Chem Commun 2004; 7:882-3.
    • Jang J, Li X, Oh J H. Chem Commun 2004; 7:794-5.
    • Jang J, Yoon H. Small 2005; 1(12):1195-9.
    • Jang J, Oh J H. Adv Mater 2004; 16(18):1650-3.
    • Jang J, Yoon H. Adv Mater 2003; 15(24):2088-91.
    • Dong H, Jones W E. Langmuir 2006; 22:11384-7.
    • Yang X M, Zhu Z X, Dai T Y, Lu Y. Macromol Rapid Commun 2005; 26:1736-40.
    • Yang X M, Dai T Y, Zhu Z X, Lu Y. Polymer 2007; 48(14):4021-7.
    • Han C C, Lee J T, Chang H. Chem Mater 2001; 13(11):4180-6.
    • Ando E, Onodera S, Iino M, Ito O. Carbon 2001; 39(1):101-8.
    • Braun A, Bartsch M, Schnyder B, Ko{umlaut over ( )}tz R, Haas O, Wokaun A. Carbon 2002; 40(3):375-82.
    • Klung H P, Alexander L E. X-ray diffraction procedures for polycrystalline and amorphous materials. New York: John Wiley & Sons; 1974.
    • Abdou M S A, Lu X, Xie Z W, Orfino F, Deen M J, Holdcroft S. Chem Mater 1995; 7(4):631-41.
    • Hung C C. Carbon 1995; 33(3):315-22.
    • Tuinstra F, Koenig J L J. Chem Phys 1970; 53:1126-30.
    • Kowalewski T, Tsarevsky N V, Matyjaszewski K. J Am Chem Soc 2002; 124:10632-3.
    • Kyotani T, Sonobe N, Tomita A. Nature 1988; 331(6154):331-3.

Claims (10)

1. A method for fabricating carbon nanotubes, comprising the steps of
(a) forming chemically a plurality of carbon precursors, which are nanotubes of conducting polymer, by adding conducting monomers in a water solution having a soft template and
(b) carbonizing said carbon precursors from step (a) at a temperature between 900-2200° C. in a nitrogen atmosphere or under a vacuum condition to afford a plurality of carbon nanotubes.
2. The method of claim 1, wherein said soft template is formed in water solution by an oxidant and methyl orange.
3. The method of claim 2, wherein said oxidant is FeCl3.
4. The method of claim 1, wherein said step (a) is carried out at a temperature within the range between room temperature and 130° C., and step (b) is carried out at a temperature within the range between 900-2200° C.
5. The method of claim 4, wherein said step (a) lasts for 24 hours and step (b) lasts for 3-5 hours.
6. The method of claim 1, wherein said step (b) is carried out by putting said carbon precursors from step (a) in a quartz tubular furnace under a nitrogen atmosphere or in a high temperature vacuum oven.
7. The method of claim 1, wherein said conducting polymer is a conjugated polymer.
8. The method of claim 7, wherein said conjugated polymer is polypyrrole, polyaniline or polythiophene and said monomer is pyrrole, aniline, or thiophene, respectively.
9. The method of claim 4, wherein said step (b) is carried at 900° C.
10. The method of claim 2, wherein said oxidant is ammonium persulfate, potassium persulfate, or ferric nitrate.
US12/608,016 2009-10-29 2009-10-29 Simple, effective and scalable process for making carbon nanotubes Abandoned US20110104040A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/608,016 US20110104040A1 (en) 2009-10-29 2009-10-29 Simple, effective and scalable process for making carbon nanotubes
CN2010105250486A CN102050440A (en) 2009-10-29 2010-10-29 Process for making carbon nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/608,016 US20110104040A1 (en) 2009-10-29 2009-10-29 Simple, effective and scalable process for making carbon nanotubes

Publications (1)

Publication Number Publication Date
US20110104040A1 true US20110104040A1 (en) 2011-05-05

Family

ID=43925657

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/608,016 Abandoned US20110104040A1 (en) 2009-10-29 2009-10-29 Simple, effective and scalable process for making carbon nanotubes

Country Status (2)

