TWI605368B - Pressure-sensing imput device - Google Patents

Pressure-sensing imput device Download PDF

Info

Publication number
TWI605368B
TWI605368B TW105116899A TW105116899A TWI605368B TW I605368 B TWI605368 B TW I605368B TW 105116899 A TW105116899 A TW 105116899A TW 105116899 A TW105116899 A TW 105116899A TW I605368 B TWI605368 B TW I605368B
Authority
TW
Taiwan
Prior art keywords
pressure sensing
sensing electrode
pressure
input device
touch
Prior art date
Application number
TW105116899A
Other languages
Chinese (zh)
Other versions
TW201702840A (en
Inventor
陳風
何加友
陳藝琴
Original Assignee
宸鴻科技(廈門)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宸鴻科技(廈門)有限公司 filed Critical 宸鴻科技(廈門)有限公司
Publication of TW201702840A publication Critical patent/TW201702840A/en
Application granted granted Critical
Publication of TWI605368B publication Critical patent/TWI605368B/en

Links

Description

壓力感測輸入裝置 Pressure sensing input device

本發明關於壓力感測技術領域,特別關於一種壓力輸入裝置。 The invention relates to the field of pressure sensing technology, and in particular to a pressure input device.

透明導電膜現已廣泛應用於平板顯示、光伏元件及觸控面板和電磁遮罩等領域。其中ITO(IndiumTinOxide,摻錫氧化銦)薄膜是其中常用的導電膜之一,但是隨著發展,新的產品對導電膜的觸壓精準度及靈敏度的提出了更高的要求,在透明導電膜上由ITO形成的電極存在如下的問題:(1)隨著電阻及應用尺寸變大,電極間的電流傳送速率變慢,從而導致相應速度(指接觸指尖到檢測出該位置的時間)變慢;(2)由ITO形成的導電膜在被施加壓力時,僅形變量較小,電阻變化不大,壓力感測的精度較差;(3)隨著感測電極的長度不斷增加,而線寬也不斷減小,現有ITO形成的感測電極的電阻變大造成觸壓信號失真;(4)ITO成本高昂,製造程式複雜。針對ITO存在的問題,尋找具有優良性能的ITO替代材料,成為業界努力的方向。 Transparent conductive films are now widely used in flat panel displays, photovoltaic elements, touch panels and electromagnetic masks. Among them, ITO (Indium Tin Oxide) film is one of the commonly used conductive films, but with the development of new products, higher requirements are placed on the precision and sensitivity of the conductive film. The electrode formed of ITO has the following problems: (1) As the resistance and application size become larger, the current transfer rate between the electrodes becomes slower, causing the corresponding speed (referring to the time when the fingertip is touched to detect the position) (2) When the conductive film formed of ITO is applied with pressure, only the shape variable is small, the resistance changes little, and the accuracy of the pressure sensing is poor; (3) as the length of the sensing electrode increases, the line The width is also continuously reduced, and the resistance of the sensing electrode formed by the existing ITO is increased to cause distortion of the contact voltage; (4) ITO is expensive and the manufacturing process is complicated. In view of the problems of ITO, finding ITO replacement materials with excellent performance has become the direction of the industry.

為克服現有整合式觸控輸入裝置及採用ITO材料作 為導電材料存在的問題,本發明提供了一種具有壓力感應檢測功能的壓力感測輸入裝置。 To overcome the existing integrated touch input device and use ITO material For the problem of the presence of a conductive material, the present invention provides a pressure sensing input device having a pressure sensing detection function.

本發明解決技術問題的技術方案是提供一種壓力感測輸入裝置,包括:一第一基板;一第一導電層,包括複數條第一壓力感測電極,設置於第一基板的表面,用以感測壓力大小,第一壓力感測電極由金屬網格形成;壓力感測晶片,與第一壓力感測電極電連接,壓力感測晶片通過檢測第一壓力感測電極在受到壓力後產生的電阻變化量實現對壓力大小的檢測。 The technical solution of the present invention is to provide a pressure sensing input device, comprising: a first substrate; a first conductive layer, comprising a plurality of first pressure sensing electrodes disposed on a surface of the first substrate, Sensing the magnitude of the pressure, the first pressure sensing electrode is formed by a metal mesh; the pressure sensing wafer is electrically connected to the first pressure sensing electrode, and the pressure sensing wafer is generated by detecting the first pressure sensing electrode after being subjected to pressure The amount of change in resistance enables the detection of the magnitude of the pressure.

優選地,金屬網格由複數個奈米級金屬顆粒構成,複數個奈米級金屬顆粒在受到壓力後相互擠壓導致金屬網格電阻發生變化。 Preferably, the metal mesh is composed of a plurality of nano-sized metal particles, and the plurality of nano-sized metal particles are pressed against each other under pressure to cause a change in the resistance of the metal mesh.

優選地,金屬網格的線寬為1μm~10μm。 Preferably, the metal grid has a line width of 1 μm to 10 μm.

優選地,第一壓力感測電極呈放射狀、曲線彎折狀或螺旋狀。 Preferably, the first pressure sensing electrode is radially, curved, or spiral.

優選地,第一壓力感測電極包括靠近第一基板的下部與遠離第一基板的上部,下部的線徑小於上部的線徑。 Preferably, the first pressure sensing electrode includes a lower portion adjacent to the first substrate and an upper portion away from the first substrate, and a wire diameter of the lower portion is smaller than a wire diameter of the upper portion.

優選地,第一導電層進一步包括一第一壓力感測配置區和一與第一壓力感測配置區面積互補的第一觸控感測配置區,複數條第一壓力感測電極設置於第一壓力感測配置區,第一觸控感測配置區內設有複數條第一觸控感測電極,第一觸控感測電極用於檢測多點觸控。 Preferably, the first conductive layer further includes a first pressure sensing arrangement area and a first touch sensing arrangement area complementary to the area of the first pressure sensing arrangement area, and the plurality of first pressure sensing electrodes are disposed at the first The first touch sensing configuration area is provided with a plurality of first touch sensing electrodes, and the first touch sensing electrodes are used for detecting multi-touch.

優選地,第一觸控感測電極之間交錯互補並通過連接絕緣塊橋接,第一壓力感測電極設置於第一觸控感測電極之間間隔區域。 Preferably, the first touch sensing electrodes are alternately staggered and bridged by connecting the insulating blocks, and the first pressure sensing electrodes are disposed in the spaced regions between the first touch sensing electrodes.

優選地,第一觸控感測電極由金屬網格形成,金屬網格的線寬為1μm~10μm;金屬網格由複數個奈米級金屬顆粒構成。 Preferably, the first touch sensing electrode is formed by a metal mesh having a line width of 1 μm to 10 μm; and the metal mesh is composed of a plurality of nano metal particles.

優選地,第一壓力感測電極的線寬小於第一觸控感測電極的線寬。 Preferably, the line width of the first pressure sensing electrode is smaller than the line width of the first touch sensing electrode.

優選地,第一觸控感測電極進一步包括間隔設置的第一方向觸控感測電極及第二方向觸控感測電極,第一壓力感測電極設置於第一方向觸控感測電極及第二方向觸控感測電極之間。 Preferably, the first touch sensing electrode further includes a first direction touch sensing electrode and a second direction touch sensing electrode, wherein the first pressure sensing electrode is disposed on the first direction touch sensing electrode and The second direction is between the touch sensing electrodes.

優選地,壓力感測輸入裝置進一步包括第二基板及第二導電層,第二導電層設於第二基板表面,第二導電層包括複數條第二觸控感測電極和/或第二壓力感測電極;第一觸控感測電極與第二觸控感測電極用於檢測多點觸控。 Preferably, the pressure sensing input device further includes a second substrate and a second conductive layer, the second conductive layer is disposed on the surface of the second substrate, and the second conductive layer includes a plurality of second touch sensing electrodes and/or a second pressure The sensing electrode; the first touch sensing electrode and the second touch sensing electrode are used for detecting multi-touch.

優選地,壓力感測輸入裝置進一步包括一保護蓋板,保護蓋板具有第一表面及相對設置的第二表面,第一表面供使用者施加以觸壓動作,第二表面靠近第一基板。 Preferably, the pressure sensing input device further comprises a protective cover having a first surface and an oppositely disposed second surface, the first surface being for a user to apply a touch action, the second surface being adjacent to the first substrate.

優選地,第一基板為一保護蓋板,保護蓋板具有第一表面及相對設置的第二表面,第一表面供使用者施加以觸壓動作。 Preferably, the first substrate is a protective cover, and the protective cover has a first surface and an oppositely disposed second surface, the first surface being applied by a user for a touch action.

優選地,壓力感測電極的應變計因數大於0.5。 Preferably, the strain sensing element of the pressure sensing electrode is greater than 0.5.

優選地,壓力感測電極能實現多點壓力偵測。 Preferably, the pressure sensing electrode enables multi-point pressure detection.

與現有技術相比,首先,本發明中提供了一種壓力感測輸入裝置,壓力感測輸入裝置包括由金屬網格形成的複數條壓力感測電極,其中,金屬網格由複數個奈米級金屬顆粒構成, 其在受到壓力後相互擠壓導致金屬網格電阻發生變化。與現有技術中採用ITO材料製備感應電極相比,本發明中的金屬網格在受到壓力時能夠產生更大的形變。在本發明中,當使用者施加一觸壓動作,作用力傳遞到第一導電層後,導電層中的各對應壓力感測電極產生相應動作,金屬網格相應發生物理形變,此外,由於構成壓力感測電極的金屬網格由複數個奈米級金屬顆粒形成,奈米級金屬顆粒在受力過程中,奈米級金屬顆粒與顆粒之間也會帶來微觀空間位置的變化,與物理形變共同作用,帶來更為顯著的電阻值變化,由壓力感測輸入裝置中的壓力感測晶片對信號進行處理,從而計算獲得觸壓動作的位置及觸壓的力量大小,並進一步實現不同的觸壓力量可實現的不同的功能操作。 Compared with the prior art, firstly, the present invention provides a pressure sensing input device comprising a plurality of pressure sensing electrodes formed by a metal mesh, wherein the metal mesh is composed of a plurality of nanometers. Made of metal particles, They squeeze each other under pressure and cause a change in the resistance of the metal grid. Compared to prior art fabrication of sensing electrodes using ITO materials, the metal mesh of the present invention is capable of producing greater deformation when subjected to pressure. In the present invention, when the user applies a touch action and the force is transmitted to the first conductive layer, each corresponding pressure sensing electrode in the conductive layer generates a corresponding action, and the metal mesh correspondingly undergoes physical deformation, and further, due to the composition The metal grid of the pressure sensing electrode is formed by a plurality of nano-sized metal particles. During the stress process, the nano-scale metal particles and the particles also bring about changes in the position of the microscopic space, and the physical The deformation acts together to bring about a more significant change in the resistance value. The pressure sensing chip in the pressure sensing input device processes the signal to calculate the position of the touch action and the force of the touch pressure, and further realize the difference. The amount of contact pressure can be achieved with different functional operations.

本發明創新性地採用金屬網格製備壓力感測電極,有效將金屬網格的電阻特性及奈米級金屬顆粒的受壓後微觀空間位置的變化特點相結合,從而獲得一種具有高靈敏度及精準度壓力感測的壓力感測輸入裝置,這樣的設計可以極大的提高使用者使用產品的體驗度和滿意度。 The invention innovatively uses a metal mesh to prepare a pressure sensing electrode, effectively combining the resistance characteristics of the metal mesh and the change characteristics of the nano-scale metal particles after pressing, thereby obtaining a high sensitivity and precision. The pressure sensing input device of the pressure sensing, such a design can greatly improve the user experience and satisfaction of using the product.

本發明中由金屬網格構成的壓力感測電極中靠近基板的壓力感測電極的下部的線徑小於遠離基板的壓力感測電極的上部的線徑,且壓力感測電極的橫截面的形狀可為半弧形、倒三角形、梯形等,這樣的設置有利於應力集中,以使壓力感測電極在「觸」和「壓」過程中的電阻值的變化更為顯著。 In the pressure sensing electrode composed of a metal mesh in the present invention, a wire diameter of a lower portion of the pressure sensing electrode near the substrate is smaller than a wire diameter of an upper portion of the pressure sensing electrode remote from the substrate, and a shape of a cross section of the pressure sensing electrode It can be semi-arc, inverted triangle, trapezoidal, etc. This arrangement is conducive to stress concentration, so that the resistance of the pressure sensing electrode during the "touch" and "pressure" changes more significantly.

在本發明所提供的由金屬網格構成的壓力感測輸入裝置中,在一個導電層上可同時形成金屬網格圖案化的壓力感測電極及觸控感測電極,從而在一個導電層中實現壓力檢測及觸控 位置檢測的功能。其中,壓力感測電極可以根據手指按壓壓力感測觸控屏,造成壓力感測電極發生微觀形變而造成阻值的變化,然後與觸控感測電極共同作用,通過壓力感測晶片偵測阻值變化大小從而可以準確判定按壓力度的大小,可以兼顧二維座標和三維觸壓力度的精準檢測。 In the pressure sensing input device composed of a metal mesh provided by the present invention, a metal grid patterned pressure sensing electrode and a touch sensing electrode can be simultaneously formed on one conductive layer, thereby being in a conductive layer. Implement pressure detection and touch The function of position detection. The pressure sensing electrode can sense the touch screen according to the pressure of the finger pressing, causing the microscopic deformation of the pressure sensing electrode to cause a change in the resistance value, and then interacting with the touch sensing electrode to detect the resistance through the pressure sensing wafer. The value of the change can accurately determine the magnitude of the pressing force, and can accurately measure the two-dimensional coordinates and the three-dimensional touch pressure.

本發明所提供由金屬網格構成的壓力感測輸入裝置中可包括兩層及以上的導電層,導電層可包括壓力感測電極與觸控感測電極中的至少一種。壓力感測輸入裝置還可進一步包括保護層和/或光學匹配層和/或保護蓋板,從而可以根據需求獲得性能更佳的壓力感測輸入裝置。其中,當壓力感測電極與觸控感測電極在同一層壓力感測輸入裝置時,相較於傳統的壓力感測外貼在觸控屏的結構,本發明所提供的壓力感測輸入裝置的厚度更小,成本更低。而且在整合的時候,壓力感測電極與觸控感測電極分別位於面積互補的壓力感測配置區域觸控感測配置區,從而可實現在降低壓力感測輸入裝置厚度的同時降低其可視性的效果。 The pressure sensing input device provided by the metal mesh of the present invention may include two or more conductive layers, and the conductive layer may include at least one of a pressure sensing electrode and a touch sensing electrode. The pressure sensing input device may further include a protective layer and/or an optical matching layer and/or a protective cover such that a better performing pressure sensing input device may be obtained as desired. Wherein, when the pressure sensing electrode and the touch sensing electrode are in the same layer pressure sensing input device, the pressure sensing input device provided by the present invention is compared with the structure of the touch screen compared with the conventional pressure sensing The thickness is smaller and the cost is lower. Moreover, during integration, the pressure sensing electrode and the touch sensing electrode are respectively located in the touch sensing configuration area of the pressure sensing arrangement area with complementary areas, thereby reducing the visibility of the pressure sensing input device while reducing the visibility thereof. Effect.

本發明所提供的壓力感測輸入裝置中金屬網格壓力感測電極的線寬小於觸控感測電極的線寬,在單位面積內,壓力感測電極的線長大於觸控感測電極的線長,可進一步使施加的作用力集中,從而使金屬網格壓力感測電極獲得更大的形變,從而提高觸控位置與壓力感測的精準度和靈敏度。 In the pressure sensing input device provided by the present invention, the line width of the metal mesh pressure sensing electrode is smaller than the line width of the touch sensing electrode, and the line length of the pressure sensing electrode is larger than the touch sensing electrode in the unit area. The length of the wire further concentrates the applied force, so that the metal mesh pressure sensing electrode obtains a larger deformation, thereby improving the accuracy and sensitivity of the touch position and pressure sensing.

10‧‧‧金屬網格壓力感測輸入裝置 10‧‧‧Metal mesh pressure sensing input device

101‧‧‧第一基板 101‧‧‧First substrate

1011‧‧‧上部 1011‧‧‧ upper

1012‧‧‧下部 1012‧‧‧ lower

103‧‧‧導電層 103‧‧‧ Conductive layer

1031‧‧‧第一壓力感測電極 1031‧‧‧First pressure sensing electrode

1032‧‧‧第一電極連接線 1032‧‧‧First electrode connection line

104‧‧‧壓力感測晶片 104‧‧‧ Pressure Sensing Wafer

1041‧‧‧惠斯通電橋電路 1041‧‧‧ Wheatstone Bridge Circuit

20‧‧‧壓力感測輸入裝置 20‧‧‧ Pressure sensing input device

201‧‧‧導電層 201‧‧‧ Conductive layer

202‧‧‧第一壓力感測電極 202‧‧‧First pressure sensing electrode

203‧‧‧第二電極連接線 203‧‧‧Second electrode connection line

2031‧‧‧發送線 2031‧‧‧Send line

2032‧‧‧接收線 2032‧‧‧ receiving line

204‧‧‧壓力感測晶片 204‧‧‧ Pressure Sensing Wafer

2041‧‧‧惠斯通電橋電路 2041‧‧‧ Wheatstone Bridge Circuit

6013‧‧‧第一方向觸控感測電極 6013‧‧‧First direction touch sensing electrode

60131‧‧‧第一方向觸控感測電極凸出部 60131‧‧‧First direction touch sensing electrode protrusion

6014‧‧‧第二方向觸控感測電極 6014‧‧‧Second direction touch sensing electrode

6015‧‧‧第一電極連接線 6015‧‧‧First electrode connection line

60141‧‧‧第二方向觸控感測電極凸出部 60141‧‧‧Second direction touch sensing electrode protrusion

6021‧‧‧第一壓力感測電極 6021‧‧‧First pressure sensing electrode

6031‧‧‧第一觸控感測電極 6031‧‧‧First touch sensing electrode

70‧‧‧壓力感測輸入裝置 70‧‧‧ Pressure sensing input device

702‧‧‧第一觸控感測電極 702‧‧‧First touch sensing electrode

703‧‧‧第一壓力感測電極 703‧‧‧First pressure sensing electrode

71‧‧‧第一基板 71‧‧‧First substrate

72‧‧‧第一導電層 72‧‧‧First conductive layer

721‧‧‧第一方向觸控感測電極 721‧‧‧First direction touch sensing electrode

7211‧‧‧第一觸控感測導接段 7211‧‧‧First touch sensing junction

30‧‧‧壓力感測輸入裝置 30‧‧‧ Pressure sensing input device

31‧‧‧第一基板 31‧‧‧First substrate

32‧‧‧第一導電層 32‧‧‧First conductive layer

321‧‧‧壓力感測配置區 321‧‧‧ Pressure sensing configuration area

3211‧‧‧第一壓力感測電極 3211‧‧‧First pressure sensing electrode

322‧‧‧第一觸控感測配置區 322‧‧‧First touch sensing configuration area

3221‧‧‧第一觸控感測電極 3221‧‧‧First touch sensing electrode

34‧‧‧壓力觸控感測晶片 34‧‧‧ Pressure touch sensing chip

341‧‧‧惠斯通電橋電路 341‧‧‧ Wheatstone Bridge Circuit

40‧‧‧壓力感測輸入裝置 40‧‧‧ Pressure sensing input device

40’‧‧‧壓力感測輸入裝置 40'‧‧‧ Pressure Sensing Input Device

40”‧‧‧壓力感測輸入裝置 40”‧‧‧ Pressure Sensing Input Device

41‧‧‧第一導電層 41‧‧‧First conductive layer

411‧‧‧第一壓力感測電極 411‧‧‧First pressure sensing electrode

412‧‧‧第一觸控感測電極 412‧‧‧First touch sensing electrode

42‧‧‧第一基板 42‧‧‧First substrate

43‧‧‧保護層 43‧‧‧Protective layer

44‧‧‧光學匹配層 44‧‧‧Optical matching layer

45‧‧‧保護蓋板 45‧‧‧Protection cover

50‧‧‧壓力感測輸入裝置 50‧‧‧ Pressure sensing input device

51‧‧‧保護蓋板 51‧‧‧ protective cover

52‧‧‧第一導電層 52‧‧‧First conductive layer

521‧‧‧第一壓力感測電極 521‧‧‧First pressure sensing electrode

522‧‧‧第一觸控感測電極 522‧‧‧First touch sensing electrode

722‧‧‧第一方向壓力感測電極 722‧‧‧First direction pressure sensing electrode

7221‧‧‧第一連接段 7221‧‧‧First connection segment

723‧‧‧第二方向觸控感測電極 723‧‧‧Second direction touch sensing electrode

7231‧‧‧第二觸控感測導接段 7231‧‧‧Second touch sensing junction

724‧‧‧第二方向壓力感測電極 724‧‧‧Second direction pressure sensing electrode

7241‧‧‧第二連接段 7241‧‧‧Second connection

725‧‧‧第一絕緣結構 725‧‧‧First insulation structure

80‧‧‧壓力感測輸入裝置 80‧‧‧ Pressure sensing input device

80’‧‧‧壓力感測輸入裝置 80'‧‧‧ Pressure Sensing Input Device

81‧‧‧第一基板 81‧‧‧First substrate

810‧‧‧第一導電層 810‧‧‧First conductive layer

811‧‧‧第一壓力感測電極 811‧‧‧First pressure sensing electrode

812‧‧‧第一觸控感測電極 812‧‧‧First touch sensing electrode

813‧‧‧第一方向觸控感測電極 813‧‧‧First direction touch sensing electrode

814‧‧‧第二方向觸控感測電極 814‧‧‧Second direction touch sensing electrode

815‧‧‧連接絕緣塊 815‧‧‧Connecting insulation block

82‧‧‧第一觸控感測配置區 82‧‧‧First touch sensing configuration area

821‧‧‧第一壓力感測電極 821‧‧‧First pressure sensing electrode

83‧‧‧第一壓力感測配置區 83‧‧‧First pressure sensing configuration area

1001‧‧‧壓印膠層 1001‧‧‧imprinted rubber layer

1002‧‧‧第一基板 1002‧‧‧First substrate

1003‧‧‧圖案化凹槽 1003‧‧‧ patterned grooves

1004‧‧‧壓力感測電極網格圖案凹槽 1004‧‧‧ Pressure sensing electrode grid pattern groove

53‧‧‧第一基板 53‧‧‧First substrate

55‧‧‧第二導電層 55‧‧‧Second conductive layer

551‧‧‧第二觸控感測電極 551‧‧‧Second touch sensing electrode

56‧‧‧第二基板 56‧‧‧second substrate

60‧‧‧壓力感測輸入裝置 60‧‧‧ Pressure sensing input device

602‧‧‧第一基板 602‧‧‧First substrate

603‧‧‧第一導電層 603‧‧‧First conductive layer

604‧‧‧第一觸控感測配置區 604‧‧‧First touch sensing configuration area

605‧‧‧壓力感測配置區 605‧‧‧ Pressure sensing configuration area

1005‧‧‧觸控感測電極網格圖案凹槽 1005‧‧‧Touch sensing electrode grid pattern groove

1006‧‧‧壓力感測電極 1006‧‧‧ Pressure sensing electrode

1007‧‧‧觸控感測電極 1007‧‧‧Touch sensing electrode

1008‧‧‧第一導電層 1008‧‧‧First conductive layer

S1、S2、S211、S212、S213、S214、S221、S222、S223‧‧‧步驟 S1, S2, S211, S212, S213, S214, S221, S222, S223‧‧ steps

第1A圖是本發明壓力感測輸入裝置第一實施例的立體爆炸結構示意圖。 Fig. 1A is a schematic view showing the three-dimensional explosion structure of the first embodiment of the pressure sensing input device of the present invention.

第1B圖是第1A圖所示壓力感測輸入裝置的導電層的正視示意圖。 Fig. 1B is a front elevational view showing the conductive layer of the pressure sensing input device shown in Fig. 1A.

第1C圖是第1A圖中沿A-A方向的剖面結構示意圖。 Fig. 1C is a schematic cross-sectional view taken along line A-A in Fig. 1A.

第1D圖是第1C圖的又一變形實施例的剖面結構示意圖。 Fig. 1D is a schematic cross-sectional view showing still another modified embodiment of Fig. 1C.

第1E圖是第1C圖的又一變形實施例的剖面結構示意圖。 Fig. 1E is a schematic cross-sectional view showing still another modified embodiment of Fig. 1C.

第2圖是本發明壓力感測輸入裝置第二實施例導電層的正視示意圖。 Figure 2 is a front elevational view showing the conductive layer of the second embodiment of the pressure sensing input device of the present invention.

第3A圖是本發明壓力感測輸入裝置第三實施例的立體爆炸結構示意圖。 Fig. 3A is a perspective view showing the three-dimensional explosion structure of the third embodiment of the pressure sensing input device of the present invention.

第3B圖是第3A圖所示壓力感測輸入裝置的導電層的正視示意圖。 Figure 3B is a front elevational view of the conductive layer of the pressure sensing input device of Figure 3A.

第4A圖是本發明壓力感測輸入裝置第四實施例的截面結構示意圖。 Fig. 4A is a schematic cross-sectional view showing a fourth embodiment of the pressure sensing input device of the present invention.

第4B圖是第4A圖的又一變形實施例的截面結構示意圖。 Fig. 4B is a schematic cross-sectional view showing still another modified embodiment of Fig. 4A.

第4C圖是第4A圖的又一變形實施例的截面結構示意圖。 Fig. 4C is a schematic cross-sectional view showing still another modified embodiment of Fig. 4A.

第5圖是本發明壓力感測輸入裝置第五實施例的立體爆炸結構示意圖。 Fig. 5 is a perspective view showing the three-dimensional explosion structure of the fifth embodiment of the pressure sensing input device of the present invention.

第6A圖是本發明壓力感測輸入裝置第六實施例的立體爆炸結構示意圖。 Fig. 6A is a schematic view showing the three-dimensional explosion structure of the sixth embodiment of the pressure sensing input device of the present invention.

第6B圖是第6A圖中導電層局部的平面結構示意圖。 Fig. 6B is a schematic plan view showing a part of the conductive layer in Fig. 6A.

第7A圖是本發明壓力感測輸入裝置第七實施例的平面結構示意圖。 Fig. 7A is a plan view showing the structure of the seventh embodiment of the pressure sensing input device of the present invention.

第7B圖是第7A圖中I處放大示意圖。 Fig. 7B is an enlarged schematic view of I in Fig. 7A.

第8A圖是本發明壓力感測輸入裝置第八實施例的結構示意圖。 Fig. 8A is a schematic structural view of an eighth embodiment of the pressure sensing input device of the present invention.

第8B圖是第8A圖的又一變形實施例的結構示意圖。 Fig. 8B is a schematic structural view of still another modified embodiment of Fig. 8A.

第9圖是本發明第九實施例壓力感測輸入裝置的製造方法流程圖。 Figure 9 is a flow chart showing a method of manufacturing the pressure sensing input device of the ninth embodiment of the present invention.

第10A圖是第9圖步驟S2的製造方法流程圖。 Fig. 10A is a flow chart showing the manufacturing method of step S2 of Fig. 9.

第10B圖是第10A圖步驟S211的截面結構示意圖。 Fig. 10B is a schematic cross-sectional view of the step S211 of Fig. 10A.

第10C圖是第10A圖步驟S212的截面結構示意圖。 Fig. 10C is a schematic cross-sectional view showing the step S212 of Fig. 10A.

第10D圖是第10A圖步驟S213的截面結構示意圖。 Fig. 10D is a schematic cross-sectional view of the step S213 of Fig. 10A.

第11A圖是步驟S211的又一變形實施例的截面結構示意圖。 Fig. 11A is a schematic cross-sectional view showing still another modified embodiment of the step S211.

第11B圖是步驟S212的又一變形實施例的截面結構示意圖。 11B is a schematic cross-sectional view showing still another modified embodiment of step S212.

第11C圖是步驟S213的又一變形實施例的的截面結構示意圖。 11C is a schematic cross-sectional view showing still another modified embodiment of step S213.

第12圖是本發明第十實施例壓力感測輸入裝置的製造方法流程圖。 Figure 12 is a flow chart showing a method of manufacturing the pressure sensing input device of the tenth embodiment of the present invention.

為了使本發明的目的,技術方案及優點更加清楚明白,以下結合附圖及實施實例,對本發明進行進一步詳細說明。應當理解,此處所描述的具體實施例僅僅用以解釋本發明,並不用於限定本發明。 The present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.

金屬網格(Metal Mesh,簡稱MM)係屬於一種由銀或銅原子,或銀的氧化物,以印刷方式形成網格狀圖案的導電 材料。 Metal Mesh (MM) is a kind of conductive form formed by silver or copper atoms or silver oxides in a grid pattern. material.

金屬網格由複數個奈米級金屬顆粒構成,複數個奈米級金屬顆粒在受到壓力後相互擠壓,使構成金屬網格的奈米級金屬顆粒之間微觀空間位置發生變化,從而導致金屬網格電阻發生變化。 The metal mesh is composed of a plurality of nano-sized metal particles, and the plurality of nano-sized metal particles are pressed against each other under pressure to change the position of the microscopic space between the nano-sized metal particles constituting the metal mesh, thereby causing the metal The grid resistance changes.

奈米級金屬顆粒包括但不受限於:如導電銀墨水、奈米銀顆粒、銀或銅金屬及其氧化物等材料。其中,以導電銀墨水為例,其粒徑範圍為1~15nm,更優為2~10nm。 Nanoscale metal particles include, but are not limited to, materials such as conductive silver inks, nanosilver particles, silver or copper metals, and oxides thereof. Wherein, the conductive silver ink is taken as an example, and the particle diameter ranges from 1 to 15 nm, more preferably from 2 to 10 nm.

本發明構成壓力感測電極的金屬網格的作用原理如下,但並不以此為限:當使用者用手指觸壓之後,將致使構成壓力感測電極的金屬網格中的奈米級金屬顆粒之間產生微小形變,相對應的壓力感測配置區的線長將發生變化(因被按壓),進而影響壓力感測電極的等效阻值。在按壓時,構成壓力感測電極的金屬網格除了有物理形變,在形成金屬網格的奈米級金屬顆粒之間還可由於壓力的作用,彼此之間距離靠近,使奈米級金屬顆粒之前的空間位置發生變化,從而導致電阻的變化。因此,當觸壓的力道不同時,由複數個奈米級金屬顆粒構成的金屬網格將產生不同的阻值變化。如果觸壓的力道較大,則由金屬網格形成的壓力感測電極的阻值具有較大的變化量;相反地,如果觸壓的力道較小,則由金屬網格形成的壓力感測電極的阻值具有較小的變化量。因此,藉由測量由金屬網格形成的壓力感測電極的阻值變化量,便可判斷出觸壓的力道。 The working principle of the metal mesh constituting the pressure sensing electrode of the present invention is as follows, but is not limited thereto: when the user touches with a finger, the nano metal in the metal mesh constituting the pressure sensing electrode is caused. A slight deformation occurs between the particles, and the line length of the corresponding pressure sensing arrangement area will change (because it is pressed), thereby affecting the equivalent resistance value of the pressure sensing electrode. When pressed, the metal mesh constituting the pressure sensing electrode has physical deformation, and the nano-sized metal particles forming the metal mesh may also be close to each other due to the action of pressure, so that the nano-sized metal particles are The previous spatial position changes, resulting in a change in resistance. Therefore, when the force of the touch is different, the metal mesh composed of a plurality of nano-sized metal particles will produce different resistance changes. If the force of the touch pressure is large, the resistance of the pressure sensing electrode formed by the metal mesh has a large amount of change; conversely, if the force of the touch pressure is small, the pressure sensing formed by the metal mesh The resistance of the electrode has a small amount of change. Therefore, by measuring the amount of change in the resistance of the pressure sensing electrode formed by the metal mesh, the force of the contact pressure can be judged.

由於壓力感測電極通常由相同材料製作而成,壓力感測電極的材料選擇應考慮的一個重要參數,即材料的應變計因 數(Gage Factor;GF)。材料的應變計因數(Gage Factor;GF)如下計算方式所示:GF=(△R/R)/(△L/L); 其中,R為壓力感測電極在未被觸壓時的等效阻值,△R為壓力感測電極被觸壓後的阻值變化量,L為壓力感測電極未被觸壓時的線長,△L為壓力感測電極被觸壓後的線長變化量。在一實施例中,為了更好的偵測△R的大小,壓力感測電極的應變計因數GF系大於0.5,用以提供較佳的靈敏度。 Since the pressure sensing electrodes are usually made of the same material, an important parameter that should be considered in the material selection of the pressure sensing electrodes is the strain gauge of the material. Number (Gage Factor; GF). The gage factor (GF) of the material is shown as follows: GF = (ΔR / R) / (△ L / L); Where R is the equivalent resistance value of the pressure sensing electrode when it is not touched, ΔR is the resistance change value after the pressure sensing electrode is touched, and L is the line when the pressure sensing electrode is not touched. Long, ΔL is the amount of change in line length after the pressure sensing electrode is pressed. In one embodiment, in order to better detect the magnitude of ΔR, the strain sensing factor GF of the pressure sensing electrode is greater than 0.5 to provide better sensitivity.

請參閱第1A~1B圖,本發明壓力感測輸入裝置第一實施例提供了一種金屬網格壓力感測輸入裝置10,壓力感測輸入裝置包括第一基板101,設置於第一基板101表面的第一導電層103及壓力感測晶片104。其中,第一導電層103表面包括複數條第一壓力感測電極1031,第一壓力感測電極1031為M×N等間距矩陣排布。壓力感測晶片104與第一壓力感測電極1031電連接。 Referring to FIGS. 1A-1B , a first embodiment of the pressure sensing input device of the present invention provides a metal mesh pressure sensing input device 10 . The pressure sensing input device includes a first substrate 101 disposed on the surface of the first substrate 101 . The first conductive layer 103 and the pressure sensing wafer 104. The surface of the first conductive layer 103 includes a plurality of first pressure sensing electrodes 1031, and the first pressure sensing electrodes 1031 are arranged in an M×N equidistant matrix. The pressure sensing wafer 104 is electrically coupled to the first pressure sensing electrode 1031.

第一壓力感測電極1031用以感測壓力大小,第一壓力感測電極1031由金屬網格形成。金屬網格由複數個奈米級金屬顆粒構成,複數個奈米級金屬顆粒在受到壓力後相互擠壓導致金屬網格電阻發生變化。金屬網格的線寬為1μm~10μm。壓力感測晶片104通過檢測第一壓力感測電極1031在受到壓力後產生的電阻變化量實現對壓力大小的檢測。 The first pressure sensing electrode 1031 is used to sense the magnitude of the pressure, and the first pressure sensing electrode 1031 is formed by a metal mesh. The metal mesh is composed of a plurality of nano-sized metal particles, and a plurality of nano-sized metal particles are pressed against each other under pressure to cause a change in the resistance of the metal mesh. The metal grid has a line width of 1 μm to 10 μm. The pressure sensing wafer 104 realizes the detection of the magnitude of the pressure by detecting the amount of change in resistance of the first pressure sensing electrode 1031 after being subjected to pressure.

壓力感測晶片104與第一壓力感測電極1031之間通過多條第一電極連接線1032連接,各第一壓力感測電極1031之間通過第一電極連接線1032構成回路。 The pressure sensing wafer 104 and the first pressure sensing electrode 1031 are connected by a plurality of first electrode connecting lines 1032, and each of the first pressure sensing electrodes 1031 forms a loop through the first electrode connecting line 1032.

第一電極連接線1032的材料不局限為ITO,還可以 為透明的奈米銀線,奈米銅線,石墨烯,聚苯胺,PEDOT:PSS透明導電高分子材料,碳奈米管,石墨烯等。 The material of the first electrode connecting line 1032 is not limited to ITO, and It is a transparent nano silver wire, nano copper wire, graphene, polyaniline, PEDOT: PSS transparent conductive polymer material, carbon nanotube, graphene and the like.

在一些實施例中,壓力感測晶片104還可包括惠斯通電橋電路1041,惠斯通電橋電路1041對第一壓力感測電極1031的電阻值的改變進行信號處理,進而使得壓力感測晶片104可以更加精確的檢測出外接壓力的大小,從而進行後續不同的控制信號輸出。 In some embodiments, the pressure sensing die 104 may further include a Wheatstone bridge circuit 1041 that signals the change in the resistance value of the first pressure sensing electrode 1031 to thereby cause the pressure sensing wafer 104 can more accurately detect the magnitude of the external pressure, so as to carry out subsequent different control signal output.

在一些實施例中,第一壓力感測電極1031也可直接設置於第一基板101的表面。 In some embodiments, the first pressure sensing electrode 1031 can also be disposed directly on the surface of the first substrate 101.

請參閱第1C~1E圖,本發明壓力感測輸入裝置第一實施例中第一壓力感測電極1031包括靠近第一基板101的下部1012及遠離第一基板101的上部1011,其中,下部1012的線徑小於上部1011的線徑。第一壓力感測電極1031的橫截面的形狀可具體為梯形、半弧形、倒三角形或不規則形狀等。 The first pressure sensing electrode 1031 in the first embodiment of the pressure sensing input device of the present invention includes a lower portion 1012 adjacent to the first substrate 101 and an upper portion 1011 away from the first substrate 101, wherein the lower portion 1012 The wire diameter is smaller than the wire diameter of the upper portion 1011. The shape of the cross section of the first pressure sensing electrode 1031 may be specifically a trapezoidal shape, a semi-arc shape, an inverted triangle shape, an irregular shape, or the like.

第一壓力感測電極1031的高度為1μm~8μm、更優為2μm~6μm,其線寬為1μm~7μm、更優為1μm~6μm、更進一步優選為1μm~5μm。 The height of the first pressure sensing electrode 1031 is 1 μm to 8 μm, more preferably 2 μm to 6 μm, and the line width is 1 μm to 7 μm, more preferably 1 μm to 6 μm, still more preferably 1 μm to 5 μm.

請參閱第2圖,本發明金屬網格壓力感測輸入裝置第二實施例中提供了一種壓力感測輸入裝置20,其包括第一導電層201。第一導電層201包括以M×N陣列排布的第一壓力感測電極202,此處以示意方式僅列舉少量的第一壓力感測電極202,在實際產品中,第一壓力感測電極202亦可為以半徑為R(R為大於0的正數)的圓周或矩陣陣列排布,也可以為上述兩種方式的結合或其他不規則排布方式,第一導電層201還包括壓力感測晶片 204。 Referring to FIG. 2, a second embodiment of the metal mesh pressure sensing input device of the present invention provides a pressure sensing input device 20 including a first conductive layer 201. The first conductive layer 201 includes a first pressure sensing electrode 202 arranged in an M×N array. Here, only a small number of first pressure sensing electrodes 202 are illustrated in a schematic manner. In an actual product, the first pressure sensing electrode 202 It may also be arranged in a circumferential or matrix array with a radius R (R is a positive number greater than 0), or a combination of the above two modes or other irregular arrangement, and the first conductive layer 201 further includes pressure sensing. Wafer 204.

其中,第一壓力感測電極202為繞線式放射狀,且具有兩個埠。每一第一壓力感測電極202搭配有第二電極連接線203,第二電極連接線203包括一發送線2031及一接收線2032,發送線2031搭接到第一壓力感測電極202的其中一端部,接收線2032搭接到第一壓力感測電極202的另一端部,且發送線2031和接收線2032同時導通連接至壓力感測晶片204。壓力感測晶片204內設置有前述的惠斯通電橋電路2041,發送線2301、第一壓力感測電極202、接收線2302與惠斯通電橋電路2041形成一可以檢測第一壓力感測電極202阻值變化的導電回路。 The first pressure sensing electrode 202 is in a radial radial shape and has two turns. Each of the first pressure sensing electrodes 202 is associated with a second electrode connection line 203. The second electrode connection line 203 includes a transmission line 2031 and a receiving line 2032. The transmission line 2031 is overlapped with the first pressure sensing electrode 202. At one end, the receiving line 2032 is overlapped to the other end of the first pressure sensing electrode 202, and the transmitting line 2031 and the receiving line 2032 are simultaneously connected to the pressure sensing wafer 204. The pressure sensing chip 204 is provided with the aforementioned Wheatstone bridge circuit 2041. The transmitting line 2301, the first pressure sensing electrode 202, the receiving line 2302 and the Wheatstone bridge circuit 2041 form a first pressure sensing electrode 202. Conductive loop with varying resistance.

第二電極連接線203的材料可包括但不受限於:ITO、IZO等金屬氧化物類材料,奈米銀線,奈米銅線,石墨烯,聚苯胺或其他導電高分子材料之任意一種或其組合。 The material of the second electrode connection line 203 may include, but is not limited to, metal oxide materials such as ITO, IZO, nano silver wire, nano copper wire, graphene, polyaniline or other conductive polymer materials. Or a combination thereof.

請參閱第3A~3B圖,本發明金屬網格壓力感測輸入裝置第三實施例中提供了一種壓力感測輸入裝置30,壓力感測輸入裝置30包括一第一基板31,一第一導電層32及壓力觸控感測晶片34。 Referring to FIGS. 3A-3B, a third embodiment of the metal mesh pressure sensing input device of the present invention provides a pressure sensing input device 30. The pressure sensing input device 30 includes a first substrate 31, a first conductive Layer 32 and pressure touch sensing wafer 34.

第一導電層32包括一壓力感測配置區321和一與壓力感測配置區321面積互補的第一觸控感測配置區322,複數條第一壓力感測電極3211設置於壓力感測區配置區321,第一觸控感測配置區區322內設有複數條第一觸控感測電極3221。 The first conductive layer 32 includes a pressure sensing arrangement area 321 and a first touch sensing arrangement area 322 complementary to the area of the pressure sensing arrangement area 321 . The plurality of first pressure sensing electrodes 3211 are disposed in the pressure sensing area. In the configuration area 321 , a plurality of first touch sensing electrodes 3221 are disposed in the first touch sensing configuration area 322 .

具體地,第一導電層32的第一壓力感測電極3211為彈簧狀曲線造型,第一壓力感測電極3211與第一觸控感測電極3221不接觸,避免電信號的干擾,彈簧狀曲線造型的第一壓力感 測電極3211分佈可以大大提高其感應外界壓力及形變能力,進而提高精確度,為了取得足夠的空間佈設第一壓力感測電極3211,生產過程中可以將第一觸控感測電極3221的線寬適度縮小,進而為第一壓力感測電極3211的佈設提供空間,並且控制第一壓力感測電極3211的線寬小於第一觸控感測電極3221,從而能夠取得較大的形變,產生較大的電阻變化,使得第一壓力感測電極3211達到較好的感應壓力的效果。 Specifically, the first pressure sensing electrode 3211 of the first conductive layer 32 has a spring-like curve shape, and the first pressure sensing electrode 3211 is not in contact with the first touch sensing electrode 3221, thereby avoiding interference of an electrical signal, and a spring-like curve. The first sense of pressure The distribution of the measuring electrode 3211 can greatly improve the external pressure and deformation capability, thereby improving the accuracy. In order to obtain sufficient space for the first pressure sensing electrode 3211, the line width of the first touch sensing electrode 3221 can be used in the production process. Appropriately reducing, further providing a space for the layout of the first pressure sensing electrode 3211, and controlling the line width of the first pressure sensing electrode 3211 to be smaller than the first touch sensing electrode 3221, so that a larger deformation can be obtained, resulting in a larger The change in resistance causes the first pressure sensing electrode 3211 to achieve a better induction pressure effect.

第一觸控感測電極3221可用於檢測多點觸控。 The first touch sensing electrode 3221 can be used to detect multi-touch.

第一觸控感測電極3221由金屬網格形成,金屬網格的線寬為1μm~10μm。其中,金屬網格也是由複數個奈米級金屬顆粒構成。 The first touch sensing electrode 3221 is formed by a metal mesh having a line width of 1 μm to 10 μm. Among them, the metal mesh is also composed of a plurality of nano-sized metal particles.

壓力觸控感測晶片34還可進一步包括惠斯通電橋電路341。 The pressure touch sensing die 34 may further include a Wheatstone bridge circuit 341.

請參閱第4A圖,本發明金屬網格壓力感測輸入裝置第四實施例中提供了一種壓力感測輸入裝置40,壓力感測輸入裝置40包括第一導電層41、支撐第一導電層41的第一基板42及至少一保護層43,第一導電層41上設有第一壓力感測電極411及第一觸控感測電極412。保護層43設置在第一導電層41上。保護層43用於保護第一導電層41,防止第一導電層41表面氧化、腐蝕等直接暴露在外所產生的一系列損壞而導致導電性降低的問題,有利於保持第一導電層41的平整性,提高其使用壽命。 Referring to FIG. 4A, a fourth embodiment of the metal mesh pressure sensing input device of the present invention provides a pressure sensing input device 40. The pressure sensing input device 40 includes a first conductive layer 41 and supports the first conductive layer 41. The first substrate 42 and the at least one protective layer 43 are provided with a first pressure sensing electrode 411 and a first touch sensing electrode 412. The protective layer 43 is disposed on the first conductive layer 41. The protective layer 43 is used for protecting the first conductive layer 41, preventing a series of damage caused by direct oxidation of the surface of the first conductive layer 41, corrosion, etc., resulting in a decrease in conductivity, and is advantageous for maintaining the flatness of the first conductive layer 41. Sex, improve its service life.

保護層43的材料可採用高分子材料及氧化物,其具體包括但不限於:聚乙炔、聚苯胺、聚芳撐、聚噻吩、石墨烯、並五苯、聚苯撐乙炔(PPE)、聚對苯撐乙烯(PPV)、聚(3,4-亞乙基 二氧吩)(PEDOT)、聚苯乙烯磺酸(PSS)、聚(3-己基噻吩)(P3HT)、聚(3-辛基噻吩)(P3OT)、聚(芳醚碸)、聚(C-61-丁酸-甲酯)(PCBM)、聚[2-甲氧基-5-(2’-乙基-己氧基)-1,4-苯撐乙烯撐](MEH-PPV)、氮化矽、二氧化矽、類光阻劑等物質或它們的任意組合。 The material of the protective layer 43 may be a polymer material and an oxide, and specifically includes, but not limited to, polyacetylene, polyaniline, polyarylene, polythiophene, graphene, pentacene, polyphenylene acetylene (PPE), poly P-phenylene ethylene (PPV), poly(3,4-ethylene Dioxophene) (PEDOT), polystyrenesulfonic acid (PSS), poly(3-hexylthiophene) (P3HT), poly(3-octylthiophene) (P3OT), poly(arylene ether), poly(C) -61-butyric acid-methyl ester) (PCBM), poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV), A material such as tantalum nitride, cerium oxide, a photoresist, or any combination thereof.

請參閱第4B圖,本發明金屬網格壓力感測輸入裝置第四實施例提供的又一種壓力感測輸入裝置40’,壓力感測輸入裝置40’包括一第一導電層41、一支撐第一導電層41的第一基板42及至少一光學匹配層44。第一導電層41上設有第一壓力感測電極411及第一觸控感測電極412。光學匹配層44設置在第一基板42下表面,與設置在第一基板42上表面的第一導電層41相對應設置(此處及後述的“上”或“下”為相對位置,並非絕對定義,同時可以理解為上表面顛倒時也即成為下表面)。 Referring to FIG. 4B, another pressure sensing input device 40' is provided in the fourth embodiment of the metal mesh pressure sensing input device of the present invention. The pressure sensing input device 40' includes a first conductive layer 41 and a supporting portion. A first substrate 42 of a conductive layer 41 and at least one optical matching layer 44. The first conductive sensing electrode 411 and the first touch sensing electrode 412 are disposed on the first conductive layer 41. The optical matching layer 44 is disposed on the lower surface of the first substrate 42 and is disposed corresponding to the first conductive layer 41 disposed on the upper surface of the first substrate 42 (herein, "upper" or "lower" to be described later is a relative position, not absolute The definition can also be understood as the lower surface when the upper surface is reversed.

光學匹配層44為一層低折射率的光學膜,其可以降低奈米級金屬顆粒的反射。低折射率為折射率小於1.6,優選為1.1~1.6,如1.1,1.25,1.32,1.38,1.46,1.50,1.52。 Optical matching layer 44 is a low refractive index optical film that reduces the reflection of nanoscale metal particles. The low refractive index is a refractive index of less than 1.6, preferably 1.1 to 1.6, such as 1.1, 1.25, 1.32, 1.38, 1.46, 1.50, 1.52.

在另外的變形實施例中,光學匹配層44的位置不受限制,可以放置在壓力感測輸入裝置40’中的任意位置。 In a further variant embodiment, the position of the optical matching layer 44 is not limited and can be placed anywhere in the pressure sensing input device 40'.

請參閱第4C圖,本發明金屬網格壓力感測輸入裝置第四實施例提供的又一種壓力感測輸入裝置40”,壓力感測輸入裝置40”包括一第一導電層41、一支撐第一導電層41的第一基板42及一保護蓋板45,第一導電層41上設有第一壓力感測電極411及第一觸控感測電極412。保護蓋板45設置在第一導電層41上,用於保護第一導電層41上的第一壓力感測電極411及第一觸控感測 電極412。 Referring to FIG. 4C, a fourth embodiment of the metal mesh pressure sensing input device of the present invention provides a pressure sensing input device 40", the pressure sensing input device 40" includes a first conductive layer 41, a support portion A first substrate 42 and a protective cover 45 are disposed on the first conductive layer 41. The first conductive sensing electrode 411 and the first touch sensing electrode 412 are disposed on the first conductive layer 41. The protective cover 45 is disposed on the first conductive layer 41 for protecting the first pressure sensing electrode 411 on the first conductive layer 41 and the first touch sensing Electrode 412.

保護蓋板45還可以添加於本實施例中任一種壓力感測輸入裝置40或壓力感測輸入裝置40’中,還可進一步設置於本發明第一至第三實施例中任一壓力感測輸入裝置中。 The protective cover 45 can also be added to any of the pressure sensing input device 40 or the pressure sensing input device 40' in this embodiment, and can further be disposed in any of the first to third embodiments of the present invention. In the input device.

其中,在本實施例中,第一觸控感測電極412的高度為1μm~6μm,優選為2μm~5μm,其線寬為1μm~12μm,更優選為1μm~10μm。 In the present embodiment, the height of the first touch sensing electrode 412 is 1 μm to 6 μm, preferably 2 μm to 5 μm, and the line width thereof is 1 μm to 12 μm, and more preferably 1 μm to 10 μm.

請參閱第5圖,本發明金屬網格壓力感測輸入裝置第五實施例提供一種壓力感測輸入裝置50,壓力感測輸入裝置50包括保護蓋板51、第一基板53、第二基板56及分別形成在第一基板53和第二基板56上的第一導電層52和第二導電層55,保護蓋板51具有一第一表面和一第二表面,且第一表面和第二表面相對設置,第一表面供使用者給於按壓動作。第一導電層52位於保護蓋板51和第一基板53之間。第一導電層52包括第一壓力感測電極521和第一觸控感測電極522,第一壓力感測電極521由金屬網格形成,第二導電層55包括間隔均勻設置的第二觸控感測電極551。當使用者施加一觸壓動作給保護蓋板51,作用力傳遞到保護蓋板51之下的第一導電層52中第一壓力感測電極521,引起第一壓力感測電極521的形變,從而引起電阻變化,電阻變化通過壓力感測晶片(圖未示)處理從而確定壓力的大小。此外,當使用者的手指靠近時,影響了第一觸控感測電極522和第二觸控感測電極551之間的電容耦合,從而通過相應晶片處理可檢測出手指觸摸的相應位置。綜上所述,通過第一導電層52對應第一壓力感測電極521和第一觸控感測電極522,以及第二導電層55中對應的第二 觸控感測電極551感測出觸壓動作的位置及觸壓的力量,可利用不同的觸壓力量實現不同的功能操作,這樣的設計可以極大的提高使用者使用產品的體驗度和滿意度。 Referring to FIG. 5, a fifth embodiment of the metal mesh pressure sensing input device of the present invention provides a pressure sensing input device 50. The pressure sensing input device 50 includes a protective cover 51, a first substrate 53, and a second substrate 56. And a first conductive layer 52 and a second conductive layer 55 respectively formed on the first substrate 53 and the second substrate 56, the protective cover 51 having a first surface and a second surface, and the first surface and the second surface Relatively disposed, the first surface is provided for the user to press. The first conductive layer 52 is located between the protective cover 51 and the first substrate 53. The first conductive layer 52 includes a first pressure sensing electrode 521 and a first touch sensing electrode 522. The first pressure sensing electrode 521 is formed by a metal grid, and the second conductive layer 55 includes a second touch uniformly disposed. The electrode 551 is sensed. When the user applies a touch action to the protective cover 51, the force is transmitted to the first pressure sensing electrode 521 in the first conductive layer 52 under the protective cover 51, causing deformation of the first pressure sensing electrode 521, Thereby causing a change in resistance, the change in resistance is processed by a pressure sensing wafer (not shown) to determine the magnitude of the pressure. In addition, when the user's finger approaches, the capacitive coupling between the first touch sensing electrode 522 and the second touch sensing electrode 551 is affected, so that the corresponding position of the finger touch can be detected by the corresponding wafer processing. In summary, the first conductive layer 52 corresponds to the first pressure sensing electrode 521 and the first touch sensing electrode 522, and the second corresponding layer of the second conductive layer 55 The touch sensing electrode 551 senses the position of the touch action and the force of the touch pressure, and can realize different functional operations by using different touch pressure amounts. Such a design can greatly improve the user experience and satisfaction of using the product. .

第一觸控感測電極522、第二觸控感測電極551的材料可以為氧化銦錫(ITO),還可以為奈米銀線,奈米銅線,石墨烯,聚苯胺,PEDOT(聚噻吩的衍生物聚乙撐二氧噻吩):PSS(聚苯乙烯磺酸鈉)透明導電高分子材料,碳奈米管,石墨烯等。 The material of the first touch sensing electrode 522 and the second touch sensing electrode 551 may be indium tin oxide (ITO), or may be nano silver wire, nano copper wire, graphene, polyaniline, PEDOT (poly) Derivative of thiophene polyethylene dioxythiophene): PSS (sodium polystyrene sulfonate) transparent conductive polymer material, carbon nanotubes, graphene and the like.

在另外的實施例中,第一觸控感測電極522也為由金屬網格形成,其通過與由金屬網格形成的第一壓力感測電極521在同一製程中形成,因而,減少了製程的工序,降低成本。 In another embodiment, the first touch sensing electrode 522 is also formed by a metal mesh, which is formed in the same process as the first pressure sensing electrode 521 formed by the metal mesh, thereby reducing the process. Processes to reduce costs.

在另外的實施例中,第二導電層55上還可同時設置第二壓力感測電極(圖未示)及第二觸控感測電極551,也可以單獨設置第二壓力感測電極(圖未示)。在另外的實施例中,第一壓力感測電極521及第二壓力感測電極(圖未示)能實現多點壓力偵測。 In another embodiment, a second pressure sensing electrode (not shown) and a second touch sensing electrode 551 may be disposed on the second conductive layer 55, or a second pressure sensing electrode may be separately disposed. Not shown). In other embodiments, the first pressure sensing electrode 521 and the second pressure sensing electrode (not shown) enable multi-point pressure detection.

請參閱第6A~6B圖,本發明金屬網格壓力感測輸入裝置第六實施例與第三實施例的區別在於:在本實施例中壓力感測輸入裝置60的第一導電層603包括第一觸控感測電極6031及第一壓力感測電極6021,第一觸控感測電極6031可進一步包括交錯互補間隔設置的第一方向觸控感測電極6013及第二方向觸控感測電極6014。第一導電層603還包括第一觸控感測配置區604及第一壓力感測配置區605。第一方向觸控感測電極6013和第二方向觸控感測電極6014形成在第一觸控感測配置區604,第一壓力感測電極6021形成在第一壓力感測配置區605。 Referring to FIGS. 6A-6B, the sixth embodiment of the metal mesh pressure sensing input device of the present invention is different from the third embodiment in that the first conductive layer 603 of the pressure sensing input device 60 includes the first embodiment. The first touch sensing electrode 6031 and the first touch sensing electrode 6031 may further include a first direction touch sensing electrode 6013 and a second direction touch sensing electrode 6014. The first conductive layer 603 further includes a first touch sensing arrangement area 604 and a first pressure sensing arrangement area 605. The first direction touch sensing electrode 6013 and the second direction touch sensing electrode 6014 are formed in the first touch sensing arrangement area 604 , and the first pressure sensing electrode 6021 is formed in the first pressure sensing arrangement area 605 .

為了有足夠的空間佈設第一壓力感測電極6021,第一觸控感測電極6031(即第一方向觸控感測電極6013和第二方向觸控感測電極6014)在第一基板602上所占的空間要相對縮小。 The first touch sensing electrode 6031 (ie, the first direction touch sensing electrode 6013 and the second direction touch sensing electrode 6014) is disposed on the first substrate 602. The space occupied is relatively small.

第一方向觸控感測電極6013和第二方向觸控感測電極6014分別包括多個沿第二方向延伸的第一方向觸控感測電極凸出部60131和第二方向觸控感測電極凸出部60141,第一方向觸控感測電極6013及第二方向觸控感測電極6014彼此交叉互補,第一方向觸控感測電極凸出部60131和第二方向觸控感測電極凸出部60141間隔設置,形成交錯互補的圖形,設置在壓力感測配置區605中的第一壓力感測電極6021曲線彎折狀設置在第一方向觸控感測電極6013和第二方向觸控感測電極6014交叉互補後形成的相應的間隙中,第一壓力感測電極6021與第一方向觸控感測電極6013、第二方向觸控感測電極6014不接觸,從而可以有效避免電信號的干擾,而曲線造型分佈的第一壓力感測電極6021可以大大提高其感應外界壓力及形變能力,進而提高其感測的精確度,為了取得足夠的空間佈設第一壓力感測電極6021及取得較大的電阻變化,生產過程中可以將第一方向觸控感測電極6013和第二方向觸控感測電極6014的線寬適度縮小並且控制第一壓力感測電極6021的線寬小於第一方向觸控感測電極6013和第二方向觸控感測電極6014的線寬,優選第一壓力感測電極6021的線寬為第一方向觸控感測電極6013或第二方向觸控感測電極6014的線寬0.5~0.8倍。第一方向觸控感測電極凸出部60131和第二方向觸控感測電極凸出部60141的數量形狀及其分佈不限。 The first direction touch sensing electrode 6013 and the second direction touch sensing electrode 6014 respectively include a plurality of first direction touch sensing electrode protrusions 60131 and second direction touch sensing electrodes extending in the second direction. The first direction touch sensing electrode 6013 and the second direction touch sensing electrode 6014 are complementary to each other, and the first direction touch sensing electrode protrusion 60131 and the second direction touch sensing electrode protrusion The output portions 60141 are spaced apart to form a staggered complementary pattern. The first pressure sensing electrode 6021 disposed in the pressure sensing arrangement region 605 is curved and disposed in the first direction touch sensing electrode 6013 and the second direction touch. The first pressure sensing electrode 6021 is not in contact with the first direction touch sensing electrode 6013 and the second direction touch sensing electrode 6014 in the corresponding gap formed by the sensing electrodes 6014, so that the electrical signal can be effectively avoided. The interference, and the first pressure sensing electrode 6021 of the curved shape distribution can greatly improve the external pressure and deformation capability, thereby improving the sensing accuracy, and arranging the first pressure sensing power in order to obtain sufficient space. The pole 6021 can obtain a large resistance change, and the line width of the first direction touch sensing electrode 6013 and the second direction touch sensing electrode 6014 can be moderately reduced and the line of the first pressure sensing electrode 6021 can be controlled during the production process. The width is smaller than the line width of the first direction touch sensing electrode 6013 and the second direction touch sensing electrode 6014. Preferably, the line width of the first pressure sensing electrode 6021 is the first direction touch sensing electrode 6013 or the second direction. The line width of the touch sensing electrode 6014 is 0.5 to 0.8 times. The number shape and the distribution of the first direction touch sensing electrode protrusion 60131 and the second direction touch sensing electrode protrusion 60141 are not limited.

第一電極連接線6015分別從使第一壓力感測電極 6021兩端引出,連接到壓力感測晶片(圖未示),第一電極連接線6015的材料不局限為ITO,還可以為銀顆粒、奈米銀、IZO(ZnO:In)、AZO(ZnO:Al)、GZO(ZnO:Ga)、IGZO(In:Ga:Zn)、奈米銅線、石墨烯、聚苯胺、PEDOT/PSS透明導電高分子材料/碳奈米管/石墨烯等,此時第一基板602至少兩邊可以做成無邊框設計,得到無邊框觸控輸入裝置。 The first electrode connection line 6015 respectively makes the first pressure sensing electrode 6021 is led out at both ends and connected to a pressure sensing wafer (not shown). The material of the first electrode connecting line 6015 is not limited to ITO, and may also be silver particles, nano silver, IZO (ZnO: In), AZO (ZnO). : Al), GZO (ZnO: Ga), IGZO (In: Ga: Zn), nano copper wire, graphene, polyaniline, PEDOT / PSS transparent conductive polymer material / carbon nanotube / graphene, etc. At least two sides of the first substrate 602 can be made into a frameless design to obtain a frameless touch input device.

在本實施例中,可實現在同一層導電層(如第一導電層603)上實現觸控位置與壓力的同時感測,且可在一次印刷中同時完成第一觸控感測電極6031(包括第一方向觸控感測電極6013及第二方向觸控感測電極6014)和第一壓力感測電極6021的製作,大大簡化了製程,降低了成本。 In this embodiment, simultaneous sensing of the touch position and pressure on the same conductive layer (such as the first conductive layer 603) can be realized, and the first touch sensing electrode 6031 can be simultaneously completed in one printing ( The manufacturing of the first direction touch sensing electrode 6013 and the second direction touch sensing electrode 6014 and the first pressure sensing electrode 6021 greatly simplifies the process and reduces the cost.

請參閱第7A~7B圖,本發明第七實施例提供了一種壓力感測輸入裝置70,壓力感測輸入裝置70包括一第一基板71及設置在第一基板71上的第一導電層72,第一導電層72包括第一觸控感測電極702、第一壓力感測電極703及第一絕緣結構725,第一觸控感測電極702包括第一方向觸控感測電極721與第二方向觸控感測電極723,第一壓力感測電極703包括第一方向壓力感測電極722與第二方向壓力感測電極724。其中,第一方向觸控感測電極721可分為第一部分及第二部分,第一部分及第二部分位於第一絕緣結構725相對應的兩側,且第一方向觸控感測電極721為交錯分佈;第一方向壓力感測電極722可分為第一部分及第二部分,第一部分及第二部分分別位於第一絕緣結構725相對應的兩側,且第一方向壓力感測電極722為交錯分佈;第二方向觸控感測電極723可分為第一部分及第二部分,第一部分及第二部分位於第一絕 緣結構725相對應的兩側,且第二方向觸控感測電極723為交錯分佈;第二方向壓力感測電極724可分為第一部分及第二部分,第一部分及第二部分位於第一絕緣結構725相對應的兩側,且第二方向壓力感測電極724為交錯分佈。 Referring to FIGS. 7A-7B, a seventh embodiment of the present invention provides a pressure sensing input device 70. The pressure sensing input device 70 includes a first substrate 71 and a first conductive layer 72 disposed on the first substrate 71. The first conductive sensing layer 702 includes a first touch sensing electrode 702, a first pressure sensing electrode 703, and a first insulating structure 725. The first touch sensing electrode 702 includes a first direction touch sensing electrode 721 and a first The two-direction touch sensing electrode 723 includes a first direction pressure sensing electrode 722 and a second direction pressure sensing electrode 724. The first direction touch sensing electrode 721 can be divided into a first portion and a second portion. The first portion and the second portion are located on opposite sides of the first insulating structure 725, and the first direction touch sensing electrode 721 is The first direction pressure sensing electrode 722 can be divided into a first portion and a second portion. The first portion and the second portion are respectively located on opposite sides of the first insulating structure 725, and the first direction pressure sensing electrode 722 is The second direction touch sensing electrode 723 can be divided into a first part and a second part, and the first part and the second part are located in the first The second direction touch sensing electrodes 724 are divided into a first portion and a second portion, and the first portion and the second portion are located at the first side. The two sides of the insulating structure 725 correspond to each other, and the second direction pressure sensing electrodes 724 are staggered.

具體來說,本實施例中第一方向觸控感測電極721的第一觸控感測導接段7211與第一方向壓力感測電極722的第一連接段7221相互連接,且第二方向觸控感測電極723的第二觸控感測導接段7231與第二方向壓力感測電極724的第二連接段7241相互連接,即第一方向觸控感測電極721與第一方向壓力感測電極722之間以及第二方向觸控感測電極723與第二方向壓力感測電極724之間不必維持電性絕緣。在部分實施方式中,第一連接段7221與第一觸控感測導接段7211可為一體式結構,第二連接段7241與第二觸控感測導接段7231為一體式結構,但其實施方式不以此為限。 Specifically, the first touch sensing guiding segment 7211 of the first direction touch sensing electrode 721 and the first connecting segment 7221 of the first direction pressure sensing electrode 722 are connected to each other, and the second direction is The second touch sensing and guiding portion 7231 of the touch sensing electrode 723 and the second connecting portion 7241 of the second direction pressure sensing electrode 724 are connected to each other, that is, the first direction touch sensing electrode 721 and the first direction pressure It is not necessary to maintain electrical insulation between the sensing electrodes 722 and between the second direction touch sensing electrodes 723 and the second direction pressure sensing electrodes 724. In some embodiments, the first connecting section 7221 and the first touch sensing guiding section 7211 may be an integrated structure, and the second connecting section 7241 and the second touch sensing guiding section 7231 are integrated, but The implementation manner is not limited thereto.

當然,在其他實施例中,第一壓力感測電極703和第一觸控感測電極702不一定是交錯排布,也可將相應第一壓力感測電極703和第一觸控感測電極702呈對稱的方式設置,並不以此為限,任何位置的變化均屬於本發明範圍。 Of course, in other embodiments, the first pressure sensing electrode 703 and the first touch sensing electrode 702 are not necessarily staggered, and the corresponding first pressure sensing electrode 703 and the first touch sensing electrode may be used. 702 is arranged in a symmetrical manner, and is not limited thereto, and any change in position is within the scope of the present invention.

在其他實施例中,壓力感測輸入裝置70還可包括第二導電層(圖未示),第二導電層上設有如本實施例中第一導電層72中一致的第二壓力感測電極(圖未示)及第二觸控感測電極(圖未示)。 In other embodiments, the pressure sensing input device 70 may further include a second conductive layer (not shown), and the second conductive layer is provided with a second pressure sensing electrode that is consistent in the first conductive layer 72 in this embodiment. (not shown) and a second touch sensing electrode (not shown).

在本實施例中,造第一基板71的第一導電層72上實現觸控感應與壓力感測,一方面,可以節省製備的材料,使得壓 力感測輸入裝置整體的厚度得以減薄,另一方面,第一壓力感測電極703與第一觸控感測電極702在同一平面上,還可以防止壓力感測輸入裝置在執行壓力觸控感測時相互影響,從而保證壓力值感測與觸控感應的精準度。 In this embodiment, touch sensing and pressure sensing are implemented on the first conductive layer 72 of the first substrate 71. On the one hand, the prepared material can be saved, so that the pressure is made. The thickness of the force sensing input device is reduced. On the other hand, the first pressure sensing electrode 703 and the first touch sensing electrode 702 are on the same plane, and the pressure sensing input device is prevented from performing pressure touch. The mutual influence during sensing ensures the accuracy of pressure value sensing and touch sensing.

請參閱第8A圖,本發明第八實施例提供了一種壓力感測輸入裝置80,奈米銀線壓力感測輸入裝置80為結合了具有第一壓力感測電極811的壓力感測輸入裝置80的單層架橋結構,其中,壓力感測輸入裝置80將第一壓力感測電極811設計成與單層架橋結構中的電極共面。第一導電層810包括第一觸控感測配置區82及第一壓力感測配置區83。第一觸控感測電極812設置在第一觸控感測配置區82內,相鄰第一觸控感測電極812之間交錯互補且存在一定間距,第一壓力感測電極811設置在第一觸控感測電極812之間的第一壓力感測配置區83,第一壓力感測電極811可為一定線寬的不規則線條,第一壓力感測電極811不限定於折線,其還可以是曲線等。 Referring to FIG. 8A, an eighth embodiment of the present invention provides a pressure sensing input device 80. The nano silver line pressure sensing input device 80 is coupled with a pressure sensing input device 80 having a first pressure sensing electrode 811. The single layer bridging structure wherein the pressure sensing input device 80 designs the first pressure sensing electrode 811 to be coplanar with the electrodes in the single layer bridging structure. The first conductive layer 810 includes a first touch sensing arrangement area 82 and a first pressure sensing arrangement area 83. The first touch sensing electrodes 812 are disposed in the first touch sensing arrangement area 82, and the adjacent first touch sensing electrodes 812 are staggered and complementary with a certain interval. The first pressure sensing electrodes 811 are disposed in the first a first pressure sensing arrangement area 83 between the touch sensing electrodes 812, the first pressure sensing electrodes 811 may be irregular lines of a certain line width, and the first pressure sensing electrodes 811 are not limited to the broken lines, and It can be a curve or the like.

在本實施例中,具有第一壓力感測電極811的壓力感測輸入裝置80包括第一基板81及設置在第一基板81上的第一導電層810,第一導電層810包括若干個等間距排布的第一觸控感測電極812及設置在第一觸控感測電極812之間的第一壓力感測電極811。第一壓力感測電極811可為一個或以上。更進一步地,第一壓力感測電極811可設置在第一觸控感測電極812之間的第一壓力感測配置區83。其中,第一觸控感測電極812可分為第一方向觸控感測電極813及第二方向觸控感測電極814,第一方向觸控感測電極813與第二方向觸控感測電極814之間通過連接絕緣塊 815橋接。第一觸控感測電極812與第一壓力感測電極811之間互不接觸,可以避免干擾。 In the present embodiment, the pressure sensing input device 80 having the first pressure sensing electrode 811 includes a first substrate 81 and a first conductive layer 810 disposed on the first substrate 81. The first conductive layer 810 includes a plurality of The first touch sensing electrodes 812 are arranged at a distance and the first pressure sensing electrodes 811 disposed between the first touch sensing electrodes 812 . The first pressure sensing electrode 811 may be one or more. Further, the first pressure sensing electrode 811 can be disposed in the first pressure sensing configuration area 83 between the first touch sensing electrodes 812. The first touch sensing electrode 812 can be divided into a first direction touch sensing electrode 813 and a second direction touch sensing electrode 814, a first direction touch sensing electrode 813 and a second direction touch sensing. Insulation block is connected between the electrodes 814 815 bridge. The first touch sensing electrode 812 and the first pressure sensing electrode 811 are not in contact with each other, and interference can be avoided.

在本實施例中,第一觸控感測電極812與第一壓力感測電極811排布形成一個均勻分佈的電極圖形。在按壓的時候,第一壓力感測電極811除了有物理形變,奈米銀線之間也會因為壓力彼此靠近,從而導致電阻發生變化,這樣的設計可以有效提高觸壓動作所帶來的電阻值變化的顯著程度。 In this embodiment, the first touch sensing electrode 812 and the first pressure sensing electrode 811 are arranged to form a uniformly distributed electrode pattern. When pressed, the first pressure sensing electrode 811 has physical deformation, and the nano silver wires are also close to each other due to pressure, thereby causing a change in resistance. Such a design can effectively improve the resistance caused by the touch action. The significant degree of change in value.

此外,在本實施例中,在同一第一基板81的同一第一導電層810上同時實現觸控感測與壓力感測,且可在一次印刷中同時完成第一觸控感測電極812和第一壓力感測電極811的製作,從而簡化製程,降低製作成本。 In addition, in this embodiment, touch sensing and pressure sensing are simultaneously performed on the same first conductive layer 810 of the same first substrate 81, and the first touch sensing electrodes 812 and the first touch sensing electrodes 812 can be simultaneously completed in one printing. The first pressure sensing electrode 811 is fabricated to simplify the process and reduce the manufacturing cost.

如第8B圖中所示,本發明壓力感測輸入裝置第八實施例的又一變形實施例中,提供一種壓力感測輸入裝置80’,其與壓力感測輸入裝置80的區別在於:第一導電層810上第一壓力感測配置區83分佈在的第一觸控感測配置區82的四周,第一壓力感測配置區83內設置的第一壓力感測電極821與第一觸控感測配置區82內設置的第一觸控感測電極812之間互不接觸且形狀互補。 As shown in FIG. 8B, in a further modified embodiment of the eighth embodiment of the pressure sensing input device of the present invention, a pressure sensing input device 80' is provided, which differs from the pressure sensing input device 80 in that: A first pressure sensing arrangement area 83 on a conductive layer 810 is distributed around the first touch sensing arrangement area 82, and the first pressure sensing electrode 821 and the first touch are disposed in the first pressure sensing arrangement area 83. The first touch sensing electrodes 812 disposed in the control sensing configuration area 82 are not in contact with each other and have complementary shapes.

在另外的變形實施例中,第一壓力感測電極821的數量、形狀、分佈不受限制。 In another modified embodiment, the number, shape, and distribution of the first pressure sensing electrodes 821 are not limited.

請參閱第9圖,本發明第九實施例提供了一種壓力感測輸入裝置的製造方法,以下所關於的識別字號請參開本發明第三實施例第3A~3B圖,其具體包括以下的步驟:步驟S1:提供第一基板31;及步驟S2:在第一基板31的其中一表面上形成具有複數條壓力 感測電極3211的第一導電層32;壓力感測電極3211由金屬網格形成。 Referring to FIG. 9 , a ninth embodiment of the present invention provides a method for manufacturing a pressure sensing input device. The following is a reference to the third embodiment of the present invention. Step: Step S1: providing a first substrate 31; and Step S2: forming a plurality of pressures on one surface of the first substrate 31 The first conductive layer 32 of the sensing electrode 3211; the pressure sensing electrode 3211 is formed of a metal mesh.

其中,步驟S2進一步包括在第一導電層32上形成面積互補的第一壓力感測配置區321及第一觸控感測配置區3222,壓力感測電極3211設於第一壓力感測配置區321中,第一觸控感測配置區322內設有複數條第一觸控感測電極3221。 The step S2 further includes forming a first pressure sensing arrangement area 321 and a first touch sensing arrangement area 3222 having complementary areas on the first conductive layer 32. The pressure sensing electrode 3211 is disposed in the first pressure sensing arrangement area. In the 321 , a plurality of first touch sensing electrodes 3221 are disposed in the first touch sensing configuration area 322 .

採用本發明第九實施例的方法可以實現在同一層上製備獲得第一壓力感測電極3211及第一觸控感測電極3221。 According to the method of the ninth embodiment of the present invention, the first pressure sensing electrode 3211 and the first touch sensing electrode 3221 can be obtained on the same layer.

在上述的步驟S1中,第一基板31為整個壓力感測輸入裝置30提供支撐,其中,第一基板31的水滴角的角度為0°~30°,更優選的小於0°~10°。 In the above step S1, the first substrate 31 provides support for the entire pressure sensing input device 30, wherein the angle of the water drop angle of the first substrate 31 is 0° to 30°, more preferably less than 0° to 10°.

上述的第一基板31可包括但不受限於:剛性基板,如玻璃,強化玻璃,藍寶石玻璃等;也可以是柔性基板,如PEEK(polyetheretherketone,聚醚醚酮)、PI(Polyimide,聚醯亞胺)、PET(polyethylene terephthalate,聚對苯二甲酸乙二醇酯)、PC(polycarbonate,聚碳酸酯聚碳酸酯)、PES(polyethylene glycol succinate,聚丁二酸乙二醇酯)、PMMA(polymethylmethacrylate,聚甲基丙烯酸甲酯)、PVC(Polyvinyl chloride,聚氯乙烯)、PP(Polypropylene,聚丙烯)及其任意兩者的複合物等材料。其中,第一基板31還可為偏光片或濾光片基板。 The first substrate 31 may include, but is not limited to, a rigid substrate such as glass, tempered glass, sapphire glass, etc., or a flexible substrate such as PEEK (polyetheretherketone) or PI (Polyimide). Imine), PET (polyethylene terephthalate), PC (polycarbonate, polycarbonate), PES (polyethylene glycol succinate, polyethylene succinate), PMMA ( Polymethylmethacrylate, polymethyl methacrylate, PVC (Polyvinyl chloride), PP (Polypropylene, polypropylene) and a composite of any two of them. The first substrate 31 may also be a polarizer or a filter substrate.

步驟S2可以採用壓印法做成,如第10A~10D圖,其包括:步驟S211,在第一基板1002上形成壓印膠層1001; 步驟S212,在壓印膠層1001上製作出相應的圖案化凹槽1003;步驟S213,在上述圖案化凹槽1003中填充導電材料;及步驟S214,固化上述圖案化凹槽1003內的導電材料。 Step S2 can be formed by imprinting, as shown in FIGS. 10A-10D, comprising: step S211, forming an imprinting layer 1001 on the first substrate 1002; Step S212, a corresponding patterned groove 1003 is formed on the embossed layer 1001; in step S213, the conductive groove is filled in the patterned groove 1003; and in step S214, the conductive material in the patterned groove 1003 is cured. .

如第10B圖所示,步驟S211即於第一基板1002的上表面或下表面塗布壓印膠,從而形成壓印膠層(此處及後述的“上”或“下”為相對位置,並非絕對定義,同時可以理解為上表面顛倒時也即成為下表面)。壓印膠可包括但不受限於無溶劑的紫外固化亞克力樹脂、紫外固化丙烯酸酯類膠及聚碳酸酯。壓印膠層1001的厚度為2μm~25μm,更優為3μm~20μm。 As shown in FIG. 10B, in step S211, an embossing adhesive is applied on the upper surface or the lower surface of the first substrate 1002 to form an embossed adhesive layer (herein, "upper" or "lower" as described later is a relative position, not Absolute definition, at the same time can be understood as the upper surface when the upper surface is reversed). The embossing paste may include, but is not limited to, solvent-free UV-curable acryl resin, UV-curable acrylate-based glue, and polycarbonate. The thickness of the embossed layer 1001 is 2 μm to 25 μm, more preferably 3 μm to 20 μm.

如第10C圖所示,步驟S212,即在壓印膠層1001上製作出相應的圖案化凹槽1003。圖案化凹槽1003的深度應小於壓印膠層1001的厚度。圖案化凹槽1003的寬度為500nm~10μm,更優為1μm~10μm。圖案化凹槽1003的深度為2μm~11μm,更優為2μm~5μm。圖案化凹槽1003的深度/寬度的比值為0.5~2。 As shown in FIG. 10C, in step S212, a corresponding patterned groove 1003 is formed on the embossed layer 1001. The depth of the patterned recess 1003 should be less than the thickness of the embossed layer 1001. The width of the patterned groove 1003 is 500 nm to 10 μm, more preferably 1 μm to 10 μm. The depth of the patterned groove 1003 is 2 μm to 11 μm, more preferably 2 μm to 5 μm. The ratio of the depth/width of the patterned groove 1003 is 0.5 to 2.

圖案化凹槽1003中還包括壓力感測電極網格圖案凹槽1004及觸控感測電極網格圖案凹槽1005,為了使壓力感測電極1006獲得更大的形變量,其中,壓力感測電極網格圖案凹槽1004的深度大於觸控感測電極網格圖案凹槽1005的深度,壓力感測電極網格圖案凹槽1004的深度為2μm~6μm,線寬為1μm~7μm、更優為1μm~6μm、更進一步優選為1μm~5μm,觸控感測電極網格圖案凹槽1005的深度為1μm~5μm,線寬為2μm~10μm、更優為2μm~6μm。 The patterning groove 1003 further includes a pressure sensing electrode grid pattern groove 1004 and a touch sensing electrode grid pattern groove 1005, in order to obtain a larger deformation variable of the pressure sensing electrode 1006, wherein the pressure sensing The depth of the electrode grid pattern groove 1004 is greater than the depth of the touch sensing electrode grid pattern groove 1005. The depth of the pressure sensing electrode grid pattern groove 1004 is 2 μm~6 μm, and the line width is 1 μm~7 μm, which is better. The touch sensing electrode grid pattern groove 1005 has a depth of 1 μm to 5 μm, a line width of 2 μm to 10 μm, or more preferably 2 μm to 6 μm, in the range of 1 μm to 6 μm, and more preferably 1 μm to 5 μm.

如第10D圖所示,步驟S213,即在上述圖案化凹槽 1003中填充導電材料,具體為形成圖案化的若干個壓力感測電極1006,及圖案化相互連通的若干個觸控感測電極1007。導電材料均勻填設於圖案化凹槽1003的底部並相互連通。 As shown in FIG. 10D, step S213, that is, in the above patterned groove The conductive material is filled in 1003, specifically, a plurality of patterned pressure sensing electrodes 1006 are formed, and a plurality of touch sensing electrodes 1007 are patterned and connected to each other. The conductive material is uniformly filled at the bottom of the patterned groove 1003 and communicated with each other.

導電材料中還可加入暗色物質添加劑顆粒。其中,暗色物質添加劑顆粒可包括亞微米級(細微性直徑為100nm~1μm)的碳粉、鐵粉、氧化鐵或氧化銅中的至少一種或幾種的組合。暗色添加劑顆粒的粒徑為20nm~800nm,其粒徑還可進一步優選為40nm~600nm,更優為50nm~500nm。暗色添加劑顆粒占導電材料的重量百分比的範圍為5%~40%,其範圍優選為10%~35%,更優選為10%~30%。 Dark matter additive particles may also be added to the conductive material. Wherein, the dark matter additive particles may include at least one or a combination of several of a submicron order (fine diameter of 100 nm to 1 μm) of carbon powder, iron powder, iron oxide or copper oxide. The particle size of the dark additive particles is from 20 nm to 800 nm, and the particle diameter thereof is further preferably from 40 nm to 600 nm, more preferably from 50 nm to 500 nm. The dark additive particles may range from 5% to 40% by weight of the conductive material, and preferably range from 10% to 35%, more preferably from 10% to 30%.

步驟S214,即固化圖案化凹槽內的導電材料,形成導電網格圖案。採用紫外光固化導電材料,紫外光固化的波長優選為400nm。 Step S214, that is, curing the conductive material in the patterned groove to form a conductive mesh pattern. The ultraviolet light curing conductive material preferably has a wavelength of ultraviolet light curing of 400 nm.

在某些情況下(如溢膠、平整度不佳等),還可選擇進行拋光工藝。去除透明絕緣層(圖未示)表面多餘的導電材料,只保留圖案化凹槽(圖未示)中的導電材料,從而形成第一導電層1008;拋光工藝可以採用機械拋光、化學電解或化學腐蝕中的任意一種或其組合。 In some cases (such as overflow, poor flatness, etc.), you can also choose to carry out the polishing process. Removing the conductive material on the surface of the transparent insulating layer (not shown), leaving only the conductive material in the patterned recess (not shown) to form the first conductive layer 1008; the polishing process may be mechanical polishing, chemical electrolysis or chemistry Any one or combination of corrosion.

請參閱第11A~11C圖,系步驟S2的一變形方案,即在第一基板1002的上表面與下表面上同時塗布形成壓印膠層1001,對壓印膠層1001進行壓印形成圖案化凹槽1003,在上述圖案化凹槽1003中填充導電材料後,在第一基板1002的上表面與下表面的壓印膠層1001中形成多個由導電材料(如金屬)製成的細線(金屬細線)構成的網格而形成了相互連通的若干個壓力感測 電極1006及圖案化相互連通的若干個第一觸控感測電極1007。 Referring to FIGS. 11A-11C , a modification of step S2 is performed by simultaneously forming an embossing layer 1001 on the upper surface and the lower surface of the first substrate 1002, and embossing the embossed layer 1001 to form a pattern. The groove 1003 is formed with a plurality of thin wires made of a conductive material (such as metal) in the embossing layer 1001 of the upper surface and the lower surface of the first substrate 1002 after the conductive material is filled in the patterning groove 1003. a grid of metal thin wires) forms a plurality of pressure sensings that are connected to each other The electrode 1006 and the plurality of first touch sensing electrodes 1007 are patterned to communicate with each other.

請參閱第12圖,本發明第十實施例提供了又一種壓力感測輸入裝置的製造方法,其與本發明第九實施例的不同之處在於,步驟S2’中可具體包括以下步驟:S221,在第一基板1002的上下表面形成感光性銀鹽乳劑層;S222,對感光性銀鹽乳劑層中感光材料進行曝光處理;及S223,對曝光後的感光材料進行顯影處理。 Referring to FIG. 12, a tenth embodiment of the present invention provides a method for manufacturing a pressure sensing input device, which is different from the ninth embodiment of the present invention in that step S2' may specifically include the following steps: S221 Forming a photosensitive silver salt emulsion layer on the upper and lower surfaces of the first substrate 1002; S222, exposing the photosensitive material in the photosensitive silver salt emulsion layer; and S223, developing the exposed photosensitive material.

在步驟S221中,製作長條的感光材料,在第一基板1002的其中一表面形成第一感光性鹵化銀乳劑層(圖未示),而在第一基板1002的另一表面形成第二感光性鹵化銀乳劑層(圖未示)。 In step S221, a long photosensitive material is formed, a first photosensitive silver halide emulsion layer (not shown) is formed on one surface of the first substrate 1002, and a second photosensitive is formed on the other surface of the first substrate 1002. Silver halide emulsion layer (not shown).

其中,感光材料包括感光銀鹽和黏接劑,還包括溶劑和染料等添加劑。感光材料用於形成的感光性鹵化銀乳化劑層。 Among them, the photosensitive material includes a photosensitive silver salt and an adhesive, and also includes an additive such as a solvent and a dye. The photosensitive material is used to form a photosensitive silver halide emulsifier layer.

感光材料中的感光銀鹽還可使用無機銀鹽,如氯化銀、溴化銀和碘化銀及醋酸銀等有機銀鹽。在本實施例中,優選為光感測器特性優良的鹵化銀。 The photosensitive silver salt in the photosensitive material may also be an inorganic silver salt such as silver chloride, silver bromide, and an organic silver salt such as silver iodide or silver acetate. In the present embodiment, silver halide having excellent characteristics of the photosensor is preferable.

其中,黏接劑包括但不限受限於如下材料:明膠、聚乙烯醇、聚乙烯基吡咯烷酮、澱粉等多糖類、纖維素及其誘導體、聚環氧乙烷、聚乙烯胺、脫乙醯殼多糖、多熔素、聚丙烯酸、聚藻酸、透明質酸、羧基纖維素等。 Among them, the adhesive includes, but is not limited to, the following materials: gelatin, polyvinyl alcohol, polyvinyl pyrrolidone, starch and other polysaccharides, cellulose and its inducer, polyethylene oxide, polyvinylamine, and B Chitin, polylysine, polyacrylic acid, polyalginic acid, hyaluronic acid, carboxy cellulose, and the like.

第一感光性鹵化銀乳劑層(圖未示)及第二感光性鹵化銀乳劑層(圖未示)形成過程中所使用的溶劑沒有特別限定,可以包括但不受限於:水、有機溶劑(如甲醇等醇類、丙酮等酮類、甲醯胺等醯胺類、二甲基亞碸等亞碸類、乙酸乙酯等酯類)、離子 性液體及其任意組合的混合溶劑。上述溶劑的含有量,相對於第一感光性鹵化銀乳劑層(圖未示)或第二感光性鹵化銀乳劑層(圖未示)所含的鹵化銀鹽、黏接劑等的合計的品質,溶劑的品質百分比範圍為30~90%、優選為50~80%。 The solvent used in the formation of the first photosensitive silver halide emulsion layer (not shown) and the second photosensitive silver halide emulsion layer (not shown) is not particularly limited and may include, but is not limited to, water, organic solvent. (such as alcohols such as methanol, ketones such as acetone, decylamines such as formamide, hydrazines such as dimethyl hydrazine, and esters such as ethyl acetate), ions A mixed solvent of a liquid and any combination thereof. The content of the solvent is the total quality of the first photosensitive silver halide emulsion layer (not shown) or the silver halide salt (adhesive) contained in the second photosensitive silver halide emulsion layer (not shown). The percentage of the quality of the solvent ranges from 30 to 90%, preferably from 50 to 80%.

對於其它添加劑,沒有特別限制,可以擇優選擇公知的添加劑使用。 The other additives are not particularly limited, and a known additive can be preferably used.

在步驟S222中,對上述的在第一基板1002兩個相對應的表面形成的第一感光性鹵化銀乳劑層(圖未示)及第二感光性鹵化銀乳劑層(圖未示)的感光材料進行曝光。 In step S222, the first photosensitive silver halide emulsion layer (not shown) and the second photosensitive silver halide emulsion layer (not shown) formed on the two corresponding surfaces of the first substrate 1002 are sensitized. The material is exposed.

為了避免對感光材料從單側進行曝光會影響另一單側的圖像形成,限制射向第一感光性鹵化銀乳劑層(圖未示)的光向第二感光性鹵化銀乳劑層(圖未示)背面的光透射(或射向第一感光性鹵化銀乳劑層(圖未示)的光向第二感光性鹵化銀乳劑層(圖未示)背面透射),第一、第二感光性鹵化銀乳劑層(圖未示)的厚度分別設定為1μm~4μm,更優為1μm~3μm,其上限值優選2.5μm。此外,由於鹵化銀自身可吸收光,通過將第一、第二感光性鹵化銀乳劑層(圖未示)的塗敷銀量規定為5~20g/m2,也可以限制上述的光透射問題。 In order to avoid exposure of the photosensitive material from one side to another single side image formation, the light directed to the first photosensitive silver halide emulsion layer (not shown) is restricted to the second photosensitive silver halide emulsion layer (Fig. Light transmission on the back side (or light directed to the first photosensitive silver halide emulsion layer (not shown) is transmitted to the back side of the second photosensitive silver halide emulsion layer (not shown), first and second photosensitive The thickness of the silver halide emulsion layer (not shown) is set to be 1 μm to 4 μm, more preferably 1 μm to 3 μm, and the upper limit thereof is preferably 2.5 μm. In addition, since the silver halide itself can absorb light, the above-mentioned light transmission problem can also be limited by setting the amount of silver applied to the first and second photosensitive silver halide emulsion layers (not shown) to 5 to 20 g/m 2 . .

進一步地,為了防止附著在薄膜(film)表面上的塵埃等帶來的曝光妨礙所引起的圖像缺陷問題出現,採用現有解決上述圖像缺陷問題方法中,在薄膜上塗敷導電性物質的方法會殘留金屬氧化物,進而會損害最終製品的透明性且使製品不穩定,帶來導電性高分子在保存方面的問題。而本實施例中通過調整感光性鹵化銀乳劑層中感光銀鹽(如鹵化銀)與黏接劑之間的比例, 以減少薄膜表面對塵埃等小顆粒雜質的吸附力。其中,感光銀鹽(如鹵化銀)與黏接劑的體積比大於1:1、優選為大於2:1。 Further, in order to prevent the occurrence of image defects caused by exposure due to dust or the like adhering to the surface of the film, a method of applying a conductive substance on the film in the conventional method for solving the above image defect problem is employed. The metal oxide remains, which in turn impairs the transparency of the final product and destabilizes the product, causing problems in storage of the conductive polymer. In this embodiment, by adjusting the ratio between the photosensitive silver salt (such as silver halide) and the adhesive in the photosensitive silver halide emulsion layer, To reduce the adsorption of small particle impurities such as dust on the surface of the film. Wherein, the volume ratio of the photosensitive silver salt (such as silver halide) to the binder is greater than 1:1, preferably greater than 2:1.

在步驟S223中,通過對曝光後的感光材料進行顯影處理,從而在第一基板1002上製作得到導電網格圖案。其中,對第一感光性鹵化銀乳劑層及第二感光性鹵化銀乳劑層的曝光時間及顯影時間可根據光源的種類和顯影液的種類等變化而變化,所以無法確定優選的數值範圍,但可調整成顯影率為100%的曝光時間及顯影時間。 In step S223, a conductive grid pattern is formed on the first substrate 1002 by performing development processing on the exposed photosensitive material. However, the exposure time and the development time of the first photosensitive silver halide emulsion layer and the second photosensitive silver halide emulsion layer may vary depending on the type of the light source and the type of the developer, and thus a preferable numerical range cannot be determined, but It can be adjusted to an exposure time of 100% and a development time.

在本實施例中,在第一感光性鹵化銀乳劑層及第二感光性鹵化銀乳劑層之上還可設置保護層(圖未示),保護層是指明膠、高分子聚合物這些黏接劑構成的層,可以有效防止擦傷,並改良力學特性。此外,在銀鹽乳劑層之下,例如可以設置下塗層。 In this embodiment, a protective layer (not shown) may be disposed on the first photosensitive silver halide emulsion layer and the second photosensitive silver halide emulsion layer, and the protective layer indicates bonding of the glue and the high molecular polymer. The layer composed of the agent can effectively prevent scratches and improve mechanical properties. Further, under the silver salt emulsion layer, for example, an undercoat layer may be provided.

在本實施例中,在第一感光性鹵化銀乳劑層(圖未示)及第二感光性鹵化銀乳劑層(圖未示)之上還可形成光學匹配層(圖未示),光學匹配層(圖未示)使其具有保護層的效果,又能夠減少電極網格的光學反射。 In this embodiment, an optical matching layer (not shown) may be formed on the first photosensitive silver halide emulsion layer (not shown) and the second photosensitive silver halide emulsion layer (not shown) for optical matching. The layer (not shown) has the effect of a protective layer, which in turn reduces the optical reflection of the electrode grid.

與現有技術相比,首先,本發明中提供了一種壓力感測輸入裝置,壓力感測輸入裝置包括由金屬網格形成的複數條壓力感測電極,其中,金屬網格由複數個奈米級金屬顆粒構成,其在受到壓力後相互擠壓導致金屬網格電阻發生變化。與現有技術中採用ITO材料製備感應電極相比,本發明中的金屬網格在受到壓力時能夠產生更大的形變。而在本發明中,當使用者施加一觸壓動作,作用力傳遞到壓力感測電極後,壓力感測電極產生相 應動作,金屬網格相應發生物理形變,此外,由於構成壓力感測電極的金屬網格由複數個奈米級金屬顆粒形成,奈米級金屬顆粒在受力過程中,奈米級金屬顆粒與顆粒之間也會帶來微觀空間位置的變化,與物理形變共同作用,帶來更為顯著的電阻值變化,由壓力感測輸入裝置中的壓力感測晶片對信號進行處理,從而計算獲得觸壓動作的位置及觸壓的力量大小,並進一步實現不同的觸壓力量可實現的不同的功能操作。 Compared with the prior art, firstly, the present invention provides a pressure sensing input device comprising a plurality of pressure sensing electrodes formed by a metal mesh, wherein the metal mesh is composed of a plurality of nanometers. The metal particles are formed which, after being subjected to pressure, are pressed against each other to cause a change in the resistance of the metal grid. Compared to prior art fabrication of sensing electrodes using ITO materials, the metal mesh of the present invention is capable of producing greater deformation when subjected to pressure. In the present invention, when the user applies a touch action, the force is transmitted to the pressure sensing electrode, and the pressure sensing electrode generates a phase. The metal mesh should be physically deformed accordingly. In addition, since the metal mesh constituting the pressure sensing electrode is formed by a plurality of nano-sized metal particles, the nano-sized metal particles are subjected to a force process, and the nano-sized metal particles are The change in the position of the microscopic space between the particles also acts in conjunction with the physical deformation to bring about a more significant change in the resistance value, and the signal is processed by the pressure sensing wafer in the pressure sensing input device to calculate the touch. The position of the pressing action and the force of the pressing force, and further realize different functional operations that can be realized by different amounts of contact pressure.

本發明創新性地採用金屬網格製備壓力感測電極,有效將金屬網格的電阻特性及奈米級金屬顆粒的受壓後微觀空間位置的變化特點相結合,從而獲得一種具有高靈敏度及精準度壓力感測的壓力感測輸入裝置,這樣的設計可以極大的提高使用者使用產品的體驗度和滿意度。 The invention innovatively uses a metal mesh to prepare a pressure sensing electrode, effectively combining the resistance characteristics of the metal mesh and the change characteristics of the nano-scale metal particles after pressing, thereby obtaining a high sensitivity and precision. The pressure sensing input device of the pressure sensing, such a design can greatly improve the user experience and satisfaction of using the product.

本發明中由金屬網格構成的壓力感測電極中靠近基板的壓力感測電極的下部的線徑小於遠離基板的壓力感測電極的上部的線徑,且壓力感測電極的橫截面的形狀可為半弧形、倒三角形、梯形等,這樣的設置有利於應力集中,以使壓力感測電極在「觸」和「壓」過程中的電阻值的變化更為顯著。 In the pressure sensing electrode composed of a metal mesh in the present invention, a wire diameter of a lower portion of the pressure sensing electrode near the substrate is smaller than a wire diameter of an upper portion of the pressure sensing electrode remote from the substrate, and a shape of a cross section of the pressure sensing electrode It can be semi-arc, inverted triangle, trapezoidal, etc. This arrangement is conducive to stress concentration, so that the resistance of the pressure sensing electrode during the "touch" and "pressure" changes more significantly.

在本發明所提供的由金屬網格構成的壓力感測輸入裝置中,在一個導電層(如第一導電層及第二導電層)上可同時形成金屬網格圖案化的壓力感測電極及觸控感測電極,從而在一個導電層(如第一導電層及第二導電層)中實現壓力檢測及觸控位置檢測的功能。其中,壓力感測電極可以根據手指按壓壓力感測觸控屏,造成壓力感測電極發生微觀形變而造成阻值的變化,然後與觸控感測電極共同作用,通過壓力感測晶片偵測阻值變化 大小從而可以準確判定按壓力度的大小,可以兼顧二維座標和三維觸壓力度的精準檢測。 In the pressure sensing input device composed of a metal mesh provided by the present invention, metal grid patterned pressure sensing electrodes can be simultaneously formed on one conductive layer (such as the first conductive layer and the second conductive layer) and The sensing electrodes are touched to realize the functions of pressure detection and touch position detection in one conductive layer (such as the first conductive layer and the second conductive layer). The pressure sensing electrode can sense the touch screen according to the pressure of the finger pressing, causing the microscopic deformation of the pressure sensing electrode to cause a change in the resistance value, and then interacting with the touch sensing electrode to detect the resistance through the pressure sensing wafer. Value change The size can accurately determine the size of the pressing force, and can accurately measure the two-dimensional coordinates and the three-dimensional pressure.

本發明所提供由金屬網格構成的壓力感測輸入裝置中可包括兩層及以上的導電層,導電層可包括壓力感測電極與觸控感測電極中的至少一種。壓力感測輸入裝置還可進一步包括保護層和/或光學匹配層和/或保護蓋板,從而可以根據需求獲得性能更佳的壓力感測輸入裝置。其中,當壓力感測電極與觸控感測電極在同一層壓力感測輸入裝置時,相較於傳統的壓力感測外貼在觸控屏的結構,壓力感測輸入裝置的厚度更小,成本更低。而且在整合的時候,壓力感測電極與觸控感測電極分別位於面積互補的第一壓力感測配置區域和第一觸控感測配置區,從而可實現在降低壓力感測輸入裝置厚度的同時降低其可視性的效果。 The pressure sensing input device provided by the metal mesh of the present invention may include two or more conductive layers, and the conductive layer may include at least one of a pressure sensing electrode and a touch sensing electrode. The pressure sensing input device may further include a protective layer and/or an optical matching layer and/or a protective cover such that a better performing pressure sensing input device may be obtained as desired. Wherein, when the pressure sensing electrode and the touch sensing electrode are in the same layer of the pressure sensing input device, the thickness of the pressure sensing input device is smaller than that of the conventional pressure sensing device. The cost is lower. Moreover, during integration, the pressure sensing electrode and the touch sensing electrode are respectively located in the first pressure sensing configuration area and the first touch sensing configuration area, which are complementary in area, thereby reducing the thickness of the pressure sensing input device. At the same time reduce the effectiveness of its visibility.

本發明所提供的壓力感測輸入裝置中,金屬網格壓力感測電極的線寬小於觸控感測電極的線寬,在單位面積內,壓力感測電極的線長大於觸控感測電極的線長,可進一步使施加的作用力集中,從而使金屬網格壓力感測電極獲得更大的形變,從而提高觸控位置與壓力感測的精準度和靈敏度。 In the pressure sensing input device provided by the present invention, the line width of the metal mesh pressure sensing electrode is smaller than the line width of the touch sensing electrode, and the line length of the pressure sensing electrode is larger than the touch sensing electrode in a unit area The length of the wire further concentrates the applied force, thereby making the metal mesh pressure sensing electrode obtain a larger deformation, thereby improving the accuracy and sensitivity of the touch position and pressure sensing.

本發明中還提供了一種由金屬網格構成的壓力感測輸入裝置的製備方法,可實現在同一基板上同時製備壓力感測電極及觸控感測電極,從而大大簡化製程,降低製作的成本。本發明中用於製造壓力感測輸入裝置的金屬網格的奈米級金屬顆粒中可加入粒徑大小為50nm~500nm的暗色物質添加劑顆粒,由於暗色物質添加劑顆粒加入,可以有效減少金屬網格中奈米級金屬顆粒的光線反射,降低其可視性。 The invention also provides a method for preparing a pressure sensing input device composed of a metal grid, which can simultaneously prepare a pressure sensing electrode and a touch sensing electrode on the same substrate, thereby greatly simplifying the process and reducing the manufacturing cost. . The dark-colored material additive particles having a particle size of 50 nm to 500 nm may be added to the nano-sized metal particles of the metal mesh for manufacturing the pressure sensing input device in the present invention, and the metal mesh may be effectively reduced due to the addition of the dark matter additive particles. The light reflection of the medium-nano-grade metal particles reduces their visibility.

以上所述僅為本發明的較佳實施例而已,並不用以限制本發明,凡在本發明的原則之內所作的任何修改,等同替換和改進等均應包含本發明的保護範圍之內。 The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and any modifications, equivalents, and improvements made within the principles of the present invention should be included in the scope of the present invention.

1031‧‧‧第一壓力感測電極 1031‧‧‧First pressure sensing electrode

1032‧‧‧第一電極連接線 1032‧‧‧First electrode connection line

104‧‧‧壓力感測晶片 104‧‧‧ Pressure Sensing Wafer

1041‧‧‧惠斯通電橋電路 1041‧‧‧ Wheatstone Bridge Circuit

Claims (14)

一種壓力感測輸入裝置,包括:一第一基板;一第一導電層,包括複數條第一壓力感測電極,設置於該第一基板的表面,用以感測一壓力大小,該第一壓力感測電極由一金屬網格形成,其中該金屬網格由複數個奈米級金屬顆粒構成,該複數個奈米級金屬顆粒在受到該壓力後相互擠壓導致該金屬網格電阻發生變化;以及一壓力感測晶片,與該第一壓力感測電極電連接,該壓力感測晶片通過檢測該第一壓力感測電極在受到該壓力後產生的電阻變化量實現對該壓力大小的檢測。 A pressure sensing input device includes: a first substrate; a first conductive layer, comprising a plurality of first pressure sensing electrodes disposed on a surface of the first substrate for sensing a pressure, the first The pressure sensing electrode is formed by a metal mesh, wherein the metal mesh is composed of a plurality of nano-sized metal particles, and the plurality of nano-sized metal particles are pressed against each other to cause a change in resistance of the metal mesh after being subjected to the pressure. And a pressure sensing wafer electrically connected to the first pressure sensing electrode, the pressure sensing wafer detecting the magnitude of the pressure by detecting a resistance change generated by the first pressure sensing electrode after receiving the pressure . 如請求項1所述之壓力感測輸入裝置,其中該金屬網格的線寬為1μm~10μm。 The pressure sensing input device of claim 1, wherein the metal grid has a line width of 1 μm to 10 μm. 如請求項1所述之壓力感測輸入裝置,其中該第一壓力感測電極呈放射狀、曲線彎折狀或螺旋狀。 The pressure sensing input device of claim 1, wherein the first pressure sensing electrode is radially, curved, or spiral. 如請求項1所述之壓力感測輸入裝置,其中該第一壓力感測電極包括靠近該第一基板的下部與遠離該第一基板的上部,該下部的線徑小於該上部的線徑。 The pressure sensing input device of claim 1, wherein the first pressure sensing electrode comprises a lower portion adjacent to the first substrate and an upper portion away from the first substrate, and a wire diameter of the lower portion is smaller than a wire diameter of the upper portion. 如請求項1所述之壓力感測輸入裝置,其中該第一導電層進一步包括一第一壓力感測配置區和一與第一壓力感測配置區面積互補的第一觸控感測配置區,該複數條第一壓力感 測電極設置於該第一壓力感測配置區,該第一觸控感測配置區內設有複數條第一觸控感測電極,該複數條第一觸控感測電極用於檢測多點觸控。 The pressure sensing input device of claim 1, wherein the first conductive layer further comprises a first pressure sensing arrangement area and a first touch sensing configuration area complementary to the area of the first pressure sensing arrangement area. The plural first sense of pressure The measuring electrode is disposed in the first pressure sensing configuration area, wherein the first touch sensing configuration area is provided with a plurality of first touch sensing electrodes, and the plurality of first touch sensing electrodes are used for detecting multiple points Touch. 如請求項5所述之壓力感測輸入裝置,其中該複數條第一觸控感測電極之間交錯互補並通過連接絕緣塊橋接,該第一壓力感測電極設置於該第一觸控感測電極之間間隔區域。 The pressure sensing input device of claim 5, wherein the plurality of first touch sensing electrodes are staggered and complementary and bridged by connecting insulating blocks, wherein the first pressure sensing electrodes are disposed on the first touch sense The interval between the electrodes. 如請求項5所述之壓力感測輸入裝置,其中該第一觸控感測電極由一金屬網格形成,該金屬網格的線寬為1μm~10μm;該金屬網格由複數個奈米級金屬顆粒構成。 The pressure sensing input device of claim 5, wherein the first touch sensing electrode is formed by a metal mesh having a line width of 1 μm to 10 μm; the metal mesh is composed of a plurality of nanometers Made up of graded metal particles. 如請求項7所述之壓力感測輸入裝置,其中該第一壓力感測電極的線寬小於該第一觸控感測電極的線寬。 The pressure sensing input device of claim 7, wherein a line width of the first pressure sensing electrode is smaller than a line width of the first touch sensing electrode. 如請求項5所述之壓力感測輸入裝置,其中該第一觸控感測電極進一步包括間隔設置的一第一方向觸控感測電極及一第二方向觸控感測電極,該第一壓力感測電極設置於該第一方向觸控感測電極及該第二方向觸控感測電極之間。 The pressure sensing input device of claim 5, wherein the first touch sensing electrode further comprises a first direction touch sensing electrode and a second direction touch sensing electrode disposed at intervals, the first The pressure sensing electrode is disposed between the first direction touch sensing electrode and the second direction touch sensing electrode. 如請求項5所述之壓力感測輸入裝置,其中進一步包括一第二基板及一第二導電層,該第二導電層設於該第二基板表面,該第二導電層包括複數條第二觸控感測電極和/或複數條第二壓力感測電極;該複數條第一觸控感測電極與該複數條第二觸控感測電極用於檢測多點觸控。 The pressure sensing input device of claim 5, further comprising a second substrate and a second conductive layer, the second conductive layer being disposed on the surface of the second substrate, the second conductive layer comprising a plurality of second The touch sensing electrode and/or the plurality of second pressure sensing electrodes; the plurality of first touch sensing electrodes and the plurality of second touch sensing electrodes are used for detecting multi-touch. 如請求項1所述之壓力感測輸入裝置,其中進一步包括一保護蓋板,該保護蓋板具有一第一表面及一相對設置的第二表面,該第一表面供使用者施加以觸壓動作,該第二表面靠近該第一基板。 The pressure sensing input device of claim 1, further comprising a protective cover having a first surface and an oppositely disposed second surface for the user to apply pressure Action, the second surface is adjacent to the first substrate. 如請求項1所述之壓力感測輸入裝置,其中該第一基板為一保護蓋板,該保護蓋板具有一第一表面及一相對設置的第二表面,該第一表面供使用者施加以觸壓動作。 The pressure sensing input device of claim 1, wherein the first substrate is a protective cover, the protective cover has a first surface and an opposite second surface, the first surface is for a user to apply Touch the action. 如請求項1~12中任一項所述之壓力感測輸入裝置,其中該壓力感測電極的應變計因數大於0.5。 The pressure sensing input device of any one of claims 1 to 12, wherein the pressure sensing electrode has a strain gauge factor greater than 0.5. 如請求項13所述之壓力感測輸入裝置,其中該壓力感測電極能實現多點壓力偵測。 The pressure sensing input device of claim 13, wherein the pressure sensing electrode is capable of multi-point pressure detection.
TW105116899A 2015-07-10 2016-05-30 Pressure-sensing imput device TWI605368B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510404913.4A CN106325583B (en) 2015-07-10 2015-07-10 pressure sensing input device

Publications (2)

Publication Number Publication Date
TW201702840A TW201702840A (en) 2017-01-16
TWI605368B true TWI605368B (en) 2017-11-11

Family

ID=57444122

Family Applications (2)

Application Number Title Priority Date Filing Date
TW105116899A TWI605368B (en) 2015-07-10 2016-05-30 Pressure-sensing imput device
TW105208047U TWM528518U (en) 2015-07-10 2016-05-30 Pressure-sensing imput device

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW105208047U TWM528518U (en) 2015-07-10 2016-05-30 Pressure-sensing imput device

Country Status (2)

Country Link
CN (1) CN106325583B (en)
TW (2) TWI605368B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106598347B (en) * 2017-01-16 2023-04-28 宸鸿科技(厦门)有限公司 Force sensing device and OLED display device
TWI602279B (en) * 2017-02-13 2017-10-11 華邦電子股份有限公司 Multifunctional sensor
CN108426602B (en) 2017-02-13 2020-12-22 华邦电子股份有限公司 Multifunctional sensor
CN107168593B (en) * 2017-05-10 2020-01-14 京东方科技集团股份有限公司 Touch electrode and touch electrode manufacturing method
KR20200094896A (en) * 2019-01-30 2020-08-10 삼성디스플레이 주식회사 Touch sensor and display device
CN113795740A (en) * 2019-06-26 2021-12-14 百医医材科技股份有限公司 Pressure sensing system and pressure sensing setting method
CN111556689B (en) * 2020-05-11 2021-06-04 郑州工程技术学院 Road surface sensing circuit and protector thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5780303B2 (en) * 2011-08-11 2015-09-16 株式会社村田製作所 Touch panel
CN104185833B (en) * 2012-03-15 2017-10-24 索尼移动通信株式会社 Method for controlling touch sensor
US20150116252A1 (en) * 2012-12-24 2015-04-30 Samsung Electro-Mechanics Co., Ltd. Touch sensor
CN103699281A (en) * 2013-12-12 2014-04-02 苏州维业达触控科技有限公司 Capacitance-type touch screen assembly
CN103941946B (en) * 2014-04-09 2017-05-03 京东方科技集团股份有限公司 Touch screen and display device
CN205334403U (en) * 2015-07-10 2016-06-22 宸鸿科技(厦门)有限公司 Pressure sensing input device

Also Published As

Publication number Publication date
CN106325583B (en) 2023-10-10
TWM528518U (en) 2016-09-11
CN106325583A (en) 2017-01-11
TW201702840A (en) 2017-01-16

Similar Documents

Publication Publication Date Title
TWI605368B (en) Pressure-sensing imput device
CN205334403U (en) Pressure sensing input device
TWI557605B (en) Positional touch sensor with force measurement
TWI609305B (en) Pressure-sensitive input equipment
CN105765501B (en) Conductive sheet, capacitive touch panel and display device
US9304636B2 (en) Micro-wire touch screen with unpatterned conductive layer
TWI576745B (en) Pressure-sensitive input equipment
KR101556313B1 (en) Touch panel and manufacturing method thereof
TWI395998B (en) Conductive plate and touch plate applied by the same
TWM573017U (en) Touch panel and touch sensor tape
KR101862876B1 (en) Touch panel
CN104951155B (en) Capacitive touch device and preparation method thereof
TWI550465B (en) Touch device
CN205353971U (en) Pressure sensing input device
TWI623863B (en) Pressure sensing input device and manufacturing method thereof
TWM526720U (en) Pressure-sensitive input equipment
US20140253825A1 (en) Touch panel and manufacturing method thereof
CN103761017A (en) Electronic equipment and manufacturing method for single-layered multipoint capacitive touch screen and touch layer
TWM605319U (en) Three-dimensional sensing module and electronic apparatus
KR20170141019A (en) Touch force sensing sensor for flexible material
CN108196733A (en) A kind of dry film type preparation method of capacitive touch screen
CN207867471U (en) Touch panel and touch sensing winding
TWI746093B (en) Three-dimensional sensing module and method of manufacturing the same and electronic apparatus
CN212433743U (en) Three-dimensional sensing module and electronic device
JP7117358B2 (en) 3D SENSING MODULE AND MANUFACTURING METHOD THEREOF AND ELECTRONIC DEVICE