TWI770985B - High efficiency charging system and power conversion circuit thereof - Google Patents

High efficiency charging system and power conversion circuit thereof Download PDF

Info

Publication number
TWI770985B
TWI770985B TW110116101A TW110116101A TWI770985B TW I770985 B TWI770985 B TW I770985B TW 110116101 A TW110116101 A TW 110116101A TW 110116101 A TW110116101 A TW 110116101A TW I770985 B TWI770985 B TW I770985B
Authority
TW
Taiwan
Prior art keywords
power
charging
switching
voltage
circuit
Prior art date
Application number
TW110116101A
Other languages
Chinese (zh)
Other versions
TW202222006A (en
Inventor
張煒旭
楊大勇
Original Assignee
立錡科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 立錡科技股份有限公司 filed Critical 立錡科技股份有限公司
Priority to US17/531,792 priority Critical patent/US20220166339A1/en
Publication of TW202222006A publication Critical patent/TW202222006A/en
Application granted granted Critical
Publication of TWI770985B publication Critical patent/TWI770985B/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A power conversion circuit includes an inductive switching power converter, a capacitve switching power converter. The inductive switching power converter switches an inductor to converter a DC power to a first power. The capacitive switching power converter switches a capacitor to convert the first power to a charging power for charging a battery. The inductive switching power converter and the the capacitive switching power converter are controlled to operate in a combination of their corresponding regulation modes and corresponding bypass modes according to a parameter of the DC power.

Description

高效率充電系統及其電源轉換電路High-efficiency charging system and its power conversion circuit

本發明係有關於一種充電系統,特定而言係有關於一種同時具有電感切換電源轉換器及電容切換電源轉換器的高效率充電系統。本發明也有關於一種用於高效率充電系統的電源轉換電路。The present invention relates to a charging system, in particular, to a high-efficiency charging system having both an inductance-switched power converter and a capacitance-switched power converter. The present invention also relates to a power conversion circuit for a high-efficiency charging system.

圖1顯示一種先前技術之電感切換電源轉換器(電感切換電源轉換器1001),電感切換電源轉換器1001包括至少一電感L以及複數切換元件(如M11、M12),複數切換元件用以切換電感L與直流電源(如VBUS、IBUS)及充電電源(如VCH、ICH)的耦接關係,以轉換直流電源而產生充電電源。舉例而言,電感切換電源轉換器1001例如為降壓型電感切換電源轉換器(buck switching converter)。FIG. 1 shows a prior art inductance switching power converter (inductance switching power converter 1001 ). The inductance switching power converter 1001 includes at least one inductor L and complex switching elements (eg, M11 and M12 ), which are used to switch the inductance The coupling relationship between L and the DC power source (eg VBUS, IBUS) and the charging power source (eg VCH, ICH) is to convert the DC power source to generate the charging power source. For example, the inductance switching power converter 1001 is, for example, a buck switching converter.

圖2顯示一種先前技術之電容切換電源轉換器(電容切換電源轉換器1002),電容切換電源轉換器1002包括至少一轉換電容器CF以及複數切換開關,複數切換開關用以切換電感L與直流電源(如VBUS)及充電電源(如VCH、ICH)的耦接關係,以轉換直流電源而產生充電電源。舉例而言,電容切換電源轉換器1002例如為分壓型電容切換電源轉換器(capacitor voltage divider)。FIG. 2 shows a prior art capacitance-switched power converter (capacitance-switched power converter 1002 ). The capacitance-switched power converter 1002 includes at least one conversion capacitor CF and a plurality of switches for switching the inductor L and the DC power supply ( Such as VBUS) and the coupling relationship of the charging power (such as VCH, ICH), to convert the DC power to generate the charging power. For example, the capacitor-switched power converter 1002 is, for example, a capacitor-switched power converter of a voltage divider type (capacitor voltage divider).

圖3顯示一種先前技術之負載開關電路(負載開關電路1003),當電源發送單元100例如對應為符合通用序列匯流排電源傳輸協定(USB PD)的電源適配器時,電源發送單元100可根據電池的狀態與充電階段,而直接提供對應的充電電源,具體而言,電源發送單元100例如可適應性調整的恆定電壓,或是恆定電流,通過負載開關電路1003,而直接對電池300充電,藉此,可減少電源轉換電路的級數,而提高整體充電系統的電源轉換效率。然而,當使用者改採用例如僅能提供定電壓之較為舊型的電源適配器時,負載開關電路1003又無法提供適當的電源轉換。FIG. 3 shows a load switch circuit (load switch circuit 1003 ) of the prior art. When the power transmission unit 100 corresponds to, for example, a power adapter compliant with the Universal Serial Bus Power Delivery Protocol (USB PD), the power transmission unit 100 state and charging stage, and directly provide the corresponding charging power. Specifically, the power transmission unit 100, for example, an adaptable constant voltage or constant current, directly charges the battery 300 through the load switch circuit 1003, thereby , which can reduce the number of stages of the power conversion circuit and improve the power conversion efficiency of the overall charging system. However, when the user uses, for example, an older power adapter that can only provide constant voltage, the load switch circuit 1003 cannot provide proper power conversion.

本發明即針對上述先前技術之不足,提出一種串接式的電源轉換電路,具有彼此串接的電感切換電源轉換器與電容,電源轉換電路可依據直流電源與充電電源之間的關係,而適應性地控制電感切換電源轉換器與電容,組合操作於典型的切換式的調節模式下,或者操作於對應的短路導通模式下,藉此可藉由具有彈性的轉換方式而提高充電系統整體的電源轉換效率。In view of the above-mentioned shortcomings of the prior art, the present invention proposes a series-connected power conversion circuit, which has an inductive switching power converter and a capacitor connected in series with each other. The power conversion circuit can adapt to the relationship between the DC power supply and the charging power supply. The inductive switching power converter and the capacitor are selectively controlled, and the combined operation is in the typical switching regulation mode, or in the corresponding short-circuit conduction mode, so that the overall power supply of the charging system can be improved by the flexible conversion method. conversion efficiency.

於一觀點中,本發明提供一種電源轉換電路,包含:一電感切換電源轉換器,用以切換一電感以轉換一直流電源而產生一第一電源;以及一電容切換電源轉換器,用以切換一轉換電容器以轉換該第一電源而產生一充電電源;其中該電感切換電源轉換器與該電容切換電源轉換器根據該直流電源之一參數,而決定操作於對應的調節模式或對應的短路導通模式之交叉組合之一;其中於該對應的調節模式下,該電感切換電源轉換器調節對應的該第一電源至對應的一預設目標,或者該電容切換電源轉換器調節對應的該充電電源至對應的一預設目標;其中於該對應的短路導通模式下,該電感切換電源轉換器短路導通該直流電源至該第一電源,或者該電容切換電源轉換器短路導通該第一電源至該充電電源。In one aspect, the present invention provides a power conversion circuit, comprising: an inductance-switching power converter for switching an inductance to convert a DC power supply to generate a first power supply; and a capacitance-switching power converter for switching A conversion capacitor is used to convert the first power source to generate a charging power source; wherein the inductance switching power converter and the capacitance switching power converter are determined to operate in a corresponding regulation mode or a corresponding short-circuit conduction according to a parameter of the DC power supply One of the cross combinations of modes; wherein in the corresponding adjustment mode, the inductance switching power converter adjusts the corresponding first power supply to a corresponding preset target, or the capacitance switching power converter adjusts the corresponding charging power supply to a corresponding preset target; wherein in the corresponding short-circuit conduction mode, the inductance-switching power converter short-circuits conducts the DC power supply to the first power supply, or the capacitance-switching power converter short-circuits conducts the first power supply to the first power supply Charger.

於一實施例中,該電感切換電源轉換器包括複數切換元件,複數該切換元件用以切換該電感與該直流電源及該第一電源的耦接關係,以轉換該直流電源而產生該第一電源;以及該電容切換電源轉換器包括複數切換開關,複數該切換開關用以切換該轉換電容器與該第一電源及該充電電源的耦接關係,以轉換該第一電源而產生該充電電源; 其中該電感切換電源轉換器具有一第一調節模式及一第一短路導通模式,於該第一調節模式下,複數該切換元件切換該電感以調節該第一電源至一第一預設目標,於該第一短路導通模式下,對應之至少一該切換元件控制為導通,以短路導通該直流電源至該第一電源;其中該電容切換電源轉換器具有一第二調節模式及一第二短路導通模式,於該第二調節模式下,複數該切換開關切換該轉換電容器以調節該充電電源至一第二預設目標,於該第二短路導通模式下,對應之至少一該切換開關控制為導通,以短路導通該第一電源至該充電電源;其中,該電源轉換電路根據該直流電源之該參數而決定該電感切換電源轉換器操作於該第一調節模式或該第一短路導通模式,及/或決定該電容切換電源轉換器操作於該第二調節模式或該第二短路導通模式。In one embodiment, the inductance switching power converter includes a plurality of switching elements, and the plurality of the switching elements are used to switch the coupling relationship between the inductance, the DC power supply and the first power supply, so as to convert the DC power supply to generate the first power supply. a power source; and the capacitor switching power converter includes a plurality of switching switches, and the plurality of switching switches are used for switching the coupling relationship between the switching capacitor, the first power source and the charging power source, so as to convert the first power source to generate the charging power source; The inductance-switching power converter has a first regulation mode and a first short-circuit conduction mode. In the first regulation mode, a plurality of the switching elements switch the inductance to regulate the first power supply to a first predetermined target. In the first short-circuit conduction mode, the corresponding at least one switching element is controlled to be turned on, so as to short-circuit the DC power supply to the first power supply; wherein the capacitor-switched power converter has a second regulation mode and a second short-circuit conduction mode , in the second adjustment mode, a plurality of the switch switches switch the conversion capacitor to adjust the charging power source to a second preset target, and in the second short-circuit conduction mode, the corresponding at least one switch is controlled to be turned on, Conducting the first power supply to the charging power supply in a short circuit; wherein the power conversion circuit determines that the inductance switching power converter operates in the first regulation mode or the first short-circuit conduction mode according to the parameter of the DC power supply, and/ Or it is determined that the capacitor-switched power converter operates in the second regulation mode or the second short-circuit conduction mode.

於一實施例中,其特徵在於,於該直流電源之一直流電壓低於一第一閾值時,該電感切換電源轉換器操作於該第一短路導通模式,其中該第一閾值相關於該充電電源之一充電電壓;或者於該直流電壓低於一第二閾值時,該電容切換電源轉換器操作於該第二短路導通模式,其中該第二閾值相關於該充電電壓與一電流放大率之乘積,其中該電流放大率為該充電電源之一充電電流與該第一電源之一第一電流之比例;或者當該直流電源之一直流電流為恆定時,該電感切換電源轉換器操作於該第一短路導通模式;或者當該直流電源之一直流電流為恆定,且該直流電壓為可變且可超過該第二閾值時,該電感切換電源轉換器操作於該第一短路導通模式,且該電容切換電源轉換器操作於該第二調節模式。In one embodiment, when a DC voltage of the DC power source is lower than a first threshold, the inductive switching power converter operates in the first short-circuit conduction mode, wherein the first threshold is related to the charging power source a charging voltage; or when the DC voltage is lower than a second threshold, the capacitor-switched power converter operates in the second short-circuit conduction mode, wherein the second threshold is related to the product of the charging voltage and a current amplification factor, Wherein the current amplification rate is a ratio of a charging current of the charging power source to a first current of the first power source; or when a DC current of the DC power source is constant, the inductance switching power converter operates in the first power source short-circuit conduction mode; or when a DC current of the DC power source is constant, and the DC voltage is variable and can exceed the second threshold, the inductance-switched power converter operates in the first short-circuit conduction mode, and the capacitor The switching power converter operates in the second regulation mode.

於一實施例中,該電感切換電源轉換器對應為一降壓型切換電源轉換器或一升降壓型切換電源轉換器。In one embodiment, the inductance switching power converter corresponds to a buck switching power converter or a buck-boost switching power converter.

於一實施例中,該直流電源由一交流-直流(AD-DC)轉換器提供。In one embodiment, the DC power is provided by an AC-DC (AD-DC) converter.

於一實施例中,該電容切換電源轉換器對應為一分壓型電容切換電源轉換器。In one embodiment, the capacitor-switched power converter corresponds to a voltage-dividing capacitor-switched power converter.

於一實施例中,該充電電源的一充電電壓為該第一電源之一第一電壓的1/2或1/4,且該充電電源的一充電電流對應地為該第一電源之一第一電流的2倍或4倍。In one embodiment, a charging voltage of the charging power source is 1/2 or 1/4 of a first voltage of the first power source, and a charging current of the charging power source is correspondingly a first voltage of the first power source. 2 or 4 times the current.

於一實施例中,當該電感切換電源轉換器對應為一降壓型切換電源轉換器,且該直流電壓為可調整(programmable) 且低於該第一閾值時,該複數切換元件中的一上橋開關完全導通,以短路導通該直流電源與該第一電源。In one embodiment, when the inductive switching power converter corresponds to a step-down switching power converter, and the DC voltage is programmable and is lower than the first threshold, one of the plurality of switching elements is The upper bridge switch is completely turned on to short-circuit the DC power supply and the first power supply.

於一實施例中,當該直流電壓低於該第二閾值時,該複數切換開關中的部分開關完全導通,以短路導通該第一電源與該充電電源。In one embodiment, when the DC voltage is lower than the second threshold, some of the switches in the plurality of switching switches are completely turned on to short-circuit the first power source and the charging power source.

於一實施例中,該交流-直流轉換器為符合通用序列匯流排電源傳輸協定(USB PD)的電源適配器。In one embodiment, the AC-DC converter is a Universal Serial Bus Power Delivery Protocol (USB PD) compliant power adapter.

於一實施例中,該電源轉換電路更包括一控制電路,用以通過一通訊介面而控制該直流電源之該直流電壓及/或該直流電源之一直流電流。In one embodiment, the power conversion circuit further includes a control circuit for controlling the DC voltage of the DC power supply and/or a DC current of the DC power supply through a communication interface.

於一實施例中,該通訊介面對應為通用序列匯流排協定(USB)的D+與D-訊號,或對應為通用序列匯流排電源傳輸協定(USB PD)的CC1與CC2訊號。In one embodiment, the communication interface corresponds to the D+ and D- signals of the Universal Serial Bus Protocol (USB), or corresponds to the CC1 and CC2 signals of the Universal Serial Bus Power Delivery Protocol (USB PD).

於一實施例中,該電源轉換電路更包括一控制電路,用以控制該直流電源之該直流電壓及/或該直流電源之一直流電流,使得該電源轉換電路操作於一最大效率操作點。In one embodiment, the power conversion circuit further includes a control circuit for controlling the DC voltage of the DC power supply and/or a DC current of the DC power supply, so that the power conversion circuit operates at a maximum efficiency operating point.

於又一觀點中,本發明提供一種充電系統,用以轉換一輸入電源而產生一充電電源,該充電系統包含:一電源發送單元,用以轉換該輸入電源而產生一直流電源;以及如請求項1至13之任一電源轉換電路,用以轉換該直流電源而產生該充電電源。In another aspect, the present invention provides a charging system for converting an input power to generate a charging power, the charging system comprising: a power sending unit for converting the input power to generate a DC power; and if requested Any one of the power conversion circuits of items 1 to 13 is used for converting the DC power to generate the charging power.

底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。The following describes in detail with specific embodiments, when it is easier to understand the purpose, technical content, characteristics and effects of the present invention.

本發明中的圖式均屬示意,主要意在表示各電路間之耦接關係,以及各訊號波形之間之關係,至於電路、訊號波形與頻率則並未依照比例繪製。The drawings in the present invention are schematic, mainly intended to represent the coupling relationship between the circuits and the relationship between the signal waveforms, and the circuits, signal waveforms and frequencies are not drawn to scale.

請參閱圖4並同時參閱圖5,圖4顯示本發明之高效率充電系統及其中的電源轉換電路之一實施例的示意圖(充電系統1004與電源轉換電路200)。Please refer to FIG. 4 and FIG. 5 at the same time. FIG. 4 shows a schematic diagram of an embodiment of a high-efficiency charging system and a power conversion circuit therein (charging system 1004 and power conversion circuit 200 ) of the present invention.

充電系統1004包含電源發送單元100,電源轉換電路200以及電池300。在一實施例中,充電系統1004還可包括可移除的電纜線400。電源發送單元100用以轉換一輸入電源Vs而產生一直流電源(其包括直流電壓VBUS與直流電流IBUS),在一實施例中,電源發送單元100例如可為一交流-直流(AD-DC)轉換器,在本實施例中,輸入電源Vs例如可為交流電源,電源發送單元100轉換輸入電源Vs而產生直流電源。在一較佳實施例中,電源發送單元100例如可為一符合通用序列匯流排協定(USB)的電源適配器。The charging system 1004 includes a power transmission unit 100 , a power conversion circuit 200 and a battery 300 . In one embodiment, the charging system 1004 may also include a removable cable 400 . The power transmission unit 100 is used for converting an input power Vs to generate a DC power supply (which includes a DC voltage VBUS and a DC current IBUS). The converter, in this embodiment, the input power Vs may be, for example, an AC power, and the power transmitting unit 100 converts the input power Vs to generate a DC power. In a preferred embodiment, the power transmitting unit 100 may be, for example, a power adapter compliant with Universal Serial Bus (USB).

請同時參閱圖5,圖5顯示本發明之高效率充電系統及其中的電源轉換電路之另一實施例的示意圖(充電系統1005與電源轉換電路200’)。在一較佳實施例中,電源發送單元100’例如可為一符合序列匯流排電源傳輸協定(USB PD)的電源適配器,在一實施例中,電源轉換電路200’可通過通訊介面CB而要求電源發送單元100’,發送符合需求的直流電源之直流電壓VBUS及/或直流電源之直流電流IBUS。在一實施例中,通訊介面CB例如對應為通用序列匯流排協定(USB)的D+與D-訊號,或對應為通用序列匯流排電源傳輸協定(USB PD)的CC1與CC2訊號。Please also refer to FIG. 5. FIG. 5 shows a schematic diagram of another embodiment of the high-efficiency charging system and the power conversion circuit therein (charging system 1005 and power conversion circuit 200') of the present invention. In a preferred embodiment, the power transmission unit 100 ′ can be, for example, a power adapter compliant with the Serial Bus Power Delivery Protocol (USB PD). The power transmitting unit 100 ′ transmits the DC voltage VBUS of the DC power supply and/or the DC current IBUS of the DC power supply that meets the requirements. In one embodiment, the communication interface CB corresponds to, for example, the D+ and D- signals of the Universal Serial Bus Protocol (USB), or the CC1 and CC2 signals of the Universal Serial Bus Power Delivery Protocol (USB PD).

在另一實施例中,電源轉換電路200’可通過通訊介面CB取得或量測電源發送單元100’所發送的直流電壓VBUS與直流電流IBUS的位準。上述的通訊介面CB具體可藉由控制電路207’進行通訊與控制。In another embodiment, the power conversion circuit 200' can obtain or measure the levels of the DC voltage VBUS and the DC current IBUS sent by the power transmission unit 100' through the communication interface CB. The above-mentioned communication interface CB can be specifically communicated and controlled by the control circuit 207'.

請繼續參閱圖4,電源轉換電路200用以轉換直流電源而產生充電電源(其包括充電電壓VCH與充電電流ICH),在一實施例中,電源轉換電路200包含電感切換電源轉換器205、電容切換電源轉換器206以及控制電路207。Please continue to refer to FIG. 4 , the power conversion circuit 200 is used for converting the DC power to generate the charging power (which includes the charging voltage VCH and the charging current ICH). The power converter 206 and the control circuit 207 are switched.

電感切換電源轉換器205包括至少一電感L以及複數切換元件,複數切換元件(例如圖4所示的上橋開關M11與下橋開關M12)用以切換電感與直流電源及第一電源的耦接關係,以轉換直流電源而產生第一電源(即第一電壓V1與第一電流I1)。The inductance switching power converter 205 includes at least one inductor L and a plurality of switching elements. The complex switching elements (eg, the upper bridge switch M11 and the lower bridge switch M12 shown in FIG. 4 ) are used to switch the coupling between the inductance and the DC power supply and the first power supply. A first power source (ie, a first voltage V1 and a first current I1 ) is generated by converting the DC power source.

在一實施例中,電感切換電源轉換器205具有第一調節模式及第一短路導通模式,於第一調節模式下,控制電路207產生控制訊號ct1而控制電感切換電源轉換器205之複數切換元件的切換,以調節第一電源至第一預設目標,例如調節第一電壓V1至一預設的電壓位準,或是調節第一電流I1至一預設的電流位準。此外,於第一短路導通模式下,控制電路207控制部分之複數切換元件導通,以短路導通直流電源與第一電源。In one embodiment, the inductance-switched power converter 205 has a first regulation mode and a first short-circuit conduction mode. In the first regulation mode, the control circuit 207 generates a control signal ct1 to control the complex switching elements of the inductance-switched power converter 205 . to adjust the first power supply to the first preset target, for example, adjust the first voltage V1 to a preset voltage level, or adjust the first current I1 to a preset current level. In addition, in the first short-circuit conduction mode, the control circuit 207 controls part of the plurality of switching elements to conduct, so as to short-circuit the DC power supply and the first power supply.

請繼續參閱圖4,電容切換電源轉換器206包括至少一轉換電容器CF以及複數切換開關,複數切換開關(例如圖4所示的切換開關M21, M22, M23, M24)用以切換轉換電容器CF與第一電源及充電電源的耦接關係,以轉換第一電源而產生充電電源。Please continue to refer to FIG. 4 , the capacitor switching power converter 206 includes at least one switching capacitor CF and a plurality of switching switches. The coupling relationship between the first power source and the charging power source is to convert the first power source to generate the charging power source.

在一實施例中,電容切換電源轉換器206具有第二調節模式及第二短路導通模式,於第二調節模式下,控制電路207產生控制訊號ct2而控制電容切換電源轉換器206之複數切換開關的切換,以調節充電電源至第二預設目標,例如調節充電電壓VCH至一預設的電壓位準,或是調節充電電流ICH至一預設的電流位準。此外,於第二短路導通模式下,電容切換電源轉換器206控制部分之複數切換開關導通,以短路導通第一電源與充電電源。In one embodiment, the capacitor-switched power converter 206 has a second regulation mode and a second short-circuit conduction mode. In the second regulation mode, the control circuit 207 generates a control signal ct2 to control the plurality of switches of the capacitor-switched power converter 206 . to adjust the charging power source to the second preset target, such as adjusting the charging voltage VCH to a preset voltage level, or adjusting the charging current ICH to a preset current level. In addition, in the second short-circuit conduction mode, the plurality of switches in the control portion of the capacitor-switched power converter 206 are turned on, so as to short-circuit the first power source and the charging power source.

請繼續參閱圖4,在一實施例中,電容切換電源轉換器206可對應為分壓型電容切換電源轉換器206。亦即,充電電源的充電電壓VCH為第一電源之第一電壓V1的1/k倍,且充電電源的充電電流ICH對應地為第一電源之第一電流I1的電流放大率,k倍,在分壓型的電容切換電源轉換器之實施例中,k為大於1的實數。具體舉例而言,在一實施例中,如圖4的配置所示,電流放大率k可為2,亦即,充電電源的充電電壓VCH為第一電源之第一電壓V1的1/2,且充電電源的充電電流ICH對應地為第一電源之第一電流I1的2倍。在另一實施例中,以類似於圖4的分壓概念,電流放大率k可為4,亦即,充電電源的充電電壓VCH可配置為第一電源之第一電壓V1的1/4,且充電電源的充電電流ICH對應地為第一電源之第一電流I1的4倍。Please continue to refer to FIG. 4 , in one embodiment, the capacitor-switched power converter 206 may correspond to a voltage divider-type capacitor-switched power converter 206 . That is, the charging voltage VCH of the charging power source is 1/k times the first voltage V1 of the first power source, and the charging current ICH of the charging power source is correspondingly the current amplification factor of the first current I1 of the first power source, k times, In the embodiment of the voltage-dividing capacitor-switched power converter, k is a real number greater than 1. Specifically, in one embodiment, as shown in the configuration of FIG. 4 , the current amplification factor k may be 2, that is, the charging voltage VCH of the charging power source is 1/2 of the first voltage V1 of the first power source, And the charging current ICH of the charging power source is correspondingly twice the first current I1 of the first power source. In another embodiment, similar to the voltage dividing concept in FIG. 4 , the current amplification rate k can be 4, that is, the charging voltage VCH of the charging power source can be configured to be 1/4 of the first voltage V1 of the first power source, And the charging current ICH of the charging power source is correspondingly four times the first current I1 of the first power source.

具體而言,本實施例中,控制電路207控制電容切換電源轉換器206之複數切換開關M21, M22, M23, M24,使轉換電容器CF之第一端週期性地於第一充電轉換時段(對應於例如PH1)與第二充電轉換時段(對應於例如PH2)中分別對應切換而電性連接於第一電壓V1與充電電壓VCH之間,且使轉換電容器CF之第二端於第一充電轉換時段PH1與第二充電轉換時段PH2中分別對應切換而電性連接於充電電壓VCH與接地點之間,藉此,使得充電電壓VCH為第一電壓V1的1/2,且充電電流ICH對應地為第一電流I1的2倍。Specifically, in this embodiment, the control circuit 207 controls the complex switching switches M21, M22, M23, M24 of the capacitor switching power converter 206, so that the first end of the switching capacitor CF is periodically in the first charging switching period (corresponding to the first charging switching period). In such as PH1) and the second charging conversion period (corresponding to, for example, PH2), the switching is respectively correspondingly switched to be electrically connected between the first voltage V1 and the charging voltage VCH, and the second end of the conversion capacitor CF is switched in the first charging conversion The period PH1 and the second charging transition period PH2 are respectively switched and electrically connected between the charging voltage VCH and the ground point, whereby the charging voltage VCH is 1/2 of the first voltage V1, and the charging current ICH is correspondingly It is twice the first current I1.

值得說明的是,在一實施例中,於第一短路導通模式下,所述的部分之複數切換元件,其在第一調節模式下,皆係用以切換電感L以進行電感切換電源轉換之切換元件,就一觀點而言,所述的部分之複數切換元件,其在第一調節模式下,至少於每一切換週期內,皆用以導通與關斷該電感至少各一時段。換言之,所述的部分之複數切換元件皆非專用以短路導通,而於第一調節模式下,具有週期性切換電感L之功能。It should be noted that, in one embodiment, in the first short-circuit conduction mode, the part of the plurality of switching elements is used to switch the inductor L to perform the inductance switching power conversion in the first adjustment mode. The switching element, from one point of view, the part of the plurality of switching elements is used to turn on and turn off the inductor for at least a period of time during at least each switching period in the first adjustment mode. In other words, the above-mentioned part of the plurality of switching elements are not dedicated for short-circuit conduction, but have the function of periodically switching the inductance L in the first adjustment mode.

另一方面,在一實施例中,於第二短路導通模式下,所述的部分之複數切換開關,其在第二調節模式下,皆係用以切換轉換電容器以進行電容切換電源轉換之切換開關,就一觀點而言,所述的部分之複數切換開關,其在第二調節模式下,至少於每一切換週期內,皆用以導通與關斷該電容至少各一時段。換言之,所述的部分之複數切換開關皆非專用以短路導通。On the other hand, in one embodiment, in the second short-circuit conduction mode, the part of the plurality of switches in the second regulation mode are all used to switch the switching capacitor to perform the switching of the capacitance switching power conversion The switch, from a viewpoint, the part of the plurality of switching switches, in the second regulation mode, is used to turn on and turn off the capacitor for at least a period of time at least in each switching period. In other words, none of the plurality of switches described above are dedicated to short-circuit conduction.

請繼續參閱圖4,在一實施例中,控制電路207根據直流電源及充電電源之參數之至少之一而決定電感切換電源轉換器205操作於第一調節模式或第一短路導通模式,及/或控制電容切換電源轉換器206操作於第二調節模式或第二短路導通模式。在一實施例中,所述的直流電源及充電電源之參數可為例如但不限於直流電壓VBUS、直流電流IBUS、充電電壓VCH、充電電流ICH中的至少之一,在一實施例中,控制電路207根據所述參數與至少一閾值之關係,而決定電感切換電源轉換器205與電容切換電源轉換器206上述操作模式的組合。或者,在另一實施例中,控制電路207根據直流電壓VBUS、直流電流IBUS、充電電壓VCH、充電電流ICH中的至少之二者之間例如但不限於大小或倍率的關係,而決定電感切換電源轉換器205與電容切換電源轉換器206上述操作模式的組合。更具體的實施例容後詳述。Please continue to refer to FIG. 4, in one embodiment, the control circuit 207 determines that the inductance-switched power converter 205 operates in the first regulation mode or the first short-circuit conduction mode according to at least one of the parameters of the DC power supply and the charging power supply, and/or Or control the capacitor-switched power converter 206 to operate in the second regulation mode or the second short-circuit conduction mode. In one embodiment, the parameters of the DC power supply and the charging power supply can be, for example, but not limited to, at least one of the DC voltage VBUS, the DC current IBUS, the charging voltage VCH, and the charging current ICH. The circuit 207 determines the combination of the above-mentioned operation modes of the inductance-switched power converter 205 and the capacitance-switched power converter 206 according to the relationship between the parameter and at least one threshold. Alternatively, in another embodiment, the control circuit 207 determines the inductance switching according to the relationship between at least two of the DC voltage VBUS, the DC current IBUS, the charging voltage VCH, and the charging current ICH, such as but not limited to the magnitude or the ratio. The power converter 205 and the capacitance-switched power converter 206 are a combination of the above operating modes. More specific examples will be described in detail later.

請繼續參閱圖4,在一實施例中,電感切換電源轉換器例如可對應為如圖4實施例中的降壓型切換電源轉換器(對應於205),或可為如圖6A所示的升降壓型切換電源轉換器(對應於208),或是圖6B所示的升壓型切換電源轉換器(對應於209)。就一觀點而言,電感切換電源轉換器還可以是其他電感切換式電源架構,只要可通過操作其至少部分之用以切換電感的切換元件,而具有短路導通其輸入與輸出(即直流電源與第一電源)之功能,即可適用於本發明。Please continue to refer to FIG. 4 , in one embodiment, the inductive switching power converter may correspond to, for example, the step-down switching power converter (corresponding to 205 ) in the embodiment of FIG. 4 , or may be as shown in FIG. 6A . The buck-boost switching power converter (corresponding to 208 ), or the step-up switching power converter (corresponding to 209 ) shown in FIG. 6B . From one point of view, the inductive switching power converter can also be other inductive switching power supply architectures, as long as it can short-circuit its input and output (ie, the DC power supply and the The function of the first power supply) can be applied to the present invention.

請繼續參閱圖4,在一具體實施例中,於所述的第一短路導通模式下,控制電路207控制上橋開關M11為恆導通。在一實施例中,於所述的第一短路導通模式下,控制電路207控制下橋開關M12為恆不導通。在另一實施例中,下橋切換元件亦可為例如二極體。需說明的是,就一觀點而言,於第一短路導通模式下,直流電源與第一電源的短路導通路徑同時包括了恆導通的上橋開關M11以及電感L。Please continue to refer to FIG. 4 , in an embodiment, in the first short-circuit conduction mode, the control circuit 207 controls the upper bridge switch M11 to be in constant conduction. In one embodiment, in the first short-circuit conduction mode, the control circuit 207 controls the lower bridge switch M12 to be non-conductive at all times. In another embodiment, the lower bridge switching element can also be, for example, a diode. It should be noted that, from a point of view, in the first short-circuit conduction mode, the short-circuit conduction paths of the DC power supply and the first power supply simultaneously include the constant conduction high-bridge switch M11 and the inductor L.

請繼續參閱圖6A,本實施例中,於所述的第一短路導通模式下,輸入上橋開關M13與輸出上橋開關M15控制為恆導通,且輸入下橋開關M14與輸出下橋開關M16控制為恆不導通。Please continue to refer to FIG. 6A , in this embodiment, in the first short-circuit conduction mode, the input high-bridge switch M13 and the output high-bridge switch M15 are controlled to be in constant conduction, and the input low-bridge switch M14 and the output low-bridge switch M16 Control is always non-conductive.

請繼續參閱圖6B,本實施例中,於所述的第一短路導通模式下,上橋開關M17控制為恆導通,且下橋開關M18控制為恆不導通。Please continue to refer to FIG. 6B , in this embodiment, in the first short-circuit conduction mode, the upper bridge switch M17 is controlled to be constantly conducting, and the lower bridge switch M18 is controlled to be constantly non-conducting.

另一方面,請繼續參閱圖4,在一具體實施例中,於所述的第二短路導通模式下,控制電路207控制切換開關M21與M22為恆導通,且控制切換開關M24為恆不導通。在一實施例中,於所述的第二短路導通模式下,切換開關M23可為恆不導通或恆導通。On the other hand, please continue to refer to FIG. 4 , in a specific embodiment, in the second short-circuit conduction mode, the control circuit 207 controls the switches M21 and M22 to be constantly conducting, and controls the switch M24 to be constantly non-conducting . In one embodiment, in the second short-circuit conduction mode, the switch M23 can be either non-conductive or conductive.

需說明的是,以下實施例將以如圖4實施例中的降壓型的電感切換電源轉換器,以及分壓型的電容切換電源轉換器繼續說明其他細節實施例,但非限制本發明之範疇。It should be noted that, in the following embodiments, the step-down inductor-switching power converter and the voltage-dividing capacitor-switching power converter as shown in the embodiment of FIG. category.

圖7顯示根據本發明之高效率充電系統及其中的電源轉換電路之一實施例的示意圖(充電系統1007與電源轉換電路200)。本實施例基於如圖4之實施例,本實施例中,電源發送單元100所發送的直流電壓VBUS例如為9V,且直流電流IBUS例如可輸出達2.3A,換言之,本實施例中,電源發送單元100可輸出的最大功率約可達21W。此外,本實施例中,電池電壓VBAT例如為3.5V(對應於充電電壓VCH),且可採取恆定電流模式以產生充電電流ICH(對應於電池電流IBAT)而對電池300充電,此外,若控制電容切換電源轉換器206操作於第二調節模式,在前述的電流放大率k為2的條件下,第一電壓V1 (充電電壓VCH之2倍)將會是7V,在此情況下,直流電壓VBUS與第一電壓V1的差值仍大於0,電容切換電源轉換器206可操作於第二調節模式的條件成立。在一實施例中,控制電路207可決定電感切換電源轉換器205操作於第一調節模式,且電容切換電源轉換器206操作於第二調節模式。在此情況下,可以最大功率對電池300充電。具體而言,本實施例中,於第一調節模式下,直流電壓VBUS為9V,直流電流可輸出達2.3A,第一電壓V1為7V,第一電流I1可達3A,且於第二調節模式下,充電電壓VCH為3.5V,充電電流ICH可達6A。FIG. 7 shows a schematic diagram of an embodiment of a high-efficiency charging system and a power conversion circuit therein (charging system 1007 and power conversion circuit 200 ) according to the present invention. This embodiment is based on the embodiment shown in FIG. 4 . In this embodiment, the DC voltage VBUS sent by the power transmission unit 100 is, for example, 9V, and the DC current IBUS can output, for example, up to 2.3A. In other words, in this embodiment, the power supply sends The maximum power that the unit 100 can output is about 21W. In addition, in this embodiment, the battery voltage VBAT is, for example, 3.5V (corresponding to the charging voltage VCH), and a constant current mode can be adopted to generate the charging current ICH (corresponding to the battery current IBAT) to charge the battery 300 . The capacitor-switched power converter 206 operates in the second regulation mode. Under the condition that the aforementioned current amplification factor k is 2, the first voltage V1 (twice the charging voltage VCH) will be 7V. In this case, the DC voltage The difference between VBUS and the first voltage V1 is still greater than 0, and the condition that the capacitor-switched power converter 206 can operate in the second regulation mode is established. In one embodiment, the control circuit 207 may determine that the inductance-switched power converter 205 operates in the first regulation mode, and the capacitance-switched power converter 206 operates in the second regulation mode. In this case, the battery 300 can be charged with maximum power. Specifically, in this embodiment, in the first regulation mode, the DC voltage VBUS is 9V, the DC current can output up to 2.3A, the first voltage V1 is 7V, the first current I1 can reach 3A, and in the second regulation In the mode, the charging voltage VCH is 3.5V, and the charging current ICH can reach 6A.

圖8顯示根據本發明之高效率充電系統及其中的電源轉換電路之一實施例的示意圖(充電系統1008與電源轉換電路200)。本實施例基於如圖4之實施例,本實施例中,電源發送單元100所發送的直流電壓VBUS例如可達9V,且直流電流IBUS例如可輸出達2A,換言之,本實施例中,電源發送單元100可輸出的最大功率可達18W。本實施例中,電池電壓VBAT例如為3.5V(對應於充電電壓VCH),且可採取恆定電流模式以產生充電電流ICH而對電池300充電,此外,若控制電容切換電源轉換器206操作於第二調節模式,在前述的電流放大率k為2的條件下,第一電壓V1 (充電電壓VCH之2倍)將會是7V,在此情況下,直流電壓VBUS與第一電壓V1的差值仍大於0,電容切換電源轉換器206可操作於第二調節模式的條件成立。FIG. 8 shows a schematic diagram of an embodiment of a high-efficiency charging system and a power conversion circuit therein (charging system 1008 and power conversion circuit 200 ) according to the present invention. This embodiment is based on the embodiment shown in FIG. 4 . In this embodiment, the DC voltage VBUS sent by the power transmitting unit 100 can reach, for example, 9V, and the DC current IBUS can output, for example, 2A. In other words, in this embodiment, the power sending The maximum power that the unit 100 can output can be up to 18W. In this embodiment, the battery voltage VBAT is, for example, 3.5V (corresponding to the charging voltage VCH), and a constant current mode can be adopted to generate the charging current ICH to charge the battery 300 . In addition, if the capacitor-switching power converter 206 is controlled to operate in the first In the second adjustment mode, under the condition that the aforementioned current amplification factor k is 2, the first voltage V1 (twice the charging voltage VCH) will be 7V. In this case, the difference between the DC voltage VBUS and the first voltage V1 Still greater than 0, the condition for the capacitance-switched power converter 206 to be operable in the second regulation mode is established.

在一實施例中,如圖8所示,控制電路207可決定電感切換電源轉換器205操作於第一短路導通模式(以粗實線示意M11恆導通,以空白示意M12恆不導通),且電容切換電源轉換器206操作於第二調節模式。具體而言,本實施例中,電源發送單元100提供最大之恆定電流,即直流電流IBUS為2A,電感切換電源轉換器205操作於第一短路導通模式下,第一電流I1亦為2A,而電容切換電源轉換器206操作於第二調節模式下,充電電流ICH為4A,且直流電壓VBUS與第一電壓V1皆等於7V。In one embodiment, as shown in FIG. 8 , the control circuit 207 may determine that the inductance-switching power converter 205 operates in the first short-circuit conduction mode (the thick solid line indicates that M11 is constantly conducting, and the blank indicates that M12 is constantly non-conducting), and The capacitance-switched power converter 206 operates in the second regulation mode. Specifically, in this embodiment, the power transmitting unit 100 provides the maximum constant current, that is, the DC current IBUS is 2A, the inductance switching power converter 205 operates in the first short-circuit conduction mode, the first current I1 is also 2A, and The capacitor switching power converter 206 operates in the second regulation mode, the charging current ICH is 4A, and the DC voltage VBUS and the first voltage V1 are both equal to 7V.

值得注意的是,在此情況下,由於電感切換電源轉換器205未進行切換式電源轉換,而減少了切換能損,因此,充電系統1008可在較高的電源轉換效率下對電池300充電,當電源發送單元100對應為另一以電池供電的行動式裝置,或是對應於一行動電源時,特別可以延長電源發送單元100自身的電池壽命,此外,一般來說位於一行動裝置內的電源轉換電路200亦可因而降低操作溫度。It should be noted that, in this case, since the inductive switching power converter 205 does not perform switching power conversion, the switching energy loss is reduced. Therefore, the charging system 1008 can charge the battery 300 with a higher power conversion efficiency. When the power transmitting unit 100 corresponds to another battery-powered mobile device, or corresponds to a mobile power supply, the battery life of the power transmitting unit 100 itself can be extended in particular. The conversion circuit 200 can thus also reduce the operating temperature.

此外,在另一實施例中,電感切換電源轉換器205具有一最大占空比Dmax,當直流電壓VBUS與第一電壓V1的關係,使得電感切換電源轉換器205操作於第一調節模式時,會超過最大占空比Dmax,在此情況下,亦可決定電感切換電源轉換器205操作於第一短路導通模式。In addition, in another embodiment, the inductance-switched power converter 205 has a maximum duty cycle Dmax. When the relationship between the DC voltage VBUS and the first voltage V1 makes the inductance-switched power converter 205 operate in the first regulation mode, The maximum duty cycle Dmax may be exceeded. In this case, it is also determined that the inductance-switched power converter 205 operates in the first short-circuit conduction mode.

圖9顯示根據本發明之高效率充電系統及其中的電源轉換電路之一實施例的示意圖(充電系統1009與電源轉換電路200)。本實施例基於如圖4之實施例,本實施例中,電源發送單元100所發送的直流電壓VBUS例如為5V,且直流電流IBUS例如可輸出達2.1A,換言之,本實施例中,電源發送單元100可輸出的最大功率可達10.5W。本實施例中,電池電壓VBAT例如為3.5V(對應於充電電壓VCH),且可採取恆定電流模式以產生充電電流ICH而對電池300充電,此外,若控制電容切換電源轉換器206操作於第二調節模式,在前述的電流放大率k為2的條件下,第一電壓V1 (充電電壓VCH之2倍)將會是7V,在此情況下,直流電壓VBUS與第一電壓V1的差值小於0,亦即,電容切換電源轉換器206操作於第二調節模式的條件並不成立。9 shows a schematic diagram (charging system 1009 and power conversion circuit 200 ) of an embodiment of a high-efficiency charging system and a power conversion circuit therein according to the present invention. This embodiment is based on the embodiment shown in FIG. 4 . In this embodiment, the DC voltage VBUS sent by the power sending unit 100 is, for example, 5V, and the DC current IBUS can output, for example, 2.1A. In other words, in this embodiment, the power sending The maximum power that the unit 100 can output can reach 10.5W. In this embodiment, the battery voltage VBAT is, for example, 3.5V (corresponding to the charging voltage VCH), and a constant current mode can be adopted to generate the charging current ICH to charge the battery 300 . In addition, if the capacitor-switching power converter 206 is controlled to operate in the first In the second adjustment mode, under the condition that the aforementioned current amplification factor k is 2, the first voltage V1 (twice the charging voltage VCH) will be 7V. In this case, the difference between the DC voltage VBUS and the first voltage V1 is less than 0, that is, the condition for the capacitance-switched power converter 206 to operate in the second regulation mode does not hold.

因此,在一實施例中,如圖9所示,控制電路207可決定電感切換電源轉換器205操作於第一調節模式,且電容切換電源轉換器206操作於第二短路導通模式(以粗實線示意M21, M22恆導通,以空白示意M23, M24恆不導通)。在此情況下,可以最大功率對電池300充電。具體而言,本實施例中,直流電壓VBUS以5V供電,電感切換電源轉換器205操作於第一調節模式下,第一電流I1被調節於3A,而電容切換電源轉換器206操作於第二短路導通模式下,第一電壓V1與電池電壓VBAT相同,皆為3.5V,在此情況下,直流電流IBUS對應為2.1A,亦即,本實施例以最大功率對電池300充電。Therefore, in one embodiment, as shown in FIG. 9 , the control circuit 207 may determine that the inductance-switching power converter 205 operates in the first regulation mode, and the capacitor-switching power converter 206 operates in the second short-circuit conduction mode (in rough terms). Lines indicate that M21 and M22 are always on, and blanks indicate that M23 and M24 are always off). In this case, the battery 300 can be charged with maximum power. Specifically, in this embodiment, the DC voltage VBUS is powered by 5V, the inductance switching power converter 205 operates in the first regulation mode, the first current I1 is adjusted to 3A, and the capacitance switching power converter 206 operates in the second regulation mode. In the short-circuit conduction mode, the first voltage V1 is the same as the battery voltage VBAT, both being 3.5V. In this case, the DC current IBUS corresponds to 2.1A, that is, the battery 300 is charged with the maximum power in this embodiment.

圖10顯示根據本發明之高效率充電系統及其中的電源轉換電路之一實施例的示意圖(充電系統1010與電源轉換電路200)。本實施例基於如圖4之實施例,本實施例中,電源發送單元100所發送的直流電壓VBUS例如可輸出達5V,且直流電流IBUS例如可輸出達2A,換言之,本實施例中,電源發送單元100可輸出的最大功率可達10W。本實施例中,電源發送單元100的電壓條件與圖9的實施例類似,亦即,電容切換電源轉換器206操作於第二調節模式的條件並不成立。FIG. 10 shows a schematic diagram of an embodiment of a high-efficiency charging system and a power conversion circuit therein (charging system 1010 and power conversion circuit 200 ) according to the present invention. This embodiment is based on the embodiment shown in FIG. 4 . In this embodiment, the DC voltage VBUS sent by the power supply transmitting unit 100 can output, for example, up to 5V, and the DC current IBUS can output, for example, up to 2A. In other words, in this embodiment, the power supply The maximum power that the sending unit 100 can output can reach 10W. In this embodiment, the voltage condition of the power transmission unit 100 is similar to that of the embodiment of FIG. 9 , that is, the condition that the capacitor-switched power converter 206 operates in the second regulation mode does not hold.

因此,在一實施例中,如圖10所示,控制電路207可決定電感切換電源轉換器205操作於第一短路導通模式,且電容切換電源轉換器206操作於第二短路導通模式,控制電路207可通過前述的通信介面CB要求電源發送單元100以定電流輸出。具體而言,本實施例中,電源發送單元100的直流電流IBUS被調節於2A,於第一短路導通模式與第二短路導通模式下,第一電流I1及充電電流ICH亦同時為2A,且第一電壓V1與直流電壓VBUS皆等於3.5V,即對應於電池電壓VBAT。換言之,充電系統1010操作於直接充電模式,由電源發送單元100直接對電池300進行恆定電流充電。Therefore, in one embodiment, as shown in FIG. 10 , the control circuit 207 can determine that the inductive switching power converter 205 operates in the first short-circuit conduction mode, and the capacitance-switching power converter 206 operates in the second short-circuit conduction mode, and the control circuit 207 may request the power transmission unit 100 to output a constant current through the aforementioned communication interface CB. Specifically, in this embodiment, the DC current IBUS of the power transmitting unit 100 is adjusted to 2A, and in the first short-circuit conduction mode and the second short-circuit conduction mode, the first current I1 and the charging current ICH are also 2A at the same time, and The first voltage V1 and the DC voltage VBUS are both equal to 3.5V, that is, corresponding to the battery voltage VBAT. In other words, the charging system 1010 operates in the direct charging mode, and the battery 300 is directly charged with a constant current by the power transmitting unit 100 .

圖11顯示根據本發明之高效率充電系統及其中的電源轉換電路之一實施例的示意圖(充電系統1011與電源轉換電路200’)。本實施例基於如圖4之實施例,本實施例中,電源發送單元100,例如可選地在一低功率模式下,所發送的直流電壓VBUS可輸出達5V,且對應的直流電流IBUS例如可輸出達2A,換言之,本實施例中,在此模式下,電源發送單元100可輸出的最大功率可達10W。而在一高功率模式下,所發送的直流電壓VBUS可輸出達9V,且對應的直流電流IBUS例如可輸出達2A,換言之,本實施例中,在此高功率模式下,電源發送單元100可輸出的最大功率可達18W。本實施例中,電池電壓VBAT例如為3.5V(對應於充電電壓VCH),且可採取恆定電流模式以產生充電電流ICH而對電池300充電,此外,若控制電容切換電源轉換器206操作於第二調節模式,在前述的電流放大率k為2的條件下,第一電壓V1 (充電電壓VCH之2倍)將會是7V,亦即,直流電壓VBUS需大於等於7V。11 shows a schematic diagram of an embodiment of a high-efficiency charging system and a power conversion circuit therein (charging system 1011 and power conversion circuit 200') according to the present invention. This embodiment is based on the embodiment shown in FIG. 4 . In this embodiment, the power transmission unit 100 , for example, optionally in a low power mode, the transmitted DC voltage VBUS can output up to 5V, and the corresponding DC current IBUS such as The output can be up to 2A, in other words, in this embodiment, in this mode, the maximum power that the power transmitting unit 100 can output can be up to 10W. In a high power mode, the transmitted DC voltage VBUS can output up to 9V, and the corresponding DC current IBUS can output up to 2A, for example. In other words, in this embodiment, in the high power mode, the power transmission unit 100 can output The maximum output power can reach 18W. In this embodiment, the battery voltage VBAT is, for example, 3.5V (corresponding to the charging voltage VCH), and a constant current mode can be adopted to generate the charging current ICH to charge the battery 300 . In addition, if the capacitor-switching power converter 206 is controlled to operate in the first In the second regulation mode, under the condition that the aforementioned current amplification factor k is 2, the first voltage V1 (twice the charging voltage VCH) will be 7V, that is, the DC voltage VBUS needs to be greater than or equal to 7V.

因此,在本實施例中,如圖11所示,可選地,控制電路207決定電感切換電源轉換器205操作於第一短路導通模式,且電容切換電源轉換器206操作於第二調節模式,此外,控制電路207可通過前述的通信介面CB要求電源發送單元100以定電流輸出且操作於高功率模式。具體而言,本實施例中,電源發送單元100的直流電流IBUS被調節於2A,於第一短路導通模式與第二調節模式下,第一電流I1及充電電流ICH分別為2A與4A,且第一電壓V1與直流電壓VBUS皆等於7V,即對應於電池電壓VBAT之2倍。Therefore, in this embodiment, as shown in FIG. 11 , optionally, the control circuit 207 determines that the inductance-switching power converter 205 operates in the first short-circuit conduction mode, and the capacitance-switching power converter 206 operates in the second regulation mode, In addition, the control circuit 207 can request the power transmitting unit 100 to output a constant current and operate in a high power mode through the aforementioned communication interface CB. Specifically, in this embodiment, the DC current IBUS of the power transmitting unit 100 is adjusted to 2A, and in the first short-circuit conduction mode and the second adjustment mode, the first current I1 and the charging current ICH are respectively 2A and 4A, and The first voltage V1 and the DC voltage VBUS are both equal to 7V, that is, corresponding to twice the battery voltage VBAT.

就一觀點而言,根據前述實施例的說明,可以歸納出控制電路207決定電感切換電源轉換器205操作於第一短路導通模式,或決定電容切換電源轉換器206操作於第二短路導通模式之時機的原則,詳述如後。From one point of view, according to the description of the foregoing embodiments, it can be concluded that the control circuit 207 determines whether the inductive switching power converter 205 operates in the first short-circuit conduction mode, or determines whether the capacitor-switching power converter 206 operates in the second short-circuit conduction mode. The timing principle is detailed below.

在一實施例中,當直流電源之直流電壓VBUS低於第一閾值Vth1時,電感切換電源轉換器205操作於第一短路導通模式。在一實施例中,第一閾值Vth1相關於第一電壓V1。而當電容切換電源轉換器206操作於第二調節模式時,第一電壓V1為電池電壓VBAT的k倍,因此,在一實施例中,第一閾值Vth1相關於k*VBAT。此外,當電容切換電源轉換器206操作於第二短路導通模式時,第一電壓V1等於電池電壓VBAT,因此,在一實施例中,第一閾值Vth1相關於VBAT。In one embodiment, when the DC voltage VBUS of the DC power source is lower than the first threshold Vth1, the inductively switched power converter 205 operates in the first short-circuit conduction mode. In one embodiment, the first threshold Vth1 is related to the first voltage V1. When the capacitor-switched power converter 206 operates in the second regulation mode, the first voltage V1 is k times the battery voltage VBAT. Therefore, in one embodiment, the first threshold Vth1 is related to k*VBAT. In addition, when the capacitor-switched power converter 206 operates in the second short-circuit conduction mode, the first voltage V1 is equal to the battery voltage VBAT, therefore, in one embodiment, the first threshold Vth1 is related to VBAT.

具體舉例而言,假設電感切換電源轉換器205於第一調節模式下的最大占空比為Dmax,在電容切換電源轉換器206操作於第二調節模式的實施例中,第一閾值Vth1可由下式得出:For example, assuming that the maximum duty cycle of the inductance-switched power converter 205 in the first regulation mode is Dmax, in the embodiment in which the capacitance-switched power converter 206 operates in the second regulation mode, the first threshold Vth1 can be set as follows The formula yields:

Vth1=VBAT*k/Dmax,其中Dmax為大於等於0且小於1之實數。Vth1=VBAT*k/Dmax, where Dmax is a real number greater than or equal to 0 and less than 1.

此外,當電源發送單元100可發送恆定的直流電流IBUS時,如圖8或圖10的實施例所示,亦可選地,可控制電感切換電源轉換器205操作於第一短路導通模式,如前所述,可提高充電系統的電源轉換效率。In addition, when the power sending unit 100 can send a constant DC current IBUS, as shown in the embodiment of FIG. 8 or FIG. 10 , optionally, the inductance switching power converter 205 can be controlled to operate in the first short-circuit conduction mode, such as As mentioned above, the power conversion efficiency of the charging system can be improved.

從另一角度而言,在一實施例中,當電源發送單元100可發送恆定的直流電流IBUS時,且直流電壓VBUS可變且可超過VBAT*k時,可選地,可控制電感切換電源轉換器205操作於第一短路導通模式,且同時控制電容切換電源轉換器206操作於第二調節模式。From another perspective, in one embodiment, when the power sending unit 100 can send a constant DC current IBUS, and the DC voltage VBUS is variable and can exceed VBAT*k, optionally, the inductor can be controlled to switch the power supply The converter 205 operates in the first short-circuit conduction mode, and simultaneously controls the capacitor-switched power converter 206 to operate in the second regulation mode.

另一方面,當直流電源之直流電壓VBUS低於第二閾值Vth2時,電容切換電源轉換器206操作於第二短路導通模式,其中第二閾值Vth2相關於電池電壓VBAT。當電容切換電源轉換器206操作於第二調節模式時,第一電壓V1等於電池電壓VBAT的k倍,而直流電壓VBUS大於等於第一電壓V1,因此,在一實施例中,第二閾值Vth2相關於k*VBAT;具體而言,在一較佳實施例中, Vth2≧k*VBAT。On the other hand, when the DC voltage VBUS of the DC power source is lower than the second threshold Vth2, the capacitor-switched power converter 206 operates in the second short-circuit conduction mode, wherein the second threshold Vth2 is related to the battery voltage VBAT. When the capacitor switching power converter 206 operates in the second regulation mode, the first voltage V1 is equal to k times the battery voltage VBAT, and the DC voltage VBUS is greater than or equal to the first voltage V1. Therefore, in one embodiment, the second threshold Vth2 With respect to k*VBAT; specifically, in a preferred embodiment, Vth2≧k*VBAT.

此外,一般而言,由於最大占空比Dmax通常小於1,因此,電感切換電源轉換器205操作於第一調節模式時,直流電壓VBUS需大於第一電壓V1,因此,在一較佳實施例中,第一閾值Vth1高於該第二閾值Vth2。In addition, in general, since the maximum duty cycle Dmax is usually less than 1, when the inductive switching power converter 205 operates in the first regulation mode, the DC voltage VBUS needs to be greater than the first voltage V1. Therefore, in a preferred embodiment , the first threshold Vth1 is higher than the second threshold Vth2.

具體以圖9與圖10的實施例而言,當直流電壓VBUS電壓過低,無法滿足電容切換電源轉換器206操作於第二調節模式的條件,在此情況下,控制電路207可決定控制電容切換電源轉換器206操作於第二短路導通模式。9 and 10 , when the DC voltage VBUS voltage is too low to satisfy the condition that the capacitor switching power converter 206 operates in the second regulation mode, in this case, the control circuit 207 can determine the control capacitor The switching power converter 206 operates in the second short-circuit conduction mode.

綜上所述,在一實施例中,當電感切換電源轉換器205對應為降壓型切換電源轉換器,且直流電壓VBUS為可調整(programmable) 且低於第一閾值Vth1時,複數切換元件中的上橋開關完全導通,以短路導通第一電源與充電電源。To sum up, in one embodiment, when the inductance switching power converter 205 corresponds to a step-down switching power converter, and the DC voltage VBUS is programmable and is lower than the first threshold Vth1, the plurality of switching elements The upper bridge switch in the circuit is completely turned on to short-circuit the first power supply and the charging power supply.

在一實施例中,當直流電壓VBUS低於第二閾值Vth2時,複數切換開關中的部分開關完全導通,以短路導通第一電源與充電電源。In one embodiment, when the DC voltage VBUS is lower than the second threshold Vth2, some of the switches in the plurality of switching switches are completely turned on to short-circuit the first power source and the charging power source.

在一實施例中,前述的控制電路207可例如對應為一微控制器,用以通過一通訊介面而控制直流電源之直流電壓VBUS及/或直流電源之直流電流IBUS。In one embodiment, the aforementioned control circuit 207 may correspond to a microcontroller, for example, for controlling the DC voltage VBUS of the DC power supply and/or the DC current IBUS of the DC power supply through a communication interface.

此外,根據前述的各種操作模式之組合,在一實施例中,控制電路207可用以控制直流電源之直流電壓VBUS及/或直流電源之直流電流IBUS,使得電源轉換電路200操作於最大效率操作點。In addition, according to the combination of the aforementioned various operation modes, in one embodiment, the control circuit 207 can be used to control the DC voltage VBUS of the DC power supply and/or the DC current IBUS of the DC power supply, so that the power conversion circuit 200 operates at the maximum efficiency operating point .

圖12顯示根據本發明之高效率充電系統及其中的電源轉換電路之一實施例的示意圖 (充電系統1012與電源轉換電路200”)。本實施例與前述之實施例類似,本實施例中,電感L與轉換電容器CF並不包括於電源轉換電路200”之中,換言之,電感切換電源轉換器205”用以切換電感L,電容切換電源轉換器206”用以切換轉換電容器CF。在一實施例中,電感切換電源轉換器205”、 電容切換電源轉換器206”以及控制電路207整合於一積體電路中,亦即,電源轉換電路200”對應於該積體電路。12 shows a schematic diagram of an embodiment of a high-efficiency charging system and a power conversion circuit therein according to the present invention (charging system 1012 and power conversion circuit 200 ″). This embodiment is similar to the previous embodiment. In this embodiment, The inductor L and the switching capacitor CF are not included in the power conversion circuit 200". In other words, the inductor switching power converter 205" is used to switch the inductor L, and the capacitance switching power converter 206" is used to switch the switching capacitor CF. In one embodiment, the inductance switching power converter 205", the capacitance switching power converter 206" and the control circuit 207 are integrated into an integrated circuit, that is, the power conversion circuit 200" corresponds to the integrated circuit.

如前所述,圖4~圖5,圖7~圖12之實施例皆以降壓型的電感切換電源轉換器,以及分壓型的電容切換電源轉換器,演示本發明之操作,在其他實施例中,則可依照實際的電源轉換器之組合而對應地調整例如前述的倍數k,及閾值的關係,本領域人員當可依本發明之精神而自行推論,在此不予贅述。As mentioned above, the embodiments of FIGS. 4 to 5 and FIGS. 7 to 12 all use a step-down inductor-switched power converter and a voltage-divider capacitor-switched power converter to demonstrate the operation of the present invention. In other implementations In an example, the relationship between the above-mentioned multiple k and the threshold value can be adjusted correspondingly according to the combination of the actual power converters. Those skilled in the art can make their own inferences based on the spirit of the present invention, which will not be repeated here.

本發明提供了一種由電感切換電源轉換器與電容切換電源轉換器串接而成的電源轉換電路,可依照直流電源、電池電壓與狀態等需求,而適應性的選擇電感切換電源轉換器與電容切換電源轉換器之操作模式的組合,以最大功率或高效率之模式,或使得該電源轉換電路操作於一最大效率操作點,以對電池進行充電。The invention provides a power conversion circuit composed of an inductance switching power converter and a capacitance switching power converter connected in series, which can adaptively select the inductance switching power converter and the capacitor according to the requirements of DC power supply, battery voltage and state, etc. Switching the combination of operating modes of the power converter to the maximum power or high efficiency mode, or to make the power conversion circuit operate at a maximum efficiency operating point to charge the battery.

以上已針對較佳實施例來說明本發明,唯以上所述者,僅係為使熟悉本技術者易於了解本發明的內容而已,並非用來限定本發明之最廣的權利範圍。所說明之各個實施例,並不限於單獨應用,亦可以組合應用,舉例而言,兩個或以上之實施例可以組合運用,而一實施例中之部分組成亦可用以取代另一實施例中對應之組成部件。此外,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,舉例而言,本發明所稱「根據某訊號進行處理或運算或產生某輸出結果」,不限於根據該訊號的本身,亦包含於必要時,將該訊號進行電壓電流轉換、電流電壓轉換、及/或比例轉換等,之後根據轉換後的訊號進行處理或運算產生某輸出結果。由此可知,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,其組合方式甚多,在此不一一列舉說明。因此,本發明的範圍應涵蓋上述及其他所有等效變化。The present invention has been described above with respect to the preferred embodiments, but the above descriptions are only intended to make the content of the present invention easy for those skilled in the art to understand, and are not intended to limit the broadest scope of rights of the present invention. The described embodiments are not limited to be used alone, but can also be used in combination. For example, two or more embodiments can be used in combination, and some components in one embodiment can also be used to replace those in another embodiment. corresponding components. In addition, under the same spirit of the present invention, those skilled in the art can think of various equivalent changes and various combinations. According to the signal itself, when necessary, the signal is subjected to voltage-to-current conversion, current-to-voltage conversion, and/or ratio conversion, etc., and then processed or calculated according to the converted signal to generate an output result. It can be seen from this that under the same spirit of the present invention, those skilled in the art can think of various equivalent changes and various combinations, and there are many combinations, which are not listed and described here. Accordingly, the scope of the present invention should cover the above and all other equivalent changes.

100, 100’: 電源發送單元 1004, 1005, 1007~1012: 充電系統 1001: 電感切換電源轉換器 1002: 電容切換電源轉換器 1003: 負載開關電路 200, 200’, 200”: 電源轉換電路 205, 205”: 電感切換電源轉換器 206, 206”: 電容切換電源轉換器 207, 207’: 控制電路 208: 升降壓型切換電源轉換器 209: 升壓型切換電源轉換器 300: 電池 400: 電纜線 CB: 通訊介面 CF: 轉換電容器 ct1, ct2: 控制訊號 Dmax: 最大占空比 I1: 第一電流 IBAT: 電池電流 IBUS: 直流電流 ICH: 充電電流 k: 電流放大率 L: 電感 M11: 上橋開關 M12: 下橋開關 M21, M22, M23, M24: 切換開關 PH1, PH2: 充電轉換時段 V1: 第一電壓 VCH: 充電電壓 VBAT: 電池電壓 VBUS: 直流電壓 Vth1, Vth2: 閾值 100, 100’: Power Transmitter Unit 1004, 1005, 1007~1012: Charging system 1001: Inductive Switching Power Converters 1002: Capacitor Switching Power Converters 1003: Load Switch Circuits 200, 200’, 200”: power conversion circuit 205, 205”: Inductive Switching Power Converters 206, 206”: Capacitor Switching Power Converters 207, 207’: Control circuit 208: Buck-Boost Switching Power Converters 209: Boost Switching Power Converters 300: battery 400: Cable Wire CB: Communication Interface CF: Conversion capacitor ct1, ct2: control signal Dmax: maximum duty cycle I1: first current IBAT: battery current IBUS: DC current ICH: charging current k: current magnification L: Inductance M11: High Bridge Switch M12: lower bridge switch M21, M22, M23, M24: toggle switch PH1, PH2: charging transition period V1: first voltage VCH: charging voltage VBAT: battery voltage VBUS: DC voltage Vth1, Vth2: Threshold

圖1顯示一種先前技術之電感切換電源轉換器的電路示意圖。FIG. 1 shows a schematic circuit diagram of an inductive switching power converter of the prior art.

圖2顯示一種先前技術之電容切換電源轉換器的電路示意圖。FIG. 2 shows a schematic circuit diagram of a capacitor-switched power converter of the prior art.

圖3顯示另一種先前技術之負載開關電路的電路示意圖。FIG. 3 shows a schematic circuit diagram of another prior art load switch circuit.

圖4顯示本發明之高效率充電系統及其中的電源轉換電路之一實施例的示意圖。FIG. 4 shows a schematic diagram of an embodiment of the high-efficiency charging system and the power conversion circuit therein of the present invention.

圖5顯示本發明之高效率充電系統及其中的電源轉換電路之另一實施例的示意圖。FIG. 5 is a schematic diagram showing another embodiment of the high-efficiency charging system of the present invention and the power conversion circuit therein.

圖6A顯示根據本發明之電感切換電源轉換器的一具體實施例的示意圖。FIG. 6A shows a schematic diagram of an embodiment of an inductively switched power converter according to the present invention.

圖6B顯示根據本發明之電感切換電源轉換器的一具體實施例的示意圖。FIG. 6B shows a schematic diagram of an embodiment of an inductively switched power converter according to the present invention.

圖7顯示本發明之高效率充電系統及其中的電源轉換電路之一實施例的示意圖。FIG. 7 shows a schematic diagram of an embodiment of a high-efficiency charging system and a power conversion circuit therein of the present invention.

圖8顯示本發明之高效率充電系統及其中的電源轉換電路之一實施例的示意圖。FIG. 8 shows a schematic diagram of an embodiment of the high-efficiency charging system and the power conversion circuit therein of the present invention.

圖9顯示本發明之高效率充電系統及其中的電源轉換電路之一實施例的示意圖。FIG. 9 shows a schematic diagram of an embodiment of the high-efficiency charging system and the power conversion circuit therein of the present invention.

圖10顯示本發明之高效率充電系統及其中的電源轉換電路之一實施例的示意圖。FIG. 10 is a schematic diagram showing an embodiment of a high-efficiency charging system and a power conversion circuit therein of the present invention.

圖11顯示本發明之高效率充電系統及其中的電源轉換電路之一實施例的示意圖。FIG. 11 shows a schematic diagram of an embodiment of the high-efficiency charging system and the power conversion circuit therein of the present invention.

圖12顯示本發明之高效率充電系統及其中的電源轉換電路之一實施例的示意圖。FIG. 12 shows a schematic diagram of an embodiment of a high-efficiency charging system and a power conversion circuit therein of the present invention.

100: 電源發送單元 1004: 充電系統 200: 電源轉換電路 205: 電感切換電源轉換器 206: 電容切換電源轉換器 207: 控制電路 300: 電池 400: 電纜線 CF: 轉換電容器 ct1, ct2: 控制訊號 I1: 第一電流 IBAT: 電池電流 IBUS: 直流電流 ICH: 充電電流 L: 電感 M11: 上橋開關 M12: 下橋開關 M21, M22, M23, M24: 切換開關 PH1, PH2: 充電轉換時段 V1: 第一電壓 VCH: 充電電壓 VBAT: 電池電壓 VBUS: 直流電壓 Vs: 輸入電源 100: Power sending unit 1004: Charging System 200: Power Conversion Circuit 205: Inductive Switching Power Converters 206: Capacitor Switching Power Converters 207: Control circuit 300: battery 400: Cable Wire CF: Conversion capacitor ct1, ct2: control signal I1: first current IBAT: battery current IBUS: DC current ICH: charging current L: Inductance M11: High Bridge Switch M12: lower bridge switch M21, M22, M23, M24: toggle switch PH1, PH2: charging transition period V1: first voltage VCH: charging voltage VBAT: battery voltage VBUS: DC voltage Vs: input power

Claims (13)

一種電源轉換電路,包含:一電感切換電源轉換器,包括複數切換元件,複數該切換元件用以切換一電感與一直流電源及一第一電源的耦接關係,以轉換該直流電源而產生該第一電源;以及一電容切換電源轉換器,包括複數切換開關,複數該切換開關用以切換一轉換電容器與該第一電源及一充電電源的耦接關係,以轉換該第一電源而產生該充電電源;其中該電感切換電源轉換器具有一第一調節模式及一第一短路導通模式,於該第一調節模式下,複數該切換元件切換該電感以調節該第一電源至一第一預設目標,於該第一短路導通模式下,對應之至少一該切換元件控制為導通,以短路導通該直流電源至該第一電源;其中該電容切換電源轉換器具有一第二調節模式及一第二短路導通模式,於該第二調節模式下,複數該切換開關切換該轉換電容器以調節該充電電源至一第二預設目標,於該第二短路導通模式下,對應之至少一該切換開關控制為導通,以短路導通該第一電源至該充電電源;其中,該電源轉換電路根據該直流電源之一參數而決定該電感切換電源轉換器操作於該第一調節模式或該第一短路導通模式,及/或決定該電容切換電源轉換器操作於該第二調節模式或該第二短路導通模式。 A power conversion circuit, comprising: an inductance switching power converter, including a plurality of switching elements, the plurality of switching elements are used to switch the coupling relationship between an inductance, a DC power supply and a first power supply, so as to convert the DC power supply to generate the a first power supply; and a capacitor switching power converter, including a plurality of switching switches, the plurality of switching switches are used to switch the coupling relationship between a switching capacitor, the first power supply and a charging power supply, so as to convert the first power supply to generate the a charging power supply; wherein the inductance switching power converter has a first regulation mode and a first short-circuit conduction mode, and in the first regulation mode, a plurality of the switching elements switch the inductance to regulate the first power supply to a first preset The objective is that in the first short-circuit conduction mode, the corresponding at least one switching element is controlled to be turned on, so as to short-circuit the DC power supply to the first power supply; wherein the capacitance-switching power converter has a second regulation mode and a second short-circuit conduction mode, in the second adjustment mode, a plurality of the switch switches switch the conversion capacitor to adjust the charging power source to a second preset target, in the second short-circuit conduction mode, corresponding to at least one of the switch control In order to conduct, the first power supply is short-circuited to the charging power supply; wherein, the power conversion circuit determines that the inductance switching power converter operates in the first regulation mode or the first short-circuit conduction mode according to a parameter of the DC power supply , and/or determine that the capacitor-switched power converter operates in the second regulation mode or the second short-circuit conduction mode. 如請求項1所述之電源轉換電路,其特徵在於, 於該直流電源之一直流電壓低於一第一閾值時,該電感切換電源轉換器操作於該第一短路導通模式,其中該第一閾值相關於該充電電源之一充電電壓;或者於該直流電壓低於一第二閾值時,該電容切換電源轉換器操作於該第二短路導通模式,其中該第二閾值相關於該充電電壓與一電流放大率之乘積,其中該電流放大率為該充電電源之一充電電流與該第一電源之一第一電流之比例;或者當該直流電源之一直流電流為恆定時,該電感切換電源轉換器操作於該第一短路導通模式;或者當該直流電源之一直流電流為恆定,且該直流電壓為可變且可超過該第二閾值時,該電感切換電源轉換器操作於該第一短路導通模式,且該電容切換電源轉換器操作於該第二調節模式。 The power conversion circuit according to claim 1, characterized in that: When a DC voltage of the DC power source is lower than a first threshold value, the inductive switching power converter operates in the first short-circuit conduction mode, wherein the first threshold value is related to a charging voltage of the charging power source; or when the DC voltage is low At a second threshold, the capacitor-switched power converter operates in the second short-circuit conduction mode, wherein the second threshold is related to the product of the charging voltage and a current amplification ratio, wherein the current amplification ratio is a ratio of the charging power supply. A ratio of a charging current to a first current of the first power source; or when a DC current of the DC power source is constant, the inductance-switched power converter operates in the first short-circuit conduction mode; or when the DC power source is in a constant state When the DC current is constant and the DC voltage is variable and can exceed the second threshold, the inductance switching power converter operates in the first short-circuit conduction mode, and the capacitance switching power converter operates in the second regulation model. 如請求項1所述之電源轉換電路,其中該電感切換電源轉換器對應為一降壓型切換電源轉換器或一升降壓型切換電源轉換器。 The power conversion circuit of claim 1, wherein the inductance switching power converter corresponds to a buck switching power converter or a buck-boost switching power converter. 如請求項1所述之電源轉換電路,其中該直流電源由一交流-直流(AD-DC)轉換器提供。 The power conversion circuit of claim 1, wherein the DC power is provided by an AC-DC (AD-DC) converter. 如請求項1所述之電源轉換電路,其中該電容切換電源轉換器對應為一分壓型電容切換電源轉換器。 The power conversion circuit of claim 1, wherein the capacitor-switched power converter corresponds to a voltage-dividing capacitor-switched power converter. 如請求項4所述之電源轉換電路,其中該充電電源的一充電電壓為該第一電源之一第一電壓的1/2或1/4,且該充電電源的一充電電流對應地為該第一電源之一第一電流的2倍或4倍。 The power conversion circuit of claim 4, wherein a charging voltage of the charging power source is 1/2 or 1/4 of a first voltage of the first power source, and a charging current of the charging power source is correspondingly the 2 times or 4 times the first current of one of the first power sources. 如請求項2所述之電源轉換電路,其中當該電感切換電源轉換器對應為一降壓型切換電源轉換器,且該直流電壓為可調整(programmable)且低於該第一閾值時,該複數切換元件中的一上橋開關完全導通,以短路導通該直流電源與該第一電源。 The power conversion circuit of claim 2, wherein when the inductance switching power converter corresponds to a step-down switching power converter, and the DC voltage is programmable and is lower than the first threshold, the An upper-bridge switch in the plurality of switching elements is fully turned on, so as to short-circuit the DC power supply and the first power supply. 如請求項2所述之電源轉換電路,其中當該直流電壓低於該第二閾值時,該複數切換開關中的部分開關完全導通,以短路導通該第一電源與該充電電源。 The power conversion circuit of claim 2, wherein when the DC voltage is lower than the second threshold, some switches in the plurality of switches are completely turned on to short-circuit the first power source and the charging power source. 如請求項4所述之電源轉換電路,其中該交流-直流轉換器為符合通用序列匯流排電源傳輸協定(USB PD)的電源適配器。 The power conversion circuit of claim 4, wherein the AC-DC converter is a power adapter conforming to the Universal Serial Bus Power Delivery Protocol (USB PD). 如請求項1所述之電源轉換電路,更包括一控制電路,用以通過一通訊介面而控制該直流電源之該直流電壓及/或該直流電源之一直流電流。 The power conversion circuit of claim 1, further comprising a control circuit for controlling the DC voltage of the DC power supply and/or a DC current of the DC power supply through a communication interface. 如請求項10所述之電源轉換電路,其中該通訊介面對應為通用序列匯流排協定(USB)的D+與D-訊號,或對應為通用序列匯流排電源傳輸協定(USB PD)的CC1與CC2訊號。 The power conversion circuit of claim 10, wherein the communication interface corresponds to D+ and D- signals of Universal Serial Bus Protocol (USB), or corresponds to CC1 and CC2 of Universal Serial Bus Power Delivery Protocol (USB PD). signal. 如請求項1所述之電源轉換電路,更包括一控制電路,用以控制該直流電源之該直流電壓及/或該直流電源之一直流電流,使得該電源轉換電路操作於一最大效率操作點。 The power conversion circuit of claim 1, further comprising a control circuit for controlling the DC voltage of the DC power supply and/or a DC current of the DC power supply, so that the power conversion circuit operates at a maximum efficiency operating point . 一種充電系統,用以轉換一輸入電源而產生一充電電源,該充電系統包含:一電源發送單元,用以轉換該輸入電源而產生一直流電源;以及 如請求項1至12之任一電源轉換電路,用以轉換該直流電源而產生該充電電源。 A charging system for converting an input power to generate a charging power, the charging system comprising: a power sending unit for converting the input power to generate a DC power; and The power conversion circuit according to any one of claims 1 to 12 is used to convert the DC power to generate the charging power.
TW110116101A 2020-11-23 2021-05-04 High efficiency charging system and power conversion circuit thereof TWI770985B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/531,792 US20220166339A1 (en) 2020-11-23 2021-11-21 High efficiency charging system and power conversion circuit thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063117425P 2020-11-23 2020-11-23
US63/117425 2020-11-23

Publications (2)

Publication Number Publication Date
TW202222006A TW202222006A (en) 2022-06-01
TWI770985B true TWI770985B (en) 2022-07-11

Family

ID=81618578

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110116101A TWI770985B (en) 2020-11-23 2021-05-04 High efficiency charging system and power conversion circuit thereof

Country Status (2)

Country Link
CN (1) CN114531025A (en)
TW (1) TWI770985B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201312916A (en) * 2011-09-15 2013-03-16 Richtek Technology Corp Power supply circuit and power supply circuit with adaptively enabled charge pump
TW201530998A (en) * 2014-01-17 2015-08-01 Linear Techn Inc Switched capacitor DC-DC converter with reduced in-rush current and fault protection
CN108028600A (en) * 2015-07-08 2018-05-11 派更半导体公司 Switched capacitor electric power converter
US20190379288A1 (en) * 2017-02-03 2019-12-12 President And Fellows Of Harvard College Highly Integrated High Voltage Actuator Driver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201312916A (en) * 2011-09-15 2013-03-16 Richtek Technology Corp Power supply circuit and power supply circuit with adaptively enabled charge pump
TW201530998A (en) * 2014-01-17 2015-08-01 Linear Techn Inc Switched capacitor DC-DC converter with reduced in-rush current and fault protection
CN108028600A (en) * 2015-07-08 2018-05-11 派更半导体公司 Switched capacitor electric power converter
US20190379288A1 (en) * 2017-02-03 2019-12-12 President And Fellows Of Harvard College Highly Integrated High Voltage Actuator Driver

Also Published As

Publication number Publication date
CN114531025A (en) 2022-05-24
TW202222006A (en) 2022-06-01

Similar Documents

Publication Publication Date Title
KR102332172B1 (en) Wireless power transmitter and wireless power receiver
CN109148990B (en) Wireless charging method, electronic equipment, wireless charging device and wireless charging system
US8659263B2 (en) Power supply circuit having low idle power dissipation
TWI373900B (en) High efficiency charging circuit and power supplying system
CN107437831B (en) Switching power converter for direct battery charging
CN203205946U (en) Charging management circuit and system
JP2019216602A (en) Adapter and charging control method
JP2012125040A (en) Power conversion circuit system
CN103199593B (en) Charging management circuit and system
WO2016112784A1 (en) Uninterrupted power supply and control method thereof
EP3197016A1 (en) Power reception device, non-contact power transmission system, and charging method
KR20150083039A (en) Cable compensation by zero-crossing compensation current and resistor
CN104184329A (en) Power conversion apparatus and power conversion method
KR101696427B1 (en) Energy harvester and wireless switch using the same
CN104506055A (en) Adaptive voltage output power circuit and power source device
JP3887630B2 (en) Capacitor charger and method for adjusting charging current according to battery voltage
JP2013146141A (en) Power receiving device, power transmitting device and control device
WO2022166420A1 (en) Charging control method, electronic device, and wireless charging system
CN111934441A (en) Lighting equipment, bidirectional wireless charging device and control method thereof
TWI770985B (en) High efficiency charging system and power conversion circuit thereof
TWI773392B (en) Charging control method and charging system capable of tracking maximum efficiency
US20220302732A1 (en) Charging circuit and charging device
CN212784852U (en) Battery management system for base station standby power supply
CN112117803A (en) Voltage output device and voltage output control method
CN106558996A (en) For obtaining the improved DC DC potential devices of constant output voltage