Country Link
US (1) US20110104040A1 (en)
CN (1) CN102050440A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103224831A (en) * 2013-04-12 2013-07-31 青岛科技大学 Electrorheological fluid and its preparation method
CN111137872A (en) * 2019-12-24 2020-05-12 大连理工大学 Large-scale production method of nitrogen-rich doped amorphous carbon/graphitic carbon nanocomposite powder
CN113860283A (en) * 2021-09-29 2021-12-31 济南大学 Preparation method and application of metal monoatomic and nitrogen double-doped carbon microtube
CN115207378A (en) * 2022-07-25 2022-10-18 陕西科技大学 Polypyrrole nanotube electrocatalyst and preparation method and application thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355934A (en) * 2015-10-31 2016-02-24 哈尔滨工业大学 Preparation method of nitrogen-doped carbon nanotubes
CN107324311A (en) * 2017-06-29 2017-11-07 陕西科技大学 A kind of synthetic method of CNT
CN109748259A (en) * 2017-11-06 2019-05-14 石河子大学 A kind of preparation method and application of poly- polyphenol nanotube
CN110120504A (en) * 2019-04-24 2019-08-13 南开大学 A kind of phosphorus/tin/carbon compound cathode materials preparation method of richness phosphorus
CN115057430B (en) * 2022-05-18 2024-02-20 河南师范大学 Preparation method and application of iron-doped porous carbon nanotube electrode material
CN115354181A (en) * 2022-07-26 2022-11-18 昆明理工大学 Preparation method of carbon nano tube reinforced copper-based composite material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100222432A1 (en) * 2005-08-11 2010-09-02 Kansas State University Research Foundation Synthetic Carbon Nanotubes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100222432A1 (en) * 2005-08-11 2010-09-02 Kansas State University Research Foundation Synthetic Carbon Nanotubes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103224831A (en) * 2013-04-12 2013-07-31 青岛科技大学 Electrorheological fluid and its preparation method
CN103224831B (en) * 2013-04-12 2015-11-18 青岛科技大学 A kind of electrorheological fluid and preparation method thereof
CN111137872A (en) * 2019-12-24 2020-05-12 大连理工大学 Large-scale production method of nitrogen-rich doped amorphous carbon/graphitic carbon nanocomposite powder
CN113860283A (en) * 2021-09-29 2021-12-31 济南大学 Preparation method and application of metal monoatomic and nitrogen double-doped carbon microtube
CN115207378A (en) * 2022-07-25 2022-10-18 陕西科技大学 Polypyrrole nanotube electrocatalyst and preparation method and application thereof

Also Published As

Publication number Publication date
CN102050440A (en) 2011-05-11

Similar Documents

Publication Publication Date Title
US20110104040A1 (en) Simple, effective and scalable process for making carbon nanotubes
Shang et al. Easy synthesis of carbon nanotubes with polypyrrole nanotubes as the carbon precursor
CN109956463B (en) Carbon nano tube and preparation method thereof
Zengin et al. Carbon nanotube doped polyaniline
Zhang et al. Recent advances in microwave initiated synthesis of nanocarbon materials
Liang et al. Ultralight, flexible carbon hybrid aerogels from bacterial cellulose for strong microwave absorption
Inagaki et al. Nanocarbons––recent research in Japan
Hoheisel et al. Nanostructured carbonaceous materials from molecular precursors
Liu et al. Superior microwave absorbing properties of O, S, N codoped carbon planar helixes via carbonization of polypyrrole spiral nanowires
Malikov et al. Synthesis and characterization of polyvinyl alcohol based multiwalled carbon nanotube nanocomposites
KR100792267B1 (en) Laser pyrolysis method for producing carbon nano-spheres
US20180272313A1 (en) Complex of carbon structure and covalent organic framework, preparation method therefor, and use thereof
Zhu et al. One-dimensional barium titanate coated multi-walled carbon nanotube heterostructures: synthesis and electromagnetic absorption properties
US20180195209A1 (en) Carbon nanotube fibers/filaments formulated from metal nanoparticle catalyst and carbon source
Yang et al. A facile, green, and tunable method to functionalize carbon nanotubes with water-soluble azo initiators by one-step free radical addition
Huang et al. Polyaniline-intercalated graphene oxide sheet and its transition to a nanotube through a self-curling process
Kang et al. Polyoxometalates nanoparticles: synthesis, characterization and carbon nanotube modification
JP2009040673A (en) Method for manufacturing porous graphite carbon with high crystallinity and catalyst for fuel cell using the graphite carbon as carrier
Zhang et al. Synthesis of polymer-protected graphene by solvent-assisted thermal reduction process
US20080292530A1 (en) Calcination of carbon nanotube compositions
Feng et al. Functionalization of carbon nanotubes with amphiphilic molecules and their Langmuir–Blodgett films
Liu et al. Fabrication and characterization of mesoporous carbon nanosheets using halloysite nanotubes and polypyrrole via a template‐like method
He et al. A high concentration graphene dispersion stabilized by polyaniline nanofibers
Salavati-Niasari et al. Synthesis, characterization and catalytic oxidation properties of multi-wall carbon nanotubes with a covalently attached copper (II) salen complex
Guo et al. Synthesis of polyaniline/multi-walled carbon nanotube nanocomposites in water/oil microemulsion

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION