TWI777525B - Switch capable of decreasing parasitic inductance - Google Patents

Switch capable of decreasing parasitic inductance Download PDF

Info

Publication number
TWI777525B
TWI777525B TW110115186A TW110115186A TWI777525B TW I777525 B TWI777525 B TW I777525B TW 110115186 A TW110115186 A TW 110115186A TW 110115186 A TW110115186 A TW 110115186A TW I777525 B TWI777525 B TW I777525B
Authority
TW
Taiwan
Prior art keywords
current
top wire
parasitic inductance
wire
switch capable
Prior art date
Application number
TW110115186A
Other languages
Chinese (zh)
Other versions
TW202228295A (en
Inventor
游焜煌
陳建餘
廖庭維
翁武得
邱建維
永中 胡
楊大勇
Original Assignee
立錡科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 立錡科技股份有限公司 filed Critical 立錡科技股份有限公司
Priority to US17/568,637 priority Critical patent/US11522536B2/en
Publication of TW202228295A publication Critical patent/TW202228295A/en
Application granted granted Critical
Publication of TWI777525B publication Critical patent/TWI777525B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electronic Switches (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

The present invention provides a switch capable of decreasing parasitic inductance. The switch capable of decreasing parasitic inductance includes a semiconductor device, a first top metal line, and a second top metal line. The second top metal line is electrically connected to a power input terminal and a current inflow end of the semiconductor device, wherein a first part of the first top metal line is arranged adjacent to a second part of the second top metal line in parallel. When the semiconductor device is turned on, an input current outflows from the power input terminal, and is divided into a first current and a second current. When the first current and the second current flow through the first part and the second part respectively, the first current and the second current flow opposite to each other, to reduce a first superposition parasitic inductance of the first top metal line and the second top metal line.

Description

可降低寄生電感之開關Switches that reduce parasitic inductance

本發明有關於一種可降低寄生電感之開關,特別是指一種用於切換式電源供應電路之可降低寄生電感之開關。 The present invention relates to a switch capable of reducing parasitic inductance, and more particularly, to a switch capable of reducing parasitic inductance for a switching power supply circuit.

圖1顯示一種典型的降壓型切換式電源供應電路10之電路示意圖。降壓型切換式電源供應電路10包括控制電路1與功率級電路2。如圖1所示,功率級電路2包括上橋開關11、下橋開關12與電感13。上橋開關11與下橋開關12分別根據上橋訊號UG與下橋訊號LG而切換,以將輸入電壓Vin轉換為輸出電壓Vout;並產生電感電流IL,其經由相位節點PH,流經電感13,以供應電源予負載電路3。 FIG. 1 shows a schematic circuit diagram of a typical step-down switching power supply circuit 10 . The step-down switching power supply circuit 10 includes a control circuit 1 and a power stage circuit 2 . As shown in FIG. 1 , the power stage circuit 2 includes an upper bridge switch 11 , a lower bridge switch 12 and an inductor 13 . The upper bridge switch 11 and the lower bridge switch 12 are switched according to the upper bridge signal UG and the lower bridge signal LG respectively, so as to convert the input voltage Vin into the output voltage Vout; and generate the inductor current IL, which flows through the inductor 13 through the phase node PH , to supply power to the load circuit 3 .

圖2A顯示上橋開關11的上視示意圖。圖2B顯示上橋開關11沿著圖2A之剖線AA’取得的剖視示意圖,而圖2C顯示上橋開關11沿著圖2A之剖線BB’取得的剖視示意圖。請同時參照圖1及圖2A-2B,當上橋開關11導通(亦即上橋開關11中的半導體元件110之閘極117電連接至高位準電壓),輸入電流Iin自電源輸入端120流出,並分為子電流Iin11及Iin12如圖2B所示,其中輸入電流Iin之子電流Iin11從金屬導線121經過金屬插塞(plug)122a及金屬導線123a流至汲極119,而輸入電流Iin之子電流Iin12係從金屬導線121經過金屬插塞122b及金屬導線123b流至汲極119’。當上橋開關11保持導通,參照圖1及圖2C,導通電流Ic1從汲極119 經由半導體層內所形成之通道流至源極118,接著從源極118流至金屬插塞127a、金屬導線126及金屬插塞125;而導通電流Ic2從汲極119’經由半導體層內所形成之另一通道流至源極118’,接著從源極118’流至金屬插塞127b、金屬導線126及金屬插塞125。導通電流Ic1及Ic2合併為電感電流IL,電感電流IL最後經由金屬導線124流至相位節點PH。 FIG. 2A shows a schematic top view of the upper bridge switch 11 . 2B shows a schematic cross-sectional view of the upper bridge switch 11 taken along the line AA' of FIG. 2A , and FIG. 2C shows a schematic cross-sectional view of the upper bridge switch 11 taken along the line BB' of FIG. 2A . Please refer to FIG. 1 and FIGS. 2A-2B at the same time, when the upper bridge switch 11 is turned on (that is, the gate 117 of the semiconductor element 110 in the upper bridge switch 11 is electrically connected to a high level voltage), the input current Iin flows out from the power input terminal 120 , and divided into sub-currents Iin11 and Iin12 as shown in FIG. 2B , wherein the sub-current Iin11 of the input current Iin flows from the metal wire 121 to the drain 119 through the metal plug 122a and the metal wire 123a, and the sub-current of the input current Iin is Iin12 flows from the metal wire 121 to the drain 119' through the metal plug 122b and the metal wire 123b. When the upper bridge switch 11 is kept on, referring to FIG. 1 and FIG. 2C , the on-current Ic1 flows from the drain 119 The channel formed in the semiconductor layer flows to the source electrode 118, and then flows from the source electrode 118 to the metal plug 127a, the metal wire 126 and the metal plug 125; and the on-current Ic2 is formed from the drain electrode 119' through the semiconductor layer The other channel flows to the source electrode 118 ′, and then flows from the source electrode 118 ′ to the metal plug 127 b , the metal wire 126 and the metal plug 125 . The on-currents Ic1 and Ic2 are combined into the inductor current IL, and the inductor current IL finally flows to the phase node PH through the metal wire 124 .

如圖2A所示,先前技術為了將上橋開關11的尺寸盡可能地縮小,以降低製造成本與提高操作效率,而將金屬導線121與124,相鄰排列並盡可能地彼此靠近;然而,根據安培環路定律(Ampère's circuital law),上橋開關11導通時,流經平行的金屬導線121及124中輸入電流Iin及電感電流IL的方向相同(由上視圖2A視之,輸入電流Iin及電感電流IL皆由右往左流動,如圖中虛線空心箭號所示意),而其分別所產生的寄生電感方向相同,疊加後,將使上橋開關11操作轉換率(slew rate)受到限制。 As shown in FIG. 2A , in order to reduce the size of the upper bridge switch 11 as much as possible, in order to reduce the manufacturing cost and improve the operation efficiency, in the prior art, the metal wires 121 and 124 are arranged adjacently and as close to each other as possible; however, According to Ampère's circuital law, when the upper bridge switch 11 is turned on, the directions of the input current Iin and the inductor current IL flowing through the parallel metal wires 121 and 124 are the same (as seen from the upper view 2A, the input current Iin and The inductor currents IL all flow from right to left, as indicated by the dashed hollow arrows in the figure), and the parasitic inductances generated by them are in the same direction. After superposition, the operation slew rate of the upper bridge switch 11 will be limited. .

有鑑於此,本發明提出一種能夠降低金屬導線中之寄生電感的開關。 In view of this, the present invention provides a switch capable of reducing parasitic inductance in metal wires.

於一觀點中,本發明提供了一種可降低寄生電感之開關,其包括:一半導體元件,用以根據一控制電壓而決定電連接其中之一電流流入端與一電流流出端,以導通該半導體元件;一第一頂層導線,用以電連接一電源輸入端與該電流流入端;以及一第二頂層導線,用以電連接該電源輸入端與該電流流入端,其中該第二頂層導線與該第一頂層導線形成於同一高度,且該第一頂層導線之一第一部分與該第二頂層導線之一第二部分平行相鄰排列;其中,當該半導體元件在一導通操作中,一輸入電流由該電源輸入端流出並分為一第 一電流與一第二電流;其中,該第一電流與該第二電流分別流經該第一部分與該第二部分,且該第一電流與該第二電流分別流經該第一部分與該第二部分時,彼此反向,以降低該第一頂層導線與該第二頂層導線之一第一疊加寄生電感。 In one aspect, the present invention provides a switch capable of reducing parasitic inductance, comprising: a semiconductor element for electrically connecting one of the current inflow terminals and one of the current outflow terminals according to a control voltage to turn on the semiconductor element; a first top wire for electrically connecting a power input terminal and the current inflow terminal; and a second top wire for electrically connecting the power input terminal and the current inflow terminal, wherein the second top wire and The first top wire is formed at the same height, and a first portion of the first top wire and a second portion of the second top wire are arranged in parallel and adjacent; wherein, when the semiconductor device is in a conduction operation, an input The current flows out from the power input and is divided into a first a current and a second current; wherein, the first current and the second current flow through the first part and the second part respectively, and the first current and the second current flow through the first part and the second current respectively When the two parts are opposite to each other, the first superimposed parasitic inductance of one of the first top wire and the second top wire is reduced.

於一實施例中,該可降低寄生電感之開關更包括:一第三頂層導線,用以電連接該電流流出端與一節點;以及一第四頂層導線,用以電連接該電流流出端與該節點,其中該第四頂層導線與該第三頂層導線形成於同一高度,且該第三頂層導線之一第三部分與該第四頂層導線之一第四部分平行相鄰排列;其中,當該半導體元件在該導通操作中,該輸入電流由該電流流出端流出並分為一第三電流與一第四電流;其中,該第三電流與該第四電流分別流經該第三部分與該第四部分,且該第三電流與該第四電流分別流經該第三部分與該第四部分時,彼此反向,以降低該第三頂層導線與該第四頂層導線之一第二疊加寄生電感。 In one embodiment, the switch capable of reducing parasitic inductance further includes: a third top wire for electrically connecting the current outflow terminal and a node; and a fourth top wire for electrically connecting the current outflow terminal and the node. the node, wherein the fourth top wire and the third top wire are formed at the same height, and a third portion of the third top wire and a fourth portion of the fourth top wire are arranged in parallel and adjacent; wherein, when During the conduction operation of the semiconductor device, the input current flows out from the current outflow terminal and is divided into a third current and a fourth current; wherein the third current and the fourth current flow through the third part and the fourth current, respectively. the fourth part, and the third current and the fourth current flow through the third part and the fourth part respectively, they are opposite to each other to lower one of the third top wire and the fourth top wire superimposed parasitic inductance.

於一實施例中,該第三頂層導線與該第二頂層導線形成於同一高度,且該第三頂層導線之該第三部分與該第二頂層導線之該第二部分平行相鄰排列;其中,該第三電流與該第二電流分別流經該第三部分與該第二部分時,彼此反向,以降低該第三頂層導線與該第二頂層導線之一第三疊加寄生電感。 In one embodiment, the third top wire and the second top wire are formed at the same height, and the third portion of the third top wire and the second portion of the second top wire are arranged in parallel and adjacent to each other; wherein , when the third current and the second current flow through the third part and the second part respectively, they are opposite to each other, so as to reduce the third superimposed parasitic inductance of the third top wire and one of the second top wire.

於一實施例中,該可降低寄生電感之開關為一降壓型切換式電源供應電路中之一上橋開關。 In one embodiment, the switch capable of reducing parasitic inductance is a high-side switch in a step-down switching power supply circuit.

於一實施例中,該可降低寄生電感之開關為一升壓型切換式電源供應電路中之一下橋開關。 In one embodiment, the switch capable of reducing parasitic inductance is a low-bridge switch in a boost switching power supply circuit.

於一實施例中,該半導體元件為一橫向擴散金屬氧化物半導體(Lateral Diffused Metal Oxide Semiconductor,LDMOS)元件。 In one embodiment, the semiconductor device is a Lateral Diffused Metal Oxide Semiconductor (LDMOS) device.

於一實施例中,該LDMOS元件包括:一井區,具有一第一導電型,形成於一半導體層中;一本體區,具有一第二導電型,形成於該半導體層中,該本體區與該井區在一通道方向上連接;一閘極,形成於該半導體層上,部分該本體區位於該閘極正下方並連接於該閘極,以提供該半導體元件在該導通操作中之一反轉電流通道;以及一源極與一汲極,具有該第一導電型,該源極與該汲極分別位於該閘極之外部不同側下方之該本體區中與該井區中,且於該通道方向上,一漂移區位於該汲極與該本體區之間的該井區中,用以作為該半導體元件在該導通操作中之一漂移電流通道。 In one embodiment, the LDMOS device includes: a well region with a first conductivity type formed in a semiconductor layer; a body region with a second conductivity type formed in the semiconductor layer, the body region is connected with the well region in a channel direction; a gate electrode is formed on the semiconductor layer, and a part of the body region is located directly under the gate electrode and is connected to the gate electrode, so as to provide the semiconductor element with a an inversion current channel; and a source electrode and a drain electrode having the first conductivity type, the source electrode and the drain electrode are respectively located in the body region and the well region under different sides of the outside of the gate electrode, And in the channel direction, a drift region is located in the well region between the drain electrode and the body region, and is used as a drift current channel of the semiconductor element during the conduction operation.

於一實施例中,該第一頂層導線、該第二頂層導線、該第三頂層導線與該第四頂層導線形成於同一高度,且該電源輸入端與該節點形成於同一高度。 In one embodiment, the first top wire, the second top wire, the third top wire and the fourth top wire are formed at the same height, and the power input terminal and the node are formed at the same height.

於一實施例中,該半導體元件包括一第一LDMOS元件與一第二LDMOS元件,該第一LDMOS元件與該第二LDMOS元件共用同一本體區與同一本體極,且該第一LDMOS元件與該第二LDMOS元件彼此鏡像排列。 In one embodiment, the semiconductor element includes a first LDMOS element and a second LDMOS element, the first LDMOS element and the second LDMOS element share the same body region and the same body pole, and the first LDMOS element and the The second LDMOS elements are arranged in mirror images of each other.

於一實施例中,該第一頂層導線與該第二頂層導線由上視圖視之,於一通道方向上,跨越該第一LDMOS元件與該第二LDMOS元件各自的一井區、該本體區、該本體極、一閘極、一源極與一汲極。 In one embodiment, the first top wire and the second top wire are viewed from a top view, in a channel direction, across a well region and the body region of the first LDMOS device and the second LDMOS device respectively , the body electrode, a gate electrode, a source electrode and a drain electrode.

本發明之一優點係為本發明可降低金屬導線中之寄生電感。 One advantage of the present invention is that the present invention can reduce the parasitic inductance in the metal wires.

底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。 The following describes in detail with specific embodiments, when it is easier to understand the purpose, technical content, characteristics and effects of the present invention.

1:控制電路 1: Control circuit

2:功率級電路 2: Power stage circuit

3:負載電路 3: Load circuit

10:降壓型切換式電源供應電路 10: Step-down switching power supply circuit

11:上橋開關 11: Upper bridge switch

12:下橋開關 12: Lower bridge switch

13:電感 13: Inductance

21,31:可降低寄生電感之開關 21, 31: Switches that reduce parasitic inductance

110:半導體元件 110: Semiconductor Components

117:閘極 117: Gate

118,118’:源極 118,118': source

119,119’:汲極 119,119': drain pole

120:電源輸入端 120: Power input terminal

121,123a,123b,124,126,223a1,223a2,223b1,223b2,226a,226b,323a2,323b1:金屬導線 121, 123a, 123b, 124, 126, 223a1, 223a2, 223b1, 223b2, 226a, 226b, 323a2, 323b1: metal wires

122a,122b,125,127a,127b,222a1,222a2,222b1,222b2,225a,225b,227a1,227a2,227b1,227b2,322a2,322b1,325a,325b:金屬插塞 122a,122b,125,127a,127b,222a1,222a2,222b1,222b2,225a,225b,227a1,227a2,227b1,227b2,322a2,322b1,325a,325b: metal plug

210,310:半導體元件 210,310: Semiconductor Components

211,311:基板 211,311: Substrates

211’,311’:半導體層 211', 311': semiconductor layer

211a,311a:上表面 211a, 311a: upper surface

211b,311b:下表面 211b, 311b: lower surface

212,312:井區 212, 312: Well area

212a,212b,312a,312b:漂移區 212a, 212b, 312a, 312b: Drift region

213a,213a’,313a,313a’:反轉區 213a, 213a', 313a, 313a': Inversion zone

214,214’,314,314’:漂移氧化區 214, 214', 314, 314': drift oxide zone

215,315:本體區 215,315: Ontology area

216,316:本體極 216,316: Body pole

217,217’,317,317’:閘極 217, 217', 317, 317': gate

218,218’,318,318’:源極 218, 218', 318, 318': source

219,219’,319,319’:汲極 219, 219', 319, 319': drain

220,320:電源輸入端 220,320: power input

221a,321a:第一頂層導線 221a, 321a: first top layer conductor

221b,321b:第二頂層導線 221b, 321b: Second top wire

224a,324a:第三頂層導線 224a, 324a: Third top wire

224b,324b:第四頂層導線 224b, 324b: Fourth top wire

2171,2171’,3171,3171’:介電層 2171, 2171', 3171, 3171': Dielectric layer

2172,2172’,3172,3172’:導電層 2172, 2172', 3172, 3172': Conductive layer

2173,2173’,3173,3173’:間隔層 2173, 2173', 3173, 3173': spacer layer

2211:第一部分 2211: Part 1

2212:第二部分 2212: Part II

2213:第三部分 2213: Part Three

2214:第四部分 2214: Part Four

Ic1,Ic2,Ic11,Ic12,Ic21,Ic22,Ic13,Ic31:導通電流 Ic1,Ic2,Ic11,Ic12,Ic21,Ic22,Ic13,Ic31: On current

Iin:輸入電流 Iin: input current

Iin1:第一電流 Iin1: the first current

Iin2:第二電流 Iin2: second current

Iin3:第三電流 Iin3: the third current

Iin4:第四電流 Iin4: the fourth current

Iin11,Iin12,Iin13,Iin21,Iin22,Iin23,Iin31,Iin32,Iin41,Iin42:子電流 Iin11,Iin12,Iin13,Iin21,Iin22,Iin23,Iin31,Iin32,Iin41,Iin42: Sub current

IL:電感電流 IL: inductor current

LG:下橋訊號 LG: Lower bridge signal

LT1,LT2:橫向擴散金屬氧化物半導體(LDMOS)元件 LT1, LT2: Lateral Diffused Metal Oxide Semiconductor (LDMOS) devices

PH:相位節點 PH: Phase Node

UG:上橋訊號 UG: Upper bridge signal

Vin:輸入電壓 Vin: input voltage

Vout:輸出電壓 Vout: output voltage

圖1顯示一習知的降壓型切換式電源供應電路之電路示意圖。 FIG. 1 shows a schematic circuit diagram of a conventional step-down switching power supply circuit.

圖2A係顯示用於習知之降壓型切換式電源供應電路之功率級中,用以作為上橋開關之半導體元件的上視示意圖。 FIG. 2A is a schematic top view of a semiconductor device used as a high-bridge switch in a power stage of a conventional step-down switching power supply circuit.

圖2B係圖2A沿著剖線AA’取得之半導體元件的剖視示意圖。 FIG. 2B is a schematic cross-sectional view of the semiconductor device taken along the line AA' in FIG. 2A .

圖2C係圖2A沿著剖線BB’取得之半導體元件的剖視示意圖。 FIG. 2C is a schematic cross-sectional view of the semiconductor device taken along line BB' in FIG. 2A .

圖3A係根據本發明之一實施例顯示可降低寄生電感之開關的上視示意圖。 3A is a schematic top view showing a switch capable of reducing parasitic inductance according to an embodiment of the present invention.

圖3B係根據本發明之一實施例顯示可降低寄生電感之開關的上視示意圖。 3B is a schematic top view showing a switch capable of reducing parasitic inductance according to an embodiment of the present invention.

圖3C係圖3A沿著剖線CC’取得之可降低寄生電感之開關的剖視示意圖。 FIG. 3C is a schematic cross-sectional view of the switch with reduced parasitic inductance taken along the line CC' in FIG. 3A .

圖3D係圖3A沿著剖線DD’取得之可降低寄生電感之開關的剖視示意圖。 FIG. 3D is a schematic cross-sectional view of the switch with reduced parasitic inductance taken along line DD' in FIG. 3A .

圖3E係圖3A沿著剖線EE’取得之可降低寄生電感之開關的剖視示意圖。 FIG. 3E is a schematic cross-sectional view of the switch with reduced parasitic inductance taken along line EE' in FIG. 3A .

圖3F係圖3A沿著剖線FF’取得之可降低寄生電感之開關的剖視示意圖。 FIG. 3F is a schematic cross-sectional view of the switch with reduced parasitic inductance taken along line FF' in FIG. 3A .

圖4A係根據本發明之另一實施例顯示可降低寄生電感之開關的上視示意圖。 4A is a schematic top view showing a switch capable of reducing parasitic inductance according to another embodiment of the present invention.

圖4B係圖4A沿著剖線GG’取得之可降低寄生電感之開關的剖視示意圖。 FIG. 4B is a schematic cross-sectional view of the switch with reduced parasitic inductance taken along the line GG' in FIG. 4A .

圖4C係圖4A沿著剖線HH’取得之可降低寄生電感之開關的剖視示意圖。 FIG. 4C is a schematic cross-sectional view of the switch with reduced parasitic inductance taken along the line HH' in FIG. 4A .

有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之較佳實施例的詳細說明中,將可清楚的呈現。本發明中的圖式均屬示意,主要意在表示製程步驟以及各層之間之上下次序關係,至於形狀、厚度與寬度則並未依照比例繪製。 The foregoing and other technical contents, features and effects of the present invention will be clearly presented in the following detailed description of the preferred embodiments with reference to the drawings. The drawings in the present invention are schematic, mainly intended to represent the process steps and the top-bottom order relationship between the layers, and the shapes, thicknesses and widths are not drawn to scale.

圖3A與3B係根據本發明之一實施例顯示可降低寄生電感之開關21的上視示意圖。圖3C係圖3A沿著剖線CC’取得之可降低寄生電感之開關21的剖視示意圖。圖3D係圖3A沿著剖線DD’取得之可降低寄生電感之開關21的剖視示意圖。如圖3A與3B所示,並參閱圖3C與3D,本發明之可降低寄生電感之開關21包括半導體元件210、第一頂層導線221a及第二頂層導線221b。請同時參照圖3A及圖3C,第一頂層導線221a用以電連接電源輸入端220與電流流入端(例如汲極219及219’)。請同時參照圖3A及圖3D,第二頂層導線221b用以電連接電源輸入端220與電流流入端(例如汲極219及219’)。於一實施例中,第二頂層導線221b與第一頂層導線221a形成於同一高度。於一實施例中,如圖3B所示,第一頂層導線221a之第一部分2211(例如但不限於圖3B中之上方粗黑長虛點線框所示)與第二頂層導線221b之第二部分2212(例如但不限於圖3B中之上方粗黑虛線框所示)平行相鄰排列。 3A and 3B are schematic top views showing the switch 21 for reducing parasitic inductance according to an embodiment of the present invention. FIG. 3C is a schematic cross-sectional view of the switch 21 for reducing parasitic inductance, taken along the line CC' in FIG. 3A . FIG. 3D is a schematic cross-sectional view of the switch 21 for reducing parasitic inductance taken along the line DD' in FIG. 3A . As shown in FIGS. 3A and 3B , and referring to FIGS. 3C and 3D , the switch 21 capable of reducing parasitic inductance of the present invention includes a semiconductor device 210 , a first top layer wire 221 a and a second top layer wire 221 b . 3A and 3C at the same time, the first top layer wire 221a is used to electrically connect the power input terminal 220 and the current inflow terminal (eg, the drain electrodes 219 and 219'). 3A and 3D at the same time, the second top layer wire 221b is used to electrically connect the power input terminal 220 and the current inflow terminal (eg, the drain electrodes 219 and 219'). In one embodiment, the second top-layer wires 221b and the first top-layer wires 221a are formed at the same height. In one embodiment, as shown in FIG. 3B , the first portion 2211 of the first top layer wire 221a (such as but not limited to the upper thick black and long dotted frame in FIG. 3B ) and the second portion of the second top layer wire 221b Portions 2212 (such as, but not limited to, those shown by the upper thick black dashed box in FIG. 3B ) are arranged in parallel and adjacent.

如圖3A所示,當半導體元件210在導通操作中,輸入電流由電源輸入端220流出並分為第一電流Iin1與第二電流Iin2。第一電流Iin1與第二電流Iin2分別流經第一部分2211與第二部分2212,且第一電流Iin1與第二電流Iin2分別流經第一部分2211與第二部分2212時,彼此反向,因此,其分別所產生的寄生電感方向相反,疊加後,大致上可以彼此互相抵銷,而降低第一頂層導線221a與第二頂層導線221b之第一疊加寄生電感,進而提高可降低寄生電感之開關21的操作轉換率。 As shown in FIG. 3A , when the semiconductor device 210 is in the conduction operation, the input current flows from the power input terminal 220 and is divided into the first current Iin1 and the second current Iin2 . When the first current Iin1 and the second current Iin2 flow through the first part 2211 and the second part 2212 respectively, and the first current Iin1 and the second current Iin2 flow through the first part 2211 and the second part 2212 respectively, they are opposite to each other. Therefore, The parasitic inductances generated by them are in opposite directions. After being superimposed, they can substantially cancel each other, thereby reducing the first superimposed parasitic inductance of the first top-layer wire 221a and the second top-layer wire 221b, thereby improving the switch 21 that can reduce the parasitic inductance. operation conversion rate.

如圖3A所示,本發明之可降低寄生電感之開關21更包括第三頂層導線224a以及第四頂層導線224b。圖3E係圖3A沿著剖線EE’取得之可降低寄生電感之開關21的剖視示意圖。請同時參照圖3A及圖3E,第三頂層導線224a用以電連接電流流出端(例如源極218及218’)與節點(例如相位節點PH)。圖3F係圖3A沿著剖線FF’取得之可降低寄生電感之開關21的剖視示意圖。請同時參照圖3A及圖3F,第四頂層導線224b用以電連接電流流出端(例如源極218及218’)與節點(例如相位節點PH)。於一實施例中,第四頂層導線224b與第三頂層導線224a形成於同一高度。如圖3A所示,第三頂層導線224a之第三部分2213(例如但不限於圖3B中之下方粗黑長虛點線框所示)與第四頂層導線224b之第四部分2214(例如但不限於圖3B中之下方粗黑虛線框所示)平行相鄰排列。 As shown in FIG. 3A , the switch 21 capable of reducing parasitic inductance of the present invention further includes a third top layer wire 224a and a fourth top layer wire 224b. FIG. 3E is a schematic cross-sectional view of the switch 21 for reducing parasitic inductance taken along the line EE' in FIG. 3A . 3A and 3E at the same time, the third top layer wire 224a is used to electrically connect the current outflow terminals (eg, the source electrodes 218 and 218') and the node (eg, the phase node PH). FIG. 3F is a schematic cross-sectional view of the switch 21 for reducing parasitic inductance taken along the line FF' in FIG. 3A . 3A and 3F at the same time, the fourth top layer wire 224b is used to electrically connect the current outflow terminals (eg, the source electrodes 218 and 218') and the node (eg, the phase node PH). In one embodiment, the fourth top wire 224b and the third top wire 224a are formed at the same height. As shown in FIG. 3A, the third portion 2213 of the third top layer wire 224a (such as, but not limited to, shown in the lower thick black long dashed frame in FIG. 3B) and the fourth portion 2214 of the fourth top layer wire 224b (such as but not limited to It is not limited to the parallel and adjacent arrangement shown in the lower thick black dashed box in FIG. 3B .

如圖3A所示,當半導體元件210在導通操作中,導通電流Ic11、Ic12、Ic21及Ic22由電流流出端(例如源極218及218’)流出並分為第三電流Iin3與第四電流Iin4。第三電流Iin3與第四電流Iin4分別流經第三部分2213與第四部分2214,且第三電流Iin3與第四電流Iin4分別流經第三部分2213與第四部分2214時,彼此反向,以降低第三頂層導線224a與第四頂層導線224b之第二疊加寄生電感。於一實施例中,如圖3A所示,第三頂層導線224a與第二頂層導線221b形成於同一高度。於一實施例中,如圖3A所示,第三頂層導線224a之第三部分2213與第二頂層導線221b之第二部分2212平行相鄰排列。如圖3A所示,當半導體元件210在導通操作中,第三電流Iin3與第二電流Iin2分別流經第三部分2213與第二部分2212時,彼此反向,以降低第三頂層導線224a與第二頂層導線221b之第三疊加寄生電感。於一實施例中,第一頂層導線221a、第二頂層導線221b、第三頂層導線224a與第四頂層導線224b形成於同一高度,且電源輸入端220與節點(例如相位節點PH)形成於同一高度。於一實施例中,可降低寄生電感之開關21可為 降壓型切換式電源供應電路中之上橋開關。於另一實施例中,可降低寄生電感之開關21可為升壓型切換式電源供應電路中之下橋開關。 As shown in FIG. 3A , when the semiconductor device 210 is in the ON operation, the ON currents Ic11 , Ic12 , Ic21 and Ic22 flow out from the current outflow terminals (eg, the source electrodes 218 and 218 ′) and are divided into a third current Iin3 and a fourth current Iin4 . The third current Iin3 and the fourth current Iin4 flow through the third portion 2213 and the fourth portion 2214 respectively, and when the third current Iin3 and the fourth current Iin4 flow through the third portion 2213 and the fourth portion 2214 respectively, they are opposite to each other, In order to reduce the second superimposed parasitic inductance of the third top layer wire 224a and the fourth top layer wire 224b. In one embodiment, as shown in FIG. 3A , the third top layer wires 224a and the second top layer wires 221b are formed at the same height. In one embodiment, as shown in FIG. 3A , the third portion 2213 of the third top layer wire 224a and the second portion 2212 of the second top layer wire 221b are arranged in parallel and adjacent to each other. As shown in FIG. 3A , when the semiconductor device 210 is in the ON operation, when the third current Iin3 and the second current Iin2 flow through the third portion 2213 and the second portion 2212 respectively, they are opposite to each other, so as to reduce the connection between the third top layer wire 224a and the second portion 2212 . The third superimposed parasitic inductance of the second top layer conductor 221b. In one embodiment, the first top wire 221a, the second top wire 221b, the third top wire 224a and the fourth top wire 224b are formed at the same height, and the power input terminal 220 and the node (eg, the phase node PH) are formed at the same height high. In one embodiment, the switch 21 that can reduce parasitic inductance can be High-side bridge switch in a step-down switching power supply circuit. In another embodiment, the switch 21 capable of reducing parasitic inductance can be a lower bridge switch in a boost switching power supply circuit.

圖3B係根據本發明之一實施例顯示可降低寄生電感之開關21的上視示意圖。圖3B顯示了第一電流Iin1、第二電流Iin2、第三電流Iin3及第四電流Iin4分別對應流經第一頂層導線221a、第二頂層導線221b、第三頂層導線224a及第四頂層導線224b所產生的寄生電感及其方向。如圖3B所示,前述各電流流經各頂層導線時,所產生的寄生電感,彼此可以互相抵消部分的寄生電感,如以下所列每一項中之頂層導線的兩個部分,其所分別產生的寄生電感,或多或少可以彼此相互抵消:1.第一頂層導線221a之靠近電源輸入端220部分與第二頂層導線221b之靠近電源輸入端220部分;2.第一頂層導線221a之遠離電源輸入端220部分與第二頂層導線221b之遠離電源輸入端220部分;3.第三頂層導線224a之靠近相位節點PH部分與第四頂層導線224b之靠近相位節點PH部分;4.第三頂層導線224a之遠離相位節點PH部分與第四頂層導線224b之遠離相位節點PH部分;以上所列每一項之頂層導線的兩個部分,其所產生的寄生電感由於彼此方向相反,故可相互抵銷,而達到降低寄生電感之功效。 FIG. 3B is a schematic top view showing the switch 21 capable of reducing parasitic inductance according to an embodiment of the present invention. 3B shows that the first current Iin1 , the second current Iin2 , the third current Iin3 and the fourth current Iin4 flow through the first top wire 221 a , the second top wire 221 b , the third top wire 224 a and the fourth top wire 224 b respectively. The resulting parasitic inductance and its direction. As shown in FIG. 3B , the parasitic inductances generated when the aforementioned currents flow through the top-layer wires can cancel out some of the parasitic inductances. The generated parasitic inductances can more or less cancel each other out: 1. The part of the first top layer wire 221a close to the power input end 220 and the second top layer wire 221b close to the power input end 220; 2. The first top layer wire 221a is close to the power input end 220; The part far from the power input terminal 220 and the part far from the power input terminal 220 of the second top wire 221b; 3. The part of the third top wire 224a close to the phase node PH and the part of the fourth top wire 224b close to the phase node PH; 4. The third The portion of the top layer conductor 224a that is far away from the phase node PH and the portion of the fourth top layer conductor 224b that are far away from the phase node PH; the parasitic inductances generated by the two portions of the top layer conductor of each item listed above are opposite to each other, so they can mutually offset to achieve the effect of reducing parasitic inductance.

請參照圖3C,本發明之可降低寄生電感之開關21包括半導體元件210,用以根據控制電壓而決定電連接其中之電流流入端(例如汲極219及219’)與電流流出端(例如源極218及218’),以導通半導體元件210。如圖3C所示,可降低寄生電感之開關21包括半導體元件210。半導體元件210包括:橫向擴散金屬氧化物半導體(Lateral Diffused Metal Oxide Semiconductor,LDMOS)元件LT1及 LT2。LDMOS元件LT1包括:井區212、漂移氧化區214、本體區215、本體極216、閘極217、源極218以及汲極219。LDMOS元件LT2包括:井區212、漂移氧化區214’、本體區215、本體極216、閘極217’、源極218’以及汲極219’。其中,半導體元件210在製作時,LDMOS元件LT1與LT2共用本體區215與本體極216,且LDMOS元件LT1與LT2彼此鏡像排列,以組成半導體元件210。因此,如圖3C所示,源極218’鏡像對稱於源極218,閘極217’鏡像對稱於閘極217,以此類推。 Referring to FIG. 3C , the switch 21 with reduced parasitic inductance of the present invention includes a semiconductor element 210 for electrically connecting the current inflow terminals (eg, drains 219 and 219 ′) and the current outflow terminals (eg, source) according to the control voltage. poles 218 and 218 ′) to turn on the semiconductor device 210 . As shown in FIG. 3C , the switch 21 capable of reducing parasitic inductance includes a semiconductor element 210 . The semiconductor element 210 includes: a Lateral Diffused Metal Oxide Semiconductor (LDMOS) element LT1 and LT2. The LDMOS device LT1 includes: a well region 212 , a drift oxide region 214 , a body region 215 , a body electrode 216 , a gate electrode 217 , a source electrode 218 and a drain electrode 219 . The LDMOS element LT2 includes: a well region 212, a drift oxide region 214', a body region 215, a body electrode 216, a gate electrode 217', a source electrode 218' and a drain electrode 219'. When the semiconductor element 210 is fabricated, the LDMOS elements LT1 and LT2 share the body region 215 and the body electrode 216 , and the LDMOS elements LT1 and LT2 are arranged in mirror images to form the semiconductor element 210 . Therefore, as shown in Figure 3C, source 218' is mirror-symmetrical to source 218, gate 217' is mirror-symmetrical to gate 217, and so on.

在一實施例中,第一頂層導線221a、第二頂層導線221b、第三頂層導線224a及第四頂層導線224b由上視圖視之,於通道方向上,跨越LDMOS元件LT1與LDMOS元件LT2各自的井區212、本體區215、本體極216、閘極217及217’、源極218及218’與汲極219及219’。 In one embodiment, the first top-level wiring 221a, the second top-level wiring 221b, the third top-level wiring 224a, and the fourth top-level wiring 224b are viewed from the top view, in the channel direction, across the respective LDMOS element LT1 and LDMOS element LT2 A well region 212, a body region 215, a body electrode 216, gate electrodes 217 and 217', source electrodes 218 and 218', and drain electrodes 219 and 219'.

半導體層211’形成於基板211上,半導體層211’於垂直方向(如圖3C中之實線箭號方向所示意,下同)上,具有相對之上表面211a與下表面211b。基板211例如但不限於為一P型或N型的半導體基板。半導體層211’例如以磊晶的製程步驟,形成於基板211上,或是以部分基板211作為半導體層211’。形成半導體層211’的方式,為本領域中具有通常知識者所熟知,在此不予贅述。 The semiconductor layer 211' is formed on the substrate 211, and the semiconductor layer 211' has opposite upper surfaces 211a and lower surfaces 211b in the vertical direction (as indicated by the solid arrow direction in FIG. 3C, the same below). The substrate 211 is, for example, but not limited to, a P-type or N-type semiconductor substrate. The semiconductor layer 211' is formed on the substrate 211 by, for example, an epitaxial process step, or a part of the substrate 211 is used as the semiconductor layer 211'. The method of forming the semiconductor layer 211' is well known to those skilled in the art, and will not be repeated here.

請繼續參閱圖3C,漂移氧化區214及214’分別形成於上表面211a上並分別連接於上表面211a,且分別位於對應的部分漂移區212a及212b(如圖3C中LDMOS元件LT1及LT2中的虛線框所示意)的正上方,並分別連接於對應的漂移區212a及212b。漂移氧化區214及214’例如但不限於如圖所示之區域氧化(local oxidation of silicon,LOCOS)結構,亦可為淺溝槽絕緣(shallow trench isolation,STI)結構或化學氣相沉積(chemical vapor deposition,CVD)氧化結構。 Please continue to refer to FIG. 3C , the drift oxide regions 214 and 214 ′ are respectively formed on the upper surface 211 a and connected to the upper surface 211 a respectively, and are respectively located in the corresponding part of the drift regions 212 a and 212 b (as shown in the LDMOS devices LT1 and LT2 in FIG. 3C ) The dotted line box of ) is directly above and connected to the corresponding drift regions 212a and 212b, respectively. The drift oxide regions 214 and 214' are, for example, but not limited to, the local oxidation of silicon (LOCOS) structure as shown in the figure, and may also be a shallow trench isolation (STI) structure or a chemical vapor deposition (chemical vapor deposition) structure. vapor deposition, CVD) oxidation structure.

井區212具有第一導電型,形成於半導體層211’中,且於垂直方向上,井區212位於上表面211a下並連接於上表面211a。井區212例如由至少一離子植入製程步驟所形成。本體區215具有第二導電型,形成於井區212中,且於垂 直方向上,本體區215位於上表面211a下並分別連接於上表面211a。本體極216具有第二導電型,用以作為本體區215之電性接點,於垂直方向上,本體極216形成於上表面211a下並連接於上表面211a之對應的本體區215中。閘極217’及217分別形成於半導體層211’之上表面211a上,且於垂直方向上,部分本體區215位於閘極217’及217正下方並分別連接於閘極217’及217,以分別提供對應的半導體元件210在導通操作中之反轉區213a’及213a,反轉區213a’及213a分別位於對應的部分閘極217’及217正下方並分別連接對應的閘極217’及217。 The well region 212 has the first conductivity type and is formed in the semiconductor layer 211', and in the vertical direction, the well region 212 is located under the upper surface 211a and connected to the upper surface 211a. The well region 212 is formed, for example, by at least one ion implantation process step. The body region 215 has the second conductivity type, is formed in the well region 212, and is vertically In the straight direction, the body regions 215 are located under the upper surface 211a and are respectively connected to the upper surface 211a. The body electrode 216 has the second conductivity type and is used as an electrical contact of the body region 215. In the vertical direction, the body electrode 216 is formed under the upper surface 211a and connected to the corresponding body region 215 of the upper surface 211a. The gates 217' and 217 are respectively formed on the upper surface 211a of the semiconductor layer 211', and in the vertical direction, a part of the body region 215 is located directly under the gates 217' and 217 and connected to the gates 217' and 217, respectively, so as to The inversion regions 213a' and 213a of the corresponding semiconductor element 210 in the turn-on operation are respectively provided, and the inversion regions 213a' and 213a are respectively located directly under the corresponding partial gate electrodes 217' and 217 and are respectively connected to the corresponding gate electrodes 217' and 213a. 217.

請繼續參閱圖3C,源極218’及218與汲極219’及219具有第一導電型,於垂直方向上,源極218’及218與汲極219’及219分別形成於上表面211a下並分別連接於上表面211a,且源極218’及218與汲極219’及219分別位於對應的閘極217’及217在通道方向(如圖中虛線箭號所示意,下同)之外部下方之本體區215中與遠離本體區215側之井區212中,且於通道方向上,漂移區212b及212a分別位於對應的汲極219’及219與本體區215之間,靠近上表面211a之井區212中,用以作為LDMOS元件LT2及LT1在導通操作中之漂移電流通道。 Please continue to refer to FIG. 3C, the source electrodes 218' and 218 and the drain electrodes 219' and 219 have the first conductivity type. In the vertical direction, the source electrodes 218' and 218 and the drain electrodes 219' and 219 are respectively formed under the upper surface 211a and are respectively connected to the upper surface 211a, and the source electrodes 218' and 218 and the drain electrodes 219' and 219 are respectively located outside the corresponding gate electrodes 217' and 217 in the channel direction (as indicated by the dashed arrows in the figure, the same below) In the body region 215 below and in the well region 212 on the side away from the body region 215, and in the channel direction, the drift regions 212b and 212a are located between the corresponding drain electrodes 219' and 219 and the body region 215, respectively, close to the upper surface 211a The well region 212 is used as a drift current path for the LDMOS elements LT2 and LT1 in the turn-on operation.

需說明的是,所謂反轉區213a’及213a係指LDMOS元件LT2及LT1在導通操作中因施加於對應的閘極217’及217的電壓,而使對應的閘極217’及217的下方形成反轉層(inversion layer)以使導通電流通過的區域,介於對應的源極218’及218與對應的漂移區212b及212a之間,此為本領域具有通常知識所熟知,在此不予贅述,本發明其他實施例以此類推。 It should be noted that the so-called inversion regions 213 a ′ and 213 a refer to the voltages applied to the corresponding gate electrodes 217 ′ and 217 during the turn-on operation of the LDMOS elements LT2 and LT1 . A region where an inversion layer is formed to allow the conduction current to pass through is between the corresponding source electrodes 218' and 218 and the corresponding drift regions 212b and 212a, which is well known to those with ordinary knowledge in the art, and is not described here. For further description, other embodiments of the present invention are deduced by analogy.

需說明的是,第一導電型與第二導電型可以為P型或N型,當第一導電型為P型時,第二導電型為N型;第一導電型為N型時,第二導電型為P型。 It should be noted that the first conductivity type and the second conductivity type may be P type or N type. When the first conductivity type is P type, the second conductivity type is N type; when the first conductivity type is N type, the first conductivity type is N type. The second conductivity type is P type.

需說明的是,所謂漂移電流通道係指半導體元件210在導通操作中使導通電流以漂移的方式通過的區域,此為本領域具有通常知識所熟知,在此不予贅述。 It should be noted that the so-called drift current channel refers to a region through which the on-current of the semiconductor element 210 drifts through during the on-operation operation, which is well known in the art and will not be repeated here.

需說明的是,在一種較佳的實施例中,閘極217’及217分別包括與上表面211a連接的對應的介電層2171’及2171、具有導電性的對應的導電層2172’及2172、以及具有電絕緣特性之對應的間隔層2173’及2173。其中,介電層2171’及2171分別形成於本體區215上,並分別連接於本體區215。導電層2172’及2172分別用以作為對應的閘極217’及217之電性接點,分別形成於所有對應的介電層2171’及2171上並分別連接於對應的介電層2171’及2171。間隔層2173’及2173分別形成於對應的導電層2172’及2172之兩側以作為對應的閘極217’及217之兩側之電性絕緣層。在一實施例中,LDMOS元件LT1及LT2中,源極218及218’與本體極216分別以矽化金屬層(圖未示)電連接。 It should be noted that, in a preferred embodiment, the gate electrodes 217' and 217 respectively include corresponding dielectric layers 2171' and 2171 connected to the upper surface 211a, and corresponding conductive layers 2172' and 2172 having conductivity , and corresponding spacer layers 2173' and 2173 having electrical insulating properties. The dielectric layers 2171' and 2171 are respectively formed on the body region 215 and connected to the body region 215, respectively. The conductive layers 2172' and 2172 are used as electrical contacts of the corresponding gate electrodes 217' and 217, respectively, are formed on all the corresponding dielectric layers 2171' and 2171, and are respectively connected to the corresponding dielectric layers 2171' and 2171', respectively. 2171. Spacer layers 2173' and 2173 are respectively formed on both sides of the corresponding conductive layers 2172' and 2172 to serve as electrical insulating layers on both sides of the corresponding gate electrodes 217' and 217. In one embodiment, in the LDMOS devices LT1 and LT2, the source electrodes 218 and 218' and the body electrode 216 are respectively electrically connected by a metal silicide layer (not shown).

此外,需說明的是,所謂的高壓元件(亦可如上稱為半導體元件),係指於正常操作時,施加於汲極的電壓高於一特定之電壓,例如5V,且本體215與對應的汲極219’及219間之通道方向距離(漂移區212b及212a長度)根據正常操作時所承受的操作電壓而調整,因而可操作於前述較高之特定電壓。此皆為本領域中具有通常知識者所熟知,在此不予贅述。 In addition, it should be noted that the so-called high-voltage device (also referred to as a semiconductor device as above) refers to that the voltage applied to the drain is higher than a specific voltage, such as 5V, during normal operation, and the main body 215 and the corresponding The distance in the channel direction between the drain electrodes 219' and 219 (the lengths of the drift regions 212b and 212a) is adjusted according to the operating voltage experienced during normal operation, so that it can operate at the aforementioned higher specific voltage. These are all well known to those with ordinary knowledge in the art, and will not be repeated here.

如圖3C所示,於第一頂層導線221a之遠離電源輸入端220的部分中,第一電流Iin1先分為子電流Iin11及Iin12,其中子電流Iin11從第一頂層導線221a經過金屬插塞222a1及金屬導線223a1流至汲極219,而子電流Iin12係從第一頂層導線221a經過金屬插塞222a2及金屬導線223a2流至汲極219’。當半導體元件210保持導通,參照圖3C,導通電流Ic11從汲極219經由半導體層內所形成之通道流至源極218,而導通電流Ic12從汲極219’經由半導體層內所形成之另一通道流至源極218’。 As shown in FIG. 3C , in the part of the first top layer wire 221a that is far from the power input terminal 220, the first current Iin1 is first divided into sub-currents Iin11 and Iin12, wherein the sub-current Iin11 passes from the first top layer wire 221a through the metal plug 222a1 And the metal wire 223a1 flows to the drain electrode 219, and the sub-current Iin12 flows from the first top layer wire 221a to the drain electrode 219' through the metal plug 222a2 and the metal wire 223a2. When the semiconductor device 210 is kept on, referring to FIG. 3C , the on-current Ic11 flows from the drain electrode 219 to the source electrode 218 through the channel formed in the semiconductor layer, and the on-current Ic12 flows from the drain electrode 219 ′ through another channel formed in the semiconductor layer. The channel flows to source 218'.

