TWI729707B - Wireless power transferring system - Google Patents

Wireless power transferring system Download PDF

Info

Publication number
TWI729707B
TWI729707B TW109105213A TW109105213A TWI729707B TW I729707 B TWI729707 B TW I729707B TW 109105213 A TW109105213 A TW 109105213A TW 109105213 A TW109105213 A TW 109105213A TW I729707 B TWI729707 B TW I729707B
Authority
TW
Taiwan
Prior art keywords
pulse width
circuit
width modulation
sine
conversion system
Prior art date
Application number
TW109105213A
Other languages
Chinese (zh)
Other versions
TW202133530A (en
Inventor
吳森統
韓季軒
吳嘉竣
Original Assignee
國立虎尾科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立虎尾科技大學 filed Critical 國立虎尾科技大學
Priority to TW109105213A priority Critical patent/TWI729707B/en
Application granted granted Critical
Publication of TWI729707B publication Critical patent/TWI729707B/en
Publication of TW202133530A publication Critical patent/TW202133530A/en

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

A wireless power transferring system includes a primary side LLC converter, a wireless transmitter and a secondary side converter. The primary side LLC converter rectifies a DC source and generates a first AC output through a rectifying circuit thereof, and triggers an LLC resonant circuit for generating energy. The secondary side converter receives energy and converts the first AC output to a DC output. Furthermore, a SPWM modulator can be adopted to convert the DC output to a second AC output in accordance with different situations. Therefore, energy transferring efficiency can be enhanced, and a DC load or an AC load can be selectively switched so as to increase the application flexibility of the wireless power transferring system.

Description

無線能量轉換系統 Wireless energy conversion system

本發明係關於一種能量轉換系統;更特別言之,本發明係關於一種可切換輸出交流負載或直流負載之無線能量轉換系統。 The present invention relates to an energy conversion system; more particularly, the present invention relates to a wireless energy conversion system capable of switching output AC load or DC load.

鑑於環保意識抬頭,綠能科技的發展使無線能量傳輸技術日益受到重視。此種技術一般常見於具特殊應用環境、高安全考量以及高精度儀器。然而,近期隨科技發展,遂使無線充電產品已可見於民生用品。無線傳輸電能方式可分為接觸式與非接觸式二種。接觸式係屬於使用金屬接點連接傳輸電能,例如各類充電器、電源供應器、家用電器插座等。非接觸式係利用感應電場傳輸電能,無須線路連接即可使用,此常見於手機無線充電器、家用小型電器、電動汽機車、輕軌供電等。習知接觸式傳輸電能的優點在於效率較高且設置上較為容易,惟仍有其缺點存在。例如產品所使用之金屬接點部位因鏽蝕導致接觸不良造成風險、接觸時火花的產生引起火源或閃燃、受到氣候影響限制或潮溼地方等情況。為解決上述安全、環保等問題,非接觸 式之無線電能傳輸技術日益受到重視,此係其具有受氣候或環境限制小、無接點金屬鏽蝕損耗、無須插拔隨拿即走、無觸電或漏電的危險以及機體維修損耗較少而使維修頻率降低之優點。 In view of the rising awareness of environmental protection, the development of green energy technology has made wireless energy transmission technology increasingly valued. This kind of technology is generally common in special application environments, high safety considerations and high-precision instruments. However, with the recent development of technology, wireless charging products have been found in consumer products. Wireless transmission of electric energy can be divided into two types: contact type and non-contact type. The contact system belongs to the use of metal contacts to connect and transmit power, such as various chargers, power supplies, and sockets for household appliances. The non-contact system uses an induction electric field to transmit electric energy, and can be used without a line connection. This is common in mobile phone wireless chargers, small household appliances, electric vehicles, light rail power supplies, etc. The advantages of the conventional contact type transmission of electric energy are higher efficiency and easier installation, but there are still disadvantages. For example, the metal contact parts used by the product may cause risks due to corrosion caused by poor contact, sparks during contact may cause fire or flashover, restricted by the influence of weather, or humid places. In order to solve the above-mentioned safety, environmental protection and other issues, non-contact The wireless power transmission technology has been paid more and more attention. This is due to the fact that it is less restricted by climate or environment, has no contact metal corrosion loss, does not need to be plugged and removed, there is no danger of electric shock or leakage, and the body maintenance loss is less. The advantage of reduced maintenance frequency.

在特殊應用場合中,例如水下油井探勘行動、煤炭礦等礦坑挖掘場合及處於高爆炸性氣體與易燃性液體或潮濕環境,若使用電器,於通電瞬間時易產生電弧而造成爆炸,無線能量傳輸技術即可於水面下及危險區域供電而不會有電弧產生火花,可提高安全性。於碼頭地區則因空氣鹽分含量高,若採用接觸式供電,易使連接裝置鏽蝕,造成電能傳輸能力及效率下降,更嚴重將造成漏電、觸電風險。此外,於民生用品上則可改善傳輸線損耗浪費、適配器接口損耗等問題。 In special applications, such as underwater oil well exploration operations, coal mines and other pit excavations, and in highly explosive gas and flammable liquids or humid environments, if electrical appliances are used, an electric arc is likely to cause an explosion at the moment of power-on, wireless energy transmission The technology can supply power under the water surface and in dangerous areas without arcs and sparks, which can improve safety. In the terminal area, due to the high salt content in the air, if the contact-type power supply is used, the connection device is likely to rust, resulting in a decline in power transmission capacity and efficiency, and even more serious, will cause electric leakage and electric shock risks. In addition, it can improve the problems of transmission line loss and adapter interface loss in consumer products.

無線能量傳輸(Wireless Power Transfer,WPT)一般係透過法拉第電磁感應實現,其相較於習知接觸式饋電具有較佳的便利性與安全性,惟目前感應耦合式能量傳輸可提供之使用效率為75%以下,明顯較傳統接觸式傳輸效率低。因此,如何提高能量轉換效率為當務之急。 Wireless power transfer (Wireless Power Transfer, WPT) is generally realized through Faraday electromagnetic induction, which is more convenient and safer than conventional contact feeding, but the current efficiency of inductive coupling energy transfer can be provided. It is less than 75%, which is obviously lower than the traditional contact transmission efficiency. Therefore, how to improve energy conversion efficiency is a top priority.

本發明係提供具有高的轉換效率之無線能量轉換系統。一次側LLC轉換器透過諧振方式將能量透過無線傳輸器傳送至二次側轉換器。二次側轉換器接收能量後,以直流輸出方式將能量輸出至負載端。此外,使用者可依需 求透過正弦脈寬調制器以交流方式提供能量至負載端。藉此,達成輸出模式交直流可切換之目的。 The present invention provides a wireless energy conversion system with high conversion efficiency. The primary-side LLC converter transmits energy to the secondary-side converter through a wireless transmitter through resonance. After the secondary-side converter receives the energy, it outputs the energy to the load in a DC output mode. In addition, users can It is required to provide energy to the load end in AC mode through a sinusoidal pulse width modulator. In this way, the purpose of switching between AC and DC output modes is achieved.

依據一實施方式,本發明提供一無線能量轉換系統,其包含一一次側LLC轉換器、一無線傳輸器以及一二次側轉換器。一次側LLC轉換器包含一第一整流電路及與第一整流電路耦接之一LLC諧振電路。無線傳輸器耦接至一次側LLC轉換器之LLC諧振電路。二次側轉換器耦接至無線傳輸器。其中一次側LLC轉換器透過第一整流電路對一直流輸入源進行整流而產生一第一交流輸出,並觸發LLC諧振電路而提供一能量;二次側轉換器透過無線傳輸器接收能量並對第一交流輸出進行轉換而產生一直流輸出。 According to one embodiment, the present invention provides a wireless energy conversion system, which includes a primary-side LLC converter, a wireless transmitter, and a secondary-side converter. The primary-side LLC converter includes a first rectifier circuit and an LLC resonance circuit coupled with the first rectifier circuit. The wireless transmitter is coupled to the LLC resonant circuit of the primary-side LLC converter. The secondary converter is coupled to the wireless transmitter. The primary-side LLC converter rectifies the DC input source through the first rectifier circuit to generate a first AC output, and triggers the LLC resonant circuit to provide an energy; the secondary-side converter receives energy through the wireless transmitter and generates a first AC output. An AC output is converted to produce a DC output.

藉此,本發明之無線能量轉換系統利用一次側LLC轉換器、無線傳輸器、二次側轉換器以及正弦脈寬調制器之交互作用,可實現交直流輸出模式之切換與應用需求。 Thereby, the wireless energy conversion system of the present invention utilizes the interaction of the primary-side LLC converter, the wireless transmitter, the secondary-side converter, and the sinusoidal pulse width modulator to realize the switching of AC and DC output modes and application requirements.

上述實施方式之無線能量轉換系統中,第一整流電路包含四個功率開關,四個功率開關以二二成對方式分別受控而開啟或關閉,以對一輸入訊號進行脈寬調制。 In the wireless energy conversion system of the above embodiment, the first rectifier circuit includes four power switches, and the four power switches are controlled to be turned on or off in a two-to-two pair, so as to perform pulse width modulation on an input signal.

上述實施方式之無線能量轉換系統中,二次側轉換器包含四個整流二極體,四個整流二極體二二對接。 In the wireless energy conversion system of the above embodiment, the secondary-side converter includes four rectifier diodes, and the four rectifier diodes are connected in pairs.

上述實施方式之無線能量轉換系統中,無線傳輸器包含二線圈,其中一線圈耦接至一次側LLC轉換器之LLC諧振電路,另一線圈耦接至二次側轉換器,透過二線圈相互耦合感應而將能量由一次側LLC轉換器傳輸至二次側 轉換器。 In the wireless energy conversion system of the above embodiment, the wireless transmitter includes two coils, one of which is coupled to the LLC resonant circuit of the primary-side LLC converter, and the other coil is coupled to the secondary-side converter, and is coupled to each other through the two coils Induction and transfer of energy from the primary side LLC converter to the secondary side converter.

上述實施方式之無線能量轉換系統中,更包含一正弦脈寬調制器,其耦接至二次側轉換器。其中正弦脈寬調制器用以將透過二次側轉換器所產生之直流輸出轉換成一第二交流輸出。 The wireless energy conversion system of the above embodiment further includes a sinusoidal pulse width modulator, which is coupled to the secondary side converter. The sine pulse width modulator is used to convert the DC output generated by the secondary side converter into a second AC output.

上述實施方式之無線能量轉換系統中,正弦脈寬調制器包含四個單極開關,其中二單極開關受控而形成脈寬調制,其餘二單極開關受控而形成正弦脈寬調制。 In the wireless energy conversion system of the above embodiment, the sinusoidal pulse width modulator includes four unipolar switches, of which two unipolar switches are controlled to form pulse width modulation, and the remaining two unipolar switches are controlled to form sinusoidal pulse width modulation.

上述實施方式之無線能量轉換系統中,當形成脈寬調制時,係產生一低頻訊號;當形成正弦脈寬調制時,係產生一高頻訊號。 In the wireless energy conversion system of the above embodiment, when pulse width modulation is formed, a low frequency signal is generated; when sinusoidal pulse width modulation is formed, a high frequency signal is generated.

上述實施方式之無線能量轉換系統中,正弦脈寬調制器產生二脈寬調制訊號以控制其中二單極開關,並產生二正弦脈寬調制訊號以控制其餘二單極開關,且二正弦脈寬調制訊號的頻率大於二脈寬調制訊號的頻率。 In the wireless energy conversion system of the above embodiment, the sine pulse width modulator generates two pulse width modulation signals to control two of the unipolar switches, and generates a two sinusoidal pulse width modulation signal to control the other two unipolar switches, and two sine pulse widths The frequency of the modulation signal is greater than the frequency of the two-pulse width modulation signal.

上述實施方式之無線能量轉換系統中,正弦脈寬調制器更包含相互耦接之一三角波產生電路、一正弦波產生電路、一比較電路、一反相電路以及至少一死區調節電路。三角波產生電路產生之三角波訊號及正弦波產生電路產生之正弦波訊號送入比較電路後,產生一正弦脈寬調制基本訊號,並透過反相電路與至少一死區調節電路,產生出高頻且為正弦波之二正弦脈寬調制訊號。 In the wireless energy conversion system of the above embodiment, the sine pulse width modulator further includes a triangle wave generating circuit, a sine wave generating circuit, a comparison circuit, an inverter circuit, and at least one dead zone adjustment circuit coupled to each other. After the triangle wave signal generated by the triangle wave generating circuit and the sine wave signal generated by the sine wave generating circuit are sent to the comparison circuit, a sine pulse width modulation basic signal is generated, and through the inverter circuit and at least one dead zone adjustment circuit, the high frequency and the The two sine wave is a sine pulse width modulation signal.

上述實施方式之無線能量轉換系統中,至少一死區調節電路的數量為二,正弦脈寬調制基本訊號經過反相電 路與其中一個死區調節電路而產生出其中一個正弦脈寬調制訊號,正弦脈寬調制基本訊號經過另一個死區調節電路而產生出另一個正弦脈寬調制訊號。 In the wireless energy conversion system of the above-mentioned embodiment, the number of at least one dead zone adjustment circuit is two, and the basic signal of the sinusoidal pulse width modulation is subjected to an inverted circuit One of the sine pulse width modulation signals is generated by the circuit and one of the dead zone adjustment circuits, and the sine pulse width modulation basic signal passes through another dead zone adjustment circuit to generate another sine pulse width modulation signal.

110:一次側LLC轉換器 110: Primary side LLC converter

111:第一整流電路 111: The first rectifier circuit

112:LLC諧振電路 112: LLC resonant circuit

120:無線傳輸器 120: wireless transmitter

130:二次側轉換器 130: Secondary side converter

140:正弦脈寬調制器 140: Sine Pulse Width Modulator

141:三角波產生電路 141: Triangular wave generating circuit

142:正弦波產生電路 142: Sine wave generating circuit

143:比較電路 143: comparison circuit

144:反相電路 144: Inverting circuit

145:死區調節電路 145: Dead zone adjustment circuit

4023,4050,NE555:積體電路 4023, 4050, NE555: integrated circuit

A,B:節點 A, B: Node

C,Ccoss1,Ccoss2,Ccoss3,Ccoss4,C3:電容 C, C coss1 , C coss2 , C coss3 , C coss4 , C 3 : capacitance

C1,C2:濾波電容 C 1 , C 2 : filter capacitor

Cr:諧振電容 C r : resonant capacitance

D,D1,D2,D3,D4:二極體 D, D 1 , D 2 , D 3 , D 4 : Diode

D5,D6,D7,D8:整流二極體 D 5 , D 6 , D 7 , D 8 : rectifier diode

GND:地線 GND: ground wire

I:第一運作模式 I: The first mode of operation

II:第二運作模式 II: The second mode of operation

III:第三運作模式 III: The third mode of operation

ICL8038:訊號產生器 ICL8038: signal generator

ids1,ids2,ids3,ids4,id1,id2,iLm,iLr,id5,id6,id7,id8:電流 i ds1 ,i ds2 ,i ds3 ,i ds4 ,i d1 ,i d2 ,i Lm ,i Lr ,i d5 ,i d6 ,i d7 ,i d8 : current

ip:無線傳輸器電流 i p : wireless transmitter current

L:電感 L: Inductance

Lr:第一諧振電感 L r : first resonant inductance

Lm:第二諧振電感 L m : second resonant inductance

LOAD:負載端 LOAD: load side

PWM1:脈寬調制訊號 PWM 1 : Pulse width modulation signal

PWM2:脈寬調制訊號 PWM 2 : Pulse width modulation signal

PWM3:脈寬調制訊號 PWM 3 : Pulse width modulation signal

PWM4:脈寬調制訊號 PWM 4 : Pulse width modulation signal

Q1,Q2,Q3,Q4:功率開關 Q1, Q2, Q3, Q4: power switch

Q5,Q6,Q7,Q8:單極開關 Q5, Q6, Q7, Q8: single pole switch

R:電阻 R: resistance

SPWM_wave:正弦脈寬調制基本訊號 SPWM_wave: Basic signal of sine pulse width modulation

SPWM1:正弦脈寬調制訊號 SPWM 1 : Sine pulse width modulation signal

SPWM2:正弦脈寬調制訊號 SPWM 2 : Sine pulse width modulation signal

t,t0,t1,t2,t3:時間 t,t 0 ,t 1 ,t 2 ,t 3 : time

V:電源電壓 V: power supply voltage

VAB,Vds1,Vds2,Vds3,Vds4:電壓 V AB ,V ds1 ,V ds2 ,V ds3 ,V ds4 : voltage

VDC:直流輸出 V DC : DC output

Vout:第二交流輸出 V out : second AC output

VR:可變電阻 VR: Variable resistance

Vs:直流輸入源 V s : DC input source

第1圖係繪示依據本發明一實施例之無線能量轉換系統之系統架構示意圖; Figure 1 is a schematic diagram showing the system architecture of a wireless energy conversion system according to an embodiment of the present invention;

第2圖係繪示第1圖實施例之無線能量轉換系統之電路架構示意圖; Fig. 2 is a schematic diagram showing the circuit structure of the wireless energy conversion system of the embodiment in Fig. 1;

第3圖係繪示第1圖實施例之無線能量轉換系統之第一運作模式示意圖; Fig. 3 is a schematic diagram showing the first operation mode of the wireless energy conversion system of the embodiment in Fig. 1;

第4圖係繪示第1圖實施例之無線能量轉換系統之第二運作模式示意圖; Fig. 4 is a schematic diagram showing the second operation mode of the wireless energy conversion system of the embodiment in Fig. 1;

第5圖係繪示第1圖實施例之無線能量轉換系統之第三運作模式示意圖; Fig. 5 is a schematic diagram showing the third operation mode of the wireless energy conversion system of the embodiment in Fig. 1;

第6圖係繪示第1圖實施例之無線能量轉換系統之正弦脈寬調制器之電路架構示意圖; Fig. 6 is a schematic diagram showing the circuit structure of the sinusoidal pulse width modulator of the wireless energy conversion system of the embodiment in Fig. 1;

第7圖係繪示第1圖實施例之無線能量轉換系統之各元件之操作波形示意圖; Fig. 7 is a schematic diagram showing the operation waveforms of the components of the wireless energy conversion system of the embodiment in Fig. 1;

第8圖係繪示接續第7圖實施例之無線能量轉換系統之各元件之操作波形示意圖; Fig. 8 is a schematic diagram showing the operation waveforms of the components of the wireless energy conversion system following the embodiment in Fig. 7;

第9圖係繪示第1圖實施例之無線能量轉換系統之正弦脈寬調制器之訊號產生電路架構示意圖; Fig. 9 is a schematic diagram showing the signal generation circuit structure of the sinusoidal pulse width modulator of the wireless energy conversion system of the embodiment in Fig. 1;

第10圖係繪示第9圖實施例之三角波產生電路、正弦波產生電路及比較電路之電路架構示意圖; FIG. 10 is a schematic diagram showing the circuit structure of the triangle wave generating circuit, the sine wave generating circuit, and the comparison circuit of the embodiment in FIG. 9;

第11圖係繪示第9圖實施例之反相電路與死區調節電路之電路架構示意圖; FIG. 11 is a schematic diagram showing the circuit structure of the inverter circuit and the dead zone adjusting circuit of the embodiment in FIG. 9;

第12圖係繪示第6圖實施例之正弦脈寬調制器之脈寬調制訊號的訊號產生器之電路架構示意圖;以及 FIG. 12 is a schematic diagram of the circuit structure of the signal generator of the pulse width modulation signal of the sinusoidal pulse width modulator of the embodiment in FIG. 6; and

第13圖係繪示本發明之無線能量轉換系統之直流輸出及第二交流輸出之轉換效率比較圖。 FIG. 13 is a comparison diagram of the conversion efficiency of the DC output and the second AC output of the wireless energy conversion system of the present invention.

以下將參照圖式說明本發明之複數個實施例。為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施例中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之;並且重複之元件將可能使用相同的編號表示之。 Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. For the sake of clarity, many practical details will be explained in the following description. However, it should be understood that these practical details should not be used to limit the present invention. That is to say, in some embodiments of the present invention, these practical details are unnecessary. In addition, for the sake of simplifying the drawings, some conventionally used structures and elements will be drawn in a simple schematic manner in the drawings; and repeated elements may be represented by the same numbers.

此外,本文中當某一元件(或單元或模組等)「耦接」於另一元件,可指所述元件是直接耦接於另一元件,亦可指某一元件是間接耦接於另一元件,意即,有其他元件介於所述元件及另一元件之間。而當有明示某一元件是「直接耦接」於另一元件時,才表示沒有其他元件介於所述元件及另一元件之間。而第一、第二、第三等用語只是用來描述不同元件,而對元件本身並無限制,因此,第一元件 亦可改稱為第二元件。且本文中之元件/單元/電路之組合非此領域中之一般周知、常規或習知之組合,不能以元件/單元/電路本身是否為習知,來判定其組合關係是否容易被技術領域中之通常知識者輕易完成。 In addition, when an element (or unit or module, etc.) is "coupled" to another element in this document, it can mean that the element is directly coupled to another element, or that a certain element is indirectly coupled to another element. Another element means that there is another element between the element and another element. When it is clearly stated that a certain element is "directly coupled" to another element, it means that there is no other element between the element and another element. The terms first, second, and third are only used to describe different elements, and there are no restrictions on the elements themselves. Therefore, the first element It can also be renamed as the second element. Moreover, the combination of elements/units/circuits in this article is not a combination of general, conventional, or conventional in this field. Whether the elements/units/circuits themselves are conventional or not can not be used to determine whether the combination relationship is easy to be used in the technical field. Usually the knowledgeable person can do it easily.

請一併參照第1圖及第2圖。第1圖係繪示依據本發明一實施例之無線能量轉換系統之系統架構示意圖;第2圖係繪示第1圖實施例之無線能量轉換系統之電路架構示意圖。 Please refer to Figure 1 and Figure 2 together. FIG. 1 is a schematic diagram of the system architecture of the wireless energy conversion system according to an embodiment of the present invention; FIG. 2 is a schematic diagram of the circuit architecture of the wireless energy conversion system of the embodiment in FIG. 1.

無線能量轉換系統包含一次側LLC轉換器110、無線傳輸器120、二次側轉換器130以及正弦脈寬調制器140。一次側LLC轉換器110包含第一整流電路111及與第一整流電路111耦接之LLC諧振電路112。無線傳輸器120耦接至一次側LLC轉換器110之LLC諧振電路112。二次側轉換器130耦接至無線傳輸器120。正弦脈寬調制器140耦接至二次側轉換器130。 The wireless energy conversion system includes a primary-side LLC converter 110, a wireless transmitter 120, a secondary-side converter 130, and a sinusoidal pulse width modulator 140. The primary-side LLC converter 110 includes a first rectifier circuit 111 and an LLC resonance circuit 112 coupled to the first rectifier circuit 111. The wireless transmitter 120 is coupled to the LLC resonant circuit 112 of the primary-side LLC converter 110. The secondary converter 130 is coupled to the wireless transmitter 120. The sinusoidal pulse width modulator 140 is coupled to the secondary side converter 130.

第一整流電路111包含四個功率開關Q1、Q2、Q3、Q4。四個功率開關Q1、Q2、Q3、Q4以二二成對方式分別受控而開啟或關閉,以對一輸入訊號進行脈寬調制,其中功率開關Q1、Q4受控於脈寬調制訊號PWM1,而功率開關Q2、Q3則受控於脈寬調制訊號PWM2。此外,第一整流電路111包含電容Ccoss1、Ccoss2、Ccoss3、Ccoss4、濾波電容C1、二極體D1、D2、D3、D4以及電流ids1、ids2、id1、id2。另外,第一整流電路111更包含電流ids3、ids4,如第7圖所示。此外,LLC諧振電路 112包含諧振電容Cr、第一諧振電感Lr及第二諧振電感Lm。第一諧振電感Lr耦接於諧振電容Cr與第二諧振電感Lm之間。 The first rectifier circuit 111 includes four power switches Q1, Q2, Q3, and Q4. The four power switches Q1, Q2, Q3, and Q4 are controlled and turned on or off in two-to-two pairs respectively to perform pulse width modulation on an input signal. The power switches Q1 and Q4 are controlled by the pulse width modulation signal PWM 1 , And the power switches Q2 and Q3 are controlled by the pulse width modulation signal PWM 2 . In addition, the first rectifier circuit 111 includes capacitors C coss1 , C coss2 , C coss3 , C coss4 , filter capacitor C 1 , diodes D 1 , D 2 , D 3 , D 4 and currents i ds1 , i ds2 , i d1 , I d2 . In addition, the first rectifier circuit 111 further includes currents i ds3 and i ds4 , as shown in FIG. 7. In addition, the LLC resonance circuit 112 includes a resonance capacitor C r , a first resonance inductance L r and a second resonance inductance L m . The first resonant inductor L r is coupled between the resonant capacitor C r and the second resonant inductor L m .

無線傳輸器120包含二線圈。其中一線圈耦接至一次側LLC轉換器110之LLC諧振電路112,另一線圈耦接至二次側轉換器130。二線圈可相互耦合感應而將能量由一次側LLC轉換器110傳輸至二次側轉換器130。 The wireless transmitter 120 includes two coils. One of the coils is coupled to the LLC resonant circuit 112 of the primary-side LLC converter 110, and the other coil is coupled to the secondary-side converter 130. The two coils can be coupled to each other to induce energy to transmit energy from the primary-side LLC converter 110 to the secondary-side converter 130.

二次側轉換器130包含四個整流二極體D5、D6、D7、D8及電流id5、id6、id7、id8,如第7圖所示。四個整流二極體D5、D6、D7、D8二二對接而構成橋式整流器。 The secondary converter 130 includes four rectifier diodes D5, D6, D7, D8 and currents i d5 , i d6 , i d7 , and i d8 , as shown in FIG. 7. Four rectifier diodes D5, D6, D7, and D8 are connected in two to form a bridge rectifier.

第1圖中,當於直流負載時,則不透過正弦脈寬調制器140,直接由二次側轉換器130可產生直流輸出。當於交流負載時,則透過正弦脈寬調制器140產生第二交流輸出VoutIn Figure 1, when the DC load is used, the sine pulse width modulator 140 is not passed through, and the DC output can be directly generated by the secondary side converter 130. When under AC load, the second AC output V out is generated through the sinusoidal pulse width modulator 140.

換言之,一次側LLC轉換器110可透過第一整流電路111對一直流輸入源Vs進行整流而產生一第一交流輸出,並觸發LLC諧振電路112而提供一能量。二次側轉換器130透過無線傳輸器120接收能量並對第一交流輸出進行轉換而產生一直流輸出,此時輸出為直流訊號,對應直流負載。當使用正弦脈寬調制器140時,可將二次側轉換器130所產生之直流輸出轉換成一第二交流輸出Vout,此時輸出為交流訊號,對應交流負載,如第2圖所示。 In other words, the primary-side LLC converter 110 can rectify the DC input source V s through the first rectifier circuit 111 to generate a first AC output, and trigger the LLC resonant circuit 112 to provide an energy. The secondary converter 130 receives energy through the wireless transmitter 120 and converts the first AC output to generate a DC output. At this time, the output is a DC signal corresponding to a DC load. When the sine pulse width modulator 140 is used, the DC output generated by the secondary side converter 130 can be converted into a second AC output V out . At this time, the output is an AC signal corresponding to an AC load, as shown in FIG. 2.

本發明之無線能量轉換系統之運作模式說明如後。第3圖係繪示第1圖實施例之無線能量轉換系統之第一運作模式示意圖;第4圖係繪示第1圖實施例之無線能量轉換系統之第二運作模式示意圖;第5圖係繪示第1圖實施例之無線能量轉換系統之第三運作模式示意圖。此先說明上述第一運作模式、第二運作模式及第三運作模式皆未使用到正弦脈寬調制器140。正弦脈寬調制器140之運作模式將於後續實施例再說明之。同時,亦請一併參照第7圖及第8圖中所繪示之無線能量轉換系統之各元件之操作波形示意圖。 The operation mode of the wireless energy conversion system of the present invention is described below. Fig. 3 is a schematic diagram of the first operation mode of the wireless energy conversion system of the embodiment in Fig. 1; Fig. 4 is a schematic diagram of the second operation mode of the wireless energy conversion system of the embodiment in Fig. 1; Fig. 5 is A schematic diagram of the third operation mode of the wireless energy conversion system of the embodiment in FIG. 1 is shown. First, it will be explained that the sine pulse width modulator 140 is not used in the first operation mode, the second operation mode, and the third operation mode. The operation mode of the sine pulse width modulator 140 will be described in subsequent embodiments. At the same time, please also refer to the operating waveform diagrams of the components of the wireless energy conversion system shown in Figures 7 and 8.

第一運作模式I(t0<t<t1):功率開關Q1、Q4截止,Q2、Q3導通,此為開關同時截止之死區時間前階段。此時,二次側轉換器130之整流二極體D6、D7呈現導通狀態而進行整流動作,功率開關Q2、Q3為導通狀態形成迴路。隨著時間越往t1移動時,電流ids2逐漸變小直到功率開關Q2截止而截止,無線傳輸器電流ip在此區間漸漸降為0,而此時電流iLm等於電流iLrThe first operation mode I (t 0 <t<t 1 ): The power switches Q 1 and Q 4 are turned off, and Q 2 and Q 3 are turned on. This is the stage before the dead time when the switches are turned off at the same time. At this time, the rectifier diodes D 6 and D 7 of the secondary-side converter 130 are in a conducting state to perform a rectification operation, and the power switches Q 2 and Q 3 are in a conducting state to form a loop. As time moves toward t 1 , the current i ds2 gradually decreases until the power switch Q 2 is turned off. The wireless transmitter current i p gradually decreases to 0 in this interval, and the current i Lm is equal to the current i Lr at this time.

第二運作模式II(t1<t<t2):功率開關Q1、Q2、Q3、Q4皆為截止狀態,亦即死區時間,而二次側轉換器130之整流二極體D5、D6、D7、D8在此區間為D5、D8導通,D6、D7截止。在此區間中,無線傳輸器電流ip因於上一區間已完成換向,因此諧振電流於此區間提供無線傳輸器120續流之能量,而由一次側LLC轉換器110透過無線傳輸器120傳導至二次側轉換器130之能量使整流 二極體D5、D8導通,且對負載端LOAD進行放電的動作。此時,濾波電容C2等同一電壓源,亦對負載端LOAD進行放電動作。而功率開關Q1、Q4則提供一放電路徑,此時電壓Vds1、Vds4降為0,形成零電壓切換(Zero Voltage Switching,ZVS),因此可達到無能量損耗之切換。而電壓Vds2、Vds3上升。 The second operation mode II (t 1 <t<t 2 ): the power switches Q 1 , Q 2 , Q 3 , and Q 4 are all in the off state, that is, the dead time, and the rectifier diode of the secondary side converter 130 D 5, D 6, D 7 , D 8 is in this range D 5, D 8 is turned, D 6, D 7 is turned off. In this interval, the wireless transmitter current i p has completed commutation in the previous interval, so the resonant current provides freewheeling energy for the wireless transmitter 120 in this interval, and the primary-side LLC converter 110 passes through the wireless transmitter 120 The energy transferred to the secondary side converter 130 turns on the rectifier diodes D 5 and D 8 and discharges the load terminal LOAD. At this time, the same voltage source such as the filter capacitor C 2 also discharges the load terminal LOAD. The power switches Q 1 and Q 4 provide a discharge path. At this time, the voltages V ds1 and V ds4 are reduced to 0, forming a zero voltage switching (ZVS), so switching without energy loss can be achieved. The voltages V ds2 and V ds3 rise.

第三運作模式III(t2<t<t3):功率開關Q1、Q4導通,無線傳輸器120兩端電壓被輸出電壓箝位至nVo(n:線圈圈數比),故電流iLm持續上升直到t=t3,而此時電流ids1逐漸上升,諧振電容Cr與第一諧振電感Lr進行諧振,無線傳輸器電流ip在此區間也逐漸上升,將能量由一次側LLC轉換器110持續傳送至二次側轉換器130。二次側轉換器130之整流二極體D5、D8持續導通,此時二次側之電流對濾波電容C2儲存能量,並傳送能量至負載端LOAD,直到t=t3時,激磁電感將達到最大,而無線傳輸器電流ip將逐漸減小至0。當上所述之第一運作模式、第二運作模式及第三運作模式中之電流方向為反向操作時,其作動原理與上述步驟相同,僅相位相反。 The third operation mode III (t 2 <t<t 3 ): The power switches Q 1 and Q 4 are turned on, and the voltage at both ends of the wireless transmitter 120 is clamped to nV o (n: the ratio of coil turns) by the output voltage, so the current i Lm continues to rise until t=t 3 , and at this time, the current i ds1 gradually rises, the resonant capacitor C r and the first resonant inductor L r resonate, and the wireless transmitter current i p also gradually rises in this interval, reducing the energy from one time The side LLC converter 110 continuously transmits to the secondary side converter 130. The rectifier diodes D 5 and D 8 of the secondary-side converter 130 continue to conduct. At this time, the secondary-side current stores energy in the filter capacitor C 2 and transfers the energy to the load terminal LOAD until t=t 3 , the excitation The inductance will reach the maximum, and the wireless transmitter current i p will gradually decrease to zero. When the current directions in the first operation mode, the second operation mode, and the third operation mode described above are reverse operation, the operation principle is the same as the above steps, but the phase is opposite.

請參照第6圖。第6圖係繪示第1圖實施例之無線能量轉換系統之正弦脈寬調制器140之電路架構示意圖。正弦脈寬調制器140包含四個單極開關Q5、Q6、Q7、Q8、電感L、電容C3及節點A、B,其中節點A、B的壓差為電壓VAB,二單極開關Q7、Q8受控而形成脈寬調制,亦即單極開關Q7、Q8分別受控於脈寬調制訊號PWM3、 PWM4而形成脈寬調制,其餘二單極開關Q5、Q6則受控而形成正弦脈寬調制,亦即單極開關Q5、Q6分別受控於正弦脈寬調制訊號SPWM1、SPWM2而形成正弦脈寬調制。 Please refer to Figure 6. FIG. 6 is a schematic diagram of the circuit structure of the sinusoidal pulse width modulator 140 of the wireless energy conversion system of the embodiment in FIG. 1. FIG. The sinusoidal pulse width modulator 140 includes four unipolar switches Q5, Q6, Q7, Q8, an inductor L, a capacitor C 3, and nodes A and B. The voltage difference between nodes A and B is the voltage V AB and two unipolar switches Q7 , Q8 is controlled to form pulse width modulation, that is, the unipolar switches Q7 and Q8 are respectively controlled by the pulse width modulation signals PWM 3 and PWM 4 to form pulse width modulation, and the other two unipolar switches Q5 and Q6 are controlled to form Sinusoidal pulse width modulation, that is, the unipolar switches Q5 and Q6 are respectively controlled by the sinusoidal pulse width modulation signals SPWM 1 and SPWM 2 to form a sinusoidal pulse width modulation.

再詳而言之,請參照第9圖。第9圖係繪示第1圖實施例之無線能量轉換系統之正弦脈寬調制器140之訊號產生電路架構示意圖,並請一併參照第6圖實施例中之正弦脈寬調制器140之電路架構。正弦脈寬調制器140透過單極開關Q5、Q6、Q7、Q8切換,使第6圖中之直流輸出VDC切換出交流之電壓。同時,正弦脈寬調制器140更包含相互耦接之一三角波產生電路141、一正弦波產生電路142、一比較電路143、一反相電路144以及至少一死區調節電路145。運作時,首先將三角波產生電路141產生之三角波訊號及正弦波產生電路142產生之正弦波訊號送入比較電路143後,產生出正弦脈寬調制基本訊號SPWM_wave,並透過反相電路144與死區調節電路145,產生出高頻且為正弦波之二正弦脈寬調制訊號SPWM1、SPWM2;具體而言,正弦脈寬調制訊號SPWM1、SPWM2的頻率可為20kHz,但不以此為限。此二正弦脈寬調制訊號SPWM1、SPWM2分別控制正弦脈寬調制器140中之單極開關Q5、Q6。而原有低頻且為方波之二脈寬調制訊號PWM3、PWM4則分別控制單極開關Q7、Q8;具體而言,脈寬調制訊號PWM3、PWM4的頻率可為60Hz,但不以此為限。下列第10圖至第12圖將舉例說明第9圖 之正弦脈寬調制器140的一個可行實施例細節,但本發明不以此為限。 For more details, please refer to Figure 9. Fig. 9 is a schematic diagram showing the signal generation circuit structure of the sinusoidal pulse width modulator 140 of the wireless energy conversion system of the embodiment in Fig. 1. Please also refer to the circuit of the sinusoidal pulse width modulator 140 in the embodiment of Fig. 6 Architecture. The sinusoidal pulse width modulator 140 is switched through the unipolar switches Q5, Q6, Q7, and Q8 to switch the DC output V DC in Figure 6 to an AC voltage. At the same time, the sine pulse width modulator 140 further includes a triangle wave generating circuit 141, a sine wave generating circuit 142, a comparison circuit 143, an inverter circuit 144, and at least one dead zone adjustment circuit 145 coupled to each other. In operation, the triangle wave signal generated by the triangle wave generating circuit 141 and the sine wave signal generated by the sine wave generating circuit 142 are first sent to the comparison circuit 143 to generate the sine pulse width modulation basic signal SPWM_wave, and pass through the inverter circuit 144 and the dead zone The adjustment circuit 145 generates two sine pulse width modulation signals SPWM 1 and SPWM 2 , which are high-frequency and sine waves; specifically, the frequency of the sine pulse width modulation signals SPWM 1 and SPWM 2 can be 20 kHz, but not limit. The two sinusoidal pulse width modulation signals SPWM 1 and SPWM 2 respectively control the unipolar switches Q5 and Q6 in the sinusoidal pulse width modulator 140. The original low-frequency and square-wave pulse width modulation signals PWM 3 and PWM 4 respectively control the unipolar switches Q7 and Q8; specifically, the frequency of the pulse width modulation signals PWM 3 and PWM 4 can be 60 Hz, but not Limited by this. The following Figs. 10 to 12 will illustrate the details of a possible embodiment of the sinusoidal pulse width modulator 140 in Fig. 9, but the present invention is not limited thereto.

請參照第10圖,第10圖係繪示第9圖實施例之三角波產生電路141、正弦波產生電路142及比較電路143之電路架構示意圖。其中三角波產生電路141包含一個訊號產生器ICL8038、五個電阻R、三個可變電阻VR、一個電容C、電源電壓V以及地線GND,而訊號產生器ICL8038透過與電阻R、可變電阻VR及電容C的連結及運作而於第3引脚(Pin3)產生三角波訊號。訊號產生器ICL8038為習知電路,其細節不再贅述。再者,正弦波產生電路142包含一個訊號產生器ICL8038、五個電阻R、三個可變電阻VR、一個電容C、電源電壓V以及地線GND,而訊號產生器ICL8038透過與電阻R、可變電阻VR及電容C的連結及運作而於第2引脚(Pin2)產生正弦波訊號。另外,比較電路143包含運算放大器(Operational Amplifier;OPA),運算放大器接收三角波訊號與正弦波訊號後進行運算,可產生出正弦脈寬調制基本訊號SPWM_wave。 Please refer to FIG. 10. FIG. 10 is a schematic diagram illustrating the circuit structure of the triangle wave generating circuit 141, the sine wave generating circuit 142, and the comparing circuit 143 of the embodiment in FIG. 9. The triangle wave generating circuit 141 includes a signal generator ICL8038, five resistors R, three variable resistors VR, a capacitor C, a power supply voltage V, and a ground line GND. The signal generator ICL8038 is connected to the resistor R and the variable resistor VR. The connection and operation of the capacitor C and the third pin (Pin3) generate a triangular wave signal. The signal generator ICL8038 is a conventional circuit, and its details will not be repeated. Furthermore, the sine wave generating circuit 142 includes a signal generator ICL8038, five resistors R, three variable resistors VR, a capacitor C, a power supply voltage V and a ground line GND, and the signal generator ICL8038 is connected to the resistor R, The connection and operation of the variable resistor VR and the capacitor C generate a sine wave signal on the second pin (Pin2). In addition, the comparison circuit 143 includes an operational amplifier (Operational Amplifier; OPA). The operational amplifier receives the triangle wave signal and the sine wave signal and performs operations to generate a sine pulse width modulation basic signal SPWM_wave.

請參照第11圖,第11圖係繪示第9圖實施例之反相電路144與死區調節電路145之電路架構示意圖。其中反相電路144包含積體電路4023(IC 4023),其第6引脚(Pin6)與第10引脚(Pin10)可分別產生二個反相之訊號。另外,死區調節電路145的數量為二,各死區調節電路145包含一個二極體D、一個可變電阻VR及一個電 容C,且二極體D、可變電阻VR及電容C彼此相互連接。二個死區調節電路145分別接收來自積體電路4023之第6引脚(Pin6)與第10引脚(Pin10)之訊號,並透過積體電路4050(IC 4050)分別產生正弦脈寬調制訊號SPWM1、SPWM2。至於積體電路4050則包含複數個緩衝閘,可用以緩衝訊號。積體電路4023與積體電路4050均為習知電路,其細節不再贅述。 Please refer to FIG. 11. FIG. 11 is a schematic diagram of the circuit structure of the inverter circuit 144 and the dead zone adjusting circuit 145 of the embodiment in FIG. 9. The inverter circuit 144 includes an integrated circuit 4023 (IC 4023), and its sixth pin (Pin6) and tenth pin (Pin10) can respectively generate two inverted signals. In addition, the number of dead zone adjustment circuits 145 is two. Each dead zone adjustment circuit 145 includes a diode D, a variable resistor VR, and a capacitor C, and the diode D, the variable resistor VR, and the capacitor C mutually interact with each other. connection. The two dead zone adjustment circuits 145 receive signals from the 6th pin (Pin6) and the 10th pin (Pin10) of the integrated circuit 4023 respectively, and respectively generate sinusoidal pulse width modulation signals through the integrated circuit 4050 (IC 4050) SPWM 1 , SPWM 2 . As for the integrated circuit 4050, it includes a plurality of buffer gates, which can be used to buffer signals. The integrated circuit 4023 and the integrated circuit 4050 are both conventional circuits, and the details thereof will not be repeated.

請參照第12圖,其中第12圖係繪示第6圖實施例之正弦脈寬調制器140之脈寬調制訊號PWM3、PWM4的訊號產生器之電路架構示意圖。此訊號產生器包含一個積體電路NE555(IC NE555)、三個電阻R及二個電容C,積體電路NE555的第3引脚(Pin3)可產生脈寬調制訊號PWM3、PWM4,藉以控制正弦脈寬調制器140之單極開關Q7、Q8。積體電路NE555為習知電路,其細節不再贅述。 Please refer to FIG. 12, where FIG. 12 is a schematic diagram of the circuit structure of the signal generator of the pulse width modulation signals PWM 3 and PWM 4 of the sinusoidal pulse width modulator 140 in the embodiment in FIG. 6. This signal generator consists of an integrated circuit NE555 (IC NE555), three resistors R and two capacitors C. The third pin (Pin3) of the integrated circuit NE555 can generate pulse width modulation signals PWM 3 and PWM 4 , thereby Control the unipolar switches Q7 and Q8 of the sine pulse width modulator 140. The integrated circuit NE555 is a conventional circuit, and its details will not be repeated.

請續參照第13圖,其係繪示本發明之無線能量轉換系統之直流輸出及第二交流輸出之轉換效率比較圖。由第10圖中,對應於各種負載狀況下,無論直流輸出或第二交流輸出之轉換效率皆可達到平均為86%以上,且最高效率達到89.3%,已可說明本發明之無線能量轉換系統可達到無線能量傳輸輸出,且具有高的轉換效率,可應用於高功率負載的狀況下。 Please continue to refer to FIG. 13, which is a comparison diagram of the conversion efficiency of the DC output and the second AC output of the wireless energy conversion system of the present invention. From Figure 10, corresponding to various load conditions, the conversion efficiency of both the DC output and the second AC output can reach an average of 86% or more, and the highest efficiency can reach 89.3%, which can explain the wireless energy conversion system of the present invention. It can achieve wireless energy transmission output, and has high conversion efficiency, which can be applied to high-power loads.

因此,本發明係揭示可提供輸出達1kW之無線能量傳輸轉換系統。一次側LLC轉換器110使用全橋式之 第一整流電路111結合LLC諧振電路112,並透過諧振方式將能量透過無線傳輸器120之線圈耦合傳輸至二次側轉換器130。二次側轉換器130經無線傳輸器120之線圈接收能量後,透過二次側轉換器130之整流二極體D5、D6、D7、D8,以橋式整流方式將能量以直流輸出方式提供至負載端LOAD。另外,使用者可依輸出型態之需求,透過正弦脈寬調制器140之控制方式將能量以交流輸出方式提供至負載端LOAD。藉此可達到交流輸出或直流輸出可選擇切換之目的。此外,本發明利用LLC諧振技術,使一次側LLC轉換器110及二次側轉換器130具有零電壓切換之功能,改善切換損失並提升電路整體效率。 Therefore, the present invention discloses a wireless energy transmission conversion system that can provide an output of 1kW. The primary-side LLC converter 110 uses a full-bridge first rectifier circuit 111 combined with the LLC resonant circuit 112, and transmits energy through the coil coupling of the wireless transmitter 120 to the secondary-side converter 130 through resonance. After the secondary-side converter 130 receives energy through the coil of the wireless transmitter 120, it transfers the energy to direct current through the rectifier diodes D 5 , D 6 , D 7 , and D 8 of the secondary-side converter 130 The output mode is provided to the load terminal LOAD. In addition, the user can provide energy to the load terminal LOAD in an AC output mode through the control method of the sinusoidal pulse width modulator 140 according to the demand of the output type. This can achieve the purpose of optional switching between AC output or DC output. In addition, the present invention utilizes LLC resonance technology to enable the primary-side LLC converter 110 and the secondary-side converter 130 to have a zero-voltage switching function, thereby improving the switching loss and improving the overall efficiency of the circuit.

本發明係使用線圈式無線能量傳輸結合LLC諧振而達到提升整體電路效率。習知轉換器架構多為LC串聯諧振方式,本發明則利用LLC串並聯諧振方式取代LC串聯諧振方式,可提高轉換效率。 The present invention uses coil type wireless energy transmission combined with LLC resonance to improve the overall circuit efficiency. Conventional converter architectures are mostly LC series resonance mode. The present invention uses LLC series parallel resonance mode to replace the LC series resonance mode, which can improve the conversion efficiency.

本發明特點如下:(1)無線傳輸器運用鬆散耦合變壓器之等效模型,架構出具整合漏電感與激磁電感之線圈,達成無線能量傳輸之功能。(2)利用LLC諧振技術使功率開關具有零電壓切換之優點以提高轉換效率。(3)輸出可依負載特性需求,設定為直流輸出或交流輸出。 The features of the present invention are as follows: (1) The wireless transmitter uses the equivalent model of a loosely coupled transformer to construct a coil that integrates leakage inductance and magnetizing inductance to achieve the function of wireless energy transmission. (2) Using LLC resonance technology to make the power switch have the advantage of zero-voltage switching to improve the conversion efficiency. (3) The output can be set to DC output or AC output according to load characteristics.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明的精神和範圍內,當可作各種的更動與潤飾,因此本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone who is familiar with the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention The scope shall be subject to the scope of the attached patent application.

110:一次側LLC轉換器 110: Primary side LLC converter

120:無線傳輸器 120: wireless transmitter

130:二次側轉換器 130: Secondary side converter

140:正弦脈寬調制器 140: Sine Pulse Width Modulator

Vs:直流輸入源 V s : DC input source

Claims (8)

一種無線能量轉換系統,其包含:一一次側LLC轉換器,其包含一第一整流電路及與該第一整流電路耦接之一LLC諧振電路;一無線傳輸器,其耦接至該LLC諧振電路;一二次側轉換器,其耦接至該無線傳輸器;以及一正弦脈寬調制器,其耦接至該二次側轉換器;其中,該一次側LLC轉換器透過該第一整流電路對一直流輸入源進行整流而產生一第一交流輸出,並觸發該LLC諧振電路而提供一能量;該二次側轉換器透過該無線傳輸器接收該能量並對該第一交流輸出進行轉換而產生一直流輸出;該正弦脈寬調制器用以將透過該二次側轉換器所產生之該直流輸出轉換成一第二交流輸出,該正弦脈寬調制器包含四單極開關,其中二該單極開關受控而形成脈寬調制,其餘二該單極開關受控而形成正弦脈寬調制。 A wireless energy conversion system includes: a primary-side LLC converter including a first rectifier circuit and an LLC resonance circuit coupled to the first rectifier circuit; and a wireless transmitter coupled to the LLC Resonant circuit; a secondary side converter coupled to the wireless transmitter; and a sinusoidal pulse width modulator coupled to the secondary side converter; wherein the primary side LLC converter passes through the first The rectifier circuit rectifies the DC input source to generate a first AC output, and triggers the LLC resonant circuit to provide an energy; the secondary side converter receives the energy through the wireless transmitter and performs the first AC output The sine pulse width modulator is used to convert the dc output generated by the secondary side converter into a second ac output. The sine pulse width modulator includes four unipolar switches, two of which are The unipolar switch is controlled to form a pulse width modulation, and the other two unipolar switches are controlled to form a sinusoidal pulse width modulation. 如請求項1所述之無線能量轉換系統,其中該第一整流電路包含四功率開關,該四功率開關以二二成對方式分別受控而開啟或關閉,以對一輸入訊號進行脈寬調制。 The wireless energy conversion system according to claim 1, wherein the first rectifier circuit includes four power switches, and the four power switches are controlled to be turned on or off in a two-to-two paired manner to perform pulse width modulation on an input signal . 如請求項1所述之無線能量轉換系統,其中該二次側轉換器包含四整流二極體,該四整流二極體二二對接。 The wireless energy conversion system according to claim 1, wherein the secondary-side converter includes four rectifier diodes, and the four rectifier diodes are connected in pairs. 如請求項1所述之無線能量轉換系統,其中該無線傳輸器包含二線圈,其中一該線圈耦接至該一次側LLC轉換器之該LLC諧振電路,另一該線圈耦接至該二次側轉換器,透過該二線圈相互耦合感應而將該能量由該一次側LLC轉換器傳輸至該二次側轉換器。 The wireless energy conversion system according to claim 1, wherein the wireless transmitter includes two coils, one of the coils is coupled to the LLC resonant circuit of the primary-side LLC converter, and the other coil is coupled to the secondary The side converter transmits the energy from the primary side LLC converter to the secondary side converter through mutual coupling and induction of the two coils. 如請求項1所述之無線能量轉換系統,其中當形成脈寬調制時,係產生一低頻訊號;當形成正弦脈寬調制時,係產生一高頻訊號。 The wireless energy conversion system according to claim 1, wherein when pulse width modulation is formed, a low frequency signal is generated; when sine pulse width modulation is formed, a high frequency signal is generated. 如請求項1所述之無線能量轉換系統,其中該正弦脈寬調制器產生二脈寬調制訊號以控制其中該二單極開關,並產生二正弦脈寬調制訊號以控制其餘該二單極開關,且該二正弦脈寬調制訊號的頻率大於該二脈寬調制訊號的頻率。 The wireless energy conversion system according to claim 1, wherein the sine pulse width modulator generates two pulse width modulation signals to control the two unipolar switches, and generates two sine pulse width modulation signals to control the remaining two unipolar switches , And the frequency of the two-sine pulse width modulation signal is greater than the frequency of the two pulse width modulation signal. 如請求項1所述之無線能量轉換系統,其中該正弦脈寬調制器更包含相互耦接之一三角波產生電路、一正弦波產生電路、一比較電路、一反相電路及至少一死區調節電路,該三角波產生電路產生之一三角波訊號及該正弦波產生電路產生之一正弦波訊號送入該比較電路進行比較,並產生出一正弦脈寬調制基本訊號,且透過該反相電路與該至少一死區調節電路,產生出高頻且為正弦波之二正弦脈寬調制訊號。 The wireless energy conversion system according to claim 1, wherein the sine pulse width modulator further includes a triangle wave generating circuit, a sine wave generating circuit, a comparison circuit, an inverter circuit, and at least one dead zone adjustment circuit coupled to each other , The triangle wave generating circuit generates a triangle wave signal and the sine wave generating circuit generates a sine wave signal that is sent to the comparison circuit for comparison, and a sine pulse width modulation basic signal is generated, and is communicated with the at least A dead zone adjustment circuit generates two sine pulse width modulation signals with high frequency and sine waves. 如請求項7所述之無線能量轉換系統,其中該至少一死區調節電路的數量為二,該正弦脈寬調制基本訊號經過該反相電路與其中一該死區調節電路而產生出其中一該正弦脈寬調制訊號,該正弦脈寬調制基本訊號經過另一該死區調節電路而產生出另一該正弦脈寬調制訊號。 The wireless energy conversion system according to claim 7, wherein the number of the at least one dead zone adjustment circuit is two, and the sine pulse width modulation basic signal passes through the inverter circuit and one of the dead zone adjustment circuits to generate one of the sine waves A pulse width modulation signal. The sine pulse width modulation basic signal passes through another dead zone adjustment circuit to generate another sine pulse width modulation signal.
TW109105213A 2020-02-18 2020-02-18 Wireless power transferring system TWI729707B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109105213A TWI729707B (en) 2020-02-18 2020-02-18 Wireless power transferring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109105213A TWI729707B (en) 2020-02-18 2020-02-18 Wireless power transferring system

Publications (2)

Publication Number Publication Date
TWI729707B true TWI729707B (en) 2021-06-01
TW202133530A TW202133530A (en) 2021-09-01

Family

ID=77517470

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109105213A TWI729707B (en) 2020-02-18 2020-02-18 Wireless power transferring system

Country Status (1)

Country Link
TW (1) TWI729707B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205104958U (en) * 2012-12-30 2016-03-23 恩菲斯能源公司 A equipment for power transfer
US20170288407A1 (en) * 2011-11-25 2017-10-05 Solarcity Corporation Renewable energy power generation systems
CN109121455A (en) * 2016-04-06 2019-01-01 株式会社日立制作所 Wirelessly send by electric system, have the power inverter and power transferring method of the system
TWI683522B (en) * 2018-10-24 2020-01-21 林景源 High frequency time-division multi-phase power converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170288407A1 (en) * 2011-11-25 2017-10-05 Solarcity Corporation Renewable energy power generation systems
CN205104958U (en) * 2012-12-30 2016-03-23 恩菲斯能源公司 A equipment for power transfer
CN109121455A (en) * 2016-04-06 2019-01-01 株式会社日立制作所 Wirelessly send by electric system, have the power inverter and power transferring method of the system
TWI683522B (en) * 2018-10-24 2020-01-21 林景源 High frequency time-division multi-phase power converter

Also Published As

Publication number Publication date
TW202133530A (en) 2021-09-01

Similar Documents

Publication Publication Date Title
CN106740220B (en) Wireless charging circuit of constant-current constant-voltage composite topology
TWI323964B (en)
CN201422082Y (en) Circuit capable of switching DC voltage to AC voltage
WO2008119218A1 (en) Induced power system
TWI465027B (en) Full-bridge quasi resonant dc-dc converter and driving method thereof
CN109888933B (en) Primary-side multi-module high-frequency parallel wireless power transmission system
CN204517680U (en) A kind of interchange inputs doubleway output DC-stabilized circuit
CN104994664B (en) A kind of single-stage buck type LED drive circuit of leakage inductance energy feedback
TWI514733B (en) Non-contact transformer system
CN113991887A (en) Wireless charging transmitting device and wireless charging system
CN113675956A (en) Staggered anti-deviation constant-voltage resonant wireless power transmission system
CN102064722B (en) Single-stage alternating current/direct current converter
CN101908831B (en) Circuit for converting direct-current voltage into alternating-current voltage
TWI729707B (en) Wireless power transferring system
US20080089103A1 (en) High efficiency dc to ac power converter
Hua et al. Inductive power transmission technology for Li-ion battery charger
CN103427502A (en) Circuit and method for modulating envelope curves of IPT (inductive power transfer) system on basis of pulse width recognition
JP5992820B2 (en) Converter and bidirectional converter
CN101834526B (en) Power conversion circuit and portable power supply device applicable thereto
CN216451189U (en) Wireless power transmission power control system
CN212137549U (en) LLC resonance converter for realizing +/-400V bus input voltage
TW201737592A (en) Wireless charging system
CN216851430U (en) Wireless charging transmitting device and wireless charging system
CN203135744U (en) Direct current / alternating current conversion system
Gong et al. High Efficiency Wireless Power Transfer System with Low Voltage Input