TWM470365U - A system circuit for damping function inductor - Google Patents

A system circuit for damping function inductor Download PDF

Info

Publication number
TWM470365U
TWM470365U TW102217768U TW102217768U TWM470365U TW M470365 U TWM470365 U TW M470365U TW 102217768 U TW102217768 U TW 102217768U TW 102217768 U TW102217768 U TW 102217768U TW M470365 U TWM470365 U TW M470365U
Authority
TW
Taiwan
Prior art keywords
inductor
semiconductor
core
permanent magnet
magnetic
Prior art date
Application number
TW102217768U
Other languages
Chinese (zh)
Inventor
Fu-Zi Xu
Jie-Sheng Tu
Original Assignee
Fu-Zi Xu
Jie-Sheng Tu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fu-Zi Xu, Jie-Sheng Tu filed Critical Fu-Zi Xu
Priority to TW102217768U priority Critical patent/TWM470365U/en
Publication of TWM470365U publication Critical patent/TWM470365U/en

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

在系統電路中用於阻尼功能的電感器Inductor for damping function in system circuit

本創作有關於一種在系統電路中用於阻尼功能的電感器,其在系統電路中為正阻尼效應時可將電能放大,為負阻尼效應時可消除渦電流,使電源波形不易畸變。The present invention relates to an inductor for damping function in a system circuit, which can amplify the electric energy when the system has a positive damping effect, and can eliminate the eddy current when the negative damping effect is performed, so that the power waveform is not easily distorted.

圖一所示為習知電感器1,其包含:一鐵芯10、以及一捲繞在該鐵芯10上的線圈11。該鐵芯10多為錳鋅材質或鎳鋅材質所製成。圖一所示電感器1的電抗XL =2πf L,其僅具有基本的電感作用。當系統電路中的電能頻率過高時,該電感器1會在瞬間形成導線,而不會產生電感作用。高功率的電能流經該電感器1時,會令電感器1的溫度升高而耗能。1 shows a conventional inductor 1 comprising: an iron core 10; and a coil 11 wound around the core 10. The iron core 10 is mostly made of manganese zinc or nickel zinc. The reactance of inductor 1 shown in Figure 1 is X L = 2π f L, which has only a basic inductive effect. When the frequency of the power in the system circuit is too high, the inductor 1 will form a wire in an instant without inductive action. When high-powered electric energy flows through the inductor 1, the temperature of the inductor 1 rises and energy is consumed.

圖二所示為習知的半導體電感器2,其包含:一呈環狀的非晶矽的半導體磁芯12(Nanocrytalline core)、以及穿過該非晶矽的半導體磁芯12中央通孔121的導線13。所述半導體電感器2多用於電力轉成電能的系統電路上,憑藉磁能放大效應,能夠將電力輸出端所輸出電力的電流或電壓放大,提高電能增益。圖二所示半導體電感器2可產生高頻磁阻電感,適合用在移轉高頻、高功率電能的系統電路上。當高頻、高功率的電力流過該半導體電感器2時會產生高熱,使該半導體電感器2的溫度升高而耗能。實作中,該半導體電感器2必須置於冷卻液(絕緣油)內,以降低該半導體電 感器2的溫度,始能維持正常運作。2 shows a conventional semiconductor inductor 2 comprising: a ring-shaped amorphous germanium semiconductor core 12 and a wire passing through the central via 121 of the amorphous germanium core 12 13. The semiconductor inductor 2 is mostly used in a system circuit for converting electric power into electric energy, and the magnetic energy amplification effect can amplify the current or voltage of the power outputted from the power output end, thereby improving the electric energy gain. The semiconductor inductor 2 shown in FIG. 2 can generate a high-frequency magnetoresistive inductor and is suitable for use in a system circuit for transferring high-frequency, high-power electric energy. When high-frequency, high-power electric power flows through the semiconductor inductor 2, high heat is generated, and the temperature of the semiconductor inductor 2 is increased to consume energy. In practice, the semiconductor inductor 2 must be placed in a coolant (insulating oil) to reduce the semiconductor power. The temperature of the sensor 2 can maintain normal operation.

本創作所提供在系統電路中能夠產生阻尼功能的電感器,其包含:一呈封閉磁路的非晶矽的半導體磁芯、一與該半導體磁芯結合的永久磁鐵、以及與該半導體磁芯搭配使用的導線。所述永久磁鐵直接吸附在該半導體磁芯上,而與該半導體磁芯結合成一體。所述半導體磁芯可產生高頻磁阻電感,其電感隨電能頻率的增加而增加。所述永久磁鐵可產生負電感,其電感隨電能頻率的增加而降低。The present invention provides an inductor capable of generating a damping function in a system circuit, comprising: an amorphous germanium semiconductor magnetic core enclosing a magnetic circuit, a permanent magnet coupled to the semiconductor magnetic core, and the semiconductor magnetic core Used with the wire. The permanent magnet is directly adsorbed on the semiconductor magnetic core and integrated with the semiconductor magnetic core. The semiconductor magnetic core can generate a high frequency magnetoresistive inductor whose inductance increases as the frequency of the electrical energy increases. The permanent magnet can produce a negative inductance whose inductance decreases as the frequency of the electrical energy increases.

所述非晶矽的半導體磁芯為環狀,其中央為一通孔。該導線係貫穿該半導體磁芯的中央通孔。The amorphous germanium semiconductor magnetic core is annular and has a through hole in the center. The wire is through a central through hole of the semiconductor core.

所述電感器的導線捲繞在該半導體磁芯上。A wire of the inductor is wound around the semiconductor core.

所述永久磁鐵的磁性強度在5000高斯以上。The permanent magnet has a magnetic strength of 5,000 gauss or more.

所述電感器用於正阻尼效應時,能夠將電能放大;用於負阻尼效應時,能夠消除渦電流。The inductor can amplify electrical energy when used for positive damping effects, and can eliminate eddy currents when used for negative damping effects.

所述電感器的電抗會產生振盪作用,能夠消除渦電流,不會發生溫度升高的耗能情形。The reactance of the inductor generates an oscillating action, which eliminates eddy currents and does not cause an energy increase in temperature rise.

1‧‧‧電感器1‧‧‧Inductors

2‧‧‧電感器2‧‧‧Inductors

3‧‧‧電感器3‧‧‧Inductors

4‧‧‧電感器4‧‧‧Inductors

10‧‧‧鐵芯10‧‧‧ iron core

11‧‧‧導線11‧‧‧Wire

20‧‧‧半導體磁芯20‧‧‧Semiconductor core

21‧‧‧永久磁鐵21‧‧‧ permanent magnet

22‧‧‧導線22‧‧‧Wire

23‧‧‧導線23‧‧‧Wire

201‧‧‧穿孔201‧‧‧Perforation

30‧‧‧電源輸出裝置30‧‧‧Power output device

31‧‧‧控制器31‧‧‧ Controller

32‧‧‧負載端32‧‧‧Load side

40‧‧‧自然能源產生裝置40‧‧‧Natural energy generation device

41‧‧‧電堆電池41‧‧‧Electric stack battery

42‧‧‧變頻器42‧‧‧Inverter

43‧‧‧變壓器43‧‧‧Transformers

44‧‧‧阻尼二極體44‧‧‧damped diode

45‧‧‧阻尼電容45‧‧‧ damping capacitor

50‧‧‧電源裝置50‧‧‧Power supply unit

51‧‧‧高頻震盪器51‧‧‧High frequency oscillator

52‧‧‧電容電池52‧‧‧Capacitive battery

LS 、LS1 、LS2 、LP 、LP1 、LP2 ‧‧‧電感L S , L S1 , L S2 , L P , L P1 , L P2 ‧‧‧Inductors

圖一為第一習用電感器的結構圖。Figure 1 is a structural diagram of a first conventional inductor.

圖二為第二習用電感器的結構圖。Figure 2 is a structural diagram of a second conventional inductor.

圖三為本創作電感器的結構圖Figure 3 is the structure diagram of the inductor

圖四為本創作電感器的等效電路圖。Figure 4 is the equivalent circuit diagram of the inductor.

圖五為為圖四的等效電路圖。Figure 5 is an equivalent circuit diagram of Figure 4.

圖六為本創作在交流型態的系統電路中做負阻尼效應的電路結構圖。Figure 6 is a circuit diagram showing the negative damping effect of the creation in the AC type system circuit.

圖七為本創作在直流型態的系統電路中做負阻尼效應的電路結構圖。Figure 7 is a circuit diagram of the circuit that performs the negative damping effect in the DC-type system circuit.

圖八為本創作另一實施例的結構圖。FIG. 8 is a structural diagram of another embodiment of the present creation.

圖九為本創作在系統電路中做正阻尼效應的電路結構圖。Figure 9 is a circuit diagram showing the positive damping effect of the creation in the system circuit.

請參閱圖三所示本創作的實施例。本創作所揭示的電感器3,包含:一能夠構成封閉磁路的環狀非晶矽的半導體磁芯20(Nanocrystalline core)、一與該半導體磁芯20結合的永久磁鐵21、以及與該半導體磁芯20搭配使用的導線22。本實施例中,該導線22係穿過該非晶矽的半導體磁芯20中央通孔201。所述半導體磁芯20可產生高頻磁阻電感,其電感量隨頻率的增加而增加。所述永久磁鐵21可產生負電感(電導特性),其電感量隨頻率的增加而降低。因此,本創作的電感器在系統電路中的功效等效於包含有串聯電感與並聯電感的電感器,見圖四所示本創作的等效電路圖。圖四所示的等效電路圖,等效於圖五所示的等效電路圖。圖五中,電感LS 表示圖四中串聯的電感LS1 、LS2 ,其電抗為XLS =2πf LS ,其電抗隨頻率的增加而增加。電感LP 表示圖四中並聯的電感LP1 、LP2 ,其電抗為XLP =1/(2πf LP ),其電抗隨頻率的增加而降低。Please refer to the embodiment of the present creation shown in FIG. The inductor 3 disclosed in the present invention comprises: a semiconductor core 20 capable of forming a closed amorphous magnetic circuit, a permanent magnet 21 bonded to the semiconductor core 20, and a semiconductor The core 20 is used in conjunction with the wire 22. In this embodiment, the wire 22 passes through the central through hole 201 of the amorphous semiconductor core 20. The semiconductor magnetic core 20 can generate a high frequency magnetoresistive inductor whose inductance increases with increasing frequency. The permanent magnet 21 can generate a negative inductance (conductivity characteristic) whose inductance decreases as the frequency increases. Therefore, the efficiency of the inductor of the present invention in the system circuit is equivalent to the inductor including the series inductance and the parallel inductance, as shown in FIG. 4, the equivalent circuit diagram of the creation. The equivalent circuit diagram shown in Figure 4 is equivalent to the equivalent circuit diagram shown in Figure 5. In Figure 5, the inductance L S represents the inductance L S1 , L S2 in series in Figure 4, and its reactance is X LS = 2π f L S , and its reactance increases with increasing frequency. The inductance L P represents the inductance L P1 , L P2 connected in parallel in FIG. 4 , and its reactance is X LP =1/(2π f L P ), and its reactance decreases as the frequency increases.

本創作的電感器3的等效電抗XE 以物理方程式表示,XE =| XL |=| XLS -XLP |=2πf LS +1/(2πf LP )。前式中的“=”號,表示「等效」之意。本創作的電感器3於系統電路中用於阻尼效應時,包含有電納器的功能。本創作的電感器3用於正阻尼效應時,能夠將電能放大(磁飽和);用於負阻尼效應時,能夠消除渦電流(磁感應)。The equivalent reactance X E of the inductor 3 of the present invention is expressed by a physical equation, X E =| X L |=| X LS -X LP |=2π f L S +1/(2π f L P ). The "=" sign in the preceding formula means "equivalent". The inductor 3 of the present invention includes the function of the susceptor when used for damping effects in the system circuit. The inductor 3 of the present invention can amplify electric energy (magnetic saturation) when used for a positive damping effect, and can eliminate eddy current (magnetic induction) when used for a negative damping effect.

所述永久磁鐵21為強磁性磁鐵,其磁性強度達5000高斯以上為較佳。該永久磁鐵21直接吸附在該半導體磁芯20上,而與該半導體磁芯20結合成一體。配合圖五所示的等效電路圖。當高頻電能流經圖三所示的電感器3時,當Ls的電抗為升高狀態時,LP 的電抗即為降低狀態;當LS 的電抗為降低狀態時,LP 的電抗即為升高狀態。故該電感器3的電抗(XLS ,XLP )會產生振盪的作用,消除渦電流,不會發生溫度升高的耗能情形。The permanent magnet 21 is a ferromagnetic magnet, and its magnetic strength is preferably 5,000 gauss or more. The permanent magnet 21 is directly adsorbed on the semiconductor magnetic core 20 and integrated with the semiconductor magnetic core 20. Match the equivalent circuit diagram shown in Figure 5. When the high-frequency power flows through the inductor 3 shown in FIG. 3, when the reactance of the Ls is in an elevated state, the reactance of the L P is a reduced state; when the reactance of the L S is in a reduced state, the reactance of the L P is To raise the state. Therefore, the reactance (X LS , X LP ) of the inductor 3 generates an oscillating effect, eliminates eddy currents, and does not cause an energy increase in temperature rise.

請參閱圖六所示本創作在交流型態的系統電路中做負阻尼效應的電路結構圖。所述系統電路中包含:一交流電源輸出裝置30、一電感器3、一控制器31(Inverter)、一負載端32。所述電感器3為圖三所示者,其在系統電路中做負阻尼效應的消除湧量電流。該電感器3設置在該交流電源輸出裝置30與該控制器31之間,並分別與該交流電源輸出裝置30、該控制器31之間作電氣連接。該控制器31與該負載端32作電氣連接。所述控制器31內含有阻尼電容(圖上未示出),而與該電感器3構成阻尼器。該阻尼電容為可與所述電感器3產生共振的緩衝電容器。當高頻、高功率的電源流經所述電感器3時,可濾除突波(濾波作用),使電源波形不會畸變,使控制器31能夠正常地運作,且該電感器3不會產生溫升現象。Please refer to the circuit structure diagram of the negative damping effect of the creation in the AC type system circuit as shown in Fig. 6. The system circuit includes an AC power output device 30, an inductor 3, a controller 31 (Inverter), and a load terminal 32. The inductor 3 is shown in FIG. 3, which performs a negative damping effect on the system circuit to eliminate the surge current. The inductor 3 is disposed between the AC power output device 30 and the controller 31, and is electrically connected to the AC power output device 30 and the controller 31, respectively. The controller 31 is electrically coupled to the load terminal 32. The controller 31 contains a damping capacitor (not shown) and constitutes a damper with the inductor 3. The snubber capacitor is a snubber capacitor that can resonate with the inductor 3. When a high-frequency, high-power power source flows through the inductor 3, the surge (filtering action) can be filtered out, so that the power waveform is not distorted, so that the controller 31 can operate normally, and the inductor 3 does not A temperature rise phenomenon occurs.

請參閱圖七所示本創作在直流型態的系統電路中做負阻尼效應的電路結構圖。所述系統電路中包含一自然能源產生裝置40、一電感器3、一電堆電池41、一變頻器42、一變壓器43。所述自然能源產生裝置40可以是太陽能板裝置。所述電感器3為圖三所示者。電流流經該電感器3時,該永久磁鐵21會產生負電感效應,而使電感器3的半導體磁芯20產生快速地變電磁鐵(磁化),以及快速地消磁作用,能夠加速對電堆電池41的充電速 度。自然能源所產生的電力經該電感器3時,可濾除突波(濾波作用),以保護電堆電池41。所述系統電路中設置有阻尼電容45,該阻尼電容45與該電感器3構成阻尼器。該阻尼電容45為可與所述電感器3產生共振的緩衝電容器。該電堆電池41充電迴路中設置有一具飛輪性質的阻尼二極體44。該變頻器42與該電堆電池41之間為電氣性連接。該電堆電池41所輸出的電流,可供該變頻器42做正常地運作。本系統電路中,電堆電池41所輸出的直流電能經該變頻器42的處理後輸出交流電能,再經過該變壓器43,轉變成可供使用端應用的電能/電力。Please refer to the circuit structure diagram of this creation for negative damping effect in the DC type system circuit as shown in Figure 7. The system circuit includes a natural energy generating device 40, an inductor 3, a stack battery 41, a frequency converter 42, and a transformer 43. The natural energy generating device 40 may be a solar panel device. The inductor 3 is as shown in FIG. When the current flows through the inductor 3, the permanent magnet 21 generates a negative inductance effect, which causes the semiconductor core 20 of the inductor 3 to rapidly change the electromagnet (magnetization) and rapidly demagnetize, thereby accelerating the stack. Charging speed of battery 41 degree. When the electric power generated by the natural energy passes through the inductor 3, the surge (filtering action) can be filtered to protect the stack battery 41. A damping capacitor 45 is disposed in the system circuit, and the damping capacitor 45 and the inductor 3 constitute a damper. The snubber capacitor 45 is a snubber capacitor that can resonate with the inductor 3. A damper diode 44 having a flywheel property is disposed in the charging circuit of the stack battery 41. The frequency converter 42 is electrically connected to the stack battery 41. The current output by the stack battery 41 is available for the inverter 42 to operate normally. In the circuit of the system, the DC power outputted by the stack battery 41 is outputted by the inverter 42 to output AC power, and then passed through the transformer 43 to be converted into electric energy/electricity for use by the terminal.

請參閱圖八所示本創作電感器的另一實施例。該電感器4包含:一呈環狀的非晶矽的半導體磁芯20(Nanocrytalline core)、一與該半導體磁芯20結合的永久磁鐵21、以及捲繞在該半導體磁芯20上的導線23。請參閱圖九所示本創作在系統電路中做正阻尼效應的電路結構圖。所述系統電路包含有一電源裝置50、一電感器4、一高頻振盪器51、一電容電池52、一負載53。所述電感器4為圖八所示者,在系統電路中作磁電放大的正阻尼效應。所述電源裝置50所輸出的電流,經該電感器4時會產生磁電放大效應,在電力轉成電能時能夠產生放大增益的作用。其中,最大增益值發生在磁感應飽和的狀態下。該電感器4內產生的振盪作用,能夠消除渦電流,而不會發生溫度升高的耗能情形。Please refer to another embodiment of the present inventive inductor shown in FIG. The inductor 4 includes a ring-shaped amorphous germanium semiconductor core 20, a permanent magnet 21 bonded to the semiconductor core 20, and a wire 23 wound around the semiconductor core 20. . Please refer to the circuit structure diagram of this creation for positive damping effect in the system circuit as shown in Figure 9. The system circuit includes a power supply device 50, an inductor 4, a high frequency oscillator 51, a capacitor battery 52, and a load 53. The inductor 4 is a positive damping effect of magneto-amplification in the system circuit as shown in FIG. The current output by the power supply device 50 generates a magneto-amplification effect through the inductor 4, and can generate an amplification gain when the power is converted into electrical energy. Among them, the maximum gain value occurs in the state of magnetic induction saturation. The oscillating action generated in the inductor 4 can eliminate the eddy current without the energy consumption of the temperature rise.

本創作相對於圖一、圖二所示習用者,主要在改變電感器的鐵芯構成。本創作的鐵芯構成包含:一呈環狀的非晶矽的半導體磁芯20、一與該半導體磁芯20結合的永久磁鐵21,且該永久磁鐵直接吸附在該半導體磁芯上,而與該半導體磁芯結合成一體。Compared with the readers shown in Figure 1 and Figure 2, this creation mainly changes the core of the inductor. The iron core of the present invention comprises: a ring-shaped amorphous germanium semiconductor core 20, a permanent magnet 21 coupled to the semiconductor core 20, and the permanent magnet is directly adsorbed on the semiconductor core, and The semiconductor magnetic cores are integrated into one body.

以上所述係利用較佳實施例詳細說明本創作,而非限制本創作之範圍。大凡熟知此類技藝人士皆能明瞭,適當而作些微的改變及調整,仍將不失本創作之要義所在,亦不脫離本創作之精神和範圍。The above description is by way of a detailed description of the present invention, and is not intended to limit the scope of the present invention. Anyone who is familiar with such a skilled person can understand, and appropriate changes and adjustments will not lose the essence of this creation, and will not deviate from the spirit and scope of this creation.

3‧‧‧電感器3‧‧‧Inductors

20‧‧‧半導體磁芯20‧‧‧Semiconductor core

21‧‧‧永久磁鐵21‧‧‧ permanent magnet

22‧‧‧導線22‧‧‧Wire

201‧‧‧穿孔201‧‧‧Perforation

Claims (7)

一種電感器,尤指在系統電路中能夠產生阻尼功能的電感器,其包含設置有:一呈封閉磁路的非晶矽的半導體磁芯(Nanocrystalline core)、一與該半導體磁芯結合的永久磁鐵、以及與該半導體磁芯搭配使用的導線;所述永久磁鐵直接吸附在該半導體磁芯上,而與該半導體磁芯結合成一體;所述半導體磁芯可產生高頻磁阻電感,其電感隨電能頻率的增加而增加;所述永久磁鐵可產生負電感,其電感隨電能頻率的增加而降低。An inductor, especially an inductor capable of generating a damping function in a system circuit, comprising: a semiconductor core provided with a closed magnetic circuit, and a permanent semiconductor bonded to the semiconductor core a magnet and a wire for use with the semiconductor core; the permanent magnet is directly adsorbed on the semiconductor core and integrated with the semiconductor core; the semiconductor core can generate a high frequency magnetoresistive inductor, The inductance increases as the frequency of the electrical energy increases; the permanent magnet can produce a negative inductance whose inductance decreases as the frequency of the electrical energy increases. 如申請專利範圍第1項所述之電感器,其中,所述非晶矽的半導體磁芯為環狀,其中央為一通孔;該導線係貫穿該半導體磁芯的中央通孔。The inductor of claim 1, wherein the amorphous germanium semiconductor core is annular and has a through hole in a center thereof; the wire is through a central through hole of the semiconductor core. 如申請專利範圍第1項所述之電感器,其中,該導線捲繞在該半導體磁芯上。The inductor of claim 1, wherein the wire is wound around the semiconductor core. 如申請專利範圍第1項所述之電感器,其中,所述永久磁鐵的磁性強度在5000高斯以上。The inductor according to claim 1, wherein the permanent magnet has a magnetic strength of 5,000 gauss or more. 一種在系統電路中能夠產生阻尼功能的電感器,其鐵芯由一呈封閉磁路的非晶矽的半導體磁芯、一與該半導體磁芯結合的永久磁鐵所構成;該永久磁鐵直接吸附在該半導體磁芯上,而與該半導體磁芯結合成一體。An inductor capable of generating a damping function in a system circuit, the core of which is composed of an amorphous germanium magnetic core enclosing a magnetic circuit and a permanent magnet coupled to the semiconductor magnetic core; the permanent magnet is directly adsorbed on The semiconductor magnetic core is integrated with the semiconductor magnetic core. 如申請專利範圍第5項所述之電感器,其中,所述非晶矽的半導體磁芯為環狀,其中央為一通孔。The inductor of claim 5, wherein the amorphous germanium semiconductor core is annular and has a through hole in the center. 如申請專利範圍第5項所述之電感器,其中,所述永久磁鐵的磁性強度在5000高斯以上。The inductor according to claim 5, wherein the permanent magnet has a magnetic strength of 5,000 gauss or more.
TW102217768U 2013-09-23 2013-09-23 A system circuit for damping function inductor TWM470365U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102217768U TWM470365U (en) 2013-09-23 2013-09-23 A system circuit for damping function inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102217768U TWM470365U (en) 2013-09-23 2013-09-23 A system circuit for damping function inductor

Publications (1)

Publication Number Publication Date
TWM470365U true TWM470365U (en) 2014-01-11

Family

ID=50347815

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102217768U TWM470365U (en) 2013-09-23 2013-09-23 A system circuit for damping function inductor

Country Status (1)

Country Link
TW (1) TWM470365U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3098954A1 (en) 2015-05-13 2016-11-30 Fu-Tzu Hsu Magnetoelectric device and power converter
EP3312980A1 (en) 2016-10-19 2018-04-25 Fu-Tzu Hsu Damper and an electrical energy converting device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3098954A1 (en) 2015-05-13 2016-11-30 Fu-Tzu Hsu Magnetoelectric device and power converter
EP3312980A1 (en) 2016-10-19 2018-04-25 Fu-Tzu Hsu Damper and an electrical energy converting device using the same
RU2664234C1 (en) * 2016-10-19 2018-08-16 Фу-Тцзу ХСУ Damper and device for transformation of power energy that uses damper

Similar Documents

Publication Publication Date Title
Hou et al. Analysis of output current characteristics for higher order primary compensation in inductive power transfer systems
US10163562B2 (en) Coupled inductor structure
US9570225B2 (en) Magnetoelectric device capable of storing usable electrical energy
CN102437657A (en) Multi-coil wire energy collector
TWI404086B (en) A transformer with power factor compensation and a dc/ac inverter constructed thereby
TWM470365U (en) A system circuit for damping function inductor
JP6102242B2 (en) Wireless power supply device and wireless power transmission device
Lu et al. Design of Planar Magnetic Integrated LCL-EMI Filter for the Grid-Connected Inverter
WO2009010003A1 (en) Power coupler
US20140085757A1 (en) Surge blocking inductor
CN203562259U (en) Inductor with damping function in system circuit
CN202871520U (en) Vertical type electronic transformer
CN103107012A (en) Electronic current transformer and on-line energy-receiving device of high-voltage side of electronic current transformer
CN202871518U (en) Flat framework electronic transformer
JP2016214074A (en) Magnetoelectric device capable of amplifying attenuation power
CN203181262U (en) High frequency electric welding bench electromagnetic induction heating system
CN203351344U (en) APFC inductor based on high-frequency UPS
CN203644511U (en) Switched reluctance type transformer
CN204614600U (en) A kind of smart electronics transformer
JP2013162628A (en) Power generating system, and ground leakage current suppression method of power generating system
Lu et al. Parameters design method of magnetic coupled coil in ICPT system
TWI721524B (en) Resonant generator
CN202871522U (en) Rectangular skeleton electronic transformer
CN103545090A (en) Direct current reactor for large-scale frequency conversion controller
TWI352363B (en)

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees