TWI760158B - Bridge-tied load class-d power amplifier, audio amplifying circuit and associated control method - Google Patents

Bridge-tied load class-d power amplifier, audio amplifying circuit and associated control method Download PDF

Info

Publication number
TWI760158B
TWI760158B TW110110844A TW110110844A TWI760158B TW I760158 B TWI760158 B TW I760158B TW 110110844 A TW110110844 A TW 110110844A TW 110110844 A TW110110844 A TW 110110844A TW I760158 B TWI760158 B TW I760158B
Authority
TW
Taiwan
Prior art keywords
path
phase
circuit
pwm
output
Prior art date
Application number
TW110110844A
Other languages
Chinese (zh)
Other versions
TW202239138A (en
Inventor
劉鶴軒
劉宇華
楊雅玲
Original Assignee
達發科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 達發科技股份有限公司 filed Critical 達發科技股份有限公司
Priority to TW110110844A priority Critical patent/TWI760158B/en
Priority to CN202110424940.3A priority patent/CN115133890A/en
Application granted granted Critical
Publication of TWI760158B publication Critical patent/TWI760158B/en
Publication of TW202239138A publication Critical patent/TW202239138A/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers

Abstract

A bridge-tied load class-D power amplifier, an audio amplifying circuit and an associated control method are provided. The audio amplifying circuit integrates and modulates a first-path error signal and a second-path error signal to generate a first-path comparator output and a second-path comparator output. The audio amplifying circuit generates the first-path error signal according to a first analog differential input and a first-path feedback signal, and generates the second-path error signal according to a second analog differential input and a second-path feedback signal. The audio amplifying circuit generates the first-path feedback signal according to the first-path comparator output, and generates the second-path comparator output according to the second-path error signal, respectively. Moreover, the audio amplifying circuit selectively adjusts the phase of one of the first-path comparator output and the second-path comparator output.

Description

橋式負載D類功率放大器、音訊放大電路與其相關之 控制方法 Bridge load class D power amplifier, audio amplifier circuit and its related Control Method

本發明是有關於一種橋式負載D類功率放大器、音訊放大電路與其相關之控制方法,且特別是有關於一種可抑制開機爆音與關機爆音的橋式負載D類功率放大器、音訊放大電路與其相關之控制方法。 The present invention relates to a bridge-loaded class-D power amplifier, an audio amplifying circuit and a control method related thereto, and in particular to a bridge-loaded class-D power amplifier, an audio amplifying circuit and its relatedness that can suppress startup pops and shutdown pops control method.

具音訊播放功能的行動裝置逐漸普及。D類放大器因具有高效率、省電及體積小等特點,經常用於具音訊播放功能的行動裝置。D類放大器將輸入音訊信號放大後,轉換為具有較大功率之脈波寬度調變(pulse-width modulation,簡稱為PWM)信號。接著,揚聲器將脈波寬度調變信號的電流頻率轉換為聲音後播放。隨著技術的發展,使用者對於揚聲器音質的要求也越來越高。 Mobile devices with audio playback function are becoming more and more popular. Class D amplifiers are often used in mobile devices with audio playback functions due to their high efficiency, power saving and small size. The Class D amplifier amplifies the input audio signal and converts it into a pulse-width modulation (PWM) signal with high power. Next, the speaker converts the current frequency of the PWM signal into sound and plays it. With the development of technology, users have higher and higher requirements for the sound quality of speakers.

本發明係有關於一種橋式負載D類功率放大器、音訊放大電路與其相關之控制方法。藉由相位移位電路的設置,橋式負載D類功率放大器、音訊放大電路可動態地將因正相路徑PWM輸出 (PWM+)、負相路徑PWM輸出(PWM-)之相位不一致所衍生之開機與關機爆音的現象加以抑制。 The present invention relates to a bridge-loaded class D power amplifier, an audio amplifying circuit and a related control method thereof. Through the setting of the phase shift circuit, the bridge load class D power amplifier and audio amplifier circuit can dynamically output the PWM output due to the non-inverting path. (PWM+) and negative-phase path PWM output (PWM-) phase inconsistency caused by the phenomenon of startup and shutdown popping noise is suppressed.

根據本發明之第一方面,提出一種音訊放大電路。種音訊放大電路包含:調變信號產生電路、第一音訊輸出電路,以及第二音訊輸出電路。調變信號產生電路電連接於第一音訊輸出電路與第二音訊輸出電路。調變信號產生電路對第一路徑誤差信號進行積分與調變後產生第一路徑比較器輸出,以及對第二路徑誤差信號進行積分與調變後產生第二路徑比較器輸出。第一音訊輸出電路包含:第一路徑加法器、第一相位移位電路,以及至少一第一路徑迴路。第一路徑加法器電連接於調變信號產生電路。第一路徑加法器自第一類比差動輸入減去第一路徑回授信號後產生第一路徑誤差信號。第一相位移位電路選擇性調整第一路徑比較器輸出的相位。至少一第一路徑迴路電連接於調變信號產生電路、第一路徑加法器與第一相位移位電路。至少一第一路徑迴路根據第一路徑比較器輸出而產生第一路徑回授信號。第二音訊輸出電路包含:第二路徑加法器、第二相位移位電路,以及至少一第二路徑迴路。第二路徑加法器電連接於調變信號產生電路。第二路徑加法器自第二類比差動輸入減去第二路徑回授信號後產生第二路徑誤差信號。第二相位移位電路選擇性調整第二路徑比較器輸出的相位。至少一第二路徑迴路電連接於調變信號產生電路、第二路徑加法器與第二相位移位電路。至少一第二路徑迴路根據第二路徑比較器輸出而產生第二路徑回授信號。 According to a first aspect of the present invention, an audio amplifying circuit is provided. An audio amplifying circuit includes: a modulation signal generating circuit, a first audio output circuit, and a second audio output circuit. The modulation signal generating circuit is electrically connected to the first audio output circuit and the second audio output circuit. The modulation signal generating circuit integrates and modulates the first path error signal to generate a first path comparator output, and integrates and modulates the second path error signal to generate a second path comparator output. The first audio output circuit includes: a first path adder, a first phase shift circuit, and at least one first path loop. The first path adder is electrically connected to the modulation signal generating circuit. The first path adder generates a first path error signal after subtracting the first path feedback signal from the first analog differential input. The first phase shift circuit selectively adjusts the phase of the output of the first path comparator. At least one first path loop is electrically connected to the modulation signal generating circuit, the first path adder and the first phase shift circuit. At least one first path loop generates a first path feedback signal according to the output of the first path comparator. The second audio output circuit includes: a second path adder, a second phase shift circuit, and at least one second path loop. The second path adder is electrically connected to the modulation signal generating circuit. The second path adder generates a second path error signal after subtracting the second path feedback signal from the second analog differential input. The second phase shift circuit selectively adjusts the phase of the output of the second path comparator. At least one second path loop is electrically connected to the modulation signal generating circuit, the second path adder and the second phase shift circuit. At least one second path loop generates a second path feedback signal according to the output of the second path comparator.

根據本發明之第二方面,提出一種與應用於音訊放大電路之控制方法。控制方法包含以下步驟。首先,音訊放大電路對第一路徑誤差信號與第二路徑誤差信號進行積分與調變而分別產生第一路徑比較器輸出與第二路徑比較器輸出。其次,音訊放大電路根據第一類比差動輸入與第一路徑回授信號而產生第一路徑誤差信號。接著,音訊放大電路根據第二類比差動輸入與第二路徑回授信號而產生第二路徑誤差信號。其後,音訊放大電路分別根據第一路徑比較器輸出與第二路徑比較器輸出而產生第一路徑回授信號與第二路徑回授信號。此外,音訊放大電路選擇性調整第一路徑比較器輸出與第二路徑比較器輸出的其中一者的相位。 According to a second aspect of the present invention, a control method applied to an audio amplifying circuit is provided. The control method includes the following steps. First, the audio amplifier circuit integrates and modulates the first path error signal and the second path error signal to generate the first path comparator output and the second path comparator output, respectively. Secondly, the audio amplifier circuit generates a first path error signal according to the first analog differential input and the first path feedback signal. Then, the audio amplifier circuit generates a second path error signal according to the second analog differential input and the second path feedback signal. After that, the audio amplifier circuit generates the first path feedback signal and the second path feedback signal according to the output of the first path comparator and the output of the second path comparator, respectively. In addition, the audio amplifier circuit selectively adjusts the phase of one of the output of the first path comparator and the output of the second path comparator.

根據本發明之第三方面,提出一種驅動揚聲器的橋式負載D類功率放大器。橋式負載D類功率放大器包含:第一半橋;第二半橋與第一相位移位電路。第一半橋因應一第一脈波寬度調變信號且第二半橋因應第二脈波寬度調變信號而共同驅動揚聲器。第一相位移位電路用以移動第一脈波寬度調變信號的相位。其中,第一脈波寬度調變信號與第二脈波寬度調變信號之間形成的相位誤差與揚聲器的噪聲相關。 According to a third aspect of the present invention, a bridge-loaded class D power amplifier for driving a speaker is provided. The bridge-loaded class D power amplifier includes: a first half-bridge; a second half-bridge and a first phase shift circuit. The first half-bridge is in response to a first PWM signal and the second half-bridge is jointly driven in response to the second PWM signal. The first phase shift circuit is used for shifting the phase of the first PWM signal. The phase error formed between the first PWM signal and the second PWM signal is related to the noise of the speaker.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下: In order to have a better understanding of the above-mentioned and other aspects of the present invention, the following specific examples are given and described in detail in conjunction with the accompanying drawings as follows:

1:音訊播放模組 1: Audio playback module

12:音訊控制電路 12: Audio control circuit

14:數位-類比轉換器 14: Digital-to-Analog Converter

Sd:數位音訊信號 Sd: digital audio signal

Sctl:控制信號 Sctl: control signal

Va+:正相類比差動輸入 Va+: positive phase analog differential input

Va-:負相類比差動輸入 Va-: Negative phase analog differential input

13:音訊放大電路 13: Audio amplifier circuit

L-,L+:電感 L-, L+: Inductance

PWM+:正相路徑PWM輸出 PWM+: Non-inverting path PWM output

PWM-:負相路徑PWM輸出 PWM-: Negative phase path PWM output

(PWM+)-(PWM-):PWM輸出壓差 (PWM+)-(PWM-): PWM output voltage difference

15:揚聲器 15: Speakers

Ncmp+:正相路徑比較器輸出端點 Ncmp+: non-inverting path comparator output endpoint

Ncmp-:負相路徑比較器輸出端點 Ncmp-: Negative phase path comparator output endpoint

t1,t2:時點 t1,t2: time point

△t1,△t2:相位誤差 △t1,△t2: Phase error

Ton_tr:開機暫態期間 Ton_tr: During power-on transient

Top:一般播放期間 Top: During normal playback

Toff_tr:關機暫態期間 Toff_tr: During shutdown transient

Pd1,Pd2:PWM輸出壓差(PWM+)-(PWM-)的大小 Pd1, Pd2: PWM output voltage difference (PWM+)-(PWM-) size

131:調變信號產生電路 131: Modulation signal generation circuit

133:負相音訊輸出電路 133: Negative phase audio output circuit

133a:負相路徑加法器 133a: Negative Path Adder

133b:負相相位移位電路 133b: Negative Phase Shift Circuit

133c:負相路徑主迴路 133c: Negative phase path main circuit

133d:負相路徑從迴路 133d: Negative phase path from loop

135:正相音訊輸出電路 135: Positive phase audio output circuit

135a:正相路徑加法器 135a: Positive Path Adder

135b:正相相位移位電路 135b: Positive Phase Shift Circuit

135c:正相路徑主迴路 135c: Non-phase path main circuit

135d:正相路徑從迴路 135d: Non-inverting path from loop

21:相位移位電路 21: Phase shift circuit

Cv:可變電容 Cv: variable capacitance

Gnd:接地電壓 Gnd: ground voltage

C1,C2,C3,C4,C5:電容 C1, C2, C3, C4, C5: Capacitors

sw1,sw2,sw3,sw4,sw5,SWm+,SWm-,SWa1+,SWa2+,SWa1-,SWa2-:開關 sw1,sw2,sw3,sw4,sw5,SWm+,SWm-,SWa1+,SWa2+,SWa1-,SWa2-: switch

Sf+:正相路徑回授信號 Sf+: Non-inverting path feedback signal

Sf-:負相路徑回授信號 Sf-: Negative phase path feedback signal

Serr+:正相路徑誤差信號 Serr+: positive phase path error signal

Serr-:負相路徑誤差信號 Serr-: Negative phase path error signal

Sfm+:正相路徑主回授信號 Sfm+: Main feedback signal of positive phase path

Sfm-:負相路徑主回授信號 Sfm-: Negative phase path main feedback signal

Sfa+:正相路徑從回授信號 Sfa+: Non-inverting path from feedback signal

Sfa-:負相路徑從回授信號 Sfa-: Negative phase path from feedback signal

Rm+:正相路徑主回授電阻 Rm+: Main feedback resistance of positive phase path

Rm-:負相路徑主回授電阻 Rm-: Negative phase path main feedback resistance

Ra+:正相路徑從回授電阻 Ra+: Non-inverting path from feedback resistor

Ra-:負相路徑從回授電阻 Ra-: Negative phase path from feedback resistor

INVm+:正相路徑主驅動器 INVm+: Non-inverting path main driver

INVm-:負相路徑主驅動器 INVm-: Negative phase path main driver

INVa+:正相路徑從驅動器 INVa+: non-inverting path slave drive

INVa-:負相路徑從驅動器 INVa-: Negative phase path from driver

1311:積分器 1311: Integrator

1313:比較電路 1313: Comparison Circuit

1313a:載波產生電路 1313a: Carrier Generation Circuits

AMP:全差動放大器 AMP: Fully Differential Amplifier

OP+:正相路徑比較器 OP+: Non-Inverting Path Comparator

OP-:負相路徑比較器 OP-: Negative Phase Path Comparator

S201,S203,S207,S207,S209,S211,S213,S215,S209a,S209b,S209c,S209d:步驟 S201, S203, S207, S207, S209, S211, S213, S215, S209a, S209b, S209c, S209d: Steps

第1圖,其係音訊播放裝置之示意圖。 Fig. 1 is a schematic diagram of an audio playback device.

第2圖,其係揚聲器於開關機期間,因正相路徑PWM輸出(PWM+)的相位略為領先負相路徑PWM輸出(PWM-)的相位而衍生爆音現象的波形圖。 Figure 2 is a waveform diagram of the popping phenomenon caused by the phase of the positive-phase path PWM output (PWM+) slightly leading the negative-phase path PWM output (PWM-) during the power-on/off period of the speaker.

第3A圖,其係在切換期間,正相路徑PWM輸出(PWM+)的相位領先負相路徑PWM輸出(PWM-)的相位之示意圖。 FIG. 3A is a schematic diagram of the phase of the positive phase path PWM output (PWM+) leading the phase of the negative phase path PWM output (PWM-) during switching.

第3B圖,其係經調整後,使正相路徑PWM輸出(PWM+)的相位與負相路徑PWM輸出(PWM-)的相位在切換期間對齊並降低噪聲之示意圖。 Figure 3B is a schematic diagram of adjusting the phase of the PWM output of the positive phase path (PWM+) and the phase of the PWM output of the negative phase path (PWM-) during switching to reduce noise.

第4圖,其係根據本揭露構想實施例之音訊輸出模組的方塊圖。 FIG. 4 is a block diagram of an audio output module according to an embodiment of the present disclosure.

第5A圖,其係正相路徑PWM輸出(PWM+)的相位略為領先負相路徑PWM輸出(PWM-)的相位時,利用本揭露構想實施例之音訊放大電路抑制揚聲器於開關機期間所形成之爆音現象的波形圖。 Fig. 5A shows that when the phase of the positive-phase path PWM output (PWM+) slightly leads the phase of the negative-phase path PWM output (PWM-), the audio amplifying circuit of the inventive concept embodiment of the present disclosure is used to suppress the noise formed by the speaker during the power-on and off period. Waveform diagram of the popping phenomenon.

第5B圖,其係正相路徑PWM輸出(PWM+)的相位略為落後負相路徑PWM輸出(PWM-)的相位時,利用本揭露構想實施例之音訊放大電路抑制揚聲器於開關機期間所形成之爆音現象的波形圖。 Fig. 5B shows that when the phase of the positive-phase path PWM output (PWM+) is slightly behind that of the negative-phase path PWM output (PWM-), the audio amplifying circuit of the inventive concept embodiment of the present disclosure is used to suppress the noise formed by the speaker during switching on and off. Waveform diagram of the popping phenomenon.

第6A圖,其係相位移位電路為可變電容之示意圖。 FIG. 6A is a schematic diagram of the phase shift circuit being a variable capacitor.

第6B圖,其係相位移位電路包含多個並聯之電容路徑的示意圖。 FIG. 6B is a schematic diagram of a phase shift circuit including a plurality of capacitor paths in parallel.

第7圖,其係根據本揭露構想之音訊放大電路的示意圖。 FIG. 7 is a schematic diagram of an audio amplifying circuit according to the concept of the present disclosure.

第8A圖,其係根據本揭露構想實施例之音訊放大電路,於主回授路徑斷開且從回授路徑導通之電路圖。 FIG. 8A is a circuit diagram of an audio amplifying circuit according to an embodiment of the present disclosure, where the main feedback path is disconnected and the slave feedback path is turned on.

第8B圖,其係根據本揭露構想實施例之音訊放大電路,於主回授路徑導通且從回授路徑斷開之電路圖。 FIG. 8B is a circuit diagram of an audio amplifying circuit according to an embodiment of the present disclosure, which is turned on in the main feedback path and disconnected from the feedback path.

第9A、9B圖,其係根據本揭露構想之音訊放大電路,因應音訊輸出模組的狀態而動態選擇回授路徑的流程圖。 FIGS. 9A and 9B are flowcharts of dynamically selecting the feedback path according to the state of the audio output module according to the audio amplifying circuit conceived in the present disclosure.

請參見第1圖,其係音訊播放裝置之示意圖。音訊播放裝置包含音訊播放模組1與音訊輸出模組10。 Please refer to FIG. 1 , which is a schematic diagram of an audio playback device. The audio playback device includes an audio playback module 1 and an audio output module 10 .

音訊播放模組1包含彼此電連接的音訊控制電路12與數位-類比轉換器(digital-to-analog converter)14。音訊控制電路12可動態地因應音訊輸出模組10所處的狀態,發出不同類型與用途的控制信號Sctl至音訊放大電路13。數位-類比轉換器14接收由音訊控制電路12傳送之數位音訊信號Sd後,將數位音訊信號Sd轉換為正相類比差動輸入(positive-phase analog differential input)Va+與負相類比差動輸入(negative-phase analog differential input)Va-。 The audio playback module 1 includes an audio control circuit 12 and a digital-to-analog converter 14 that are electrically connected to each other. The audio control circuit 12 can dynamically respond to the state of the audio output module 10 to send control signals Sct1 of different types and uses to the audio amplifying circuit 13 . After receiving the digital audio signal Sd transmitted by the audio control circuit 12, the digital-to-analog converter 14 converts the digital audio signal Sd into a positive-phase analog differential input Va+ and a negative-phase analog differential input ( negative-phase analog differential input)Va-.

音訊輸出模組10包含音訊放大電路13、電感L+、L-與揚聲器15。其中,電感L+、L-均電連接於音訊放大電路13與揚聲器15之間。音訊放大電路13同時電連接於音訊控制電路12與類比數位轉換器14。音訊放大電路13先分別對正相類比差動輸入Va+與負相類比差動輸入Va-放大並轉換為正相路徑脈波寬度調變信號(簡稱為,正相路徑PWM(pulse-width modulation)輸出PWM+))與負相路徑脈波寬度調變信號(簡稱為,負相路徑PWM輸出(PWM-))至電感L+、L-。再由揚聲器15播放音訊。使用者經由揚聲器15聽到的音效,至少是由正相路徑PWM輸出(PWM+)及負相路徑PWM輸出(PWM-)之間的PWM輸出壓差(PWM+)-(PWM-)來決定。 The audio output module 10 includes an audio amplifying circuit 13 , inductors L+, L- and a speaker 15 . The inductors L+ and L- are both electrically connected between the audio amplifying circuit 13 and the speaker 15 . The audio amplifying circuit 13 is electrically connected to the audio control circuit 12 and the analog-to-digital converter 14 at the same time. The audio amplifying circuit 13 first amplifies and converts the positive-phase analog differential input Va+ and the negative-phase analog differential input Va- into a positive-phase path pulse width modulation signal (referred to as a positive-phase path PWM (pulse-width modulation) for short). Output PWM+)) and negative-phase path PWM signal (abbreviated as negative-phase path PWM output (PWM-)) to inductors L+, L-. The audio is then played by the speaker 15 . The sound effect heard by the user through the speaker 15 is at least determined by the PWM output voltage difference (PWM+)-(PWM-) between the positive-phase path PWM output (PWM+) and the negative-phase path PWM output (PWM-).

當音訊輸出模組10開機後並處於一般操作模式時,音訊播放模組1將正相類比差動輸入Va+及負相類比差動輸入Va-傳送至音訊放大電路13。音訊放大電路13據以產生正相路徑PWM輸出(PWM+)及負相路徑PWM輸出(PWM-)。一般來說,用於傳遞相關於正相路徑PWM輸出(PWM+)的路徑與用於傳遞相關於負相路徑PWM輸出(PWM-)的路徑之間至少存在阻抗不匹配的問題,其將導致輸出正相路徑PWM輸出(PWM+)不同步於負相路徑PWM輸出(PWM-)。根據阻抗不匹配的狀況,正相路徑PWM輸出(PWM+)可能領先或落後負相路徑PWM輸出(PWM-)。為便於說明,在第2圖中,假設正相路徑PWM輸出(PWM+)領先負相路徑PWM輸出(PWM-)。 When the audio output module 10 is turned on and in the normal operation mode, the audio playback module 1 transmits the positive-phase analog differential input Va+ and the negative-phase analog differential input Va- to the audio amplifying circuit 13 . The audio amplifying circuit 13 generates a positive-phase path PWM output (PWM+) and a negative-phase path PWM output (PWM-) accordingly. Generally speaking, there is at least an impedance mismatch between the path used to deliver the PWM output (PWM+) associated with the positive phase path and the path used to deliver the PWM output associated with the negative phase path (PWM-), which will result in an output The positive phase path PWM output (PWM+) is not synchronized with the negative phase path PWM output (PWM-). Depending on the impedance mismatch, the positive path PWM output (PWM+) may lead or lag the negative path PWM output (PWM-). For ease of illustration, in Figure 2, it is assumed that the positive phase path PWM output (PWM+) leads the negative phase path PWM output (PWM-).

請參見第2圖,其係揚聲器15於開關機期間,因正相路徑PWM輸出(PWM+)的相位領先負相路徑PWM輸出(PWM-)的相位而衍生爆音(pop noise)現象的波形圖。在第2圖中,縱軸由上而下分別為正相路徑PWM輸出(PWM+)、負相路徑PWM輸出(PWM-)與PWM輸出壓差(PWM+)-(PWM-)的波形。橫軸為時間,音訊輸出模組10的啟用期間可包含三個時段,開機暫態期間Ton_tr、一般播放期間Top,與關機暫態期間Toff_tr。 Please refer to FIG. 2 , which is a waveform diagram of pop noise caused by the phase of the positive-phase path PWM output (PWM+) leading the phase of the negative-phase path PWM output (PWM-) during the power-on/off period of the speaker 15 . In Figure 2, from top to bottom, the vertical axis represents the waveforms of the positive phase path PWM output (PWM+), the negative phase path PWM output (PWM-), and the PWM output voltage difference (PWM+)-(PWM-). The horizontal axis is time, and the activation period of the audio output module 10 may include three time periods, the power-on transient period Ton_tr, the normal playing period Top, and the power-off transient period Toff_tr.

第2圖左上角的圖式放大顯示,在開機暫態期間Ton_tr與一般播放期間Top之間的切換期間,正相路徑PWM輸出(PWM+)與負相路徑PWM輸出(PWM-)的變化。在該切換期間,正相路徑PWM輸出(PWM+)的電壓於時點t1上升,而負相路徑PWM輸出(PWM-)的電壓在時點t1之後的時點(t1+△t1)上升。即,正相路徑PWM輸出(PWM+) 與負相路徑PWM輸出(PWM-)之間存在相位誤差(△t1)。因此,在開機暫態期間Ton_tr與一般播放期間Top之間的切換期間,PWM輸出壓差(PWM+)-(PWM-)的波形在相位誤差(△t1)的期間出現電壓脈衝。在本揭露中,對於PWM輸出壓差(PWM+)-(PWM-),以開機暫態期間Ton_tr的電位為參考電位。當電壓脈衝的電位大於該參考電位時,電壓脈衝視為正電壓脈衝,反之亦然。據此,在相位誤差(△t1)的期間,產生正電壓脈衝。 The enlarged diagram in the upper left corner of Figure 2 shows the change of the positive-phase path PWM output (PWM+) and the negative-phase path PWM output (PWM-) during the switching period between the power-on transient period Ton_tr and the normal playback period Top. During this switching period, the voltage of the positive phase path PWM output (PWM+) rises at time point t1, and the voltage of the negative phase path PWM output (PWM-) rises at a time point (t1+Δt1) after time point t1. That is, the non-inverting path PWM output (PWM+) There is a phase error (Δt1) with the negative phase path PWM output (PWM-). Therefore, during the switching period between the power-on transient period Ton_tr and the normal playing period Top, the waveform of the PWM output voltage difference (PWM+)-(PWM-) has a voltage pulse during the phase error (Δt1). In the present disclosure, for the PWM output voltage difference (PWM+)-(PWM-), the potential of Ton_tr during the power-on transient period is used as the reference potential. When the potential of the voltage pulse is greater than the reference potential, the voltage pulse is regarded as a positive voltage pulse, and vice versa. Accordingly, a positive voltage pulse is generated during the period of the phase error (Δt1).

第2圖右上角的圖式放大顯示,在一般播放期間Top與關機暫態期間Toff_tr之間的切換期間,正相路徑PWM輸出(PWM+)與負相路徑PWM輸出(PWM-)的變化。在該切換期間,正相路徑PWM輸出(PWM+)的電壓於時點t2下降,負相路徑PWM輸出(PWM-)的電壓在時點t2之後的時點(t2+△t2)下降。即,正相路徑PWM輸出(PWM+)與負相路徑PWM輸出(PWM-)之間存在相位誤差(△t2)。因此,在一般播放期間Top與關機暫態期間Toff_tr之間的切換期間,PWM輸出壓差(PWM+)-(PWM-)的波形在相位誤差(△t2)的期間出現負電壓脈衝。 The graph in the upper right corner of Figure 2 is enlarged to show the change of the positive-phase path PWM output (PWM+) and the negative-phase path PWM output (PWM-) during the switching period between the normal playback period Top and the shutdown transient period Toff_tr. During this switching period, the voltage of the positive-phase path PWM output (PWM+) drops at time t2, and the voltage of the negative-phase path PWM output (PWM-) drops at a time (t2+Δt2) after time t2. That is, there is a phase error (Δt2) between the positive-phase path PWM output (PWM+) and the negative-phase path PWM output (PWM-). Therefore, during the switching period between the normal playback period Top and the shutdown transient period Toff_tr, the waveform of the PWM output voltage difference (PWM+)-(PWM-) has a negative voltage pulse during the phase error (Δt2).

無論是開機暫態期間Ton_tr轉換至一般播放期間Top之間的切換期間的正電壓脈衝,或是一般播放期間Top轉換至關機暫態期間Toff_tr之間的切換期間的負電壓脈衝,均導致使用者透過揚聲器15將聽到爆音現象,影響使用者的聽覺感受。 Whether it is a positive voltage pulse during the switching period between Ton_tr during the power-on transient period and the normal playing period Top, or a negative voltage pulse during the switching period between the normal playing period Top switching to the power-off transient period Toff_tr, the user The popping sound can be heard through the speaker 15, which affects the user's hearing experience.

請參見第3A圖,其係在切換期間,正相路徑PWM輸出(PWM+)的相位領先負相路徑PWM輸出(PWM-)的相位之示意圖。此圖式相當於第2圖左上角的圖式放大。當正相路徑PWM輸出(PWM+)與負 相路徑PWM輸出(PWM-)之間存在相位誤差(△t1)時,將PWM輸出壓差(PWM+)-(PWM-)的大小表示為Pd1。 Please refer to FIG. 3A, which is a schematic diagram of the phase of the positive phase path PWM output (PWM+) leading the phase of the negative phase path PWM output (PWM-) during switching. This diagram is equivalent to the enlarged diagram in the upper left corner of Figure 2. When the positive phase path PWM output (PWM+) is connected to the negative When there is a phase error (Δt1) between the phase path PWM outputs (PWM-), the magnitude of the PWM output voltage difference (PWM+)-(PWM-) is expressed as Pd1.

請參見第3B圖,其係經調整後,使正相路徑PWM輸出(PWM+)的相位與負相路徑PWM輸出(PWM-)的相位在切換期間對齊並降低噪聲之示意圖。此圖式相當於第2圖左上角的圖式中,將正相路徑PWM輸出(PWM+)的相位後移(延遲);或是將負相路徑PWM輸出(PWM-)的相位前移(提前)的情形。此時,相位誤差(△t1)不存在,且PWM輸出壓差(PWM+)-(PWM-)的大小表示為Pd2。 Please refer to Figure 3B, which is a schematic diagram of adjustment to align the phase of the positive path PWM output (PWM+) with the phase of the negative path PWM output (PWM-) during switching to reduce noise. This diagram is equivalent to the diagram in the upper left corner of Figure 2, where the phase of the positive-phase path PWM output (PWM+) is shifted backward (delayed); or the phase of the negative-phase path PWM output (PWM-) is shifted forward (advanced). ) situation. At this time, the phase error (Δt1) does not exist, and the magnitude of the PWM output voltage difference (PWM+)-(PWM-) is expressed as Pd2.

比較第3A圖的PWM輸出壓差(PWM+)-(PWM-)的大小(Pd1)與第3B圖的PWM輸出壓差(PWM+)-(PWM-)的大小(Pd2)時,可以看出Pd1>Pd2。亦即,經過相位調整後,PWM輸出壓差(PWM+)-(PWM-)的大小降低。連帶的,揚聲器15的噪聲也可據此而降低並提升使用者的聽覺感受。為此,本案的音訊放大電路13提供相位移位電路(例如,延遲電路)的電路架構,透過調整正相路徑PWM輸出(PWM+)或負相路徑PWM輸出(PWM-)的相位而抑制前述爆音現象。 When comparing the size (Pd1) of the PWM output voltage difference (PWM+)-(PWM-) in Figure 3A with the size (Pd2) of the PWM output voltage difference (PWM+)-(PWM-) in Figure 3B, it can be seen that Pd1 >Pd2. That is, after the phase adjustment, the magnitude of the PWM output voltage difference (PWM+)-(PWM-) is reduced. In addition, the noise of the speaker 15 can be reduced accordingly and the user's hearing experience can be improved. To this end, the audio amplifier circuit 13 of the present case provides a circuit structure of a phase shift circuit (eg, a delay circuit), which suppresses the aforementioned popping sound by adjusting the phase of the positive-phase path PWM output (PWM+) or the negative-phase path PWM output (PWM-). Phenomenon.

請參見第4圖,其係根據本揭露構想實施例之音訊放大電路的方塊圖。在本實施例中,音訊放大電路13係採用橋式負載(bridge-tied load)的D類功率放大器的架構。音訊放大電路13包含:調變信號產生電路131、正相音訊輸出電路135,與負相音訊輸出電路133。調變信號產生電路131同時電連接於正相音訊輸出電路135與負相音訊輸出電路133。調變信號產生電路131可為脈波寬度調變信號產生電路。 Please refer to FIG. 4 , which is a block diagram of an audio amplifying circuit according to an embodiment of the present disclosure. In this embodiment, the audio amplifying circuit 13 adopts a bridge-tied load class D power amplifier structure. The audio amplifying circuit 13 includes: a modulation signal generating circuit 131 , a positive-phase audio output circuit 135 , and a negative-phase audio output circuit 133 . The modulation signal generating circuit 131 is electrically connected to the positive-phase audio output circuit 135 and the negative-phase audio output circuit 133 at the same time. The modulation signal generating circuit 131 may be a pulse width modulation signal generating circuit.

正相音訊輸出電路135做為橋式負載的其中一個半橋。正相音訊輸出電路135包含:正相路徑加法器135a、正相相位移位電路135b、正相路徑主迴路135c與正相路徑從迴路135d。正相相位移位電路135b、正相路徑主迴路135c與正相路徑從迴路135d均透過正相路徑比較器輸出端點Ncmp+而電連接於調變信號產生電路131。正相路徑主迴路135c與正相路徑從迴路135d輪流導通。正相路徑加法器135a接收正相路徑回授信號Sf+,其中正相路徑回授信號Sf+為正相路徑主迴路135c與正相路徑從迴路135d其中一者的輸出。正相路徑加法器135a自正相類比差動輸入Va+扣除正相路徑回授信號Sf+後,產生正相路徑誤差信號Serr+,並將正相路徑誤差信號Serr+傳送至調變信號產生電路131。調變信號產生電路131則根據正相路徑誤差信號Serr+而輸出正相路徑比較器輸出Scmp+至正相路徑比較器輸出端點Ncmp+。 The non-inverting audio output circuit 135 acts as one half bridge of the bridge load. The non-inverting audio output circuit 135 includes a non-inverting path adder 135a, a non-inverting phase shifting circuit 135b, a non-inverting path master loop 135c and a non-inverting path slave loop 135d. The non-inverting phase shift circuit 135b, the non-inverting path main loop 135c and the non-inverting path slave loop 135d are all electrically connected to the modulation signal generating circuit 131 through the non-inverting path comparator output terminal Ncmp+. The normal-phase path main circuit 135c and the normal-phase path slave circuit 135d are alternately conducted. The non-inverting path adder 135a receives the non-inverting path feedback signal Sf+, wherein the non-inverting path feedback signal Sf+ is the output of one of the non-inverting path main loop 135c and the non-inverting path slave loop 135d. The non-inverting path adder 135a subtracts the non-inverting path feedback signal Sf+ from the non-inverting analog differential input Va+ to generate the non-inverting path error signal Serr+, and transmits the non-inverting path error signal Serr+ to the modulation signal generating circuit 131 . The modulation signal generating circuit 131 outputs the non-inverting path comparator output Scmp+ to the non-inverting path comparator output terminal Ncmp+ according to the non-inverting path error signal Serr+.

負相音訊輸出電路133做為橋式負載的另一個半橋,與正相音訊輸出電路135組合成為驅動揚聲器15的全橋。負相音訊輸出電路133包含:負相路徑加法器133a、負相相位移位電路133b、負相路徑主迴路133c與負相路徑從迴路133d。負相相位移位電路133b、負相路徑主迴路133c與負相路徑從迴路133d均透過負相路徑比較器輸出端點Ncmp-而電連接於調變信號產生電路131。負相路徑主迴路133c與負相路徑從迴路133d輪流導通。負相路徑加法器133a接收負相路徑回授信號Sf-,其中負相路徑回授信號Sf-為負相路徑主迴路133c與負相路徑從迴路133d其中一者的輸出。負相路徑加法器133a自負相類比差動輸入Va-扣除負相路徑回授信號Sf-後,產生負相路徑誤差信號Serr-,並將 負相路徑誤差信號Serr-傳送至調變信號產生電路131。調變信號產生電路131則根據負相路徑誤差信號Serr-而輸出負相路徑比較器輸出Scmp-至負相路徑比較器輸出端點Ncmp-。 The negative-phase audio output circuit 133 serves as another half-bridge of the bridge load, and is combined with the positive-phase audio output circuit 135 to form a full bridge for driving the speaker 15 . The negative phase audio output circuit 133 includes a negative phase path adder 133a, a negative phase phase shift circuit 133b, a negative phase path master loop 133c and a negative phase path slave loop 133d. The negative phase shift circuit 133b, the negative phase path main loop 133c and the negative phase path slave loop 133d are all electrically connected to the modulation signal generating circuit 131 through the negative phase path comparator output terminal Ncmp-. The negative-phase path main loop 133c and the negative-phase path slave loop 133d are alternately conducted. The negative phase path adder 133a receives the negative phase path feedback signal Sf-, wherein the negative phase path feedback signal Sf- is the output of one of the negative phase path main loop 133c and the negative phase path slave loop 133d. The negative-phase path adder 133a generates a negative-phase path error signal Serr- after deducting the negative-phase path feedback signal Sf- from the negative-phase analog differential input Va-, and adds The negative phase path error signal Serr− is sent to the modulation signal generating circuit 131 . The modulation signal generating circuit 131 outputs the negative-phase path comparator output Scmp- to the negative-phase path comparator output terminal Ncmp- according to the negative-phase path error signal Serr-.

如第2圖所述,正相路徑PWM輸出(PWM+)與負相路徑PWM輸出(PWM-)的產生可能存在相位誤差,進而衍生爆音的現象。也就是說,解決前述相位誤差的問題,至少可以減輕爆音現象。為此,在正相音訊輸出電路135設置的正相相位移位電路135b便可用於在時序上偏移在正相路徑比較器輸出端點Ncmp+上的正相路徑比較器輸出Scmp+,以及,在負相音訊輸出電路133設置的負相相位移位電路133b,便可用於在時序上偏移在負相路徑比較器輸出端點Ncmp-上的負相路徑比較器輸出Scmp-。 As shown in Figure 2, there may be a phase error in the generation of the positive-phase path PWM output (PWM+) and the negative-phase path PWM output (PWM-), resulting in popping noise. That is to say, solving the aforementioned phase error problem can at least reduce the popping phenomenon. To this end, the non-inverting phase shift circuit 135b provided in the non-inverting audio output circuit 135 can be used to shift the non-inverting path comparator output Scmp+ on the non-inverting path comparator output terminal Ncmp+ in timing, and, in The negative phase shift circuit 133b provided by the negative phase audio output circuit 133 can be used to shift the negative phase path comparator output Scmp- on the negative phase path comparator output terminal Ncmp- in timing.

在本揭露中,正相音訊輸出電路135與負相音訊輸出電路133之間存在在電路結構上的對稱性。因此,正相路徑主迴路135c對正相路徑比較器輸出Scmp+造成的相位誤差,可視為相同於負相路徑主迴路133c對負相路徑比較器輸出Scmp-造成的相位誤差。也就是說,正相路徑PWM輸出(PWM+)及負相路徑PWM輸出(PWM-)之間的相位誤差,正相關於正相路徑比較器輸出Scmp+及負相路徑比較器輸出Scmp-之間的相位誤差。據此,可藉由調整正相路徑比較器輸出Scmp+及負相路徑比較器輸出Scmp-之間的相位誤差,來調整正相路徑PWM輸出(PWM+)及負相路徑PWM輸出(PWM-)之間的相位誤差。因此,音訊播放裝置的製造商可在產品出貨前,先對音訊輸出模組10進行校正(calibration)程序,以減輕爆音現象。 In the present disclosure, there is symmetry in circuit structure between the positive-phase audio output circuit 135 and the negative-phase audio output circuit 133 . Therefore, the phase error caused by the positive phase path main loop 135c to the positive phase path comparator output Scmp+ can be regarded as the same as the phase error caused by the negative phase path main loop 133c to the negative phase path comparator output Scmp-. That is, the phase error between the positive phase path PWM output (PWM+) and the negative phase path PWM output (PWM-) is positively related to the difference between the positive phase path comparator output Scmp+ and the negative phase path comparator output Scmp- phase error. Accordingly, the difference between the positive-phase path PWM output (PWM+) and the negative-phase path PWM output (PWM-) can be adjusted by adjusting the phase error between the positive-phase path comparator output Scmp+ and the negative-phase path comparator output Scmp- phase error between. Therefore, the manufacturer of the audio playback device can perform a calibration procedure on the audio output module 10 before the product is shipped to reduce the popping phenomenon.

在校正程序中,若發現爆音現象源自於正相路徑PWM輸出(PWM+)領先負相路徑PWM輸出(PWM-)時,音訊控制電路12便利用控制信號Sctl設定正相相位移位電路135b的等校電容Ceq+,使等校電容Ceq+的電容值增加,進而延遲正相路徑PWM輸出(PWM+)的產生時點。或者,音訊控制電路12利用控制信號Sctl設定負相相位移位電路133b的等校電容Ceq-,使等校電容Ceq-的電容值減少,進而提早負相路徑PWM輸出(PWM-)的產生時點。 During the calibration procedure, if the popping phenomenon is found to be caused by the positive phase path PWM output (PWM+) leading the negative phase path PWM output (PWM-), the audio control circuit 12 uses the control signal Sct1 to set the positive phase shift circuit 135b The equalization capacitor Ceq+ increases the capacitance value of the equalization capacitor Ceq+, thereby delaying the generation time point of the non-inverting path PWM output (PWM+). Alternatively, the audio control circuit 12 uses the control signal Sctl to set the equalization capacitor Ceq- of the negative phase shift circuit 133b, so that the capacitance value of the equalization capacitor Ceq- is reduced, thereby advancing the generation time of the negative phase path PWM output (PWM-). .

反之,若發現爆音現象源自於正相路徑PWM輸出(PWM+)落後負相PWM路徑輸出(PWM-)時,便利用控制信號Sctl設定負相相位移位電路133b的等校電容Ceq-,使等校電容Ceq-的電容值增加,進而延遲負相PWM路徑輸出(PWM-)的產生時點。或者,利用控制信號Sctl設定正相相位移位電路135b的等校電容Ceq+,使等校電容Ceq+的電容值減少,進而提早正相路徑PWM輸出(PWM+)的產生時點。 On the contrary, if it is found that the popping phenomenon is caused by the positive phase path PWM output (PWM+) falling behind the negative phase PWM path output (PWM-), the control signal Sct1 is used to set the equalization capacitance Ceq- of the negative phase phase shift circuit 133b, so that The capacitance value of the equalization capacitor Ceq- increases, thereby delaying the generation timing of the negative-phase PWM path output (PWM-). Alternatively, the equalization capacitor Ceq+ of the positive phase shift circuit 135b is set by the control signal Sct1, so that the capacitance value of the equalization capacitor Ceq+ is reduced, thereby advancing the generation time of the positive phase path PWM output (PWM+).

在圖4的實施例中,音訊放大電路13可同時設置正相相位移位電路135b與負相相位移位電路133b,但本揭露不限定於此。在一些實施例中,僅設置正相相位移位電路135b及負相相位移位電路133b中的一者。舉例來說,若根據電路的繞線位置等,而能事先確知正相路徑主迴路135c的信號傳送路徑與負相路徑主迴路133c的信號傳送路徑何者較長的情況下,就可僅於音訊放大電路13中設置正相相位移位電路135b及負相相位移位電路133b中的一者。亦即,正相相位移 位電路135b或負相相位移位電路133b的設置與否,可根據音訊放大電路13的特性而考量,無須加以限定。 In the embodiment of FIG. 4 , the audio amplifying circuit 13 may be provided with a positive-phase phase shift circuit 135b and a negative-phase phase shift circuit 133b at the same time, but the present disclosure is not limited thereto. In some embodiments, only one of the positive phase shift circuit 135b and the negative phase shift circuit 133b is provided. For example, if the signal transmission path of the main circuit 135c of the positive phase path and the signal transmission path of the main circuit 133c of the negative phase path can be determined in advance according to the wiring position of the circuit, etc. One of a positive-phase phase shift circuit 135b and a negative-phase phase shift circuit 133b is provided in the amplifier circuit 13 . That is, the positive phase shift Whether the bit circuit 135b or the negative phase shift circuit 133b is provided or not can be considered according to the characteristics of the audio amplifying circuit 13 and need not be limited.

接著,以第5A及5B圖說明本案如何利用正相相位移位電路135b與負相相位移位電路133b通過調整相位的方式來改善爆音現象。另請留意,實際應用時,正相相位移位電路135b及負相相位移位電路133b,可透過設置電容且增加電容值的方式,延遲正相路徑PWM輸出(PWM+)與負相路徑PWM輸出(PWM-)其中一者的產生時點;或者,透過減少輸出路徑上既有之電容的電容值的方式,將產生正相路徑PWM輸出(PWM+)與負相路徑PWM輸出(PWM-)其中一者的時點提前。第5A及5B圖的縱軸由上而下分別為正相路徑PWM輸出(PWM+)、負相路徑PWM輸出(PWM-),以及不同情況下的PWM輸出壓差(PWM+)-(PWM-)的情況。第5A及5B圖的橫軸為時間。 Next, Figs. 5A and 5B are used to illustrate how the positive-phase phase shift circuit 135b and the negative-phase phase shift circuit 133b are used to improve the popping phenomenon by adjusting the phases. Please also note that in practical applications, the positive phase shift circuit 135b and the negative phase shift circuit 133b can delay the positive phase path PWM output (PWM+) and the negative phase path PWM output by setting capacitors and increasing the capacitance value (PWM-) one of the generation time points; or, by reducing the capacitance value of the existing capacitor on the output path, one of the positive-phase path PWM output (PWM+) and the negative-phase path PWM output (PWM-) will be generated The time of the person is earlier. The vertical axes of Figures 5A and 5B are, from top to bottom, the positive phase path PWM output (PWM+), the negative phase path PWM output (PWM-), and the PWM output voltage difference (PWM+)-(PWM-) under different conditions Case. The horizontal axis of FIGS. 5A and 5B is time.

請參見第5A圖,其係正相路徑PWM輸出(PWM+)的相位略為領先負相路徑PWM輸出(PWM-)的相位時,利用本揭露實施例之音訊放大電路抑制揚聲器15於開關機期間所形成之爆音現象的波形圖。 Please refer to FIG. 5A , when the phase of the positive-phase path PWM output (PWM+) is slightly ahead of the negative-phase path PWM output (PWM-), the audio amplifying circuit of the embodiment of the present disclosure is used to suppress the speaker 15 during the power-on period. Waveform diagram of the resulting popping phenomenon.

正相路徑PWM輸出(PWM+)在相位上領先負相路徑PWM輸出(PWM-)時,若不調整正相相位移位電路135b或負相相位移位電路133b,則爆音現象維持(與第2圖同)。 When the positive-phase path PWM output (PWM+) leads the negative-phase path PWM output (PWM-) in phase, if the positive-phase phase shift circuit 135b or the negative-phase phase shift circuit 133b is not adjusted, the popping phenomenon will remain (same as the second one). Figure same).

當正相路徑PWM輸出(PWM+)領先負相路徑PWM輸出(PWM-)時,若增加正相相位移位電路135b的電容值時,可使正相路徑PWM輸出(PWM+)產生的時點延後,此時正相路徑PWM輸出(PWM+) 與負相路徑PWM輸出(PWM-)之間的相位誤差縮小。據此,讓PWM輸出壓差(PWM+)-(PWM-)的幅度變小。因此,揚聲器15所產生之爆音的程度變小。 When the positive-phase path PWM output (PWM+) leads the negative-phase path PWM output (PWM-), if the capacitance value of the positive-phase phase shift circuit 135b is increased, the time point when the positive-phase path PWM output (PWM+) is generated can be delayed , at this time the non-phase path PWM output (PWM+) The phase error with the negative phase path PWM output (PWM-) is reduced. Accordingly, the amplitude of the PWM output voltage difference (PWM+)-(PWM-) is reduced. Therefore, the degree of popping sound generated by the speaker 15 becomes small.

另一方面,假設在正相路徑PWM輸出(PWM+)領先負相路徑PWM輸出(PWM-)的情況下,若還增加負相相位移位電路133b的電容值時,進一步使負相路徑PWM輸出(PWM-)產生的時點延後,此時正相路徑PWM輸出(PWM+)與負相路徑PWM輸出(PWM-)之間的相位誤差變大。連帶的,讓PWM輸出壓差(PWM+)-(PWM-)的幅度變大。因此,揚聲器15產生之爆音的程度變大。由第4A圖可以得知,當正相路徑PWM輸出(PWM+)領先負相路徑PWM輸出(PWM-)時,可透過增加正相相位移位電路135b的電容值的方式,改善PWM輸出壓差(PWM+)-(PWM-)之爆音現象。 On the other hand, if the positive-phase path PWM output (PWM+) leads the negative-phase path PWM output (PWM-), if the capacitance value of the negative-phase phase shift circuit 133b is further increased, the negative-phase path PWM output is further made to be output. The time point generated by (PWM-) is delayed, and the phase error between the positive-phase path PWM output (PWM+) and the negative-phase path PWM output (PWM-) becomes larger at this time. In conjunction, the amplitude of the PWM output voltage difference (PWM+)-(PWM-) becomes larger. Therefore, the degree of popping sound generated by the speaker 15 becomes large. It can be seen from Fig. 4A that when the positive-phase path PWM output (PWM+) leads the negative-phase path PWM output (PWM-), the PWM output voltage difference can be improved by increasing the capacitance value of the positive-phase phase shift circuit 135b. The popping phenomenon of (PWM+)-(PWM-).

請參見第5B圖,其係正相路徑PWM輸出(PWM+)的相位略為落後負相路徑PWM輸出(PWM-)的相位時,利用本揭露實施例之音訊放大電路抑制揚聲器15於開關機期間所形成之爆音現象的波形圖。 Please refer to FIG. 5B , when the phase of the PWM output (PWM+) of the positive phase path is slightly behind the phase of the PWM output (PWM-) of the negative phase path, the audio amplifying circuit of the embodiment of the present disclosure is used to suppress the sound of the speaker 15 during the power-on period. Waveform diagram of the resulting popping phenomenon.

正相路徑PWM輸出(PWM+)落後負相路徑PWM輸出(PWM-)時,若不調整正相相位移位電路135b或負相相位移位電路133b,則爆音現象維持。 When the positive phase path PWM output (PWM+) lags the negative phase path PWM output (PWM-), if the positive phase shift circuit 135b or the negative phase shift circuit 133b is not adjusted, the popping phenomenon will remain.

當正相路徑PWM輸出(PWM+)落後負相路徑PWM輸出(PWM-)時,若增加正相相位移位電路135b的電容值時,將導致正相路徑PWM輸出(PWM+)產生的時點延後,使得正相路徑PWM輸出 (PWM+)與負相路徑PWM輸出(PWM-)之間的相位誤差進一步變大。連帶的,讓PWM輸出壓差(PWM+)-(PWM-)的幅度變大。因此,揚聲器15產生之爆音的程度變大。 When the positive-phase path PWM output (PWM+) lags behind the negative-phase path PWM output (PWM-), if the capacitance value of the positive-phase phase shift circuit 135b is increased, the time point when the positive-phase path PWM output (PWM+) is generated will be delayed , making the non-inverting path PWM output The phase error between (PWM+) and the negative-phase path PWM output (PWM-) further increases. In conjunction, the amplitude of the PWM output voltage difference (PWM+)-(PWM-) becomes larger. Therefore, the degree of popping sound generated by the speaker 15 becomes large.

當正相路徑PWM輸出(PWM+)落後負相路徑PWM輸出(PWM-)時,若增加負相相位移位電路133b的電容值時,可使負相路徑PWM輸出(PWM-)產生的時點延後,此時正相路徑PWM輸出(PWM+)與負相路徑PWM輸出(PWM-)之間的相位誤差變小。連帶的,讓PWM輸出壓差(PWM+)-(PWM-)的幅度變小。因此,揚聲器15產生之爆音的程度變小。 When the positive-phase path PWM output (PWM+) lags behind the negative-phase path PWM output (PWM-), if the capacitance value of the negative-phase phase shift circuit 133b is increased, the time point generated by the negative-phase path PWM output (PWM-) can be delayed After that, the phase error between the positive-phase path PWM output (PWM+) and the negative-phase path PWM output (PWM-) becomes smaller at this time. In conjunction, the amplitude of the PWM output voltage difference (PWM+)-(PWM-) becomes smaller. Therefore, the degree of popping sound generated by the speaker 15 becomes small.

由第5B圖可以得知,當正相路徑PWM輸出(PWM+)落後負相路徑PWM輸出(PWM-)時,可透過增加負相相位移位電路133b的電容值的方式,改善PWM輸出壓差(PWM+)-(PWM-)之爆音現象。 As can be seen from Fig. 5B, when the positive-phase path PWM output (PWM+) lags the negative-phase path PWM output (PWM-), the PWM output voltage difference can be improved by increasing the capacitance value of the negative-phase phase shift circuit 133b. The popping phenomenon of (PWM+)-(PWM-).

根據第5A及5B圖的說明可以得知,無論是正相路徑PWM輸出(PWM+)領先負相路徑PWM輸出(PWM-),或是正相路徑PWM輸出(PWM+)落後負相路徑PWM輸出(PWM-)的情形,根據本揭露構想的音訊放大電路13均可降低在開機暫態期間Ton_tr及一般播放期間Top之間的切換期間以及一般播放期間Top及關機暫態期間Toff_tr之間的切換期間所產生的爆音現象。 According to the description of Figures 5A and 5B, it can be known that whether the positive-phase path PWM output (PWM+) leads the negative-phase path PWM output (PWM-), or the positive-phase path PWM output (PWM+) lags the negative-phase path PWM output (PWM- ), the audio amplifying circuit 13 conceived according to the present disclosure can reduce the switching period between the power-on transient period Ton_tr and the normal playing period Top and the switching period between the general playing period Top and the power-off transient period Toff_tr. the popping phenomenon.

當正相路徑PWM輸出(PWM+)領先負相路徑PWM輸出(PWM-)時,音訊控制電路12利用控制信號Sctl增加正相相位移位電路135b的電容值;或者,音訊控制電路12利用控制信號Sctl減少負相相位移位電路133b的電容值。 When the positive phase path PWM output (PWM+) leads the negative phase path PWM output (PWM-), the audio control circuit 12 uses the control signal Sct1 to increase the capacitance value of the positive phase shift circuit 135b; alternatively, the audio control circuit 12 uses the control signal Sctl reduces the capacitance value of the negative phase shift circuit 133b.

另一方面,當正相路徑PWM輸出(PWM+)落後負相路徑PWM輸出(PWM-)時,音訊控制電路12利用控制信號Sctl增加負相相位移位電路133b的電容值;或者,音訊控制電路12利用控制信號Sctl減少正相相位移位電路135b的電容值。 On the other hand, when the positive phase path PWM output (PWM+) lags the negative phase path PWM output (PWM-), the audio control circuit 12 uses the control signal Sct1 to increase the capacitance value of the negative phase shift circuit 133b; or, the audio control circuit 12. The capacitance value of the positive phase shift circuit 135b is reduced by the control signal Sct1.

更進一步的,若出現爆音現象,但無法確定是正相路徑PWM輸出(PWM+)領先負相路徑PWM輸出(PWM-),或是正相路徑PWM輸出(PWM+)落後負相路徑PWM輸出(PWM-)所導致時,亦可根據第5A及5B圖的波形而調整正相相位移位電路135b或是負相相位移位電路133b的電容值。例如,先試著增加正相相位移位電路135b的電容值後,發現爆音的音量降低,代表調整相位前的正相路徑PWM輸出(PWM+)領先調整相位前的負相路徑PWM輸出(PWM-)。因此,需維持增加正相相位移位電路135b的電容值(或減少負相相位移位電路133b的電容值)。反之,若增加正相相位移位電路135b的電容值後,發現爆音的音量提升,代表調整相位前的正相路徑PWM輸出(PWM+)落後調整相位前的負相路徑PWM輸出(PWM-),此時須改為增加負相相位移位電路133b的電容值(或減少正相相位移位電路135b的電容值)。 Further, if there is a popping sound, it cannot be determined whether the positive-phase path PWM output (PWM+) leads the negative-phase path PWM output (PWM-), or the positive-phase path PWM output (PWM+) lags behind the negative-phase path PWM output (PWM-). When this occurs, the capacitance value of the positive-phase phase shift circuit 135b or the negative-phase phase shift circuit 133b can also be adjusted according to the waveforms in FIGS. 5A and 5B. For example, after first trying to increase the capacitance value of the positive phase shift circuit 135b, it is found that the volume of the popping sound decreases, which means that the positive phase path PWM output (PWM+) before the phase adjustment leads the negative phase path PWM output (PWM-) before the phase adjustment. ). Therefore, it is necessary to keep increasing the capacitance value of the positive-phase phase shift circuit 135b (or decrease the capacitance value of the negative-phase phase shift circuit 133b). On the contrary, if the capacitance value of the positive phase shift circuit 135b is increased, it is found that the volume of the popping sound increases, which means that the positive phase path PWM output (PWM+) before the phase adjustment is behind the negative phase path PWM output (PWM-) before the phase adjustment, In this case, the capacitance value of the negative-phase phase shift circuit 133b should be increased instead (or the capacitance value of the positive-phase phase shift circuit 135b should be decreased).

同理,若先試著增加負相相位移位電路133b的電容值後,發現爆音的音量降低,代表調整相位前的正相路徑PWM輸出(PWM+)落後調整相位前的負相路徑PWM輸出(PWM-)。因此,需維持增加負相相位移位電路133b的電容值(或減少正相相位移位電路135b的電容值)。反之,若增加負相相位移位電路133b的電容值後,發現爆音的音量提升,代表調整相位前的正相路徑PWM輸出(PWM+)領先調 整相位前的負相路徑PWM輸出(PWM-),此時須改為增加正相相位移位電路135b的電容值(或減少負相相位移位電路133b的電容值)。 Similarly, if you first try to increase the capacitance value of the negative phase shift circuit 133b and find that the volume of the popping sound decreases, it means that the positive phase path PWM output (PWM+) before the phase adjustment lags behind the negative phase path PWM output ( PWM-). Therefore, it is necessary to keep increasing the capacitance value of the negative-phase phase shift circuit 133b (or decrease the capacitance value of the positive-phase phase shift circuit 135b). On the contrary, if the capacitance value of the negative phase shift circuit 133b is increased, it is found that the volume of the popping sound increases, which means that the positive phase path PWM output (PWM+) before the phase adjustment is ahead of the adjustment. The negative phase path PWM output (PWM-) before the phase adjustment must be changed to increase the capacitance value of the positive phase phase shift circuit 135b (or decrease the capacitance value of the negative phase phase shift circuit 133b).

在一些實施例中,正相相位移位電路135b與負相相位移位電路133b各可採用如第6A及6B圖的延遲相位移位電路21。惟,實際應用時,正相相位移位電路135b與負相相位移位電路133b的電路並不以此為限。 In some embodiments, the positive phase shift circuit 135b and the negative phase shift circuit 133b can each use the delayed phase shift circuit 21 as shown in FIGS. 6A and 6B . However, in practical application, the circuits of the positive-phase phase shift circuit 135b and the negative-phase phase shift circuit 133b are not limited to this.

請參見第6A圖,其係相位移位電路21為可變電容之示意圖。此圖式以可變電容Cv作為相位移位電路21,相位移位電路21電連接於Ncmp(第6A圖中的Ncmp+及Ncmp-)。可變電容Cv的電容值由控制信號Sctl控制,且相位移位電路21的等校電容Ceq等於可變電容Cv的電容值。 Please refer to FIG. 6A , which is a schematic diagram of the phase shift circuit 21 being a variable capacitor. In this figure, the variable capacitor Cv is used as the phase shift circuit 21, and the phase shift circuit 21 is electrically connected to Ncmp (Ncmp+ and Ncmp- in FIG. 6A). The capacitance value of the variable capacitor Cv is controlled by the control signal Sctl, and the equalization capacitance Ceq of the phase shift circuit 21 is equal to the capacitance value of the variable capacitor Cv.

請參見第6B圖,其係相位移位電路23包含多個並聯之電容路徑的示意圖。此圖式以多個並聯的電容路徑作為相位移位電路23,其中每個電容路徑包含彼此串接的開關與電容。為了識別,各電容路徑的開關及電容以不同的羅馬數字區別。舉例來說,第一電容路徑的開關標記為sw1及電容標記為C1,其餘依此類推,不再贅述。在此圖式中,假設電容C1、C2、C3、C4及C5具有不同的電容值。開關sw1、sw2、sw3、sw4及sw5由控制信號Sctrl所控制。當開關sw1、sw2、sw3、sw4及sw5至少一者導通時,相位移位電路23的等校電容Ceq將改變。例如,當僅有開關sw1導通時,相位移位電路23的等校電容Ceq等於C1;以及,當開關sw1及sw2同時導通時,相位移位電路23的等校電容Ceq等於電容C1並聯電容C2的等校電容。 Please refer to FIG. 6B , which is a schematic diagram of the phase shift circuit 23 including a plurality of capacitor paths in parallel. In this figure, a plurality of parallel capacitor paths are used as the phase shift circuit 23, wherein each capacitor path includes a switch and a capacitor connected in series with each other. For identification, the switches and capacitances of each capacitive path are distinguished by different Roman numerals. For example, the switch of the first capacitor path is marked as sw1 and the capacitor is marked as C1 , and the rest are deduced by analogy, which will not be repeated. In this figure, it is assumed that capacitors C1, C2, C3, C4 and C5 have different capacitance values. The switches sw1, sw2, sw3, sw4 and sw5 are controlled by the control signal Sctrl. When at least one of the switches sw1 , sw2 , sw3 , sw4 and sw5 is turned on, the equalization capacitance Ceq of the phase shift circuit 23 will change. For example, when only the switch sw1 is turned on, the equivalence capacitance Ceq of the phase shift circuit 23 is equal to C1; and, when the switches sw1 and sw2 are turned on at the same time, the equivalence capacitance Ceq of the phase shift circuit 23 is equal to the capacitance C1 in parallel with the capacitance C2 equirectangular capacitance.

第6B圖假設電容C1、C2、C3、C4及C5的電容值分別為C、2C、4C、8C及16C。基於此種電容值的配置設定,音訊控制電路12可利用二進位的方式產生與開關sw1、sw2、sw3、sw4及sw5對應的控制信號Sctl。透過對開關sw1、sw2、sw3、sw4及sw5的切換,音訊控制電路12可決定等校電容Ceq的電容值。關於開關sw1、sw2、sw3、sw4及sw5的切換與相位移位電路23的等校電容Ceq之電容值的計算,此處不予詳述。且,相位移位電路23所包含之電容路徑的個數並不以此圖式為限。 Fig. 6B assumes that the capacitance values of the capacitors C1, C2, C3, C4 and C5 are C, 2C, 4C, 8C and 16C, respectively. Based on the configuration setting of the capacitance value, the audio control circuit 12 can generate the control signal Sct1 corresponding to the switches sw1 , sw2 , sw3 , sw4 and sw5 in a binary manner. By switching the switches sw1 , sw2 , sw3 , sw4 and sw5 , the audio control circuit 12 can determine the capacitance value of the equalization capacitor Ceq. The switching of the switches sw1 , sw2 , sw3 , sw4 and sw5 and the calculation of the capacitance value of the equalization capacitance Ceq of the phase shift circuit 23 will not be described in detail here. Moreover, the number of capacitor paths included in the phase shift circuit 23 is not limited to this diagram.

請參見第7圖,其係根據本揭露構想之音訊放大電路的示意圖。由此圖式可以看出,調變信號產生電路131包含積分器1311與比較電路1313。 Please refer to FIG. 7 , which is a schematic diagram of an audio amplifying circuit according to the concept of the present disclosure. It can be seen from the diagram that the modulation signal generating circuit 131 includes an integrator 1311 and a comparison circuit 1313 .

積分器1311包含全差動放大器(fully differential amplifier)AMP、電容Cin+、Cin-與輸入電阻Rin+、Rin-。全差動放大器AMP的非反向輸入端(+)電連接於電阻Rin+,其係經由輸入電阻Rin+而接收正相路徑誤差信號Serr+。電容Cin+的兩端分別電連接於全差動放大器AMP的非反向輸入端(+)與反向輸出端(-)。全差動放大器AMP的反向輸入端(-)電連接於輸入電阻Rin-,其係經由輸入電阻Rin-而接收負相路徑誤差信號Serr-。電容Cin-的兩端分別電連接於全差動放大器AMP的反向輸入端(-)與非反向輸出端(+)。 The integrator 1311 includes a fully differential amplifier AMP, capacitors Cin+, Cin-, and input resistors Rin+, Rin-. The non-inverting input terminal (+) of the fully differential amplifier AMP is electrically connected to the resistor Rin+, which receives the non-inverting path error signal Serr+ via the input resistor Rin+. Two ends of the capacitor Cin+ are respectively electrically connected to the non-inverting input terminal (+) and the inverting output terminal (-) of the fully differential amplifier AMP. The inverting input terminal (-) of the fully differential amplifier AMP is electrically connected to the input resistor Rin-, which receives the negative phase path error signal Serr- via the input resistor Rin-. Two ends of the capacitor Cin- are respectively electrically connected to the inverting input terminal (-) and the non-inverting output terminal (+) of the fully differential amplifier AMP.

比較電路1313包含正相路徑比較器OP+、負相路徑比較器OP-與載波產生電路1313a。其中,載波產生電路1313a產生載波信號(例如,三角波SAW)至正相路徑比較器OP+的非反向輸入端(+)與負 相路徑比較器OP-的反向輸入端(-)。比較電路1313利用三角波SAW經由正相路徑比較器OP+、負相路徑比較器OP-與積分器1311的輸出信號作比較而在正相路徑比較器輸出端點Ncmp+、負相路徑比較器輸出端點Ncmp-產生類方波型態的正相路徑比較器輸出Scmp+、負相路徑比較器輸出Scmp-。類方波型態的正相路徑比較器輸出Scmp+、負相路徑比較器輸出Scmp-的輸出頻率與輸入三角波SAW的頻率相同,而正相路徑比較器輸出Scmp+、負相路徑比較器輸出Scmp-的工作週期隨著積分器1311的輸出信號(正弦波)的振幅大小而改變。 The comparison circuit 1313 includes a positive phase path comparator OP+, a negative phase path comparator OP- and a carrier wave generating circuit 1313a. The carrier generating circuit 1313a generates a carrier signal (eg, a triangular wave SAW) to the non-inverting input terminal (+) of the non-inverting path comparator OP+ and the negative Inverting input (-) of phase path comparator OP-. The comparison circuit 1313 compares the output signal of the integrator 1311 with the output signal of the integrator 1311 via the positive phase path comparator OP+ and the negative phase path comparator OP- by using the triangular wave SAW, and the positive phase path comparator output terminal Ncmp+ and the negative phase path comparator output terminal Ncmp+. Ncmp- generates a square wave-like type of the positive phase path comparator output Scmp+, and the negative phase path comparator output Scmp-. The output frequency of the positive phase path comparator output Scmp+ and the negative phase path comparator output Scmp- is the same as the frequency of the input triangle wave SAW, while the positive phase path comparator output Scmp+ and the negative phase path comparator output Scmp- The duty cycle varies with the amplitude of the output signal (sine wave) of the integrator 1311.

如前所述,正相音訊輸出電路135包含正相路徑主迴路135c與正相路徑從迴路135d;負相音訊輸出電路133包含負相路徑主迴路133c與負相路徑從迴路133d。接著,分別說明正相路徑主迴路135c、正相路徑從迴路135d、負相路徑主迴路133c,以及負相路徑從迴路133d的內部電路。 As mentioned above, the positive phase audio output circuit 135 includes a positive phase path master loop 135c and a positive phase path slave loop 135d; the negative phase audio output circuit 133 includes a negative phase path master loop 133c and a negative phase path slave loop 133d. Next, the internal circuits of the positive-phase path master circuit 135c, the positive-phase path slave circuit 135d, the negative-phase path master circuit 133c, and the negative-phase path slave circuit 133d will be described, respectively.

正相路徑主迴路135c包含:開關SWm+、正相路徑主驅動器INVm+與正相路徑主回授電阻Rm+。開關SWm+根據控制信號Sctl而選擇性導通。當開關SWm+導通時,正相路徑主驅動器INVm+基於正相路徑比較器輸出Scmp+產生正相路徑PWM輸出(PWM+)。接著,正相路徑主回授電阻Rm+進一步將正相路徑PWM輸出(PWM+)轉換為正相路徑主回授信號Sfm+。 The normal-phase path main loop 135c includes a switch SWm+, a normal-phase path main driver INVm+, and a normal-phase path main feedback resistor Rm+. The switch SWm+ is selectively turned on according to the control signal Sct1. When the switch SWm+ is turned on, the non-inverting path main driver INVm+ generates a non-inverting path PWM output (PWM+) based on the non-inverting path comparator output Scmp+. Next, the non-inverting path main feedback resistor Rm+ further converts the non-inverting path PWM output (PWM+) into the non-inverting path main feedback signal Sfm+.

正相路徑從迴路135d包含:開關SWa1+、SWa2+、正相路徑從驅動器INVa+與正相路徑從回授電阻Ra+。開關SWa1+、SWa2+根據控制信號Sctl而選擇性同步導通或同步斷開。導通。當開關 SWa1+、SWa2+同時導通時,正相路徑從驅動器INVa+驅動正相路徑比較器輸出Scmp+產生正相驅動信號(Sdrv+)。接著,正相路徑從回授電阻Ra+進一步將正相驅動信號(Sdrv+)轉換為正相路徑從回授信號Sfa+。 The normal-phase path slave loop 135d includes switches SWa1+, SWa2+, a normal-phase path slave driver INVa+, and a normal-phase path slave feedback resistor Ra+. The switches SWa1+ and SWa2+ are selectively synchronously turned on or synchronously turned off according to the control signal Sct1. on. when the switch When SWa1+ and SWa2+ are turned on at the same time, the non-inverting path drives the non-inverting path comparator output Scmp+ from the driver INVa+ to generate the non-inverting driving signal (Sdrv+). Next, the positive-phase path slave feedback resistor Ra+ further converts the positive-phase drive signal (Sdrv+) into the positive-phase path slave feedback signal Sfa+.

負相路徑主迴路133c包含:開關SWm-、負相路徑主驅動器INVm-與負相路徑主回授電阻Rm-。開關SWm-根據控制信號Sctl而選擇性導通。當開關SWm-導通時,負相路徑主驅動器INVm-基於負相路徑比較器輸出Scmp-產生負相路徑PWM輸出(PWM-)。接著,負相路徑主回授電阻Rm-進一步將負相路徑PWM輸出(PWM-)轉換為負相路徑主回授信號Sfm-。 The negative-phase path main loop 133c includes a switch SWm-, a negative-phase path main driver INVm-, and a negative-phase path main feedback resistor Rm-. The switch SWm- is selectively turned on according to the control signal Sctl. When the switch SWm- is turned on, the negative phase path main driver INVm- generates the negative phase path PWM output (PWM-) based on the negative phase path comparator output Scmp-. Next, the negative-phase path main feedback resistor Rm- further converts the negative-phase path PWM output (PWM-) into the negative-phase path main feedback signal Sfm-.

負相路徑從迴路133d包含:開關SWa1-、SWa2-、負相路徑從驅動器INVa-與負相路徑從回授電阻Ra-。開關SWa1-及SWa2-根據控制信號Sctl而選擇性同步導通或同步斷開。當開關SWa1-及SWa2-同時導通時,負相路徑從驅動器INVa-基於負相路徑比較器輸出Scmp-產生負相驅動信號(Sdrv-)。接著,負相路徑從回授電阻Ra-進一步將負相驅動信號(Sdrv-)轉換為負相路徑從回授信號Sfa-。 The negative-phase path slave loop 133d includes switches SWa1-, SWa2-, a negative-phase path slave driver INVa-, and a negative-phase path slave feedback resistor Ra-. The switches SWa1- and SWa2- are selectively synchronously turned on or synchronously turned off according to the control signal Sct1. When the switches SWa1- and SWa2- are turned on at the same time, the negative-phase path generates a negative-phase drive signal (Sdrv-) from the driver INVa- based on the negative-phase path comparator output Scmp-. Next, the negative-phase path slave feedback resistor Ra- further converts the negative-phase drive signal (Sdrv-) into the negative-phase path slave feedback signal Sfa-.

根據本發明的實施例,正相路徑主迴路135c與正相路徑從迴路135d並不會同時導通;且,負相路徑主迴路133c與負相路徑從迴路133d並不會同時導通。此外,正相路徑主迴路135c與負相路徑主迴路133c同時導通;且,正相路徑從迴路135d與負相路徑從迴路133d同時導通。為便於說明,此處將各個開關的導通狀態整理如表1。 According to the embodiment of the present invention, the positive phase path master loop 135c and the positive phase path slave loop 135d are not turned on at the same time; and the negative phase path master loop 133c and the negative phase path slave loop 133d are not turned on at the same time. In addition, the positive-phase path main loop 135c and the negative-phase path main loop 133c are turned on at the same time; and the positive-phase path slave loop 135d and the negative-phase path slave loop 133d are turned on at the same time. For the convenience of description, the conduction states of each switch are listed in Table 1 here.

表1

Figure 110110844-A0305-02-0023-1
Table 1
Figure 110110844-A0305-02-0023-1

由第4圖可以看出,正相音訊輸出電路135與負相音訊輸出電路133的內部電路相似且彼此對稱。根據本揭露的構想,當正相路徑主迴路135c與負相路徑主迴路133c同時導通時,正相路徑從迴路135d與負相路徑從迴路133d同時斷開。反之,當正相路徑主迴路135c與負相路徑主迴路133c同時斷開時,正相路徑從迴路135d與負相路徑從迴路133d同時導通。為便於理解,此處以第8A圖繪式正相路徑主迴路135c與負相路徑主迴路133c同時斷開,且正相路徑從迴路135d與負相路徑從迴路133d同時導通時,音訊放大電路13的等校電路。以第8B圖繪式正相路徑主迴路135c與負相路徑主迴路133c同時導通,且正相路徑從迴路135d與負相路徑從迴路133d同時斷開時,音訊放大電路13的等校電路。 It can be seen from FIG. 4 that the internal circuits of the positive-phase audio output circuit 135 and the negative-phase audio output circuit 133 are similar and symmetrical to each other. According to the concept of the present disclosure, when the positive-phase path main loop 135c and the negative-phase path main loop 133c are turned on at the same time, the positive-phase path slave loop 135d and the negative-phase path slave loop 133d are simultaneously disconnected. Conversely, when the positive-phase path main loop 135c and the negative-phase path main loop 133c are disconnected at the same time, the positive-phase path slave loop 135d and the negative-phase path slave loop 133d are turned on at the same time. For ease of understanding, the positive-phase path main loop 135c and the negative-phase path main loop 133c are simultaneously disconnected in Figure 8A, and when the positive-phase path slave loop 135d and the negative-phase path slave loop 133d are turned on at the same time, the audio amplifier circuit 13 equivalence circuit. As shown in Figure 8B, when the positive phase path main loop 135c and the negative phase path main loop 133c are turned on at the same time, and the positive phase path slave loop 135d and the negative phase path slave loop 133d are simultaneously disconnected, the audio amplifier circuit 13 equalizes the circuit.

請參見第8A圖,其係根據本揭露構想實施例之音訊放大電路,於主回授路徑斷開且從回授路徑導通之電路圖。因正相路徑主迴路135c與負相路徑主迴路133c同時斷開的緣故,此處並未繪式正相路徑主迴路135c與負相路徑主迴路133c。在第8A圖中,僅正相從迴路電路135d與負相路徑從迴路電路133d和調變信號產生電路131的運作相關。 Please refer to FIG. 8A , which is a circuit diagram of an audio amplifying circuit according to an embodiment of the present disclosure, where the main feedback path is disconnected and the slave feedback path is turned on. Because the positive-phase path main loop 135c and the negative-phase path main loop 133c are disconnected at the same time, the positive-phase path main loop 135c and the negative-phase path main loop 133c are not drawn here. In FIG. 8A, only the positive phase slave loop circuit 135d is related to the operation of the negative phase path slave loop circuit 133d and the modulation signal generating circuit 131.

在正相路徑從迴路135d中,開關SWa1+、SWa2+均導通。正相路徑從驅動器INVa+因開關SWa1+的導通而接收正相路徑比較器輸出Scmp+,且正相路徑加法器135a因開關swa2+的導通而接收正相路徑從迴路135d產生的正相路徑從回授信號Sfa+。此時,正相路徑回授信號Sf+即為正相路徑從回授信號Sfa+(Sf+=Sfa+)。再者,調變信號產生電路131所接收的正相路徑誤差信號Serr+為正相類比差動輸入Va+與正相路徑從回授信號Sfa+的差。 In the non-inverting path slave loop 135d, the switches SWa1+ and SWa2+ are both turned on. The non-inverting path slave driver INVa+ receives the non-inverting path comparator output Scmp+ due to the conduction of switch SWa1+, and the non-inverting path adder 135a receives the non-inverting path slave feedback signal generated by the non-inverting path slave loop 135d due to the conduction of switch swa2+. Sfa+. At this time, the feedback signal Sf+ of the non-inverting path is the feedback signal Sfa+ from the non-inverting path (Sf+=Sfa+). Furthermore, the normal phase path error signal Serr+ received by the modulation signal generating circuit 131 is the difference between the positive phase analog differential input Va+ and the normal phase path slave feedback signal Sfa+.

在負相路徑從迴路133d中,開關SWa1-、SWa2-均導通。負相路徑從驅動器INVa-因開關SWa1-的導通而接收負相路徑比較器輸出Scmp-,且負相路徑加法器133a因開關swa2-的導通而接收負相路徑從迴路133d產生的負相路徑從回授信號Sfa-。此時,負相路徑回授信號Sf-即為負相路徑從回授信號Sfa-(Sf-=Sfa-)。再者,調變信號產生電路131所接收的負相路徑誤差信號Serr-為負相類比差動輸入Va-與負相路徑從回授信號Sfa-的差。 In the negative-phase path slave circuit 133d, the switches SWa1- and SWa2- are both turned on. The negative phase path from the driver INVa- receives the negative phase path comparator output Scmp- due to the conduction of the switch SWa1-, and the negative phase path adder 133a receives the negative phase path from the loop 133d due to the conduction of the switch swa2-. From the feedback signal Sfa-. At this time, the negative-phase path feedback signal Sf- is the negative-phase path slave feedback signal Sfa- (Sf-=Sfa-). Furthermore, the negative-phase path error signal Serr- received by the modulation signal generating circuit 131 is the difference between the negative-phase analog differential input Va- and the negative-phase path slave feedback signal Sfa-.

由於正相路徑從迴路135d與負相路徑從迴路133d並未用於輸出正相路徑PWM輸出(PWM+)與負相路徑PWM輸出(PWM-),而是直接連接回授至正相路徑加法器135a、負相路徑加法器133a。因此,若音訊放大電路13的開關SWm+、SWm-、SWa1+、SWa2+、SWa1-、SWa2-處於如第8A圖所示之設定狀態,揚聲器15並不會接收到正相路徑PWM輸出(PWM+)與負相路徑PWM輸出(PWM-)。也因此,揚聲器15並不會發出任何聲音。 Since the positive-phase path slave loop 135d and the negative-phase path slave loop 133d are not used to output the positive-phase path PWM output (PWM+) and the negative-phase path PWM output (PWM-), they are directly connected to the positive-phase path adder. 135a, negative phase path adder 133a. Therefore, if the switches SWm+, SWm-, SWa1+, SWa2+, SWa1-, SWa2- of the audio amplifying circuit 13 are in the setting state as shown in FIG. 8A, the speaker 15 will not receive the non-inverting path PWM output (PWM+) and Negative Phase Path PWM Output (PWM-). Therefore, the speaker 15 does not emit any sound.

請參見第8B圖,其係根據本揭露構想實施例之音訊放大電路,於主回授路徑導通且從回授路徑斷開之電路圖。因正相路徑從迴路135d與負相路徑從迴路133d同時斷開的緣故,此處並未繪式正相路徑從迴路135d與負相路徑從迴路133d。在第8B圖中,僅正相主迴路電路135c與負相路徑主迴路電路133c和調變信號產生電路131的運作相關。 Please refer to FIG. 8B , which is a circuit diagram of an audio amplifying circuit according to an embodiment of the present disclosure, which is turned on in the main feedback path and disconnected from the feedback path. Because the positive-phase path from the loop 135d and the negative-phase path from the loop 133d are simultaneously disconnected, the positive-phase path from the loop 135d and the negative-phase path from the loop 133d are not drawn here. In FIG. 8B, only the positive-phase main loop circuit 135c is related to the operations of the negative-phase path main loop circuit 133c and the modulation signal generating circuit 131.

在正相路徑主迴路135c中,開關SWm+導通。正相路徑主驅動器INVm+因開關SWm+的導通而接收正相路徑比較器輸出Scmp+並產生正相路徑PWM輸出(PWM+)。正相路徑加法器135a接收正相路徑主迴路135c產生的正相路徑主回授信號Sfm+。此時,正相路徑回授信號Sf+即為正相路徑主回授信號Sfm+(Sf+=Sfm+)。再者,調變信號產生電路131所接收的正相路徑誤差信號Serr+為正相類比差動輸入Va+與正相路徑主回授信號Sfm+的差。 In the normal-phase path main loop 135c, the switch SWm+ is turned on. The non-inverting path main driver INVm+ receives the non-inverting path comparator output Scmp+ due to the conduction of the switch SWm+ and generates the non-inverting path PWM output (PWM+). The non-inverting path adder 135a receives the non-inverting path main feedback signal Sfm+ generated by the non-inverting path main loop 135c. At this time, the normal-phase path feedback signal Sf+ is the normal-phase path main feedback signal Sfm+ (Sf+=Sfm+). Furthermore, the normal phase path error signal Serr+ received by the modulation signal generating circuit 131 is the difference between the positive phase analog differential input Va+ and the normal phase path main feedback signal Sfm+.

在負相路徑主迴路133c中,開關SWm-導通。負相路徑主驅動器INVm-因開關SWm-的導通而接收接收負相路徑比較器輸出Scmp-並產生負相路徑PWM輸出(PWM-)。負相路徑加法器133a接收負相路徑主迴路135c產生的負相路徑主回授信號Sfm-。此時,負相路徑回授信號Sf-即為負相路徑主回授信號Sfm-(Sf-=Sfm-)。再者,調變信號產生電路131所接收的負相路徑誤差信號Serr-為負相類比差動輸入Va-與負相路徑主回授信號Sfm-的差。 In the negative phase path main loop 133c, the switch SWm- is turned on. The negative phase path main driver INVm- receives the negative phase path comparator output Scmp- due to the conduction of the switch SWm- and generates the negative phase path PWM output (PWM-). The negative phase path adder 133a receives the negative phase path main feedback signal Sfm- generated by the negative phase path main loop 135c. At this time, the negative-phase path feedback signal Sf- is the negative-phase path main feedback signal Sfm- (Sf-=Sfm-). Furthermore, the negative-phase path error signal Serr- received by the modulation signal generating circuit 131 is the difference between the negative-phase analog differential input Va- and the negative-phase path main feedback signal Sfm-.

由於正相路徑主迴路135c與負相路徑主迴路133c用於輸出正相路徑PWM輸出(PWM+)與負相路徑PWM輸出(PWM-)。因 此,若音訊放大電路13處於如第8B圖所示狀態,揚聲器15將根據正相路徑PWM輸出(PWM+)與負相路徑PWM輸出(PWM-)而發出聲音。 Since the positive phase path main loop 135c and the negative phase path main loop 133c are used to output the positive phase path PWM output (PWM+) and the negative phase path PWM output (PWM-). because Therefore, if the audio amplifier circuit 13 is in the state shown in FIG. 8B, the speaker 15 will emit sound according to the positive phase path PWM output (PWM+) and the negative phase path PWM output (PWM-).

請參見第9A及9B圖,其係根據本揭露構想之音訊放大電路,因應音訊輸出模組的狀態而動態選擇回授路徑的流程圖。請同時參見第5A、5B、8A、8B、9A及9B圖。 Please refer to FIGS. 9A and 9B , which are flowcharts of dynamically selecting the feedback path according to the state of the audio output module according to the audio amplifying circuit conceived in the present disclosure. See also Figures 5A, 5B, 8A, 8B, 9A, and 9B.

首先,在步驟S201中,啟用音訊輸出模組10。接著,在步驟S203中,當音訊輸出模組10處於開機暫態期間Ton_tr時,音訊控制電路12產生用於切換開關狀態的控制信號Sctr至音訊放大電路13,使音訊放大電路13處於如第8A圖所示的狀態。在開機暫態期間Ton_tr期間,調變信號產生電路131尚未達到穩定。在此同時,音訊放大電路13可利用正相路徑從迴路135d與負相路徑從迴路133d進行回授,避免產生非預期的正相路徑PWM輸出(PWM+)與負相路徑PWM輸出(PWM-)。即,在開機暫態期間Ton_tr可利用正相路徑從迴路135d與負相路徑從迴路133d避免爆音。 First, in step S201, the audio output module 10 is enabled. Next, in step S203, when the audio output module 10 is in the power-on transient period Ton_tr, the audio control circuit 12 generates a control signal Sctr for switching the switch state to the audio amplifying circuit 13, so that the audio amplifying circuit 13 is in step 8A. state shown in the figure. During the power-on transient period Ton_tr, the modulation signal generating circuit 131 has not yet reached stability. At the same time, the audio amplifying circuit 13 can utilize the positive-phase path from the loop 135d and the negative-phase path from the loop 133d for feedback to avoid generating unexpected positive-phase path PWM output (PWM+) and negative-phase path PWM output (PWM-) . That is, Ton_tr can use the positive-phase path from the loop 135d and the negative-phase path from the loop 133d to avoid popping during the power-on transient.

接著,在步驟S205中,音訊控制電路12判斷音訊輸出模組10是否轉換至一般操作模式。若否,則重複步驟執行步驟S203。若步驟S205的判斷結果為肯定,則進行到步驟S207。在步驟S207中,進一步判斷是否執行出廠前校正程序。若步驟S207的判斷結果為肯定,則進一步執行步驟S209。另請留意,步驟S209係由音訊播放裝置的製造商在音訊播放裝置出貨前進行,一般使用者操作時,步驟S207的判斷結果均預設為否定。 Next, in step S205, the audio control circuit 12 determines whether the audio output module 10 is switched to the normal operation mode. If not, repeat the steps to execute step S203. If the determination result of step S205 is affirmative, it proceeds to step S207. In step S207, it is further judged whether or not to execute the pre-delivery calibration program. If the judgment result of step S207 is affirmative, step S209 is further executed. Please also note that step S209 is performed by the manufacturer of the audio playback device before the audio playback device is shipped. When a general user operates, the judgment result of step S207 is preset as negative.

步驟S209進一步包含以下步驟。首先,在步驟S209a中,判斷揚聲器15是否發出爆音。若否,則校正程序結束。若步驟S209a的判斷結果為肯定,則進行到步驟S209b。在步驟S209b中,進一步判斷是否為正相路徑PWM輸出(PWM+)領先負相路徑PWM輸出(PWM-)。若步驟S209b判斷結果為肯定,則進行到步驟S209c。在步驟S209c中,增加正相相位移位電路135b的電容值。若步驟S209b判斷結果為否定,則進行到步驟S209d。在步驟S209d中,增加負相相位移位電路133b的電容值。此外,在校正程序中,可能對正相相位移位電路135b或負相相位移位電路133b的電容值經過數次調整,故步驟S209可能視校正的過程而選擇性地重複執行。 Step S209 further includes the following steps. First, in step S209a, it is determined whether or not the speaker 15 produces a popping sound. If not, the calibration procedure ends. If the determination result of step S209a is affirmative, it proceeds to step S209b. In step S209b, it is further determined whether the positive phase path PWM output (PWM+) leads the negative phase path PWM output (PWM-). If the determination result of step S209b is affirmative, go to step S209c. In step S209c, the capacitance value of the positive phase shift circuit 135b is increased. If the judgment result of step S209b is negative, then go to step S209d. In step S209d, the capacitance value of the negative-phase phase shift circuit 133b is increased. In addition, in the calibration procedure, the capacitance value of the positive phase shift circuit 135b or the negative phase shift circuit 133b may be adjusted several times, so step S209 may be selectively repeated depending on the calibration process.

若步驟S207的判斷結果為否定,代表音訊放大電路13處於一般播放期間Top,進行到步驟S211。此時,在步驟S211中,音訊控制電路12產生用於切換開關狀態的控制信號Sctrl至音訊放大電路13,使音訊放大電路13處於如第8B圖所示的狀態。接著,在步驟S213中,音訊控制電路12判斷音訊輸出模組10是否將關閉。若步驟S213的判斷結果為否定,則音訊放大電路13維持步驟S211的設定狀態。 If the determination result of step S207 is negative, it means that the audio amplifying circuit 13 is in the normal playing period Top, and the process proceeds to step S211. At this time, in step S211, the audio control circuit 12 generates a control signal Sctrl for switching the switch state to the audio amplifying circuit 13, so that the audio amplifying circuit 13 is in the state shown in FIG. 8B. Next, in step S213, the audio control circuit 12 determines whether the audio output module 10 is to be turned off. If the determination result of step S213 is negative, the audio amplifying circuit 13 maintains the setting state of step S211.

若步驟S213的判斷結果為肯定,則進行到步驟S215。在步驟S215中,音訊控制電路12產生控制信號至音訊放大電路13斷開全部的開關。根據本揭露的構想,正相路徑從迴路135d與負相路徑從迴路133d的設置可以避免開機期間因調變信號產生電路131尚未達到穩定的爆音現象。另一方面,在關機暫態期間Toff_tr期間,因調變信號產生電路131的操作已相當穩定,所以在步驟S215中,可將音訊放大電 路13中的開關SWa1-、SWa2-、SWm-、SWa1+、SWa2+、SWm+全部斷開。 If the determination result of step S213 is affirmative, it proceeds to step S215. In step S215, the audio control circuit 12 generates a control signal to the audio amplifying circuit 13 to turn off all switches. According to the concept of the present disclosure, the arrangement of the positive-phase path slave loop 135d and the negative-phase path slave loop 133d can avoid the popping phenomenon due to the modulation signal generating circuit 131 not reaching a stable state during startup. On the other hand, during the shutdown transient period Toff_tr, since the operation of the modulation signal generating circuit 131 is quite stable, in step S215, the audio amplifying power can be The switches SWa1-, SWa2-, SWm-, SWa1+, SWa2+, and SWm+ in the circuit 13 are all turned off.

根據前述說明可以得知,本揭露可動態的因應正相路徑PWM輸出(PWM+)、負相路徑PWM輸出(PWM-)的領先、落後情況而設定正相相位移位電路與負相相位移位電路的電容值。一旦原本領先的信號被延遲後,因正相路徑PWM輸出(PWM+)、負相路徑PWM輸出(PWM-)之相位不一致而使PWM輸出壓差(PWM+)-(PWM-)發生爆音的現象可被抑制。或者,一旦原本落後的信號被提前後,因正相路徑PWM輸出(PWM+)、負相路徑PWM輸出(PWM-)之相位不一致而使PWM輸出壓差(PWM+)-(PWM-)發生爆音的現象可被抑制。基於阻抗不匹配而衍生之時間差的情況,可藉由電容值的調整,將原本領先之信號的產生時點延後,達到抑制在讓開機與關機瞬間之爆音的效果。此外,藉由正相路徑從迴路與負相路徑從迴路的設置,可以在開機暫態期間Ton_tr減少因等待調變信號產生電路131的電壓趨於穩定之過渡期間所產生的爆音。 According to the above description, the present disclosure can dynamically set the positive phase shift circuit and the negative phase shift according to the leading and trailing conditions of the positive phase path PWM output (PWM+) and the negative phase path PWM output (PWM-). The capacitance value of the circuit. Once the original leading signal is delayed, the PWM output voltage difference (PWM+)-(PWM-) pops due to the phase inconsistency between the positive phase path PWM output (PWM+) and the negative phase path PWM output (PWM-). suppressed. Or, once the originally lagging signal is advanced, the PWM output voltage difference (PWM+)-(PWM-) is popped due to the phase mismatch between the positive-phase path PWM output (PWM+) and the negative-phase path PWM output (PWM-). phenomenon can be suppressed. Due to the time difference caused by impedance mismatch, the original leading signal can be delayed by adjusting the capacitor value, so as to suppress the popping sound at the moment of power-on and power-off. In addition, with the configuration of the positive-phase path slave loop and the negative-phase path slave loop, Ton_tr can reduce the popping noise generated during the transition period waiting for the voltage of the modulation signal generating circuit 131 to become stable during the power-on transient period.

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 To sum up, although the present invention has been disclosed by the above embodiments, it is not intended to limit the present invention. Those skilled in the art to which the present invention pertains can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be determined by the scope of the appended patent application.

Va+:正相類比差動輸入 Va+: positive phase analog differential input

Va-:負相類比差動輸入 Va-: Negative phase analog differential input

13:音訊放大電路 13: Audio amplifier circuit

PWM+:正相路徑PWM輸出 PWM+: Non-inverting path PWM output

PWM-:負相路徑PWM輸出 PWM-: Negative phase path PWM output

Ncmp+:正相路徑比較器輸出端點 Ncmp+: non-inverting path comparator output endpoint

Ncmp-:負相路徑比較器輸出端點 Ncmp-: Negative phase path comparator output endpoint

131:調變信號產生電路 131: Modulation signal generation circuit

133:負相音訊輸出電路 133: Negative phase audio output circuit

133a:負相路徑加法器 133a: Negative Path Adder

133b:負相相位移位電路 133b: Negative Phase Shift Circuit

133c:負相路徑主迴路 133c: Negative phase path main circuit

133d:負相路徑從迴路 133d: Negative phase path from loop

135:正相音訊輸出電路 135: Positive phase audio output circuit

135a:正相路徑加法器 135a: Positive Path Adder

135b:正相相位移位電路 135b: Positive Phase Shift Circuit

135c:正相路徑主迴路 135c: Non-phase path main circuit

135d:正相路徑從迴路 135d: Non-inverting path from loop

Sf+:正相路徑回授信號 Sf+: Non-inverting path feedback signal

Sf-:負相路徑回授信號 Sf-: Negative phase path feedback signal

Serr+:正相路徑誤差信號 Serr+: positive phase path error signal

Serr-:負相路徑誤差信號 Serr-: Negative phase path error signal

Claims (17)

一種音訊放大電路,包含:一調變信號產生電路,其係對一第一路徑誤差信號進行積分與調變後產生一第一路徑比較器輸出,以及對一第二路徑誤差信號進行積分與調變後產生一第二路徑比較器輸出;一第一音訊輸出電路,包含:一第一路徑加法器,電連接於該調變信號產生電路,其係自一第一類比差動輸入減去一第一路徑回授信號後產生該第一路徑誤差信號;一第一相位移位電路,其係選擇性調整該第一路徑比較器輸出的相位;以及,至少一第一路徑迴路,電連接於該調變信號產生電路、該第一路徑加法器與該第一相位移位電路,其係根據該第一路徑比較器輸出而產生該第一路徑回授信號;以及,一第二音訊輸出電路,包含:一第二路徑加法器,電連接於該調變信號產生電路,其係自一第二類比差動輸入減去一第二路徑回授信號後產生該第二路徑誤差信號;一第二相位移位電路,其係選擇性調整該第二路徑比較器輸出的相位;以及,至少一第二路徑迴路,電連接於該調變信號產生電路、該第二路徑加法器與該第二相位移位電路,其係根據該第二路徑比較器輸出而產生該第二路徑回授信號。 An audio amplifying circuit includes: a modulation signal generating circuit, which integrates and modulates a first path error signal to generate a first path comparator output, and integrates and modulates a second path error signal After the transformation, a second path comparator output is generated; a first audio output circuit includes: a first path adder, electrically connected to the modulation signal generation circuit, which subtracts a first analog differential input by a The first path error signal is generated after the first path feedback signal; a first phase shift circuit selectively adjusts the phase of the output of the first path comparator; and at least one first path loop is electrically connected to The modulation signal generating circuit, the first path adder and the first phase shift circuit generate the first path feedback signal according to the output of the first path comparator; and a second audio output circuit , comprising: a second path adder, electrically connected to the modulation signal generating circuit, which generates the second path error signal after subtracting a second path feedback signal from a second analog differential input; a first path error signal; A two-phase shift circuit selectively adjusts the phase of the output of the second path comparator; and at least one second path loop is electrically connected to the modulation signal generating circuit, the second path adder and the second path adder The phase shift circuit generates the second path feedback signal according to the output of the second path comparator. 如請求項1所述之音訊放大電路,其中該至少一第一路徑迴路係包含:一第一路徑主迴路,包含:一第一路徑主迴路開關,電連接於該調變信號產生電路與該第一相位移位電路,其係選擇性導通;一第一路徑主驅動器,電連接於該第一路徑主迴路開關,其係於該第一路徑主迴路開關導通時,驅動該第一路徑比較器輸出產生一第一路徑脈波寬度調變信號;以及一第一路徑主回授電阻,電連接於該第一路徑主驅動器與該第一路徑加法器,其係將該第一路徑脈波寬度調變信號轉換為該第一路徑回授信號。 The audio amplifying circuit of claim 1, wherein the at least one first path loop comprises: a first path main loop, including: a first path main loop switch electrically connected to the modulation signal generating circuit and the The first phase shift circuit is selectively turned on; a first path main driver is electrically connected to the first path main loop switch, which drives the first path comparison when the first path main loop switch is turned on The output of the device generates a first-path PWM signal; and a first-path main feedback resistor is electrically connected to the first-path main driver and the first-path adder, which is used for the first-path pulse wave The width modulation signal is converted into the first path feedback signal. 如請求項2所述之音訊放大電路,其中該至少一第二路徑迴路係包含:一第二路徑主迴路,包含:一第二路徑主迴路開關,電連接於該調變信號產生電路與該第二相位移位電路,其係選擇性導通;一第二路徑主驅動器,電連接於該第二路徑主迴路開關,其係於該第二路徑主迴路開關導通時,驅動該第二路徑比較器輸出產生一第二路徑脈波寬度調變信號;以及一第二路徑主回授電阻,電連接於該第二路徑主驅動器與該第二路徑加法器,其係將該第二路徑脈波寬度調變信號轉換為該第二路徑回授信號。 The audio amplifying circuit of claim 2, wherein the at least one second path loop comprises: a second path main loop, including: a second path main loop switch, electrically connected to the modulation signal generating circuit and the The second phase shift circuit is selectively turned on; a second path main driver is electrically connected to the second path main loop switch, which drives the second path comparator when the second path main loop switch is turned on The output of the device generates a second-path PWM signal; and a second-path main feedback resistor is electrically connected to the second-path main driver and the second-path adder, which is used for the second-path pulse wave The width modulated signal is converted into the second path feedback signal. 如請求項3所述之音訊放大電路,其中該第一路徑主迴路開關與該第二路徑主迴路開關係同時導通。 The audio amplifying circuit of claim 3, wherein the relationship between the first path main circuit switch and the second path main circuit switch is turned on at the same time. 如請求項3所述之音訊放大電路,其中當該第一路徑脈波寬度調變信號的相位領先該第二路徑脈波寬度調變信號的相位時,該第一相位移位電路用於延遲該第一路徑比較器輸出的相位。 The audio amplifying circuit of claim 3, wherein when the phase of the first path PWM signal leads the phase of the second path PWM signal, the first phase shift circuit is used for delaying The phase of the first path comparator output. 如請求項3所述之音訊放大電路,其中當該第一路徑脈波寬度調變信號的相位落後該第二路徑脈波寬度調變信號的相位時,該第二相位移位電路用於延遲該第二路徑比較器輸出的相位。 The audio amplifying circuit of claim 3, wherein when the phase of the first path PWM signal lags behind the phase of the second path PWM signal, the second phase shift circuit is used for delaying The phase of the second path comparator output. 如請求項1所述之音訊放大電路,其中該至少一第一路徑迴路係包含:一第一路徑從迴路,包含:一第一第一路徑從迴路開關,電連接於該第一相位移位電路,其係選擇性導通;一第一路徑從驅動器,電連接於該第一第一路徑從迴路開關,其係於該第一第一路徑從迴路開關導通時,驅動該第一路徑誤差信號產生該第一驅動信號;一第二第一路徑從迴路開關,電連接於該第一路徑從迴路電阻,其係選擇性導通;以及, 一第一路徑從迴路電阻,電連接於該第一路徑從驅動器與該第二第一路徑從迴路開關,其係於該第二第一路徑從迴路開關導通時,將該第一驅動信號轉換為該第一路徑回授信號。 The audio amplifying circuit of claim 1, wherein the at least one first path loop comprises: a first path slave loop, including: a first first path slave loop switch electrically connected to the first phase shifter The circuit is selectively turned on; a first path slave driver is electrically connected to the first first path slave loop switch, which drives the first path error signal when the first first path slave loop switch is turned on generating the first drive signal; a second first path slave loop switch electrically connected to the first path slave loop resistor, which is selectively turned on; and, A first path slave loop resistor is electrically connected to the first path slave driver and the second first path slave loop switch, which converts the first drive signal when the second first path slave loop switch is turned on A signal is fed back for the first path. 如請求項7所述之音訊放大電路,其中該至少一第二路徑迴路係包含:一第二路徑從迴路,包含:一第一第二路徑從迴路開關,電連接於該第二相位移位電路,其係選擇性導通;一第二路徑從驅動器,電連接於該第一第二路徑從迴路開關,其係於該第一第二路徑從迴路開關導通時,驅動該第二路徑誤差信號產生該第二驅動信號;一第二第二路徑從迴路開關,電連接於該第二路徑從迴路電阻,其係選擇性導通;以及,一第二路徑從迴路電阻,電連接於該第二路徑從驅動器與該第二第二路徑從迴路開關,其係於該第二第二路徑從迴路開關導通時,將該第二驅動信號轉換為該第二路徑回授信號。 The audio amplifying circuit of claim 7, wherein the at least one second path loop comprises: a second path slave loop, including: a first second path slave loop switch electrically connected to the second phase shifter The circuit is selectively turned on; a second path slave driver is electrically connected to the first and second path slave loop switches, which drives the second path error signal when the first and second path slave loop switches are turned on generating the second driving signal; a second second path slave loop switch electrically connected to the second path slave loop resistor, which is selectively turned on; and a second path slave loop resistor electrically connected to the second path slave loop resistor The path slave driver and the second path slave loop switch convert the second drive signal into the second path feedback signal when the second path slave loop switch is turned on. 如請求項8所述之音訊放大電路,其中該第一第一路徑從迴路開關、該第二第一路徑從迴路開關、該第一第二路徑從迴路開關與該第二第二路徑從迴路開關係同時導通。 The audio amplifier circuit of claim 8, wherein the first first path slave loop switch, the second first path slave loop switch, the first second path slave loop switch and the second second path slave loop switch The open relationship is turned on at the same time. 如請求項1所述之音訊放大電路,其中該第一相位移位電路係為一可變電容。 The audio amplifying circuit of claim 1, wherein the first phase shift circuit is a variable capacitor. 如請求項1所述之音訊放大電路,其中該第一相位移位電路係包含: 一第一電容路徑,電連接於該調變信號產生電路與該至少一第一路徑迴路,其係包含彼此串接的一第一電容與一第一開關;以及一第二電容路徑,電連接於該調變信號產生電路與該至少一第一路徑迴路,其係包含彼此串接的一第二電容與一第二開關,其中該第一電容路徑與該第二電容路徑係彼此並聯。 The audio amplifying circuit of claim 1, wherein the first phase shifting circuit comprises: A first capacitor path, electrically connected to the modulation signal generating circuit and the at least one first path loop, including a first capacitor and a first switch connected in series with each other; and a second capacitor path, electrically connected The modulation signal generating circuit and the at least one first path loop include a second capacitor and a second switch connected in series with each other, wherein the first capacitor path and the second capacitor path are connected in parallel with each other. 如請求項11所述之音訊放大電路,其中該第一電容的電容值不等於該第二電容的電容值。 The audio amplifying circuit of claim 11, wherein the capacitance value of the first capacitor is not equal to the capacitance value of the second capacitor. 一種應用於一音訊放大電路的控制方法,包含以下步驟:該音訊放大電路對一第一路徑誤差信號與一第二路徑誤差信號進行積分與調變而分別產生一第一路徑比較器輸出與一第二路徑比較器輸出;該音訊放大電路根據一第一類比差動輸入與一第一路徑回授信號而產生該第一路徑誤差信號;該音訊放大電路根據一第二類比差動輸入與一第二路徑回授信號而產生該第二路徑誤差信號;該音訊放大電路分別根據該第一路徑比較器輸出與該第二路徑比較器輸出而產生該第一路徑回授信號與該第二路徑回授信號;以及,該音訊放大電路選擇性調整該第一路徑比較器輸出與該第二路徑比較器輸出的其中一者的相位。 A control method applied to an audio amplifier circuit, comprising the following steps: the audio amplifier circuit integrates and modulates a first path error signal and a second path error signal to respectively generate a first path comparator output and a a second path comparator output; the audio amplifier circuit generates the first path error signal according to a first analog differential input and a first path feedback signal; the audio amplifier circuit generates the first path error signal according to a second analog differential input and a first path feedback signal The second path feedback signal generates the second path error signal; the audio amplifier circuit generates the first path feedback signal and the second path according to the output of the first path comparator and the output of the second path comparator respectively a feedback signal; and the audio amplifier circuit selectively adjusts the phase of one of the output of the first path comparator and the output of the second path comparator. 一種橋式負載(bridge-tied load,BTL)D類功率放大器,用於驅動一揚聲器,其中該橋式負載D類功率放大器係包含:一第一半橋,包含:一第一路徑加法器,自一第一類比差動輸入減去一第一路徑回授信號後產生一第一路徑誤差信號,其中該第一路徑誤差信號經過積分與調變後產生一第一路徑比較器輸出;一第一相位移位電路,其係選擇性調整該第一路徑比較器輸出的相位;以及,至少一第一路徑迴路,根據該第一路徑比較器輸出而產生一第一脈波寬度調變信號與該第一路徑回授信號;以及一第二半橋,其中該第一半橋係因應該第一脈波寬度調變信號與該第二半橋係因應一第二脈波寬度調變信號而共同驅動該揚聲器,且該第一脈波寬度調變信號與該第二脈波寬度調變信號之間形成的一相位誤差係與該揚聲器的噪聲相關。 A bridge-tied load (BTL) class D power amplifier for driving a speaker, wherein the bridge-tied load class D power amplifier comprises: a first half-bridge, including: a first path adder, A first path error signal is generated after subtracting a first path feedback signal from a first analog differential input, wherein the first path error signal is integrated and modulated to generate a first path comparator output; a first path error signal a phase shift circuit for selectively adjusting the phase of the output of the first path comparator; and at least one first path loop for generating a first PWM signal according to the output of the first path comparator and the first path feedback signal; and a second half-bridge, wherein the first half-bridge is responsive to the first PWM signal and the second half-bridge is responsive to a second PWM signal The loudspeaker is jointly driven, and a phase error formed between the first PWM signal and the second PWM signal is related to the noise of the loudspeaker. 如請求項14所述之橋式負載D類功率放大器,其中該第二半橋包含:一第二相位移位電路,用以移動該第二脈波寬度調變信號的相位。 The bridge-loaded class D power amplifier of claim 14, wherein the second half-bridge comprises: a second phase shift circuit for shifting the phase of the second PWM signal. 如請求項15所述之橋式負載D類功率放大器,其中該第一相位移位電路及該第二相位移位電路係各用以提供多個電容值。 The bridge-loaded class D power amplifier of claim 15, wherein the first phase shift circuit and the second phase shift circuit are each used to provide a plurality of capacitance values. 如請求項16所述之橋式負載D類功率放大器,其中更包含:一調變信號產生電路,用以提供該第一脈波寬度調變信號與該第二脈波寬度調變信號,其中該第一相位移位電路係電連接於該調變信號產生電路的一第一輸出端,且該第二相位移位電路係電連接於該調變信號產生電路的一第二輸出端。 The bridge-loaded class D power amplifier of claim 16, further comprising: a modulation signal generating circuit for providing the first PWM signal and the second PWM signal, wherein The first phase shift circuit is electrically connected to a first output end of the modulation signal generating circuit, and the second phase shift circuit is electrically connected to a second output end of the modulation signal generating circuit.
TW110110844A 2021-03-25 2021-03-25 Bridge-tied load class-d power amplifier, audio amplifying circuit and associated control method TWI760158B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110110844A TWI760158B (en) 2021-03-25 2021-03-25 Bridge-tied load class-d power amplifier, audio amplifying circuit and associated control method
CN202110424940.3A CN115133890A (en) 2021-03-25 2021-04-20 Bridge type load D-type power amplifier, audio frequency amplifying circuit and related control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110110844A TWI760158B (en) 2021-03-25 2021-03-25 Bridge-tied load class-d power amplifier, audio amplifying circuit and associated control method

Publications (2)

Publication Number Publication Date
TWI760158B true TWI760158B (en) 2022-04-01
TW202239138A TW202239138A (en) 2022-10-01

Family

ID=82198723

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110110844A TWI760158B (en) 2021-03-25 2021-03-25 Bridge-tied load class-d power amplifier, audio amplifying circuit and associated control method

Country Status (2)

Country Link
CN (1) CN115133890A (en)
TW (1) TWI760158B (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070024365A1 (en) * 2005-07-29 2007-02-01 Texas Instruments, Inc. Class-D amplifier system
US20070057721A1 (en) * 2005-08-31 2007-03-15 Texas Instruments Incorporated System for amplifiers with low distortion and low output impedance
TW200711290A (en) * 2005-05-12 2007-03-16 Tripath Technology Inc Noise-shaping amplifier with waveform lock
TW200723676A (en) * 2005-08-17 2007-06-16 Wolfson Microelectronics Plc Feedback controller for PWM amplifier
US20080285760A1 (en) * 2007-05-16 2008-11-20 Jong-Hang Lee Audio system for improving a signal to noise ratio
US20110006843A1 (en) * 2006-07-07 2011-01-13 Yamaha Corporation Offset voltage correction circuit and class D amplifier
TW201121231A (en) * 2009-12-07 2011-06-16 Faraday Tech Corp Class-D amplifier
TWI360943B (en) * 2007-07-13 2012-03-21 Yamaha Corp Class d amplifier circuit
US20170346447A1 (en) * 2016-05-24 2017-11-30 Stmicroelectronics S.R.L. Method for Load Measurement in Switching Amplifiers, Corresponding Device and Amplifier
US20180191310A1 (en) * 2016-12-30 2018-07-05 Texas Instruments Incorporated Total harmonic distortion (thd) controlled clip detector and automatic gain limiter (agl)
US20190190532A1 (en) * 2017-12-20 2019-06-20 Cirrus Logic International Semiconductor Ltd. Modulators
US20200036348A1 (en) * 2016-01-29 2020-01-30 Dolby Laboratories Licensing Corporation Class-d dynamic closed loop feedback amplifier
US20210028614A1 (en) * 2019-07-26 2021-01-28 Toshiba Electronic Devices & Storage Corporation Driver circuit having overcurrent protection function and control method of driver circuit having overcurrent protection function
US20210091729A1 (en) * 2017-12-27 2021-03-25 Sony Semiconductor Solutions Corporation Amplifier and signal processing circuit

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200711290A (en) * 2005-05-12 2007-03-16 Tripath Technology Inc Noise-shaping amplifier with waveform lock
US20070024365A1 (en) * 2005-07-29 2007-02-01 Texas Instruments, Inc. Class-D amplifier system
TW200723676A (en) * 2005-08-17 2007-06-16 Wolfson Microelectronics Plc Feedback controller for PWM amplifier
US20070057721A1 (en) * 2005-08-31 2007-03-15 Texas Instruments Incorporated System for amplifiers with low distortion and low output impedance
US20110006843A1 (en) * 2006-07-07 2011-01-13 Yamaha Corporation Offset voltage correction circuit and class D amplifier
US20080285760A1 (en) * 2007-05-16 2008-11-20 Jong-Hang Lee Audio system for improving a signal to noise ratio
TWI360943B (en) * 2007-07-13 2012-03-21 Yamaha Corp Class d amplifier circuit
TW201121231A (en) * 2009-12-07 2011-06-16 Faraday Tech Corp Class-D amplifier
US20200036348A1 (en) * 2016-01-29 2020-01-30 Dolby Laboratories Licensing Corporation Class-d dynamic closed loop feedback amplifier
US20170346447A1 (en) * 2016-05-24 2017-11-30 Stmicroelectronics S.R.L. Method for Load Measurement in Switching Amplifiers, Corresponding Device and Amplifier
US20180191310A1 (en) * 2016-12-30 2018-07-05 Texas Instruments Incorporated Total harmonic distortion (thd) controlled clip detector and automatic gain limiter (agl)
US20190190532A1 (en) * 2017-12-20 2019-06-20 Cirrus Logic International Semiconductor Ltd. Modulators
US20210091729A1 (en) * 2017-12-27 2021-03-25 Sony Semiconductor Solutions Corporation Amplifier and signal processing circuit
US20210028614A1 (en) * 2019-07-26 2021-01-28 Toshiba Electronic Devices & Storage Corporation Driver circuit having overcurrent protection function and control method of driver circuit having overcurrent protection function

Also Published As

Publication number Publication date
TW202239138A (en) 2022-10-01
CN115133890A (en) 2022-09-30

Similar Documents

Publication Publication Date Title
US10720888B2 (en) Systems and methods for dynamic range enhancement using an open-loop modulator in parallel with a closed-loop modulator
US7696816B2 (en) System and method for minimizing DC offset in outputs of audio power amplifiers
US8975960B2 (en) Integrated circuit wireless communication unit and method for providing a power supply
EP1425850B1 (en) Circuits and methods for compensating switched mode amplifiers
EP1814220B1 (en) A variable power adaptive transmitter
JP2010504004A (en) Class D audio amplifier
US8081777B2 (en) Volume-based adaptive biasing
JP2019193265A (en) Stabilizing high-performance audio amplifiers
US6351184B1 (en) Dynamic switching frequency control for a digital switching amplifier
Dapkus Class-D audio power amplifiers: an overview
US8362832B2 (en) Half-bridge three-level PWM amplifier and audio processing apparatus including the same
CN109756817B (en) Class D audio amplifier and noise suppression method thereof
US8249275B1 (en) Modulated gain audio control and zipper noise suppression techniques using modulated gain
TWI760158B (en) Bridge-tied load class-d power amplifier, audio amplifying circuit and associated control method
US6384678B2 (en) Silent start
US20070188221A1 (en) Digital amplifier apparatus and method of resetting a digital amplifier apparatus
TWI713309B (en) Analog output circuit
US8054979B2 (en) Audio system for improving a signal to noise ratio
US10418950B1 (en) Methods and apparatus for a class-D amplifier
US7816980B2 (en) Audio power amplifier using virtual ground and method of processing signal in the audio power amplifier
CN219019013U (en) Silencing circuit and chip for audio mode switching
JP2002315086A (en) Switching amplifier
JP3223048B2 (en) Audio signal power amplifier circuit and audio device using the same
US11588452B2 (en) Class D amplifier circuitry
CN113329294B (en) Audio control chip and earphone