請參照圖3D,於圖3D所示之實施例中,本實施例之半導體元件210與圖3C之實施例類似,故省略其詳細敘述。如圖3D所示,於第二頂層導線221b之遠離電源輸入端220的部分中,第二電流Iin2先分為子電流Iin21及Iin22, 其中子電流Iin21從第二頂層導線221b經過金屬插塞222b1及金屬導線223b1流至汲極219,而子電流Iin22係從第二頂層導線221b經過金屬插塞222b2及金屬導線223b2流至汲極219’。當半導體元件210保持導通,參照圖3D,導通電流Ic21從汲極219經由半導體層內所形成之通道流至源極218,而導通電流Ic22從汲極219’經由半導體層內所形成之另一通道流至源極218’。 Referring to FIG. 3D , in the embodiment shown in FIG. 3D , the semiconductor device 210 of this embodiment is similar to the embodiment of FIG. 3C , so the detailed description thereof is omitted. As shown in FIG. 3D , in the portion of the second top layer wire 221b that is far from the power input terminal 220, the second current Iin2 is first divided into sub-currents Iin21 and Iin22, The sub-current Iin21 flows from the second top wire 221b to the drain 219 through the metal plug 222b1 and the metal wire 223b1, while the sub-current Iin22 flows from the second top wire 221b to the drain 219 through the metal plug 222b2 and the metal wire 223b2 '. When the semiconductor element 210 is kept on, referring to FIG. 3D, the on-current Ic21 flows from the drain electrode 219 to the source electrode 218 through the channel formed in the semiconductor layer, and the on-current Ic22 flows from the drain electrode 219' through another channel formed in the semiconductor layer. The channel flows to source 218'.

請參照圖3E,於圖3E所示之實施例中,本實施例之半導體元件210與圖3C之實施例類似,故省略其詳細敘述。導通電流Ic11從汲極219流至源極218後,子電流Iin31從源極218流至金屬插塞227a1、金屬導線226a及金屬插塞225a。導通電流Ic12從汲極219’流至源極218’後,子電流Iin32從源極218’流至金屬插塞227a2、金屬導線226a及金屬插塞225a。子電流Iin31及Iin32於金屬插塞225a合併為第三電流Iin3,第三電流Iin3最後經由第三頂層導線224a流至相位節點PH。 Referring to FIG. 3E , in the embodiment shown in FIG. 3E , the semiconductor device 210 of this embodiment is similar to the embodiment of FIG. 3C , so the detailed description thereof is omitted. After the on-current Ic11 flows from the drain electrode 219 to the source electrode 218, the sub-current Iin31 flows from the source electrode 218 to the metal plug 227a1, the metal wire 226a and the metal plug 225a. After the on-current Ic12 flows from the drain electrode 219' to the source electrode 218', the sub-current Iin32 flows from the source electrode 218' to the metal plug 227a2, the metal wire 226a and the metal plug 225a. The sub-currents Iin31 and Iin32 are combined at the metal plug 225a to form a third current Iin3, and the third current Iin3 finally flows to the phase node PH through the third top wire 224a.

請參照圖3F,於圖3F所示之實施例中,本實施例之半導體元件210與圖3C之實施例類似,故省略其詳細敘述。導通電流Ic21從汲極219流至源極218後,子電流Iin41從源極218流至金屬插塞227b1、金屬導線226b及金屬插塞225b。導通電流Ic22從汲極219’流至源極218’後,子電流Iin42從源極218’流至金屬插塞227b2、金屬導線226b及金屬插塞225b。子電流Iin41及Iin42於金屬插塞225b合併為第四電流Iin4,第四電流Iin4最後經由第四頂層導線224b流至相位節點PH。 Please refer to FIG. 3F . In the embodiment shown in FIG. 3F , the semiconductor device 210 of this embodiment is similar to the embodiment of FIG. 3C , so the detailed description thereof is omitted. After the on-current Ic21 flows from the drain electrode 219 to the source electrode 218, the sub-current Iin41 flows from the source electrode 218 to the metal plug 227b1, the metal wire 226b and the metal plug 225b. After the on-current Ic22 flows from the drain electrode 219' to the source electrode 218', the sub-current Iin42 flows from the source electrode 218' to the metal plug 227b2, the metal wire 226b and the metal plug 225b. The sub-currents Iin41 and Iin42 are combined at the metal plug 225b to form a fourth current Iin4, and the fourth current Iin4 finally flows to the phase node PH through the fourth top wire 224b.

圖4A係根據本發明之另一實施例顯示可降低寄生電感之開關31的上視示意圖。本實施例之電源輸入端320、第一頂層導線321a、第二頂層導線321b、第三頂層導線324a、第四頂層導線324b及相位節點PH係類似於圖3A之實施例之電源輸入端220、第一頂層導線221a、第二頂層導線221b、第三頂層導線224a、第四頂層導線224b及相位節點PH,故省略其詳細敘述。本實施例與圖3A之實施例的不同在於,本實施例僅包括金屬插塞322a2、322b1、325a、325b。 4A is a schematic top view showing a switch 31 capable of reducing parasitic inductance according to another embodiment of the present invention. The power input terminal 320, the first top wire 321a, the second top wire 321b, the third top wire 324a, the fourth top wire 324b and the phase node PH in this embodiment are similar to the power input terminals 220, The first top wire 221a, the second top wire 221b, the third top wire 224a, the fourth top wire 224b and the phase node PH are omitted in detail. The difference between this embodiment and the embodiment of FIG. 3A is that this embodiment only includes metal plugs 322a2, 322b1, 325a, and 325b.

圖4B係圖4A沿著剖線GG’取得之可降低寄生電感之開關31的剖視示意圖。圖4C係圖4A沿著剖線HH’取得之可降低寄生電感之開關31的剖視示意圖。如圖4A與3B所示,並參閱圖4B與4C,本發明之可降低寄生電感之開關31包括半導體元件310、第一頂層導線321a及第二頂層導線321b。請同時參照圖4A及圖4B,第一頂層導線321a用以電連接電源輸入端320與電流流入端(例如汲極319’)。請同時參照圖4A及圖4C,第二頂層導線321b用以電連接電源輸入端320與電流流入端(例如汲極319)。於一實施例中,第二頂層導線321b與第一頂層導線321a形成於同一高度。於一實施例中,如圖4A所示,第一頂層導線321a之第一部分與第二頂層導線321b之第二部分平行相鄰排列。 FIG. 4B is a schematic cross-sectional view of the switch 31 for reducing parasitic inductance taken along the line GG' in FIG. 4A . FIG. 4C is a schematic cross-sectional view of the switch 31 for reducing parasitic inductance taken along the line HH' in FIG. 4A . As shown in FIGS. 4A and 3B, and referring to FIGS. 4B and 4C, the switch 31 capable of reducing parasitic inductance of the present invention includes a semiconductor device 310, a first top layer wire 321a and a second top layer wire 321b. 4A and 4B at the same time, the first top layer wire 321a is used to electrically connect the power input terminal 320 and the current inflow terminal (eg, the drain electrode 319'). 4A and 4C at the same time, the second top layer wire 321b is used to electrically connect the power input terminal 320 and the current inflow terminal (eg, the drain electrode 319). In one embodiment, the second top-layer wires 321b and the first top-layer wires 321a are formed at the same height. In one embodiment, as shown in FIG. 4A , the first portion of the first top layer wire 321a and the second portion of the second top layer wire 321b are arranged in parallel and adjacent to each other.

如圖4A所示,當半導體元件310在導通操作中,輸入電流由電源輸入端320流出並分為第一電流Iin1與第二電流Iin2。第一電流Iin1與第二電流Iin2分別流經第一部分與第二部分,且第一電流Iin1與第二電流Iin2分別流經第一部分與第二部分時,彼此反向,以降低第一頂層導線321a與第二頂層導線321b之第一疊加寄生電感。 As shown in FIG. 4A , when the semiconductor device 310 is in the ON operation, the input current flows from the power input terminal 320 and is divided into the first current Iin1 and the second current Iin2 . The first current Iin1 and the second current Iin2 flow through the first part and the second part respectively, and when the first current Iin1 and the second current Iin2 flow through the first part and the second part respectively, they are opposite to each other, so as to reduce the first top layer wire The first superimposed parasitic inductance between 321a and the second top layer wire 321b.

如圖4A所示,本發明之可降低寄生電感之開關31更包括第三頂層導線324a以及第四頂層導線324b。請參照圖4A,第三頂層導線324a用以電連接電流流出端(例如源極318及318’)與節點(例如相位節點PH)。請參照圖4A,第四頂層導線324b用以電連接電流流出端(例如源極318及318’)與節點(例如相位節點PH)。於一實施例中,第四頂層導線324b與第三頂層導線324a形成於同一高度。如圖4A所示,第三頂層導線324a之第三部分與第四頂層導線324b之第四部分平行相鄰排列。 As shown in FIG. 4A , the switch 31 capable of reducing parasitic inductance of the present invention further includes a third top layer wire 324a and a fourth top layer wire 324b. Referring to FIG. 4A , the third top layer wire 324a is used to electrically connect the current outflow terminals (eg, the source electrodes 318 and 318') and the node (eg, the phase node PH). Referring to FIG. 4A, the fourth top layer wire 324b is used to electrically connect the current outflow terminals (eg, the source electrodes 318 and 318') and the node (eg, the phase node PH). In one embodiment, the fourth top layer conductor 324b and the third top layer conductor 324a are formed at the same height. As shown in FIG. 4A , the third portion of the third top layer wire 324a and the fourth portion of the fourth top layer wire 324b are arranged in parallel and adjacent to each other.

如圖4A所示,當半導體元件310在導通操作中,導通電流Ic31及Ic13由電流流出端(例如源極318及318’)流出並分為第三電流Iin3與第四電流Iin4。第三電流Iin3與第四電流Iin4分別流經第三部分與第四部分,且第三電流 Iin3與第四電流Iin4分別流經第三部分與第四部分時,彼此反向,以降低第三頂層導線324a與第四頂層導線324b之第二疊加寄生電感。於一實施例中,如圖4A所示,第三頂層導線324a與第二頂層導線321b形成於同一高度。於一實施例中,如圖4A所示,第三頂層導線324a之第三部分與第二頂層導線321b之第二部分平行相鄰排列。如圖4A所示,當半導體元件310在導通操作中,第三電流Iin3與第二電流Iin2分別流經第三部分與第二部分時,彼此反向,以降低第三頂層導線324a與第二頂層導線321b之第三疊加寄生電感。於一實施例中,第一頂層導線321a、第二頂層導線321b、第三頂層導線324a與第四頂層導線324b形成於同一高度,且電源輸入端320與節點(例如相位節點PH)形成於同一高度。於一實施例中,可降低寄生電感之開關31可為降壓型切換式電源供應電路中之上橋開關。於另一實施例中,可降低寄生電感之開關31可為升壓型切換式電源供應電路中之下橋開關。 As shown in FIG. 4A , when the semiconductor device 310 is in the on operation, the on currents Ic31 and Ic13 flow out from the current outflow terminals (such as the source electrodes 318 and 318') and are divided into a third current Iin3 and a fourth current Iin4. The third current Iin3 and the fourth current Iin4 flow through the third part and the fourth part respectively, and the third current When the Iin3 and the fourth current Iin4 flow through the third part and the fourth part respectively, they are opposite to each other, so as to reduce the second superimposed parasitic inductance of the third top wire 324a and the fourth top wire 324b. In one embodiment, as shown in FIG. 4A , the third top layer wires 324a and the second top layer wires 321b are formed at the same height. In one embodiment, as shown in FIG. 4A , the third portion of the third top layer wire 324a and the second portion of the second top layer wire 321b are arranged in parallel and adjacent to each other. As shown in FIG. 4A , when the semiconductor device 310 is in the ON operation, when the third current Iin3 and the second current Iin2 flow through the third part and the second part respectively, they are opposite to each other, so as to lower the third top wire 324a and the second The third superimposed parasitic inductance of the top wire 321b. In one embodiment, the first top wire 321a, the second top wire 321b, the third top wire 324a and the fourth top wire 324b are formed at the same height, and the power input terminal 320 and the node (eg, the phase node PH) are formed at the same height high. In one embodiment, the switch 31 capable of reducing parasitic inductance can be an upper bridge switch in a step-down switching power supply circuit. In another embodiment, the switch 31 capable of reducing parasitic inductance can be a lower bridge switch in a boost switching power supply circuit.

請參照圖4B,本發明之可降低寄生電感之開關31包括半導體元件310,用以根據控制電壓而決定電連接其中之電流流入端(例如汲極319或319’)與電流流出端(例如源極318及318’),以導通半導體元件310。本實施例之半導體元件310係類似於圖3C之半導體元件210,故省略其詳細敘述。 Referring to FIG. 4B , the switch 31 capable of reducing parasitic inductance of the present invention includes a semiconductor element 310 for electrically connecting a current inflow terminal (eg, drain 319 or 319 ′) and a current outflow terminal (eg, source) according to a control voltage. poles 318 and 318 ′) to turn on the semiconductor device 310 . The semiconductor element 310 of this embodiment is similar to the semiconductor element 210 of FIG. 3C , so the detailed description thereof is omitted.

如圖4B所示,於第一頂層導線321a之遠離電源輸入端320的部分中,第一電流Iin1直接進入金屬插塞322a2,其中子電流Iin13經過金屬插塞322a2及金屬導線323a2流至汲極319’。當半導體元件310保持導通,參照圖4B,導通電流Ic13從汲極319’經由半導體層內所形成之通道流至源極318’。 As shown in FIG. 4B , in the part of the first top layer wire 321a far from the power input terminal 320, the first current Iin1 directly enters the metal plug 322a2, and the sub-current Iin13 flows to the drain through the metal plug 322a2 and the metal wire 323a2 319'. When the semiconductor element 310 is kept on, referring to FIG. 4B, the on-current Ic13 flows from the drain electrode 319' to the source electrode 318' through the channel formed in the semiconductor layer.

請參照圖4C,於圖4C所示之實施例中,本實施例之半導體元件310與圖4B之實施例類似,故省略其詳細敘述。如圖4C所示,於第二頂層導線321b之遠離電源輸入端320的部分中,第二電流Iin2直接進入金屬插塞322b1,其中子電流Iin23經過金屬插塞322b1及金屬導線323b1流至汲極319。當半導體元件310 保持導通,參照圖4C,導通電流Ic31從汲極319經由半導體層內所形成之通道流至源極318。 Referring to FIG. 4C , in the embodiment shown in FIG. 4C , the semiconductor device 310 of this embodiment is similar to the embodiment of FIG. 4B , so the detailed description thereof is omitted. As shown in FIG. 4C , in the part of the second top layer wire 321b far from the power input terminal 320, the second current Iin2 directly enters the metal plug 322b1, and the sub-current Iin23 flows to the drain through the metal plug 322b1 and the metal wire 323b1 319. When the semiconductor element 310 Keeping on, referring to FIG. 4C , the on-current Ic31 flows from the drain electrode 319 to the source electrode 318 through the channel formed in the semiconductor layer.

值得注意的是,本發明優於先前技術的其中一個技術特徵,在於:根據本發明,以圖3B所示之實施例為例,藉由採用兩條頂層導線分別反向傳送電流,並使兩條頂層導線之各別的一部分相鄰且相互平行,可使兩條頂層導線中之電流所引起之寄生電感因方向相反而相互抵銷,而達到降低寄生電感之效果。 It is worth noting that one of the technical features of the present invention superior to the prior art is that, according to the present invention, taking the embodiment shown in FIG. 3B as an example, by using two top-layer wires to transmit currents in opposite directions, the two The respective parts of the top conductors are adjacent and parallel to each other, so that the parasitic inductances caused by the currents in the two top conductors can cancel each other due to the opposite directions, so as to achieve the effect of reducing the parasitic inductance.

以上已針對較佳實施例來說明本發明,唯以上所述者,僅係為使熟悉本技術者易於了解本發明的內容而已,並非用來限定本發明之權利範圍。在本發明之相同精神下,熟悉本技術者可以思及各種等效變化。此外,所說明之各個實施例,並不限於單獨應用,亦可以組合應用。因此,本發明的範圍應涵蓋上述及其他所有等效變化。此外,本發明的任一實施型態不必須達成所有的目的或優點,因此,請求專利範圍任一項也不應以此為限。 The present invention has been described above with respect to the preferred embodiments, but the above-mentioned descriptions are only intended to make it easy for those skilled in the art to understand the content of the present invention, and are not intended to limit the scope of rights of the present invention. Within the same spirit of the present invention, various equivalent changes will be devised by those skilled in the art. In addition, the described embodiments are not limited to be applied individually, but can also be applied in combination. Accordingly, the scope of the present invention should cover the above and all other equivalent changes. In addition, it is not necessary for any embodiment of the present invention to achieve all the purposes or advantages, and therefore the scope of the claimed patent should not be limited thereto.

21: 可降低寄生電感之開關 220: 電源輸入端 221a: 第一頂層導線 221b: 第二頂層導線 222a1, 222a2, 222b1, 222b2, 225a, 225b: 金屬插塞 224a: 第三頂層導線 224b: 第四頂層導線 PH: 相位接點 Iin1: 第一電流 Iin2: 第二電流 Iin3: 第三電流 Iin4: 第四電流 21: Switch to reduce parasitic inductance 220: Power input 221a: first top wire 221b: Second top wire 222a1, 222a2, 222b1, 222b2, 225a, 225b: Metal plugs 224a: third top wire 224b: Fourth top wire PH: Phase Contact Iin1: first current Iin2: second current Iin3: third current Iin4: Fourth current

Claims (10)

一種可降低寄生電感之開關,包含:一半導體元件,用以根據一控制電壓而決定電連接其中之一電流流入端與一電流流出端,以導通該半導體元件;一第一頂層導線,用以電連接一電源輸入端與該電流流入端;以及一第二頂層導線,用以電連接該電源輸入端與該電流流入端,其中該第二頂層導線與該第一頂層導線形成於同一高度,且該第一頂層導線之一第一部分與該第二頂層導線之一第二部分平行相鄰排列;其中,當該半導體元件在一導通操作中,一輸入電流由該電源輸入端流出並分為一第一電流與一第二電流;其中,該第一電流與該第二電流分別流經該第一部分與該第二部分,且該第一電流與該第二電流分別流經該第一部分與該第二部分時,彼此反向,以降低該第一頂層導線與該第二頂層導線之一第一疊加寄生電感。 A switch capable of reducing parasitic inductance, comprising: a semiconductor element for electrically connecting a current inflow terminal and a current outflow terminal according to a control voltage to turn on the semiconductor element; a first top wire for a power input terminal and the current inflow terminal are electrically connected; and a second top wire is used to electrically connect the power input terminal and the current inflow terminal, wherein the second top wire and the first top wire are formed at the same height, And a first part of the first top layer wire and a second part of the second top layer wire are arranged in parallel and adjacent; wherein, when the semiconductor element is in a conducting operation, an input current flows out from the power input terminal and is divided into a first current and a second current; wherein, the first current and the second current flow through the first part and the second part respectively, and the first current and the second current flow through the first part and the second part respectively The second portions are reversed to each other to reduce the first superimposed parasitic inductance of the first top wire and one of the second top wire. 如請求項1所述之可降低寄生電感之開關,更包含:一第三頂層導線,用以電連接該電流流出端與一節點;以及一第四頂層導線,用以電連接該電流流出端與該節點,其中該第四頂層導線與該第三頂層導線形成於同一高度,且該第三頂層導線之一第三部分與該第四頂層導線之一第四部分平行相鄰排列;其中,當該半導體元件在該導通操作中,一導通電流由該電流流出端流出並分為一第三電流與一第四電流;其中,該第三電流與該第四電流分別流經該第三部分與該第四部分,且該第三電流與該第四電流分別流經該第三部分與該第四部分時,彼此反向,以降低該第三頂層導線與該第四頂層導線之一第二疊加寄生電感。 The switch capable of reducing parasitic inductance as claimed in claim 1, further comprising: a third top wire for electrically connecting the current outflow terminal and a node; and a fourth top wire for electrically connecting the current outflow terminal and the node, wherein the fourth top wire and the third top wire are formed at the same height, and a third portion of the third top wire is arranged in parallel and adjacent to a fourth portion of the fourth top wire; wherein, When the semiconductor device is in the conduction operation, a conduction current flows out from the current outflow terminal and is divided into a third current and a fourth current; wherein, the third current and the fourth current respectively flow through the third part and the fourth part, and when the third current and the fourth current flow through the third part and the fourth part respectively, they are opposite to each other, so as to reduce the first level of one of the third top wire and the fourth top wire. Two superimposed parasitic inductances. 如請求項2所述之可降低寄生電感之開關,其中該第三頂層導線與該第二頂層導線形成於同一高度,且該第三頂層導線之該第三部分與該第二頂層導線之該第二部分平行相鄰排列;其中,該第三電流與該第二電流分別流經該第三部分與該第二部分時,彼此反向,以降低該第三頂層導線與該第二頂層導線之一第三疊加寄生電感。 The switch capable of reducing parasitic inductance as claimed in claim 2, wherein the third top wire and the second top wire are formed at the same height, and the third portion of the third top wire and the second top wire are The second parts are arranged in parallel and adjacent; wherein, when the third current and the second current flow through the third part and the second part respectively, they are opposite to each other, so as to lower the third top wire and the second top wire A third superimposed parasitic inductance. 如請求項1所述之可降低寄生電感之開關,其中該可降低寄生電感之開關為一降壓型切換式電源供應電路中之一上橋開關。 The switch capable of reducing parasitic inductance as claimed in claim 1, wherein the switch capable of reducing parasitic inductance is a high-side switch in a step-down switching power supply circuit. 如請求項1所述之可降低寄生電感之開關,其中該可降低寄生電感之開關為一升壓型切換式電源供應電路中之一下橋開關。 The switch capable of reducing parasitic inductance as claimed in claim 1, wherein the switch capable of reducing parasitic inductance is a low-bridge switch in a boost switching power supply circuit. 如請求項1所述之可降低寄生電感之開關,其中該半導體元件為一橫向擴散金屬氧化物半導體(Lateral Diffused Metal Oxide Semiconductor,LDMOS)元件。 The switch capable of reducing parasitic inductance as claimed in claim 1, wherein the semiconductor element is a Lateral Diffused Metal Oxide Semiconductor (LDMOS) element. 如請求項6所述之可降低寄生電感之開關,其中該LDMOS元件包括:一井區,具有一第一導電型,形成於一半導體層中;一本體區,具有一第二導電型,形成於該半導體層中,該本體區與該井區在一通道方向上連接;一閘極,形成於該半導體層上,部分該本體區位於該閘極正下方並連接於該閘極,以提供該半導體元件在該導通操作中之一反轉電流通道;以及一源極與一汲極,具有該第一導電型,該源極與該汲極分別位於該閘極之外部不同側下方之該本體區中與該井區中,且於該通道方向上,一漂移區位於該汲極與該本體區之間的該井區中,用以作為該半導體元件在該導通操作中之一漂移電流通道。 The switch capable of reducing parasitic inductance as claimed in claim 6, wherein the LDMOS device comprises: a well region having a first conductivity type formed in a semiconductor layer; a body region having a second conductivity type formed In the semiconductor layer, the body region and the well region are connected in a channel direction; a gate electrode is formed on the semiconductor layer, and a part of the body region is located directly under the gate electrode and connected to the gate electrode to provide an inversion current path of the semiconductor element during the conduction operation; and a source electrode and a drain electrode having the first conductivity type, the source electrode and the drain electrode are respectively located on the outer side of the gate electrode under the different sides In the body region and the well region, and in the channel direction, a drift region is located in the well region between the drain and the body region, and is used as a drift current of the semiconductor element during the conduction operation aisle. 如請求項2所述之可降低寄生電感之開關,其中該第一頂層導線、該第二頂層導線、該第三頂層導線與該第四頂層導線形成於同一高度,且該電源輸入端與該節點形成於同一高度。 The switch capable of reducing parasitic inductance as claimed in claim 2, wherein the first top wire, the second top wire, the third top wire and the fourth top wire are formed at the same height, and the power input end and the Nodes are formed at the same height. 如請求項6所述之可降低寄生電感之開關,其中該半導體元件包括一第一LDMOS元件與一第二LDMOS元件,該第一LDMOS元件與該第二LDMOS元件共用同一本體區與同一本體極,且該第一LDMOS元件與該第二LDMOS元件彼此鏡像排列。 The switch capable of reducing parasitic inductance as claimed in claim 6, wherein the semiconductor element comprises a first LDMOS element and a second LDMOS element, the first LDMOS element and the second LDMOS element share the same body region and the same body pole , and the first LDMOS element and the second LDMOS element are arranged in mirror images of each other. 如請求項9所述之可降低寄生電感之開關,其中該第一部分與該第二部分於一通道方向上,跨越該第一LDMOS元件與該第二LDMOS元件各自的一井區、該本體區、該本體極、一閘極、一源極與一汲極。 The switch capable of reducing parasitic inductance as claimed in claim 9, wherein the first part and the second part span a well region and the body region of the first LDMOS element and the second LDMOS element in a channel direction respectively , the body electrode, a gate electrode, a source electrode and a drain electrode.
TW110115186A 2021-01-08 2021-04-27 Switch capable of decreasing parasitic inductance TWI777525B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/568,637 US11522536B2 (en) 2021-01-08 2022-01-04 Switch capable of decreasing parasitic inductance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163135459P 2021-01-08 2021-01-08
US63/135459 2021-01-08

Publications (2)

Publication Number Publication Date
TW202228295A TW202228295A (en) 2022-07-16
TWI777525B true TWI777525B (en) 2022-09-11

Family

ID=82325052

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110115186A TWI777525B (en) 2021-01-08 2021-04-27 Switch capable of decreasing parasitic inductance

Country Status (2)

Country Link
CN (1) CN114759009A (en)
TW (1) TWI777525B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060054967A1 (en) * 2002-12-10 2006-03-16 Koninklijke Philips Electronics N.V. Integrated half-bridge power circuit
US20060086973A1 (en) * 2004-10-21 2006-04-27 Mitsuharu Hitani Semiconductor integrated circuit and a semiconductor device
TW201230633A (en) * 2010-08-18 2012-07-16 Volterra Semiconductor Corp Switching circuits for extracting power from an electric power source and associated methods
US20180308840A1 (en) * 2015-11-02 2018-10-25 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor device
TW202027251A (en) * 2019-01-08 2020-07-16 立錡科技股份有限公司 High voltage device and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060054967A1 (en) * 2002-12-10 2006-03-16 Koninklijke Philips Electronics N.V. Integrated half-bridge power circuit
US20060086973A1 (en) * 2004-10-21 2006-04-27 Mitsuharu Hitani Semiconductor integrated circuit and a semiconductor device
TW201230633A (en) * 2010-08-18 2012-07-16 Volterra Semiconductor Corp Switching circuits for extracting power from an electric power source and associated methods
US20180308840A1 (en) * 2015-11-02 2018-10-25 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor device
TW202027251A (en) * 2019-01-08 2020-07-16 立錡科技股份有限公司 High voltage device and manufacturing method thereof

Also Published As

Publication number Publication date
TW202228295A (en) 2022-07-16
CN114759009A (en) 2022-07-15

Similar Documents

Publication Publication Date Title
US9343453B2 (en) Semiconductor device
TWI235492B (en) High voltage LDMOS transistor having an isolated structure
US11721738B2 (en) Laterally diffused metal oxide semiconductor with gate poly contact within source window
US11004971B2 (en) LDMOS transistor with gate structure having alternating regions of wider and narrower spacing to a body region
TWI668838B (en) High voltage device and manufacturing method thereof
CN106663610B (en) Transistor structure with improved immunity to unclamped inductive switches
US20050275025A1 (en) Semiconductor component and method for its production
US8598637B2 (en) High voltage junction field effect transistor with spiral field plate
CN101794781A (en) Monolithic semiconductor switches and manufacture method
KR20150110346A (en) Power semiconductor transistor with improved gate charge
KR20200031028A (en) Laterally diffused mosfet with low rsp*qg product
TWI532166B (en) Lateral-diffused metal oxide semiconductor device (ldmos) and fabrication method thereof
US9257517B2 (en) Vertical DMOS-field effect transistor
TWI777525B (en) Switch capable of decreasing parasitic inductance
US20220224325A1 (en) Switch capable of decreasing parasitic inductance
TWI773254B (en) High voltage device and manufacturing method thereof
CN110323936B (en) Switching type power supply circuit and control method thereof
TW202221926A (en) High voltage device of switching power supply circuit and manufacturing method thereof
TWI742221B (en) Trench metal oxide semiconductor device and manufacuring method thereof
TWI737218B (en) Semiconductor device
CN113948571B (en) Semiconductor structure and forming method thereof
CN115241289A (en) High voltage device and method for manufacturing the same
TWI672766B (en) Isolation structure and method for fabricating the same
TW202327105A (en) Semiconductor device and manufacturing method thereof
CN111509030A (en) Super junction MOSFET with integrated snubber circuit

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent