US11554639B2 - Power module device and transport refrigeration system - Google Patents

Power module device and transport refrigeration system Download PDF

Info

Publication number
US11554639B2
US11554639B2 US16/775,813 US202016775813A US11554639B2 US 11554639 B2 US11554639 B2 US 11554639B2 US 202016775813 A US202016775813 A US 202016775813A US 11554639 B2 US11554639 B2 US 11554639B2
Authority
US
United States
Prior art keywords
module
electrical power
port
voltage
power module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/775,813
Other versions
US20200247218A1 (en
Inventor
Pu Zheng
Linhui Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Corp
Original Assignee
Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corp filed Critical Carrier Corp
Assigned to CARRIER CORPORATION reassignment CARRIER CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CARRIER AIR CONDITIONING AND REFRIGERATION R&D MANAGEMENT (SHANGHAI) CO., LTD.
Assigned to CARRIER AIR CONDITIONING AND REFRIGERATION R&D MANAGEMENT (SHANGHAI) CO., LTD. reassignment CARRIER AIR CONDITIONING AND REFRIGERATION R&D MANAGEMENT (SHANGHAI) CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, LINHUI, ZHENG, PU
Publication of US20200247218A1 publication Critical patent/US20200247218A1/en
Application granted granted Critical
Publication of US11554639B2 publication Critical patent/US11554639B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3222Cooling devices using compression characterised by the compressor driving arrangements, e.g. clutches, transmissions or multiple drives
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/006Supplying electric power to auxiliary equipment of vehicles to power outlets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • B60L1/04Supplying electric power to auxiliary equipment of vehicles to electric heating circuits fed by the power supply line
    • B60L1/10Supplying electric power to auxiliary equipment of vehicles to electric heating circuits fed by the power supply line with provision for using different supplies
    • B60L1/12Methods and devices for control or regulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/002Intermediate AC, e.g. DC supply with intermediated AC distribution
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J4/00Circuit arrangements for mains or distribution networks not specified as ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/88Optimized components or subsystems, e.g. lighting, actively controlled glasses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Abstract

An electrical power module and transport refrigeration system. The electrical power module is used for an apparatus powered by a battery or/and a fuel, has a working mode and includes: a DC buck module configured to step-down a DC at least provided by the battery to a low-voltage output DC for output, or/and a DC boost module configured to step-up a low-voltage input DC provided by the apparatus powered by the fuel to a high-voltage DC for output; and a control module connected to a transport refrigeration unit, and configured to, in the working mode, control the operation of the DC buck module or/and the DC boost module.

Description

FOREIGN PRIORITY
This application claims priority to China Patent Application No. 201910099314.4, filed Jan. 31, 2019, and all the benefits accruing therefrom under 35 U.S.C. § 119, the contents of which in its entirety are herein incorporated by reference.
FIELD OF THE INVENTION
The present invention relates to the technical field of electrical power apparatuses, and in particular, to an electrical power module device for an apparatus powered by a battery or/and a fuel (such as a transport refrigeration unit on a transport vehicle), and a transport refrigeration system including the electrical power module device.
BACKGROUND OF THE INVENTION
A transport refrigeration unit may be installed on transport vehicles such as an electric truck for refrigerating goods during transport. Such a transport refrigeration unit is typically provided with apparatus or devices such as a compressor, an electric heater, fans, valves, and a logic control board. Generally, an inverter is required to drive the compressor in the transport refrigeration unit to operate, a low-voltage DC power source is then used to provide electrical power to fan motors, valves and the like in the transport refrigeration unit, and another electrical power device is used to drive the electric heater and the like in the transport refrigeration unit. This will result in very complex harness connections between these components, devices or apparatuses and a large space occupied, and make them not easy to operate, inspect and maintain.
In addition, for transport vehicles such as an electric truck using a battery power platform, they may directly use a battery to provide electrical power for the transport refrigeration unit; however, for transport vehicles such as a diesel truck using a fuel power platform, they usually use a low-voltage DC generator (such as 12V, 24V or 48V) to provide electrical power for the transport refrigeration unit. Therefore, between the above two types of transport vehicles using different power platforms, there are also problems of harness connections of the transport refrigeration unit and incompatibility of related components.
SUMMARY OF THE INVENTION
In view of the above, the present invention provides an electrical power module device and a transport refrigeration system, thereby resolving or alleviating one or more of the problems described above as well as problems of other aspects existing in the prior art.
Firstly, according to a first aspect of the present invention, an electrical power module device is provided, which is used for an apparatus powered by a battery or/and a fuel, has a working mode and comprises: a DC buck module configured to step-down a DC at least provided by the battery to a low-voltage output DC for output, or/and a DC boost module configured to step-up a low-voltage input DC provided by the apparatus powered by the fuel to a high-voltage DC for output; and a control module connected to the apparatus and configured to, in the working mode, control the operation of the DC buck module or/and the DC boost module.
In the electrical power module device according to the present invention, optionally, the electrical power module device further comprises: an AC port configured to be connected to an external AC power source to access electrical power; or/and a DC port configured to be connected to the battery to access electrical power; or/and a low-voltage input DC port configured to access a low-voltage DC from the apparatus and having a voltage lower than the DC provided by the battery to provide electrical power to the control module or/and an external device.
In the electrical power module device according to the present invention, optionally, the external device comprises a logic control board, a fan motor, and a valve of the apparatus.
In the electrical power module device according to the present invention, optionally, the electrical power module device further has: a charging mode in which the control module controls the AC accessed from the external AC power source via the AC port to charge the battery connected via the DC port; and/or a standby mode in which the control module controls the low-voltage DC to be accessed via the low-voltage input DC port and then output to the external device.
In the electrical power module device according to the present invention, optionally, the control module is configured such that: in the working mode, when one of the AC port and the DC port is used to access electrical power, a path for accessing power from the one port is in an on-state, and a path for accessing electrical power from the other port is in an off-state; and/or in the working mode, when the DC buck module fails to output the low-voltage output DC, the electrical power module device is switched to the standby mode.
In the electrical power module device according to the present invention, optionally, the electrical power module device further comprises: an AC/DC conversion module connected to the control module, the AC port and the DC buck module, and configured to, in the working mode, convert the AC accessed from the external AC power source via the AC port to a DC and then provide the DC to the DC buck module; or a DC/AC conversion module connected to the control module and the DC port, having a connection port for connecting with an external apparatus, and configured to, in the working mode, convert the DC accessed via the DC port to an AC and then provide the AC to the external apparatus via the connection port.
In the electrical power module device according to the present invention, optionally, the electrical power module device further comprises: an AC/DC conversion module connected to the control module, the AC port and the DC buck module, and configured to, in the working mode, convert the AC accessed from the external AC power source via the AC port to a DC and then provide the DC to the DC buck module; and a DC/AC conversion module connected to the control module and the AC/DC conversion module, having a connection port for connecting with an external apparatus, and configured to, in the working mode, convert the DC converted by the AC/DC conversion module to an AC and then provide the AC to the external apparatus via the connection port.
In the electrical power module device according to the present invention, optionally, the apparatus is a transport refrigeration unit on a transport vehicle, the external AC power source comprises a commercial power grid, and the external apparatus comprises a compressor and a compressor shell heater of the transport refrigeration unit.
In the electrical power module device according to the present invention, optionally, the electrical power module device further comprises: at least one output port; and at least one Insulated Gate Bipolar Transistor (IGBT) module connected to the DC port, the AC/DC conversion module or the DC boost module, and connected to the output port and configured to control a path on/off state or/and a power magnitude externally delivered to an external component via the output port by the DC provided via the DC port, the AC/DC conversion module or the DC boost module.
In the electrical power module device according to the present invention, optionally, the external component comprises an electric heater for a transport refrigeration unit on a transport vehicle.
In the electrical power module device according to the present invention, optionally, the low-voltage output DC is configured to provide electrical power for the control module or/and an external device, and the external device comprises a logic control board, a fan motor and a valve of a transport refrigeration unit on a transport vehicle.
In the electrical power module device according to the present invention, optionally, the control module and the transport refrigeration unit is communicated through a bus communication connection.
In the electrical power module device according to the present invention, optionally, the voltage values of the low-voltage output DC and the low-voltage input DC are the same or different; and/or, a voltage range of the battery DC and the high-voltage DC is 200V˜850V, a voltage value of the low-voltage output DC is 12V, 24V or 48V, and a voltage value of the low-voltage input DC is 12V, 24V or 48V.
In the electrical power module device according to the present invention, optionally, the transport vehicle comprises a vehicle, an aircraft, and a watercraft, and the vehicle comprises a pure electric vehicle, a hybrid powered vehicle, a fuel powered vehicle, and a rail vehicle.
Secondly, according to a second aspect of the present invention, a transport refrigeration system is provided, which is disposed on a transport vehicle and comprises: a transport refrigeration unit configured to provide a refrigeration environment; a power module configured to provide power for the transport vehicle by means of a battery or/and a fuel; and the electrical power module device according to any one of the above described, which is connected to the power module and is configured to provide electrical power for the transport refrigeration unit.
In the transport refrigeration system according to the present invention, optionally, the electrical power module device is disposed in the transport refrigeration unit.
From the following detailed description in combination with the accompanying drawings, the principles, features, characteristics, advantages and the like of the various technical solutions according to the present invention will be clearly understood. For example, as compared with related art, by adopting the technical solutions of the present invention, various functional modules can be integrated in the electrical power module device or some of modules can be removed according to specific application requirements, so that a flexible modular design can be realized, an arrangement space can be effectively saved, and an original complex harness wiring layout can be simplified, which helps to reduce cost and can bring great convenience to the operation, maintenance and the like of the transport refrigeration unit. In addition, the electrical power module device of the present invention can be compatibly applied to transport refrigeration units on different transport vehicles using batteries, fuels and the like as power, and therefore has a very wide range of applications.
BRIEF DESCRIPTION OF THE DRAWINGS
The technical solutions of the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. However, these drawings are designed merely for the purpose of explanation, are only intended to conceptually illustrate the structural configuration herein, and are not required to be drawn to scale.
FIG. 1 is a schematic view of the constituent arrangement of an embodiment of an electrical power module device according to the present invention.
FIG. 2 is a list of some embodiments of the electrical power module device according to the present invention in which different constituent arrangement modes are used.
DETAILED DESCRIPTION OF THE EMBODIMENT(S) OF THE INVENTION
First, it is noted that the components, characteristics, advantages and the like of the electrical power module and the transport refrigeration system according to the present invention will be described below by way of example. However, all the description is not intended to limit the present invention in any way.
Herein, the technical terms “first” and “second” are only used for the purpose of distinguishing the expressions, and are not intended to indicate their order and relative importance. The technical term “connect” means that one component is directly connected to another component and/or indirectly connected to another component, and a connection via the “port” may be performed either by using an intermediate connector or the like, or by directly using a cable or the like. The technical terms “high voltage” and “low voltage” are relative concepts, and they can be fully understood and implemented by those skilled in the art in the context of the present disclosure.
In addition, for any single technical feature described or implied in the embodiments mentioned herein, or any single technical feature shown or implied in individual drawings, the present invention still allows for any combination or deletion of these technical features (or equivalents thereof) without any technical obstacle. Therefore, it should be considered that more embodiments according to the present invention are within the scope of the present invention.
Reference is made to FIG. 1 , in which an embodiment of an electrical power module device according to the present invention is exemplarily shown, and the constituent arrangement of the embodiment is shown only in a schematic manner. The electrical power module device can be used to provide power configuration for many types of apparatuses (such as a transport refrigeration unit installed on a transport vehicle, which will be exemplarily described below as an example), and the electrical power module device may be compatibly used in battery powered, fuel (such as gasoline, diesel, hydrogen, etc.) powered or hybrid powered transport vehicles which include, but are not limited to, a vehicle (such as a pure electric vehicle, a hybrid powered vehicle, a fuel powered vehicle, and a rail vehicle), an aircraft, and a watercraft.
As shown in FIG. 1 , in this given embodiment, the electrical power module device may include an AC/DC conversion module 1, a DC/AC conversion module 2, a first Insulated Gate Bipolar Transistor (IGBT) module 3, a DC boost module 4, a control module 5, a DC buck module 6, and a second IGBT module 7, and may be provided with a plurality of input ports or output ports denoted by reference numerals P1-P9 respectively. These functional modules and various ports will be described in detail below.
First, as for the AC/DC conversion module 1, it may be connected to an AC port P1, the control module 5 and the DC/AC conversion module 2 so as to connect an external AC power source R1 (such as a commercial power grid, etc.) to the electrical power module device via the AC port P1, then convert the AC to DC, and then provide the DC after the conversion to the DC/AC conversion module 2 so that the DC/AC conversion module 2 performs a conversion from DC to AC and then provide the AC after the conversion to an external apparatus R3 via a connection port P3. Such an external apparatus R3 includes, but is not limited to, a compressor, a compressor shell heater and the like of a transport refrigeration unit.
As shown in FIG. 1 , the AC/DC conversion module 1 and the DC buck module 6 may also be connected, so that the DC buck module 6 may be used to further utilize the DC obtained after the conversion performed by the AC/DC conversion module 1.
As for the DC buck module 6, it is configured to step down the input DC to a low-voltage output DC for output. The low-voltage output. DC may be, for example, 12V, 24V, or 48V, or have other suitable voltage value to meet the requirements of various possible specific applications. The above input DC is usually a high-voltage DC with a voltage range of 200V˜850V. It may be provided by a battery on a transport vehicle, or it may be obtained by connecting the external AC power source R1 to the electrical power module device and then performing an AC-DC conversion using the AC/DC conversion module 1.
The low-voltage output DC obtained after the step-down conversion of the DC buck module 6 may be output to an external device R7 via a port P7 to meet the requirements of various possible applications. For example, the low-voltage output DC may be provided to a logic control board(s), a fan motor(s), a valve(s) and the like of the transport refrigeration unit. In specific applications, components such as a diode D2 may also be optionally disposed on a link from the DC buck module 6 to the port P7 to prevent the current from flowing in a reverse direction, thereby improving the safety of the entire system.
In the electrical power module device shown in FIG. 1 , a DC boost module 4 may be further provided. The DC boost module 4 may be configured to, in the case of a fuel-powered transport vehicle, step up a low-voltage input DC (such as 12V, 24V or 48V, etc., denoted by a symbol “R5” in FIG. 1 ) accessed via a port P5 by some devices or apparatuses (such as a low-voltage DC generator, etc.) disposed in the transport vehicle to a high-voltage DC, which may be processed and then provided to other functional modules in the electrical power module device or may be output to the outside; for example, the high-voltage DC may be input to the DC/AC conversion module 2 for conversion and then output to the outside, or the high-voltage DC may be input to the first IGBT module 3 and/or the second IGBT module 7 for processing and then output to the outside, which will be explained later in greater detail.
The control module 5 is a control portion in the electrical power module device, and may be connected with other modules in the electrical power module device so as to correspondingly control the operation of these modules. In order to simplify the figure, not all of these complex connection control circuits are drawn in FIG. 1 . In addition, a bus communication such as Controller Area Net-work Bus (CANBUS) may also be used to implement the communication connection between the control module 5 and the transport refrigeration unit. As a more specific exemplary description, the control module 5 may be connected to the logic control board in the transport refrigeration unit through a bus R6 via a port P6 to implement the above-mentioned communication connection.
In practical applications, various ways may be used to provide electrical power to the control module 5 itself. By way of example, the control module 5 may be supplied with electrical power using a low-voltage output DC output from the DC buck module 6 after the step-down conversion.
For another example, the control module 5 may be supplied with electrical power from a low-voltage DC accessed from an external apparatus R8 via a low-voltage input DC port P8. The external apparatus R8 may usually be a low-voltage battery on a transport vehicle, and it may provide electrical power to the control module 5 and the like, so that the electrical power is usually used only as a control power and not for supplying a large current. For example, when the electrical power module is in a standby mode, the DC buck module 6 has no input at this point, and therefore does not provide a low-voltage output DC. The control module 5 may control to communicate the low-voltage input DC port P8 with the port P7; that is, the low-voltage DC provided by the external apparatus R8 is used to supply electrical power to a controller and the like in the transport refrigeration unit, so that the machine set can operate at any time. In addition, components such as a diode D1 and a switch S3 may be optionally disposed on a link from the low-voltage input DC port P8 to the port P7 to prevent the following situation: when the electrical power module is in the working mode, the electrical power output from the DC buck module 6 will not be input to the external apparatus R8 such as the low-voltage battery via the low-voltage input DC port P8. As such, a load is prevented from being added to the charging of the low-voltage battery. In addition, if the DC buck module 6 fails to output the low-voltage output DC due to a failure or the like, the electrical power module may end the current working mode at this point, and then switch to the standby mode, in which the low-voltage output DC input from the low-voltage input DC port P8 discussed above is provided to the transport refrigeration unit via the port P7.
As another example, a battery may be separately configured for the electrical power module device or the control module 5, so that electrical power may be provided to the control module 5.
The electrical power module device may be provided with one or more operating modes. For example, in some operating modes, the control module 5 may perform various controls on the operation of one or more modules in the electrical power module device in order to meet actual application requirements.
For example, when in an operating mode, the control module 5 may control the operations of the DC boost module 4 and the DC buck module 6 to implement their respective functions.
As further another example, an AC port P1 and a DC port P2 may be configured in the electrical power module device at the same time, wherein the AC port P1 is configured to access the AC of the external AC power source R1, and the DC port P2 is configured to access the battery DC denoted by the symbol “R2” in FIG. 1 . The battery DC may be input to the DC/AC conversion module 2 to be converted into AC which is then provided to the external apparatus R3. In a case that the above-mentioned AC port P1 and DC port P2 are disposed at the same time, in order to ensure safety, when one of the two ports is used to access electrical power, the control module 5 performs a control such that a path for accessing power from the one port is in an on-state, and a path for accessing electrical power from the other port is in an off-state. As an example, this can be implemented by controlling on and off states of the switches S1 and S2 for example shown in FIG. 1 by the control module 5.
In addition, in an optional situation, the electrical power module device may be set to have a charging mode. In the charging mode, the control module 5 may be configured to connect the AC to the electrical power module device from the external AC power source R1 via the AC port P1, and then charge, via the DC port P2, the battery connected to it. In this way, the battery energy of the transport vehicle can be very conveniently supplemented.
As shown in FIG. 1 , in an optional situation, one or more IGBT modules and corresponding output ports may be disposed in the electrical power module device. Such IGBT modules may be connected to any port, interface and the like that can provide a high-voltage DC (such as an output end of the AC/DC conversion module 1, an output end of the DC boost module 4, the DC port P2, etc., that have already been discussed above) so as to achieve a stepless adjustment of the output power (that is, it can be adjusted from 0 (OFF) to a preset maximum power, and vice versa), and/or achieve on or off of the outward delivering path, which will be very convenient for various possible specific applications.
As an exemplary description, in the embodiment shown in FIG. 1 , the electrical power module device is provided with the first IGBT module 3 and the second IGBT module 7 which can provide electrical power to external components R4 and R9 via the output ports P4 and P9, respectively. Such external components R4, R9 may for example include, but are not limited to, an electric heater and the like of the transport refrigeration unit.
In connection with the embodiment shown in FIG. 1 , the electrical power module device and the structural components, functions, connections of the constituent modules, input ports, output ports and the like thereof have been described in detail above. In practical applications, all these components may be integrated and assembled together to form an electrical power module device having a compact structure, various functions and reliable performance. The electrical power module device can not only support a transport refrigeration unit on a battery-powered transport vehicle, but also support a transport refrigeration unit on a fuel-powered or hybrid powered transport vehicle, which can significantly reduce the use of cables on the site, save a lot of harness materials, greatly reduce the corresponding wiring operations, and improve the convenience and practicability; at the same time, a potential safety risk in existing apparatus caused by the existence of a lot of harnesses, connecting devices and the like is also reduced.
However, it should be noted that in specific applications, the present invention completely allows for various possible combinations of these component modules, input ports, output ports and the like in the electrical power module device so as to better meet actual application requirements.
For example, in FIG. 2 , eight configuration modes that can be selected by the electrical power module device in different situations of using a battery and a fuel as power respectively are illustrated in FIG. 2 by way of example only. In FIG. 2 , the symbol “√” is used to indicate that it has been selected for configuration in the electrical power module device, the symbol “X” is used to indicate that it has not been selected for configuration in the electrical power module device, and the text “optional” indicates that it may be configured in the electrical power module device, and may also be removed from the electrical power module device. Since the technical contents of these constituent modules, input ports, output ports and the like in the electrical power module device have been described in detail in the foregoing, those skilled in the art can fully understand these selectable configuration modes of the electrical power module device listed in the list of FIG. 2 by referring to the specific descriptions in the corresponding foregoing parts, and a description will not be repeated herein.
In addition, it should be understood that according to the spirit of the present invention, the electrical power module device is allowed to have more possible configuration modes, and is not only limited to the eight configuration modes shown in FIG. 2 . That is to say, for the functional modules, components, input ports, output ports and the like in the electrical power module device, any possible combination configuration of them may be implemented, and such combination configuration can be determined and adjusted according to specific application requirements. Since a modular design concept is adopted in the present invention, a required combination configuration of the functional modules, components, input ports, output ports and the like can be realized very conveniently and easily, thereby for example reducing costs, reducing product volume, save harness consumables, simplifying engineering wiring operations and achieving many other good technical effects.
As another aspect that is obviously superior to the related art, the present invention also provides a transport refrigeration system, which may include a transport refrigeration unit, a power module, and the electrical power module device designed and provided according to the present invention, so as to present the significant technical advantages of the solution of the present invention as described above.
Specifically, the transport refrigeration system may be disposed on, for example, a transport vehicle such as a vehicle (e.g., a pure electric vehicle, a hybrid powered vehicle, a fuel powered vehicle, and a rail vehicle), an aircraft, and a watercraft, wherein a refrigeration environment is provided by the transport refrigeration unit therein so as to refrigerate and protect the goods and the like stored in the transport vehicle during transport and the like.
For the power module, it can use batteries, fuels (such as gasoline, diesel, hydrogen, etc.) to provide power for the transport vehicle. The electrical power module device designed and provided according to the present invention can be connected to the power module so that electrical power can be supplied to the transport refrigeration unit in the transport refrigeration system. Regarding the specific components, functional configuration and arrangement position of the electrical power module device that can be used for the transport refrigeration unit, they may be flexibly set and adjusted according to specific application requirements.
For example, in practical applications, the specific arrangement position of the electrical power module device may be flexibly set according to the requirements; for example, the electrical power module device may be installed in the transport refrigeration unit or at any other suitable position on the transport vehicle.
The electrical power module device and the transport refrigeration system according to the present invention are explained in detail above by way of example only. These examples are only used to explain the principle of the present invention and embodiments thereof, and are not intended to limit the present invention. Those skilled in the art may also make various modifications and improvements without departing from the spirit and scope of the present invention. Therefore, all equivalent technical solutions shall fall within the scope of the present invention and be defined by the claims of the present invention.

Claims (16)

What is claimed is:
1. An electrical power module device, characterized in that the electrical power module device is used for an apparatus powered by a battery and a fuel, has a working mode and comprises:
a DC port configured to be connected to the battery to access electrical power;
a low-voltage input DC port configured to access a low-voltage DC from the apparatus and having a voltage lower than the DC provided by the battery to provide electrical power to a control module and an external device;
a DC buck module configured to step-down an input DC voltage to a low-voltage output DC for output;
a DC boost module configured to step-up a low-voltage input DC provided by the apparatus powered by the battery and the fuel to a high-voltage DC for output; and
the control module connected to the apparatus and configured to, in the working mode, control the operation of the DC buck module and the DC boost module.
2. The electrical power module device according to claim 1, further comprising:
an AC port configured to be connected to an external AC power source to access electrical power.
3. The electrical power module device according to claim 2, wherein the external device comprises a logic control board, a fan motor, and a valve of the apparatus.
4. The electrical power module device according to claim 2, wherein the electrical power module device further has:
a charging mode in which the control module controls the AC accessed from the external AC power source via the AC port to charge the battery connected via the DC port; and
a standby mode in which the control module controls the low-voltage DC to be accessed via the low-voltage input DC port and then output to the external device.
5. The electrical power module device according to claim 4, wherein the control module is configured such that:
in the working mode, when one of the AC port and the DC port is used to access electrical power, a path for accessing power from the one port is in an on-state, and a path for accessing electrical power from the other port is in an off-state; and/or
in the working mode, when the DC buck module fails to output the low-voltage output DC, the electrical power module device is switched to the standby mode.
6. The electrical power module device according to claim 2, further comprising:
an AC/DC conversion module connected to the control module, the AC port and the DC buck module, and configured to, in the working mode, convert the AC accessed from the external AC power source via the AC port to a DC and then provide the DC to the DC buck module; and
a DC/AC conversion module connected to the control module and the DC port, having a connection port for connecting with an external apparatus, and configured to, in the working mode, convert the DC accessed via the DC port to an AC and then provide the AC to the external apparatus via the connection port.
7. The electrical power module device according to claim 6, wherein the apparatus is a transport refrigeration unit on a transport vehicle, the external AC power source comprises a commercial power grid, and the external apparatus comprises a compressor and a compressor shell heater of the transport refrigeration unit.
8. The electrical power module device according to claim 7, wherein the control module and the transport refrigeration unit are communicated through a bus communication connection.
9. The electrical power module device according to claim 7, wherein the transport vehicle comprises a vehicle, an aircraft, and a watercraft, and the vehicle comprises a pure electric vehicle, a hybrid powered vehicle, a fuel powered vehicle, or a rail vehicle.
10. The electrical power module device according to claim 6, further comprising:
at least one output port; and
at least one Insulated Gate Bipolar Transistor (IGBT) module connected to the DC port, the AC/DC conversion module or the DC boost module, and connected to the output port and configured to control a path on/off state or/and a power magnitude externally delivered to an external component via the output port by the DC provided via the DC port, the AC/DC conversion module or the DC boost module.
11. The electrical power module device according to claim 10, wherein the external component comprises an electric heater for a transport refrigeration unit on a transport vehicle.
12. The electrical power module device according to claim 2, further comprising:
an AC/DC conversion module connected to the control module, the AC port and the DC buck module, and configured to, in the working mode, convert the AC accessed from the external AC power source via the AC port to a DC and then provide the DC to the DC buck module; and
a DC/AC conversion module connected to the control module and the AC/DC conversion module, the DC/AC conversion module having a connection port for connecting with an external apparatus, and configured to, in the working mode, convert the DC converted by the AC/DC conversion module to an AC and then provide the AC to the external apparatus via the connection port.
13. The electrical power module device according to claim 1, wherein the low-voltage output DC is configured to provide electrical power for the control module and the external device.
14. The electrical power module device according to claim 1, wherein a voltage range of the battery DC and the high-voltage DC from the DC boost module is 200V˜850V, a voltage value of the low-voltage output DC is 12V, 24V or 48V, and a voltage value of the low-voltage input DC is 12V, 24V or 48V.
15. A transport refrigeration system disposed on a transport vehicle, comprising:
a transport refrigeration unit configured to provide a refrigeration environment;
a power module configured to provide power for the transport vehicle by means of a battery and a fuel; and
an electrical power module device which is connected to the power module and is configured to provide electrical power for the transport refrigeration unit, the electrical power module device including:
a DC buck module configured to step-down an input DC voltage to a low-voltage output DC for output;
a DC boost module configured to step-up a low-voltage input DC provided by an apparatus powered by the fuel to a high-voltage DC for output; and
a control module connected to the apparatus and configured to control the operation of the DC buck module and the DC boost module.
16. The transport refrigeration system according to claim 15, wherein the electrical power module device is disposed in the transport refrigeration unit.
US16/775,813 2019-01-31 2020-01-29 Power module device and transport refrigeration system Active 2041-02-10 US11554639B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910099314.4 2019-01-31
CN201910099314.4A CN111509695A (en) 2019-01-31 2019-01-31 Power module device and transport refrigeration system

Publications (2)

Publication Number Publication Date
US20200247218A1 US20200247218A1 (en) 2020-08-06
US11554639B2 true US11554639B2 (en) 2023-01-17

Family

ID=69187727

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/775,813 Active 2041-02-10 US11554639B2 (en) 2019-01-31 2020-01-29 Power module device and transport refrigeration system

Country Status (3)

Country Link
US (1) US11554639B2 (en)
EP (1) EP3689662A3 (en)
CN (1) CN111509695A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230092009A1 (en) * 2022-07-01 2023-03-23 Navitas Semiconductor Limited Integrated transformer

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3720842A (en) 1971-10-07 1973-03-13 Thermo King Corp Transportable refrigeration unit having induction alternator-induction motor reconnection and control system
US6330176B1 (en) 2000-11-15 2001-12-11 Powerware Corporation Multi-input power transfer and uninterruptible power supply apparatus and methods of operation thereof
US20070209378A1 (en) 2006-03-10 2007-09-13 Larson Gerald L Vehicle integrated power and control strategy for cold plate refrigeration system
US20090018716A1 (en) 2007-07-12 2009-01-15 Joseph Mario Ambrosio Parallel hybrid drive system utilizing power take off connection as transfer for a secondary energy source
WO2010002644A1 (en) 2008-07-02 2010-01-07 Jerry Lee Wordsworth Intelligent power management system
US20100045105A1 (en) 2007-01-31 2010-02-25 Carrier Corporation Integrated multiple power conversion system for transport refrigeration units
US7750501B2 (en) 2005-10-27 2010-07-06 Continental Automotive Systems Us, Inc. System and method of over voltage control for a power system
US7797958B2 (en) 2006-11-15 2010-09-21 Glacier Bay, Inc. HVAC system controlled by a battery management system
US7878013B2 (en) 2005-10-21 2011-02-01 Dalkin Industries, Ltd. Trailer refrigeration system
US20110162395A1 (en) 2008-09-17 2011-07-07 Bruno Chakiachvili Electrically powered transport refrigeration units
US20120112693A1 (en) 2010-11-05 2012-05-10 Ruediger Soeren Kusch Apparatus and method for charging an electric vehicle
KR20120058669A (en) 2010-10-26 2012-06-08 우리산업 주식회사 Dual Power Linear Power Module System
US20130000342A1 (en) 2010-01-29 2013-01-03 Carrier Corporation Solar power assisted transport refrigeration systems, transport refrigeration units and methods for same
US8648574B2 (en) 2010-05-06 2014-02-11 Honda Motor Co., Ltd. Output control device for hybrid engine-driven power generator
US20140060097A1 (en) 2012-08-31 2014-03-06 Philip PERREAULT Refrigerated truck battery back-up system and related methods
US8946567B2 (en) 2008-10-31 2015-02-03 Hitachi Automotive Systems, Ltd. Power module, power converter device, and electrically powered vehicle
US9071078B2 (en) 2011-01-24 2015-06-30 Rocky Research Enclosure housing electronic components having hybrid HVAC/R system with power back-up
US9389007B1 (en) 2013-01-09 2016-07-12 New West Technologies, LLC Transportation refrigeration system with integrated power generation and energy storage
US20160268839A1 (en) 2013-10-30 2016-09-15 Schneider Electric It Corporation Power supply control
US9562715B2 (en) 2012-03-21 2017-02-07 Thermo King Corporation Power regulation system for a mobile environment-controlled unit and method of controlling the same
US9610824B2 (en) 2006-03-21 2017-04-04 Dometic Corporation Power supply system for a vehicle climate control unit
US9969273B2 (en) 2016-07-12 2018-05-15 Hamilton Sundstrand Corporation Integrated modular electric power system for a vehicle
US10046641B2 (en) 2014-03-19 2018-08-14 Motivo Engineering LLC Mobile power conversion and distribution system
US20180252774A1 (en) 2017-03-03 2018-09-06 Gentherm Incorporated Dual voltage battery system for a vehicle
US10074981B2 (en) 2015-09-13 2018-09-11 Alpha Technologies Inc. Power control systems and methods
WO2018226389A1 (en) 2017-06-07 2018-12-13 Carrier Corporation Hybrid power conversion system for a refrigerated transport vehicle and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001268900A (en) * 2000-03-22 2001-09-28 Masayuki Hattori Bi-directional step-up and step-down chopper circuit

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3720842A (en) 1971-10-07 1973-03-13 Thermo King Corp Transportable refrigeration unit having induction alternator-induction motor reconnection and control system
US6330176B1 (en) 2000-11-15 2001-12-11 Powerware Corporation Multi-input power transfer and uninterruptible power supply apparatus and methods of operation thereof
US7878013B2 (en) 2005-10-21 2011-02-01 Dalkin Industries, Ltd. Trailer refrigeration system
US7750501B2 (en) 2005-10-27 2010-07-06 Continental Automotive Systems Us, Inc. System and method of over voltage control for a power system
US20070209378A1 (en) 2006-03-10 2007-09-13 Larson Gerald L Vehicle integrated power and control strategy for cold plate refrigeration system
US9610824B2 (en) 2006-03-21 2017-04-04 Dometic Corporation Power supply system for a vehicle climate control unit
US7797958B2 (en) 2006-11-15 2010-09-21 Glacier Bay, Inc. HVAC system controlled by a battery management system
US20100045105A1 (en) 2007-01-31 2010-02-25 Carrier Corporation Integrated multiple power conversion system for transport refrigeration units
US20090018716A1 (en) 2007-07-12 2009-01-15 Joseph Mario Ambrosio Parallel hybrid drive system utilizing power take off connection as transfer for a secondary energy source
US8818588B2 (en) * 2007-07-12 2014-08-26 Odyne Systems, Llc Parallel hybrid drive system utilizing power take off connection as transfer for a secondary energy source
WO2010002644A1 (en) 2008-07-02 2010-01-07 Jerry Lee Wordsworth Intelligent power management system
US8295950B1 (en) * 2008-07-02 2012-10-23 Jerry Lee Wordsworth Intelligent power management system
US20110162395A1 (en) 2008-09-17 2011-07-07 Bruno Chakiachvili Electrically powered transport refrigeration units
US8946567B2 (en) 2008-10-31 2015-02-03 Hitachi Automotive Systems, Ltd. Power module, power converter device, and electrically powered vehicle
US20130000342A1 (en) 2010-01-29 2013-01-03 Carrier Corporation Solar power assisted transport refrigeration systems, transport refrigeration units and methods for same
US8648574B2 (en) 2010-05-06 2014-02-11 Honda Motor Co., Ltd. Output control device for hybrid engine-driven power generator
KR20120058669A (en) 2010-10-26 2012-06-08 우리산업 주식회사 Dual Power Linear Power Module System
US8378623B2 (en) * 2010-11-05 2013-02-19 General Electric Company Apparatus and method for charging an electric vehicle
US20120112693A1 (en) 2010-11-05 2012-05-10 Ruediger Soeren Kusch Apparatus and method for charging an electric vehicle
US9071078B2 (en) 2011-01-24 2015-06-30 Rocky Research Enclosure housing electronic components having hybrid HVAC/R system with power back-up
US9562715B2 (en) 2012-03-21 2017-02-07 Thermo King Corporation Power regulation system for a mobile environment-controlled unit and method of controlling the same
US20140060097A1 (en) 2012-08-31 2014-03-06 Philip PERREAULT Refrigerated truck battery back-up system and related methods
US9389007B1 (en) 2013-01-09 2016-07-12 New West Technologies, LLC Transportation refrigeration system with integrated power generation and energy storage
US20160268839A1 (en) 2013-10-30 2016-09-15 Schneider Electric It Corporation Power supply control
US10046641B2 (en) 2014-03-19 2018-08-14 Motivo Engineering LLC Mobile power conversion and distribution system
US10074981B2 (en) 2015-09-13 2018-09-11 Alpha Technologies Inc. Power control systems and methods
US9969273B2 (en) 2016-07-12 2018-05-15 Hamilton Sundstrand Corporation Integrated modular electric power system for a vehicle
US20180252774A1 (en) 2017-03-03 2018-09-06 Gentherm Incorporated Dual voltage battery system for a vehicle
US11215156B2 (en) * 2017-03-03 2022-01-04 Gentherm Incorporated Dual voltage battery system for a vehicle
WO2018226389A1 (en) 2017-06-07 2018-12-13 Carrier Corporation Hybrid power conversion system for a refrigerated transport vehicle and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
European Search Report for Application No. 20153228.0; dated Jul. 10, 2020; 16 Pages.

Also Published As

Publication number Publication date
CN111509695A (en) 2020-08-07
EP3689662A2 (en) 2020-08-05
US20200247218A1 (en) 2020-08-06
EP3689662A3 (en) 2020-08-12

Similar Documents

Publication Publication Date Title
US10434884B2 (en) Vehicle
JP6567830B2 (en) Vehicle propulsion system having a multi-channel DC bus and method of manufacturing the same
CN107054258B (en) Vehicle power distribution using relays with integrated voltage converters
CN111010037B (en) Power conversion apparatus
JP6352655B2 (en) Electric vehicle with improved electric drive system
US10780789B2 (en) Charging apparatus
US8441229B2 (en) System for recharging plug-in hybrid vehicle and control method for the same
US9774215B2 (en) Power conversion apparatus
US11827106B2 (en) Transport climate control system with an accessory power distribution unit for managing transport climate control loads
CN110494320B (en) Power supply system for vehicle
US20160001674A1 (en) Apparatus for providing an electric voltage with a serial stack converter and a drive arrangement
IT201800006790A1 (en) AUXILIARY POWER SUPPLY SYSTEM FOR HIGH POWER LOADS IN A HYBRID / ELECTRIC VEHICLE
CN115135527A (en) Current distributor unit for a commercial vehicle and commercial vehicle having a current distributor unit
US20230226919A1 (en) Electric power conversion system and vehicle
US11554639B2 (en) Power module device and transport refrigeration system
US10081254B2 (en) Method for coupling at least one secondary energy source to an energy supply network, in particular an on-board vehicle power supply
US20190322183A1 (en) Electrical energy system with fuel-cells
CN212749608U (en) Frequency conversion and speed regulation integrated machine electric control system
CN105109361A (en) Electric vehicle multifunctional electric power integration system and integration control system
CN110356234A (en) Vehicle powering system with redundancy and the method for controlling power supply system
US11667213B2 (en) Electromobility system for a vehicle
KR20220153129A (en) Power system for vehicle
CN204821196U (en) Multi -functional electric power integrated system of electric automobile
CN220511003U (en) Integrated motor control system of pure electric commercial vehicle with multiple power sections and multiple types of motors
CN212889876U (en) Sojourn vehicle

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: CARRIER AIR CONDITIONING AND REFRIGERATION R&D MANAGEMENT (SHANGHAI) CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHENG, PU;CHEN, LINHUI;SIGNING DATES FROM 20190630 TO 20190701;REEL/FRAME:051668/0451

Owner name: CARRIER CORPORATION, FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CARRIER AIR CONDITIONING AND REFRIGERATION R&D MANAGEMENT (SHANGHAI) CO., LTD.;REEL/FRAME:051668/0503

Effective date: 20190804

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE