TWI626821B - Flyback power converter circuit with active clamping and zero voltage switching and conversion control circuit thereof - Google Patents

Flyback power converter circuit with active clamping and zero voltage switching and conversion control circuit thereof Download PDF

Info

Publication number
TWI626821B
TWI626821B TW106124520A TW106124520A TWI626821B TW I626821 B TWI626821 B TW I626821B TW 106124520 A TW106124520 A TW 106124520A TW 106124520 A TW106124520 A TW 106124520A TW I626821 B TWI626821 B TW I626821B
Authority
TW
Taiwan
Prior art keywords
switch
primary
signal
auxiliary
auxiliary switch
Prior art date
Application number
TW106124520A
Other languages
Chinese (zh)
Other versions
TW201840111A (en
Inventor
林昆餘
林梓誠
張煒旭
楊大勇
Original Assignee
立錡科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 立錡科技股份有限公司 filed Critical 立錡科技股份有限公司
Priority to US15/892,724 priority Critical patent/US10181782B2/en
Application granted granted Critical
Publication of TWI626821B publication Critical patent/TWI626821B/en
Publication of TW201840111A publication Critical patent/TW201840111A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/28Modifications for introducing a time delay before switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一種返馳式電源轉換電路,包含:一變壓器,其包含一一次側繞組,耦接於一輸入電源,以及一二次側繞組,耦接於一輸出節點,其中該輸入電源包括一輸入電壓;一一次側開關,耦接於該一次側繞組,用以切換該輸入電源,而使該二次側繞組於該輸出節點產生一輸出電源,其中該輸出電源包括一輸出電壓;一箝位電路,包括:一輔助開關,以及一輔助電容器,與該輔助開關串聯而形成一輔助支路,且該輔助支路與該一次側繞組並聯;以及一轉換控制電路,根據一電流相關訊號,該輸入電壓以及該輸出電壓中至少之一而調整該輔助開關之導通時間,使得該一次側開關導通時為零電壓切換。A flyback power conversion circuit includes: a transformer including a primary-side winding coupled to an input power source, and a secondary-side winding coupled to an output node, wherein the input power source includes an input voltage A primary switch coupled to the primary winding to switch the input power so that the secondary winding generates an output power at the output node, where the output power includes an output voltage; a clamp The circuit includes: an auxiliary switch and an auxiliary capacitor connected in series with the auxiliary switch to form an auxiliary branch, and the auxiliary branch is connected in parallel with the primary winding; and a conversion control circuit, according to a current-related signal, the At least one of the input voltage and the output voltage adjusts the on-time of the auxiliary switch so that the primary-side switch is switched to zero voltage when it is on.

Description

具主動箝位及零電壓切換之返馳式電源轉換電路及其中之轉換控制電路Flyback power conversion circuit with active clamping and zero voltage switching and conversion control circuit therein

本發明係有關一種返馳式電源轉換電路,特別是指一種具主動箝位及零電壓切換之返馳式電源轉換電路。本發明也有關於用於返馳式中之轉換控制電路。 The invention relates to a flyback power conversion circuit, in particular to a flyback power conversion circuit with active clamping and zero voltage switching. The present invention also relates to a switching control circuit used in a flyback type.

第1圖揭示一種先前技術之具主動箝位(active clamping)之返馳式電源轉換電路(返馳式電源轉換電路1),返馳式電源轉換電路1用以將一輸入電壓轉換為一輸出電壓,其包含一輔助開關S2以及一輔助電容器Cr,形成一主動箝位支路,該主動箝位支路於一次側開關S1不導通時導通,使一次側繞組之漏感Lr以及激磁電感Lm於一次側開關S1導通時所儲存之能量,可藉由此支路洩放並儲存於輔助電容器Cr之中,此外,在一次側開關S1導通之前,可藉由儲存於輔助電容器Cr中之能量,對一次側開關S1之寄生電容Coss放電,使得該一次側開關S1導通時為零電壓切換(Zero Voltage Switching,ZVS),本先前技術中,一次側開關S1與輔助開關S2之切換大致上互為反相。 FIG. 1 illustrates a prior art flyback power conversion circuit with active clamping (flyback power conversion circuit 1). The flyback power conversion circuit 1 is used to convert an input voltage into an output. The voltage, which includes an auxiliary switch S2 and an auxiliary capacitor Cr, forms an active clamping branch, which is turned on when the primary switch S1 is not conducting, so that the leakage inductance Lr and the excitation inductance Lm of the primary winding The energy stored when the primary switch S1 is turned on can be discharged through this branch and stored in the auxiliary capacitor Cr. In addition, before the primary switch S1 is turned on, the energy stored in the auxiliary capacitor Cr can be discharged. To discharge the parasitic capacitance Coss of the primary switch S1, so that the primary switch S1 is turned on for Zero Voltage Switching (ZVS). In the prior art, the switching of the primary switch S1 and the auxiliary switch S2 is substantially mutual. Is inverted.

第1圖中所示之先前技術,其缺點在於,由於一次側開關S1與輔助開關S2之切換大致上互為反相,因此輔助開關S2之導通時間可能過長,而造成較大的環繞電流(circulation current),進一步造成功率損失。 The disadvantage of the prior art shown in FIG. 1 is that, because the switching of the primary switch S1 and the auxiliary switch S2 is substantially opposite to each other, the on-time of the auxiliary switch S2 may be too long, resulting in a large surround current. (circulation current), further causing power loss.

第2圖揭示另一種先前技術之具主動箝位(active clamping)之返馳式電源轉換電路之波形示意圖,本先前技術與第1圖中所示之先前技術類似,其差別在於輔助開關S2之導通時間TON2為一固定導通時間。 FIG. 2 shows a waveform diagram of another type of prior art flyback power conversion circuit with active clamping. This prior art is similar to the prior art shown in FIG. 1 except that the difference is in the auxiliary switch S2. The on-time TON2 is a fixed on-time.

第2圖中所示之先前技術,其缺點在於,由於輔助開關S2之導通時間TON2為一固定導通時間,因此在例如輸入電壓VI較高的應用下,輔助開關S2之導通時間TON2可能不足以將對一次側開關S1之寄生電容Coss中之電荷完全放電,使得一次側開關S1無法達成零電壓切換,進一步造成功率損失。 The disadvantage of the prior art shown in FIG. 2 is that, since the on-time TON2 of the auxiliary switch S2 is a fixed on-time, the on-time TON2 of the auxiliary switch S2 may be insufficient in applications such as a high input voltage VI. The charge in the parasitic capacitance Coss of the primary-side switch S1 is completely discharged, so that the primary-side switch S1 cannot achieve zero-voltage switching, which further causes power loss.

本發明相較於第1與2圖之先前技術,可調整輔助開關S2之導通時間TON2以確保一次側開關S1可達成零電壓切換,因而可降低功率損失,而提高電源轉換效率。 Compared with the prior art of FIGS. 1 and 2, the present invention can adjust the on-time TON2 of the auxiliary switch S2 to ensure that the primary switch S1 can achieve zero voltage switching, thereby reducing power loss and improving power conversion efficiency.

就其中一個觀點言,本發明提供了一種返馳式電源轉換電路,包含:一變壓器,其包含一一次側繞組,耦接於一輸入電源,以及一二次側繞組,耦接於一輸出節點,其中該輸入電源包括一輸入電壓以及一輸入電流;一一次側開關,耦接於該一次側繞組,用以切換該一次側繞組以轉換該輸入電源,而使該二次側繞組於該輸出節點產生一輸出電源,其中該輸出電源包括一輸出電壓以及一輸出電流;一箝位電路,包括:一輔助開關,以及一輔助電容器,與該輔助開關串聯而形成一輔助支路,且該輔 助支路與該一次側繞組並聯;以及一轉換控制電路,用以產生一一次側開關控制訊號以及一輔助開關控制訊號,分別用以控制該一次側開關以及該輔助開關,而轉換該輸入電源以產生該輸出電源,其中該輔助開關與該一次側開關非為互補切換;該轉換控制電路包括:一輔助開關控制電路,用以根據下列至少之一而調整該輔助開關之導通時間:一電流相關訊號,該輸入電壓以及該輸出電壓,使得該一次側開關導通時,其一電流輸入端與一電流輸出端之電壓差大致上為0,而達成零電壓切換;其中該電流相關訊號相關於下列至少之一:該輸出電流,該一次側開關之導通電流,以及該一次側繞組之電流;以及一訊號感測電路,用以感測該電流相關訊號,該輸入電壓,或該輸出電壓。 According to one aspect, the present invention provides a flyback power conversion circuit, including: a transformer including a primary winding, coupled to an input power source, and a secondary winding, coupled to an output Node, where the input power includes an input voltage and an input current; a primary-side switch is coupled to the primary-side winding to switch the primary-side winding to convert the input power, so that the secondary-side winding is The output node generates an output power source, where the output power source includes an output voltage and an output current; a clamp circuit includes: an auxiliary switch and an auxiliary capacitor, which are connected in series with the auxiliary switch to form an auxiliary branch, and Keisuke The auxiliary branch is connected in parallel with the primary winding; and a conversion control circuit for generating a primary switch control signal and an auxiliary switch control signal for controlling the primary switch and the auxiliary switch, respectively, and converting the input Power to generate the output power, wherein the auxiliary switch and the primary-side switch are non-complementary switching; the conversion control circuit includes: an auxiliary switch control circuit for adjusting the on-time of the auxiliary switch according to at least one of the following: The current-related signal, the input voltage, and the output voltage make the voltage difference between a current input terminal and a current output terminal of the primary-side switch to be substantially zero when the primary-side switch is turned on, thereby achieving zero-voltage switching; wherein the current-related signal is related to At least one of the following: the output current, the on-current of the primary-side switch, and the current of the primary-side winding; and a signal-sensing circuit for sensing the current-related signal, the input voltage, or the output voltage .

在一較佳實施例中,該輔助開關之導通時間隨著下列至少之一而增加:該電流相關訊號代表該一次側開關之一峰值電流減少,該輸入電壓增加,以及該輸出電壓增加,以導通該一次側繞組之一激磁電感(magnetizing inductor)之一激磁電流(magnetizing current)而將該一次側開關之一寄生電容器放電,使得該一次側開關導通時為零電壓切換。 In a preferred embodiment, the on-time of the auxiliary switch increases with at least one of the following: the current-related signal represents a decrease in the peak current of one of the primary switches, an increase in the input voltage, and an increase in the output voltage, so that Turning on a magnetizing current of a magnetizing inductor of the primary winding and discharging a parasitic capacitor of the primary switch makes the primary voltage switch to zero voltage switching.

在一較佳實施例中,該輔助開關控制電路包括:一閾值產生電路,用以根據一參考電壓與該電流相關訊號之差值而產生一電壓閾值;一斜坡訊號產生電路,用以根據一參考電流以及該輔助開關控制訊號而產生一斜坡訊號;一比較電路,將該斜坡訊號與該電壓閾值相比而產生一比較結果;以及一邏輯電路,根據該比較結果以及一輔助開關啟動訊號而產生該輔助開關控制訊號,用以控制該輔助開關,使得該輔助開關之導通時間隨著該電流相關訊號代表該一次側開關之峰值電流減少而增加;其中該 轉換控制電路根據一預設時脈訊號或一迴授訊號而產生該輔助開關啟動訊號。 In a preferred embodiment, the auxiliary switch control circuit includes: a threshold value generating circuit for generating a voltage threshold value according to a difference between a reference voltage and the current-related signal; a ramp signal generating circuit for generating a voltage signal according to a A reference current and the auxiliary switch control signal to generate a ramp signal; a comparison circuit that compares the ramp signal with the voltage threshold to generate a comparison result; and a logic circuit based on the comparison result and an auxiliary switch activation signal and The auxiliary switch control signal is generated to control the auxiliary switch, so that the on-time of the auxiliary switch increases as the current-related signal represents a decrease in the peak current of the primary-side switch; The switching control circuit generates the auxiliary switch activation signal according to a preset clock signal or a feedback signal.

在一較佳實施例中,該轉換控制電路更包括一模式操作電路,用以根據該輸入電壓、該輸出電壓、該輸入電流、以及該輸出電流之中至少之一而控制該一次側開關之切換頻率,使得該返馳式電源轉換電路操作於一不連續導通模式(Discontinuous Conduction Mode,DCM)或一準諧振模式(Quasi Resonant Mode,QRM)下。 In a preferred embodiment, the conversion control circuit further includes a mode operation circuit for controlling the primary-side switch according to at least one of the input voltage, the output voltage, the input current, and the output current. The switching frequency enables the flyback power conversion circuit to operate in a discontinuous conduction mode (DCM) or a quasi-resonant mode (QRM).

在一較佳實施例中,該轉換控制電路更包括:一模式操作電路,根據該輸入電壓、該輸入電流、該輸出電壓、或該輸出電流而確定該一次側開關之一切換頻率,且該切換頻率具有一上限頻率以及一下限頻率。 In a preferred embodiment, the conversion control circuit further includes a mode operation circuit that determines a switching frequency of the primary-side switch according to the input voltage, the input current, the output voltage, or the output current, and the The switching frequency has an upper limit frequency and a lower limit frequency.

在一較佳實施例中,該輔助開關控制電路根據一輔助開關啟動訊號而觸發該輔助開關轉為導通;其中該轉換控制電路根據一預設時脈訊號或一迴授訊號而產生該輔助開關啟動訊號;其中該轉換控制電路更包括:一順序電路,用以根據一輔助開關相關訊號,於該輔助開關轉為不導通且於一輔助空滯時間後觸發導通該一次側開關,其中該輔助開關相關訊號係為該輔助開關控制訊號或其相關訊號。 In a preferred embodiment, the auxiliary switch control circuit triggers the auxiliary switch to turn on according to an auxiliary switch start signal; wherein the conversion control circuit generates the auxiliary switch according to a preset clock signal or a feedback signal. A start signal; wherein the switching control circuit further includes a sequence circuit for triggering the primary switch to be turned on after the auxiliary switch becomes non-conducting and after an auxiliary dead time according to a signal related to the auxiliary switch; The switch related signal is the auxiliary switch control signal or its related signal.

在一較佳實施例中,該順序電路包括:一空滯時間控制電路,用以根據該輔助開關相關訊號而產生一空滯時間控制訊號以確定該輔助空滯時間,使得該一次側開關與該輔助開關於該輔助空滯時間皆為不導通;一一次側開關時序控制電路,用以根據該空滯時間控制訊號以及一一次側開關時間控制訊號而產生該一次側開關控制訊號,其中該空滯時間控制訊號觸發該一次側開關控制訊號使該一次側開關轉為導通,且該一次側開關時間控制訊號觸發該一次側開關控制訊號使該一次側開關轉為不導 通;以及一一次側開關時間控制電路,用以根據該空滯時間控制訊號而產生該一次側開關控制訊號,以確定該一次側開關之導通時間。 In a preferred embodiment, the sequence circuit includes: a dead time control circuit for generating a dead time control signal according to the auxiliary switch related signal to determine the auxiliary dead time, so that the primary switch and the auxiliary The switches are non-conducting during the auxiliary dead time; a primary-side switch timing control circuit is used to generate the primary-side switch control signal according to the dead-time control signal and a primary-side switch time control signal, where the The dead time control signal triggers the primary switch control signal to turn the primary switch on, and the primary switch time control signal triggers the primary switch control signal to turn the primary switch to non-conductive And a primary switch time control circuit for generating the primary switch control signal according to the dead time control signal to determine the on time of the primary switch.

在一較佳實施例中,該順序電路包括:一第一時序控制電路,用以根據該輔助開關啟動訊號以及一第一時間控制訊號而產生該輔助開關控制訊號,其中該輔助開關啟動訊號觸發該輔助開關控制訊號使該輔助開關轉為導通,且該第一時間控制訊號觸發該輔助開關控制訊號使該輔助開關轉為不導通;一第一時間控制電路,用以根據該輔助開關啟動訊號而產生該第一時間控制訊號,以確定該輔助開關之導通時間;一第二時間控制電路,用以根據該第一時間控制訊號而產生一第二時間控制訊號以確定該輔助空滯時間,使得該一次側開關與該輔助開關於該輔助空滯時間皆為不導通;一第二時序控制電路,用以根據第二時間控制訊號以及一第三時間控制訊號而產生該一次側開關控制訊號,其中該第二時間控制訊號觸發該一次側開關控制訊號使該一次側開關轉為導通,且該第三時間控制訊號觸發該一次側開關控制訊號使該一次側開關轉為不導通;一第三時間控制電路,用以根據該第二時間控制訊號而產生該第三時間控制訊號,以確定該一次側開關之導通時間。 In a preferred embodiment, the sequence circuit includes: a first timing control circuit for generating the auxiliary switch control signal according to the auxiliary switch start signal and a first time control signal, wherein the auxiliary switch start signal Triggering the auxiliary switch control signal to turn the auxiliary switch on, and the first time control signal triggering the auxiliary switch control signal to turn the auxiliary switch to non-conducting; a first time control circuit for starting according to the auxiliary switch Generating a first time control signal to determine the on-time of the auxiliary switch; a second time control circuit for generating a second time control signal to determine the auxiliary dead time according to the first time control signal So that both the primary switch and the auxiliary switch are non-conducting during the auxiliary dead time; a second timing control circuit is used to generate the primary switch control according to the second time control signal and a third time control signal Signal, wherein the second time control signal triggers the primary switch control signal to turn the primary switch into And the third time control signal triggers the primary side switch control signal to make the primary side switch non-conducting; a third time control circuit for generating the third time control signal according to the second time control signal To determine the on-time of the primary switch.

在一較佳實施例中,藉由一一次側迴授路徑,或一二次側迴授路徑而控制該一次側開關之導通時間。 In a preferred embodiment, the on-time of the primary-side switch is controlled by a primary-side feedback path or a secondary-side feedback path.

就另一個觀點言,本發明也提供了一種轉換控制電路,用以控制一返馳式電源轉換電路,該返馳式電源轉換電路包含:一變壓器,其包含一一次側繞組,耦接於一輸入電源,以及一二次側繞組,耦接於一輸出節點,其中該輸入電源包括一輸入電壓以及一輸入電流;一一次側開關,耦接於該一次側繞組,用以切換該一次側繞組以轉換該輸入電源,而使該 二次側繞組於該輸出節點產生一輸出電源,其中該輸出電源包括一輸出電壓以及一輸出電流;一箝位電路,包括:一輔助開關,以及一輔助電容器,與該輔助開關串聯而形成一輔助支路,且該輔助支路與該一次側繞組並聯;該轉換控制電路用以產生一一次側開關控制訊號以及一輔助開關控制訊號,分別用以控制該一次側開關以及該輔助開關,而轉換該輸入電源以產生該輸出電源,其中該輔助開關與該一次側開關非為互補切換;該轉換控制電路包括:一輔助開關控制電路,用以根據下列至少之一而調整該輔助開關之導通時間:一電流相關訊號,該輸入電壓以及該輸出電壓,使得該一次側開關導通時,其一電流輸入端與一電流輸出端之電壓差大致上為,而達成零電壓切換;其中該電流相關訊號相關於下列至少之一:該輸出電流,該一次側開關之導通電流,以及該一次側繞組之電流;以及一訊號感測電路,用以感測該電流相關訊號,該輸入電壓,或該輸出電壓。 In another aspect, the present invention also provides a conversion control circuit for controlling a flyback power conversion circuit. The flyback power conversion circuit includes: a transformer including a primary winding, coupled to An input power source and a secondary winding are coupled to an output node, where the input power source includes an input voltage and an input current; a primary-side switch is coupled to the primary-side winding to switch the primary Side winding to convert the input power and make the The secondary winding generates an output power at the output node, wherein the output power includes an output voltage and an output current; a clamping circuit includes: an auxiliary switch, and an auxiliary capacitor in series with the auxiliary switch to form an An auxiliary branch, and the auxiliary branch is connected in parallel with the primary winding; the conversion control circuit is used to generate a primary switch control signal and an auxiliary switch control signal, which are respectively used to control the primary switch and the auxiliary switch, The input power is converted to generate the output power, wherein the auxiliary switch and the primary-side switch are non-complementary switching; the conversion control circuit includes: an auxiliary switch control circuit for adjusting the auxiliary switch according to at least one of the following On-time: a current-related signal, the input voltage and the output voltage such that when the primary switch is turned on, the voltage difference between a current input terminal and a current output terminal is substantially equal to zero voltage switching; where the current The relevant signal is related to at least one of the following: the output current, the conduction of the primary switch , And the primary winding current; and a signal sensing circuit for sensing the current signal related to the input voltage or the output voltage.

就另一個觀點言,本發明也提供了一種返馳式電源轉換電路,包含:一變壓器,其包含一一次側繞組,耦接於一輸入電源,以及一二次側繞組,耦接於一輸出節點,其中該輸入電源包括一輸入電壓以及一輸入電流;一一次側開關,耦接於該一次側繞組,用以切換該一次側繞組以轉換該輸入電源,而使該二次側繞組於該輸出節點產生一輸出電源,其中該輸出電源包括一輸出電壓以及一輸出電流;一箝位電路,包括:一輔助開關,以及一輔助電容器,與該輔助開關串聯而形成一輔助支路,且該輔助支路與該一次側繞組並聯;以及一轉換控制電路,用以根據一迴授訊號而產生一一次側開關控制訊號以及一輔助開關控制訊號,分別用以控制該一次側開關以及該輔助開關,而轉換該輸入電源以產生該輸出電源;其中該轉換控制電路包括:一順序電路,用以根據一輔助開關啟動訊號而觸發導 通該輔助開關,且於該輔助開關轉為不導通且於一輔助空滯時間後觸發導通該一次側開關,使得該一次側開關導通時,其一電流輸入端與一電流輸出端之電壓差大致上為0,而達成零電壓切換;其中該轉換控制電路根據一預設時脈訊號或該迴授訊號而產生該輔助開關啟動訊號。 According to another aspect, the present invention also provides a flyback power conversion circuit, including: a transformer including a primary-side winding, coupled to an input power source, and a secondary-side winding, coupled to a An output node, where the input power includes an input voltage and an input current; a primary-side switch is coupled to the primary-side winding to switch the primary-side winding to convert the input power, so that the secondary-side winding An output power is generated at the output node, wherein the output power includes an output voltage and an output current; a clamp circuit includes: an auxiliary switch and an auxiliary capacitor, which are connected in series with the auxiliary switch to form an auxiliary branch, And the auxiliary branch is connected in parallel with the primary winding; and a conversion control circuit for generating a primary switch control signal and an auxiliary switch control signal according to a feedback signal for controlling the primary switch and The auxiliary switch to convert the input power to generate the output power; wherein the conversion control circuit includes: a sequence circuit for A trigger signal to start the auxiliary switch guide The auxiliary switch is turned on, and the primary switch is triggered to be turned on after the auxiliary switch becomes non-conducting and after an auxiliary dead time, so that when the primary switch is turned on, the voltage difference between a current input terminal and a current output terminal It is approximately 0, and achieves zero voltage switching. The switching control circuit generates the auxiliary switch activation signal according to a preset clock signal or the feedback signal.

在一較佳實施例中,該順序電路包括:一第一時序控制電路,用以根據該輔助開關啟動訊號以及一第一時間控制訊號而產生該輔助開關控制訊號,其中該輔助開關啟動訊號觸發該輔助開關控制訊號使該輔助開關轉為導通,且該第一時間控制訊號觸發該輔助開關控制訊號使該輔助開關轉為不導通;一第一時間控制電路,用以根據該輔助開關啟動訊號而產生該第一時間控制訊號,以確定該輔助開關之導通時間;一第二時間控制電路,用以根據該第一時間控制訊號而產生一第二時間控制訊號以確定該輔助空滯時間,使得該一次側開關與該輔助開關於該輔助空滯時間皆為不導通;一第二時序控制電路,用以根據第二時間控制訊號以及一第三時間控制訊號而產生該一次側開關控制訊號,其中該第二時間控制訊號觸發該一次側開關控制訊號使該一次側開關轉為導通,且該第三時間控制訊號觸發該一次側開關控制訊號使該一次側開關轉為不導通;一第三時間控制電路,用以根據該第二時間控制訊號而產生該第三時間控制訊號,以確定該一次側開關之導通時間。 In a preferred embodiment, the sequence circuit includes: a first timing control circuit for generating the auxiliary switch control signal according to the auxiliary switch start signal and a first time control signal, wherein the auxiliary switch start signal Triggering the auxiliary switch control signal to turn the auxiliary switch on, and the first time control signal triggering the auxiliary switch control signal to turn the auxiliary switch to non-conducting; a first time control circuit for starting according to the auxiliary switch Generating a first time control signal to determine the on-time of the auxiliary switch; a second time control circuit for generating a second time control signal to determine the auxiliary dead time according to the first time control signal So that both the primary switch and the auxiliary switch are non-conducting during the auxiliary dead time; a second timing control circuit is used to generate the primary switch control according to the second time control signal and a third time control signal Signal, wherein the second time control signal triggers the primary switch control signal to turn the primary switch into And the third time control signal triggers the primary side switch control signal to make the primary side switch non-conducting; a third time control circuit for generating the third time control signal according to the second time control signal To determine the on-time of the primary switch.

底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。 Detailed descriptions will be provided below through specific embodiments to make it easier to understand the purpose, technical content, features and effects of the present invention.

1,3‧‧‧返馳式電源轉換電路 1,3‧‧‧Flyback power conversion circuit

10‧‧‧變壓器 10‧‧‧Transformer

20‧‧‧箝位電路 20‧‧‧Clamp circuit

30‧‧‧轉換控制電路 30‧‧‧ Conversion control circuit

31‧‧‧輔助開關控制電路 31‧‧‧Auxiliary switch control circuit

311‧‧‧閾值產生電路 311‧‧‧threshold value generating circuit

312‧‧‧斜坡訊號產生電路 312‧‧‧Slope signal generating circuit

313‧‧‧邏輯電路 313‧‧‧Logic Circuit

50‧‧‧訊號感測電路 50‧‧‧Signal sensing circuit

Coss‧‧‧寄生電容 Coss‧‧‧parasitic capacitance

CI‧‧‧積分電容器 CI‧‧‧Integral Capacitor

CP‧‧‧比較電路 CP‧‧‧ comparison circuit

CPO‧‧‧比較結果 CPO‧‧‧ Comparison Results

Cr‧‧‧輔助電容器 Cr‧‧‧ auxiliary capacitor

FB‧‧‧迴授訊號 FB‧‧‧ feedback signal

IIN‧‧‧輸入電流 IIN‧‧‧Input current

Im‧‧‧激磁電流 Im‧‧‧Excitation current

IOUT‧‧‧輸出電流 IOUT‧‧‧Output current

Ipk‧‧‧一次側繞組峰值電流 Ipk‧‧‧Primary winding peak current

IP‧‧‧一次側繞組電流 IP‧‧‧Primary winding current

ISEN‧‧‧電流相關訊號 ISEN‧‧‧Current related signals

Lr‧‧‧漏感 Lr‧‧‧Leakage

Lm‧‧‧激磁電感 Lm‧‧‧ Excitation Inductance

n‧‧‧繞組比 n‧‧‧winding ratio

OUT‧‧‧輸出節點 OUT‧‧‧output node

S1‧‧‧一次側開關 S1‧‧‧Primary side switch

S1C‧‧‧一次側開關控制訊號 S1C‧‧‧Primary switch control signal

S2‧‧‧輔助開關 S2‧‧‧Auxiliary switch

S2C‧‧‧輔助開關控制訊號 S2C‧‧‧Auxiliary switch control signal

S2CR‧‧‧輔助開關相關訊號 S2CR‧‧‧Auxiliary switch related signals

S2S‧‧‧輔助開關啟動訊號 S2S‧‧‧ auxiliary switch start signal

SWI‧‧‧積分開關 SWI‧‧‧Integration Switch

TD‧‧‧輔助空滯時間 TD‧‧‧Auxiliary idle time

TON1‧‧‧導通時間 TON1‧‧‧on time

TON2‧‧‧導通時間 TON2‧‧‧on time

VI‧‧‧輸入電壓 VI‧‧‧Input voltage

VO‧‧‧輸出電壓 VO‧‧‧Output voltage

VS‧‧‧斜坡訊號 VS‧‧‧Slope signal

VTH‧‧‧電壓閾值 VTH‧‧‧Voltage Threshold

W1‧‧‧一次側繞組 W1‧‧‧ primary winding

W2‧‧‧二次側繞組 W2‧‧‧Secondary winding

第1圖顯示一種具有具主動箝位之先前技術返馳式電源轉換電路之示意圖。 Figure 1 shows a schematic diagram of a prior art flyback power conversion circuit with active clamping.

第2圖顯示一種具有具主動箝位之先前技術返馳式電源轉換電路之波形示意圖。 Figure 2 shows a waveform diagram of a prior art flyback power conversion circuit with active clamping.

第3圖顯示本發明之具主動箝位及零電壓切換之返馳式電源轉換電路之一實施例示意圖。 FIG. 3 is a schematic diagram of an embodiment of a flyback power conversion circuit with active clamping and zero voltage switching according to the present invention.

第4A圖顯示本發明之具主動箝位及零電壓切換之返馳式電源轉換電路中,轉換控制電路之一具體實施例示意圖。 FIG. 4A is a schematic diagram of a specific embodiment of a conversion control circuit in the flyback power conversion circuit with active clamping and zero voltage switching according to the present invention.

第4B圖顯示本發明之具主動箝位及零電壓切換之返馳式電源轉換電路中,輔助開關控制電路之一具體實施例示意圖。 FIG. 4B is a schematic diagram of a specific embodiment of an auxiliary switch control circuit in the flyback power conversion circuit with active clamping and zero voltage switching according to the present invention.

第4C圖顯示本發明之具主動箝位及零電壓切換之返馳式電源轉換電路中,輔助開關控制電路之一具體實施例示意圖。 FIG. 4C is a schematic diagram of a specific embodiment of an auxiliary switch control circuit in the flyback power conversion circuit with active clamping and zero voltage switching according to the present invention.

第4D圖顯示對應於第4C圖實施例之波形示意圖。 FIG. 4D shows a waveform diagram corresponding to the embodiment of FIG. 4C.

第5A圖顯示本發明之具主動箝位及零電壓切換之返馳式電源轉換電路中,轉換控制電路之一具體實施例示意圖。 FIG. 5A is a schematic diagram of a specific embodiment of a conversion control circuit in a flyback power conversion circuit with active clamping and zero voltage switching according to the present invention.

第5B圖顯示本發明之具主動箝位及零電壓切換之返馳式電源轉換電路中,轉換控制電路之一具體實施例示意圖。 FIG. 5B is a schematic diagram of a specific embodiment of the conversion control circuit in the flyback power conversion circuit with active clamping and zero voltage switching according to the present invention.

第5C圖顯示本發明之具主動箝位及零電壓切換之返馳式電源轉換電路中,順序電路之一具體實施例示意圖。 FIG. 5C is a schematic diagram of a specific embodiment of a sequence circuit in the flyback power conversion circuit with active clamping and zero voltage switching according to the present invention.

第5D圖顯示本發明之具主動箝位及零電壓切換之返馳式電源轉換電路中,轉換控制電路之一具體實施例示意圖。 FIG. 5D is a schematic diagram of a specific embodiment of a conversion control circuit in the flyback power conversion circuit with active clamping and zero voltage switching according to the present invention.

第5E圖顯示本發明之具主動箝位及零電壓切換之返馳式電源轉換電路中,順序電路之一具體實施例示意圖。 FIG. 5E is a schematic diagram of a specific embodiment of a sequence circuit in the flyback power conversion circuit with active clamping and zero voltage switching according to the present invention.

第6A圖顯示對應於第5A與5B圖之操作模式示意圖。 Fig. 6A shows a schematic diagram of operation modes corresponding to Figs. 5A and 5B.

第6B圖顯示對應於第5A與5B圖之操作模式示意圖。 Fig. 6B shows the operation mode diagram corresponding to Figs. 5A and 5B.

第6C圖顯示顯示對應於第5A-5C圖之返馳式電源轉換電路之操作波形示意圖。 Fig. 6C shows the operation waveform diagram of the flyback power conversion circuit corresponding to Figs. 5A-5C.

本發明中的圖式均屬示意,主要意在表示各電路間之耦接關係,以及各訊號波形之間之關係,至於電路、訊號波形與頻率則並未依照比例繪製。 The drawings in the present invention are schematic, and are mainly intended to represent the coupling relationship between various circuits and the relationship between signal waveforms. As for the circuits, signal waveforms and frequencies, they are not drawn to scale.

請參閱第3圖,圖中所示為本發明具主動箝位及零電壓切換之返馳式電源轉換電路的一種實施例(返馳式電源轉換電路3),返馳式電源轉換電路3包含變壓器10,一次側開關S1,箝位電路20,以及轉換控制電路30。其中變壓器10包含一次側繞組W1,耦接於一輸入電源,以及一二次側繞組W2,耦接於一輸出節點OUT,其中該輸入電源包括一輸入電壓VI以及一輸入電流IIN。一次側開關S1耦接於一次側繞組W1,用以切換該一次側繞組W1以轉換該輸入電源,而使二次側繞組W2於輸出節點OUT產生一輸出電源以供應負載40,其中輸出電源包括輸出電壓VO以及一輸出電流IOUT。 Please refer to FIG. 3, which shows an embodiment of the flyback power conversion circuit with active clamping and zero voltage switching according to the present invention (flyback power conversion circuit 3). The flyback power conversion circuit 3 includes The transformer 10, the primary-side switch S1, the clamp circuit 20, and the switching control circuit 30. The transformer 10 includes a primary-side winding W1 coupled to an input power source, and a secondary-side winding W2 coupled to an output node OUT. The input power source includes an input voltage VI and an input current IIN. The primary-side switch S1 is coupled to the primary-side winding W1 to switch the primary-side winding W1 to convert the input power, and the secondary-side winding W2 generates an output power at the output node OUT to supply the load 40. The output power includes The output voltage VO and an output current IOUT.

請繼續參閱第3圖,箝位電路20包括輔助開關S2,以及輔助電容器Cr,其與輔助開關S2串聯而形成一輔助支路,如圖所示,輔助支路與一次側繞組W1並聯。轉換控制電路30用以根據一迴授訊號FB而產生一次側開關控制訊號S1C以及輔助開關控制訊號S2C,分別用以控制一次側開關S1以及輔助開關S2,而轉換輸入電源以產生輸出電源。其中,輔助開關S2於一次側開關S1不導通時之一段時間內導通,使一次側繞組W1之漏感Lr及 /或激磁電感Lm於一次側開關S1導通時所儲存之能量,可藉由輔助支路洩放並儲存於輔助電容器Cr之中,此外,在一次側開關S1導通之前,可藉由儲存於輔助電容器Cr中之能量,對一次側開關S1之寄生電容Coss放電,使得一次側開關S1導通時為零電壓切換。 Please continue to refer to FIG. 3, the clamp circuit 20 includes an auxiliary switch S2 and an auxiliary capacitor Cr, which are connected in series with the auxiliary switch S2 to form an auxiliary branch. As shown in the figure, the auxiliary branch is connected in parallel with the primary winding W1. The conversion control circuit 30 is configured to generate a primary-side switch control signal S1C and an auxiliary switch control signal S2C according to a feedback signal FB, and is used to control the primary-side switch S1 and the auxiliary switch S2, respectively, and convert input power to generate output power. Among them, the auxiliary switch S2 is turned on for a period of time when the primary switch S1 is not turned on, so that the leakage inductance Lr of the primary winding W1 and The energy stored in the excitation inductance Lm when the primary switch S1 is turned on can be discharged through the auxiliary branch and stored in the auxiliary capacitor Cr. In addition, before the primary switch S1 is turned on, it can be stored in the auxiliary The energy in the capacitor Cr discharges the parasitic capacitance Coss of the primary-side switch S1, so that when the primary-side switch S1 is turned on, it is switched to zero voltage.

根據本發明,轉換控制電路30根據下列至少之一而調整該輔助開關S2之導通時間TON2:一電流相關訊號ISEN,輸入電壓VI以及輸出電壓VO,使得一次側開關S1導通時,其電流輸入端PHASE與電流輸出端(本實施例中耦接於一電流感測電阻RCS,在其他實施例中亦可耦接於一次側接地點)之電壓差(如圖中之VDS1)大致上為0,而達成零電壓切換;其中所述之電流相關訊號ISEN相關於下列至少之一:輸出電流IOUT,一次側開關之導通電流IDS1,以及該一次側繞組W1之電流IP;在一實施例中,電流相關訊號ISEN可藉由感測一次側開關S1之VDS1、一次側開關S1之導通電流IDS1、或電流感測電阻RCS之跨壓VCS而得。 According to the present invention, the switching control circuit 30 adjusts the on-time TON2 of the auxiliary switch S2 according to at least one of the following: a current-related signal ISEN, an input voltage VI, and an output voltage VO, so that when the primary switch S1 is turned on, its current input terminal The voltage difference between PHASE and the current output terminal (coupled to a current sensing resistor RCS in this embodiment, or to the primary ground point in other embodiments) (VDS1 in the figure) is approximately 0. Zero voltage switching is achieved; the current-related signal ISEN is related to at least one of the following: the output current IOUT, the on-current IDS1 of the primary switch, and the current IP of the primary winding W1. In one embodiment, the current The relevant signal ISEN can be obtained by sensing the VDS1 of the primary switch S1, the on-current IDS1 of the primary switch S1, or the cross-voltage VCS of the current sensing resistor RCS.

需說明的是,前述之迴授訊號FB可例如相關於輸出電壓VO或輸出電流IOUT,亦即,藉由一二次側迴授路徑而產生迴授訊號FB,在一實施例中,可藉由一迴授感測電路50轉換輸出電壓VO或輸出電流IOUT而產生迴授訊號FB。而在一實施例中,迴授訊號FB可例如相關於一次側繞組電流IP或一次側相關電壓(例如VDS1)亦即,藉由一一次側迴授路徑而產生迴授訊號FB,進而藉以確定一次側開關S1之導通時間TON1。 It should be noted that the aforementioned feedback signal FB may be related to, for example, the output voltage VO or the output current IOUT, that is, the feedback signal FB is generated through a secondary-side feedback path. In one embodiment, the feedback signal FB may be borrowed. A feedback sensing circuit 50 converts the output voltage VO or the output current IOUT to generate a feedback signal FB. In an embodiment, the feedback signal FB may be related to the primary winding current IP or the primary-side voltage (eg, VDS1), that is, the feedback signal FB is generated through a primary-side feedback path, and thereby, Determine the on-time TON1 of the primary switch S1.

需說明的是,在不連續導通模式(Discontinuous Conduction Mode,DCM)或準諧振模式(Quasi Resonant Mode,QRM)之下,如一次側開關S1欲達成零電壓切換,則儲存於一次側繞組之漏感Lr(leakage inductance)及 激磁電感Lm(magnetizing inductance)之能量,與寄生電容Coss所儲存之電荷能量之間,須符合下列不等式: It should be noted that in the Discontinuous Conduction Mode (DCM) or Quasi Resonant Mode (QRM), if the primary switch S1 is to achieve zero voltage switching, it is stored in the leakage of the primary winding. The energy of the inductance Lr (leakage inductance) and the magnetizing inductance Lm (magnetizing inductance) and the charge energy stored by the parasitic capacitance Coss must meet the following inequality:

其中 among them

將Eq.1代入Eq.2並求解可得: Substitute Eq.1 into Eq.2 and solve it:

其中Ipk係指一次側繞組電流IP之峰值電流,Im係指激磁電感Lm之激磁電流(magnetizing current),n係指一次側繞組W1與二次側繞組W2之繞組比。 Among them, Ipk refers to the peak current of the primary winding current IP, Im refers to the magnetizing current of the magnetizing inductance Lm, and n refers to the winding ratio of the primary winding W1 to the secondary winding W2.

而在例如輸入電壓VI較大的情況下,儲存於輔助電容器Cr中之一次側繞組之漏感Lr之能量,可能不足以於一次側開關S1導通之前,對一次側開關S1之寄生電容Coss完全放電,在此情況下,一次側開關S1將無法達成零電壓切換,因此,可將儲存於一次側繞組之激磁電感Lm之能量藉由輔助開關S2之導通時間TON2之調整,而使箝位電路20可對一次側開關S1之寄生電容Coss完全放電,使得一次側開關S1可達成零電壓切換。根據本發明,輔助開關S2之導通時間TON2可隨著下列至少之一而增加:當電流相關訊號ISEN代表一次側開關S1之峰值電流Ipk減少時,或當輸入電壓VI增加時,或是當輸出電壓VO增加時,由上述的方程式(Eq.1-3)可知,藉由控制輔助開關S2之導通時間TON2,可導通一次側繞組W1之激磁電感Lm(magnetizing inductance)之激磁電流Im,而將一次側開關S1之寄生電容器Coss放電,使得一次側開關S1導通時為零電壓切換。 For example, when the input voltage VI is large, the energy of the leakage inductance Lr of the primary winding stored in the auxiliary capacitor Cr may not be enough for the parasitic capacitance Coss of the primary switch S1 to be completely before the primary switch S1 is turned on. Discharge. In this case, the primary switch S1 cannot achieve zero voltage switching. Therefore, the energy of the excitation inductance Lm stored in the primary winding can be adjusted by the on-time TON2 of the auxiliary switch S2 to enable the clamping circuit. 20 can completely discharge the parasitic capacitance Coss of the primary switch S1, so that the primary switch S1 can achieve zero voltage switching. According to the present invention, the on-time TON2 of the auxiliary switch S2 can be increased with at least one of the following: when the current-related signal ISEN represents the peak current Ipk of the primary-side switch S1 decreases, or when the input voltage VI increases, or when the output When the voltage VO increases, it can be known from the above equation (Eq.1-3) that by controlling the on time TON2 of the auxiliary switch S2, the exciting current Im of the magnetizing inductance Lm (magnetizing inductance) of the primary winding W1 can be conducted, and the The parasitic capacitor Coss of the primary-side switch S1 is discharged, so that when the primary-side switch S1 is turned on, it is switched to zero voltage.

此外,需說明的是,由於如前述藉由調變導通時間TON2而調整一次側繞組W1之激磁電感Lm之激磁電流Im,於DCM或QRM之下具有較顯著之效果,因此,在一實施例中,轉換控制電路30可根據輸入電壓VI、輸出電壓VO、輸入電流IIN、輸出電流IOUT之中至少之一而控制一次側開關S1之切換頻率,使得返馳式電源轉換電路操作於DCM或QRM下,而達成上述之零電壓切換。 In addition, it should be noted that since the excitation current Im of the excitation inductance Lm of the primary winding W1 is adjusted by adjusting the on-time TON2 as described above, it has a significant effect under DCM or QRM. Therefore, in an embodiment In the conversion control circuit 30, the switching frequency of the primary switch S1 can be controlled according to at least one of the input voltage VI, the output voltage VO, the input current IIN, and the output current IOUT, so that the flyback power conversion circuit operates in DCM or QRM. Then, the above-mentioned zero voltage switching is achieved.

請參閱第4A圖,圖中顯示本發明之返馳式電源轉換電路中,轉換控制電路之一具體實施例(轉換控制電路30),轉換控制電路30包括輔助開關控制電路31以及訊號感測電路33,訊號感測電路33用以感測電流相關訊號ISEN,輸入電壓VI以及輸出電壓VO中之至少之一,輔助開關控制電路31則用以根據訊號感測電路33之輸出而產生輔助開關控制訊號S2C,以調整輔助開關S2之導通時間TON2,使得一次側開關S1導通時為零電壓切換。 Please refer to FIG. 4A, which shows a specific embodiment of the conversion control circuit (the conversion control circuit 30) in the flyback power conversion circuit of the present invention. The conversion control circuit 30 includes an auxiliary switch control circuit 31 and a signal sensing circuit. 33. The signal sensing circuit 33 is used to sense at least one of the current-related signal ISEN, the input voltage VI and the output voltage VO, and the auxiliary switch control circuit 31 is used to generate the auxiliary switch control according to the output of the signal sensing circuit 33 The signal S2C adjusts the on-time TON2 of the auxiliary switch S2 so that the primary-side switch S1 is switched to zero voltage when it is on.

請參閱第4B圖,圖中顯示本發明之返馳式電源轉換電路中,輔助開關控制電路之一具體實施例(輔助開關控制電路31),輔助開關控制電路31包括閾值產生電路311,斜坡訊號產生電路312,比較電路CP,以及邏輯電路313。閾值產生電路311用以根據一參考電壓VREF與電流相關訊號ISEN之差值而產生一電壓閾值VTH,在一實施例中,電壓閾值VTH與電流相關訊號ISEN大致上呈反向關係;斜坡訊號產生電路312用以根據一參考電流IREF以及輔助開關控制訊號S2C而產生一斜坡訊號VS;比較電路CP將斜坡訊號VS與電壓閾值VTH相比而產生一比較結果CPO;邏輯電路313根據比較結果CPO以及一輔助開關啟動訊號S2S而產生輔助開關控制訊號S2C,用以控制輔助開關S2,使得輔助開關S2之導通時間TON2隨著電流相關訊號 ISEN表示一次側開關S1之峰值電流減少而增加,以達成前述一次側開關S1之零電壓切換。 Please refer to FIG. 4B, which shows a specific embodiment of the auxiliary switch control circuit (auxiliary switch control circuit 31) in the flyback power conversion circuit of the present invention. The auxiliary switch control circuit 31 includes a threshold value generating circuit 311 and a ramp signal. The generating circuit 312, the comparison circuit CP, and the logic circuit 313. The threshold value generating circuit 311 is configured to generate a voltage threshold value VTH according to a difference between a reference voltage VREF and a current-related signal ISEN. In one embodiment, the voltage threshold value VTH and the current-related signal ISEN are approximately inversely related; a ramp signal is generated The circuit 312 is used to generate a ramp signal VS according to a reference current IREF and the auxiliary switch control signal S2C; the comparison circuit CP compares the ramp signal VS with a voltage threshold VTH to generate a comparison result CPO; the logic circuit 313 is based on the comparison result CPO and An auxiliary switch starts the signal S2S to generate an auxiliary switch control signal S2C, which is used to control the auxiliary switch S2, so that the on-time TON2 of the auxiliary switch S2 follows the current-related signal ISEN indicates that the peak current of the primary switch S1 decreases and increases to achieve the zero-voltage switching of the primary switch S1.

在一實施例中,轉換控制電路30可根據一預設時脈訊號CK而產生輔助開關啟動訊號S2S,而在一實施例中,轉換控制電路30可根據迴授訊號FB及/或電流相關訊號ISEN而產生輔助開關啟動訊號S2S,舉例而言,當返馳式電源轉換電路操作在固定頻率時,預設時脈訊號CK可由一內部震盪器產生,而當返馳式電源轉換電路操作在例如但不限於脈波頻率調變(Pulse Frequency Modulation,PFM)等控制方式時,輔助開關啟動訊號S2S可根據迴授訊號FB而產生。 In one embodiment, the conversion control circuit 30 may generate an auxiliary switch activation signal S2S according to a preset clock signal CK, and in one embodiment, the conversion control circuit 30 may generate a feedback signal FB and / or a current-related signal. ISEN generates the auxiliary switch start signal S2S. For example, when the flyback power conversion circuit operates at a fixed frequency, the preset clock signal CK can be generated by an internal oscillator, and when the flyback power conversion circuit operates at, for example, But it is not limited to pulse frequency modulation (PFM) and other control methods. The auxiliary switch start signal S2S can be generated according to the feedback signal FB.

第4C圖顯示本發明之返馳式電源轉換電路中,輔助開關控制電路之一具體實施例(輔助開關控制電路31),其中閾值產生電路311包括一轉導放大電路GM以及訊號轉換電阻R1,用以根據一參考電壓VREF與電流相關訊號ISEN之差值而產生電壓閾值VTH,其中VTH=VREF-gm*R1*ISEN,而其中gm係為轉導放大電路GM之轉導值(transconductance)。斜坡訊號產生電路312則根據一參考電流IREF以及輔助開關控制訊號S2C控制一積分電容器CI與積分開關SWI而產生斜坡訊號VS,且以斜坡訊號VS與電壓閾值VTH之比較而決定輔助開關S2之導通時間TON2之時間長度。請同時參考第4D圖,其為對應於第4C圖實施例之波形示意圖,本實施例中,藉由電壓閾值VTH與電流相關訊號ISEN呈反向關係,使得輔助開關S2之導通時間TON2隨著電流相關訊號ISEN表示一次側開關S1之峰值電流減少而增加(反之亦然),以達成前述一次側開關S1之零電流切換。 FIG. 4C shows a specific embodiment of the auxiliary switch control circuit (auxiliary switch control circuit 31) in the flyback power conversion circuit of the present invention. The threshold value generation circuit 311 includes a transconductance amplifier circuit GM and a signal conversion resistor R1. The voltage threshold VTH is generated according to the difference between a reference voltage VREF and a current-related signal ISEN, where VTH = VREF-gm * R1 * ISEN, and gm is the transconductance of the transconductance amplifier circuit GM. The ramp signal generating circuit 312 generates a ramp signal VS according to a reference current IREF and an auxiliary switch control signal S2C to control an integrating capacitor CI and an integrating switch SWI, and determines the conduction of the auxiliary switch S2 by comparing the ramp signal VS with a voltage threshold VTH. The length of time TON2. Please also refer to FIG. 4D, which is a waveform diagram corresponding to the embodiment of FIG. 4C. In this embodiment, the voltage threshold VTH and the current-related signal ISEN have an inverse relationship, so that the on-time TON2 of the auxiliary switch S2 follows The current-related signal ISEN indicates that the peak current of the primary-side switch S1 decreases and increases (or vice versa) to achieve the zero-current switching of the aforementioned primary-side switch S1.

請參閱第5A圖,圖中顯示本發明之返馳式電源轉換電路中,轉換控制電路之一具體實施例(轉換控制電路30),在一實施例中,輔助開關控制電路30更可包括一模式操作電路34,請同時參閱第6A與6B圖,模式操作電路34用以根據輸入電壓VI、輸入電流IIN、輸出電壓VO、或輸出電流IOUT(亦即對應第6A與6B圖中之輸出或輸入功率)而確定該一次側開關S1之切換頻率(例如但不限於藉由控制輔助開關啟動訊號S2S之操作頻率),且該切換頻率具有一上限頻率Fmax以及一下限頻率Fmin,使得本發明之返馳式電源轉換電路可操作於例如但不限於定頻或非定頻之脈波寬度調變(Pulse Width Modulation,PWM)、PFM、QRM或脈衝間歇模式(Burst Mode)等不同之操作模式。 Please refer to FIG. 5A, which shows a specific embodiment of the conversion control circuit (conversion control circuit 30) in the flyback power conversion circuit of the present invention. In one embodiment, the auxiliary switch control circuit 30 may further include a Mode operation circuit 34, please refer to Figs. 6A and 6B at the same time. The mode operation circuit 34 is used according to the input voltage VI, input current IIN, output voltage VO, or output current IOUT (that is, corresponding to the output in Figures 6A and 6B or Input power) to determine the switching frequency of the primary switch S1 (such as, but not limited to, the operating frequency of the start signal S2S by controlling the auxiliary switch), and the switching frequency has an upper limit frequency Fmax and a lower limit frequency Fmin, making the invention The flyback power conversion circuit can operate in different operating modes such as, but not limited to, fixed frequency or non-constant frequency pulse width modulation (PWM), PFM, QRM, or burst mode (Burst Mode).

需說明的是,前述如第5A圖實施例中,模式操作電路34亦可用以根據輸入電壓VI、輸出電壓VO、輸入電流IIN、輸出電流IOUT之中至少之一而控制一次側開關S1之切換頻率,使得返馳式電源轉換電路操作於如前述之不連續導通模式(DCM)或準諧振模式QRM)下,而達成前述之零電壓切換。 It should be noted that, as in the embodiment shown in FIG. 5A, the mode operation circuit 34 can also be used to control the switching of the primary switch S1 according to at least one of the input voltage VI, the output voltage VO, the input current IIN, and the output current IOUT. The frequency enables the flyback power conversion circuit to operate in the discontinuous conduction mode (DCM) or quasi-resonant mode QRM as described above, thereby achieving the aforementioned zero-voltage switching.

請參閱第5B圖,在一實施例中,轉換控制電路30可包括一順序電路(順序電路32),用以根據輔助開關啟動訊號S2S而觸發導通輔助開關S2,且於輔助開關S2轉為不導通後,於一輔助空滯時間TD後,觸發導通一次側開關S1。 Please refer to FIG. 5B. In an embodiment, the conversion control circuit 30 may include a sequence circuit (sequence circuit 32) for triggering the auxiliary switch S2 to be turned on according to the auxiliary switch start signal S2S, and the auxiliary switch S2 is turned off. After being turned on, after an auxiliary dead time TD, the primary switch S1 is turned on.

就一觀點而言,根據本發明,前述之順序電路之操作,使得一次側開關S1於導通前,皆會有輔助開關S2之導通,且於導通輔助開關S2之導通時間TON2之後,具有一輔助空滯時間TD,以確保一次側開關S1導通時為零電壓切換。 In terms of a point of view, according to the present invention, the operation of the aforementioned sequential circuit enables the primary switch S1 to be turned on before the auxiliary switch S2 is turned on, and after the turn-on time TON2 of the auxiliary switch S2 is turned on, an auxiliary The dead time TD is to ensure zero voltage switching when the primary switch S1 is turned on.

請參閱第5C圖,圖中所示為本發明之返馳式電源轉換電路中,如前述之順序電路的一種具體實施例(順序電路32),順序電路32包括第一時序控制電路321,第一時間控制電路322,第二時間控制電路323,第二時序控制電路324以及第三時間控制電路325;第一時序控制電路321(例如但不限於如圖所示之閂鎖電路)用以根據輔助開關啟動訊號S2S以及第一時間控制訊號S2T而產生輔助開關控制訊號S2C,其中輔助開關啟動訊號S2S觸發輔助開關控制訊號S2C使輔助開關S2轉為導通,且第一時間控制訊號S2T觸發輔助開關控制訊號S2C使輔助開關S2轉為不導通;第一時間控制電路322用以根據輔助開關啟動訊號S2S而產生第一時間控制訊號S2T,以確定輔助開關之導通時間TON2;第二時間控制電路323用以根據第一時間控制訊號S2T而產生第二時間控制訊號S2D以確定輔助空滯時間TD,使得一次側開關S1與輔助開關S2於輔助空滯時間TD皆為不導通;第二時序控制電路324(例如但不限於如圖所示之閂鎖電路)用以根據第二時間控制訊號S2D以及第三時間控制訊號S1T而產生一次側開關控制訊號S1C,其中第二時間控制訊號S2D觸發一次側開關控制訊號S1C使一次側開關S1轉為導通,且第三時間控制訊號S1T觸發一次側開關控制訊號S1C使一次側開關S1轉為不導通;第三時間控制電路325用以根據第二時間控制訊號S2D以確定一次側開關S1之導通時間TON1。在一實施例中,第三時間控制電路325更根據迴授訊號FB及/或電流相關訊號ISEN而產生第三時間控制訊號S1T。在一實施例中,第三時間控制電路325更根據迴授訊號FB及/或電流相關訊號ISEN而確定一次側開關S1之導通時間TON1。 Please refer to FIG. 5C, which shows a specific embodiment of the sequence circuit (sequence circuit 32) in the flyback power conversion circuit of the present invention. The sequence circuit 32 includes a first timing control circuit 321. The first timing control circuit 322, the second timing control circuit 323, the second timing control circuit 324, and the third timing control circuit 325; the first timing control circuit 321 (such as but not limited to the latch circuit as shown in the figure) is used The auxiliary switch control signal S2C is generated according to the auxiliary switch start signal S2S and the first time control signal S2T, where the auxiliary switch start signal S2S triggers the auxiliary switch control signal S2C to turn the auxiliary switch S2 on and the first time control signal S2T is triggered The auxiliary switch control signal S2C makes the auxiliary switch S2 non-conducting; the first time control circuit 322 is used to generate the first time control signal S2T according to the auxiliary switch start signal S2S to determine the on time TON2 of the auxiliary switch; the second time control The circuit 323 is configured to generate a second time control signal S2D according to the first time control signal S2T to determine the auxiliary dead time TD, so that the primary side The off S1 and the auxiliary switch S2 are not conductive during the auxiliary dead time TD; the second timing control circuit 324 (such as but not limited to the latch circuit as shown in the figure) is used to control the signal S2D and the third time according to the second time The control signal S1T generates the primary switch control signal S1C. The second time control signal S2D triggers the primary switch control signal S1C to turn the primary switch S1 on, and the third time control signal S1T triggers the primary switch control signal S1C. The primary-side switch S1 is turned off; the third time control circuit 325 is used to determine the on-time TON1 of the primary-side switch S1 according to the second time control signal S2D. In an embodiment, the third time control circuit 325 further generates a third time control signal S1T according to the feedback signal FB and / or the current-related signal ISEN. In an embodiment, the third time control circuit 325 determines the on-time TON1 of the primary switch S1 according to the feedback signal FB and / or the current-related signal ISEN.

請參閱第5D圖,本實施例與第4A圖之實施例相似,轉換控制電路30更包括一順序電路(順序電路32),順序電路32用以根據一輔助開關 相關訊號S2CR,於輔助開關S2轉為不導通且於一輔助空滯時間TD後觸發導通一次側開關S1,其中輔助開關相關訊號S2CR係為輔助開關控制訊號S2C,或其相關訊號(例如但不限於前述第4B圖實施例之比較結果CPO)。 Please refer to FIG. 5D. This embodiment is similar to the embodiment shown in FIG. 4A. The conversion control circuit 30 further includes a sequence circuit (sequence circuit 32). The sequence circuit 32 is used according to an auxiliary switch. The related signal S2CR is turned off after the auxiliary switch S2 is turned off and after a auxiliary dead time TD, the auxiliary switch related signal S2CR is the auxiliary switch control signal S2C or its related signal (for example but not It is limited to the comparison result CPO in the embodiment of FIG. 4B).

請參閱第5E圖,圖中顯示對應於第5D圖實施例中,順序電路之一具體實施例,順序電路32包括空滯時間控制電路323,一次側開關時序控制電路324,以及一次側開關時間控制電路325。空滯時間控制電路323用以根據該輔助開關相關訊號S2CR而產生空滯時間控制訊號S2D以確定輔助空滯時間TD,使得一次側開關S1與輔助開關S2於輔助空滯時間TD皆為不導通;一次側開關時序控制電路324用以根據空滯時間控制訊號S2D以及一次側開關時間控制訊號S1T而產生一次側開關控制訊號S1C,其中空滯時間控制訊號S2D觸發一次側開關控制訊號S1C使一次側開關S1轉為導通,且一次側開關時間控制訊號S1T觸發一次側開關控制訊號S1C使一次側開關S1轉為不導通。一次側開關時間控制電路325用以根據空滯時間控制訊號S2D而產生一次側開關控制訊號S1T,以確定一次側開關S1之導通時間TON1。 Please refer to FIG. 5E, which shows a specific embodiment of the sequence circuit corresponding to the embodiment of FIG. 5D. The sequence circuit 32 includes a dead time control circuit 323, a primary-side switching timing control circuit 324, and a primary-side switching time. Control circuit 325. The dead time control circuit 323 is used to generate a dead time control signal S2D according to the auxiliary switch related signal S2CR to determine the auxiliary dead time TD, so that the primary switch S1 and the auxiliary switch S2 are not conductive at the auxiliary dead time TD. ; The primary side switch timing control circuit 324 is used to generate the primary side switch control signal S1C according to the dead time control signal S2D and the primary side switch time control signal S1T. The dead time control signal S2D triggers the primary side switch control signal S1C to make one time. The side switch S1 is turned on, and the primary side switch time control signal S1T triggers the primary side switch control signal S1C to make the primary side switch S1 non-conductive. The primary-side switch time control circuit 325 is used to generate a primary-side switch control signal S1T according to the dead time control signal S2D to determine the on-time TON1 of the primary-side switch S1.

請參閱第6C圖,圖中顯示對應於第5A-5E圖之返馳式電源轉換電路之操作波形示意圖,如圖所示,輔助開關啟動訊號S2S觸發輔助開關控制訊號S2C,使輔助開關S2轉為導通(如圖中時點t1),並於導通時間TON2後使輔助開關S2轉為不導通(如圖中時點t2),且一次側開關S1與輔助開關S2皆維持不導通一段輔助空滯時間TD後,觸發一次側開關控制訊號S1C,使一次側開關S1轉為導通(如圖中時點t3)。需說明的是,本實施例中,輔助開關啟動訊號S2S亦如前所述,可根據一預設時脈訊號CK,或迴授訊號FB及/或電流相關訊號ISEN而產生。 Please refer to Figure 6C, which shows the operation waveform diagram of the flyback power conversion circuit corresponding to Figures 5A-5E. As shown in the figure, the auxiliary switch start signal S2S triggers the auxiliary switch control signal S2C, which causes the auxiliary switch S2 to turn. Is turned on (time t1 in the figure), and the auxiliary switch S2 is turned off after the turn-on time TON2 (time t2 in the figure), and both the primary switch S1 and the auxiliary switch S2 are maintained non-conductive for a period of auxiliary dead time After TD, the primary-side switch control signal S1C is triggered, so that the primary-side switch S1 is turned on (time t3 in the figure). It should be noted that, in this embodiment, the auxiliary switch activation signal S2S is also as described above, and may be generated according to a preset clock signal CK, or a feedback signal FB and / or a current-related signal ISEN.

以上已針對較佳實施例來說明本發明,唯以上所述者,僅係為使熟悉本技術者易於了解本發明的內容而已,並非用來限定本發明之權利範圍。所說明之各個實施例,並不限於單獨應用,亦可以組合應用;舉其中一例,「順序電路」可與「輔助開關控制電路」、「模式操作電路」、以及「訊號感測電路」等組合應用,在此情況下,轉換控制電路可包括一邏輯控制電路,用以整合前述各電路對一次側開關S1或輔助開關S2之控制。此外,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合。例如,本發明所稱「根據某訊號進行處理或運算或產生某輸出結果」,不限於根據該訊號的本身,亦包含於必要時,將該訊號進行電壓電流轉換、電流電壓轉換、及/或比例轉換等,之後根據轉換後的訊號進行處理或運算產生某輸出結果。由此可知,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,其組合方式甚多,在此不一一列舉說明。因此,本發明的範圍應涵蓋上述及其他所有等效變化。 The present invention has been described above with reference to the preferred embodiments, but the above is only for making those skilled in the art easily understand the content of the present invention, and is not intended to limit the scope of rights of the present invention. The described embodiments are not limited to separate applications, and can be combined; for example, the "sequence circuit" can be combined with "auxiliary switch control circuit", "mode operation circuit", and "signal sensing circuit" In this case, the switching control circuit may include a logic control circuit for integrating the foregoing circuits to control the primary switch S1 or the auxiliary switch S2. In addition, in the same spirit of the present invention, those skilled in the art can think of various equivalent changes and various combinations. For example, the term "processing or calculation according to a signal or generating an output result" in the present invention is not limited to the signal itself, but also includes performing voltage-current conversion, current-voltage conversion, and / or the signal when necessary. Proportional conversion, etc., and then processed or calculated according to the converted signal to produce an output result. It can be seen that, under the same spirit of the present invention, those skilled in the art can think of various equivalent changes and various combinations, and there are many combinations, which are not listed here. Therefore, the scope of the invention should cover the above and all other equivalent variations.

Claims (19)

一種返馳式電源轉換電路,包含:一變壓器,其包含一一次側繞組,耦接於一輸入電源,以及一二次側繞組,耦接於一輸出節點,其中該輸入電源包括一輸入電壓以及一輸入電流;一一次側開關,耦接於該一次側繞組,用以切換該一次側繞組以轉換該輸入電源,而使該二次側繞組於該輸出節點產生一輸出電源,其中該輸出電源包括一輸出電壓以及一輸出電流;一箝位電路,包括:一輔助開關,以及一輔助電容器,與該輔助開關串聯而形成一輔助支路,且該輔助支路與該一次側繞組並聯;以及一轉換控制電路,用以產生一一次側開關控制訊號以及一輔助開關控制訊號,分別用以控制該一次側開關以及該輔助開關,而轉換該輸入電源以產生該輸出電源,其中該輔助開關與該一次側開關非為互補切換;該轉換控制電路包括:一輔助開關控制電路,用以根據下列至少之一而調整該輔助開關之導通時間:一電流相關訊號,該輸入電壓以及該輸出電壓,使得該一次側開關導通時,其一電流輸入端與一電流輸出端之電壓差大致上為0,而達成零電壓切換;其中該電流相關訊號相關於下列至少之一:該輸出電流,該一次側開關之導通電流,以及該一次側繞組之電流;以及一訊號感測電路,用以感測該電流相關訊號,該輸入電壓,或該輸出電壓。A flyback power conversion circuit includes: a transformer including a primary-side winding coupled to an input power source, and a secondary-side winding coupled to an output node, wherein the input power source includes an input voltage And an input current; a primary-side switch coupled to the primary-side winding for switching the primary-side winding to convert the input power, so that the secondary-side winding generates an output power at the output node, where the The output power includes an output voltage and an output current; a clamp circuit includes: an auxiliary switch and an auxiliary capacitor, which are connected in series with the auxiliary switch to form an auxiliary branch, and the auxiliary branch is connected in parallel with the primary winding And a conversion control circuit for generating a primary switch control signal and an auxiliary switch control signal for controlling the primary switch and the auxiliary switch, respectively, and converting the input power to generate the output power, wherein the The auxiliary switch and the primary-side switch are non-complementary switching; the conversion control circuit includes: an auxiliary switch control circuit for rooting Adjust the on-time of the auxiliary switch by at least one of the following: a current-related signal, the input voltage, and the output voltage such that when the primary switch is on, the voltage difference between a current input terminal and a current output terminal is approximately 0, to achieve zero voltage switching; wherein the current-related signal is related to at least one of the following: the output current, the on-current of the primary switch, and the current of the primary winding; and a signal sensing circuit for sensing Measure the current-related signal, the input voltage, or the output voltage. 如申請專利範圍第1項所述之返馳式電源轉換電路,其中該輔助開關之導通時間隨著下列至少之一而增加:該電流相關訊號代表該一次側開關之一峰值電流減少,該輸入電壓增加,以及該輸出電壓增加,以導通該一次側繞組之一激磁電感(magnetizing inductor)之一激磁電流(magnetizing current)而將該一次側開關之一寄生電容器放電,使得該一次側開關導通時為零電壓切換。The flyback power conversion circuit according to item 1 of the scope of patent application, wherein the on-time of the auxiliary switch increases with at least one of the following: the current-related signal represents a decrease in the peak current of one of the primary switches, and the input When the voltage is increased and the output voltage is increased, a parasitic capacitor of the primary switch is discharged by conducting a magnetizing current of a magnetizing inductor of the primary winding, so that the primary switch is turned on. Zero voltage switching. 如申請專利範圍第1項所述之返馳式電源轉換電路,其中該輔助開關控制電路包括:一閾值產生電路,用以根據一參考電壓與該電流相關訊號之差值而產生一電壓閾值;一斜坡訊號產生電路,用以根據一參考電流以及該輔助開關控制訊號而產生一斜坡訊號;一比較電路,將該斜坡訊號與該電壓閾值相比而產生一比較結果;以及一邏輯電路,根據該比較結果以及一輔助開關啟動訊號而產生該輔助開關控制訊號,用以控制該輔助開關,使得該輔助開關之導通時間隨著該電流相關訊號代表該一次側開關之峰值電流減少而增加;其中該轉換控制電路根據一預設時脈訊號或一迴授訊號而產生該輔助開關啟動訊號。The flyback power conversion circuit according to item 1 of the scope of patent application, wherein the auxiliary switch control circuit includes: a threshold value generating circuit for generating a voltage threshold value according to a difference between a reference voltage and the current-related signal; A ramp signal generating circuit for generating a ramp signal according to a reference current and the auxiliary switch control signal; a comparison circuit for generating a comparison result by comparing the ramp signal with the voltage threshold; and a logic circuit according to The comparison result and an auxiliary switch start signal generate the auxiliary switch control signal to control the auxiliary switch, so that the on-time of the auxiliary switch increases as the current-related signal represents a decrease in the peak current of the primary switch; where The conversion control circuit generates the auxiliary switch activation signal according to a preset clock signal or a feedback signal. 如申請專利範圍第1項所述之返馳式電源轉換電路,其中該轉換控制電路更包括一模式操作電路,用以根據該輸入電壓、該輸出電壓、該輸入電流、以及該輸出電流之中至少之一而控制該一次側開關之切換頻率,使得該返馳式電源轉換電路操作於一不連續導通模式(Discontinuous Conduction Mode,DCM)或一準諧振模式(Quasi Resonant Mode,QRM)下。The flyback power conversion circuit according to item 1 of the scope of the patent application, wherein the conversion control circuit further includes a mode operation circuit for controlling the input voltage, the output voltage, the input current, and the output current. At least one of them controls the switching frequency of the primary-side switch, so that the flyback power conversion circuit operates in a discontinuous conduction mode (DCM) or a quasi-resonant mode (QRM). 如申請專利範圍第1項所述之返馳式電源轉換電路,其中該轉換控制電路電路更包括:一模式操作電路,根據該輸入電壓、該輸入電流、該輸出電壓、或該輸出電流而確定該一次側開關之一切換頻率,且該切換頻率具有一上限頻率以及一下限頻率。The flyback power conversion circuit according to item 1 of the scope of patent application, wherein the conversion control circuit circuit further includes a mode operation circuit, which is determined according to the input voltage, the input current, the output voltage, or the output current. One of the primary switches has a switching frequency, and the switching frequency has an upper limit frequency and a lower limit frequency. 如申請專利範圍第1項所述之返馳式電源轉換電路,其中該輔助開關控制電路根據一輔助開關啟動訊號而觸發該輔助開關轉為導通;其中該轉換控制電路根據一預設時脈訊號或一迴授訊號而產生該輔助開關啟動訊號;其中該轉換控制電路更包括:一順序電路,用以根據一輔助開關相關訊號,於該輔助開關轉為不導通且於一輔助空滯時間後觸發導通該一次側開關,其中該輔助開關相關訊號係為該輔助開關控制訊號或其相關訊號。The flyback power conversion circuit according to item 1 of the patent application scope, wherein the auxiliary switch control circuit triggers the auxiliary switch to turn on according to an auxiliary switch start signal; wherein the conversion control circuit is based on a preset clock signal Or a feedback signal to generate the auxiliary switch start signal; wherein the changeover control circuit further includes: a sequence circuit for turning off the auxiliary switch after the auxiliary switch is turned off and after an auxiliary dead time according to a signal related to the auxiliary switch; The primary switch is triggered to be turned on, and the related signal of the auxiliary switch is the auxiliary switch control signal or its related signal. 如申請專利範圍第6項所述之返馳式電源轉換電路,其中該順序電路包括:一空滯時間控制電路,用以根據該輔助開關相關訊號而產生一空滯時間控制訊號以確定該輔助空滯時間,使得該一次側開關與該輔助開關於該輔助空滯時間皆為不導通;一一次側開關時序控制電路,用以根據該空滯時間控制訊號以及一一次側開關時間控制訊號而產生該一次側開關控制訊號,其中該空滯時間控制訊號觸發該一次側開關控制訊號使該一次側開關轉為導通,且該一次側開關時間控制訊號觸發該一次側開關控制訊號使該一次側開關轉為不導通;以及一一次側開關時間控制電路,用以根據該空滯時間控制訊號而產生該一次側開關控制訊號,以確定該一次側開關之導通時間。The flyback power conversion circuit according to item 6 of the patent application scope, wherein the sequence circuit includes: a dead time control circuit for generating a dead time control signal according to the auxiliary switch related signal to determine the auxiliary dead time Time, so that the primary switch and the auxiliary switch are not conductive during the auxiliary dead time; a primary switch timing control circuit is used to control the signal according to the dead time and a primary switch time control signal. Generate the primary switch control signal, wherein the dead time control signal triggers the primary switch control signal to turn the primary switch on, and the primary switch time control signal triggers the primary switch control signal to make the primary side The switch is turned off; and a primary-side switch time control circuit is used to generate the primary-side switch control signal according to the dead time control signal to determine the on-time of the primary-side switch. 如申請專利範圍第1項所述之返馳式電源轉換電路,藉由一一次側迴授路徑,或一二次側迴授路徑而控制該一次側開關之導通時間。As in the flyback power conversion circuit described in item 1 of the scope of the patent application, the primary switch's on-time is controlled by a primary-side feedback path or a secondary-side feedback path. 一種轉換控制電路,用以控制一返馳式電源轉換電路,該返馳式電源轉換電路包含:一變壓器,其包含一一次側繞組,耦接於一輸入電源,以及一二次側繞組,耦接於一輸出節點,其中該輸入電源包括一輸入電壓以及一輸入電流;一一次側開關,耦接於該一次側繞組,用以切換該一次側繞組以轉換該輸入電源,而使該二次側繞組於該輸出節點產生一輸出電源,其中該輸出電源包括一輸出電壓以及一輸出電流;一箝位電路,包括:一輔助開關,以及一輔助電容器,與該輔助開關串聯而形成一輔助支路,且該輔助支路與該一次側繞組並聯;該轉換控制電路用以產生一一次側開關控制訊號以及一輔助開關控制訊號,分別用以控制該一次側開關以及該輔助開關,而轉換該輸入電源以產生該輸出電源,其中該輔助開關與該一次側開關非為互補切換;該轉換控制電路包括:一輔助開關控制電路,用以根據下列至少之一而調整該輔助開關之導通時間:一電流相關訊號,該輸入電壓以及該輸出電壓,使得該一次側開關導通時,其一電流輸入端與一電流輸出端之電壓差大致上為0,而達成零電壓切換;其中該電流相關訊號相關於下列至少之一:該輸出電流,該一次側開關之導通電流,以及該一次側繞組之電流;以及一訊號感測電路,用以感測該電流相關訊號,該輸入電壓,或該輸出電壓。A conversion control circuit for controlling a flyback power conversion circuit. The flyback power conversion circuit includes: a transformer including a primary winding, coupled to an input power source, and a secondary winding. Is coupled to an output node, wherein the input power includes an input voltage and an input current; a primary switch is coupled to the primary winding to switch the primary winding to convert the input power so that the input power The secondary winding generates an output power at the output node, wherein the output power includes an output voltage and an output current; a clamping circuit includes: an auxiliary switch, and an auxiliary capacitor in series with the auxiliary switch to form an An auxiliary branch, and the auxiliary branch is connected in parallel with the primary winding; the conversion control circuit is used to generate a primary switch control signal and an auxiliary switch control signal, which are respectively used to control the primary switch and the auxiliary switch, The input power is converted to generate the output power, wherein the auxiliary switch and the primary-side switch are not complementary switching; the conversion control The circuit includes: an auxiliary switch control circuit for adjusting the on-time of the auxiliary switch according to at least one of the following: a current-related signal, the input voltage and the output voltage such that when the primary switch is turned on, a current input thereof The voltage difference between the terminal and a current output terminal is approximately 0, so that zero-voltage switching is achieved. The current-related signal is related to at least one of the following: the output current, the on-current of the primary switch, and the Current; and a signal sensing circuit for sensing the current-related signal, the input voltage, or the output voltage. 如申請專利範圍第9項所述之轉換控制電路,其中該輔助開關之導通時間隨著下列至少之一而增加:該電流相關訊號代表該一次側開關之一峰值電流減少,該輸入電壓增加,以及該輸出電壓增加,以導通該一次側繞組之一激磁電感(magnetizing inductor)之一激磁電流(magnetizing current)而將該一次側開關之一寄生電容器放電,使得該一次側開關導通時為零電壓切換。The conversion control circuit according to item 9 of the scope of patent application, wherein the on-time of the auxiliary switch increases with at least one of the following: the current-related signal represents a decrease in a peak current of one of the primary switches, and the input voltage increases, And the output voltage increases to conduct a magnetizing current of a magnetizing inductor of the primary winding and discharge a parasitic capacitor of the primary switch, so that the primary switch has zero voltage when conducting Switch. 如申請專利範圍第9項所述之轉換控制電路,其中該輔助開關控制電路包括:一閾值產生電路,用以根據一參考電壓與該電流相關訊號之差值而產生一電壓閾值;一斜坡訊號產生電路,用以根據一參考電流以及該輔助開關控制訊號而產生一斜坡訊號;一比較電路,將該斜坡訊號與該電壓閾值相比而產生一比較結果;以及一邏輯電路,根據該比較結果以及一輔助開關啟動訊號而產生該輔助開關控制訊號,用以控制該輔助開關,使得該輔助開關之導通時間隨著該電流相關訊號代表該一次側開關之峰值電流減少而增加;其中該轉換控制電路根據一預設時脈訊號或一迴授訊號而產生該輔助開關啟動訊號。The conversion control circuit according to item 9 of the scope of patent application, wherein the auxiliary switch control circuit includes: a threshold value generating circuit for generating a voltage threshold value according to a difference between a reference voltage and the current-related signal; a ramp signal A generating circuit for generating a ramp signal according to a reference current and the auxiliary switch control signal; a comparison circuit for generating a comparison result by comparing the ramp signal with the voltage threshold; and a logic circuit according to the comparison result And an auxiliary switch start signal to generate the auxiliary switch control signal for controlling the auxiliary switch, so that the on-time of the auxiliary switch increases as the current-related signal represents a decrease in the peak current of the primary switch; wherein the switching control The circuit generates the auxiliary switch activation signal according to a preset clock signal or a feedback signal. 如申請專利範圍第9項所述之轉換控制電路,更包括一模式操作電路,用以根據該輸入電壓、該輸出電壓、該輸入電流、以及該輸出電流之中至少之一而控制該一次側開關之切換頻率,使得該返馳式電源轉換電路操作於一不連續導通模式(Discontinuous Conduction Mode,DCM)或一準諧振模式(Quasi Resonant Mode,QRM)下。The conversion control circuit according to item 9 of the scope of patent application, further comprising a mode operation circuit for controlling the primary side according to at least one of the input voltage, the output voltage, the input current, and the output current. The switching frequency of the switch enables the flyback power conversion circuit to operate in a discontinuous conduction mode (DCM) or a quasi-resonant mode (QRM). 如申請專利範圍第9項所述之轉換控制電路,更包括:一模式操作電路,根據該輸入電壓、該輸入電流、該輸出電壓、或該輸出電流而確定該一次側開關之一切換頻率,且該切換頻率具有一上限頻率以及一下限頻率。The conversion control circuit according to item 9 of the scope of patent application, further comprising: a mode operation circuit that determines a switching frequency of the primary-side switch according to the input voltage, the input current, the output voltage, or the output current, And the switching frequency has an upper limit frequency and a lower limit frequency. 如申請專利範圍第9項所述之轉換控制電路,其中該輔助開關控制電路根據一輔助開關啟動訊號而觸發該輔助開關轉為導通;其中該轉換控制電路根據一預設時脈訊號或一迴授訊號而產生該輔助開關啟動訊號;其中該轉換控制電路更包括:一順序電路,用以根據一輔助開關相關訊號,於該輔助開關轉為不導通且於一輔助空滯時間後觸發導通該一次側開關,其中該輔助開關相關訊號係為該輔助開關控制訊號或其相關訊號。The switching control circuit according to item 9 of the scope of patent application, wherein the auxiliary switch control circuit triggers the auxiliary switch to turn on according to an auxiliary switch start signal; wherein the switching control circuit is based on a preset clock signal or a return signal. The start signal of the auxiliary switch is generated by the signal; the conversion control circuit further includes: a sequence circuit for triggering the turn-on of the auxiliary switch after the auxiliary switch becomes non-conducting according to the signal of the auxiliary switch; Primary side switch, wherein the auxiliary switch related signal is the auxiliary switch control signal or its related signal. 如申請專利範圍第14項所述之轉換控制電路,其中該順序電路包括:一空滯時間控制電路,用以根據該輔助開關相關訊號而產生一空滯時間控制訊號以確定該輔助空滯時間,使得該一次側開關與該輔助開關於該輔助空滯時間皆為不導通;一一次側開關時序控制電路,用以根據該空滯時間控制訊號以及一一次側開關時間控制訊號而產生該一次側開關控制訊號,其中該空滯時間控制訊號觸發該一次側開關控制訊號使該一次側開關轉為導通,且該一次側開關時間控制訊號觸發該一次側開關控制訊號使該一次側開關轉為不導通;以及一一次側開關時間控制電路,用以根據該空滯時間控制訊號而產生該一次側開關控制訊號,以確定該一次側開關之導通時間。The conversion control circuit according to item 14 of the scope of patent application, wherein the sequence circuit includes: a dead time control circuit for generating a dead time control signal according to the auxiliary switch related signal to determine the auxiliary dead time, so that The primary side switch and the auxiliary switch are non-conducting during the auxiliary dead time; a primary side switch timing control circuit is used to generate the primary side according to the dead time control signal and a primary side switch time control signal. Side switch control signal, wherein the dead time control signal triggers the primary side switch control signal to turn the primary switch on, and the primary side switch time control signal triggers the primary side switch control signal to turn the primary side switch to Non-conducting; and a primary switching time control circuit for generating the primary switching control signal according to the dead time control signal to determine the conducting time of the primary switching. 如申請專利範圍第9項所述之轉換控制電路,其中該迴授訊號藉由一一次側迴授路徑,或一二次側迴授路徑而控制該一次側開關之導通時間。The conversion control circuit according to item 9 of the scope of the patent application, wherein the feedback signal controls the on-time of the primary switch through a primary feedback path or a secondary feedback path. 一種返馳式電源轉換電路,包含:一變壓器,其包含一一次側繞組,耦接於一輸入電源,以及一二次側繞組,耦接於一輸出節點,其中該輸入電源包括一輸入電壓以及一輸入電流;一一次側開關,耦接於該一次側繞組,用以切換該一次側繞組以轉換該輸入電源,而使該二次側繞組於該輸出節點產生一輸出電源,其中該輸出電源包括一輸出電壓以及一輸出電流;一箝位電路,包括:一輔助開關,以及一輔助電容器,與該輔助開關串聯而形成一輔助支路,且該輔助支路與該一次側繞組並聯;以及一轉換控制電路,用以根據一迴授訊號而產生一一次側開關控制訊號以及一輔助開關控制訊號,分別用以控制該一次側開關以及該輔助開關,而轉換該輸入電源以產生該輸出電源;其中該轉換控制電路包括:一順序電路,用以根據一輔助開關啟動訊號而觸發導通該輔助開關,且於該輔助開關轉為不導通且於一輔助空滯時間後觸發導通該一次側開關,使得該一次側開關導通時,其一電流輸入端與一電流輸出端之電壓差大致上為0,而達成零電壓切換;其中該轉換控制電路根據一預設時脈訊號或該迴授訊號而產生該輔助開關啟動訊號。A flyback power conversion circuit includes: a transformer including a primary-side winding coupled to an input power source, and a secondary-side winding coupled to an output node, wherein the input power source includes an input voltage And an input current; a primary-side switch coupled to the primary-side winding for switching the primary-side winding to convert the input power, so that the secondary-side winding generates an output power at the output node, where the The output power includes an output voltage and an output current; a clamp circuit includes: an auxiliary switch and an auxiliary capacitor, which are connected in series with the auxiliary switch to form an auxiliary branch, and the auxiliary branch is connected in parallel with the primary winding And a conversion control circuit for generating a primary switch control signal and an auxiliary switch control signal according to a feedback signal, respectively for controlling the primary switch and the auxiliary switch, and converting the input power to generate The output power; wherein the conversion control circuit includes: a sequence circuit for triggering conduction according to an auxiliary switch start signal An auxiliary switch, and the primary switch is triggered to be turned on after the auxiliary switch becomes non-conductive and after an auxiliary dead time, so that when the primary switch is turned on, the voltage difference between a current input terminal and a current output terminal is substantially It is zero to achieve zero voltage switching; wherein the conversion control circuit generates the auxiliary switch activation signal according to a preset clock signal or the feedback signal. 如申請專利範圍第17項所述之返馳式電源轉換電路,其中該轉換控制電路更包括:一模式操作電路,根據該輸入電壓、該輸入電流、該輸出電壓、或該輸出電流而確定該輔助開關啟動訊號之一操作頻率,且該操作頻率具有一上限頻率以及一下限頻率。The flyback power conversion circuit according to item 17 of the scope of patent application, wherein the conversion control circuit further includes: a mode operation circuit, which is determined according to the input voltage, the input current, the output voltage, or the output current. The auxiliary switch activates an operating frequency of the signal, and the operating frequency has an upper limit frequency and a lower limit frequency. 如申請專利範圍第17項所述之返馳式電源轉換電路,其中該順序電路包括:一第一時序控制電路,用以根據該輔助開關啟動訊號以及一第一時間控制訊號而產生該輔助開關控制訊號,其中該輔助開關啟動訊號觸發該輔助開關控制訊號使該輔助開關轉為導通,且該第一時間控制訊號觸發該輔助開關控制訊號使該輔助開關轉為不導通;一第一時間控制電路,用以根據該輔助開關啟動訊號而產生該第一時間控制訊號,以確定該輔助開關之導通時間;一第二時間控制電路,用以根據該第一時間控制訊號而產生一第二時間控制訊號以確定該輔助空滯時間,使得該一次側開關與該輔助開關於該輔助空滯時間皆為不導通;一第二時序控制電路,用以根據第二時間控制訊號以及一第三時間控制訊號而產生該一次側開關控制訊號,其中該第二時間控制訊號觸發該一次側開關控制訊號使該一次側開關轉為導通,且該第三時間控制訊號觸發該一次側開關控制訊號使該一次側開關轉為不導通;以及一第三時間控制電路,用以根據該第二時間控制訊號而產生該第三時間控制訊號,以確定該一次側開關之導通時間。The flyback power conversion circuit according to item 17 of the patent application scope, wherein the sequence circuit includes: a first timing control circuit for generating the auxiliary according to the auxiliary switch start signal and a first time control signal. A switch control signal, wherein the auxiliary switch activation signal triggers the auxiliary switch control signal to turn the auxiliary switch on, and the first time control signal triggers the auxiliary switch control signal to turn the auxiliary switch to non-conduction; a first time A control circuit for generating the first time control signal according to the activation signal of the auxiliary switch to determine the on time of the auxiliary switch; a second time control circuit for generating a second time control signal according to the first time control signal Time control signal to determine the auxiliary dead time, so that the primary switch and the auxiliary switch are non-conducting during the auxiliary dead time; a second timing control circuit for controlling the signal and a third time according to the second time Time control signal to generate the primary side switch control signal, wherein the second time control signal triggers the one time A switch control signal turns the primary switch on, and the third time control signal triggers the primary switch control signal to turn the primary switch off; and a third time control circuit for controlling the The time control signal generates the third time control signal to determine the on-time of the primary switch.
TW106124520A 2017-04-18 2017-07-21 Flyback power converter circuit with active clamping and zero voltage switching and conversion control circuit thereof TWI626821B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/892,724 US10181782B2 (en) 2017-04-18 2018-02-09 Flyback power converter circuit with active clamping and zero voltage switching and conversion control circuit thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201762486771P 2017-04-18 2017-04-18
US201762486747P 2017-04-18 2017-04-18
US201762486755P 2017-04-18 2017-04-18
US62/486,755 2017-04-18
US62/486,771 2017-04-18
US62/486,747 2017-04-18

Publications (2)

Publication Number Publication Date
TWI626821B true TWI626821B (en) 2018-06-11
TW201840111A TW201840111A (en) 2018-11-01

Family

ID=63255825

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106124520A TWI626821B (en) 2017-04-18 2017-07-21 Flyback power converter circuit with active clamping and zero voltage switching and conversion control circuit thereof

Country Status (2)

Country Link
CN (1) CN108736730B (en)
TW (1) TWI626821B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113131745A (en) * 2021-03-16 2021-07-16 广州金升阳科技有限公司 Control method and control circuit of flyback power supply
US11211873B2 (en) 2019-01-31 2021-12-28 Acer Incorporated Power conversion device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113489328B (en) * 2018-11-08 2024-02-27 立锜科技股份有限公司 Zero-voltage switching control circuit, flyback power supply circuit and control method thereof
CN111162676B (en) * 2018-11-08 2023-07-25 立锜科技股份有限公司 Flyback power supply circuit and zero voltage switching control circuit and control method thereof
CN109639149B (en) 2018-12-26 2020-07-28 西安华为技术有限公司 ACF converter, voltage conversion method and electronic equipment
CN110661402B (en) * 2019-09-29 2021-03-02 广州金升阳科技有限公司 Self-adaptive ZVS circuit and control method thereof
TWI726465B (en) * 2019-10-30 2021-05-01 宏碁股份有限公司 Power supply capable of reducing hold up time of output capacitor
TWI746259B (en) * 2020-06-02 2021-11-11 立錡科技股份有限公司 Flyback power converter circuit and conversion control circuit and control method thereof
TWI822091B (en) * 2021-09-06 2023-11-11 立錡科技股份有限公司 Half-bridge flyback power converter and control method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101242145B (en) * 2007-02-08 2011-05-04 佛山市顺德区顺达电脑厂有限公司 Master suppress circuit applicable to return power converter
CN102208873B (en) * 2010-06-11 2013-11-06 崇贸科技股份有限公司 Active clamp circuit of quasi-resonant fly-back power converter
TWI513164B (en) * 2014-04-18 2015-12-11 Lite On Technology Corp Flyback active clamping power converter
TWI521851B (en) * 2014-05-07 2016-02-11 光寶科技股份有限公司 Hybrid mode active clamping power transformer
TWI538369B (en) * 2014-12-10 2016-06-11 遠東科技大學 Dc-dc flyback converter for recycling leakage energy

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI358188B (en) * 2008-09-17 2012-02-11 Delta Electronics Inc Forward-flyback converter with active-clamp circui
US8009444B2 (en) * 2009-04-30 2011-08-30 Hungkuang University Boost device for voltage boosting
US8299730B2 (en) * 2010-02-09 2012-10-30 Power Integrations, Inc. Integrated on-time extension for non-dissipative bleeding in a power supply
CN102307017B (en) * 2011-09-16 2014-09-10 浙江大学 Control method applied to active-clamp flyback miniature photovoltaic grid-connected inverter device
CN103795260B (en) * 2014-01-21 2016-01-20 广州金升阳科技有限公司 A kind of incomplementarity flyback active clamp converter
US9941798B2 (en) * 2014-02-14 2018-04-10 Infineon Technologies Austria Ag Switched-mode power conversion
CN104300795B (en) * 2014-10-11 2017-08-11 广州金升阳科技有限公司 A kind of anti exciting converter and its control method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101242145B (en) * 2007-02-08 2011-05-04 佛山市顺德区顺达电脑厂有限公司 Master suppress circuit applicable to return power converter
CN102208873B (en) * 2010-06-11 2013-11-06 崇贸科技股份有限公司 Active clamp circuit of quasi-resonant fly-back power converter
TWI472131B (en) * 2010-06-11 2015-02-01 System General Corp Active-clamp circuit for quasi-resonant flyback power converter
TWI513164B (en) * 2014-04-18 2015-12-11 Lite On Technology Corp Flyback active clamping power converter
TWI521851B (en) * 2014-05-07 2016-02-11 光寶科技股份有限公司 Hybrid mode active clamping power transformer
TWI538369B (en) * 2014-12-10 2016-06-11 遠東科技大學 Dc-dc flyback converter for recycling leakage energy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11211873B2 (en) 2019-01-31 2021-12-28 Acer Incorporated Power conversion device
CN113131745A (en) * 2021-03-16 2021-07-16 广州金升阳科技有限公司 Control method and control circuit of flyback power supply

Also Published As

Publication number Publication date
TW201840111A (en) 2018-11-01
CN108736730B (en) 2020-09-01
CN108736730A (en) 2018-11-02

Similar Documents

Publication Publication Date Title
TWI626821B (en) Flyback power converter circuit with active clamping and zero voltage switching and conversion control circuit thereof
US10181782B2 (en) Flyback power converter circuit with active clamping and zero voltage switching and conversion control circuit thereof
TWI650926B (en) Return-type power conversion circuit with active clamp and conversion control circuit and control method thereof
US9997988B2 (en) Zero-crossing detection circuit
US10224828B1 (en) DC-DC power converters and methods of operating DC-DC power converters
KR101811740B1 (en) Hybrid control techniques for series resonant converter
Oruganti et al. Soft-switched DC/DC converter with PWM control
US11437916B2 (en) Adaptive zero voltage switching control
US20040125619A1 (en) Soft-switching power converter
Yamamoto et al. PFM and PWM Hybrid controlled LLC converter
JP2001224170A (en) Switching power circuit
Borage et al. Characteristics and design of an asymmetrical duty-cycle-controlled LCL-T resonant converter
JP5641368B2 (en) Switching power supply
Kang et al. Quasiresonant control with a dynamic frequency selector and constant current startup technique for 92% peak efficiency and 85% light-load efficiency flyback converter
US6404654B1 (en) Self-oscillation type resonant flyback converter utilizing charge stored effect of the P-N diode
CN109713904B (en) Flyback power conversion circuit and conversion control circuit and control method thereof
US6906931B1 (en) Zero-voltage switching half-bridge DC-DC converter topology by utilizing the transformer leakage inductance trapped energy
TWI650927B (en) Zero voltage switching flyback converter for primary switch turn-off transitions
TW202201891A (en) Resonant half-bridge flyback power converter and primary controller circuit and control method thereof
TW202247587A (en) Converter for a wide range of output voltage and control method thereof
CN113131745A (en) Control method and control circuit of flyback power supply
Mallik et al. A practical and cost effective wide range 6kW LLC converter for EV charging infrastructure
KR20170059390A (en) Soft-switching full-bridge converter and control method thereof
Hwu et al. Ultrahigh step-down converter with active clamp
Ling et al. The soft-start analysis of a full-bridge LLC converter with hybrid control strategy